WO2015015894A1 - Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same - Google Patents

Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
WO2015015894A1
WO2015015894A1 PCT/JP2014/064630 JP2014064630W WO2015015894A1 WO 2015015894 A1 WO2015015894 A1 WO 2015015894A1 JP 2014064630 W JP2014064630 W JP 2014064630W WO 2015015894 A1 WO2015015894 A1 WO 2015015894A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
secondary battery
active material
transition metal
Prior art date
Application number
PCT/JP2014/064630
Other languages
French (fr)
Japanese (ja)
Inventor
智裕 蕪木
山本 伸司
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2015015894A1 publication Critical patent/WO2015015894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/56Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO3]2-, e.g. Li2[NixMn1-xO3], Li2[MyNixMn1-x-yO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
  • a lithium ion secondary battery As a secondary battery for driving a motor, a lithium ion secondary battery having a high theoretical energy is attracting attention, and is currently being developed rapidly.
  • a lithium ion secondary battery has a configuration in which a positive electrode, a negative electrode, and an electrolyte positioned therebetween are housed in a battery case.
  • the positive electrode is formed by applying a positive electrode slurry containing a positive electrode active material to the surface of the current collector
  • the negative electrode is formed by applying a negative electrode slurry containing a negative electrode active material to the surface of the negative electrode current collector.
  • a cathode composition for a lithium ion battery having the formula (a) Li y [M 1 (1-b) Mn b ] O 2 or (b) Li x [M 1 (1-b) Mn b ] O 1.5 + c
  • M 1 represents one or more metal elements.
  • M 1 is a metal element other than chromium.
  • the composition has a single-phase form having an O3 crystal structure that does not cause a phase transition to a spinel crystal structure when a predetermined full charge / discharge cycle operation is performed.
  • the present invention has been made in view of such problems of the conventional technology. And the objective is to provide the positive electrode for nonaqueous electrolyte secondary batteries which can implement
  • the positive electrode for nonaqueous electrolyte secondary batteries includes a positive electrode active material and a conductive additive.
  • the conductive auxiliary agent contains a carbon material, and the carbon material has a BET specific surface area of 30 to 200 m 2 / g.
  • FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a graph illustrating the definition of the spinel structure change rate.
  • the positive electrode for nonaqueous electrolyte secondary batteries includes a positive electrode active material and a conductive additive.
  • the conductive auxiliary agent contains a carbon material, and the carbon material has a BET specific surface area of 30 to 200 m 2 / g.
  • the solid solution represented by the chemical formula (1) as the positive electrode active material, a high discharge capacity and capacity retention rate can be realized. Furthermore, when using the above solid solution, a positive electrode for a non-aqueous electrolyte secondary battery capable of exhibiting high rate characteristics by using a carbon material having a BET specific surface area of 30 to 200 m 2 / g as a conductive auxiliary agent, and A non-aqueous electrolyte secondary battery using the same can be provided.
  • the positive electrode for a nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery of the present invention will be described in detail, but the present invention is not limited to the following embodiments.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
  • a positive electrode for a non-aqueous electrolyte secondary battery includes a lithium-containing transition metal oxide (hereinafter, lithium-containing transition metal oxide) having a solid solution form represented by the above chemical formula (1) in a positive electrode active material layer. Is also simply referred to as “transition metal oxide”).
  • lithium-containing transition metal oxide As a positive electrode active material in a nonaqueous electrolyte secondary battery, a high initial discharge capacity and capacity retention rate can be realized.
  • those having a solid solution form are particularly “solid solution lithium-containing transition metal oxides”, or simply “solid solution transition metal oxides” or “solid solutions”. Is also referred to.
  • the solid solution represented by the chemical formula (1) has a characteristic that the reaction resistance as an active material is larger than that of a conventional lithium-containing transition metal oxide. There was found. When the reaction resistance of the active material is high, sufficient capacity cannot be taken out (ie, high rate characteristics are not sufficient) under the high output conditions required for motor-driven secondary batteries such as EV and HEV A new problem can arise. Accordingly, it has been required to provide means capable of exhibiting sufficiently high rate characteristics when the solid solution represented by the chemical formula (1) is used as the positive electrode active material.
  • the present inventors have intensively studied on this new problem.
  • the problem can be solved by using a carbon material having a BET specific surface area of 30 to 200 m 2 / g as a conductive auxiliary.
  • the inventors have found that the present invention can be solved, and have completed the above-described present invention.
  • According to the present invention in addition to high initial discharge capacity and capacity retention rate, it is possible to realize high rate characteristics even under high output conditions.
  • the positive electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery according to the present invention will be described taking the positive electrode for a lithium ion secondary battery and the lithium ion secondary battery as examples.
  • FIG. 1 shows an example of a lithium ion secondary battery according to an embodiment of the present invention.
  • a lithium ion secondary battery is called a laminated lithium ion secondary battery.
  • the lithium ion secondary battery 1 of the present embodiment has a configuration in which a battery element 10 to which a positive electrode lead 21 and a negative electrode lead 22 are attached is enclosed in an exterior body 30 formed of a laminate film. have.
  • the positive electrode lead 21 and the negative electrode lead 22 are led out in the opposite direction from the inside of the exterior body 30 to the outside.
  • the positive electrode lead and the negative electrode lead may be led out in the same direction from the inside of the exterior body toward the outside.
  • such a positive electrode lead and a negative electrode lead can be attached to a positive electrode current collector and a negative electrode current collector described later by, for example, ultrasonic welding or resistance welding.
  • the positive electrode lead 21 and the negative electrode lead 22 are made of, for example, a metal material such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), alloys thereof, and stainless steel (SUS). However, the material is not limited thereto, and a conventionally known material used as a lead for a lithium ion secondary battery can be used.
  • the positive electrode lead and the negative electrode lead may be made of the same material or different materials.
  • a separately prepared lead may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are extended.
  • the lead may be formed by this.
  • the positive lead and the negative lead taken out from the exterior body do not affect products (for example, automobile parts, especially electronic devices) by contacting with peripheral devices or wiring and causing electric leakage.
  • a current collecting plate may be used for the purpose of taking out current outside the battery.
  • the current collector plate is electrically connected to a current collector or a lead, and is taken out of a laminate film that is an exterior material of the battery.
  • the material which comprises a current collector plate is not specifically limited,
  • the well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used.
  • As a constituent material of the current collector plate for example, metal materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), alloys thereof, and stainless steel (SUS) are preferable, and light weight and corrosion resistance. From the viewpoint of high conductivity, aluminum (Al), copper (Cu), and the like are more preferable. Note that the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
  • the exterior body 30 is preferably formed of a film-shaped exterior material from the viewpoint of size reduction and weight reduction.
  • an exterior body is not limited to this, The conventionally well-known material used for the exterior body for lithium ion secondary batteries can be used. That is, a metal can case can also be applied.
  • the exterior body has a polymer-metal composite with excellent thermal conductivity.
  • a laminate film can be mentioned. More specifically, an exterior body formed of a three-layer laminate film in which polypropylene as a thermocompression bonding layer, aluminum as a metal layer, and nylon as an external protective layer are laminated in this order is preferably used. it can.
  • the exterior body may be constituted by another structure, for example, a laminate film having no metal material, a polymer film such as polypropylene, or a metal film, instead of the above-described laminate film.
  • the general structure of the exterior body can be represented by a laminated structure of an external protective layer / metal layer / thermocompression bonding layer.
  • the external protective layer and the thermocompression bonding layer may be composed of a plurality of layers.
  • the metal layer functions as a moisture-permeable barrier film, and not only aluminum foil but also stainless steel foil, nickel foil, plated iron foil, and the like can be used.
  • the metal layer an aluminum foil that is thin and lightweight and excellent in workability can be suitably used.
  • the structures that can be used as the exterior body are listed in the form of (external protective layer / metal layer / thermocompression layer).
  • the battery element 10 includes both a positive electrode 11 having a positive electrode active material layer 11B formed on both main surfaces of the positive electrode current collector 11A, an electrolyte layer 13, and a negative electrode current collector 12A.
  • a plurality of negative electrodes 12 each having a negative electrode active material layer 12 ⁇ / b> B formed on the main surface are stacked.
  • the negative electrode active material layer 12 ⁇ / b> B formed on the surface of the substrate faces the electrolyte layer 13. In this way, a plurality of layers are laminated in the order of the positive electrode, the electrolyte layer, and the negative electrode.
  • the adjacent positive electrode active material layer 11B, electrolyte layer 13 and negative electrode active material layer 12B constitute one unit cell layer 14. Therefore, the lithium ion secondary battery 1 according to the present embodiment has a configuration in which a plurality of single battery layers 14 are stacked and electrically connected in parallel.
  • the positive electrode and the negative electrode may have each active material layer formed only on one main surface of each current collector.
  • the negative electrode current collector 12a located in the outermost layer of the battery element 10 has the negative electrode active material layer 12B formed only on one side.
  • an insulating layer for insulating between the adjacent positive electrode current collector and negative electrode current collector may be provided on the outer periphery of the unit cell layer.
  • Such an insulating layer is preferably formed of a material that holds the electrolyte contained in the electrolyte layer and the like and prevents electrolyte leakage from the outer periphery of the unit cell layer.
  • general-purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polystyrene (PS), etc.
  • thermoplastic olefin rubber can be used. Silicone rubber can also be used.
  • the positive electrode current collector 11A and the negative electrode current collector 12A are made of a conductive material.
  • the size of the current collector can be determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited. In the battery element 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used.
  • a mesh shape such as an expanded grid
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • the metal include aluminum (Al), nickel (Ni), iron (Fe), stainless steel (SUS), titanium (Ti), copper (Cu), and the like.
  • covered with aluminum may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and the like.
  • the conductive polymer material examples include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polystyrene (PS), and the like.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polyte
  • a conductive filler can be added to the conductive polymer material or non-conductive polymer material as necessary.
  • a conductive filler is inevitably necessary to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
  • a metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion interruption
  • the metal used as the conductive filler examples include nickel (Ni), titanium (Ti), aluminum (Al), copper (Cu), platinum (Pt), iron (Fe), chromium (Cr), tin (Sn), Mention may be made of at least one metal selected from the group consisting of zinc (Zn), indium (In), antimony (Sb) and potassium (K). Further, alloys or metal oxides containing these metals can also be mentioned as suitable examples.
  • the conductive carbon examples include at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene. it can.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.
  • the material is not limited to these, and a conventionally known material used as a current collector for a lithium ion secondary battery can be used.
  • the positive electrode active material layer 11B essentially includes a predetermined solid solution lithium-containing transition metal oxide and a conductive additive as a positive electrode active material. And other additives, such as a binder, may be included as needed.
  • the positive electrode active material layer according to this embodiment contains a lithium-containing transition metal oxide represented by the following chemical formula (1) as a positive electrode active material.
  • Li Li 1.5 [Ni a Co b Mn c [Li] d ] O 3
  • Li represents lithium
  • Ni nickel
  • Co represents cobalt
  • Mn manganese
  • O oxygen
  • the lithium-containing transition metal oxide has a layered structure portion and a portion (a layered structure Li 2 MnO 3 ) that changes to a spinel structure by charging or charging / discharging in a predetermined potential range.
  • Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is changed to LiMn 2 O 4 having a spinel structure.
  • the spinel structure change ratio of the lithium-containing transition metal oxide is 0.25 or more and 1.0. It is preferable that it is less than.
  • lithium-containing transition metal oxide When such a solid solution lithium-containing transition metal oxide is used as a positive electrode active material of a lithium ion secondary battery, it can realize a high discharge capacity and capacity retention rate. It is suitably used for secondary batteries. As a result, it can be suitably used as a lithium-ion secondary battery for vehicle drive power or auxiliary power. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for home use and portable devices.
  • the “spinel structure change ratio” means that when charging or charging / discharging in a predetermined potential range is performed, Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is LiMn having a spinel structure.
  • the ratio of change to 2 O 4 is specified. That is, the lithium-containing transition metal oxide in this embodiment includes a layered structure Li 2 MnO 3 that changes to a spinel structure by charging or charging / discharging in a predetermined potential range, and a layered structure part (LiMO that does not change to a spinel structure). 2 ).
  • the spinel structure change ratio when the Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is all changed to LiMn 2 O 4 having a spinel structure is set to 1.
  • the “predetermined potential range” can be set to 4.3 to 4.8 V, for example.
  • the spinel structure change ratio is defined by the following mathematical formula 1.
  • FIG. 2 is a graph showing the relationship between potential and capacity for a battery assembled using a positive electrode using a lithium-containing transition metal oxide as a positive electrode active material.
  • a state in which the battery is charged from an initial state A before starting charging to 4.5 V is referred to as a charged state B.
  • a state in which the state is charged from the state of charge B to 4.8 V through the plateau region is referred to as an overcharge state C, and a state of being discharged to 2.0 V is referred to as a discharge state D.
  • the “measured capacity of the plateau region” in Equation 1 above may be the measured capacity of the lithium-containing transition metal oxide in the plateau region of FIG.
  • the plateau region is specifically a region from 4.5 V to 4.8 V, and is a region resulting from a change in crystal structure. Therefore, the measured capacity V BC of the battery in the region BC from the charged state B to the overcharged state C corresponds to the measured capacity in the plateau region.
  • the measured capacity V AB in the region AB from the initial state A to the charged state B charged to 4.5 V is LiMO 2 having a layered structure that does not change to the spinel structure. This corresponds to the product of the composition ratio (y) of LiMO 2 and the theoretical capacity (V L ) of LiMO 2 .
  • the measured capacity V BC in the region BC in the overcharged state C charged from the charged state B charged to 4.5 V to the 4.8 V is expressed by the composition ratio (x) of Li 2 MnO 3 that is the spinel structure part. This corresponds to the product of the theoretical capacity (V S ) of Li 2 MnO 3 .
  • the spinel structure change ratio can also be calculated using Equation 2 below.
  • M in the above-described chemical formula LiMO 2 represents at least one selected from the group consisting of nickel (Ni), cobalt (Co), and manganese (Mn).
  • the presence or absence of a lamellar structure site (LiMO 2 ) and a spinel structure site (Li 2 MnO 3 ) that do not change to a spinel structure is specific to the lamellar structure site and spinel structure by X-ray diffraction analysis (XRD). It can be determined by the presence of a simple peak. Further, the ratio of the layered structure part and the spinel structure part can be determined from the measurement / calculation of the capacity as described above.
  • the spinel structure change ratio does not become 1.0. That is, the Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is not completely changed to LiMn 2 O 4 having a spinel structure. Further, when the spinel structure change ratio is less than 0.25, only a solid solution lithium-containing transition metal oxide capable of realizing a discharge capacity and a capacity retention rate similar to those of the conventional one can be obtained.
  • charging refers to an operation of increasing the potential difference between the electrodes continuously or stepwise.
  • charging / discharging refers to an operation of decreasing a potential difference between electrodes continuously or stepwise, or an operation of repeating this appropriately, after an operation of increasing the potential difference between electrodes continuously or stepwise.
  • the spinel structure change ratio of the lithium-containing transition metal oxide is 0.4 or more and less than 0.9.
  • a, b, c and d are 0 ⁇ a ⁇ 1.3, 0 ⁇ b ⁇ 1.3, 0 ⁇ c ⁇ 1.3, 0.15 ⁇ d ⁇ 0.35.
  • a + b + c + d 1.5 and 1.2 ⁇ a + b + c ⁇ 1.3 are more preferable.
  • the spinel structure change ratio of the lithium-containing transition metal oxide is 0.6 or more and 0.8 or less.
  • Such a solid solution lithium-containing transition metal oxide can achieve higher discharge capacity and capacity retention when used as a positive electrode active material of a lithium ion secondary battery. It is suitably used for a secondary battery.
  • Another preferable embodiment of the lithium-containing transition metal oxide has a BET specific surface area of 1 m 2 / g or more and 8.0 m 2 / g or less.
  • the preferable form is referred to as a second form.
  • the BET specific surface area of the lithium-containing transition metal oxide can be measured based on Japanese Industrial Standard JIS Z8830.
  • the pore volume measured with nitrogen in the lithium-containing transition metal oxide is 0.025 cm 3 / g or less when the relative pressure is 0.98 to 0.99.
  • the pore volume is 0.025 cm 3 / g or less, it is possible to obtain a solid solution lithium-containing transition metal oxide capable of realizing a higher discharge capacity and capacity retention than conventional ones.
  • the pore volume can be measured based on Japanese Industrial Standard JIS Z8831-2.
  • the lithium-containing transition metal oxide preferably has a 50% passing particle diameter (median diameter, D50) of less than 15 ⁇ m. Further, the lithium-containing transition metal oxide preferably has particles having a particle size of less than 1 ⁇ m.
  • the porosity of the positive electrode active material layer can be easily controlled, and the permeability of the non-aqueous electrolyte can be improved. And since the permeability of the nonaqueous electrolytic solution is improved, the direct current resistance of the positive electrode active material layer can be reduced.
  • the 50% passing particle size can be determined from the particle size distribution measured by the dynamic light scattering method.
  • the lithium-containing transition metal oxide preferably has an N-methyl-2-pyrrolidone liquid absorption of 0.5 cm 3 / g or less.
  • N-methyl-2-pyrrolidone liquid absorption of 0.5 cm 3 / g or less When the lithium-containing transition metal oxide has a BET specific surface area of 1 m 2 / g or more and 8.0 m 2 / g or less and a pore volume of 0.025 cm 3 / g or less, N-methyl-2- The liquid absorption amount of pyrrolidone tends to be 0.5 cm 3 / g or less. In this case, since the permeability of the nonaqueous electrolytic solution and the lithium ion diffusibility in the lithium-containing transition metal oxide are improved, the discharge capacity and the capacity retention rate can be further improved.
  • the lithium-containing transition metal oxide preferably has a true density of 4.1 g / cm 3 or more and 4.6 g / cm 3 or less.
  • the true density is 4.1 g / cm 3 or more, the weight (filling amount) per unit volume of the lithium-containing transition metal oxide is increased, and the discharge capacity can be improved.
  • the true density is 4.6 g / cm 3 or less, the amount of voids in the positive electrode active material layer increases, and the permeability of the non-aqueous electrolyte and the lithium ion diffusibility can be improved.
  • the true density can be determined by a liquid phase replacement method (pycnometer method).
  • the BET specific surface area is 1 m 2 / g or more and 9 m 2 / g or less.
  • the preferable form which concerns on the said lithium containing transition metal oxide is called a 3rd form.
  • the BET specific surface area can be measured based on Japanese Industrial Standard JIS Z8830 as in the second embodiment.
  • the spinel structure change ratio of the lithium-containing transition metal oxide is preferably 0.4 or more and less than 0.9.
  • the BET specific surface area of the lithium-containing transition metal oxide is preferably 2 m 2 / g or more and 8 m 2 / g or less.
  • the spinel structure change ratio of the lithium-containing transition metal oxide is 0.6 or more and 0.8 or less.
  • the BET specific surface area of the lithium-containing transition metal oxide is more preferably 3 m 2 / g or more and 6 m 2 / g or less. Such a lithium-containing transition metal oxide can realize a higher discharge capacity and capacity retention when used as a positive electrode active material of a lithium ion secondary battery.
  • the secondary battery is preferably used.
  • the lithium-containing transition metal oxide contains the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide represented by the chemical formula (1). Then, BET specific surface area of the first transition metal oxide containing lithium is not more than 1.0 m 2 / g or more 4.0m 2 / g, BET specific surface area of the second lithium-containing transition metal oxide is 4.0 m 2 / More than g and not more than 8.0 m 2 / g.
  • the preferable form which concerns on the said lithium containing transition metal oxide is called a 4th form.
  • the lithium ion diffusibility in the solid solution lithium-containing transition metal oxide is improved, and in charge / discharge at a high rate, the discharge capacity Can be increased. This is because the first lithium-containing transition metal oxide is effective for improving the discharge capacity, and the second lithium-containing transition metal oxide is effective for improving the rate characteristics.
  • the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide may have the same composition or different compositions. That is, the solid solution lithium-containing transition metal oxide of this embodiment contains at least two types of lithium-containing transition metal oxides having different BET specific surface areas.
  • Such a solid solution lithium-containing transition metal oxide when used as a positive electrode active material of a lithium ion secondary battery, has a high discharge capacity and capacity maintenance rate in charge and discharge at a high rate such as 1.0 C and 2.5 C. Can be realized. Therefore, it is suitably used for a positive electrode for lithium ion secondary batteries and a lithium ion secondary battery. As a result, it can be suitably used as a lithium-ion secondary battery for vehicle drive power or auxiliary power. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for home use and portable devices.
  • the solid solution lithium-containing transition metal oxide has a pore volume measured with nitrogen of 0.025 cm 3 / g or less when the relative pressure is 0.98 to 0.99. It is preferred to contain first and second lithium-containing transition metal oxides. When the pore volume is 0.025 cm 3 / g or less, it is possible to obtain a solid solution lithium-containing transition metal oxide capable of realizing a higher discharge capacity and capacity retention than conventional ones.
  • the pore volume can be measured based on Japanese Industrial Standard JIS Z8831-2, as in the second embodiment.
  • the first lithium-containing transition metal oxide has a 50% passing particle size (median diameter, D50) of less than 15 ⁇ m
  • the second lithium-containing transition metal oxide has a 50% passing particle size. Is preferably less than 10 ⁇ m.
  • the solid solution lithium-containing transition metal oxide includes particles having a particle size of less than 1 ⁇ m. That is, at least one of the first and second lithium-containing transition metal oxides preferably includes particles having a particle size of less than 1 ⁇ m.
  • the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide have an N-methyl-2-pyrrolidone liquid absorption of 0.5 cm 3 / g or less. Is preferred. In this case, since the permeability of the nonaqueous electrolytic solution and the lithium ion diffusibility in the lithium-containing transition metal oxide are improved, the discharge capacity and the capacity retention rate can be further improved.
  • the true density of the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide is preferably 4.1 g / cm 3 or more and 4.6 g / cm 3 or less. It is.
  • the true density is 4.1 g / cm 3 or more, the weight (filling amount) per unit volume of the lithium-containing transition metal oxide is increased, and the discharge capacity can be improved.
  • the true density is 4.6 g / cm 3 or less, the amount of voids in the positive electrode active material layer increases, and the permeability of the non-aqueous electrolyte and the lithium ion diffusibility can be improved.
  • the true density can be obtained by a liquid phase replacement method (pycnometer method) as in the second embodiment.
  • the positive electrode active material includes the solid solution represented by the chemical formula (1)
  • other conventionally known positive electrode active material materials may be used in combination.
  • the content ratio of the solid solution in the positive electrode active material is preferably 80% by mass or more, more preferably 90% by mass, and 95% by mass. % Or more, more preferably 98% by mass or more, and most preferably 100% by mass.
  • lithium-containing transition metal oxide lithium-containing transition metal oxide
  • a lithium-containing transition metal oxide As a precursor of a lithium-containing transition metal oxide, raw materials containing lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds and manganese compounds are mixed to prepare a mixture. At this time, in the method for producing a solid solution lithium-containing transition metal oxide having a predetermined BET specific surface area in the second to fourth embodiments, the crystallite size of the mixture is preferably 10 nm or more and 100 nm or less. Next, the obtained mixture is calcined at 800 to 1000 ° C. for 6 to 24 hours in an inert gas atmosphere. Thereby, a lithium containing transition metal oxide can be prepared. Note that nitrogen or argon is preferably used as the inert gas.
  • a lithium-containing transition metal oxide As another manufacturing method, first, as a precursor of a lithium-containing transition metal oxide, raw materials containing lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds, and manganese compounds are mixed to prepare a mixture. .
  • the crystallite size of the mixture is preferably 10 nm or more and 100 nm or less.
  • the obtained mixture is baked at 800 to 1000 ° C. for 6 to 24 hours to obtain a baked product. Thereafter, the fired product obtained is heat-treated at 600 to 800 ° C. in an inert gas atmosphere. Thereby, a lithium containing transition metal oxide can be prepared.
  • the following treatment is preferably performed.
  • the maximum potential of the positive electrode in a predetermined potential range is 4.3 V or more in terms of a lithium metal counter electrode.
  • Charging or charging / discharging which is less than 8V is performed (electrochemical pretreatment).
  • the solid solution lithium containing transition metal oxide whose spinel structure change ratio is 0.25 or more and less than 1.0 can be obtained.
  • a carbonate method (composite carbonate method) can be applied to the method for producing the precursor of the lithium-containing transition metal oxide. Specifically, first, nickel, cobalt, manganese sulfates, nitrates, and the like are prepared as starting materials. After weighing a predetermined amount of these, a mixed aqueous solution is prepared.
  • aqueous ammonia is added dropwise to the mixed aqueous solution until pH 7 is reached, and an aqueous sodium carbonate (Na 2 CO 3 ) solution is further added dropwise to precipitate Ni—Co—Mn complex carbonate.
  • Na 2 CO 3 aqueous sodium carbonate
  • the drying conditions may be drying in an inert gas atmosphere at 100 to 150 ° C. for about 2 to 10 hours (eg, 120 ° C. for 5 hours), but are not limited to this range.
  • Pre-baking conditions may be pre-baking in an inert gas atmosphere at 360 to 600 ° C. for 3 to 10 hours (for example, 500 ° C. for 5 hours), but are not limited to this range.
  • the crystallite size of the mixture is preferably 10 nm or more and 100 nm or less.
  • the precursor of a lithium containing transition metal oxide can be produced by carrying out this baking.
  • the main firing condition for example, it may be performed in an inert gas atmosphere at 800 to 1000 ° C. (for example, 800 to 900 ° C.) for about 6 to 24 hours (for example, 12 hours).
  • rapid cooling is performed using liquid nitrogen. This is because quenching with liquid nitrogen or the like after the main baking is preferable for reactivity and cycle stability.
  • the solid solution lithium containing transition metal oxide which concerns on this form can be obtained by oxidizing the said precursor.
  • the oxidation treatment include (1) charging or charging / discharging in a predetermined potential range (electrochemical pretreatment, charge / discharge pretreatment), (2) oxidation with an oxidizing agent corresponding to charging, and (3) redox mediator. Oxidation using can be mentioned.
  • (1) charging or charging / discharging in a predetermined potential range is specifically charging or charging / discharging from a low potential region that does not cause a significant change in the crystal structure of the lithium-containing transition metal oxide from the beginning.
  • (2) As an oxidizing agent corresponding to charge halogens, such as a bromine and chlorine, can be mentioned, for example.
  • a relatively simple method among the oxidation treatments (1) to (3) is the oxidation treatment method (1).
  • the oxidation treatment of (1) after making a battery using the lithium-containing transition metal oxide precursor obtained as described above, charging or charging is performed so as not to exceed a predetermined maximum potential.
  • Charging / discharging that is, electrochemical pretreatment with regulated potential is effective.
  • charging or charging / discharging is performed so as not to exceed a predetermined maximum potential. You may go. Thereby, the positive electrode active material which implement
  • the maximum potential in the predetermined potential range with respect to lithium metal as a counter electrode (the upper limit potential of charge / discharge converted to lithium metal) is 4.3 V or more and 4.8 V or less. Therefore, it is desirable to perform charging and discharging for 1 to 30 cycles. More preferably, it is desirable to perform charging and discharging for 1 to 30 cycles under the condition of 4.4 V or more and 4.6 V or less.
  • the potential converted to the lithium metal corresponds to a potential based on the potential exhibited by the lithium metal in the electrolytic solution in which 1 mol / L of lithium ions are dissolved.
  • the durability of the electrode can be improved even in a short time oxidation treatment by gradually increasing the maximum potential of the charge / discharge potential in the oxidation treatment.
  • the number of cycles required for charging / discharging at each step is effectively in the range of 1 to 10 times.
  • the total number of charge / discharge cycles when increasing the maximum potential of charge / discharge stepwise that is, the total number of cycles required for charge / discharge of each step is effectively in the range of 4 to 20 times. It is.
  • 0.05 to 0.1V is effective as a potential increase range (raising allowance) at each step.
  • the pretreatment is not limited to the above range, and the electrochemical pretreatment may be performed up to a higher terminal maximum potential as long as the above effects can be achieved.
  • the minimum potential in a predetermined potential range in charge / discharge is 2 V or more and less than 3.5 V, more preferably 2 V or more and less than 3 V with respect to lithium metal as a counter electrode.
  • the temperature of the electrode that is charged and discharged as the oxidation treatment can be arbitrarily set as long as it does not impair the effects of the present invention. From the viewpoint of economy, it is desirable to carry out at room temperature (25 ° C.) that does not require special heating and cooling. On the other hand, it is desirable to carry out at a temperature higher than room temperature from the viewpoint that a larger capacity can be expressed and the capacity retention rate is improved by a short charge / discharge treatment.
  • the step of applying the oxidation treatment is not particularly limited.
  • such an oxidation treatment can be performed in a state in which a battery is configured or a configuration corresponding to a positive electrode or a positive electrode as described above. That is, any of application in the state of positive electrode active material powder, application in the state of positive electrode, and application after assembling a battery together with the negative electrode may be used.
  • the battery in the case where the battery is configured, it is superior in that oxidation treatment of a large number of positive electrodes can be performed at a time, rather than the individual positive electrodes or configurations corresponding to the positive electrodes.
  • it is performed for each positive electrode or for each configuration corresponding to the positive electrode it is easier to control conditions such as the oxidation potential than the state in which the battery is configured.
  • the method performed for each individual positive electrode is excellent in that variations in the degree of oxidation of the individual positive electrodes hardly occur.
  • oxidizing agent used in the oxidation method of (2) above for example, halogen such as bromine and chlorine can be used. These oxidizing agents may be used alone or in combination of two or more. Oxidation with an oxidizing agent may be performed by, for example, dispersing lithium-containing transition metal oxide fine particles in a solvent in which the lithium-containing transition metal oxide is not dissolved, and blowing the oxidant into the dispersion to dissolve it and gradually oxidizing it. it can.
  • the conductive auxiliary agent is blended to improve the conductivity of the positive electrode active material layer.
  • a conductive support agent carbon materials, such as carbon black, such as acetylene black, a graphite, a vapor growth carbon fiber, can be mentioned, for example. Among these, it is preferable to use acetylene black and vapor grown carbon fiber.
  • the content of the carbon material in the conductive assistant is preferably 80% by mass or more, more preferably 90% by mass, and 95% by mass or more. More preferably, it is more preferably 98% by mass or more, and most preferably 100% by mass.
  • These conductive assistants may be used alone or in combination of two or more.
  • the BET specific surface area of the carbon material can be exhibited so that a sufficiently high rate characteristic can be exhibited. Is in the following range. Specifically, the BET specific surface area of the carbon material is 30 to 200 m 2 / g, preferably 50 to 180 m 2 / g. When the BET specific surface area is less than 30 m 2 / g, the primary particle size is increased, and the contact area with the active material can be reduced. On the other hand, when the BET specific surface area exceeds 200 m 2 / g, the primary particle diameter becomes small, and the crystallinity of the carbon material itself may be lowered.
  • the BET specific surface area of the carbon material is out of the range of 30 to 200 m 2 / g, a sufficiently high rate characteristic is exhibited when the solid solution represented by the chemical formula (1) is used as the positive electrode active material. May not be possible.
  • the value obtained by the method as described in the below-mentioned Example is employ
  • the carbon material preferably has a D band peak intensity ratio (D value / G value) of 1.18 or less, preferably 1.15 or less, as measured by Raman spectroscopy. It is preferable.
  • the G band of carbon observed by Raman spectroscopy is a peak derived from in-plane vibration of graphene, while the D band is a peak derived from amorphous carbon. Therefore, the smaller the intensity ratio (D value / G value) of the peak of the D band to the G band, the higher the crystallinity of the carbon material.
  • the lower limit value of the D value / G value is not particularly limited, and is most preferably 0.
  • the carbon material has high crystallinity, and when the solid solution represented by the above chemical formula (1) is used as the positive electrode active material, more excellent high rate characteristics are exhibited. Can do.
  • the value obtained by the method described in the examples described later is adopted as the D value / G value.
  • the content of the conductive additive in the positive electrode active material layer is not particularly limited, but 2 to 10 with respect to the weight of the positive electrode active material layer from the viewpoint of exhibiting a desired discharge capacity and high rate characteristics.
  • the mass is preferably 2, and more preferably 2 to 6 mass%.
  • the ratio of the average particle diameter (average secondary particle diameter) of the conductive additive to the average particle diameter of the positive electrode active material (conductive auxiliary agent particle diameter / active material particle diameter) is from the viewpoint of exhibiting sufficiently high rate characteristics. 1/40 to 10 is preferable, and 0.07 to 2.5 is more preferable.
  • the binder is not particularly limited, and examples thereof include the following materials.
  • polyethylene PE
  • polypropylene PP
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PAN polyacrylonitrile
  • PA polyamide
  • CMC carboxymethyl cellulose
  • PVC polyvinyl chloride
  • SBR styrene-butadiene rubber
  • isoprene rubber butadiene rubber, ethylene-propylene rubber, ethylene-propylene-diene copolymer, styrene-butadiene-styrene block copolymer
  • thermoplastic polymers such as a polymer and a hydrogenated product thereof, a styrene-isoprene-styrene block copolymer and a hydrogenated product thereof.
  • PVDF Polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • fluorine resins such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF).
  • VDF-HFP-based fluorubber vinylidene fluoride-hexafluoropropylene-based fluororubber
  • VDF-HFP-TFE-based fluororubber vinylidene fluoride- Pentafluoropropylene-based fluororubber
  • VDF-PFP-based fluorubber vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber
  • VDF-PFP-TFE-based fluorubber vinylidene fluoride-perfluoromethylvinylether-tetra Fluoroethylene-based fluororubber
  • VDF-PFMVE-TFE-based fluorubber vinylidene fluoride-chlorotrifluoroethylene-based fluororubber
  • polyvinylidene fluoride, polyimide, styrene-butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable.
  • These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the positive electrode active material layer and the negative electrode active material layer.
  • the conductive binder for example, commercially available TAB-2 manufactured by Hosen Co., Ltd. can be used.
  • the material is not limited to these, and a known material conventionally used as a binder for a lithium ion secondary battery can be used.
  • These binders may be used alone or in combination of two or more.
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the positive electrode active material.
  • the binder amount is preferably 0.5 to 15% by mass, and more preferably 1 to 10% by mass with respect to the positive electrode active material layer.
  • the density of the positive electrode active material layer is preferably 2.5 g / cm 3 or more and 3.0 g / cm 3 or less.
  • the density of the positive electrode active material layer is 2.5 g / cm 3 or more, the weight (filling amount) per unit volume increases, and the discharge capacity can be improved.
  • the density of the positive electrode active material layer is 3.0 g / cm 3 or less, it is possible to prevent a decrease in the void amount of the positive electrode active material layer and improve the permeability of the non-aqueous electrolyte and the lithium ion diffusibility. Can do.
  • the negative electrode active material layer 12B contains a negative electrode material capable of occluding and releasing lithium as a negative electrode active material, and may contain a binder and a conductive additive as necessary. In addition, the above-mentioned thing can be used for a binder and a conductive support agent.
  • Examples of the negative electrode material capable of inserting and extracting lithium include graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen) Black, acetylene black, channel black, lamp black, oil furnace black, thermal black, etc.), carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fibril.
  • the said carbon material contains what contains 10 mass% or less silicon nanoparticles.
  • the carbon material is preferably made of a graphite material that is covered with an amorphous carbon layer and is not scaly.
  • the carbon material preferably has a BET specific surface area of 0.8 m 2 / g or more and 1.5 m 2 / g or less and a tap density of 0.9 g / cm 3 or more and 1.2 g / cm 3 or less. It is.
  • a carbon material made of a graphite material that is coated with an amorphous carbon layer and that is not scale-like is preferable because of its high lithium ion diffusibility into the graphite layered structure.
  • the capacity retention rate can be further improved.
  • the tap density of such a carbon material is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less, the weight (filling amount) per unit volume can be improved, and the discharge capacity is improved. be able to.
  • the negative electrode active material layer containing at least the carbon material and the binder has a BET specific surface area of 2.0 m 2 / g or more and 3.0 m 2 / g or less.
  • the BET specific surface area of the negative electrode active material layer is 2.0 m 2 / g or more and 3.0 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved, and the capacity retention rate is further improved. Gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
  • the negative electrode active material layer containing at least a carbon material and a binder preferably has a BET specific surface area after pressure molding of 2.01 m 2 / g or more and 3.5 m 2 / g or less. is there.
  • the BET specific surface area of the negative electrode active material layer after pressure molding is 2.01 m 2 / g or more and 3.5 m 2 / g or less.
  • the increase in the BET specific surface area of the negative electrode active material layer containing at least the carbon material and the binder before and after pressure press molding is 0.01 m 2 / g or more and 0.5 m 2 / g or less. It is preferable that thereby, since the BET specific surface area after the pressure forming of the negative electrode active material layer can be 2.01 m 2 / g or more and 3.5 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved. In addition, the capacity retention rate can be further improved, and gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
  • each active material layer active material layer on one side of the current collector
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be referred to as appropriate.
  • the thickness of each active material layer is usually about 1 to 500 ⁇ m, preferably 2 to 100 ⁇ m, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
  • the average particle diameter is approximately the same as the average particle diameter of the positive electrode active material contained in the existing positive electrode active material layer Well, not particularly limited. From the viewpoint of increasing the output, it is preferably in the range of 0.5 to 20 ⁇ m. More preferably, it may be in the range of 0.7 to 10 ⁇ m.
  • the “particle diameter” is any two points on the contour line of the active material particle (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). This means the maximum distance among the distances.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the particle diameters and average particle diameters of other components can be defined in the same manner.
  • the average particle diameter is not limited to such a range, and may be outside this range as long as the effects of the present embodiment can be effectively expressed.
  • Examples of the electrolyte layer 13 include an electrolyte solution, a polymer gel electrolyte, a solid polymer electrolyte formed in a separator described later, and a layer structure formed using a solid polymer electrolyte, and further a polymer gel electrolyte and a solid polymer electrolyte. Examples thereof include those having a laminated structure formed thereon.
  • the electrolyte solution is preferably one that is usually used in a lithium ion secondary battery, and specifically has a form in which a supporting salt (lithium salt) is dissolved in an organic solvent.
  • a supporting salt lithium salt
  • the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), six lithium fluoride tantalate (LiTaF 6), four lithium aluminum chloride acid (LiAlCl 4), at least one selected from inorganic acid anion salts such as lithium deca chloro deca boronic acid (Li 2 B 10 Cl 10) A lithium salt etc.
  • lithium trifluoromethanesulfonate LiCF 3 SO 3
  • lithium bis (trifluoromethanesulfonyl) imide Li (CF 3 SO 2 ) 2 N
  • lithium bis (pentafluoroethanesulfonyl) imide Li (C 2 F 5)
  • examples include at least one lithium salt selected from organic acid anion salts such as SO 2 ) 2 N).
  • lithium hexafluorophosphate (LiPF 6 ) is preferable.
  • organic solvent examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), and diethyl carbonate (DEC).
  • Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-dibutoxyethane; lactones such as ⁇ -butyrolactone; nitriles such as acetonitrile; methyl propionate Esters such as amides; amides such as dimethylformamide; at least one selected from methyl acetate and methyl formate can be used.
  • the separator include a microporous film made of polyolefin such as polyethylene (PE) and polypropylene (PP), a porous flat plate, and a nonwoven fabric.
  • the polymer gel electrolyte is a solid polymer electrolyte having ion conductivity containing the above-described electrolytic solution usually used in a lithium ion secondary battery.
  • the present invention is not limited to this, and includes a structure in which a similar electrolyte solution is held in a polymer skeleton having no lithium ion conductivity.
  • PVdF polyvinylidene fluoride
  • PVC polyvinyl chloride
  • PAN polyacrylonitrile
  • PMMA polymethyl methacrylate
  • polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and the like are in a class having almost no ionic conductivity, and thus can be a polymer having the ionic conductivity.
  • PAN polyacrylonitrile
  • PMMA polymethyl methacrylate
  • polyacrylonitrile and polymethyl methacrylate are exemplified as polymers having no lithium ion conductivity.
  • the solid polymer electrolyte examples include a structure in which the lithium salt is dissolved in polyethylene oxide (PEO), polypropylene oxide (PPO), and the like, and does not contain an organic solvent. Therefore, when the electrolyte layer is composed of a solid polymer electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • the thickness of the electrolyte layer is preferably thinner from the viewpoint of reducing internal resistance.
  • the thickness of the electrolyte layer is usually 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the matrix polymer of the polymer gel electrolyte or the solid polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • a polymerization process such as thermal polymerization, ultraviolet polymerization, radiation polymerization, or electron beam polymerization may be performed on a polymerizable polymer for forming a polymer electrolyte using an appropriate polymerization initiator.
  • the polymerizable polymer include polyethylene oxide and polypropylene oxide.
  • a positive electrode is produced.
  • the solid solution lithium-containing transition metal oxide, the conductive additive, and optionally a binder and a viscosity adjusting solvent are mixed to prepare a positive electrode slurry.
  • this positive electrode slurry is applied to a positive electrode current collector, dried, and compression molded to form a positive electrode active material layer.
  • a negative electrode For example, when a granular negative electrode active material is used, a negative electrode active material and, if necessary, a conductive additive, a binder, and a viscosity adjusting solvent are mixed to prepare a negative electrode slurry. Thereafter, the negative electrode slurry is applied to a negative electrode current collector, dried, and compression molded to form a negative electrode active material layer.
  • the positive electrode lead is attached to the positive electrode
  • the negative electrode lead is attached to the negative electrode
  • the positive electrode, the separator, and the negative electrode are laminated.
  • the laminated product is sandwiched between polymer-metal composite laminate sheets, and the outer peripheral edge except for one side is heat-sealed to form a bag-like outer package.
  • the electrolytic solution is prepared and injected into the interior from the opening of the exterior body, and the opening of the exterior body is thermally fused and sealed. Thereby, a laminate-type lithium ion secondary battery is completed.
  • a positive electrode and a negative electrode are prepared in the same manner as described above.
  • the positive electrode lead is attached to the positive electrode and the negative electrode lead is attached to the negative electrode, and then the positive electrode, the separator, and the negative electrode are laminated.
  • the laminated product is sandwiched between polymer-metal composite laminate sheets, and the outer peripheral edge except for one side is heat-sealed to form a bag-like outer package.
  • the above electrolyte is prepared and injected into the inside from the opening of the exterior body, and the opening of the exterior body is heat-sealed and sealed. Further, the electrochemical pretreatment described above is performed. Thereby, a laminate-type lithium ion secondary battery is completed.
  • the laminate type battery and the coin type battery are exemplified as the lithium ion secondary battery, but the present invention is not limited to this. That is, a conventionally known form / structure such as a button-type battery or a can-type battery having a square shape or a cylindrical shape can be applied.
  • the present invention can be applied not only to the above-described stacked type (flat type) battery but also to a conventionally known form / structure such as a wound type (cylindrical) battery.
  • the present invention is not only the above-described normal type (internal parallel connection type) battery but also a bipolar type (internal series connection type) when viewed in terms of electrical connection form (electrode structure) in the lithium ion secondary battery.
  • Conventionally known forms and structures such as batteries can also be applied.
  • a battery element in a bipolar battery generally has a bipolar electrode in which a negative electrode active material layer is formed on one surface of a current collector and a positive electrode active material layer is formed on the other surface, and an electrolyte layer. A plurality of layers.
  • the positive electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery according to the present invention can realize a high discharge capacity and a capacity retention ratio by having the above-described configuration, and also have a high rate characteristic even under high output conditions. Can demonstrate. Therefore, the positive electrode for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery of the present invention can be preferably applied to driving power supplies and auxiliary power supplies for motors of electric vehicles, fuel cell vehicles, and hybrid electric vehicles.
  • a laminate type lithium ion secondary battery is manufactured using the solid solution of this embodiment as the positive electrode active material and acetylene black having various physical properties (BET specific surface area, D value / G value) as the conductive auxiliary agent. The performance was evaluated.
  • a lithium-containing transition metal oxide represented by the following chemical formula (2) was synthesized using a composite carbonate method. Three kinds of sulfates of Ni, Co, and Mn were used as starting materials, and these were dissolved in ion-exchanged water so as to have a ratio of the following chemical formula (2) to obtain a 2M mixed aqueous solution. Next, a 1M sodium carbonate aqueous solution was dropped into the aqueous solution to obtain a composite carbonate of nickel cobalt manganese. The obtained composite carbonate was recovered by filtration, dried, and fired at a firing temperature of 700 ° C. for 4 hours to obtain a composite oxide. The obtained composite oxide and lithium hydroxide were mixed so as to have a ratio of the following chemical formula (2), and fired at 900 ° C. in the air to obtain a target sample. The composition was confirmed using XRD.
  • a negative electrode active material slurry was prepared by mixing 93 parts by mass of graphite as a negative electrode active material, 7 parts by mass of PVdF as a binder, and an appropriate amount of NMP as a slurry viscosity adjusting solvent.
  • a stainless steel mesh of ⁇ 16 mm is prepared as a negative electrode current collector, and a negative electrode active material slurry is applied to the surface and dried.
  • a negative electrode active material layer (size 3 ⁇ 4 cm square, active material amount per unit volume) : 9 mg / cm 2 , thickness: 60 ⁇ m) was produced.
  • 92 parts by mass of the lithium-containing transition metal oxide synthesized above as the positive electrode active material 92 parts by mass of the lithium-containing transition metal oxide synthesized above as the positive electrode active material, 4 parts by mass of acetylene black shown in Table 2 below as the conductive auxiliary agent, 4 parts by mass of PVdF as the binder, and N as the slurry viscosity adjusting solvent
  • NMP methyl-2-pyrrolidone
  • a positive electrode active material slurry was applied to an Al foil as a positive electrode current collector and dried for 4 hours with a dryer at 120 ° C., and a positive electrode active material layer (size 3 ⁇ 4 cm square, active per unit volume) was formed on the current collector surface.
  • a positive electrode having a substance amount of 8 mg / cm 2 and a thickness of 30 ⁇ m was formed.
  • the D value / G value of acetylene black (powder) in Table 2 below was determined by performing peak fitting on the Raman spectrum measured under the following conditions. When acetylene black in the positive electrode active material layer after producing the positive electrode was measured in the same manner, it was confirmed that the D value / G value was the same as that of acetylene black (powder).
  • the negative electrode, the electrolyte layer, and the positive electrode prepared above were sequentially laminated, and the obtained laminate was sealed and molded using an aluminum laminate film to complete a laminated lithium ion secondary battery.
  • Examples 1 to 4 using a carbon material having a BET specific surface area of 30 to 200 m 2 / g as a conductive aid exhibit high rate characteristics even under high output conditions (2.5 C).
  • the high rate characteristics are further improved by setting the D value / G value to 1.18 or less. This is to effectively reduce the reaction resistance of the solid solution represented by the chemical formula (2) by setting the BET specific surface area and the D value / G value of the carbon material used as the conductive auxiliary agent within a predetermined range. It was thought that this was because
  • Lithium ion secondary battery 10 battery elements, 11 positive electrode, 11A positive electrode current collector, 11B positive electrode active material layer, 12 negative electrode, 12A negative electrode current collector, 12B negative electrode active material layer, 13 electrolyte layer, 14 cell layer, 21 positive lead, 22 negative lead, 30 Exterior body.

Abstract

The present invention provides a positive electrode for use in a non-aqueous electrolyte secondary battery capable of realizing high initial discharge capacity and capacity retention rate, and a non-aqueous electrolyte secondary battery using the same. This positive electrode for use in a non-aqueous electrolyte secondary battery contains a positive electrode active material and an auxiliary conduction agent. The positive electrode active material comprises a solid solution of transition metal oxide containing lithium, represented by the chemical formula: Li1.5[NiaCobMnc[Li]d]O3 (where Li represents lithium, Ni represents nickel, Co represents cobalt, Mn represents manganese and O represents oxygen; a, b, c and d satisfy the relationships: 0 < a < 1.4, 0 ≤ b < 1.4, 0 < c < 1.4, 0.1 < d ≤ 0.4, a + b + c + d = 1.5, and 1.1 ≤ a + b + c < 1.4). Then, the auxiliary conduction agent contains a carbon material, the BET specific surface area of the carbon material being 30 to 200 m2/g.

Description

非水電解質二次電池用正極及びそれを用いた非水電解質二次電池Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
 本発明は、非水電解質二次電池用正極及びそれを用いた非水電解質二次電池に関する。 The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
 近年、大気汚染や地球温暖化に対処するため、二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっている。そのため、これらの実用化の鍵となるモータ駆動用二次電池などの電気デバイスの開発が盛んに行われている。 In recent years, in order to cope with air pollution and global warming, reduction of carbon dioxide emissions has been strongly desired. In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EV) and hybrid electric vehicles (HEV). For this reason, electric devices such as secondary batteries for driving motors, which are the key to practical use, are being actively developed.
 モータ駆動用二次電池としては、高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。リチウムイオン二次電池は、一般に、正極、負極及びこれらの間に位置する電解質が、電池ケースに収納された構成を有する。なお、正極は正極活物質を含む正極スラリーを集電体の表面に塗布して形成され、負極は負極活物質を含む負極スラリーを負極集電体の表面に塗布して形成される。 As a secondary battery for driving a motor, a lithium ion secondary battery having a high theoretical energy is attracting attention, and is currently being developed rapidly. Generally, a lithium ion secondary battery has a configuration in which a positive electrode, a negative electrode, and an electrolyte positioned therebetween are housed in a battery case. The positive electrode is formed by applying a positive electrode slurry containing a positive electrode active material to the surface of the current collector, and the negative electrode is formed by applying a negative electrode slurry containing a negative electrode active material to the surface of the negative electrode current collector.
 そして、リチウムイオン二次電池の容量特性及び出力特性などの向上のためには、各活物質の選定が極めて重要である。 And selection of each active material is extremely important for improving capacity characteristics and output characteristics of the lithium ion secondary battery.
 従来、式(a)Li[M (1-b)Mn]O又は(b)Li[M (1-b)Mn]O1.5+cを有するリチウムイオンバッテリ用カソード組成物が提案されている(特許文献1参照)。なお、式中、0≦y<1、0<b<1、及び0<c<0.5であり、Mは一種以上の金属元素を表す。ただし、(a)の場合、Mは、クロム以外の金属元素である。そして、この組成物は、所定の完全充放電サイクルのサイクル動作を行ったときにスピネル結晶構造への相転移を起こさないO3結晶構造を有する単一相の形態を有している。 Conventionally, a cathode composition for a lithium ion battery having the formula (a) Li y [M 1 (1-b) Mn b ] O 2 or (b) Li x [M 1 (1-b) Mn b ] O 1.5 + c The thing is proposed (refer patent document 1). In the formula, 0 ≦ y <1, 0 <b <1, and 0 <c <0.5, and M 1 represents one or more metal elements. However, in the case of (a), M 1 is a metal element other than chromium. The composition has a single-phase form having an O3 crystal structure that does not cause a phase transition to a spinel crystal structure when a predetermined full charge / discharge cycle operation is performed.
特表2004-538610号公報JP-T-2004-538610
 しかしながら、本発明者らが検討した結果、特許文献1のカソード組成物を用いたリチウムイオンバッテリであっても、高い放電容量及び容量維持率を実現することができていないという問題点があった。 However, as a result of investigations by the present inventors, there was a problem that even a lithium ion battery using the cathode composition of Patent Document 1 could not realize a high discharge capacity and capacity retention rate. .
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、その目的は、高い放電容量及び容量維持率を実現し得る非水電解質二次電池用正極及びそれを用いた非水電解質二次電池を提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective is to provide the positive electrode for nonaqueous electrolyte secondary batteries which can implement | achieve a high discharge capacity and a capacity | capacitance maintenance factor, and a nonaqueous electrolyte secondary battery using the same.
 本発明の態様に係る非水電解質二次電池用正極は、正極活物質と、導電助剤とを含む。正極活物質は、化学式:
 Li1.5[NiCoMn[Li]]O …(1)
(式中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a,b,c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する)で表される固溶体リチウム含有遷移金属酸化物を含有する。そして、導電助剤は、炭素材料を含有し、当該炭素材料のBET比表面積は、30~200m/gである。
The positive electrode for nonaqueous electrolyte secondary batteries according to an aspect of the present invention includes a positive electrode active material and a conductive additive. The positive electrode active material has the chemical formula:
Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 (1)
(In the formula, Li represents lithium, Ni represents nickel, Co represents cobalt, Mn represents manganese, O represents oxygen, and a, b, c and d are 0 <a <1.4 and 0 ≦ b <1.4. , 0 <c <1.4, 0.1 <d ≦ 0.4, a + b + c + d = 1.5, 1.1 ≦ a + b + c <1.4) Contains products. The conductive auxiliary agent contains a carbon material, and the carbon material has a BET specific surface area of 30 to 200 m 2 / g.
図1は、本発明の一実施形態に係るリチウムイオン二次電池を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a lithium ion secondary battery according to an embodiment of the present invention. 図2は、スピネル構造変化割合の定義を説明するグラフである。FIG. 2 is a graph illustrating the definition of the spinel structure change rate.
 本発明の態様に係る非水電解質二次電池用正極は、正極活物質と、導電助剤とを含む。正極活物質は、化学式:
 Li1.5[NiCoMn[Li]]O …(1)
(式中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a,b,c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する)で表される固溶体リチウム含有遷移金属酸化物を含有する。そして、導電助剤は、炭素材料を含有し、当該炭素材料のBET比表面積は、30~200m/gである。
The positive electrode for nonaqueous electrolyte secondary batteries according to an aspect of the present invention includes a positive electrode active material and a conductive additive. The positive electrode active material has the chemical formula:
Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 (1)
(In the formula, Li represents lithium, Ni represents nickel, Co represents cobalt, Mn represents manganese, O represents oxygen, and a, b, c and d are 0 <a <1.4 and 0 ≦ b <1.4. , 0 <c <1.4, 0.1 <d ≦ 0.4, a + b + c + d = 1.5, 1.1 ≦ a + b + c <1.4) Contains products. The conductive auxiliary agent contains a carbon material, and the carbon material has a BET specific surface area of 30 to 200 m 2 / g.
 本発明によると、正極活物質として上記化学式(1)で表される固溶体を使用することで、高い放電容量及び容量維持率を実現できる。更には、上記固溶体を使用する際にBET比表面積が30~200m/gである炭素材料を導電助剤として併用することにより、高レート特性を発揮し得る非水電解質二次電池用正極及びそれを用いた非水電解質二次電池を提供することができる。 According to the present invention, by using the solid solution represented by the chemical formula (1) as the positive electrode active material, a high discharge capacity and capacity retention rate can be realized. Furthermore, when using the above solid solution, a positive electrode for a non-aqueous electrolyte secondary battery capable of exhibiting high rate characteristics by using a carbon material having a BET specific surface area of 30 to 200 m 2 / g as a conductive auxiliary agent, and A non-aqueous electrolyte secondary battery using the same can be provided.
 以下、本発明の非水電解質二次電池用正極及び非水電解質二次電池について詳細に説明するが、本発明は、以下の形態のみに制限されない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the positive electrode for a nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery of the present invention will be described in detail, but the present invention is not limited to the following embodiments. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 本発明の一形態に係る非水電解質二次電池用正極は、正極活物質層に上記化学式(1)で表される固溶体形態を有するリチウム含有遷移金属酸化物(以下、リチウム含有遷移金属酸化物を単に「遷移金属酸化物」とも称する)を含有する点を特徴とする。当該リチウム含有遷移金属酸化物を非水電解質二次電池における正極活物質として使用することにより、高い初期放電容量及び容量維持率を実現し得る。なお、本明細書において、所定の組成を有するリチウム含有遷移金属酸化物のうち、特に固溶体形態を有するものを「固溶体リチウム含有遷移金属酸化物」、又は単に「固溶体遷移金属酸化物」若しくは「固溶体」とも称する。 A positive electrode for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention includes a lithium-containing transition metal oxide (hereinafter, lithium-containing transition metal oxide) having a solid solution form represented by the above chemical formula (1) in a positive electrode active material layer. Is also simply referred to as “transition metal oxide”). By using the lithium-containing transition metal oxide as a positive electrode active material in a nonaqueous electrolyte secondary battery, a high initial discharge capacity and capacity retention rate can be realized. In this specification, among lithium-containing transition metal oxides having a predetermined composition, those having a solid solution form are particularly “solid solution lithium-containing transition metal oxides”, or simply “solid solution transition metal oxides” or “solid solutions”. Is also referred to.
 一方で、本発明者らの検討によると、上記化学式(1)で表される固溶体は、従来のリチウム含有遷移金属酸化物と比較して、活物質としての反応抵抗が大きいという特性を有することが判明した。活物質の反応抵抗が高いと、EVやHEV等のモータ駆動用二次電池において要求される高い出力条件下では、十分な容量を取り出すことができない(つまり、高レート特性が十分ではない)場合がある、という新たな問題が生じ得る。したがって、上記化学式(1)で表される固溶体を正極活物質として使用した場合に、十分な高レート特性を発揮し得る手段を提供することが求められた。 On the other hand, according to the study by the present inventors, the solid solution represented by the chemical formula (1) has a characteristic that the reaction resistance as an active material is larger than that of a conventional lithium-containing transition metal oxide. There was found. When the reaction resistance of the active material is high, sufficient capacity cannot be taken out (ie, high rate characteristics are not sufficient) under the high output conditions required for motor-driven secondary batteries such as EV and HEV A new problem can arise. Accordingly, it has been required to provide means capable of exhibiting sufficiently high rate characteristics when the solid solution represented by the chemical formula (1) is used as the positive electrode active material.
 本発明者らはこの新たな課題について鋭意研究した。その結果、正極活物質として上記化学式(1)で表される固溶体を使用する際に、BET比表面積が30~200m/gである炭素材料を導電助剤として併用することにより、当該課題が解決されることを見出し、上述の本発明を完成させたのである。本発明によると、高い初期放電容量及び容量維持率に加え、高出力条件下においても高いレート特性を実現することが可能となる。以下、本発明に係る非水電解質二次電池用正極及び非水電解質二次電池について、それぞれリチウムイオン二次電池用正極及びリチウムイオン二次電池を例に挙げて説明する。 The present inventors have intensively studied on this new problem. As a result, when the solid solution represented by the above chemical formula (1) is used as the positive electrode active material, the problem can be solved by using a carbon material having a BET specific surface area of 30 to 200 m 2 / g as a conductive auxiliary. The inventors have found that the present invention can be solved, and have completed the above-described present invention. According to the present invention, in addition to high initial discharge capacity and capacity retention rate, it is possible to realize high rate characteristics even under high output conditions. Hereinafter, the positive electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery according to the present invention will be described taking the positive electrode for a lithium ion secondary battery and the lithium ion secondary battery as examples.
 <リチウムイオン二次電池>
 図1では、本発明の一実施形態に係るリチウムイオン二次電池の一例を示す。なお、このようなリチウムイオン二次電池は、ラミネート型リチウムイオン二次電池と呼ばれる。
<Lithium ion secondary battery>
FIG. 1 shows an example of a lithium ion secondary battery according to an embodiment of the present invention. Such a lithium ion secondary battery is called a laminated lithium ion secondary battery.
 図1に示すように、本実施形態のリチウムイオン二次電池1は、正極リード21及び負極リード22が取り付けられた電池素子10がラミネートフィルムで形成された外装体30の内部に封入された構成を有している。そして、本実施形態においては、正極リード21及び負極リード22が、外装体30の内部から外部に向かって、反対方向に導出されている。なお図示しないが、正極リード及び負極リードが、外装体の内部から外部に向かって、同一方向に導出されていてもよい。また、このような正極リード及び負極リードは、例えば超音波溶接や抵抗溶接などにより後述する正極集電体及び負極集電体に取り付けることができる。 As shown in FIG. 1, the lithium ion secondary battery 1 of the present embodiment has a configuration in which a battery element 10 to which a positive electrode lead 21 and a negative electrode lead 22 are attached is enclosed in an exterior body 30 formed of a laminate film. have. In the present embodiment, the positive electrode lead 21 and the negative electrode lead 22 are led out in the opposite direction from the inside of the exterior body 30 to the outside. Although not shown, the positive electrode lead and the negative electrode lead may be led out in the same direction from the inside of the exterior body toward the outside. Moreover, such a positive electrode lead and a negative electrode lead can be attached to a positive electrode current collector and a negative electrode current collector described later by, for example, ultrasonic welding or resistance welding.
 <正極リード及び負極リード>
 正極リード21及び負極リード22は、例えば、アルミニウム(Al)や銅(Cu)、チタン(Ti)、ニッケル(Ni)、これらの合金、ステンレス鋼(SUS)等の金属材料により構成されている。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用のリードとして用いられている従来公知の材料を用いることができる。なお、正極リード及び負極リードは、同一材質のものを用いてもよく、異なる材質のものを用いてもよい。
<Positive electrode lead and negative electrode lead>
The positive electrode lead 21 and the negative electrode lead 22 are made of, for example, a metal material such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), alloys thereof, and stainless steel (SUS). However, the material is not limited thereto, and a conventionally known material used as a lead for a lithium ion secondary battery can be used. The positive electrode lead and the negative electrode lead may be made of the same material or different materials.
 また、本実施形態のように、別途準備したリードを後述する正極集電体及び負極集電体に接続してもよいし、後述する各正極集電体及び各負極集電体をそれぞれ延長することによってリードを形成してもよい。図示しないが、外装体から取り出された部分の正極リード及び負極リードは、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。 Further, as in the present embodiment, a separately prepared lead may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are extended. The lead may be formed by this. Although not shown, the positive lead and the negative lead taken out from the exterior body do not affect products (for example, automobile parts, especially electronic devices) by contacting with peripheral devices or wiring and causing electric leakage. Thus, it is preferable to coat with a heat-resistant insulating heat-shrinkable tube or the like.
 また図示しないが、電池外部に電流を取り出す目的で、集電板を用いてもよい。集電板は集電体やリードに電気的に接続され、電池の外装材であるラミネートフィルムの外部に取り出される。集電板を構成する材料は、特に限定されるものではなく、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料を用いることができる。集電板の構成材料としては、例えば、アルミニウム(Al)、銅(Cu)、チタン(Ti)、ニッケル(Ni)、これらの合金、ステンレス鋼(SUS)等の金属材料が好ましく、軽量、耐食性、高導電性の観点からアルミニウム(Al)、銅(Cu)などがより好ましい。なお、正極集電板と負極集電板とでは、同一の材質が用いられてもよいし、異なる材質が用いられてもよい。 Although not shown, a current collecting plate may be used for the purpose of taking out current outside the battery. The current collector plate is electrically connected to a current collector or a lead, and is taken out of a laminate film that is an exterior material of the battery. The material which comprises a current collector plate is not specifically limited, The well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used. As a constituent material of the current collector plate, for example, metal materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), alloys thereof, and stainless steel (SUS) are preferable, and light weight and corrosion resistance. From the viewpoint of high conductivity, aluminum (Al), copper (Cu), and the like are more preferable. Note that the same material may be used for the positive electrode current collector plate and the negative electrode current collector plate, or different materials may be used.
 <外装体>
 外装体30は、例えば、小型化、軽量化の観点から、フィルム状の外装材で形成されたものであることが好ましい。ただ、外装体はこれに限定されるものではなく、リチウムイオン二次電池用の外装体に用いられている従来公知の材料を用いることができる。すなわち、金属缶ケースを適用することもできる。
<Exterior body>
For example, the exterior body 30 is preferably formed of a film-shaped exterior material from the viewpoint of size reduction and weight reduction. However, an exterior body is not limited to this, The conventionally well-known material used for the exterior body for lithium ion secondary batteries can be used. That is, a metal can case can also be applied.
 なお、高出力化や冷却性能に優れ、電気自動車、ハイブリッド電気自動車の大型機器用電池に好適に利用することができるという観点から、外装体としては、熱伝導性に優れた高分子-金属複合ラミネートフィルムを挙げることができる。より具体的には、熱圧着層としてのポリプロピレン、金属層としてのアルミニウム、外部保護層としてのナイロンをこの順に積層して成る三層構造のラミネートフィルムで形成された外装体を好適に用いることができる。 From the viewpoint of high output and cooling performance, and suitable for use in large equipment batteries of electric vehicles and hybrid electric vehicles, the exterior body has a polymer-metal composite with excellent thermal conductivity. A laminate film can be mentioned. More specifically, an exterior body formed of a three-layer laminate film in which polypropylene as a thermocompression bonding layer, aluminum as a metal layer, and nylon as an external protective layer are laminated in this order is preferably used. it can.
 なお、外装体は、上述したラミネートフィルムに代えて、他の構造、例えば金属材料を有さないラミネートフィルム、ポリプロピレンなどの高分子フィルム又は金属フィルムなどにより構成してもよい。 Note that the exterior body may be constituted by another structure, for example, a laminate film having no metal material, a polymer film such as polypropylene, or a metal film, instead of the above-described laminate film.
 ここで、外装体の一般的な構成は、外部保護層/金属層/熱圧着層の積層構造で表すことができる。ただし、外部保護層及び熱圧着層は複数層で構成されることがある。なお、金属層としては、耐透湿性のバリア膜として機能すれば十分であり、アルミニウム箔のみならず、ステンレス箔、ニッケル箔、メッキを施した鉄箔などを使用することができる。ただ、金属層としては、薄く軽量で加工性に優れるアルミニウム箔を好適に用いることができる。 Here, the general structure of the exterior body can be represented by a laminated structure of an external protective layer / metal layer / thermocompression bonding layer. However, the external protective layer and the thermocompression bonding layer may be composed of a plurality of layers. It is sufficient that the metal layer functions as a moisture-permeable barrier film, and not only aluminum foil but also stainless steel foil, nickel foil, plated iron foil, and the like can be used. However, as the metal layer, an aluminum foil that is thin and lightweight and excellent in workability can be suitably used.
 外装体として、使用可能な構成を(外部保護層/金属層/熱圧着層)の形式で列挙すると、ナイロン/アルミニウム/無延伸ポリプロピレン、ポリエチレンテレフタレート/アルミニウム/無延伸ポリプロピレン、ポリエチレンテレフタレート/アルミニウム/ポリエチレンテレフタレート・無延伸ポリプロピレン、ポリエチレンテレフタレート・ナイロン/アルミニウム/無延伸ポリプロピレン、ポリエチレンテレフタレート・ナイロン/アルミニウム/ナイロン・無延伸ポリプロピレン、ポリエチレンテレフタレート・ナイロン/アルミニウム/ナイロン・ポリエチレン、ナイロン・ポリエチレン/アルミニウム/直鎖状低密度ポリエチレン、ポリエチレンテレフタレート・ポリエチレン/アルミニウム/ポリエチレンテレフタレート・低密度ポリエチレン、及びポリエチレンテレフタレート・ナイロン/アルミニウム/低密度ポリエチレン・無延伸ポリプロピレンなどがある。 The structures that can be used as the exterior body are listed in the form of (external protective layer / metal layer / thermocompression layer). Polyethylene terephthalate / nylon / aluminum / non-stretched polypropylene, polyethylene terephthalate / nylon / aluminum / nylon / non-stretched polypropylene, polyethylene terephthalate / nylon / aluminum / nylon / polyethylene, nylon / polyethylene / aluminum / linear Low density polyethylene, polyethylene terephthalate, polyethylene / aluminum / polyethylene terephthalate Low density polyethylene, and a polyethylene terephthalate, nylon / aluminum / low-density polyethylene cast polypropylene.
 <電池素子>
 図1に示すように、電池素子10は、正極集電体11Aの両方の主面上に正極活物質層11Bが形成された正極11と、電解質層13と、負極集電体12Aの両方の主面上に負極活物質層12Bが形成された負極12とを複数積層した構成を有している。このとき、一の正極11における正極集電体11Aの片方の主面上に形成された正極活物質層11Bと一の正極11に隣接する負極12における負極集電体12Aの片方の主面上に形成された負極活物質層12Bとが電解質層13を介して向き合う。このようにして、正極、電解質層、負極の順に複数積層されている。
<Battery element>
As shown in FIG. 1, the battery element 10 includes both a positive electrode 11 having a positive electrode active material layer 11B formed on both main surfaces of the positive electrode current collector 11A, an electrolyte layer 13, and a negative electrode current collector 12A. A plurality of negative electrodes 12 each having a negative electrode active material layer 12 </ b> B formed on the main surface are stacked. At this time, the positive electrode active material layer 11B formed on one main surface of the positive electrode current collector 11A in one positive electrode 11 and the one main surface of the negative electrode current collector 12A in the negative electrode 12 adjacent to the one positive electrode 11 The negative electrode active material layer 12 </ b> B formed on the surface of the substrate faces the electrolyte layer 13. In this way, a plurality of layers are laminated in the order of the positive electrode, the electrolyte layer, and the negative electrode.
 これにより、隣接する正極活物質層11B、電解質層13及び負極活物質層12Bは、1つの単電池層14を構成する。したがって、本実施形態のリチウムイオン二次電池1は、単電池層14が複数積層されることにより、電気的に並列接続された構成を有するものとなる。なお、正極及び負極は、各集電体の一方の主面上にのみ各活物質層が形成されているものであってもよい。本実施形態においては、例えば、電池素子10の最外層に位置する負極集電体12aには、片面のみに負極活物質層12Bが形成されている。 Thus, the adjacent positive electrode active material layer 11B, electrolyte layer 13 and negative electrode active material layer 12B constitute one unit cell layer 14. Therefore, the lithium ion secondary battery 1 according to the present embodiment has a configuration in which a plurality of single battery layers 14 are stacked and electrically connected in parallel. In addition, the positive electrode and the negative electrode may have each active material layer formed only on one main surface of each current collector. In the present embodiment, for example, the negative electrode current collector 12a located in the outermost layer of the battery element 10 has the negative electrode active material layer 12B formed only on one side.
 図示しないが、単電池層の外周には、隣接する正極集電体や負極集電体の間を絶縁するための絶縁層が設けられていてもよい。このような絶縁層は、電解質層などに含まれる電解質を保持し、単電池層の外周に電解質の液漏れを防止する材料により形成されることが好ましい。具体的には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリウレタン(PUR)、ポリアミド系樹脂(PA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリスチレン(PS)などの汎用プラスチックや熱可塑オレフィンゴムなどを使用することができる。また、シリコーンゴムを使用することもできる。 Although not shown, an insulating layer for insulating between the adjacent positive electrode current collector and negative electrode current collector may be provided on the outer periphery of the unit cell layer. Such an insulating layer is preferably formed of a material that holds the electrolyte contained in the electrolyte layer and the like and prevents electrolyte leakage from the outer periphery of the unit cell layer. Specifically, general-purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polystyrene (PS), etc. Or thermoplastic olefin rubber can be used. Silicone rubber can also be used.
 <正極集電体及び負極集電体>
 正極集電体11A及び負極集電体12Aは、導電性材料から構成される。集電体の大きさは、電池の使用用途に応じて決定することができる。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図1に示す電池素子10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。なお、負極活物質の一例である薄膜合金をスパッタ法等により負極集電体12A上に直接形成する場合には、集電箔を用いるのが望ましい。
<Positive electrode current collector and negative electrode current collector>
The positive electrode current collector 11A and the negative electrode current collector 12A are made of a conductive material. The size of the current collector can be determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector. The thickness of the current collector is usually about 1 to 100 μm. The shape of the current collector is not particularly limited. In the battery element 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (such as an expanded grid) can be used. In addition, when forming the thin film alloy which is an example of a negative electrode active material directly on the negative electrode collector 12A by sputtering method etc., it is desirable to use a current collection foil.
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料又は非導電性高分子材料に導電性フィラーが添加された樹脂を採用することができる。具体的には、金属としては、アルミニウム(Al)、ニッケル(Ni)、鉄(Fe)、ステンレス鋼(SUS)、チタン(Ti)、銅(Cu)などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、又はこれらの金属を組み合わせためっき材などを用いることが好ましい。また、金属表面にアルミニウムが被覆された箔であってもよい。中でも、電子伝導性や電池作動電位等の観点からは、アルミニウム、ステンレス鋼、銅、ニッケルが好ましい。 There are no particular restrictions on the materials that make up the current collector. For example, a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed. Specifically, examples of the metal include aluminum (Al), nickel (Ni), iron (Fe), stainless steel (SUS), titanium (Ti), copper (Cu), and the like. In addition to these, it is preferable to use a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material combining these metals. Moreover, the foil by which the metal surface was coat | covered with aluminum may be sufficient. Among these, aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and the like.
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、ポリオキサジアゾールなどが挙げられる。このような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化又は集電体の軽量化の点において有利である。 Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF)、ポリスチレン(PS)などが挙げられる。このような非導電性高分子材料は、優れた耐電位性又は耐溶媒性を有する。 Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polystyrene (PS), and the like. Such a non-conductive polymer material has excellent potential resistance or solvent resistance.
 上記導電性高分子材料又は非導電性高分子材料には、必要に応じて導電性フィラーを添加することができる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性又はリチウムイオン遮断性に優れた材料として、金属、導電性カーボンなどが挙げられる。 A conductive filler can be added to the conductive polymer material or non-conductive polymer material as necessary. In particular, when the resin used as the base material of the current collector is made of only a non-conductive polymer, a conductive filler is inevitably necessary to impart conductivity to the resin. The conductive filler can be used without particular limitation as long as it is a substance having conductivity. For example, a metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion interruption | blocking property.
 導電性フィラーとして用いられる金属としては、ニッケル(Ni)、チタン(Ti)、アルミニウム(Al)、銅(Cu)、白金(Pt)、鉄(Fe)、クロム(Cr)、スズ(Sn)、亜鉛(Zn)、インジウム(In)、アンチモン(Sb)及びカリウム(K)からなる群から選ばれる少なくとも一種の金属を挙げることができる。また、これらの金属を含む合金又は金属酸化物も好適例として挙げることができる。 Examples of the metal used as the conductive filler include nickel (Ni), titanium (Ti), aluminum (Al), copper (Cu), platinum (Pt), iron (Fe), chromium (Cr), tin (Sn), Mention may be made of at least one metal selected from the group consisting of zinc (Zn), indium (In), antimony (Sb) and potassium (K). Further, alloys or metal oxides containing these metals can also be mentioned as suitable examples.
 また、導電性カーボンとしては、アセチレンブラック、バルカン、ブラックパール、カーボンナノファイバー、ケッチェンブラック、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン及びフラーレンからなる群より選ばれる少なくとも一種を好適例として挙げることができる。導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5~35質量%程度である。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の集電体として用いられている従来公知の材料を用いることができる。 Examples of the conductive carbon include at least one selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene. it can. The amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass. However, the material is not limited to these, and a conventionally known material used as a current collector for a lithium ion secondary battery can be used.
 <正極活物質層>
 正極活物質層11Bは、正極活物質として所定の固溶体リチウム含有遷移金属酸化物、および導電助剤を必須に含む。そして、必要に応じてバインダー等の他の添加剤を含んでいてもよい。
<Positive electrode active material layer>
The positive electrode active material layer 11B essentially includes a predetermined solid solution lithium-containing transition metal oxide and a conductive additive as a positive electrode active material. And other additives, such as a binder, may be included as needed.
 本形態に係る正極活物質層は、正極活物質として下記化学式(1)で表されるリチウム含有遷移金属酸化物を含有する。 The positive electrode active material layer according to this embodiment contains a lithium-containing transition metal oxide represented by the following chemical formula (1) as a positive electrode active material.
 Li1.5[NiCoMn[Li]]O …(1)
 式中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示す。また、a、b、c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する。
Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 (1)
In the formula, Li represents lithium, Ni represents nickel, Co represents cobalt, Mn represents manganese, and O represents oxygen. A, b, c, and d are 0 <a <1.4, 0 ≦ b <1.4, 0 <c <1.4, 0.1 <d ≦ 0.4, a + b + c + d = 1.5. 1.1 ≦ a + b + c <1.4 is satisfied.
 当該リチウム含有遷移金属酸化物は、層状構造部位と、所定の電位範囲における充電又は充放電を行うことによりスピネル構造に変化する部位(層状構造のLiMnO)とを有する。 The lithium-containing transition metal oxide has a layered structure portion and a portion (a layered structure Li 2 MnO 3 ) that changes to a spinel structure by charging or charging / discharging in a predetermined potential range.
 さらに、当該リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに変化する。そして、層状構造のLiMnOがスピネル構造のLiMnに全て変化した場合の割合を1としたとき、当該リチウム含有遷移金属酸化物のスピネル構造変化割合が0.25以上1.0未満であることが好ましい。 Furthermore, Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is changed to LiMn 2 O 4 having a spinel structure. When the ratio when the layered structure Li 2 MnO 3 is all changed to the spinel structure LiMn 2 O 4 is 1, the spinel structure change ratio of the lithium-containing transition metal oxide is 0.25 or more and 1.0. It is preferable that it is less than.
 このような固溶体リチウム含有遷移金属酸化物は、リチウムイオン二次電池の正極活物質として用いた場合、高い放電容量及び容量維持率を実現し得るため、リチウムイオン二次電池用正極やリチウムイオン二次電池に好適に用いられる。その結果、車両の駆動電源用や補助電源用のリチウムイオン二次電池として好適に利用できる。このほかにも、家庭用や携帯機器用のリチウムイオン二次電池にも十分に適用可能である。 When such a solid solution lithium-containing transition metal oxide is used as a positive electrode active material of a lithium ion secondary battery, it can realize a high discharge capacity and capacity retention rate. It is suitably used for secondary batteries. As a result, it can be suitably used as a lithium-ion secondary battery for vehicle drive power or auxiliary power. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for home use and portable devices.
 本形態に係るリチウム含有遷移金属酸化物は、化学式(1)において、a、b、c及びdが0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する必要がある。この数式を満足しない場合は、リチウム含有遷移金属酸化物の結晶構造が安定化しない可能性がある。 In the lithium-containing transition metal oxide according to the present embodiment, in the chemical formula (1), a, b, c, and d are 0 <a <1.4, 0 ≦ b <1.4, 0 <c <1.4, It is necessary to satisfy the relationship of 0.1 <d ≦ 0.4, a + b + c + d = 1.5, 1.1 ≦ a + b + c <1.4. If this mathematical formula is not satisfied, the crystal structure of the lithium-containing transition metal oxide may not be stabilized.
 ここで、本明細書において「スピネル構造変化割合」とは、所定の電位範囲における充電又は充放電を行った場合、当該リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに変化した割合を規定するものである。つまり、本形態におけるリチウム含有遷移金属酸化物は、所定の電位範囲における充電又は充放電を行うことによりスピネル構造に変化する層状構造のLiMnOと、スピネル構造に変化しない層状構造部位(LiMO)とを有する。そして、当該リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに全て変化した場合のスピネル構造変化割合を1とする。なお、「所定の電位範囲」とは、例えば4.3~4.8Vとすることができる。スピネル構造変化割合は、具体的には、下記数式1にて定義される。 Here, in the present specification, the “spinel structure change ratio” means that when charging or charging / discharging in a predetermined potential range is performed, Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is LiMn having a spinel structure. The ratio of change to 2 O 4 is specified. That is, the lithium-containing transition metal oxide in this embodiment includes a layered structure Li 2 MnO 3 that changes to a spinel structure by charging or charging / discharging in a predetermined potential range, and a layered structure part (LiMO that does not change to a spinel structure). 2 ). The spinel structure change ratio when the Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is all changed to LiMn 2 O 4 having a spinel structure is set to 1. The “predetermined potential range” can be set to 4.3 to 4.8 V, for example. Specifically, the spinel structure change ratio is defined by the following mathematical formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 「スピネル構造変化割合」の定義について、図2に示す場合を例に挙げて説明する。図2は、リチウム含有遷移金属酸化物を正極活物質とした正極を用いて組み立てた電池に対する電位と容量との関係を示すグラフである。当該電池に対し、充電開始前の初期状態Aから4.5Vまで充電された状態を充電状態Bとする。さらに、充電状態Bからプラトー領域を経て4.8Vまで充電された状態を過充電状態Cとし、さらに2.0Vまで放電された状態を放電状態Dとする。そして、上記数式1における「プラトー領域の実測容量」は、図2のプラトー領域におけるリチウム含有遷移金属酸化物の実測容量を計測すればよい。なお、プラトー領域は、具体的には4.5Vから4.8Vまでの領域であり、結晶構造が変化していることに起因する領域である。そのため、充電状態Bから過充電状態Cまでの領域BCにおける電池の実測容量VBCが、プラトー領域の実測容量に相当する。 The definition of “spinel structure change ratio” will be described by taking the case shown in FIG. 2 as an example. FIG. 2 is a graph showing the relationship between potential and capacity for a battery assembled using a positive electrode using a lithium-containing transition metal oxide as a positive electrode active material. A state in which the battery is charged from an initial state A before starting charging to 4.5 V is referred to as a charged state B. Further, a state in which the state is charged from the state of charge B to 4.8 V through the plateau region is referred to as an overcharge state C, and a state of being discharged to 2.0 V is referred to as a discharge state D. The “measured capacity of the plateau region” in Equation 1 above may be the measured capacity of the lithium-containing transition metal oxide in the plateau region of FIG. The plateau region is specifically a region from 4.5 V to 4.8 V, and is a region resulting from a change in crystal structure. Therefore, the measured capacity V BC of the battery in the region BC from the charged state B to the overcharged state C corresponds to the measured capacity in the plateau region.
 実際には、化学式(1)の遷移金属酸化物において、初期状態Aから4.5Vまで充電された充電状態Bまでの領域ABの実測容量VABは、スピネル構造に変化しない層状構造のLiMOの組成比(y)とLiMOの理論容量(V)の積に相当する。また、4.5Vまで充電された充電状態Bから4.8Vまで充電された過充電状態Cの領域BCの実測容量VBCは、スピネル構造部位であるLiMnOの組成比(x)とLiMnOの理論容量(V)の積に相当する。そのため、初期状態Aから所定のプラトー領域までに計測した実測容量(V)を(V=VAB+VBC)とすると、VAB=y×(V)、VBC=x×(V)×Kであるので、スピネル構造変化割合は下記数式2を用いて計算することもできる。なお、上述の化学式LiMOのMは、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群より選ばれる少なくとも一種を示す。 Actually, in the transition metal oxide of the chemical formula (1), the measured capacity V AB in the region AB from the initial state A to the charged state B charged to 4.5 V is LiMO 2 having a layered structure that does not change to the spinel structure. This corresponds to the product of the composition ratio (y) of LiMO 2 and the theoretical capacity (V L ) of LiMO 2 . The measured capacity V BC in the region BC in the overcharged state C charged from the charged state B charged to 4.5 V to the 4.8 V is expressed by the composition ratio (x) of Li 2 MnO 3 that is the spinel structure part. This corresponds to the product of the theoretical capacity (V S ) of Li 2 MnO 3 . Therefore, when the measured capacity (V T ) measured from the initial state A to a predetermined plateau region is (V T = V AB + V BC ), V AB = y × (V L ), V BC = xx × (V Since S 1 ) × K, the spinel structure change ratio can also be calculated using Equation 2 below. Note that M in the above-described chemical formula LiMO 2 represents at least one selected from the group consisting of nickel (Ni), cobalt (Co), and manganese (Mn).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、「リチウム含有遷移金属酸化物中のLiMnOの組成比」は、リチウム含有遷移金属酸化物の化学式(1)から算出することができる。具体的には、後述する実施例1-7の正極活物質7(Li1.5[Ni0.2Co0.2Mn0.8[Li]0.3]O(a+b+c+d=1.5、d=0.3、a+b+c=1.2))の場合、化学式(1)に準じ、LiMnOの組成比は0.6となる。また、LiNi1/3Mn1/3Co1/3(=Li1.5Ni0.5Mn0.5Co0.5)の組成比は0.4となる。 The “composition ratio of Li 2 MnO 3 in the lithium-containing transition metal oxide” can be calculated from the chemical formula (1) of the lithium-containing transition metal oxide. Specifically, the positive electrode active material 7 (Li 1.5 [Ni 0.2 Co 0.2 Mn 0.8 [Li] 0.3 ] O 3 (a + b + c + d = 1.5) described later in Example 1-7. , D = 0.3, a + b + c = 1.2)), the composition ratio of Li 2 MnO 3 is 0.6 according to the chemical formula (1). The composition ratio of LiNi 1/3 Mn 1/3 Co 1/3 O 2 (= Li 1.5 Ni 0.5 Mn 0.5 Co 0.5 O 3 ) is 0.4.
 リチウム含有遷移金属酸化物における、スピネル構造に変化しない層状構造部位(LiMO)とスピネル構造部位(LiMnO)の有無は、X線回折分析(XRD)よる層状構造部位及びスピネル構造に特異なピークの存在により判定することができる。また、層状構造部位とスピネル構造部位の割合は、上述したような容量の計測・計算から判定することができる。 In the lithium-containing transition metal oxide, the presence or absence of a lamellar structure site (LiMO 2 ) and a spinel structure site (Li 2 MnO 3 ) that do not change to a spinel structure is specific to the lamellar structure site and spinel structure by X-ray diffraction analysis (XRD). It can be determined by the presence of a simple peak. Further, the ratio of the layered structure part and the spinel structure part can be determined from the measurement / calculation of the capacity as described above.
 リチウム含有遷移金属酸化物において、スピネル構造変化割合が1.0となることはない。つまり、リチウム含有遷移金属酸化物における層状構造のLiMnOがスピネル構造のLiMnに全て変化することはない。また、スピネル構造変化割合が0.25未満の場合は、高くても従来と同程度の放電容量や容量維持率を実現し得る固溶体リチウム含有遷移金属酸化物が得られるだけである。 In the lithium-containing transition metal oxide, the spinel structure change ratio does not become 1.0. That is, the Li 2 MnO 3 having a layered structure in the lithium-containing transition metal oxide is not completely changed to LiMn 2 O 4 having a spinel structure. Further, when the spinel structure change ratio is less than 0.25, only a solid solution lithium-containing transition metal oxide capable of realizing a discharge capacity and a capacity retention rate similar to those of the conventional one can be obtained.
 なお、本明細書において、「充電」とは、連続的又は段階的に電極間の電位差を大きくする操作のことをいう。また、「充放電」とは、連続的又は段階的に電極間の電位差を大きくする操作の後に、連続的又は段階的に電極間の電位差を小さくする操作、又はこれを適宜繰り返す操作のことをいう。 In the present specification, “charging” refers to an operation of increasing the potential difference between the electrodes continuously or stepwise. In addition, “charging / discharging” refers to an operation of decreasing a potential difference between electrodes continuously or stepwise, or an operation of repeating this appropriately, after an operation of increasing the potential difference between electrodes continuously or stepwise. Say.
 化学式(1)において、a、b、c及びdは、0<a<1.35、0≦b<1.35、0<c<1.35、0.15<d≦0.35、a+b+c+d=1.5、1.15≦a+b+c<1.35の関係を満足することが好ましい。さらに、所定の電位範囲における充電又は充放電を行った場合、当該リチウム含有遷移金属酸化物のスピネル構造変化割合が0.4以上0.9未満であることが好適である。このような固溶体リチウム含有遷移金属酸化物を正極活物質に用いた場合、より高い放電容量や容量維持率を得ることが可能となる。 In the chemical formula (1), a, b, c and d are 0 <a <1.35, 0 ≦ b <1.35, 0 <c <1.35, 0.15 <d ≦ 0.35, a + b + c + d = 1.5, 1.15 ≦ a + b + c <1.35 is preferably satisfied. Furthermore, when charge or charge / discharge in a predetermined potential range is performed, it is preferable that the spinel structure change ratio of the lithium-containing transition metal oxide is 0.4 or more and less than 0.9. When such a solid solution lithium-containing transition metal oxide is used for the positive electrode active material, higher discharge capacity and capacity retention rate can be obtained.
 さらに、化学式(1)において、a、b、c及びdは、0<a<1.3、0≦b<1.3、0<c<1.3、0.15<d≦0.35、a+b+c+d=1.5、1.2≦a+b+c<1.3の関係を満足することがより好ましい。また、所定の電位範囲における充電又は充放電を行った場合、当該リチウム含有遷移金属酸化物のスピネル構造変化割合が0.6以上0.8以下であることがより好適である。このような固溶体リチウム含有遷移金属酸化物は、リチウムイオン二次電池の正極活物質として用いた場合、より高い放電容量及び容量維持率を実現し得るため、リチウムイオン二次電池用正極やリチウムイオン二次電池により好適に用いられる。 Furthermore, in the chemical formula (1), a, b, c and d are 0 <a <1.3, 0 ≦ b <1.3, 0 <c <1.3, 0.15 <d ≦ 0.35. A + b + c + d = 1.5 and 1.2 ≦ a + b + c <1.3 are more preferable. In addition, when charging or charging / discharging in a predetermined potential range is performed, it is more preferable that the spinel structure change ratio of the lithium-containing transition metal oxide is 0.6 or more and 0.8 or less. Such a solid solution lithium-containing transition metal oxide can achieve higher discharge capacity and capacity retention when used as a positive electrode active material of a lithium ion secondary battery. It is suitably used for a secondary battery.
 また、リチウム含有遷移金属酸化物の他の好ましい形態の一は、BET比表面積が1m/g以上8.0m/g以下である。以下、当該好ましい形態を、第二の形態と称する。BET比表面積がこの範囲である場合には、リチウム含有遷移金属酸化物におけるリチウムイオン拡散性が向上し、高いレートでの充放電において、放電容量を向上させることが可能となる。なお、リチウム含有遷移金属酸化物のBET比表面積は、日本工業規格JIS Z8830に基づき測定することができる。 Another preferable embodiment of the lithium-containing transition metal oxide has a BET specific surface area of 1 m 2 / g or more and 8.0 m 2 / g or less. Hereinafter, the preferable form is referred to as a second form. When the BET specific surface area is in this range, the lithium ion diffusibility in the lithium-containing transition metal oxide is improved, and the discharge capacity can be improved in charge / discharge at a high rate. The BET specific surface area of the lithium-containing transition metal oxide can be measured based on Japanese Industrial Standard JIS Z8830.
 また、上記第二の形態において、リチウム含有遷移金属酸化物における窒素で測定した細孔容積は、相対圧が0.98~0.99であるとき、0.025cm/g以下である。細孔容積が0.025cm/g以下の場合には、従来のよりも高い放電容量や容量維持率を実現し得る固溶体リチウム含有遷移金属酸化物を得ることが可能となる。なお、細孔容積は、日本工業規格JIS Z8831-2に基づき測定することができる。 In the second embodiment, the pore volume measured with nitrogen in the lithium-containing transition metal oxide is 0.025 cm 3 / g or less when the relative pressure is 0.98 to 0.99. When the pore volume is 0.025 cm 3 / g or less, it is possible to obtain a solid solution lithium-containing transition metal oxide capable of realizing a higher discharge capacity and capacity retention than conventional ones. The pore volume can be measured based on Japanese Industrial Standard JIS Z8831-2.
 また、上記第二の形態において、リチウム含有遷移金属酸化物は、50%通過粒径(メディアン径、D50)が15μm未満であることが好適である。さらに、リチウム含有遷移金属酸化物は、1μm未満の粒径の粒子を有することが好適である。このような粒子径のリチウム含有遷移金属酸化物を用いることにより、正極活物質層の空隙率を制御し易くなり、非水電解液の浸透性を向上させることができる。そして、非水電解液の浸透性が向上するため、正極活物質層の直流抵抗を低減することが可能となる。なお、50%通過粒径は、動的光散乱法により測定した粒度分布から求めることができる。 In the second embodiment, the lithium-containing transition metal oxide preferably has a 50% passing particle diameter (median diameter, D50) of less than 15 μm. Further, the lithium-containing transition metal oxide preferably has particles having a particle size of less than 1 μm. By using the lithium-containing transition metal oxide having such a particle size, the porosity of the positive electrode active material layer can be easily controlled, and the permeability of the non-aqueous electrolyte can be improved. And since the permeability of the nonaqueous electrolytic solution is improved, the direct current resistance of the positive electrode active material layer can be reduced. The 50% passing particle size can be determined from the particle size distribution measured by the dynamic light scattering method.
 また、上記第二の形態において、リチウム含有遷移金属酸化物は、N-メチル-2-ピロリドンの吸液量が0.5cm/g以下であることが好適である。前記リチウム含有遷移金属酸化物のBET比表面積が1m/g以上8.0m/g以下であり、細孔容積が0.025cm/g以下である場合には、N-メチル-2-ピロリドンの吸液量が0.5cm/g以下となりやすい。この場合、リチウム含有遷移金属酸化物内での非水電解液の浸透性やリチウムイオン拡散性が向上するため、放電容量及び容量維持率をより向上させることが可能となる。 In the second embodiment, the lithium-containing transition metal oxide preferably has an N-methyl-2-pyrrolidone liquid absorption of 0.5 cm 3 / g or less. When the lithium-containing transition metal oxide has a BET specific surface area of 1 m 2 / g or more and 8.0 m 2 / g or less and a pore volume of 0.025 cm 3 / g or less, N-methyl-2- The liquid absorption amount of pyrrolidone tends to be 0.5 cm 3 / g or less. In this case, since the permeability of the nonaqueous electrolytic solution and the lithium ion diffusibility in the lithium-containing transition metal oxide are improved, the discharge capacity and the capacity retention rate can be further improved.
 また、上記第二の形態において、リチウム含有遷移金属酸化物は、真密度が4.1g/cm以上4.6g/cm以下であることが好適である。当該真密度が4.1g/cm以上の場合には、リチウム含有遷移金属酸化物の単位体積当たりの重量(充填量)が増加し、放電容量を向上させることが可能となる。また、当該真密度が4.6g/cm以下の場合には、正極活物質層の空隙量が増加し、非水電解液の浸透性やリチウムイオン拡散性を向上させることができる。なお、真密度は、液相置換法(ピクノメーター法)により求めることができる。 In the second embodiment, the lithium-containing transition metal oxide preferably has a true density of 4.1 g / cm 3 or more and 4.6 g / cm 3 or less. When the true density is 4.1 g / cm 3 or more, the weight (filling amount) per unit volume of the lithium-containing transition metal oxide is increased, and the discharge capacity can be improved. In addition, when the true density is 4.6 g / cm 3 or less, the amount of voids in the positive electrode active material layer increases, and the permeability of the non-aqueous electrolyte and the lithium ion diffusibility can be improved. The true density can be determined by a liquid phase replacement method (pycnometer method).
 さらに、リチウム含有遷移金属酸化物の他の好ましい形態の一によると、BET比表面積が1m/g以上9m/g以下である。以下、当該リチウム含有遷移金属酸化物に係る好ましい形態を、第三の形態と称する。BET比表面積がこの範囲である場合には、リチウム含有遷移金属酸化物におけるリチウムイオン拡散性が向上し、高い放電容量を得ることが可能となる。なお、BET比表面積は、第二の形態と同様に、日本工業規格JIS Z8830に基づき測定することができる。 Furthermore, according to another preferable embodiment of the lithium-containing transition metal oxide, the BET specific surface area is 1 m 2 / g or more and 9 m 2 / g or less. Hereinafter, the preferable form which concerns on the said lithium containing transition metal oxide is called a 3rd form. When the BET specific surface area is within this range, the lithium ion diffusibility in the lithium-containing transition metal oxide is improved, and a high discharge capacity can be obtained. The BET specific surface area can be measured based on Japanese Industrial Standard JIS Z8830 as in the second embodiment.
 上記第三の形態のうち、化学式(1)において、a、b、c及びdは、0<a<1.35、0≦b<1.35、0<c<1.35、0.15<d≦0.35、a+b+c+d=1.5、1.15≦a+b+c<1.35の関係を満足することが好ましい。さらに、所定の電位範囲における充電又は充放電を行った場合、当該リチウム含有遷移金属酸化物のスピネル構造変化割合は、0.4以上0.9未満であることが好適である。加えて、リチウム含有遷移金属酸化物のBET比表面積は、2m/g以上8m/g以下であることが好適である。 Among the third forms, in the chemical formula (1), a, b, c and d are 0 <a <1.35, 0 ≦ b <1.35, 0 <c <1.35, 0.15. <D ≦ 0.35, a + b + c + d = 1.5, 1.15 ≦ a + b + c <1.35 are preferably satisfied. Furthermore, when charging or charging / discharging in a predetermined potential range is performed, the spinel structure change ratio of the lithium-containing transition metal oxide is preferably 0.4 or more and less than 0.9. In addition, the BET specific surface area of the lithium-containing transition metal oxide is preferably 2 m 2 / g or more and 8 m 2 / g or less.
 さらに、第三の形態のうち、化学式(1)において、a、b、c及びdは、0<a<1.3、0≦b<1.3、0<c<1.3、0.15<d≦0.35、a+b+c+d=1.5、1.2≦a+b+c<1.3を満足することが好ましい。また、当該リチウム含有遷移金属酸化物のスピネル構造変化割合が0.6以上0.8以下であることがより好適である。加えて、リチウム含有遷移金属酸化物のBET比表面積が3m/g以上6m/g以下であることがより好適である。このようなリチウム含有遷移金属酸化物は、リチウムイオン二次電池の正極活物質として用いた場合、より高い放電容量及び容量維持率を実現し得るため、リチウムイオン二次電池用正極やリチウムイオン二次電池により好適に用いられる。 Further, in the third form, in the chemical formula (1), a, b, c and d are 0 <a <1.3, 0 ≦ b <1.3, 0 <c <1.3, 0. It is preferable that 15 <d ≦ 0.35, a + b + c + d = 1.5, and 1.2 ≦ a + b + c <1.3 are satisfied. Moreover, it is more preferable that the spinel structure change ratio of the lithium-containing transition metal oxide is 0.6 or more and 0.8 or less. In addition, the BET specific surface area of the lithium-containing transition metal oxide is more preferably 3 m 2 / g or more and 6 m 2 / g or less. Such a lithium-containing transition metal oxide can realize a higher discharge capacity and capacity retention when used as a positive electrode active material of a lithium ion secondary battery. The secondary battery is preferably used.
 さらに、リチウム含有遷移金属酸化物の他の好ましい形態の一によると、上記化学式(1)で表される第一リチウム含有遷移金属酸化物及び第二リチウム含有遷移金属酸化物を含有する。そして、第一リチウム含有遷移金属酸化物のBET比表面積が1.0m/g以上4.0m/g以下であり、第二リチウム含有遷移金属酸化物のBET比表面積が4.0m/g超8.0m/g以下である。以下、当該リチウム含有遷移金属酸化物に係る好ましい形態を、第四の形態と称する。このように、BET比表面積が異なる二種類のリチウム含有遷移金属酸化物を含有することにより、固溶体リチウム含有遷移金属酸化物におけるリチウムイオン拡散性が向上し、高いレートでの充放電において、放電容量を高めることが可能となる。これは、第一リチウム含有遷移金属酸化物が放電容量を向上させるために有効であり、第二リチウム含有遷移金属酸化物がレート特性を向上させるために有効であるためである。 Furthermore, according to another preferable embodiment of the lithium-containing transition metal oxide, the lithium-containing transition metal oxide contains the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide represented by the chemical formula (1). Then, BET specific surface area of the first transition metal oxide containing lithium is not more than 1.0 m 2 / g or more 4.0m 2 / g, BET specific surface area of the second lithium-containing transition metal oxide is 4.0 m 2 / More than g and not more than 8.0 m 2 / g. Hereinafter, the preferable form which concerns on the said lithium containing transition metal oxide is called a 4th form. Thus, by containing two types of lithium-containing transition metal oxides having different BET specific surface areas, the lithium ion diffusibility in the solid solution lithium-containing transition metal oxide is improved, and in charge / discharge at a high rate, the discharge capacity Can be increased. This is because the first lithium-containing transition metal oxide is effective for improving the discharge capacity, and the second lithium-containing transition metal oxide is effective for improving the rate characteristics.
 なお、上記第四の形態において、第一リチウム含有遷移金属酸化物及び第二リチウム含有遷移金属酸化物は、同一組成であってもよく、異なる組成であってもよい。つまり、本形態の固溶体リチウム含有遷移金属酸化物は、少なくともBET比表面積が異なる二種類のリチウム含有遷移金属酸化物を含有するものである。 In the fourth embodiment, the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide may have the same composition or different compositions. That is, the solid solution lithium-containing transition metal oxide of this embodiment contains at least two types of lithium-containing transition metal oxides having different BET specific surface areas.
 このような固溶体リチウム含有遷移金属酸化物は、リチウムイオン二次電池の正極活物質として用いた場合、1.0Cや2.5Cなどの高いレートでの充放電において、高い放電容量及び容量維持率を実現し得る。そのため、リチウムイオン二次電池用正極やリチウムイオン二次電池に好適に用いられる。その結果、車両の駆動電源用や補助電源用のリチウムイオン二次電池として好適に利用できる。このほかにも、家庭用や携帯機器用のリチウムイオン二次電池にも十分に適用可能である。 Such a solid solution lithium-containing transition metal oxide, when used as a positive electrode active material of a lithium ion secondary battery, has a high discharge capacity and capacity maintenance rate in charge and discharge at a high rate such as 1.0 C and 2.5 C. Can be realized. Therefore, it is suitably used for a positive electrode for lithium ion secondary batteries and a lithium ion secondary battery. As a result, it can be suitably used as a lithium-ion secondary battery for vehicle drive power or auxiliary power. In addition to this, the present invention can be sufficiently applied to lithium ion secondary batteries for home use and portable devices.
 また、第四の形態のうち、化学式(1)において、a、b、c及びdは、0<a<1.35、0≦b<1.35、0<c<1.35、0.15<d≦0.35、a+b+c+d=1.5、1.15≦a+b+c<1.35の関係を満足することが好ましい。さらに、所定の電位範囲における充電又は充放電を行った場合、当該第一及び第二リチウム含有遷移金属酸化物のスピネル構造変化割合は、0.4以上0.9未満であることが好適である。 In the fourth form, in the chemical formula (1), a, b, c and d are 0 <a <1.35, 0 ≦ b <1.35, 0 <c <1.35, 0. It is preferable that the following relationships are satisfied: 15 <d ≦ 0.35, a + b + c + d = 1.5, 1.15 ≦ a + b + c <1.35. Furthermore, when charging or charging / discharging in a predetermined potential range is performed, the spinel structure change ratio of the first and second lithium-containing transition metal oxides is preferably 0.4 or more and less than 0.9. .
 さらに、第四の形態のうち、化学式(1)において、a、b、c及びdは、0<a<1.3、0≦b<1.3、0<c<1.3、0.15<d≦0.35、a+b+c+d=1.5、1.2≦a+b+c<1.3を満足することが好ましい。また、当該第一及び第二リチウム含有遷移金属酸化物のスピネル構造変化割合が0.6以上0.8以下であることがより好適である。 Further, in the fourth form, in the chemical formula (1), a, b, c and d are 0 <a <1.3, 0 ≦ b <1.3, 0 <c <1.3, 0. It is preferable that 15 <d ≦ 0.35, a + b + c + d = 1.5, and 1.2 ≦ a + b + c <1.3 are satisfied. Moreover, it is more preferable that the spinel structure change ratio of the first and second lithium-containing transition metal oxides is 0.6 or more and 0.8 or less.
 また、上記第四の形態において、固溶体リチウム含有遷移金属酸化物は、窒素で測定した細孔容積が、相対圧が0.98~0.99であるとき、0.025cm/g以下である第一及び第二リチウム含有遷移金属酸化物を含有することが好適である。細孔容積が0.025cm/g以下の場合には、従来のよりも高い放電容量や容量維持率を実現し得る固溶体リチウム含有遷移金属酸化物を得ることが可能となる。なお、細孔容積は、第二の形態と同様に、日本工業規格JIS Z8831-2に基づき測定することができる。 In the fourth embodiment, the solid solution lithium-containing transition metal oxide has a pore volume measured with nitrogen of 0.025 cm 3 / g or less when the relative pressure is 0.98 to 0.99. It is preferred to contain first and second lithium-containing transition metal oxides. When the pore volume is 0.025 cm 3 / g or less, it is possible to obtain a solid solution lithium-containing transition metal oxide capable of realizing a higher discharge capacity and capacity retention than conventional ones. The pore volume can be measured based on Japanese Industrial Standard JIS Z8831-2, as in the second embodiment.
 さらに、上記第四の形態において、上記第一リチウム含有遷移金属酸化物は50%通過粒径(メディアン径、D50)が15μm未満であり、第二リチウム含有遷移金属酸化物は50%通過粒径が10μm未満であることが好ましい。さらに、当該固溶体リチウム含有遷移金属酸化物が1μm未満の粒径の粒子を含むことが好ましい。つまり、第一及び第二リチウム含有遷移金属酸化物の少なくとも一方は、1μm未満の粒径の粒子を含むことが好ましい。このような粒子径のリチウム含有遷移金属酸化物を用いることにより、正極活物質層の空隙率を制御し易くなり、非水電解液の浸透性を向上させることができる。そして、非水電解液の浸透性が向上するため、正極活物質層の直流抵抗を低減することが可能となる。なお、50%通過粒径は、第二の形態と同様に、動的光散乱法により測定した粒度分布から求めることができる。 Furthermore, in the fourth embodiment, the first lithium-containing transition metal oxide has a 50% passing particle size (median diameter, D50) of less than 15 μm, and the second lithium-containing transition metal oxide has a 50% passing particle size. Is preferably less than 10 μm. Furthermore, it is preferable that the solid solution lithium-containing transition metal oxide includes particles having a particle size of less than 1 μm. That is, at least one of the first and second lithium-containing transition metal oxides preferably includes particles having a particle size of less than 1 μm. By using the lithium-containing transition metal oxide having such a particle size, the porosity of the positive electrode active material layer can be easily controlled, and the permeability of the non-aqueous electrolyte can be improved. And since the permeability of the nonaqueous electrolytic solution is improved, the direct current resistance of the positive electrode active material layer can be reduced. The 50% passing particle diameter can be determined from the particle size distribution measured by the dynamic light scattering method, as in the second embodiment.
 また、上記第四の形態において、第一リチウム含有遷移金属酸化物及び第二リチウム含有遷移金属酸化物は、N-メチル-2-ピロリドンの吸液量が0.5cm/g以下であることが好適である。この場合、リチウム含有遷移金属酸化物内での非水電解液の浸透性やリチウムイオン拡散性が向上するため、放電容量及び容量維持率をより向上させることが可能となる。 In the fourth embodiment, the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide have an N-methyl-2-pyrrolidone liquid absorption of 0.5 cm 3 / g or less. Is preferred. In this case, since the permeability of the nonaqueous electrolytic solution and the lithium ion diffusibility in the lithium-containing transition metal oxide are improved, the discharge capacity and the capacity retention rate can be further improved.
 さらに、上記第四の形態において、第一リチウム含有遷移金属酸化物及び第二リチウム含有遷移金属酸化物の真密度は、4.1g/cm以上4.6g/cm以下であることが好適である。当該真密度が4.1g/cm以上の場合には、リチウム含有遷移金属酸化物の単位体積当たりの重量(充填量)が増加し、放電容量を向上させることが可能となる。また、当該真密度が4.6g/cm以下の場合には、正極活物質層の空隙量が増加し、非水電解液の浸透性やリチウムイオン拡散性を向上させることができる。なお、真密度は、第二の形態と同様に、液相置換法(ピクノメーター法)により求めることができる。 Furthermore, in the fourth embodiment, the true density of the first lithium-containing transition metal oxide and the second lithium-containing transition metal oxide is preferably 4.1 g / cm 3 or more and 4.6 g / cm 3 or less. It is. When the true density is 4.1 g / cm 3 or more, the weight (filling amount) per unit volume of the lithium-containing transition metal oxide is increased, and the discharge capacity can be improved. In addition, when the true density is 4.6 g / cm 3 or less, the amount of voids in the positive electrode active material layer increases, and the permeability of the non-aqueous electrolyte and the lithium ion diffusibility can be improved. The true density can be obtained by a liquid phase replacement method (pycnometer method) as in the second embodiment.
 なお、本形態では、正極活物質として上記化学式(1)で表される固溶体を含む限りにおいては、それ以外の従来公知の正極活物質材料を併用しても構わない。しかしながら、高い初期放電容量及び容量維持率を実現するためには、正極活物質のうち上記固溶体の含有割合は80質量%以上であることが好ましく、90質量%であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%であることが最も好ましい。 In this embodiment, as long as the positive electrode active material includes the solid solution represented by the chemical formula (1), other conventionally known positive electrode active material materials may be used in combination. However, in order to realize a high initial discharge capacity and capacity retention rate, the content ratio of the solid solution in the positive electrode active material is preferably 80% by mass or more, more preferably 90% by mass, and 95% by mass. % Or more, more preferably 98% by mass or more, and most preferably 100% by mass.
 次に、本形態に係る固溶体リチウム含有遷移金属酸化物(リチウム含有遷移金属酸化物)の製造方法について説明する。 Next, a method for producing a solid solution lithium-containing transition metal oxide (lithium-containing transition metal oxide) according to this embodiment will be described.
 まず、リチウム含有遷移金属酸化物の前駆体として、硫酸塩や硝酸塩などのリチウム化合物、ニッケル化合物、コバルト化合物及びマンガン化合物を含む原料を混合して混合物を調製する。この際、上記第二~四の形態の、所定のBET比表面積を有する固溶体リチウム含有遷移金属酸化物の製造方法においては、混合物の結晶子サイズが10nm以上100nm以下であることが好ましい。次いで、得られた混合物を不活性ガス雰囲気下、800~1000℃で6~24時間焼成する。これにより、リチウム含有遷移金属酸化物を調製することができる。なお、不活性ガスとしては、窒素やアルゴンを用いることが好ましい。 First, as a precursor of a lithium-containing transition metal oxide, raw materials containing lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds and manganese compounds are mixed to prepare a mixture. At this time, in the method for producing a solid solution lithium-containing transition metal oxide having a predetermined BET specific surface area in the second to fourth embodiments, the crystallite size of the mixture is preferably 10 nm or more and 100 nm or less. Next, the obtained mixture is calcined at 800 to 1000 ° C. for 6 to 24 hours in an inert gas atmosphere. Thereby, a lithium containing transition metal oxide can be prepared. Note that nitrogen or argon is preferably used as the inert gas.
 また、他の製造方法としては、まず、リチウム含有遷移金属酸化物の前駆体として、硫酸塩や硝酸塩などのリチウム化合物、ニッケル化合物、コバルト化合物及びマンガン化合物を含む原料を混合して混合物を調製する。この際、上記第二~四の形態の、所定のBET比表面積を有する固溶体リチウム含有遷移金属酸化物の製造方法においては、混合物の結晶子サイズが10nm以上100nm以下であることが好ましい。次いで、得られた混合物を800~1000℃で6~24時間焼成して焼成物を得る。この後、得られた焼成物を不活性ガス雰囲気下、600~800℃で熱処理する。これにより、リチウム含有遷移金属酸化物を調製することができる。 As another manufacturing method, first, as a precursor of a lithium-containing transition metal oxide, raw materials containing lithium compounds such as sulfates and nitrates, nickel compounds, cobalt compounds, and manganese compounds are mixed to prepare a mixture. . At this time, in the method for producing a solid solution lithium-containing transition metal oxide having a predetermined BET specific surface area in the second to fourth embodiments, the crystallite size of the mixture is preferably 10 nm or more and 100 nm or less. Next, the obtained mixture is baked at 800 to 1000 ° C. for 6 to 24 hours to obtain a baked product. Thereafter, the fired product obtained is heat-treated at 600 to 800 ° C. in an inert gas atmosphere. Thereby, a lithium containing transition metal oxide can be prepared.
 なお、所望のスピネル構造変化割合を得るためには、次のような処理を行うことが好ましい。詳細は後述するが、上記固溶体リチウム含有遷移金属酸化物を正極に用いたリチウムイオン二次電池において、所定の電位範囲における正極の最高電位が、リチウム金属対極に換算して4.3V以上4.8V未満である充電又は充放電を行う(電気化学前処理)。これにより、スピネル構造変化割合が0.25以上1.0未満である固溶体リチウム含有遷移金属酸化物を得ることができる。 In order to obtain a desired spinel structure change ratio, the following treatment is preferably performed. Although details will be described later, in the lithium ion secondary battery using the solid solution lithium-containing transition metal oxide as a positive electrode, the maximum potential of the positive electrode in a predetermined potential range is 4.3 V or more in terms of a lithium metal counter electrode. Charging or charging / discharging which is less than 8V is performed (electrochemical pretreatment). Thereby, the solid solution lithium containing transition metal oxide whose spinel structure change ratio is 0.25 or more and less than 1.0 can be obtained.
 本形態に係る固溶体リチウム含有遷移金属酸化物の製造方法について、さらに詳細に説明する。 The method for producing the solid solution lithium-containing transition metal oxide according to this embodiment will be described in more detail.
 リチウム含有遷移金属酸化物の前駆体の製造方法は、炭酸塩法(複合炭酸塩法)を適用することができる。具体的には、まず、出発物質としてニッケル、コバルト、マンガンの各硫酸塩、硝酸塩などを準備し、これらを所定の量を秤量した後、混合水溶液を調製する。 A carbonate method (composite carbonate method) can be applied to the method for producing the precursor of the lithium-containing transition metal oxide. Specifically, first, nickel, cobalt, manganese sulfates, nitrates, and the like are prepared as starting materials. After weighing a predetermined amount of these, a mixed aqueous solution is prepared.
 次いで、この混合水溶液にアンモニア水をpH7になるまで滴下して、さらに炭酸ナトリウム(NaCO)水溶液を滴下して、Ni-Co-Mnの複合炭酸塩を沈殿させる。なお、NaCO水溶液を滴下している間は、アンモニア水を用いて混合水溶液のpHを7に保持する。 Next, aqueous ammonia is added dropwise to the mixed aqueous solution until pH 7 is reached, and an aqueous sodium carbonate (Na 2 CO 3 ) solution is further added dropwise to precipitate Ni—Co—Mn complex carbonate. Incidentally, while dropping the aqueous solution of Na 2 CO 3 is the pH of the mixed aqueous solution kept at 7 with aqueous ammonia.
 そして、沈殿した複合炭酸塩を吸引濾過し、水洗した後、乾燥し、仮焼成する。乾燥条件としては、不活性ガス雰囲気中、100~150℃で2~10時間程度(例えば120℃にて5時間)乾燥すればよいが、この範囲に制限されるものではない。仮焼成条件としては、不活性ガス雰囲気中、360~600℃で3~10時間(例えば、500℃にて5時間)仮焼成すればよいが、この範囲に制限されるものではない。 Then, the precipitated composite carbonate is suction filtered, washed with water, dried, and pre-baked. The drying conditions may be drying in an inert gas atmosphere at 100 to 150 ° C. for about 2 to 10 hours (eg, 120 ° C. for 5 hours), but are not limited to this range. Pre-baking conditions may be pre-baking in an inert gas atmosphere at 360 to 600 ° C. for 3 to 10 hours (for example, 500 ° C. for 5 hours), but are not limited to this range.
 さらに、仮焼成した粉末に、小過剰の水酸化リチウム(LiOH・HO)を加えて混合する。この際、上記第二~四の形態の、所定のBET比表面積を有する固溶体リチウム含有遷移金属酸化物の製造方法においては、混合物の結晶子サイズが10nm以上100nm以下であることが好ましい。この後、本焼成することにより、リチウム含有遷移金属酸化物の前駆体を作製することができる。本焼成条件としては、例えば、不活性ガス雰囲気中、800~1000℃(例えば、800~900℃)で6~24時間程度(例えば、12時間)行えばよい。なお、好ましくは本焼成した後、液体窒素を用いて急速冷却する。本焼成後、液体窒素等を用いて急冷することが、反応性及びサイクル安定性のために好ましいためである。 Further, a small excess of lithium hydroxide (LiOH.H 2 O) is added to the temporarily fired powder and mixed. At this time, in the method for producing a solid solution lithium-containing transition metal oxide having a predetermined BET specific surface area in the second to fourth embodiments, the crystallite size of the mixture is preferably 10 nm or more and 100 nm or less. Then, the precursor of a lithium containing transition metal oxide can be produced by carrying out this baking. As the main firing condition, for example, it may be performed in an inert gas atmosphere at 800 to 1000 ° C. (for example, 800 to 900 ° C.) for about 6 to 24 hours (for example, 12 hours). Preferably, after the main calcination, rapid cooling is performed using liquid nitrogen. This is because quenching with liquid nitrogen or the like after the main baking is preferable for reactivity and cycle stability.
 そして、本形態に係る固溶体リチウム含有遷移金属酸化物は、上記前駆体を酸化処理することにより得ることができる。酸化処理としては、例えば、(1)所定の電位範囲での充電又は充放電(電気化学前処理、充放電前処理)、(2)充電に対応する酸化剤での酸化、(3)レドックスメディエーターを用いての酸化などを挙げることができる。ここで、(1)所定の電位範囲での充電又は充放電は、詳しくはリチウム含有遷移金属酸化物の結晶構造の大幅な変化を最初から引き起こすことのない低い電位領域からの充電又は充放電をいう。また、(2)充電に対応する酸化剤としては、例えば、臭素、塩素などのハロゲンを挙げることができる。 And the solid solution lithium containing transition metal oxide which concerns on this form can be obtained by oxidizing the said precursor. Examples of the oxidation treatment include (1) charging or charging / discharging in a predetermined potential range (electrochemical pretreatment, charge / discharge pretreatment), (2) oxidation with an oxidizing agent corresponding to charging, and (3) redox mediator. Oxidation using can be mentioned. Here, (1) charging or charging / discharging in a predetermined potential range is specifically charging or charging / discharging from a low potential region that does not cause a significant change in the crystal structure of the lithium-containing transition metal oxide from the beginning. Say. Moreover, (2) As an oxidizing agent corresponding to charge, halogens, such as a bromine and chlorine, can be mentioned, for example.
 ここで、上記(1)~(3)の酸化処理の中で比較的簡便な方法は、上記(1)の酸化処理方法である。そして、(1)の酸化処理としては、上述のようにして得られたリチウム含有遷移金属酸化物の前駆体を用いて電池を作成した後、所定の最高電位を超えないようにして、充電又は充放電をすること、つまり電位を規制した電気化学前処理が有効である。なお、上述のようにして得られたリチウム含有遷移金属酸化物の前駆体を用いて正極又は正極相当の構造体を作成した後、所定の最高電位を超えないようにして、充電又は充放電を行ってもよい。これにより、高い放電容量と容量維持率を実現した正極活物質を得ることができる。 Here, a relatively simple method among the oxidation treatments (1) to (3) is the oxidation treatment method (1). Then, as the oxidation treatment of (1), after making a battery using the lithium-containing transition metal oxide precursor obtained as described above, charging or charging is performed so as not to exceed a predetermined maximum potential. Charging / discharging, that is, electrochemical pretreatment with regulated potential is effective. In addition, after creating a positive electrode or a structure corresponding to the positive electrode using the lithium-containing transition metal oxide precursor obtained as described above, charging or charging / discharging is performed so as not to exceed a predetermined maximum potential. You may go. Thereby, the positive electrode active material which implement | achieved high discharge capacity and a capacity | capacitance maintenance factor can be obtained.
 電位を規制した電気化学前処理法としては、対極としてのリチウム金属に対する所定の電位範囲の最高電位(リチウム金属に換算した充放電の上限電位)が4.3V以上4.8V以下となる条件下で、充放電を1~30サイクル行うことが望ましい。より好ましくは4.4V以上4.6V以下となる条件下で充放電を1~30サイクル行うことが望ましい。この電位範囲内で充放電による酸化処理を行うことにより、高い放電容量と容量維持率を実現し得る。なお、上記リチウム金属に換算した電位は、リチウムイオンが1mol/L溶解した電解液中でリチウム金属が示す電位を基準とした電位に相当する。 As the electrochemical pretreatment method in which the potential is regulated, the maximum potential in the predetermined potential range with respect to lithium metal as a counter electrode (the upper limit potential of charge / discharge converted to lithium metal) is 4.3 V or more and 4.8 V or less. Therefore, it is desirable to perform charging and discharging for 1 to 30 cycles. More preferably, it is desirable to perform charging and discharging for 1 to 30 cycles under the condition of 4.4 V or more and 4.6 V or less. By performing the oxidation treatment by charging / discharging within this potential range, a high discharge capacity and capacity retention rate can be realized. Note that the potential converted to the lithium metal corresponds to a potential based on the potential exhibited by the lithium metal in the electrolytic solution in which 1 mol / L of lithium ions are dissolved.
 また、対極としてのリチウム金属に対する上記所定の電位範囲の充放電を1~30サイクル行った後、さらに、充放電における所定の電位範囲の最高電位を段階的に上げていくのが望ましい。特に、4.7V、4.8Vvs.Liという高電位の容量まで使用する場合において、酸化処理での充放電電位の最高電位を段階的に上げていくことで、短時間の酸化処理でも電極の耐久性を改善することができる。 In addition, it is desirable to further increase the maximum potential in the predetermined potential range in charge and discharge stepwise after 1 to 30 cycles of charging and discharging in the predetermined potential range with respect to the lithium metal as the counter electrode. In particular, 4.7V, 4.8Vvs. In the case of using up to a high potential capacity of Li, the durability of the electrode can be improved even in a short time oxidation treatment by gradually increasing the maximum potential of the charge / discharge potential in the oxidation treatment.
 充放電の最高電位(上限電位)を段階的に上げていく際、各段階の充放電に必要なサイクル回数は、1~10回の範囲が効果的である。また、充放電の最高電位を段階的に上げていく際の総充放電サイクル回数、つまり各段階の充放電に必要なサイクル回数を足し合わせた回数は、4回~20回の範囲が効果的である。 When increasing the maximum potential (upper limit potential) for charging / discharging step by step, the number of cycles required for charging / discharging at each step is effectively in the range of 1 to 10 times. In addition, the total number of charge / discharge cycles when increasing the maximum potential of charge / discharge stepwise, that is, the total number of cycles required for charge / discharge of each step is effectively in the range of 4 to 20 times. It is.
 また。充放電の最高電位を段階的に上げていく際、各段階の電位の上げ幅(上げ代)は、0.05V~0.1Vが効果的である。 Also. When raising the maximum potential of charging / discharging step by step, 0.05 to 0.1V is effective as a potential increase range (raising allowance) at each step.
 さらに、充放電の最高電位を段階的に上げていく際、最終的な最高電位(終止最高電位)は、4.6V~4.9Vとするのが効果的である。ただし、上記範囲に制限されるものではなく、上記効果を奏することができるものであれば、より高い終止最高電位まで電気化学前処理を行ってもよい。 Furthermore, when raising the maximum potential of charge / discharge stepwise, it is effective that the final maximum potential (end maximum potential) is 4.6V to 4.9V. However, the pretreatment is not limited to the above range, and the electrochemical pretreatment may be performed up to a higher terminal maximum potential as long as the above effects can be achieved.
 充放電における所定の電位範囲の最低電位は、対極としてのリチウム金属に対して2V以上3.5V未満、より好ましくは2V以上3V未満である。上記範囲内で充電又は充放電による酸化処理を行うことにより、高い放電容量と容量維持率を実現し得る。なお、上記充放電の電位(V)は、単セル当たりの電位を指すものとする。 The minimum potential in a predetermined potential range in charge / discharge is 2 V or more and less than 3.5 V, more preferably 2 V or more and less than 3 V with respect to lithium metal as a counter electrode. By performing oxidation treatment by charging or charging / discharging within the above range, a high discharge capacity and capacity retention rate can be realized. The charge / discharge potential (V) refers to a potential per unit cell.
 酸化処理として充放電する電極の温度は、本発明の作用効果を損なわない範囲内であれば、任意に設定することができる。なお、経済性の観点からは、特段の加熱冷却を要しない室温下(25℃)で行うのが望ましい。一方、より大きな容量を発現でき、短時間の充放電処理により容量維持率を向上させるという観点からは、室温より高い温度で行うのが望ましい。 The temperature of the electrode that is charged and discharged as the oxidation treatment can be arbitrarily set as long as it does not impair the effects of the present invention. From the viewpoint of economy, it is desirable to carry out at room temperature (25 ° C.) that does not require special heating and cooling. On the other hand, it is desirable to carry out at a temperature higher than room temperature from the viewpoint that a larger capacity can be expressed and the capacity retention rate is improved by a short charge / discharge treatment.
 酸化処理(電気化学前処理)を適用する工程としては、特に制限されるものではない。例えば、このような酸化処理は、上記のように、電池を構成した状態や正極又は正極相当の構成にて行うことができる。すなわち、正極活物質粉体の状態での適用、正極の状態での適用、負極と合わせて電池を組んでからの適用のいずれであってもよい。電池への適用に際しては、組み合わせる負極の電気容量の電位プロファイルを考慮して、酸化処理条件を決定することが好ましい。 The step of applying the oxidation treatment (electrochemical pretreatment) is not particularly limited. For example, such an oxidation treatment can be performed in a state in which a battery is configured or a configuration corresponding to a positive electrode or a positive electrode as described above. That is, any of application in the state of positive electrode active material powder, application in the state of positive electrode, and application after assembling a battery together with the negative electrode may be used. In application to a battery, it is preferable to determine the oxidation treatment conditions in consideration of the potential profile of the capacitance of the negative electrode to be combined.
 ここで、電池を構成した状態の場合には、個々の正極又は正極相当の構成ごとに行うよりも、一度にまとめて多くの正極の酸化処理が行える点で優れている。一方、個々の正極又は正極相当の構成ごとに行う場合には、電池を構成した状態よりも、酸化電位等の条件の制御が容易である。また、個々の正極ごとに行う方法は、個々の正極への酸化度合いのバラツキが生じ難い点で優れている。 Here, in the case where the battery is configured, it is superior in that oxidation treatment of a large number of positive electrodes can be performed at a time, rather than the individual positive electrodes or configurations corresponding to the positive electrodes. On the other hand, when it is performed for each positive electrode or for each configuration corresponding to the positive electrode, it is easier to control conditions such as the oxidation potential than the state in which the battery is configured. In addition, the method performed for each individual positive electrode is excellent in that variations in the degree of oxidation of the individual positive electrodes hardly occur.
 なお、上記(2)の酸化処理方法で用いられる酸化剤としては、例えば、臭素、塩素などのハロゲンを用いることができる。これらの酸化剤は単独で使用してもよく、複数種を併用してもよい。酸化剤による酸化は、例えば、リチウム含有遷移金属酸化物が溶解しない溶媒にリチウム含有遷移金属酸化物の微粒子を分散させて、その分散溶液に酸化剤を吹き込んで溶解させて徐々に酸化させることができる。 In addition, as the oxidizing agent used in the oxidation method of (2) above, for example, halogen such as bromine and chlorine can be used. These oxidizing agents may be used alone or in combination of two or more. Oxidation with an oxidizing agent may be performed by, for example, dispersing lithium-containing transition metal oxide fine particles in a solvent in which the lithium-containing transition metal oxide is not dissolved, and blowing the oxidant into the dispersion to dissolve it and gradually oxidizing it. it can.
 導電助剤とは、正極活物質層の導電性を向上させるために配合されるものである。導電助剤としては、例えば、アセチレンブラック等のカーボンブラック、グラファイト、気相成長炭素繊維、などの炭素材料を挙げることができる。その中でも、アセチレンブラック、気相成長炭素繊維を用いることが好ましい。しかしながら、これらの炭素材料のみに限定されるものではなく、リチウムイオン二次電池用の導電助剤として用いられている従来公知の材料を用いることができる。ただし、十分な高レート特性を発揮するためには、導電助剤のうち炭素材料の含有割合は80質量%以上であることが好ましく、90質量%であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%であることが最も好ましい。これらの導電助剤は、一種のみを単独で用いてもよく、二種以上を併用してもよい。 The conductive auxiliary agent is blended to improve the conductivity of the positive electrode active material layer. As a conductive support agent, carbon materials, such as carbon black, such as acetylene black, a graphite, a vapor growth carbon fiber, can be mentioned, for example. Among these, it is preferable to use acetylene black and vapor grown carbon fiber. However, it is not limited only to these carbon materials, and conventionally known materials that are used as conductive assistants for lithium ion secondary batteries can be used. However, in order to exhibit a sufficiently high rate characteristic, the content of the carbon material in the conductive assistant is preferably 80% by mass or more, more preferably 90% by mass, and 95% by mass or more. More preferably, it is more preferably 98% by mass or more, and most preferably 100% by mass. These conductive assistants may be used alone or in combination of two or more.
 本形態においては、反応抵抗が大きい上記化学式(1)で表される固溶体を正極活物質として使用した場合であっても、十分な高レート特性を発揮しうるよう、上記炭素材料のBET比表面積を以下の範囲とする点に特徴を有する。具体的には、炭素材料のBET比表面積は30~200m/gであり、好ましくは50~180m/gである。BET比表面積が30m/g未満であると、一次粒子径が大きくなり、活物質との接触面積が低下し得る。一方、BET比表面積が200m/gを超えると、一次粒子径が小さくなり、炭素材料自体の結晶性が低下し得る。よって、炭素材料のBET比表面積が30~200m/gの範囲を外れると、上記化学式(1)で表される固溶体を正極活物質として使用した場合において、十分な高レート特性を発揮することができない可能性がある。なお、本明細書において、炭素材料のBET比表面積は、後述の実施例に記載の方法により得られる値を採用する。 In this embodiment, even when the solid solution represented by the chemical formula (1) having a large reaction resistance is used as the positive electrode active material, the BET specific surface area of the carbon material can be exhibited so that a sufficiently high rate characteristic can be exhibited. Is in the following range. Specifically, the BET specific surface area of the carbon material is 30 to 200 m 2 / g, preferably 50 to 180 m 2 / g. When the BET specific surface area is less than 30 m 2 / g, the primary particle size is increased, and the contact area with the active material can be reduced. On the other hand, when the BET specific surface area exceeds 200 m 2 / g, the primary particle diameter becomes small, and the crystallinity of the carbon material itself may be lowered. Therefore, when the BET specific surface area of the carbon material is out of the range of 30 to 200 m 2 / g, a sufficiently high rate characteristic is exhibited when the solid solution represented by the chemical formula (1) is used as the positive electrode active material. May not be possible. In addition, in this specification, the value obtained by the method as described in the below-mentioned Example is employ | adopted for the BET specific surface area of a carbon material.
 また、上記炭素材料は、ラマン分光法で測定したカーボンのGバンドに対するDバンドのピークの強度比(D値/G値)が、1.18以下であることが好ましく、1.15以下であることが好ましい。ラマン分光法により観測されるカーボンのGバンドは、グラフェンの面内振動に由来するピークであり、一方Dバンドは、アモルファスカーボン由来のピークである。したがって、Gバンドに対するDバンドのピークの強度比(D値/G値)が小さいほど、炭素材料の結晶性が高いことを意味する。D値/G値の下限値は特に限定されず、最も好ましくは0である。D値/G値が1.18以下であると、炭素材料の結晶性が高く、上記化学式(1)で表される固溶体を正極活物質として使用した場合において、より優れた高レート特性を発揮し得る。なお、本明細書において、D値/G値は、後述の実施例に記載の方法により得られる値を採用する。 The carbon material preferably has a D band peak intensity ratio (D value / G value) of 1.18 or less, preferably 1.15 or less, as measured by Raman spectroscopy. It is preferable. The G band of carbon observed by Raman spectroscopy is a peak derived from in-plane vibration of graphene, while the D band is a peak derived from amorphous carbon. Therefore, the smaller the intensity ratio (D value / G value) of the peak of the D band to the G band, the higher the crystallinity of the carbon material. The lower limit value of the D value / G value is not particularly limited, and is most preferably 0. When the D value / G value is 1.18 or less, the carbon material has high crystallinity, and when the solid solution represented by the above chemical formula (1) is used as the positive electrode active material, more excellent high rate characteristics are exhibited. Can do. In this specification, the value obtained by the method described in the examples described later is adopted as the D value / G value.
 本形態において、正極活物質層における導電助剤の含有量は、特に制限はないが、所望の放電容量および高レート特性を発揮する観点から、正極活物質層の重量に対して、2~10質量%であることが好ましく、2~6質量%であることがより好ましい。 In this embodiment, the content of the conductive additive in the positive electrode active material layer is not particularly limited, but 2 to 10 with respect to the weight of the positive electrode active material layer from the viewpoint of exhibiting a desired discharge capacity and high rate characteristics. The mass is preferably 2, and more preferably 2 to 6 mass%.
 また、正極活物質の平均粒子径に対する導電助剤の平均粒子径(平均2次粒子径)の比(導電助剤粒子径/活物質粒子径)は、十分な高レート特性を発揮する観点から、1/40~10であることが好ましく、0.07~2.5であることがより好ましい。 Further, the ratio of the average particle diameter (average secondary particle diameter) of the conductive additive to the average particle diameter of the positive electrode active material (conductive auxiliary agent particle diameter / active material particle diameter) is from the viewpoint of exhibiting sufficiently high rate characteristics. 1/40 to 10 is preferable, and 0.07 to 2.5 is more preferable.
 結着剤(バインダー)としては、特に限定されるものではないが、以下の材料が挙げられる。例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリアクリロニトリル(PAN)、ポリイミド(PI)、ポリアミド(PA)、セルロース、カルボキシメチルセルロース(CMC)、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル(PVC)、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム、エチレン-プロピレン-ジエン共重合体、スチレン-ブタジエン-スチレンブロック共重合体及びその水素添加物、スチレン-イソプレン-スチレンブロック共重合体及びその水素添加物などの熱可塑性高分子が挙げられる。また、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。さらに、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムや、エポキシ樹脂等が挙げられる。中でも、ポリフッ化ビニリデン、ポリイミド、スチレン-ブタジエンゴム、カルボキシメチルセルロース、ポリプロピレン、ポリテトラフルオロエチレン、ポリアクリロニトリル、ポリアミドであることがより好ましい。これらの好適なバインダーは、耐熱性に優れ、さらに電位窓が非常に広く正極電位、負極電位双方に安定であり正極活物質層及び負極活物質層に使用が可能である。また、上記導電助剤と結着剤の機能を併せ持つ導電性結着剤を結着剤として用いてもよい。導電性結着剤としては、例えば、市販の宝泉株式会社製TAB-2を用いることができる。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用のバインダーとして従来用いられている公知の材料を用いることができる。これらのバインダーは、一種のみを単独で用いてもよく、二種以上を併用してもよい。 The binder (binder) is not particularly limited, and examples thereof include the following materials. For example, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyacrylonitrile (PAN), polyimide (PI), polyamide (PA), cellulose, carboxymethyl cellulose (CMC), ethylene -Vinyl acetate copolymer, polyvinyl chloride (PVC), styrene-butadiene rubber (SBR), isoprene rubber, butadiene rubber, ethylene-propylene rubber, ethylene-propylene-diene copolymer, styrene-butadiene-styrene block copolymer Examples thereof include thermoplastic polymers such as a polymer and a hydrogenated product thereof, a styrene-isoprene-styrene block copolymer and a hydrogenated product thereof. Polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Examples thereof include fluorine resins such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF). Furthermore, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFP-TFE-based fluororubber), vinylidene fluoride- Pentafluoropropylene-based fluororubber (VDF-PFP-based fluororubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-PFP-TFE-based fluororubber), vinylidene fluoride-perfluoromethylvinylether-tetra Fluoroethylene-based fluororubber (VDF-PFMVE-TFE-based fluororubber), vinylidene fluoride-chlorotrifluoroethylene-based fluororubber (VDF-CTFE-based fluororubber) ) And vinylidene fluoride-based fluorine rubbers such as, epoxy resins. Among these, polyvinylidene fluoride, polyimide, styrene-butadiene rubber, carboxymethyl cellulose, polypropylene, polytetrafluoroethylene, polyacrylonitrile, and polyamide are more preferable. These suitable binders are excellent in heat resistance, have a very wide potential window, are stable at both the positive electrode potential and the negative electrode potential, and can be used for the positive electrode active material layer and the negative electrode active material layer. Moreover, you may use the conductive binder which has the function of the said conductive support agent and a binder as a binder. As the conductive binder, for example, commercially available TAB-2 manufactured by Hosen Co., Ltd. can be used. However, the material is not limited to these, and a known material conventionally used as a binder for a lithium ion secondary battery can be used. These binders may be used alone or in combination of two or more.
 正極活物質層に含まれるバインダー量は、正極活物質を結着することができる量であれば特に限定されるものではない。ただ、バインダー量は、好ましくは正極活物質層に対して0.5~15質量%であり、より好ましくは1~10質量%である。 The amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the positive electrode active material. However, the binder amount is preferably 0.5 to 15% by mass, and more preferably 1 to 10% by mass with respect to the positive electrode active material layer.
 さらに、正極活物質層の密度は、2.5g/cm以上3.0g/cm以下であることが好適である。正極活物質層の密度が2.5g/cm以上である場合には、単位体積当たりの重量(充填量)が増加し、放電容量を向上させることが可能となる。また、正極活物質層の密度が3.0g/cm以下の場合には、正極活物質層の空隙量の減少を防止し、非水電解液の浸透性やリチウムイオン拡散性を向上させることができる。 Furthermore, the density of the positive electrode active material layer is preferably 2.5 g / cm 3 or more and 3.0 g / cm 3 or less. When the density of the positive electrode active material layer is 2.5 g / cm 3 or more, the weight (filling amount) per unit volume increases, and the discharge capacity can be improved. Moreover, when the density of the positive electrode active material layer is 3.0 g / cm 3 or less, it is possible to prevent a decrease in the void amount of the positive electrode active material layer and improve the permeability of the non-aqueous electrolyte and the lithium ion diffusibility. Can do.
 <負極活物質層>
 負極活物質層12Bは、負極活物質として、リチウムを吸蔵及び放出することが可能な負極材料を含んでおり、必要に応じて、バインダーや導電助剤を含んでいてもよい。なお、バインダーや導電助剤は上述のものを用いることができる。
<Negative electrode active material layer>
The negative electrode active material layer 12B contains a negative electrode material capable of occluding and releasing lithium as a negative electrode active material, and may contain a binder and a conductive additive as necessary. In addition, the above-mentioned thing can be used for a binder and a conductive support agent.
 リチウムを吸蔵及び放出することが可能な負極材料としては、例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等)、低結晶性カーボン(ソフトカーボン、ハードカーボン)、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリルなどの炭素材料を挙げることができる。なお、当該炭素材料は、10質量%以下のケイ素ナノ粒子を含有するものを含む。また、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、亜鉛(Zn)、水素(H)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)、カドミウム(Cd)、水銀(Hg)、ガリウム(Ga)、タリウム(Tl)、炭素(C)、窒素(N)、アンチモン(Sb)、ビスマス(Bi)、酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)、塩素(Cl)等のリチウムと合金化する元素の単体、及びこれらの元素を含む酸化物(一酸化ケイ素(SiO)、SiO(0<x<2)、二酸化スズ(SnO)、SnO(0<x<2)、SnSiOなど)及び炭化物(炭化ケイ素(SiC)など)等を挙げることができる。さらに、リチウム金属等の金属材料やリチウム-チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム-遷移金属複合酸化物を挙げることができる。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の負極活物質として用いられている従来公知の材料を用いることができる。これらの負極活物質は、一種のみを単独で用いてもよく、二種以上を併用してもよい。 Examples of the negative electrode material capable of inserting and extracting lithium include graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen) Black, acetylene black, channel black, lamp black, oil furnace black, thermal black, etc.), carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fibril. In addition, the said carbon material contains what contains 10 mass% or less silicon nanoparticles. Also, silicon (Si), germanium (Ge), tin (Sn), lead (Pb), aluminum (Al), indium (In), zinc (Zn), hydrogen (H), calcium (Ca), strontium (Sr ), Barium (Ba), ruthenium (Ru), rhodium (Rh), iridium (Ir), palladium (Pd), platinum (Pt), silver (Ag), gold (Au), cadmium (Cd), mercury (Hg) ), Gallium (Ga), thallium (Tl), carbon (C), nitrogen (N), antimony (Sb), bismuth (Bi), oxygen (O), sulfur (S), selenium (Se), tellurium (Te) ), Elemental elements that form an alloy with lithium such as chlorine (Cl), and oxides containing these elements (silicon monoxide (SiO), SiO x (0 <x <2), tin dioxide (SnO 2 ), SnO x 0 <x <2), etc. SnSiO 3) and the like carbides (silicon carbide (SiC)), and the like. Further examples include metal materials such as lithium metal and lithium-transition metal composite oxides such as lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ). However, it is not limited to these, The conventionally well-known material used as a negative electrode active material for lithium ion secondary batteries can be used. These negative electrode active materials may be used alone or in combination of two or more.
 また、本形態においては、炭素材料は、非晶質炭素層で被覆され、かつ、鱗片状ではない黒鉛材料からなることが好適である。また、炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であり、かつ、タップ密度が0.9g/cm以上1.2g/cm以下であることが好適である。非晶質炭素層で表面が被覆され、かつ、鱗片状ではない黒鉛材料からなる炭素材料は、黒鉛層状構造へのリチウムイオン拡散性が高く好ましい。また、このような炭素材料のBET比表面積が0.8m/g以上1.5m/g以下であると、さらに容量維持率を向上させることができる。さらに、このような炭素材料のタップ密度が0.9g/cm以上1.2g/cm以下であると、単位体積当たりの重量(充填量)を向上させることができ、放電容量を向上させることができる。 In this embodiment, the carbon material is preferably made of a graphite material that is covered with an amorphous carbon layer and is not scaly. The carbon material preferably has a BET specific surface area of 0.8 m 2 / g or more and 1.5 m 2 / g or less and a tap density of 0.9 g / cm 3 or more and 1.2 g / cm 3 or less. It is. A carbon material made of a graphite material that is coated with an amorphous carbon layer and that is not scale-like is preferable because of its high lithium ion diffusibility into the graphite layered structure. Further, when the BET specific surface area of such a carbon material is 0.8 m 2 / g or more and 1.5 m 2 / g or less, the capacity retention rate can be further improved. Furthermore, when the tap density of such a carbon material is 0.9 g / cm 3 or more and 1.2 g / cm 3 or less, the weight (filling amount) per unit volume can be improved, and the discharge capacity is improved. be able to.
 さらに、本形態においては、炭素材料及び結着剤を少なくとも含む負極活物質層のBET比表面積が2.0m/g以上3.0m/g以下であることが好適である。負極活物質層のBET比表面積が2.0m/g以上3.0m/g以下であることにより、非水電解液の浸透性を向上させることができ、さらに容量維持率を向上させ、非水電解液の分解によるガス発生を抑制できる。 Furthermore, in this embodiment, it is preferable that the negative electrode active material layer containing at least the carbon material and the binder has a BET specific surface area of 2.0 m 2 / g or more and 3.0 m 2 / g or less. When the BET specific surface area of the negative electrode active material layer is 2.0 m 2 / g or more and 3.0 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved, and the capacity retention rate is further improved. Gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
 また、本形態においては、炭素材料及び結着剤を少なくとも含む負極活物質層の加圧成型後のBET比表面積が2.01m/g以上3.5m/g以下であることが好適である。負極活物質層の加圧成形後のBET比表面積が2.01m/g以上3.5m/g以下とすることにより、非水電解液の浸透性を向上させることができ、さらに容量維持率を向上させ、非水電解液の分解によるガス発生を抑制できる。 In this embodiment, the negative electrode active material layer containing at least a carbon material and a binder preferably has a BET specific surface area after pressure molding of 2.01 m 2 / g or more and 3.5 m 2 / g or less. is there. By setting the BET specific surface area of the negative electrode active material layer after pressure molding to 2.01 m 2 / g or more and 3.5 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved and the capacity can be maintained. The rate can be improved and gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
 さらに、本形態においては、炭素材料及び結着剤を少なくとも含む負極活物質層の、加圧プレス成型前後におけるBET比表面積の増加分が、0.01m/g以上0.5m/g以下であることが好適である。これにより、負極活物質層の加圧成形後のBET比表面積が2.01m/g以上3.5m/g以下とすることができるため、非水電解液の浸透性を向上させることができ、さらに容量維持率を向上させ、非水電解液の分解によるガス発生を抑制できる。 Furthermore, in this embodiment, the increase in the BET specific surface area of the negative electrode active material layer containing at least the carbon material and the binder before and after pressure press molding is 0.01 m 2 / g or more and 0.5 m 2 / g or less. It is preferable that Thereby, since the BET specific surface area after the pressure forming of the negative electrode active material layer can be 2.01 m 2 / g or more and 3.5 m 2 / g or less, the permeability of the non-aqueous electrolyte can be improved. In addition, the capacity retention rate can be further improved, and gas generation due to decomposition of the non-aqueous electrolyte can be suppressed.
 また、各活物質層(集電体片面の活物質層)の厚さについても特に限定されるものではなく、電池についての従来公知の知見を適宜参照することができる。一例を挙げると、各活物質層の厚さは、電池の使用目的(出力重視、エネルギー重視など)、イオン伝導性を考慮し、通常1~500μm程度、好ましくは2~100μmである。 Also, the thickness of each active material layer (active material layer on one side of the current collector) is not particularly limited, and conventionally known knowledge about the battery can be referred to as appropriate. As an example, the thickness of each active material layer is usually about 1 to 500 μm, preferably 2 to 100 μm, taking into consideration the intended use of the battery (emphasis on output, energy, etc.) and ion conductivity.
 さらに、活物質それぞれ固有の効果を発現する上で、最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士を混合して用いればよい。そのため、全ての活物質の粒径を均一化させる必要はない。例えば、固溶体リチウム含有遷移金属酸化物からなる正極活物質として粒子形態のものを用いる場合、平均粒子径は、既存の正極活物質層に含まれる正極活物質の平均粒子径と同程度であればよく、特に制限されない。高出力化の観点からは、好ましくは0.5~20μmの範囲であればよい。さらに好ましくは、0.7~10μmの範囲であればよい。なお、「粒子径」とは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用いて観察される活物質粒子(観察面)の輪郭線上における任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡や透過型電子顕微鏡などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。他の構成成分の粒子径や平均粒子径も同様に定義することができる。 Furthermore, when the optimum particle diameter is different for expressing the unique effect of each active material, the optimum particle diameters may be mixed and used for expressing each unique effect. Therefore, it is not necessary to make the particle sizes of all the active materials uniform. For example, in the case of using a particle-form positive electrode active material comprising a solid solution lithium-containing transition metal oxide, the average particle diameter is approximately the same as the average particle diameter of the positive electrode active material contained in the existing positive electrode active material layer Well, not particularly limited. From the viewpoint of increasing the output, it is preferably in the range of 0.5 to 20 μm. More preferably, it may be in the range of 0.7 to 10 μm. Note that the “particle diameter” is any two points on the contour line of the active material particle (observation surface) observed using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). This means the maximum distance among the distances. As the value of “average particle size”, a value calculated as the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope or a transmission electron microscope is adopted. It shall be. The particle diameters and average particle diameters of other components can be defined in the same manner.
 ただし、平均粒子径はこのような範囲に何ら制限されるものではなく、本形態の作用効果を有効に発現できるものであれば、この範囲を外れていてもよい。 However, the average particle diameter is not limited to such a range, and may be outside this range as long as the effects of the present embodiment can be effectively expressed.
 <電解質層>
 電解質層13としては、例えば、後述するセパレータに保持させた電解液や高分子ゲル電解質、固体高分子電解質を用いて層構造を形成したもの、さらには、高分子ゲル電解質や固体高分子電解質を用いて積層構造を形成したものなどを挙げることができる。
<Electrolyte layer>
Examples of the electrolyte layer 13 include an electrolyte solution, a polymer gel electrolyte, a solid polymer electrolyte formed in a separator described later, and a layer structure formed using a solid polymer electrolyte, and further a polymer gel electrolyte and a solid polymer electrolyte. Examples thereof include those having a laminated structure formed thereon.
 電解液としては、例えば、通常リチウムイオン二次電池で用いられるものであることが好ましく、具体的には、有機溶媒に支持塩(リチウム塩)が溶解した形態を有する。リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、六フッ化タンタル酸リチウム(LiTaF)、四塩化アルミニウム酸リチウム(LiAlCl)、リチウムデカクロロデカホウ素酸(Li10Cl10)等の無機酸陰イオン塩の中から選ばれる少なくとも一種類のリチウム塩等を挙げることができる。また、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビス(トリフルオロメタンスルホニル)イミド(Li(CFSON)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(Li(CSON)等の有機酸陰イオン塩の中から選ばれる少なくとも一種類のリチウム塩等を挙げることができる。その中でも、六フッ化リン酸リチウム(LiPF)が好ましい。また、有機溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネート類;ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)等の鎖状カーボネート類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジブトキシエタン等のエーテル類;γ-ブチロラクトン等のラクトン類;アセトニトリル等のニトリル類;プロピオン酸メチル等のエステル類;ジメチルホルムアミド等のアミド類;酢酸メチル、蟻酸メチルの中から選ばれる少なくとも一種類を用いることができる。なお、セパレータとしては、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィンからなる微多孔膜や多孔質の平板、さらには不織布を挙げることができる。 For example, the electrolyte solution is preferably one that is usually used in a lithium ion secondary battery, and specifically has a form in which a supporting salt (lithium salt) is dissolved in an organic solvent. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), six lithium fluoride tantalate (LiTaF 6), four lithium aluminum chloride acid (LiAlCl 4), at least one selected from inorganic acid anion salts such as lithium deca chloro deca boronic acid (Li 2 B 10 Cl 10) A lithium salt etc. can be mentioned. Further, lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (trifluoromethanesulfonyl) imide (Li (CF 3 SO 2 ) 2 N), lithium bis (pentafluoroethanesulfonyl) imide (Li (C 2 F 5) Examples include at least one lithium salt selected from organic acid anion salts such as SO 2 ) 2 N). Among these, lithium hexafluorophosphate (LiPF 6 ) is preferable. Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); chain carbonates such as dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), and diethyl carbonate (DEC). Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-dibutoxyethane; lactones such as γ-butyrolactone; nitriles such as acetonitrile; methyl propionate Esters such as amides; amides such as dimethylformamide; at least one selected from methyl acetate and methyl formate can be used. Examples of the separator include a microporous film made of polyolefin such as polyethylene (PE) and polypropylene (PP), a porous flat plate, and a nonwoven fabric.
 高分子ゲル電解質は、イオン伝導性を有する固体高分子電解質に、通常リチウムイオン二次電池で用いられる上記電解液を含有させたものである。しかしながら、これに限定されるものではなく、リチウムイオン伝導性を持たない高分子の骨格中に、同様の電解液を保持させたものも含まれる。高分子ゲル電解質に用いられるリチウムイオン伝導性を持たない高分子としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などが使用できる。ただし、これらに限られるわけではない。なお、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)などは、どちらかと言うとイオン伝導性がほとんどない部類に入るものであるため、上記イオン伝導性を有する高分子とすることもできる。ただ、ここでは、ポリアクリロニトリル及びポリメチルメタクリレートは、リチウムイオン伝導性を持たない高分子として例示したものである。 The polymer gel electrolyte is a solid polymer electrolyte having ion conductivity containing the above-described electrolytic solution usually used in a lithium ion secondary battery. However, the present invention is not limited to this, and includes a structure in which a similar electrolyte solution is held in a polymer skeleton having no lithium ion conductivity. For example, polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA) is used as a polymer having no lithium ion conductivity used in the polymer gel electrolyte. it can. However, it is not necessarily limited to these. Note that polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and the like are in a class having almost no ionic conductivity, and thus can be a polymer having the ionic conductivity. However, here, polyacrylonitrile and polymethyl methacrylate are exemplified as polymers having no lithium ion conductivity.
 固体高分子電解質は、例えばポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などに上記リチウム塩が溶解して成る構成を有し、有機溶媒を含まないものを挙げることができる。したがって、電解質層が固体高分子電解質から構成される場合には電池からの液漏れの心配がなく、電池の信頼性が向上させることができる。 Examples of the solid polymer electrolyte include a structure in which the lithium salt is dissolved in polyethylene oxide (PEO), polypropylene oxide (PPO), and the like, and does not contain an organic solvent. Therefore, when the electrolyte layer is composed of a solid polymer electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.
 電解質層の厚みは、内部抵抗を低減させるという観点からは薄い方が好ましい。電解質層の厚みは、通常1~100μmであり、好ましくは5~50μmである。 The thickness of the electrolyte layer is preferably thinner from the viewpoint of reducing internal resistance. The thickness of the electrolyte layer is usually 1 to 100 μm, preferably 5 to 50 μm.
 なお、高分子ゲル電解質や固体高分子電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現させることができる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマーに対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。なお、重合性ポリマーとしては、例えば、ポリエチレンオキシドやポリプロピレンオキシドを挙げることができる。 In addition, the matrix polymer of the polymer gel electrolyte or the solid polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, a polymerization process such as thermal polymerization, ultraviolet polymerization, radiation polymerization, or electron beam polymerization may be performed on a polymerizable polymer for forming a polymer electrolyte using an appropriate polymerization initiator. Examples of the polymerizable polymer include polyethylene oxide and polypropylene oxide.
 <リチウムイオン二次電池の製造方法>
 次に、上述した本形態に係るリチウムイオン二次電池の製造方法の一例について説明する。
<Method for producing lithium ion secondary battery>
Next, an example of a manufacturing method of the lithium ion secondary battery according to this embodiment described above will be described.
 まず、正極を作製する。例えば粒状の正極活物質を用いる場合には、上述した固溶体リチウム含有遷移金属酸化物と導電助剤、必要に応じてバインダー及び粘度調整溶剤とを混合し、正極用スラリーを作製する。次いで、この正極用スラリーを正極集電体に塗布し、乾燥させ、圧縮成型して正極活物質層を形成する。 First, a positive electrode is produced. For example, when a granular positive electrode active material is used, the solid solution lithium-containing transition metal oxide, the conductive additive, and optionally a binder and a viscosity adjusting solvent are mixed to prepare a positive electrode slurry. Next, this positive electrode slurry is applied to a positive electrode current collector, dried, and compression molded to form a positive electrode active material layer.
 また、負極を作製する。例えば粒状の負極活物質を用いる場合には、負極活物質と必要に応じて導電助剤、バインダー及び粘度調整溶剤とを混合し、負極用スラリーを作製する。この後、この負極用スラリーを負極集電体に塗布し、乾燥させ、圧縮成型して負極活物質層を形成する。 Also, make a negative electrode. For example, when a granular negative electrode active material is used, a negative electrode active material and, if necessary, a conductive additive, a binder, and a viscosity adjusting solvent are mixed to prepare a negative electrode slurry. Thereafter, the negative electrode slurry is applied to a negative electrode current collector, dried, and compression molded to form a negative electrode active material layer.
 次いで、正極に正極リードを取り付けるとともに、負極に負極リードを取り付けた後、正極、セパレータ及び負極を積層する。さらに、積層したものを高分子-金属複合ラミネートシートで挟み、一辺を除く外周縁部を熱融着して袋状の外装体とする。この後に、上記電解液を準備し、外装体の開口部から内部に注入して、外装体の開口部を熱融着し封入する。これにより、ラミネート型のリチウムイオン二次電池が完成する。 Next, the positive electrode lead is attached to the positive electrode, the negative electrode lead is attached to the negative electrode, and then the positive electrode, the separator, and the negative electrode are laminated. Further, the laminated product is sandwiched between polymer-metal composite laminate sheets, and the outer peripheral edge except for one side is heat-sealed to form a bag-like outer package. Thereafter, the electrolytic solution is prepared and injected into the interior from the opening of the exterior body, and the opening of the exterior body is thermally fused and sealed. Thereby, a laminate-type lithium ion secondary battery is completed.
 さらに、リチウムイオン二次電池の製造方法の他の例を説明する。まず、上述と同様に正極及び負極を作成する。次いで、正極に正極リードを取り付けるとともに、負極に負極リードを取り付けた後、正極、セパレータ及び負極を積層する。さらに、積層したものを高分子-金属複合ラミネートシートで挟み、一辺を除く外周縁部を熱融着して袋状の外装体とする。 Furthermore, another example of a method for manufacturing a lithium ion secondary battery will be described. First, a positive electrode and a negative electrode are prepared in the same manner as described above. Next, the positive electrode lead is attached to the positive electrode and the negative electrode lead is attached to the negative electrode, and then the positive electrode, the separator, and the negative electrode are laminated. Further, the laminated product is sandwiched between polymer-metal composite laminate sheets, and the outer peripheral edge except for one side is heat-sealed to form a bag-like outer package.
 この後に、上記電解液を準備し、外装体の開口部から内部に注入して、外装体の開口部を熱融着し封入する。さらに上述した電気化学前処理を行う。これにより、ラミネート型のリチウムイオン二次電池が完成する。 After this, the above electrolyte is prepared and injected into the inside from the opening of the exterior body, and the opening of the exterior body is heat-sealed and sealed. Further, the electrochemical pretreatment described above is performed. Thereby, a laminate-type lithium ion secondary battery is completed.
 以上、リチウムイオン二次電池として、ラミネート型電池やコイン型電池を例示したが、本発明はこれに限定されるものではない。つまり、ボタン型電池、角形や円筒形などの缶型電池など従来公知の形態・構造についても適用することができる。 As described above, the laminate type battery and the coin type battery are exemplified as the lithium ion secondary battery, but the present invention is not limited to this. That is, a conventionally known form / structure such as a button-type battery or a can-type battery having a square shape or a cylindrical shape can be applied.
 また、本発明は、上述した積層型(扁平型)電池だけでなく、巻回型(円筒型)電池など従来公知の形態・構造についても適用することができる。 Further, the present invention can be applied not only to the above-described stacked type (flat type) battery but also to a conventionally known form / structure such as a wound type (cylindrical) battery.
 さらに、本発明は、リチウムイオン二次電池内の電気的な接続形態(電極構造)で見た場合、上述した通常型(内部並列接続タイプ)電池だけでなく、双極型(内部直列接続タイプ)電池など従来公知の形態・構造についても適用することができる。なお、双極型電池における電池素子は、一般的に、集電体の一方の表面に負極活物質層が形成され、他方の表面に正極活物質層が形成された双極型電極と、電解質層とを複数積層した構成を有している。 Furthermore, the present invention is not only the above-described normal type (internal parallel connection type) battery but also a bipolar type (internal series connection type) when viewed in terms of electrical connection form (electrode structure) in the lithium ion secondary battery. Conventionally known forms and structures such as batteries can also be applied. A battery element in a bipolar battery generally has a bipolar electrode in which a negative electrode active material layer is formed on one surface of a current collector and a positive electrode active material layer is formed on the other surface, and an electrolyte layer. A plurality of layers.
 本発明の非水電解質二次電池用正極及び非水電解質二次電池は、上述の構成を有することにより高い放電容量及び容量維持率を実現し得るとともに、高出力条件下においても高いレート特性を発揮し得る。したがって、本発明の非水電解質二次電池用正極及び非水電解質二次電池は、電気自動車、燃料電池自動車、ハイブリッド電気自動車のモータ等の駆動用電源や補助電源に好ましく適用されうる。 The positive electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery according to the present invention can realize a high discharge capacity and a capacity retention ratio by having the above-described configuration, and also have a high rate characteristic even under high output conditions. Can demonstrate. Therefore, the positive electrode for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery of the present invention can be preferably applied to driving power supplies and auxiliary power supplies for motors of electric vehicles, fuel cell vehicles, and hybrid electric vehicles.
 以下、実施例を用いて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下では、正極活物質として本形態の固溶体を使用し、導電助剤として様々な物性(BET比表面積、D値/G値)を有するアセチレンブラックを使用してラミネート型リチウムイオン二次電池を作製し、その性能を評価した。 Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples. In the following, a laminate type lithium ion secondary battery is manufactured using the solid solution of this embodiment as the positive electrode active material and acetylene black having various physical properties (BET specific surface area, D value / G value) as the conductive auxiliary agent. The performance was evaluated.
 <リチウム含有遷移金属酸化物の合成>
 下記の化学式(2)で表されるリチウム含有遷移金属酸化物を、複合炭酸塩法を用いて合成した。出発物質にはNi、Co、Mnの3種の硫酸塩を使用し、これらを下記に示す化学式(2)の割合となるようにイオン交換水に溶解させ2Mの混合水溶液を得た。次にこの水溶液へ1M炭酸ナトリウム水溶液を滴下させることにより、ニッケルコバルトマンガンの複合炭酸塩を得た。得られた複合炭酸塩をろ過により回収、乾燥し、700℃の焼成温度で4時間焼成することにより複合酸化物を得た。得られた複合酸化物と水酸化リチウムを下記に示す化学式(2)の割合となるように混合し、大気中900℃で焼成することにより目的の試料を得た。なお、組成確認はXRDを用いて行った。
<Synthesis of lithium-containing transition metal oxide>
A lithium-containing transition metal oxide represented by the following chemical formula (2) was synthesized using a composite carbonate method. Three kinds of sulfates of Ni, Co, and Mn were used as starting materials, and these were dissolved in ion-exchanged water so as to have a ratio of the following chemical formula (2) to obtain a 2M mixed aqueous solution. Next, a 1M sodium carbonate aqueous solution was dropped into the aqueous solution to obtain a composite carbonate of nickel cobalt manganese. The obtained composite carbonate was recovered by filtration, dried, and fired at a firing temperature of 700 ° C. for 4 hours to obtain a composite oxide. The obtained composite oxide and lithium hydroxide were mixed so as to have a ratio of the following chemical formula (2), and fired at 900 ° C. in the air to obtain a target sample. The composition was confirmed using XRD.
 化学式:Li1.5[Ni0.45CoMn0.855[Li]0.195]O …(2)
 <電極の作製>
 負極活物質としてグラファイト93質量部、バインダーとしてPVdF7質量部、及びスラリー粘度調整溶媒としてNMP適量を混合し、負極活物質スラリーを調製した。負極集電体としてφ16mmのステンレスメッシュを用意し、この表面に負極活物質スラリーを塗布、乾燥させて、集電体表面に負極活物質層(サイズ3×4cm四方、単位体積当たりの活物質量:9mg/cm、厚さ:60μm)が形成された負極を作製した。
Chemical formula: Li 1.5 [Ni 0.45 Co 0 Mn 0.855 [Li] 0.195 ] O 3 (2)
<Production of electrode>
A negative electrode active material slurry was prepared by mixing 93 parts by mass of graphite as a negative electrode active material, 7 parts by mass of PVdF as a binder, and an appropriate amount of NMP as a slurry viscosity adjusting solvent. A stainless steel mesh of φ16 mm is prepared as a negative electrode current collector, and a negative electrode active material slurry is applied to the surface and dried. A negative electrode active material layer (size 3 × 4 cm square, active material amount per unit volume) : 9 mg / cm 2 , thickness: 60 μm) was produced.
 一方、正極活物質として上記で合成したリチウム含有遷移金属酸化物92質量部、導電助剤として下記表2に示すアセチレンブラック4質量部、結着剤としてPVdF4質量部、及びスラリー粘度調整溶媒としてN-メチル-2-ピロリドン(NMP)適量を混合し、正極活物質スラリーを調製した。正極集電体としてのAl箔に正極活物質スラリーを塗布、120℃の乾燥機にて4時間乾燥させて、集電体表面に正極活物質層(サイズ3×4cm四方、単位体積当たりの活物質量:8mg/cm、厚さ:30μm)が形成された正極を作製した。 On the other hand, 92 parts by mass of the lithium-containing transition metal oxide synthesized above as the positive electrode active material, 4 parts by mass of acetylene black shown in Table 2 below as the conductive auxiliary agent, 4 parts by mass of PVdF as the binder, and N as the slurry viscosity adjusting solvent A suitable amount of methyl-2-pyrrolidone (NMP) was mixed to prepare a positive electrode active material slurry. A positive electrode active material slurry was applied to an Al foil as a positive electrode current collector and dried for 4 hours with a dryer at 120 ° C., and a positive electrode active material layer (size 3 × 4 cm square, active per unit volume) was formed on the current collector surface. A positive electrode having a substance amount of 8 mg / cm 2 and a thickness of 30 μm was formed.
 なお、下記表2におけるアセチレンブラックのBET比表面積は、BET法による、窒素によるガス吸着にて測定した(試料1g)。 In addition, the BET specific surface area of acetylene black in the following Table 2 was measured by gas adsorption with nitrogen by the BET method (sample 1 g).
 また、下記表2におけるアセチレンブラック(粉末)のD値/G値は、以下の条件で測定したラマンスペクトルについてピークフィッティングを行なうことにより求めた。正極作製後の正極活物質層中のアセチレンブラックについても同様に測定したところ、アセチレンブラック(粉末)と同様のD値/G値であることが確認された。 The D value / G value of acetylene black (powder) in Table 2 below was determined by performing peak fitting on the Raman spectrum measured under the following conditions. When acetylene black in the positive electrode active material layer after producing the positive electrode was measured in the same manner, it was confirmed that the D value / G value was the same as that of acetylene black (powder).
 装置名:ブルカー・オプティクス製 顕微レーザーラマンSENTERRA
 励起波長:532nm
 露光時間:30秒
 積算回数:5回。
Device name: Bruker Optics Microscopic Laser Raman SENTERRA
Excitation wavelength: 532 nm
Exposure time: 30 seconds Integration count: 5 times.
 <リチウムイオン二次電池の作製>
 電解液として、エチレンカーボネート(EC):ジエチルカーボネート(DEC)=3:7(体積比)の混合溶媒に、リチウム塩であるLiPFが1.0モル/リットルの濃度で溶解した溶液を準備した。電解液をセパレータ(厚さ20μm、ポリエチレン製多孔質膜)に含浸し、電解質層を形成した。
<Production of lithium ion secondary battery>
As an electrolytic solution, a solution in which LiPF 6 as a lithium salt was dissolved at a concentration of 1.0 mol / liter in a mixed solvent of ethylene carbonate (EC): diethyl carbonate (DEC) = 3: 7 (volume ratio) was prepared. . An electrolyte solution was formed by impregnating a separator (thickness 20 μm, polyethylene porous membrane) with the electrolytic solution.
 上記で作製した負極、電解質層、および正極を順次積層し、得られた積層体をアルミラミネートフィルムを用いて封止・成形し、積層型のリチウムイオン二次電池を完成させた。 The negative electrode, the electrolyte layer, and the positive electrode prepared above were sequentially laminated, and the obtained laminate was sealed and molded using an aluminum laminate film to complete a laminated lithium ion secondary battery.
 <電気化学前処理及びレート特性評価>
 上記リチウムイオン二次電池を充放電装置に接続し、下記に示すような条件で充放電を行なった。充電電圧を段階的上げて処理を行うことにより、電極の活性化状態が安定化され、またサイクル耐久性が向上する。なお、1C=200mA/g(正極活物質重量)と定義した。また、サイクル8におけるエネルギー密度/サイクル5におけるエネルギー密度×100(%)を算出し、レート特性を評価した。
<Electrochemical pretreatment and rate characteristics evaluation>
The said lithium ion secondary battery was connected to the charging / discharging apparatus, and it charged / discharged on the conditions as shown below. By performing the treatment by gradually increasing the charging voltage, the activation state of the electrode is stabilized and the cycle durability is improved. In addition, it defined as 1C = 200mA / g (positive electrode active material weight). Further, energy density in cycle 8 / energy density in cycle 5 × 100 (%) was calculated, and rate characteristics were evaluated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 結果を下記表に示す。 The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記結果より、BET比表面積が30~200m/gである炭素材料を導電助剤として使用した実施例1~4は、高出力条件下(2.5C)においても高いレート特性を発揮することが示さされた。また、D値/G値が1.18以下とすることにより、高レート特性がさらに向上することが示された。これは、導電助剤として使用する炭素材料のBET比表面積、D値/G値を所定の範囲とすることにより、上記化学式(2)で表される固溶体の反応抵抗を効果的に低減することができたためであると考えられた。 From the above results, Examples 1 to 4 using a carbon material having a BET specific surface area of 30 to 200 m 2 / g as a conductive aid exhibit high rate characteristics even under high output conditions (2.5 C). Was shown. Moreover, it was shown that the high rate characteristics are further improved by setting the D value / G value to 1.18 or less. This is to effectively reduce the reaction resistance of the solid solution represented by the chemical formula (2) by setting the BET specific surface area and the D value / G value of the carbon material used as the conductive auxiliary agent within a predetermined range. It was thought that this was because
 本出願は、2013年7月31日に出願された日本国特許出願第2013-159502号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2013-159502 filed on July 31, 2013, the disclosure of which is incorporated by reference in its entirety.
 1  リチウムイオン二次電池、
 10  電池素子、
 11  正極、
 11A  正極集電体、
 11B  正極活物質層、
 12  負極、
 12A  負極集電体、
 12B  負極活物質層、
 13  電解質層、
 14  単電池層、
 21  正極リード、
 22  負極リード、
 30  外装体。
1 Lithium ion secondary battery,
10 battery elements,
11 positive electrode,
11A positive electrode current collector,
11B positive electrode active material layer,
12 negative electrode,
12A negative electrode current collector,
12B negative electrode active material layer,
13 electrolyte layer,
14 cell layer,
21 positive lead,
22 negative lead,
30 Exterior body.

Claims (5)

  1.  正極活物質と、導電助剤とを含み、
     前記正極活物質は、
     化学式:
     Li1.5[NiCoMn[Li]]O …(1)
    (式中、Liはリチウム、Niはニッケル、Coはコバルト、Mnはマンガン、Oは酸素を示し、a,b,c及びdは、0<a<1.4、0≦b<1.4、0<c<1.4、0.1<d≦0.4、a+b+c+d=1.5、1.1≦a+b+c<1.4の関係を満足する)で表される固溶体リチウム含有遷移金属酸化物を含有し、
     前記導電助剤は、炭素材料を含有し、
     前記炭素材料のBET比表面積は、30~200m/gである、非水電解質二次電池用正極。
    Including a positive electrode active material and a conductive additive,
    The positive electrode active material is
    Chemical formula:
    Li 1.5 [Ni a Co b Mn c [Li] d ] O 3 (1)
    (In the formula, Li represents lithium, Ni represents nickel, Co represents cobalt, Mn represents manganese, O represents oxygen, and a, b, c and d are 0 <a <1.4 and 0 ≦ b <1.4. , 0 <c <1.4, 0.1 <d ≦ 0.4, a + b + c + d = 1.5, 1.1 ≦ a + b + c <1.4) Containing
    The conductive auxiliary agent contains a carbon material,
    The positive electrode for a non-aqueous electrolyte secondary battery, wherein the carbon material has a BET specific surface area of 30 to 200 m 2 / g.
  2.  前記炭素材料のラマン分光法で測定したカーボンのGバンドに対するDバンドのピークの強度比(D値/G値)は、1.18以下である、請求項1に記載の非水電解質二次電池用正極。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein an intensity ratio (D value / G value) of a peak of a D band to a G band of carbon measured by Raman spectroscopy of the carbon material is 1.18 or less. Positive electrode.
  3.  前記炭素材料のBET比表面積は、50~180m/gである、請求項1または2に記載の非水電解質二次電池用正極。 The positive electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the carbon material has a BET specific surface area of 50 to 180 m 2 / g.
  4.  前記炭素材料のラマン分光法で測定したカーボンのGバンドに対するDバンドのピークの強度比(D値/G値)は、1.15以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極。 The intensity ratio (D value / G value) of the peak of the D band to the G band of the carbon measured by Raman spectroscopy of the carbon material is 1.15 or less, according to any one of claims 1 to 3. Positive electrode for non-aqueous electrolyte secondary battery.
  5.  請求項1~4のいずれか1項に記載の非水電解質二次電池用正極と、
     負極と、
     を備えたことを特徴とする非水電解質二次電池。
    A positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4,
    A negative electrode,
    A non-aqueous electrolyte secondary battery comprising:
PCT/JP2014/064630 2013-07-31 2014-06-02 Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same WO2015015894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-159502 2013-07-31
JP2013159502A JP2016173875A (en) 2013-07-31 2013-07-31 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery arranged by use thereof

Publications (1)

Publication Number Publication Date
WO2015015894A1 true WO2015015894A1 (en) 2015-02-05

Family

ID=52431439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064630 WO2015015894A1 (en) 2013-07-31 2014-06-02 Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Country Status (2)

Country Link
JP (1) JP2016173875A (en)
WO (1) WO2015015894A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041686A (en) * 2016-09-09 2018-03-15 日産自動車株式会社 Positive electrode for electric device and lithium ion battery using the same
WO2019135640A1 (en) * 2018-01-04 2019-07-11 주식회사 엘지화학 Secondary battery comprising electrode tab provided with insulation coating layer
US10910632B2 (en) 2016-11-22 2021-02-02 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
EP4129927A4 (en) * 2020-12-23 2023-11-08 LG Energy Solution, Ltd. Method for manufacturing positive electrode active material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078760A1 (en) * 2016-10-27 2018-05-03 日産自動車株式会社 Nonaqueous electrolyte secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063907A1 (en) * 2007-11-14 2009-05-22 Kureha Corporation Positive electrode mixture for nonaqueous battery and positive electrode structure
JP2010103086A (en) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd Positive electrode for lithium-ion batteries
WO2011078389A1 (en) * 2009-12-25 2011-06-30 株式会社豊田自動織機 Method for producing complex oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2012124602A1 (en) * 2011-03-16 2012-09-20 日産自動車株式会社 Method for pre-processing lithium ion secondary battery
WO2012141308A1 (en) * 2011-04-15 2012-10-18 電気化学工業株式会社 Carbon black composite and lithium-ion secondary battery using same
WO2012165654A1 (en) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2013005737A1 (en) * 2011-07-04 2013-01-10 日産自動車株式会社 Positive electrode active material for electric device, positive electrode for electric device, and electric device
JP2013187027A (en) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd Positive electrode active material, positive electrode for electric device and electric device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063907A1 (en) * 2007-11-14 2009-05-22 Kureha Corporation Positive electrode mixture for nonaqueous battery and positive electrode structure
JP2010103086A (en) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd Positive electrode for lithium-ion batteries
WO2011078389A1 (en) * 2009-12-25 2011-06-30 株式会社豊田自動織機 Method for producing complex oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2012124602A1 (en) * 2011-03-16 2012-09-20 日産自動車株式会社 Method for pre-processing lithium ion secondary battery
WO2012141308A1 (en) * 2011-04-15 2012-10-18 電気化学工業株式会社 Carbon black composite and lithium-ion secondary battery using same
WO2012165654A1 (en) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2013005737A1 (en) * 2011-07-04 2013-01-10 日産自動車株式会社 Positive electrode active material for electric device, positive electrode for electric device, and electric device
JP2013187027A (en) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd Positive electrode active material, positive electrode for electric device and electric device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041686A (en) * 2016-09-09 2018-03-15 日産自動車株式会社 Positive electrode for electric device and lithium ion battery using the same
US10910632B2 (en) 2016-11-22 2021-02-02 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
WO2019135640A1 (en) * 2018-01-04 2019-07-11 주식회사 엘지화학 Secondary battery comprising electrode tab provided with insulation coating layer
US11777095B2 (en) 2018-01-04 2023-10-03 Lg Energy Solution, Ltd. Secondary battery comprising electrode tab provided with insulation coating layer
EP4129927A4 (en) * 2020-12-23 2023-11-08 LG Energy Solution, Ltd. Method for manufacturing positive electrode active material

Also Published As

Publication number Publication date
JP2016173875A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
JP6465538B2 (en) Method for producing solid solution lithium-containing transition metal oxide, method for producing positive electrode for nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP5970978B2 (en) Positive electrode active material for electric device, positive electrode for electric device and electric device
WO2014021014A1 (en) Nonaqueous organic electrolyte secondary cell
JP6032457B2 (en) Solid solution lithium-containing transition metal oxide and lithium ion secondary battery
JP6156713B2 (en) Positive electrode active material, positive electrode for electric device and electric device
JP6112380B2 (en) Positive electrode active material, positive electrode for electric device and electric device
JP6032458B2 (en) Solid solution lithium-containing transition metal oxide and lithium ion secondary battery
JP6029083B2 (en) Non-aqueous electrolyte and lithium ion battery using the same
KR101739708B1 (en) Solid solution of transition metal oxide containing lithium and non-aqueous electrolyte secondary battery using the solid solution of transition metal oxide containing lithium in positive electrode
JP5999307B2 (en) Positive electrode active material, positive electrode for electric device and electric device
WO2015015894A1 (en) Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN108987670B (en) Solid solution lithium-containing transition metal oxide, positive electrode, and battery
JP6052702B2 (en) Positive electrode active material, positive electrode for electric device and electric device
JP6052703B2 (en) Positive electrode active material, positive electrode for electric device and electric device
WO2015016272A1 (en) Transition metal oxide containing solid-solution lithium, and non-aqueous electrolyte secondary cell using transition metal oxide containing solid-solution lithium as positive electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14832091

Country of ref document: EP

Kind code of ref document: A1