WO2015015874A1 - Production method for vulcanized rubber molded article, and spacer - Google Patents

Production method for vulcanized rubber molded article, and spacer Download PDF

Info

Publication number
WO2015015874A1
WO2015015874A1 PCT/JP2014/063464 JP2014063464W WO2015015874A1 WO 2015015874 A1 WO2015015874 A1 WO 2015015874A1 JP 2014063464 W JP2014063464 W JP 2014063464W WO 2015015874 A1 WO2015015874 A1 WO 2015015874A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
rubber molded
spacer
unvulcanized rubber
vulcanized
Prior art date
Application number
PCT/JP2014/063464
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 佐古
真一郎 西川
博行 下畝
雅人 長田
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Publication of WO2015015874A1 publication Critical patent/WO2015015874A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0277Apparatus with continuous transport of the material to be cured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/006Thermosetting elastomers

Definitions

  • the present invention relates to a method for producing a vulcanized rubber molded article and a spacer, and more specifically, a vulcanized rubber molded article by performing vulcanization in order along the length direction of a strip-shaped unvulcanized rubber molded article.
  • a method for producing a vulcanized rubber molded body for producing a body, and in the width direction and the thickness direction of an unvulcanized rubber molded body when vulcanizing by pressing the unvulcanized rubber molded body in the thickness direction The present invention relates to a spacer used to regulate deformation.
  • the conveying apparatus for conveying mineral resources, such as iron ore, coal, cement, and crushed stone for a long distance, and the conveyor belt used around the pulley of the said conveying apparatus are known widely.
  • this type of transporting device a device that carries and transports personnel for the movement of passengers within a station premises or in an airport, or the movement of a player between holes at a golf course is widely known.
  • the conveyor belt used in such a conveying device is usually formed in an endless shape by joining both ends of a long belt-like vulcanized rubber molded body.
  • long belt-shaped vulcanized rubber moldings are used for rubber crawlers such as agricultural vehicles and snow removal vehicles, rubber floor materials laid on the floor of railway vehicles, and rivers. It is also used for tube-like rubber weirs and the like.
  • a sheet-like vulcanized rubber molded body is produced by a method in which a sheet-like unvulcanized rubber molded body is heated and pressurized with a hot press to vulcanize the unvulcanized rubber molded body.
  • the long belt-like vulcanized rubber molded body as described above may have a length that does not fit between the hot plates of a hot press machine, for example.
  • the vulcanized rubber molded body is a “feed firing” in which a belt-shaped unvulcanized rubber molded body is conveyed in the length direction and the unvulcanized rubber molded body is vulcanized with a heat press in order from the end. It is produced by a method called "" (see Patent Document 1 below).
  • the long belt-like vulcanized rubber molded body as described above is a member for pressing the unvulcanized rubber molded body with a metal drum and a metal endless belt instead of a hot platen of a hot press machine. It is also produced by a method called “rotocure continuous vulcanization” (see Patent Document 2 below).
  • the vulcanized rubber molded body When producing a vulcanized rubber molded body by pressurizing and heating the unvulcanized rubber molded body, if there is a part where the pressure is not sufficiently applied to the unvulcanized rubber molded body, the part becomes sponge-like. (Hereinafter also referred to as “sponge failure”). Therefore, the vulcanized rubber molded body is subjected to hot pressing by placing spacers made of rectangular metal bars or the like on both sides in the width direction of the band-shaped unvulcanized rubber molded body, and the unvulcanized rubber molded with the spacers. It is preferable that the side pressure on the body is secured so that sponge defects do not occur at the side edge.
  • the vulcanized rubber molded body since it is necessary to apply sufficient pressure in the thickness direction to the unvulcanized rubber molded body, the vulcanized rubber molded body uses a metal rod or the like that is thinner than the unvulcanized rubber molded body as a spacer. Need to be made. Then, the unvulcanized rubber molded body is pressed by the hot plate before the hot plate starts to press the spacer. Therefore, simply using a spacer may cause the unvulcanized rubber to overflow to the outside of the spacer through the space between the hot platen and the spacer.
  • the overflowed rubber may drop off and remain in the hot press when the vulcanized portion of the unvulcanized rubber molded body is taken out from the hot press.
  • the rubber remaining in the hot press machine may cause adhered foreign matter and indentations on the vulcanized rubber molded body.
  • the conventional method for producing a belt-like vulcanized rubber molded article has a problem that it is difficult to produce a high-quality product by suppressing the appearance defect of the product while suppressing the labor required. ing.
  • Such a problem is a common problem not only in “feed baking” by a hot press machine but also in “rotocure continuous vulcanization”.
  • the present invention aims to solve the above problems, and a method for producing a vulcanized rubber molded body capable of producing a high-quality product while suppressing defective appearance while suppressing labor required, Also, it is an object to provide a spacer suitable for use in such a manufacturing method.
  • the present invention relating to a method for producing a vulcanized rubber molded body for solving the above-mentioned problems is that the unvulcanized rubber molded body is disposed in the thickness direction on one side and the other side of a belt-shaped unvulcanized rubber molded body.
  • a pressure member for pressurizing is disposed, the unvulcanized rubber molded body is vulcanized by heating the unvulcanized rubber molded body while being pressurized with the pressure member, and the vulcanized
  • a method for producing a vulcanized rubber molded body which is sequentially performed along the length direction of an unvulcanized rubber molded body to produce a band-shaped vulcanized rubber molded body, Spacers for restricting deformation in the width direction and the thickness direction are arranged on both outer sides in the width direction of the unvulcanized rubber molded body, and the vulcanization is performed. It is characterized by using a spacer that can expand and contract in the width direction of the vulcanized rubber molding.
  • the present invention relating to the spacer for solving the above-described problem is that the unvulcanized rubber molded body is vulcanized by heating the band-shaped unvulcanized rubber molded body while pressing in the thickness direction.
  • the unvulcanized rubber molded body is arranged on both outer sides in the width direction so as to restrict deformation in the width direction and thickness direction of the unvulcanized rubber molded body due to the pressurization. It is used, and is characterized by being freely stretchable in the thickness direction and the width direction.
  • a spacer that can expand and contract in the pressurizing direction of the unvulcanized rubber molded body is used for producing a belt-like vulcanized rubber molded body. Therefore, in the method for producing a vulcanized rubber molded article of the present invention, an unvulcanized rubber molded article can be used even when a thick spacer is used as compared with a case where a spacer having no elasticity such as a metal spacer is used. In contrast, a sufficient pressure can be applied in the thickness direction.
  • the method for producing a vulcanized rubber molded body of the present invention not only a spacer having a thickness smaller than that of the unvulcanized rubber molded body but also a spacer having a thickness larger than that of the unvulcanized rubber molded body is used. Can do. Therefore, in the present invention, when the unvulcanized rubber molded body is pressurized with the pressure member, the timing at which the pressure member starts to press the spacer can be accelerated compared to the case where a metal spacer or the like is used. That is, according to the present invention, it is possible to eliminate a gap between the spacer and the pressure member, which may cause rubber to enter, at a relatively early stage when the unvulcanized rubber molded body is vulcanized.
  • the spacer of the present invention is expandable and contractible in the width direction of the unvulcanized rubber molded body as described above, the unvulcanized rubber molded body is pressed by the pressure member and tends to deform wide. In doing so, the followability to the side shape of the unvulcanized rubber molded article can be exhibited. Therefore, the spacer of this invention can suppress that the pressure received from an unvulcanized rubber molding at the time of vulcanization of an unvulcanized rubber molding concentrates locally.
  • the spacer of the present invention has a function of quickly contacting the pressure member during vulcanization of the unvulcanized rubber molded body, and a strong pressure between the pressure member and the pressure received from the unvulcanized rubber molded body.
  • the overflow of rubber during the production of the vulcanized rubber molded product is suppressed, and it is possible to suppress adhesion foreign matter and indentation in the vulcanized rubber molded product, and the vulcanized rubber molded product. It is possible to reduce the time and effort of deburring after the manufacture of the product.
  • FIG. 2 is a cross-sectional view taken along line II in FIG. 1.
  • the schematic sectional drawing which showed the various aspects of the spacer. Schematic showing the other aspect of the manufacturing method of a vulcanized rubber molding. Schematic showing the other aspect of the manufacturing method of a vulcanized rubber molding.
  • FIG. 1 is a perspective view schematically showing a state in which a long belt-shaped unvulcanized rubber molded body 1 for forming the conveyor belt is vulcanized in order in the length direction using a hot press machine 5.
  • FIG. 2 is a diagram showing an outline of a cross section taken along line II in FIG.
  • the following steps (a) and (b) are alternately performed to form a vulcanized rubber molded body (conveyor belt).
  • a part of the strip-shaped unvulcanized rubber molded body 1 is heated to a predetermined temperature while applying a predetermined pressure in the thickness direction TD by the hot press 5 and the heating under this pressure is performed for a predetermined time.
  • a vulcanization step that is carried out to vulcanize the part.
  • the unvulcanized rubber molded body 1 is moved along its length direction LD, and the vulcanized part is demolded from the hot press 5 as a vulcanized portion 10b and the vulcanized portion 10b.
  • the transfer process which supplies the unvulcanized location 10a following to a hot press machine. That is, after the transfer step, a vulcanization step for vulcanizing the unvulcanized portion 10a of the strip-shaped unvulcanized rubber molded body 1 is newly performed.
  • the conveyor belt is formed by vulcanizing the substantially entire length of the unvulcanized rubber molded body 1 by a method of repeating vulcanization and demolding / transfer.
  • the unvulcanized rubber molded body 1 is vulcanized by the hot press 5 in a posture in which the surface direction is substantially horizontal. That is, the hot press machine 5 has a pair of upper and lower heating plates as pressure members for pressing the unvulcanized rubber molded body 1 in the thickness direction, and the unvulcanized rubber molded body 1 is moved from the upper surface side.
  • An upper heating platen 50a for heating and pressurizing and a lower heating platen 50b for heating and pressurizing the unvulcanized rubber molded body 1 from the lower surface side are provided.
  • Each of the upper heating platen 50a and the lower heating platen 50b is formed in a rectangular plate shape, and is heated by pressing the rectangular plate surface for pressurizing and heating the unvulcanized rubber molded body 1 in the vertical direction. It is provided in the machine 5.
  • the lower hot platen 50b is hot-pressed in a state where the platen surface is directed vertically upward and the longitudinal direction of the platen surface is the length direction LD of the unvulcanized rubber molded body 1.
  • the machine 5 is arranged.
  • the upper heating platen 50a is common to the lower heating platen 50b in that the longitudinal direction of the platen surface is the longitudinal direction LD of the unvulcanized rubber molded body 1 and is arranged in the heat press.
  • the upper heating platen 50a is different from the lower heating platen 50b in that the platen surface is directed downward in the vertical direction and can be moved up and down and arranged in the heat press machine 5.
  • the upper heating platen 50a is lowered and a predetermined pressure is applied to the unvulcanized portion 10a sandwiched between the lower heating platen 50b and the heat of the heating plates 50a and 50b.
  • the transfer step is performed by raising the upper heating platen 50a and releasing the pressure on the vulcanized portion 10b that has been pressurized and heated for a predetermined time in the vulcanizing step, and then by an appropriate sheet moving means. This is performed by moving the unvulcanized rubber molded body 1 by a predetermined distance in the length direction LD.
  • the unvulcanized rubber molded body 1 has a length that is several times or more the length of the surface of the upper heat platen 50a and the lower heat platen 50b, and the surface of the plate as a dimension in the width direction WD. Has a size smaller than the width of
  • the lower heating platen 50b of the present embodiment is configured such that when the unvulcanized location 10a newly introduced into the heat press by the transfer process is placed on the platen surface, the unvulcanized location 10a.
  • the extra space is formed on both sides in the width direction.
  • the spacer 20 is disposed in the surplus space on the lower heating platen, and the spacer 20 is sandwiched between the upper and lower heating plates (50a, 50b) together with the unvulcanized rubber molded body 1 to be unvulcanized.
  • the deformation of the rubber molded body 1 in the width direction and the thickness direction is restricted.
  • the illustration of the spacer is omitted.
  • a spacer that can be expanded and contracted in the thickness direction and the width direction is used as the spacer 20, a spacer that can be expanded and contracted in the thickness direction and the width direction is used.
  • the spacer 20 in the form has a square bar shape made entirely of a rubber elastic body. Since the spacer 20 in the present embodiment is a rubber elastic body as a whole, it can be expanded and contracted not only in the thickness direction TD and the width direction WD but also in the length direction LD.
  • the spacer 20 of the present embodiment is thinner than the unvulcanized rubber molded body 1 and has a length exceeding the length D1 of the board surface of the lower heating board 50b. That is, in this embodiment, the spacer 20 longer than the hot platen length in the length direction of the unvulcanized rubber molded body 1 is used.
  • the spacer 20 in the present embodiment is arranged over the entire surface of the lower heating platen 50b, and the distance W1 between the spacers arranged on the left and right sides of the unvulcanized rubber molded body 1 is not added between them. It arrange
  • the platen surface and the spacer in the thickness direction. 20 has a slight clearance CRt (hereinafter also referred to as “thickness clearance CRt”) and a slight clearance CRw between the unvulcanized rubber molded body 1 and the spacer 20 in the width direction. (Hereinafter also referred to as “width clearance CRw”).
  • the spacer 20 made entirely of a rubber elastic body is used. Therefore, by generating tension by pulling in the length direction, the thickness and width of the spacer 20 are slightly reduced.
  • the thickness clearance CRt and the width clearance CRw can be finely adjusted according to the magnitude of the tension.
  • a rubber elastic body does not have a linear correlation between stress and strain. That is, when an attempt is made to deform a rubber elastic body with the same force, the amount of deformation is usually greatly different between a rubber elastic body to which a certain amount of stress has already been applied and a rubber elastic body to which no stress has been applied.
  • the elastic deformation behavior in the thickness direction and the width direction of the spacer 20 is made different from the case where no tension is applied. Can do. From this, in this embodiment, it becomes possible to adjust how the side pressure is applied to the unvulcanized rubber molded body 10a during the vulcanization step by applying tension to the spacer 20.
  • the unvulcanized rubber molded body 1 pressure is applied in the thickness direction by further lowering the upper heating platen 50 a from the state where the surface of the upper heating platen 50 a is in contact with the upper surface (FIG. 3A), The unvulcanized rubber molded body 1 is deformed in the direction of widening.
  • the spacer 20 is also deformed in the direction of widening when the upper heating platen 50a is further lowered from the time when the upper heating platen 50a reaches the upper surface (FIG. 3B).
  • a strong pressure can be applied between the side surface of the spacer 20 and the side surface of the unvulcanized rubber molded body 1, and the occurrence of defective sponge can be suppressed.
  • the spacer 20 can convert the pressure generated between the unvulcanized rubber molded body 1 into a contact force with the upper heating platen 50a and the lower heating platen 50b.
  • the thickness of the unvulcanized rubber molded body 1 is used because a spacer that can expand and contract in the thickness direction is used instead of a metal spacer that hardly exhibits elastic deformation such as stainless steel or steel.
  • a spacer thicker than a metal spacer can be used. Therefore, in this embodiment, the timing at which the thickness clearance CRt disappears can be advanced compared to the case where a metal spacer is used. Therefore, in this embodiment, it can suppress that a part of unvulcanized rubber molded object 1 deform
  • the method of using a metal spacer and ensuring sufficient width direction clearance enables suppression of a burr
  • the start of pressurization of the spacer 20 by the upper heating platen 50a is not performed by the upper heating platen 50a. It is possible to precede the timing of starting pressurization of the vulcanized rubber molded body 1. In this case, it is necessary to ensure the width direction clearance CRw to be large to some extent.
  • the spacer of this embodiment can be expanded and contracted in the width direction by the pressure applied in the thickness direction, it is not added during the vulcanization process. It is easier to ensure the side pressure of the vulcanized rubber molded body than a metal spacer. Therefore, in the present embodiment, it is possible to suppress the occurrence of defective sponge while more reliably suppressing the generation of burrs.
  • the hot press hot platen does not have a uniform smooth surface, and may have some unevenness. Therefore, when a metal spacer is used, it is easy to form a low-pressure portion between the spacer and the upper heating plate in the vulcanization process, and some components of the unvulcanized rubber molded body are inside the spacer through the portion.
  • a spacer made of a rubber elastic body and having excellent elastic deformability on the surface is used. Therefore, also from this, according to the present embodiment, it is possible to suppress the formation of burrs due to rubber overflow or the like.
  • the spacer 20 can be expanded and contracted in the width direction, the spacer 20 is excellent in followability to the side shape of the unvulcanized rubber molded body.
  • the spacer 20 can easily equalize the lateral pressure generated between the unvulcanized rubber molded body in the length direction and prevent the rubber from overflowing due to local high pressure. Can do.
  • another spacer may be arranged outside the spacer 20 to back up the spacer 20 to apply a side pressure to the unvulcanized rubber molded body 1, in which case The backup spacer need not be stretchable in the thickness direction.
  • a metal square bar that is thinner than the spacer 20 may be used as a backup spacer. By using the backup spacer, it is possible to suppress the spacer 20 for applying a side pressure to the unvulcanized rubber molded body 1 from moving outward in the width direction due to the side pressure.
  • the vulcanization step is performed by arranging a plurality of backup spacers so that there is no excess space on the surface of the lower heating platen 50b.
  • the method for producing a vulcanized rubber molded body according to the present embodiment includes a spacer for regulating deformation of the unvulcanized rubber molded body in the width direction and the thickness direction due to pressurization.
  • the vulcanization may be carried out by arranging a plurality of them on both outer sides in the width direction of the molded body. This point will be described with reference to FIG. FIG. 5 shows a state in which three spacers are arranged on both outer sides in the width direction of the unvulcanized rubber molded body. Among the three spacers illustrated in FIG.
  • a spacer 20 x (hereinafter also referred to as “first spacer”) that is disposed closest to the unvulcanized rubber molded body 1 and is in direct contact with the unvulcanized rubber molded body 1. ) Is a spacer that can expand and contract in the thickness direction and the width direction.
  • the first spacer 20x may be entirely formed of a rubber elastic body as exemplified above.
  • the spacer 20y located outside the first spacer 20x hereinafter also referred to as “second spacer” and the outermost spacer 20z (hereinafter also referred to as “third spacer”) are backup spacers, In the present embodiment, the thickness is thinner than the first spacer 20x.
  • the unvulcanized rubber molded article 1 is usually difficult to completely prevent the rubber and the vulcanizing agent from reacting during the production process, and it is difficult to obtain a completely raw rubber state. Further, it is usually difficult for the unvulcanized rubber molded body 1 to have the same degree of reaction among production lots. Further, when the unvulcanized rubber molded body 1 contains a filler such as carbon black, the hardness may slightly vary depending on the lot of the filler. For this reason, the unvulcanized rubber molded body 1 may have a slightly different compression elastic modulus depending on the production lot.
  • the degree of compression of the unvulcanized rubber molded body 1 by the upper heating platen 50a varies depending on the production lot even if the press pressure is the same, and the resulting vulcanized rubber molding is obtained. May have different body thickness. Therefore, when only the first spacer 20x is used in the vulcanization process, a vulcanized rubber molding is produced by controlling only the press pressure unless a sensor or the like for obtaining information on the vertical position of the upper heating platen 50a is used. It may be difficult to stabilize the quality of the body.
  • backup spacers 20y and 20z having a thickness smaller than that of the first spacer 20x are arranged outside the first spacer 20x as illustrated in FIG. 5, the use of a sensor for specifying the position of the hot platen is used. Can be omitted.
  • the upper heating platen 50a when starting the vulcanization process, when the unvulcanized rubber molded body 1 and the first spacer 20x are lowered while being compressed in the thickness direction, the backup spacer 20y. , 20z, the repulsive force from the backup spacers 20y, 20z is received.
  • the compression elastic modulus in the thickness direction is higher than the compression elastic modulus of the first spacer 20x.
  • the vulcanization step using the hot press machine as described above is performed while cooling a part of the upstream side without bringing the entire hot platen of the hot press machine into a heated state. That is, when the entire surface of the hot platen is heated, heat is transmitted from the hot platen side to the unvulcanized rubber molded body located immediately before the hot platen, and in this state, substantially no pressure is applied. There is a risk of causing vulcanization.
  • the upstream region from the position moved by the distance D2 from the upstream edge of the surface of the heat platen 50a, 50b to the downstream is used as a cooling region. It is preferable to set the temperature of the board surface lower than that in the heating region. More preferably, it is desirable that the cooling region is maintained at a temperature not higher than a normal temperature level (for example, 50 ° C. or lower) during the vulcanization process so that only pressure is applied.
  • a normal temperature level for example, 50 ° C. or lower
  • the transfer process is performed by removing the unvulcanized rubber by a length (D3) obtained by subtracting the length D2 of the cooling region from the length D1 of the platen surface of the hot plates 50a and 50b. It is preferable to carry out so as to be the moving distance of the molded body 1.
  • the unvulcanized rubber molded body is pressed in the thickness direction, it is compared with an unvulcanized rubber molded body that has not yet been introduced into the hot press machine 5 on the upstream side.
  • the thickness is thin and slightly wider.
  • the spacer according to the present embodiment can be expanded and contracted in the width direction, has excellent followability to the deformation behavior of the unvulcanized rubber molded body, and can make the lateral pressure in the length direction of the unvulcanized rubber molded body uniform. .
  • the quality conveyor belt with which the shape of the both-sides edge part was prepared can be produced.
  • the spacers and the hot plates 50a and 50b are not necessarily in direct contact with the unvulcanized rubber molded body, and the vulcanization step is made smooth so that the transfer step can be carried out smoothly. You may implement in the state which arrange
  • the inclusion a resin sheet is preferable, and a fiber-reinforced resin sheet is particularly preferable.
  • the inclusion is preferably a polytetrafluoroethylene resin sheet and more preferably a glass fiber reinforced polytetrafluoroethylene resin sheet in terms of excellent releasability and durability.
  • the backup spacer is made of a polymer on both the upper and lower surfaces serving as a contact surface with the inclusions.
  • the conveyor belt obtained by making it above can be made into endless form by conventionally well-known joining methods, such as a lap
  • the product appearance can be improved in such a product, and the work of deburring or repairing the indentation due to the removed burr can be omitted.
  • the merit is remarkably exhibited. .
  • the spacer of this embodiment can be formed of a general rubber elastic body, such as ethylene- ⁇ -olefin elastomer (EPM, EPDM), butyl rubber (IIR), chloroprene rubber (CR), natural rubber (NR), etc. It is formed by a rubber elastic body made of a rubber composition in which a reinforcing agent (filler) such as carbon black or silica, an anti-aging agent, a plasticizer, a processing aid, a crosslinking aid, a flame retardant, etc. is appropriately blended with a base rubber. be able to.
  • a reinforcing agent filler
  • the rubber elastic body constituting the spacer is preferably made of an ethylene- ⁇ -olefin elastomer such as EPDM as the base rubber from the viewpoint of excellent compression durability and heat resistance. From the viewpoint of excellent heat aging resistance and releasability from the unvulcanized rubber molding, the rubber elastic body constituting the spacer is preferably butyl rubber as the base rubber. Furthermore, the rubber elastic body constituting the spacer is measured using a type A durometer according to the measuring method based on the test method of JIS K6253, considering the follow-up to the deformation of the unvulcanized rubber molded body during pressurization and heating. The rubber hardness at the standard test temperature to be measured (23 ⁇ 2 ° C.) is preferably 75 to 95 °.
  • the spacer is not limited to the one formed entirely of a rubber elastic body, and only a part of the spacer may be formed of a rubber elastic body.
  • the spacer according to the present embodiment can be variously selected as long as it exhibits a property of being compressed and deformed at least by stress applied in the thickness direction, and when the stress is removed, the thickness and width are substantially restored to the state before compression.
  • the thing of the aspect of can be utilized.
  • 6A shows a spacer made of only a rubber elastic body
  • FIGS. 6B to 6H show other modes.
  • FIG. 6B shows a structure in which the canvas CB is laminated on both upper and lower surfaces of the rubber elastic body RB, and FIG.
  • FIG. 6C shows a structure in which the canvas CB is embedded in the central portion in the thickness direction of the rubber elastic body RB. is there. Further, FIG. 6 (d) shows that the canvas CB is embedded in the center portion in the thickness direction of the rubber elastic body RB and the canvas CB is laminated on both upper and lower surfaces.
  • FIG. 6 (e) shows a square bar-like rubber elasticity. The circumference (all circumferences) of the body RB is covered with the canvas CB.
  • FIG. 6F shows the core CD embedded in the central portion of the spacer in the thickness direction. In the embodiments shown in FIGS.
  • the tensile strength is exerted on the spacer by the tensile body such as the canvas CB and the core CD, and the stretchability in the length direction of the spacer is regulated.
  • the spacers in these aspects are restricted in stretchability in the length direction compared to stretchability in the thickness direction and width direction, and have high strength in the length direction.
  • FIG. 6G shows a core material CR that is slightly thinner than the spacer, and the core material CR is surrounded by a rubber elastic body RB.
  • the core material CR can be made of a material having higher hardness (compression elastic modulus) than the rubber elastic body RB such as resin, wood, metal, etc., and the rubber elastic body RB constituting the outer surface of the spacer. It is also possible to use a softer rubber elastic body or gel.
  • the spacer may be of a type as shown in FIG. 6 (h) in which metal thin plates MB are laminated on the upper and lower surfaces of the rubber elastic body RB.
  • the spacer does not necessarily have to have a rectangular or square cross-sectional shape, and in addition to a right-angle trapezoid, a parallelogram, etc., a spacer having a polygonal shape that is a pentagon or more, a circle, an ellipse, or an indefinite shape is also available. This can be adopted as long as the effects of the present invention are not significantly impaired.
  • the manufacturing method of the vulcanized rubber molded body (conveyor belt) of the present embodiment is not necessarily carried out only by a hot press machine, but a rotocure continuous vulcanization molding machine as shown in FIGS. Can also be implemented.
  • the rotocure continuous vulcanization molding machine is, for example, a metal cylinder rotatable around a rotation axis as a pressurizing member for pressurizing the unvulcanized rubber molded body 1 ′ in the thickness direction.
  • a heating drum 100 made of a body and an endless steel band 200 are provided.
  • the endless steel band 200 is slightly narrower than the length of the heating drum 100 in the rotation axis direction, and the unvulcanized rubber molded body 1 ′ is sandwiched between the heating drum 100 and the heat of the heating drum 100.
  • the unvulcanized rubber molded body 1 ′ is vulcanized, it is provided in a rotocure continuous vulcanization molding machine so as to continue to pressurize it in the thickness direction.
  • the endless steel band 200 includes four rolls 300. , 400, 500, 600 are provided in the rotocure continuous vulcanization molding machine in such a manner that the inner surface is brought into contact with the outer peripheral surface.
  • the heating drum 100 located substantially inside the quadrilateral connecting the rotation axes of the four rolls 300, 400, 500, 600 has its outer peripheral surface abutted against the outer surface of the endless steel band 200. Touching.
  • the endless steel band 200 is wound around two or less adjacent rolls 300 and 400 out of the four rolls 300, 400, 500, and 600, only about a quarter or less.
  • the remaining two rolls 500 and 600 are wound around a half or more, and are wound around the heating drum 100 between the two rolls 500 and 600 wound around the half or more. Yes.
  • the endless steel band 200 is wound over an area of about 3/4 of the outer peripheral surface of the heating drum 100.
  • the rolls three rolls 400, 500, and 600 are arranged in the immediate vicinity of the heating roll 100 to press the endless steel band 200 directly toward the heating drum 100, and the remaining one roll
  • the roll 300 is disposed at a position away from the heating roll 100 so as to apply tension to the endless steel band 200. That is, the roll 300 is provided in a rotocure continuous vulcanization molding machine to adjust the tension by adjusting the distance to the heating drum 100 and adjust the pressure between the endless steel band 200 and the heating drum 100 by the tension. It is what was done.
  • a spacer is wound around both ends of the heating drum 100 in the width direction, and a strip-shaped unvulcanized rubber molded product is supplied between the spacers.
  • the endless spacer 20 ′ can be used by being wound around both ends in the length direction of the heating drum 100 as illustrated in FIG.
  • the endless spacer 20 ′ suppresses the occurrence of burrs and sponge defects in the vulcanized rubber molded body by applying a side pressure to the unvulcanized rubber molded body 1 ′ between the endless steel band 200 and the heating drum 100. obtain.
  • the endless spacer 20 ′ is given a repulsive force corresponding to the lateral pressure from the unvulcanized rubber molded body 1 ′ outward in the rotation axis direction of the heating drum 100.
  • the endless spacer 20 ′ may deteriorate its function when its winding position is shifted outward due to the repulsive force. Therefore, the endless spacer 20 ′ preferably has a shape capable of generating a strong frictional force between the endless spacer 20 ′ and the heating drum 100 so as not to cause an unintended displacement, and has a width of a certain extent. It is preferable. Specifically, the endless spacer 20 ′ preferably has a width of 100 mm or more.
  • the endless steel band 200 is not The vulcanized rubber molded body 1 ′ is brought into contact with a strong pressure to generate a strong tension, while at least one of both end portions in the width direction is not sandwiched between the heating drum 100 and the center. The tension is extremely reduced compared to the portion.
  • the endless steel band 200 is likely to be distorted when there is an extreme difference in the way in which the force is applied in the width direction as described above, and there is a possibility that the service life may be shortened.
  • the total value of the widths of all the spacers and the unvulcanized rubber molded body 1 ′ is the endless steel.
  • the width of the band 200 is preferably 0.9 times or more, and more preferably 1.0 times or more.
  • the merit demonstrated by using the backup spacer is as described in the embodiment using the hot press.
  • a high-quality vulcanized rubber molded body is produced by suppressing occurrence of appearance defects and labor. be able to.
  • the present invention is not limited to the above examples, and conventionally known events relating to the production of a vulcanized rubber molded article can be appropriately adopted. It is not limited.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are a production method for vulcanized rubber molded article, with which high quality product fabrication is possible with reduced labor, and a spacer which is compressible in the thickness direction and the width direction, so as to provide a spacer suited to utilization in this production method.

Description

加硫ゴム成形体の製造方法、及び、スペーサーMethod for producing vulcanized rubber molded body and spacer
 本発明は、加硫ゴム成形体の製造方法、及び、スペーサーに関し、より詳しくは、帯状の未加硫ゴム成形体の長さ方向に沿って順に加硫を実施して帯状の加硫ゴム成形体を作製する加硫ゴム成形体の製造方法、及び、未加硫ゴム成形体を厚さ方向に加圧して加硫を行う際に未加硫ゴム成形体の幅方向及び厚さ方向への変形を規制すべく用いられるスペーサーに関する。 The present invention relates to a method for producing a vulcanized rubber molded article and a spacer, and more specifically, a vulcanized rubber molded article by performing vulcanization in order along the length direction of a strip-shaped unvulcanized rubber molded article. A method for producing a vulcanized rubber molded body for producing a body, and in the width direction and the thickness direction of an unvulcanized rubber molded body when vulcanizing by pressing the unvulcanized rubber molded body in the thickness direction The present invention relates to a spacer used to regulate deformation.
 従来、鉄鉱石、石炭、セメント、砕石等の鉱物資源を長距離搬送するための搬送装置、及び前記搬送装置のプーリ間に掛回して用いられるコンベヤベルトが広く知られている。
 この種の搬送装置としては、駅構内や空港内などにおける旅客の移動や、ゴルフ場でのホール間のプレーヤーの移動などのために人員を搭載して搬送するものも広く知られている。
 このような搬送装置に利用される前記コンベヤベルトは、通常、長尺な帯状の加硫ゴム成形体の両端部が接合されて無端状に形成されている。
DESCRIPTION OF RELATED ART Conventionally, the conveying apparatus for conveying mineral resources, such as iron ore, coal, cement, and crushed stone for a long distance, and the conveyor belt used around the pulley of the said conveying apparatus are known widely.
As this type of transporting device, a device that carries and transports personnel for the movement of passengers within a station premises or in an airport, or the movement of a player between holes at a golf course is widely known.
The conveyor belt used in such a conveying device is usually formed in an endless shape by joining both ends of a long belt-like vulcanized rubber molded body.
 また、コンベヤベルトだけではなく、長尺な帯状の加硫ゴム成形体は、農作業用車両や除雪作業車両などのゴムクローラー、鉄道車両等の床面に敷設されるゴム床材、さらには、河川などを堰き止めるためのチューブ状のゴム堰などにも利用されている。 In addition to conveyor belts, long belt-shaped vulcanized rubber moldings are used for rubber crawlers such as agricultural vehicles and snow removal vehicles, rubber floor materials laid on the floor of railway vehicles, and rivers. It is also used for tube-like rubber weirs and the like.
 一般にシート状の加硫ゴム成形体は、シート状の未加硫ゴム成形体を熱プレス機で加熱・加圧して当該未加硫ゴム成形体を加硫させるような方法で作製されている。
 しかし、前述のような長尺な帯状の加硫ゴム成形体は、例えば、熱プレス機の熱盤間に収まりきらない長さとなっている場合がある。
 その場合、前記加硫ゴム成形体は、帯状の未加硫ゴム成形体を長さ方向に搬送しつつ、該未加硫ゴム成形体を端から順に熱プレス機で加硫にする“送り焼き”と呼ばれる方法(下記特許文献1参照)により作製されている。
 また、前述のような長尺な帯状の加硫ゴム成形体は、熱プレス機の熱盤に代えて金属製ドラムと金属製無端状ベルトとを未加硫ゴム成形体を加圧するための部材として用いる“ロートキュア連続加硫”と呼ばれる方法(下記特許文献2参照)などでも作製されたりしている。
In general, a sheet-like vulcanized rubber molded body is produced by a method in which a sheet-like unvulcanized rubber molded body is heated and pressurized with a hot press to vulcanize the unvulcanized rubber molded body.
However, the long belt-like vulcanized rubber molded body as described above may have a length that does not fit between the hot plates of a hot press machine, for example.
In that case, the vulcanized rubber molded body is a “feed firing” in which a belt-shaped unvulcanized rubber molded body is conveyed in the length direction and the unvulcanized rubber molded body is vulcanized with a heat press in order from the end. It is produced by a method called "" (see Patent Document 1 below).
Further, the long belt-like vulcanized rubber molded body as described above is a member for pressing the unvulcanized rubber molded body with a metal drum and a metal endless belt instead of a hot platen of a hot press machine. It is also produced by a method called “rotocure continuous vulcanization” (see Patent Document 2 below).
日本国特開2008-063058号公報Japanese Unexamined Patent Publication No. 2008-063058 日本国特開2000-043070号公報Japanese Unexamined Patent Publication No. 2000-043070
 未加硫ゴム成形体を加圧・加熱して加硫ゴム成形体を作製するのに際しては、未加硫ゴム成形体に圧力が十分に加わらない部分があると、その部分がスポンジ状になるという不良(以下「スポンジ不良」ともいう)を生じることがある。
 そのため、前記加硫ゴム成形体は、帯状の未加硫ゴム成形体の幅方向両側に角棒状の金属棒などからなるスペーサーを配置して熱プレスを実施し、該スペーサーで未加硫ゴム成形体への側圧を確保して側縁部にスポンジ不良が発生しないように作製することが好ましい。
When producing a vulcanized rubber molded body by pressurizing and heating the unvulcanized rubber molded body, if there is a part where the pressure is not sufficiently applied to the unvulcanized rubber molded body, the part becomes sponge-like. (Hereinafter also referred to as “sponge failure”).
Therefore, the vulcanized rubber molded body is subjected to hot pressing by placing spacers made of rectangular metal bars or the like on both sides in the width direction of the band-shaped unvulcanized rubber molded body, and the unvulcanized rubber molded with the spacers. It is preferable that the side pressure on the body is secured so that sponge defects do not occur at the side edge.
 しかし、この場合、未加硫ゴム成形体に厚さ方向に十分な圧力を加える必要性から、加硫ゴム成形体は、未加硫ゴム成形体よりも厚さの薄い金属棒などをスペーサーにして作製する必要がある。
 そうすると、未加硫ゴム成形体は、熱盤がスペーサーを加圧し始める前に該熱盤によって加圧されることになる。
 従って、単にスペーサーを用いるだけでは、熱盤とスペーサーとの間を通ってスペーサーの外側に未加硫ゴムがオーバーフローするおそれを有する。
However, in this case, since it is necessary to apply sufficient pressure in the thickness direction to the unvulcanized rubber molded body, the vulcanized rubber molded body uses a metal rod or the like that is thinner than the unvulcanized rubber molded body as a spacer. Need to be made.
Then, the unvulcanized rubber molded body is pressed by the hot plate before the hot plate starts to press the spacer.
Therefore, simply using a spacer may cause the unvulcanized rubber to overflow to the outside of the spacer through the space between the hot platen and the spacer.
 このオーバーフローしたゴムは、未加硫ゴム成形体の加硫済み箇所を熱プレス機から搬出する際に脱落して熱プレス機内に残留するおそれがある。
 熱プレス機内に残留したゴムは、加硫ゴム成形体の付着異物や圧痕の原因となるおそれがある。
 熱プレス機でオーバーフローしたゴムは、加硫済み箇所を熱プレス機から搬出する際に脱落しない場合でも、最終的な加硫ゴム成形体にバリを生じさせる。
 加硫ゴム成形体は、製造に際して多くのバリを発生させると、このバリを除去するために長時間の作業が必要になるおそれが有る。
 即ち、帯状の加硫ゴム成形体を製造するための従来の方法は、要する手間を抑制しつつ製品の外観不良を抑制して高品質な製品作りを行うことが困難であるという問題を有している。
 なお、このような問題は、熱プレス機による“送り焼き”のみならず“ロートキュア連続加硫”においても共通する問題である。
The overflowed rubber may drop off and remain in the hot press when the vulcanized portion of the unvulcanized rubber molded body is taken out from the hot press.
The rubber remaining in the hot press machine may cause adhered foreign matter and indentations on the vulcanized rubber molded body.
Even if the rubber overflowed by the hot press machine does not fall off when the vulcanized portion is carried out of the hot press machine, the final vulcanized rubber molded body is burred.
When many burrs are generated during the production of a vulcanized rubber molded product, it may be necessary to work for a long time to remove the burrs.
That is, the conventional method for producing a belt-like vulcanized rubber molded article has a problem that it is difficult to produce a high-quality product by suppressing the appearance defect of the product while suppressing the labor required. ing.
Such a problem is a common problem not only in “feed baking” by a hot press machine but also in “rotocure continuous vulcanization”.
 本発明は上記のような問題の解決を図ることを課題としており、要する手間を抑制しつつ外観不良を抑制して高品質な製品作りを行うことが可能な加硫ゴム成形体の製造方法、及び、このような製造方法への利用に適したスペーサーの提供を課題としている。 The present invention aims to solve the above problems, and a method for producing a vulcanized rubber molded body capable of producing a high-quality product while suppressing defective appearance while suppressing labor required, Also, it is an object to provide a spacer suitable for use in such a manufacturing method.
 上記課題を解決するための加硫ゴム成形体の製造法に係る本発明は、帯状の未加硫ゴム成形体の一面側と他面側とに該未加硫ゴム成形体を厚さ方向に加圧するための加圧部材を配し、前記未加硫ゴム成形体を前記加圧部材で加圧しつつ加熱することにより前記未加硫ゴム成形体を加硫し、且つ、該加硫を前記未加硫ゴム成形体の長さ方向に沿って順に実施して帯状の加硫ゴム成形体を作製する加硫ゴム成形体の製造方法であって、前記加圧による未加硫ゴム成形体の幅方向及び厚さ方向への変形を規制するスペーサーを前記未加硫ゴム成形体の幅方向両外側に配置して前記加硫を実施し、且つ前記スペーサーとして少なくとも前記加圧の方向及び前記未加硫ゴム成形体の幅方向に伸縮自在なスペーサーを用いることを特徴としている。 The present invention relating to a method for producing a vulcanized rubber molded body for solving the above-mentioned problems is that the unvulcanized rubber molded body is disposed in the thickness direction on one side and the other side of a belt-shaped unvulcanized rubber molded body. A pressure member for pressurizing is disposed, the unvulcanized rubber molded body is vulcanized by heating the unvulcanized rubber molded body while being pressurized with the pressure member, and the vulcanized A method for producing a vulcanized rubber molded body, which is sequentially performed along the length direction of an unvulcanized rubber molded body to produce a band-shaped vulcanized rubber molded body, Spacers for restricting deformation in the width direction and the thickness direction are arranged on both outer sides in the width direction of the unvulcanized rubber molded body, and the vulcanization is performed. It is characterized by using a spacer that can expand and contract in the width direction of the vulcanized rubber molding.
 また、上記課題を解決するためのスペーサーに係る本発明は、帯状の未加硫ゴム成形体を厚さ方向に加圧しつつ加熱することにより前記未加硫ゴム成形体を加硫して帯状の加硫ゴム成形体を作製するのに際して前記加圧による未加硫ゴム成形体の幅方向及び厚さ方向への変形を規制すべく前記未加硫ゴム成形体の幅方向両外側に配置させて用いられ、厚さ方向及び幅方向に伸縮自在であることを特徴としている。 Further, the present invention relating to the spacer for solving the above-described problem is that the unvulcanized rubber molded body is vulcanized by heating the band-shaped unvulcanized rubber molded body while pressing in the thickness direction. When producing a vulcanized rubber molded body, the unvulcanized rubber molded body is arranged on both outer sides in the width direction so as to restrict deformation in the width direction and thickness direction of the unvulcanized rubber molded body due to the pressurization. It is used, and is characterized by being freely stretchable in the thickness direction and the width direction.
 本発明においては、未加硫ゴム成形体の加圧方向に伸縮自在なスペーサーが帯状の加硫ゴム成形体の製造に用いられる。
 従って、本発明の加硫ゴム成形体の製造方法においては、金属製スペーサーなどの伸縮性を有していないスペーサーを用いる場合に比べて厚さの厚いスペーサーを用いても未加硫ゴム成形体に対して厚さ方向に十分な圧力を加えることができる。
 従って、本発明の加硫ゴム成形体の製造方法においては、未加硫ゴム成形体よりも厚みの薄いスペーサーのみならず、例えば、未加硫ゴム成形体よりも厚さの厚いスペーサーを用いることができる。
 そのため、本発明においては、未加硫ゴム成形体を加圧部材で加圧する際に、該加圧部材がスペーサーを加圧し始める時期を金属製スペーサーなどを用いる場合に比べて早期化させ得る。
 即ち、本発明によれば、ゴムが進入してしまうおそれのあるスペーサーと加圧部材との隙間を未加硫ゴム成形体の加硫時において比較的早い段階で無くすことができる。
 しかも、本発明のスペーサーは、前記のように未加硫ゴム成形体の幅方向に伸縮自在となっているため、未加硫ゴム成形体が加圧部材で加圧されて広幅に変形しようとする際に当該未加硫ゴム成形体の側面形状に対する追従性が発揮され得る。
 従って、本発明のスペーサーは、未加硫ゴム成形体の加硫に際して未加硫ゴム成形体から受ける圧力が局所的に集中することを抑制させ得る。
 このように、本発明のスペーサーは、未加硫ゴム成形体の加硫時において、加圧部材と素早く当接する機能、未加硫ゴム成形体から受ける圧力により加圧部材との間に強い圧力を発生させる機能、及び、未加硫ゴム成形体から受ける圧力の局所集中を防止する機能を発揮する。
 このことから本発明においては、加硫ゴム成形体の製造時におけるゴムのオーバーフローが抑制され、当該加硫ゴム成形体に付着異物や圧痕が生じたりすることが抑制されるとともに加硫ゴム成形体の製造後などにおけるバリ取りの手間などを削減させ得る。
In the present invention, a spacer that can expand and contract in the pressurizing direction of the unvulcanized rubber molded body is used for producing a belt-like vulcanized rubber molded body.
Therefore, in the method for producing a vulcanized rubber molded article of the present invention, an unvulcanized rubber molded article can be used even when a thick spacer is used as compared with a case where a spacer having no elasticity such as a metal spacer is used. In contrast, a sufficient pressure can be applied in the thickness direction.
Therefore, in the method for producing a vulcanized rubber molded body of the present invention, not only a spacer having a thickness smaller than that of the unvulcanized rubber molded body but also a spacer having a thickness larger than that of the unvulcanized rubber molded body is used. Can do.
Therefore, in the present invention, when the unvulcanized rubber molded body is pressurized with the pressure member, the timing at which the pressure member starts to press the spacer can be accelerated compared to the case where a metal spacer or the like is used.
That is, according to the present invention, it is possible to eliminate a gap between the spacer and the pressure member, which may cause rubber to enter, at a relatively early stage when the unvulcanized rubber molded body is vulcanized.
Moreover, since the spacer of the present invention is expandable and contractible in the width direction of the unvulcanized rubber molded body as described above, the unvulcanized rubber molded body is pressed by the pressure member and tends to deform wide. In doing so, the followability to the side shape of the unvulcanized rubber molded article can be exhibited.
Therefore, the spacer of this invention can suppress that the pressure received from an unvulcanized rubber molding at the time of vulcanization of an unvulcanized rubber molding concentrates locally.
Thus, the spacer of the present invention has a function of quickly contacting the pressure member during vulcanization of the unvulcanized rubber molded body, and a strong pressure between the pressure member and the pressure received from the unvulcanized rubber molded body. And the function of preventing local concentration of pressure received from the unvulcanized rubber molded body.
Therefore, in the present invention, the overflow of rubber during the production of the vulcanized rubber molded product is suppressed, and it is possible to suppress adhesion foreign matter and indentation in the vulcanized rubber molded product, and the vulcanized rubber molded product. It is possible to reduce the time and effort of deburring after the manufacture of the product.
 即ち、本発明によれば、手間を抑制しつつも外観不良の少ない高品質な製品作りを行うことが可能な加硫ゴム成形体の製造方法、及び、このような製造方法への利用に適したスペーサーを提供し得る。 That is, according to the present invention, a method for producing a vulcanized rubber molded body capable of producing a high-quality product with less appearance defects while suppressing labor, and suitable for use in such a production method. Spacers may be provided.
加硫ゴム成形体の製造方法の一態様を表した概略斜視図。The schematic perspective view showing the one aspect | mode of the manufacturing method of a vulcanized rubber molding. 図1のI-I線矢視断面図。FIG. 2 is a cross-sectional view taken along line II in FIG. 1. 図2の破線Yを拡大して、スペーサーの機能を説明する要部拡大図。The principal part enlarged view explaining the function of a spacer, enlarging the broken line Y of FIG. 別のスペーサーの機能を説明する要部拡大図。The principal part enlarged view explaining the function of another spacer. 複数本のスペーサーを配置した様子を示す要部拡大図。The principal part enlarged view which shows a mode that the several spacer was arrange | positioned. スペーサーの各種態様を示した概略断面図。The schematic sectional drawing which showed the various aspects of the spacer. 加硫ゴム成形体の製造方法の他の態様を表した概略図。Schematic showing the other aspect of the manufacturing method of a vulcanized rubber molding. 加硫ゴム成形体の製造方法の他の態様を表した概略図。Schematic showing the other aspect of the manufacturing method of a vulcanized rubber molding.
 以下、本発明の製造方法で製造する加硫ゴム成形体が平坦な帯状のコンベヤベルトである場合を例にして本発明の実施形態を説明する。
 なお、図1は、前記コンベヤベルトを形成させるための長尺な帯状の未加硫ゴム成形体1を熱プレス機5を使って長さ方向に順に加硫する様子を模式的に示した斜視図であり、図2は、この図1におけるI-I線矢視断面の概略を示した図である。
Hereinafter, an embodiment of the present invention will be described by taking as an example the case where the vulcanized rubber molded body produced by the production method of the present invention is a flat belt-like conveyor belt.
FIG. 1 is a perspective view schematically showing a state in which a long belt-shaped unvulcanized rubber molded body 1 for forming the conveyor belt is vulcanized in order in the length direction using a hot press machine 5. FIG. 2 is a diagram showing an outline of a cross section taken along line II in FIG.
 本実施形態のコンベヤベルト製造方法においては、下記(a)、(b)の工程を交互に実施して加硫ゴム成形体(コンベヤベルト)を形成させる。
 
(a)帯状の未加硫ゴム成形体1の一部分を、その厚さ方向TDに前記熱プレス機5で所定の圧力を加えつつ所定の温度に加熱し、この加圧下での加熱を所定時間実施して、前記一部分を加硫する加硫工程。
(b)未加硫ゴム成形体1をその長さ方向LDに沿って移動させ、加硫された前記一部分を加硫済箇所10bとして熱プレス機5から脱型するとともに当該加硫済箇所10bに続く未加硫箇所10aを熱プレス機に供給する移送工程。
 
 即ち、前記移送工程後には、帯状の未加硫ゴム成形体1の前記未加硫箇所10aを加硫する加硫工程が新たに実施されることになる。
 このように本実施形態においては、加硫と、脱型・移送とを繰り返す方法にて未加硫ゴム成形体1の略全長が加硫されて前記コンベヤベルトが形成される。
In the conveyor belt manufacturing method of the present embodiment, the following steps (a) and (b) are alternately performed to form a vulcanized rubber molded body (conveyor belt).

(A) A part of the strip-shaped unvulcanized rubber molded body 1 is heated to a predetermined temperature while applying a predetermined pressure in the thickness direction TD by the hot press 5 and the heating under this pressure is performed for a predetermined time. A vulcanization step that is carried out to vulcanize the part.
(B) The unvulcanized rubber molded body 1 is moved along its length direction LD, and the vulcanized part is demolded from the hot press 5 as a vulcanized portion 10b and the vulcanized portion 10b. The transfer process which supplies the unvulcanized location 10a following to a hot press machine.

That is, after the transfer step, a vulcanization step for vulcanizing the unvulcanized portion 10a of the strip-shaped unvulcanized rubber molded body 1 is newly performed.
As described above, in the present embodiment, the conveyor belt is formed by vulcanizing the substantially entire length of the unvulcanized rubber molded body 1 by a method of repeating vulcanization and demolding / transfer.
 なお、本実施形態においては、未加硫ゴム成形体1は、その面方向が略水平となる姿勢となって熱プレス機5で加硫される。
 即ち、前記熱プレス機5は、前記未加硫ゴム成形体1を厚さ方向に加圧する加圧部材として上下一対の熱盤を有しており、未加硫ゴム成形体1を上面側から加熱するとともに加圧するための上部熱盤50aと、未加硫ゴム成形体1を下面側から加熱するとともに加圧するための下部熱盤50bとを備えている。
 この上部熱盤50aと下部熱盤50bとは、それぞれ矩形板状に形成されており、未加硫ゴム成形体1を加圧・加熱するための長方形の盤面を上下方向に対向させて熱プレス機5に備えられている。
In the present embodiment, the unvulcanized rubber molded body 1 is vulcanized by the hot press 5 in a posture in which the surface direction is substantially horizontal.
That is, the hot press machine 5 has a pair of upper and lower heating plates as pressure members for pressing the unvulcanized rubber molded body 1 in the thickness direction, and the unvulcanized rubber molded body 1 is moved from the upper surface side. An upper heating platen 50a for heating and pressurizing and a lower heating platen 50b for heating and pressurizing the unvulcanized rubber molded body 1 from the lower surface side are provided.
Each of the upper heating platen 50a and the lower heating platen 50b is formed in a rectangular plate shape, and is heated by pressing the rectangular plate surface for pressurizing and heating the unvulcanized rubber molded body 1 in the vertical direction. It is provided in the machine 5.
 本実施形態における前記下部熱盤50bは、前記盤面を垂直方向上方に向け、且つ前記盤面の長手方向が未加硫ゴム成形体1の長さ方向LDとなるように固定された状態で熱プレス機5に配されている。
 前記上部熱盤50aは、前記盤面の長手方向が未加硫ゴム成形体1の長手方向LDとなって熱プレス機に配されている点においては下部熱盤50bと共通する。
 一方で前記上部熱盤50aは、前記盤面を垂直方向下方に向け且つ上下動可能となって熱プレス機5に配されている点において下部熱盤50bと相違している。
 前記加硫工程においては、該上部熱盤50aが下降されて下部熱盤50bとの間に挟まれた未加硫箇所10aに対して所定の圧力が加えられるとともに該熱盤50a,50bの熱により未加硫箇所10aが加熱される。
 前記移送工程は、前記加硫工程で所定時間の加圧・加熱が実施された加硫箇所10bに対する圧力開放が前記上部熱盤50aを上昇させることによって実施された後、適宜なシート移動手段により未加硫ゴム成形体1を長さ方向LDに所定距離移動させることにより実施される。
In the present embodiment, the lower hot platen 50b is hot-pressed in a state where the platen surface is directed vertically upward and the longitudinal direction of the platen surface is the length direction LD of the unvulcanized rubber molded body 1. The machine 5 is arranged.
The upper heating platen 50a is common to the lower heating platen 50b in that the longitudinal direction of the platen surface is the longitudinal direction LD of the unvulcanized rubber molded body 1 and is arranged in the heat press.
On the other hand, the upper heating platen 50a is different from the lower heating platen 50b in that the platen surface is directed downward in the vertical direction and can be moved up and down and arranged in the heat press machine 5.
In the vulcanization process, the upper heating platen 50a is lowered and a predetermined pressure is applied to the unvulcanized portion 10a sandwiched between the lower heating platen 50b and the heat of the heating plates 50a and 50b. As a result, the unvulcanized portion 10a is heated.
The transfer step is performed by raising the upper heating platen 50a and releasing the pressure on the vulcanized portion 10b that has been pressurized and heated for a predetermined time in the vulcanizing step, and then by an appropriate sheet moving means. This is performed by moving the unvulcanized rubber molded body 1 by a predetermined distance in the length direction LD.
 前記未加硫ゴム成形体1は、前記上部熱盤50a及び前記下部熱盤50bの前記盤面の長さに対して数倍以上の長さを有し、且つ、幅方向WDにおける寸法として前記盤面の幅よりも小さな寸法を有している。
 言い換えれば、本実施形態の下部熱盤50bは、前記移送工程によって熱プレス機に新たに導入された未加硫個所10aが前記盤面上に載置された際には、該未加硫個所10aの幅方向両側に余剰スペースが形成される大きさを有している。
The unvulcanized rubber molded body 1 has a length that is several times or more the length of the surface of the upper heat platen 50a and the lower heat platen 50b, and the surface of the plate as a dimension in the width direction WD. Has a size smaller than the width of
In other words, the lower heating platen 50b of the present embodiment is configured such that when the unvulcanized location 10a newly introduced into the heat press by the transfer process is placed on the platen surface, the unvulcanized location 10a. The extra space is formed on both sides in the width direction.
 本実施形態においては、この下部熱盤上の余剰スペースにスペーサー20を配置し、当該スペーサー20を未加硫ゴム成形体1とともに上下の熱盤(50a,50b)間に挟み込ませて未加硫ゴム成形体1の幅方向及び厚さ方向への変形を規制させている。
(なお、図1においては、スペーサーの図示を省略している)
 しかも、本実施形態においては、前記スペーサー20として、その厚さ方向及び幅方向に伸縮自在なスペーサーを用いている。
In the present embodiment, the spacer 20 is disposed in the surplus space on the lower heating platen, and the spacer 20 is sandwiched between the upper and lower heating plates (50a, 50b) together with the unvulcanized rubber molded body 1 to be unvulcanized. The deformation of the rubber molded body 1 in the width direction and the thickness direction is restricted.
(In FIG. 1, the illustration of the spacer is omitted.)
Moreover, in the present embodiment, as the spacer 20, a spacer that can be expanded and contracted in the thickness direction and the width direction is used.
 なお、図2正面視において未加硫ゴム成形体1の左側に配されたスペーサー20と未加硫ゴム成形体1の右側に配されたスペーサー20とは断面形状を共通させており、本実施形態における前記スペーサー20は、全体がゴム弾性体からなる角棒状となっている。
 本実施形態における前記スペーサー20は、全体がゴム弾性体であるため、厚さ方向TD及び幅方向WDのみならず長さ方向LDにも伸縮自在となっている。
Note that the spacer 20 disposed on the left side of the unvulcanized rubber molded body 1 and the spacer 20 disposed on the right side of the unvulcanized rubber molded body 1 in the front view of FIG. The spacer 20 in the form has a square bar shape made entirely of a rubber elastic body.
Since the spacer 20 in the present embodiment is a rubber elastic body as a whole, it can be expanded and contracted not only in the thickness direction TD and the width direction WD but also in the length direction LD.
 本実施形態の前記スペーサー20は、未加硫ゴム成形体1よりも厚さが薄く、下部熱盤50bの盤面の長さD1を超える長さを有している。
 即ち、本実施形態においては、未加硫ゴム成形体1の長さ方向における熱盤長さよりも長いスペーサー20が用いられる。
 本実施形態における前記スペーサー20は、下部熱盤50bの盤面全長に亘って配されており、且つ、未加硫ゴム成形体1の左右に配されたスペーサー間の距離W1が、その間の未加硫ゴム成形体1の幅W2よりもわずかに広くなるように下部熱盤50bの盤面上に配置されている。
 従って、前記移送工程後に、前記上部熱盤50aが下降してその盤面が未加硫ゴム成形体1の上面に接する時点(図3(a))においては、厚さ方向において、前記盤面とスペーサー20の上面との間に僅かなクリアランスCRt(以下、「厚さクリアランスCRt」ともいう)が存在しているとともに幅方向において未加硫ゴム成形体1とスペーサー20との間に僅かなクリアランスCRw(以下、「幅クリアランスCRw」ともいう)が存在している。
The spacer 20 of the present embodiment is thinner than the unvulcanized rubber molded body 1 and has a length exceeding the length D1 of the board surface of the lower heating board 50b.
That is, in this embodiment, the spacer 20 longer than the hot platen length in the length direction of the unvulcanized rubber molded body 1 is used.
The spacer 20 in the present embodiment is arranged over the entire surface of the lower heating platen 50b, and the distance W1 between the spacers arranged on the left and right sides of the unvulcanized rubber molded body 1 is not added between them. It arrange | positions on the board surface of the lower heating board 50b so that it may become slightly wider than the width | variety W2 of the vulcanized rubber molded object 1. FIG.
Therefore, after the transfer step, when the upper heating platen 50a is lowered and its surface comes into contact with the upper surface of the unvulcanized rubber molded body 1 (FIG. 3 (a)), the platen surface and the spacer in the thickness direction. 20 has a slight clearance CRt (hereinafter also referred to as “thickness clearance CRt”) and a slight clearance CRw between the unvulcanized rubber molded body 1 and the spacer 20 in the width direction. (Hereinafter also referred to as “width clearance CRw”).
 本実施形態においては、前記のように全体がゴム弾性体からなるスペーサー20が用いられているため、長さ方向に引張って張力を発生させることにより、当該スペーサー20の厚さや幅を僅かに減少させることができ、前記厚さクリアランスCRt及び前記幅クリアランスCRwを前記張力の大きさによって微調整することができる。
 一般にゴム弾性体は、応力と歪みとの間にリニアな相関関係を有していない。
 即ち、同じ力でゴム弾性体を変形させようとした場合、通常、ある程度の応力が既に加えられているゴム弾性体と全く応力が加えられていないゴム弾性体とでは変形量が大きく異なる。
 従って、本実施形態においては、前記スペーサー20に張力を加えて歪みを与えることで、当該スペーサー20の厚さ方向や幅方向における弾性変形の挙動を、張力を加えない場合と異なる状態にすることができる。
 このことから、本実施形態においては、加硫工程中における未加硫ゴム成形体10aへの側圧の加わり方についても、スペーサー20に張力を加えることで調整可能となる。
In the present embodiment, as described above, the spacer 20 made entirely of a rubber elastic body is used. Therefore, by generating tension by pulling in the length direction, the thickness and width of the spacer 20 are slightly reduced. The thickness clearance CRt and the width clearance CRw can be finely adjusted according to the magnitude of the tension.
In general, a rubber elastic body does not have a linear correlation between stress and strain.
That is, when an attempt is made to deform a rubber elastic body with the same force, the amount of deformation is usually greatly different between a rubber elastic body to which a certain amount of stress has already been applied and a rubber elastic body to which no stress has been applied.
Therefore, in this embodiment, by applying tension to the spacer 20 and applying distortion, the elastic deformation behavior in the thickness direction and the width direction of the spacer 20 is made different from the case where no tension is applied. Can do.
From this, in this embodiment, it becomes possible to adjust how the side pressure is applied to the unvulcanized rubber molded body 10a during the vulcanization step by applying tension to the spacer 20.
 前記未加硫ゴム成形体1は、上部熱盤50aの盤面が上面に接した状態(図3(a))から、さらに上部熱盤50aが下降されることで厚さ方向に圧力が加わり、該未加硫ゴム成形体1が広幅となる方向に変形する。
 前記スペーサー20も、上部熱盤50aの盤面が上面に到達した時点から、さらに上部熱盤50aが下降されることで広幅となる方向に変形する(図3(b))。
 このことによって、前記加硫工程においては、スペーサー20の側面と未加硫ゴム成形体1の側面との間に強い圧力を作用させることができ、スポンジ不良が発生することを抑制させることができる。
 しかも、前記スペーサー20は、未加硫ゴム成形体1との間に発生させた前記圧力を、上部熱盤50aや下部熱盤50bと当接力に転化させることができる。
In the unvulcanized rubber molded body 1, pressure is applied in the thickness direction by further lowering the upper heating platen 50 a from the state where the surface of the upper heating platen 50 a is in contact with the upper surface (FIG. 3A), The unvulcanized rubber molded body 1 is deformed in the direction of widening.
The spacer 20 is also deformed in the direction of widening when the upper heating platen 50a is further lowered from the time when the upper heating platen 50a reaches the upper surface (FIG. 3B).
Thereby, in the vulcanization step, a strong pressure can be applied between the side surface of the spacer 20 and the side surface of the unvulcanized rubber molded body 1, and the occurrence of defective sponge can be suppressed. .
In addition, the spacer 20 can convert the pressure generated between the unvulcanized rubber molded body 1 into a contact force with the upper heating platen 50a and the lower heating platen 50b.
 本実施形態においては、ステンレスや鋼鉄などのような弾性変形を殆ど示さない金属製のスペーサーではなく、厚さ方向に伸縮可能なスペーサーを利用することから、未加硫ゴム成形体1の厚さ方向に所定の圧力を加えるために金属製スペーサーよりも厚さの厚いスペーサーを利用することができる。
 従って、本実施形態においては、厚さクリアランスCRtが消滅するタイミングを金属製スペーサーを利用する場合に比べて早期化させうる。
 そのため、本実施形態においては、広幅に変形した未加硫ゴム成形体1の一部が厚さクリアランスCRtへと進入してコンベヤベルトにバリを発生させる結果となることを抑制させることができる。
 なお、金属製スペーサーを用い、且つ、幅方向クリアランスを十分に確保する方法は、バリの抑制を可能にするが、コンベヤベルトの側縁部にスポンジ不良を生じさせるおそれが高くなる。
In the present embodiment, the thickness of the unvulcanized rubber molded body 1 is used because a spacer that can expand and contract in the thickness direction is used instead of a metal spacer that hardly exhibits elastic deformation such as stainless steel or steel. In order to apply a predetermined pressure in the direction, a spacer thicker than a metal spacer can be used.
Therefore, in this embodiment, the timing at which the thickness clearance CRt disappears can be advanced compared to the case where a metal spacer is used.
Therefore, in this embodiment, it can suppress that a part of unvulcanized rubber molded object 1 deform | transformed into the width | variety enters into thickness clearance CRt, and results in generating a burr | flash on a conveyor belt.
In addition, although the method of using a metal spacer and ensuring sufficient width direction clearance enables suppression of a burr | flash, there exists a high possibility that a sponge defect will be produced in the side edge part of a conveyor belt.
 本実施形態においては、厚さ方向に伸縮自在なスペーサーを用いることから、例えば、図4(a)に示すように、上部熱盤50aによるスペーサー20の加圧開始を、上部熱盤50aによる未加硫ゴム成形体1の加圧開始のタイミングに先行させることができる。
 この場合、幅方向クリアランスCRwをある程度大きく確保させる必要があるが、本実施形態のスペーサーは、厚さ方向に加えられた圧力により幅方向にも伸縮自在であるために加硫工程時における未加硫ゴム成形体の側圧を金属製スペーサーよりも確保させ易い。
 従って、本実施形態においては、バリの発生をより確実に抑制しつつスポンジ不良が発生することを抑制することができる。
In the present embodiment, since a spacer that can expand and contract in the thickness direction is used, for example, as shown in FIG. 4A, the start of pressurization of the spacer 20 by the upper heating platen 50a is not performed by the upper heating platen 50a. It is possible to precede the timing of starting pressurization of the vulcanized rubber molded body 1.
In this case, it is necessary to ensure the width direction clearance CRw to be large to some extent. However, since the spacer of this embodiment can be expanded and contracted in the width direction by the pressure applied in the thickness direction, it is not added during the vulcanization process. It is easier to ensure the side pressure of the vulcanized rubber molded body than a metal spacer.
Therefore, in the present embodiment, it is possible to suppress the occurrence of defective sponge while more reliably suppressing the generation of burrs.
 また、熱プレスの熱盤は、均一な平滑面となっているわけではなく、多少の凹凸を有している場合がある。
 そのため、金属製スペーサーを用いる場合、加硫工程においてスペーサーと上部熱盤との間に圧力の低い箇所が形成され易くなり、当該箇所を通じて未加硫ゴム成形体の一部の成分がスペーサーの内側の空間から外側に向けて漏洩するおそれがあるが、本実施形態においては、ゴム弾性体からなる表面の弾性変形性に優れたスペーサーが利用される。
 したがって、このことからも本実施形態によればゴムのオーバーフローなどを原因としたバリの形成を抑制することができる。
 しかも、前記スペーサー20は、幅方向にも伸縮自在であるために未加硫ゴム成形体の側面形状への追従性に優れている。
 従って、前記スペーサー20は、未加硫ゴム成形体との間に発生させる側圧を長さ方向に均一化させ易く、局所的に高い圧力が発生してゴムがオーバーフローしてしまうことを防止することができる。
 なお、当該加硫工程においては、前記スペーサー20の外側に、別のスペーサーを配して未加硫ゴム成形体1に側圧を加える前記スペーサー20のバックアップを行うようにさせても良く、その場合、このバックアップ用スペーサーは、厚さ方向に伸縮自在である必要はない。
 本実施形態においては、前記スペーサー20に比べて厚さの薄い金属製角棒をバックアップ用スペーサーとして用いてもよい。
 前記バックアップ用スペーサーを用いることで、未加硫ゴム成形体1に側圧を加えるための前記スペーサー20が前記側圧によって幅方向外側に移動してしまうことを抑制することができる。
 また、当該加硫工程では、このようなバックアップ用スペーサーを2組以上用いることも可能である。
 より詳しくは、前記加硫工程は、下部熱盤50bの盤面上に余剰スペースが無くなるように複数のバックアップ用スペーサーを配して実施することが好ましい。
Further, the hot press hot platen does not have a uniform smooth surface, and may have some unevenness.
Therefore, when a metal spacer is used, it is easy to form a low-pressure portion between the spacer and the upper heating plate in the vulcanization process, and some components of the unvulcanized rubber molded body are inside the spacer through the portion. However, in the present embodiment, a spacer made of a rubber elastic body and having excellent elastic deformability on the surface is used.
Therefore, also from this, according to the present embodiment, it is possible to suppress the formation of burrs due to rubber overflow or the like.
Moreover, since the spacer 20 can be expanded and contracted in the width direction, the spacer 20 is excellent in followability to the side shape of the unvulcanized rubber molded body.
Therefore, the spacer 20 can easily equalize the lateral pressure generated between the unvulcanized rubber molded body in the length direction and prevent the rubber from overflowing due to local high pressure. Can do.
In the vulcanization step, another spacer may be arranged outside the spacer 20 to back up the spacer 20 to apply a side pressure to the unvulcanized rubber molded body 1, in which case The backup spacer need not be stretchable in the thickness direction.
In the present embodiment, a metal square bar that is thinner than the spacer 20 may be used as a backup spacer.
By using the backup spacer, it is possible to suppress the spacer 20 for applying a side pressure to the unvulcanized rubber molded body 1 from moving outward in the width direction due to the side pressure.
In the vulcanization process, two or more sets of such backup spacers can be used.
More specifically, it is preferable that the vulcanization step is performed by arranging a plurality of backup spacers so that there is no excess space on the surface of the lower heating platen 50b.
 本実施形態の加硫ゴム成形体の製造方法は、上記のように、加圧による未加硫ゴム成形体の幅方向及び厚さ方向への変形を規制するためのスペーサーを前記未加硫ゴム成形体の幅方向両外側に複数本ずつ配置して前記加硫を実施してもよい。
 この点について、図5を参照しつつ説明する。
 図5は、前記未加硫ゴム成形体の幅方向両外側に3本ずつのスペーサーを配置した様子を示したものである。
 図5に例示の3本のスペーサーの内、未加硫ゴム成形体1に最も近い位置に配され、未加硫ゴム成形体1に直接的に接するスペーサー20x(以下「第1スペーサー」ともいう)は、厚さ方向、及び、幅方向に伸縮自在なスペーサーである。
 前記第1スペーサー20xは、これまでに例示しているような全体がゴム弾性体によって形成されているものとすることができる。
 前記第1スペーサー20xの外側に位置するスペーサー20y(以下「第2スペーサー」ともいう)、及び、最も外側に位置するスペーサー20z(以下「第3スペーサー」ともいう)は、バックアップ用スペーサーであり、本実施形態においては、前記第1スペーサー20xよりも厚さが薄くなっている。
As described above, the method for producing a vulcanized rubber molded body according to the present embodiment includes a spacer for regulating deformation of the unvulcanized rubber molded body in the width direction and the thickness direction due to pressurization. The vulcanization may be carried out by arranging a plurality of them on both outer sides in the width direction of the molded body.
This point will be described with reference to FIG.
FIG. 5 shows a state in which three spacers are arranged on both outer sides in the width direction of the unvulcanized rubber molded body.
Among the three spacers illustrated in FIG. 5, a spacer 20 x (hereinafter also referred to as “first spacer”) that is disposed closest to the unvulcanized rubber molded body 1 and is in direct contact with the unvulcanized rubber molded body 1. ) Is a spacer that can expand and contract in the thickness direction and the width direction.
The first spacer 20x may be entirely formed of a rubber elastic body as exemplified above.
The spacer 20y located outside the first spacer 20x (hereinafter also referred to as “second spacer”) and the outermost spacer 20z (hereinafter also referred to as “third spacer”) are backup spacers, In the present embodiment, the thickness is thinner than the first spacer 20x.
 なお、未加硫ゴム成形体1は、通常、その製造過程においてゴムと加硫剤とが反応してしまうことを完全に防止することが難しく、全くの生ゴム状態とすることが難しい。
 また、未加硫ゴム成形体1は、通常、製造ロット間において前記反応の度合を共通させることが困難である。
 さらに、未加硫ゴム成形体1は、カーボンブラックなどの充填剤を含有する場合、この充填剤のロットなどによっても硬さが僅かに異なることがある。
 このようなことから、未加硫ゴム成形体1は、製造ロットによって圧縮弾性率を僅かながら異ならせる場合がある。
 そうすると、第1スペーサー20xのみを用いた加硫工程は、プレス圧が同じでも製造ロットによっては上部熱盤50aが未加硫ゴム成形体1を圧縮する度合いを異ならせ、得られる加硫ゴム成形体の厚さを異ならせるおそれを有する。
 そのため、前記第1スペーサー20xのみを前記加硫工程において用いる場合、上部熱盤50aの上下位置に関する情報を得るためのセンサーなどを利用しなければ、プレス圧だけの制御では作製する加硫ゴム成形体の品質を安定化させることが難しくなるおそれがある。
The unvulcanized rubber molded article 1 is usually difficult to completely prevent the rubber and the vulcanizing agent from reacting during the production process, and it is difficult to obtain a completely raw rubber state.
Further, it is usually difficult for the unvulcanized rubber molded body 1 to have the same degree of reaction among production lots.
Further, when the unvulcanized rubber molded body 1 contains a filler such as carbon black, the hardness may slightly vary depending on the lot of the filler.
For this reason, the unvulcanized rubber molded body 1 may have a slightly different compression elastic modulus depending on the production lot.
Then, in the vulcanization process using only the first spacer 20x, the degree of compression of the unvulcanized rubber molded body 1 by the upper heating platen 50a varies depending on the production lot even if the press pressure is the same, and the resulting vulcanized rubber molding is obtained. May have different body thickness.
Therefore, when only the first spacer 20x is used in the vulcanization process, a vulcanized rubber molding is produced by controlling only the press pressure unless a sensor or the like for obtaining information on the vertical position of the upper heating platen 50a is used. It may be difficult to stabilize the quality of the body.
 一方で図5に例示のように第1スペーサー20xの外側に第1スペーサー20xよりも厚さの薄いバックアップ用スペーサー20y,20zを配置していると、熱盤位置を特定するためのセンサーの利用を省略させ得る。
 この点について説明すると、前記上部熱盤50aは、加硫工程の開始時において、未加硫ゴム成形体1及び第1スペーサー20xを厚さ方向に圧縮しつつ下降する際に前記バックアップ用スペーサー20y,20zの上面に到達した時点で該バックアップ用スペーサー20y,20zからの反発力を受けることになる。
 従って、例えば、バックアップ用スペーサー20y,20zからの反発力を検知した時点で上部熱盤50aの下降を停止させるようにすれば作製する加硫ゴム成形体にロットごとの厚さの違いが発生することを防止し得る。
 このような機能を第2スペーサー20yや第3スペーサー20zに発揮させる上においては、これらの厚さ方向における圧縮弾性率は、第1スペーサー20xの圧縮弾性率に比べて高いことが好ましい。
 また、第2スペーサー20y及び第3スペーサー20zは、いずれか一方、又は、両方を金属製スペーサーのような厚さ方向及び幅方向への伸縮性を有していないものとすることが良い好ましい。
 なお、厚さ方向及び幅方向に伸縮性を有するスペーサー20xの外側に、当該スペーサー20xよりも厚さ方向の伸縮性が乏しく、前記スペーサー20xよりも厚さの薄いスペーサーを設けることによって得られる上記のようなメリットは、バックアップ用スペーサーが1本のみの場合においても得られるものである。
 また、前記メリットは、熱プレス機によって加硫工程を実施する場合のみならず、後述するロートキュア連続加硫成形機においても得られるものである。
On the other hand, when backup spacers 20y and 20z having a thickness smaller than that of the first spacer 20x are arranged outside the first spacer 20x as illustrated in FIG. 5, the use of a sensor for specifying the position of the hot platen is used. Can be omitted.
Explaining this point, the upper heating platen 50a, when starting the vulcanization process, when the unvulcanized rubber molded body 1 and the first spacer 20x are lowered while being compressed in the thickness direction, the backup spacer 20y. , 20z, the repulsive force from the backup spacers 20y, 20z is received.
Therefore, for example, if the lowering of the upper heating platen 50a is stopped when the repulsive force from the backup spacers 20y, 20z is detected, a difference in thickness for each lot occurs in the vulcanized rubber molded body to be produced. This can be prevented.
In order to make the second spacer 20y and the third spacer 20z exhibit such a function, it is preferable that the compression elastic modulus in the thickness direction is higher than the compression elastic modulus of the first spacer 20x.
In addition, it is preferable that either one or both of the second spacer 20y and the third spacer 20z do not have stretchability in the thickness direction and the width direction like a metal spacer.
It should be noted that the above-mentioned obtained by providing a spacer that is less stretchable in the thickness direction than the spacer 20x and thinner than the spacer 20x outside the spacer 20x that has stretchability in the thickness direction and the width direction. Such advantages can be obtained even when there is only one backup spacer.
The merit can be obtained not only when the vulcanization process is performed by a hot press machine, but also in a rotocure continuous vulcanization molding machine described later.
 上記のような熱プレス機による加硫工程は、熱プレス機の熱盤全面を加熱状態にさせずに、上流側の一部を冷却しつつ実施することが好ましい。
 即ち、熱盤全面を加熱状態にすると、熱盤の直前に位置する未加硫ゴム成形体に熱盤側から熱が伝えられ、当該箇所において、圧力が実質的に殆ど加えられていない状態での加硫を生じさせてしまうおそれがある。
It is preferable that the vulcanization step using the hot press machine as described above is performed while cooling a part of the upstream side without bringing the entire hot platen of the hot press machine into a heated state.
That is, when the entire surface of the hot platen is heated, heat is transmitted from the hot platen side to the unvulcanized rubber molded body located immediately before the hot platen, and in this state, substantially no pressure is applied. There is a risk of causing vulcanization.
 従って、図1を参照しつつ説明すると、熱盤50a,50bの盤面の上流側の端縁から下流側に距離D2だけ移動した箇所から上流側の領域は、これを冷却領域とし、これ以降の加熱領域に比べて盤面の温度を低く設定することが好ましい。
 より好ましくは、前記冷却領域は、加硫工程中、常温レベル以下(例えば、50℃以下)の温度に維持させて、圧力だけが加わる状態とすることが望ましい。
Accordingly, with reference to FIG. 1, the upstream region from the position moved by the distance D2 from the upstream edge of the surface of the heat platen 50a, 50b to the downstream is used as a cooling region. It is preferable to set the temperature of the board surface lower than that in the heating region.
More preferably, it is desirable that the cooling region is maintained at a temperature not higher than a normal temperature level (for example, 50 ° C. or lower) during the vulcanization process so that only pressure is applied.
 このような加硫工程が終了した後の前記移送工程は、熱盤50a,50bの盤面の長さD1から、前記冷却領域の長さD2を減じた長さ(D3)未満が未加硫ゴム成形体1の移動距離となるように実施することが好ましい。
 このとき前記冷却領域においては、未加硫ゴム成形体が厚さ方向に加圧されるために、これよりも上流側の熱プレス機5にいまだ導入されていない未加硫ゴム成形体に比べ厚みが薄く、やや幅広な状態になる。
 そして、前記のように冷却領域を設けた熱プレスで行われる加硫工程では、未加硫ゴム成形体の幅広な部分とそうでない部分とが、次の熱プレスにおいて同時に熱盤で加圧される。
 従って、当該熱プレスにおいては幅広な部分とそうでない部分とが幅方向に広がる挙動を異ならせることになる。
 しかし、本実施形態に係るスペーサーは、幅方向に伸縮自在で、未加硫ゴム成形体の変形挙動に対する追従性に優れるとともに該未加硫ゴム成形体の長さ方向における側圧を均一化させ得る。
 そのことにより、本実施形態においては、前記のように冷却領域を設けて加硫工程を実施しても、両側縁部の形状が整った良質なコンベヤベルトを作製することができる。
After the vulcanization process is completed, the transfer process is performed by removing the unvulcanized rubber by a length (D3) obtained by subtracting the length D2 of the cooling region from the length D1 of the platen surface of the hot plates 50a and 50b. It is preferable to carry out so as to be the moving distance of the molded body 1.
At this time, in the cooling region, since the unvulcanized rubber molded body is pressed in the thickness direction, it is compared with an unvulcanized rubber molded body that has not yet been introduced into the hot press machine 5 on the upstream side. The thickness is thin and slightly wider.
In the vulcanization process performed by the hot press provided with the cooling region as described above, the wide portion and the non-vulcanized rubber molded body are simultaneously pressed by the hot platen in the next hot press. The
Therefore, in the said hot press, the wide part and the part which is not so differ in the behavior which spreads in the width direction.
However, the spacer according to the present embodiment can be expanded and contracted in the width direction, has excellent followability to the deformation behavior of the unvulcanized rubber molded body, and can make the lateral pressure in the length direction of the unvulcanized rubber molded body uniform. .
Thereby, in this embodiment, even if it provides a cooling area | region and implements a vulcanization | cure process as mentioned above, the quality conveyor belt with which the shape of the both-sides edge part was prepared can be produced.
 なお、前記スペーサーや、熱盤50a,50bは、必ずしも、直接、未加硫ゴム成形体に接触させる必要性はなく、この移送工程をスムーズに実施させるべく、前記加硫工程は、滑性に優れたシートや離型材などの介在物を熱盤と未加硫ゴム成形体との間に配した状態で実施してもよい。 The spacers and the hot plates 50a and 50b are not necessarily in direct contact with the unvulcanized rubber molded body, and the vulcanization step is made smooth so that the transfer step can be carried out smoothly. You may implement in the state which arrange | positioned the inclusions, such as an outstanding sheet | seat and a mold release material, between the hot platen and the unvulcanized rubber molded object.
 前記介在物としては、樹脂シートが好ましく、繊維補強樹脂シートが特に好ましい。
 なかでも、前記介在物は、離型性と耐久性とに優れる点において、ポリテトラフルオロエチレン樹脂シートが好ましく、ガラス繊維強化ポリテトラフルオロエチレン樹脂シートが好ましい。
 このような介在物を用いる場合、前記バックアップ用スペーサーとして金属製のものを用いると、当該バックアップスペーサーとの当接によって介在物が傷付いてしまうおそれがあり、当該介在物の耐用期間を短期化させるおそれがある。
 そのため、介在物を使用する場合、前記バックアップ用スペーサーは、少なくとも前記介在物との当接面となる上下両面がポリマー製であることが好ましい。
As the inclusion, a resin sheet is preferable, and a fiber-reinforced resin sheet is particularly preferable.
Among these, the inclusion is preferably a polytetrafluoroethylene resin sheet and more preferably a glass fiber reinforced polytetrafluoroethylene resin sheet in terms of excellent releasability and durability.
When such an inclusion is used, if a metal spacer is used as the backup spacer, the inclusion may be damaged by contact with the backup spacer, and the useful life of the inclusion is shortened. There is a risk of causing.
Therefore, in the case of using inclusions, it is preferable that the backup spacer is made of a polymer on both the upper and lower surfaces serving as a contact surface with the inclusions.
 なお、上記のようにして得られたコンベヤベルトは、ラップ方式、フィンガー方式、突合せ方式など従来公知の接合方法により無端状とすることができる。
 本実施形態においては、このような製品化に際して、製品外観を向上させ、バリ取りの手間や、脱落したバリによる圧痕の補修などの作業に要する手間を省略させうる。
 なお、このようなメリットが顕著に発揮されるのは、加硫ゴム成形体の最終形態がコンベヤベルトである場合のみならず、ゴム堰、ゴム床材やゴムクローラーなどである場合も同じである。
In addition, the conveyor belt obtained by making it above can be made into endless form by conventionally well-known joining methods, such as a lap | wrap system, a finger system, and a butt | matching system.
In this embodiment, the product appearance can be improved in such a product, and the work of deburring or repairing the indentation due to the removed burr can be omitted.
In addition, not only when the final form of the vulcanized rubber molded body is a conveyor belt, but also when the rubber dam, the rubber floor material, the rubber crawler, etc. are the same, the merit is remarkably exhibited. .
 本実施形態のスペーサーは、一般的なゴム弾性体によって形成させることができ、エチレン‐α‐オレフィンエラストマー(EPM、EPDM)、ブチルゴム(IIR)、クロロプレンゴム(CR)、天然ゴム(NR)などのベースゴムに、カーボンブラックやシリカ等の補強剤(充填剤)、老化防止剤、可塑剤、加工助剤、架橋助剤、難燃剤などを適宜配合したゴム組成物からなるゴム弾性体によって形成させることができる。
 なお、スペーサーを構成するゴム弾性体は、圧縮耐久性および耐熱性に優れる観点からは、EPDMなどのエチレン‐α‐オレフィンエラストマーをベースゴムとすることが好ましい。
 耐熱老化性および未加硫ゴム成形体との離型性に優れる観点からは、スペーサーを構成するゴム弾性体は、ブチルゴムをベースゴムとすることが好ましい。
 さらに、スペーサーを構成するゴム弾性体は、加圧・加熱時における未加硫ゴム成形体の変形への追従を勘案すると、JIS K6253の試験方法に準拠した測定方法により、タイプAデュロメータを用いて測定される標準試験温度時(23±2℃)のゴム硬度が75~95°であることが好ましい。
The spacer of this embodiment can be formed of a general rubber elastic body, such as ethylene-α-olefin elastomer (EPM, EPDM), butyl rubber (IIR), chloroprene rubber (CR), natural rubber (NR), etc. It is formed by a rubber elastic body made of a rubber composition in which a reinforcing agent (filler) such as carbon black or silica, an anti-aging agent, a plasticizer, a processing aid, a crosslinking aid, a flame retardant, etc. is appropriately blended with a base rubber. be able to.
The rubber elastic body constituting the spacer is preferably made of an ethylene-α-olefin elastomer such as EPDM as the base rubber from the viewpoint of excellent compression durability and heat resistance.
From the viewpoint of excellent heat aging resistance and releasability from the unvulcanized rubber molding, the rubber elastic body constituting the spacer is preferably butyl rubber as the base rubber.
Furthermore, the rubber elastic body constituting the spacer is measured using a type A durometer according to the measuring method based on the test method of JIS K6253, considering the follow-up to the deformation of the unvulcanized rubber molded body during pressurization and heating. The rubber hardness at the standard test temperature to be measured (23 ± 2 ° C.) is preferably 75 to 95 °.
 前記スペーサーは、全体がゴム弾性体だけで形成されたものに限定されるものではなく、一部のみがゴム弾性体で形成されていても良い。
 本実施形態のスペーサーは、少なくとも厚さ方向に加えられた応力で圧縮変形し、該応力が除去された時点で厚さと幅とがほぼ圧縮前の状態に回復する性質を示すものであれば各種の態様のものを利用可能である。
 なお、図6(a)は、ゴム弾性体だけからなるスペーサーを示したもので図6(b)~(h)は、その他の態様を示したものである。
 以下に、この図6を参照しつつ、スペーサーとしての好ましい態様のいくつかについて説明する。
 図6(b)は、ゴム弾性体RBの上下両面に帆布CBを積層させたもので、図6(c)は、帆布CBをゴム弾性体RBの厚さ方向中央部に埋設させたものである。
 さらに、図6(d)は、ゴム弾性体RBの厚さ方向中央部に帆布CBを埋設させるとともに上下両面に帆布CBを積層させたもので、図6(e)は、角棒状のゴム弾性体RBの周囲(全周)を帆布CBで覆ったものである。
 そして、図6(f)は、スペーサーの厚さ方向中央部に心線CDを埋設させたものである。
 これら図6(b)~(f)に示した態様においては、帆布CBや心線CDなどの抗張体によってスペーサーに抗張力が発揮され、当該スペーサーの長さ方向の伸縮性が規制されている。
 即ち、これらの態様におけるスペーサーは、長さ方向の伸縮性が厚さ方向や幅方向における伸縮性に比べて規制され、当該長さ方向に対して高い強度を有している。
The spacer is not limited to the one formed entirely of a rubber elastic body, and only a part of the spacer may be formed of a rubber elastic body.
The spacer according to the present embodiment can be variously selected as long as it exhibits a property of being compressed and deformed at least by stress applied in the thickness direction, and when the stress is removed, the thickness and width are substantially restored to the state before compression. The thing of the aspect of can be utilized.
6A shows a spacer made of only a rubber elastic body, and FIGS. 6B to 6H show other modes.
Hereinafter, some preferred embodiments of the spacer will be described with reference to FIG.
FIG. 6B shows a structure in which the canvas CB is laminated on both upper and lower surfaces of the rubber elastic body RB, and FIG. 6C shows a structure in which the canvas CB is embedded in the central portion in the thickness direction of the rubber elastic body RB. is there.
Further, FIG. 6 (d) shows that the canvas CB is embedded in the center portion in the thickness direction of the rubber elastic body RB and the canvas CB is laminated on both upper and lower surfaces. FIG. 6 (e) shows a square bar-like rubber elasticity. The circumference (all circumferences) of the body RB is covered with the canvas CB.
FIG. 6F shows the core CD embedded in the central portion of the spacer in the thickness direction.
In the embodiments shown in FIGS. 6B to 6F, the tensile strength is exerted on the spacer by the tensile body such as the canvas CB and the core CD, and the stretchability in the length direction of the spacer is regulated. .
In other words, the spacers in these aspects are restricted in stretchability in the length direction compared to stretchability in the thickness direction and width direction, and have high strength in the length direction.
 また、図6(g)は、スペーサーよりも一回り細い芯材CRを設け、この芯材CRの周囲をゴム弾性体RBで包囲させたものである。
 該芯材CRとしては、樹脂、木材、金属などゴム弾性体RBよりも硬度(圧縮弾性率)の高い素材のものとすることができる他、スペーサーの外表面を構成しているゴム弾性体RBよりも軟質のゴム弾性体、ゲルなどとすることも可能である。
 さらに、要すれば、スペーサーは、ゴム弾性体RBの上下両面に金属製薄板MBを積層した図6(h)に示すようなタイプのものとすることも可能である。
FIG. 6G shows a core material CR that is slightly thinner than the spacer, and the core material CR is surrounded by a rubber elastic body RB.
The core material CR can be made of a material having higher hardness (compression elastic modulus) than the rubber elastic body RB such as resin, wood, metal, etc., and the rubber elastic body RB constituting the outer surface of the spacer. It is also possible to use a softer rubber elastic body or gel.
Furthermore, if necessary, the spacer may be of a type as shown in FIG. 6 (h) in which metal thin plates MB are laminated on the upper and lower surfaces of the rubber elastic body RB.
 なお、スペーサーは、必ずしも、断面形状が長方形や正方形である必要は無く、直角台形、平行四辺形、などに加え、5角形以上の多角形、円形、楕円形、不定形の断面を有するスペーサーも本発明の効果が著しく損なわれない範囲においてこれを採用する事が可能である。 In addition, the spacer does not necessarily have to have a rectangular or square cross-sectional shape, and in addition to a right-angle trapezoid, a parallelogram, etc., a spacer having a polygonal shape that is a pentagon or more, a circle, an ellipse, or an indefinite shape is also available. This can be adopted as long as the effects of the present invention are not significantly impaired.
 また、本実施形態の加硫ゴム成形体(コンベヤベルト)の製造方法は、必ずしも、熱プレス機によってのみ実施されるものではなく、図7、8に示すような、ロートキュア連続加硫成形機によっても実施可能なものである。 Moreover, the manufacturing method of the vulcanized rubber molded body (conveyor belt) of the present embodiment is not necessarily carried out only by a hot press machine, but a rotocure continuous vulcanization molding machine as shown in FIGS. Can also be implemented.
 図7、8に例示の、ロートキュア連続加硫成形機は、例えば、未加硫ゴム成形体1’を厚さ方向に加圧するための加圧部材として、回転軸周りに回転可能な金属円柱体からなる加熱ドラム100とエンドレススチールバンド200とを備えている。
 該エンドレススチールバンド200は、前記加熱ドラム100の回転軸方向における長さよりも僅かに幅が狭く、前記加熱ドラム100との間に未加硫ゴム成形体1’を挟んで該加熱ドラム100の熱によって前記未加硫ゴム成形体1’が加硫される間、これを厚さ方向に加圧し続けるべくロートキュア連続加硫成形機に備えられている。
 より詳しくは、前記加熱ドラム100の周囲には、加熱ドラム100よりも細径な4本のロール300,400,500,600が配されており、前記エンドレススチールバンド200は、4本のロール300,400,500,600の外周面に内面側を当接させる形でロートキュア連続加硫成形機に備えられている。
7 and 8, the rotocure continuous vulcanization molding machine is, for example, a metal cylinder rotatable around a rotation axis as a pressurizing member for pressurizing the unvulcanized rubber molded body 1 ′ in the thickness direction. A heating drum 100 made of a body and an endless steel band 200 are provided.
The endless steel band 200 is slightly narrower than the length of the heating drum 100 in the rotation axis direction, and the unvulcanized rubber molded body 1 ′ is sandwiched between the heating drum 100 and the heat of the heating drum 100. Thus, while the unvulcanized rubber molded body 1 ′ is vulcanized, it is provided in a rotocure continuous vulcanization molding machine so as to continue to pressurize it in the thickness direction.
More specifically, around the heating drum 100, four rolls 300, 400, 500, 600 having a diameter smaller than that of the heating drum 100 are arranged, and the endless steel band 200 includes four rolls 300. , 400, 500, 600 are provided in the rotocure continuous vulcanization molding machine in such a manner that the inner surface is brought into contact with the outer peripheral surface.
 その一方で、この4本のロール300,400,500,600の回転軸を結ぶ4角形の内側にほぼ位置している前記加熱ドラム100は、その外周面を前記エンドレススチールバンド200の外面に当接させている。
 該エンドレススチールバンド200は、4本のロール300,400,500,600の内、隣り合う2本のロール300,400に対しては、半周以下、約1/4周程度しか巻き掛けられていない一方で残り2本のロール500,600に対しては、半周以上にわたって巻き掛けられ、この半周以上にわたって巻き掛けられている2本のロール500,600の間において前記加熱ドラム100に巻きかけられている。
 そして、エンドレススチールバンド200は、前記加熱ドラム100の外周面の約3/4周の領域に亘って巻き掛けられている。
On the other hand, the heating drum 100 located substantially inside the quadrilateral connecting the rotation axes of the four rolls 300, 400, 500, 600 has its outer peripheral surface abutted against the outer surface of the endless steel band 200. Touching.
The endless steel band 200 is wound around two or less adjacent rolls 300 and 400 out of the four rolls 300, 400, 500, and 600, only about a quarter or less. On the other hand, the remaining two rolls 500 and 600 are wound around a half or more, and are wound around the heating drum 100 between the two rolls 500 and 600 wound around the half or more. Yes.
The endless steel band 200 is wound over an area of about 3/4 of the outer peripheral surface of the heating drum 100.
 なお、前記ロールのうち3本のロール400,500,600は、エンドレススチールバンド200を直接的に加熱ドラム100に向けて押圧すべく加熱ロール100の直近に配されており、残りの1本のロール300は、エンドレススチールバンド200に張力を与える形で加熱ロール100からは離れた位置に配されている。
 即ち、該ロール300は、加熱ドラム100に対する遠近の調整により前記張力を調整し、該張力によってエンドレススチールバンド200と加熱ドラム100との間の圧力を調節すべくロートキュア連続加硫成形機に備えられたものである。
Of the rolls, three rolls 400, 500, and 600 are arranged in the immediate vicinity of the heating roll 100 to press the endless steel band 200 directly toward the heating drum 100, and the remaining one roll The roll 300 is disposed at a position away from the heating roll 100 so as to apply tension to the endless steel band 200.
That is, the roll 300 is provided in a rotocure continuous vulcanization molding machine to adjust the tension by adjusting the distance to the heating drum 100 and adjust the pressure between the endless steel band 200 and the heating drum 100 by the tension. It is what was done.
 このようなロートキュア連続加硫成形機についても、前記加熱ドラム100の幅方向両端部にスペーサーを巻き付け、該スペーサー間に帯状の未加硫ゴム成形体を供給し、エンドレススチールバンド200と加熱ドラム100とによって前記未加硫ゴム成形体を長さ方向に沿って順に加硫する際に前記スペーサーとして厚さ方向及び未加硫ゴム成形体の幅方向に伸縮自在なものを採用することで、加硫済箇所10b’にバリが発生することを防止できる。 Also in such a rotocured continuous vulcanization molding machine, a spacer is wound around both ends of the heating drum 100 in the width direction, and a strip-shaped unvulcanized rubber molded product is supplied between the spacers. By adopting a material that can expand and contract in the thickness direction and the width direction of the unvulcanized rubber molded body as the spacer when vulcanizing the unvulcanized rubber molded body in order along the length direction according to 100, It is possible to prevent burrs from occurring in the vulcanized portion 10b ′.
 前記スペーサーについては、例えば、加熱ドラム100の外周長よりも周長の長い無端状のものとすることができる。
 この無端状スペーサー20’は、図8に例示するように加熱ドラム100の長さ方向両端部にそれぞれ巻き掛けて用いることができる。
 該無端状スペーサー20’は、エンドレススチールバンド200と加熱ドラム100との間において未加硫ゴム成形体1’に側圧を与えることで加硫ゴム成形体にバリやスポンジ不良が生じることを抑制し得る。
 無端状スペーサー20’は、加熱ドラム100の回転軸方向外向きにこの側圧に相当する反発力を未加硫ゴム成形体1’から与えられる。
 前記無端状スペーサー20’は、前記反発力によってその巻きかけ位置が外向きにずれてしまうとその機能を低下させるおそれがある。
 従って、前記無端状スペーサー20’は、意図せぬ位置ずれが生じないように加熱ドラム100との間に強い摩擦力を発生させ得る形状を有していることが好ましく、ある程度以上の幅を有していることが好ましい。
 具体的には、前記く無端状スペーサー20’は、100mm以上の幅を有していることが好ましい。
 また、未加硫ゴム成形体1’と、2本の無端状スペーサー20’との合計幅が前記エンドレススチールバンド200の幅よりも小さい場合、エンドレススチールバンド200は、その幅方向中央部において未加硫ゴム成形体1’と強い圧力で接触して強い張力を発生させる一方で幅方向両端部の内の少なくとも一方が加熱ドラム100との間に何も挟まれていない状態になって前記中央部に比べて張力を極端に低下させた状態になる。
 エンドレススチールバンド200は、このように幅方向における力の加わり方に極端な違いを生じると歪を生じ易く、耐用寿命が短くなるおそれを有する。
 従って、前記未加硫ゴム成形体1’の幅を「Wa」、各無端状スペーサー20’の幅を「Wb」とし、エンドレススチールバンド200の幅を「Wc」とした時に、下記関係(1)が成り立つことが好ましい。
 
 (Wa+2×Wb) ≧ (0.9×Wc) ・・・(1)
 
 また、「Wa」~「Wc」については、下記関係(2)が成り立つことがより好ましい。
 
 (Wa+2×Wb) ≧ (Wc) ・・・(2)
About the said spacer, it can be made into an endless thing whose circumference is longer than the outer circumference of the heating drum 100, for example.
The endless spacer 20 ′ can be used by being wound around both ends in the length direction of the heating drum 100 as illustrated in FIG.
The endless spacer 20 ′ suppresses the occurrence of burrs and sponge defects in the vulcanized rubber molded body by applying a side pressure to the unvulcanized rubber molded body 1 ′ between the endless steel band 200 and the heating drum 100. obtain.
The endless spacer 20 ′ is given a repulsive force corresponding to the lateral pressure from the unvulcanized rubber molded body 1 ′ outward in the rotation axis direction of the heating drum 100.
The endless spacer 20 ′ may deteriorate its function when its winding position is shifted outward due to the repulsive force.
Therefore, the endless spacer 20 ′ preferably has a shape capable of generating a strong frictional force between the endless spacer 20 ′ and the heating drum 100 so as not to cause an unintended displacement, and has a width of a certain extent. It is preferable.
Specifically, the endless spacer 20 ′ preferably has a width of 100 mm or more.
When the total width of the unvulcanized rubber molded body 1 ′ and the two endless spacers 20 ′ is smaller than the width of the endless steel band 200, the endless steel band 200 is not The vulcanized rubber molded body 1 ′ is brought into contact with a strong pressure to generate a strong tension, while at least one of both end portions in the width direction is not sandwiched between the heating drum 100 and the center. The tension is extremely reduced compared to the portion.
The endless steel band 200 is likely to be distorted when there is an extreme difference in the way in which the force is applied in the width direction as described above, and there is a possibility that the service life may be shortened.
Accordingly, when the width of the unvulcanized rubber molded body 1 ′ is “Wa”, the width of each endless spacer 20 ′ is “Wb”, and the width of the endless steel band 200 is “Wc”, the following relationship (1 ) Is preferable.

(Wa + 2 × Wb) ≧ (0.9 × Wc) (1)

Regarding “Wa” to “Wc”, it is more preferable that the following relationship (2) is satisfied.

(Wa + 2 × Wb) ≧ (Wc) (2)
 厚さ方向及び幅方向に伸縮自在な前記無端状スペーサー20’以外にバックアップ用スペーサーを用いる場合は、全てのスペーサーの幅と未加硫ゴム成形体1’の幅との合計値が、エンドレススチールバンド200の幅の0.9倍以上とすることが好ましく、1.0倍以上とすることが特に好ましい。
 なお、バックアップ用スペーサーを用いることによって発揮されるメリットについては、熱プレス機を用いる態様において説明した通りである。
When a backup spacer is used in addition to the endless spacer 20 ′ that can be expanded and contracted in the thickness direction and the width direction, the total value of the widths of all the spacers and the unvulcanized rubber molded body 1 ′ is the endless steel. The width of the band 200 is preferably 0.9 times or more, and more preferably 1.0 times or more.
In addition, the merit demonstrated by using the backup spacer is as described in the embodiment using the hot press.
 即ち、本実施形態の加硫ゴム成形体の製造方法においては、ロートキュア連続加硫成形機を用いる場合でも、外観不良の発生及び手間を抑制して高品質な加硫ゴム成形体を作製することができる。
 ここでは、これ以上の詳細な説明を繰り返すことはしないが、本発明は、上記例示以外に加硫ゴム成形体の製造に関して従来公知の事象はこれを適宜採用可能なもので、上記例示に何等限定されるものではない。
That is, in the method for producing a vulcanized rubber molded body according to the present embodiment, even when a rotocured continuous vulcanization molding machine is used, a high-quality vulcanized rubber molded body is produced by suppressing occurrence of appearance defects and labor. be able to.
Here, the detailed description will not be repeated any more, but the present invention is not limited to the above examples, and conventionally known events relating to the production of a vulcanized rubber molded article can be appropriately adopted. It is not limited.
 1  未加硫ゴム成形体
 5  熱プレス機
 20 スペーサー
 
1 Unvulcanized rubber molding 5 Heat press machine 20 Spacer

Claims (8)

  1.  帯状の未加硫ゴム成形体の一面側と他面側とに該未加硫ゴム成形体を厚さ方向に加圧するための加圧部材を配し、前記未加硫ゴム成形体を前記加圧部材で加圧しつつ加熱することにより前記未加硫ゴム成形体を加硫し、且つ、該加硫を前記未加硫ゴム成形体の長さ方向に沿って順に実施して帯状の加硫ゴム成形体を作製する加硫ゴム成形体の製造方法であって、
     前記加圧による未加硫ゴム成形体の幅方向及び厚さ方向への変形を規制するスペーサーを前記未加硫ゴム成形体の幅方向両外側に配置して前記加硫を実施し、且つ前記スペーサーとして少なくとも前記加圧の方向及び前記未加硫ゴム成形体の幅方向に伸縮自在なスペーサーを用いることを特徴とする加硫ゴム成形体の製造方法。
    A pressure member for pressing the unvulcanized rubber molded body in the thickness direction is disposed on one side and the other side of the belt-shaped unvulcanized rubber molded body, and the unvulcanized rubber molded body is The unvulcanized rubber molded body is vulcanized by heating while being pressurized with a pressure member, and the vulcanization is carried out sequentially along the length direction of the unvulcanized rubber molded body to form a belt-like vulcanized A method for producing a vulcanized rubber molded body for producing a rubber molded body,
    Spacers for restricting deformation in the width direction and thickness direction of the unvulcanized rubber molded body by the pressurization are disposed on both outer sides in the width direction of the unvulcanized rubber molded body, and the vulcanization is performed, and A method for producing a vulcanized rubber molded body, characterized in that a spacer that can expand and contract at least in the pressurizing direction and in the width direction of the unvulcanized rubber molded body is used as a spacer.
  2.  前記加圧部材が、熱プレス機に備えられた一対の熱盤であり、
     前記スペーサーが、前記熱盤以上の長さを有し、ゴム弾性体によって一部又は全部が構成されている角棒状の棒状体で、且つ、前記ゴム弾性体の弾性変形によって厚さ方向及び幅方向に伸縮自在な棒状体である請求項1記載の加硫ゴム成形体の製造方法。
    The pressurizing member is a pair of hot plates provided in a hot press machine,
    The spacer is a rectangular bar-like body having a length equal to or longer than that of the heating plate and partially or entirely formed by a rubber elastic body, and the thickness direction and width are determined by elastic deformation of the rubber elastic body. The method for producing a vulcanized rubber molded body according to claim 1, wherein the vulcanized rubber molded body is a rod-shaped body that can expand and contract in a direction.
  3.  前記スペーサーが、全部が前記ゴム弾性体によって構成されて長さ方向にも伸縮自在な前記棒状体である請求項2記載の加硫ゴム成形体の製造方法。 3. The method for producing a vulcanized rubber molded body according to claim 2, wherein the spacer is the rod-shaped body which is entirely constituted by the rubber elastic body and is also extendable in the length direction.
  4.  前記スペーサーが、心線および帆布の少なくとも一方からなる抗張体と前記ゴム弾性体とを備え、前記抗張体が長さ方向に沿って配された棒状体である請求項2記載の加硫ゴム成形体の製造方法。 3. The vulcanization according to claim 2, wherein the spacer includes a tensile body including at least one of a core wire and a canvas and the rubber elastic body, and the tensile body is a rod-shaped body arranged along a length direction. A method for producing a rubber molded body.
  5.  コンベヤベルト、ゴム堰、ゴム床材、又は、ゴムクローラーに利用される加硫ゴム成形体を製造する請求項1乃至4のいずれか1項記載の加硫ゴム成形体の製造方法。 The manufacturing method of the vulcanized rubber molding of any one of Claims 1 thru | or 4 which manufactures the vulcanized rubber molding used for a conveyor belt, a rubber dam, a rubber flooring, or a rubber crawler.
  6.  帯状の未加硫ゴム成形体を厚さ方向に加圧しつつ加熱することにより前記未加硫ゴム成形体を加硫して帯状の加硫ゴム成形体を作製するのに際して前記加圧による未加硫ゴム成形体の幅方向及び厚さ方向への変形を規制すべく前記未加硫ゴム成形体の幅方向両外側に配置させて用いられ、厚さ方向及び幅方向に伸縮自在であることを特徴とするスペーサー。 When the band-shaped unvulcanized rubber molded body is heated while being pressed in the thickness direction, the unvulcanized rubber molded body is vulcanized to produce a band-shaped vulcanized rubber molded body. In order to restrict deformation of the vulcanized rubber molded body in the width direction and the thickness direction, the unvulcanized rubber molded body is disposed on both outer sides in the width direction and is extendable in the thickness direction and the width direction. Characteristic spacer.
  7.  全体がゴム弾性体からなる角棒状の棒状体であり、厚さ方向、長さ方向、及び、幅方向に伸縮自在な棒状体である請求項6記載のスペーサー。 The spacer according to claim 6, wherein the spacer is a square bar-like body made entirely of a rubber elastic body, and is a rod-like body that can expand and contract in the thickness direction, the length direction, and the width direction.
  8.  心線および帆布の少なくとも一方からなる抗張体とゴム弾性体とによって構成された角棒状の棒状体であり、前記抗張体が長さ方向に沿って配された棒状体である請求項6記載のスペーサー。
     
     
    7. A square bar-like rod-shaped body constituted by a tensile body made of at least one of a core wire and a canvas and a rubber elastic body, and the tensile body is a rod-shaped body arranged along a length direction. The spacer described.

PCT/JP2014/063464 2013-07-31 2014-05-21 Production method for vulcanized rubber molded article, and spacer WO2015015874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013159590A JP2016196519A (en) 2013-07-31 2013-07-31 Production method of vulcanized rubber molding, and spacer
JP2013-159590 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015015874A1 true WO2015015874A1 (en) 2015-02-05

Family

ID=52431420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063464 WO2015015874A1 (en) 2013-07-31 2014-05-21 Production method for vulcanized rubber molded article, and spacer

Country Status (2)

Country Link
JP (1) JP2016196519A (en)
WO (1) WO2015015874A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469307A (en) * 1987-09-09 1989-03-15 Bridgestone Corp Method for vulcanizing long-size material
JPH0376613A (en) * 1989-08-18 1991-04-02 Mitsubishi Rayon Eng Co Ltd Continuously pressurizing device
JP2002103366A (en) * 2000-07-28 2002-04-09 Hayakawa Rubber Co Ltd Method for manufacturing long-sized foamed rubber flooring and manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469307A (en) * 1987-09-09 1989-03-15 Bridgestone Corp Method for vulcanizing long-size material
JPH0376613A (en) * 1989-08-18 1991-04-02 Mitsubishi Rayon Eng Co Ltd Continuously pressurizing device
JP2002103366A (en) * 2000-07-28 2002-04-09 Hayakawa Rubber Co Ltd Method for manufacturing long-sized foamed rubber flooring and manufacturing device

Also Published As

Publication number Publication date
JP2016196519A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
KR101862969B1 (en) Endless handrail manufacturing method, endless handrail and escalator
US3081077A (en) Seat cushion and method of making same
JP5480736B2 (en) PRESSING DEVICE AND METHOD FOR MANUFACTURING PNEUMATIC TIRE USING THE SAME
US6767493B2 (en) Rubber crawler producing method
WO2015015874A1 (en) Production method for vulcanized rubber molded article, and spacer
CN211542717U (en) Adjustable multilayer composite elastic plane conveyor belt
JP5787732B2 (en) Tire vulcanizing bladder
JP2007106354A (en) Pneumatic tire, and method and apparatus for molding tire
JP5707248B2 (en) Manufacturing method of foamed rubber track pad
JP5966755B2 (en) Conveyor belt joining method
KR101807413B1 (en) Splicing Apparatus of Semiproduct for Tire Building Drum
JP5325703B2 (en) Method and apparatus for manufacturing bead member
JP6918223B2 (en) Mobile handrail manufacturing method
US6818167B2 (en) Method of manufacturing rubber crawler
JP2013086299A (en) Method for manufacturing tire, pressing apparatus used for it and tire molding machine
JP5886132B2 (en) Tube forming machine and tube manufacturing method
CN107848711B (en) Method for manufacturing conveyor belt
EP2633984B1 (en) Molding device and molding method for tire component
JPH01156022A (en) Manufacture of long-sized v belt with cog
CN107628407A (en) The pressing plate belt and its production technology of a kind of press beam device
JP5961369B2 (en) Conveyor belt manufacturing method
JPH11300846A (en) Production of crawler free from metal core
JP2012082035A (en) Method for manufacturing conveyor belt and conveyor belt
US7241710B2 (en) Fabric reinforced rubber sheet for the production of slabs of resin hardened finely divided stone material
KR102301247B1 (en) Method for producing concrete hose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP