WO2015015596A1 - Battery system - Google Patents

Battery system Download PDF

Info

Publication number
WO2015015596A1
WO2015015596A1 PCT/JP2013/070761 JP2013070761W WO2015015596A1 WO 2015015596 A1 WO2015015596 A1 WO 2015015596A1 JP 2013070761 W JP2013070761 W JP 2013070761W WO 2015015596 A1 WO2015015596 A1 WO 2015015596A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
management device
communication
cell group
Prior art date
Application number
PCT/JP2013/070761
Other languages
French (fr)
Japanese (ja)
Inventor
孝徳 山添
裕 有田
洋平 河原
寛 岩澤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/070761 priority Critical patent/WO2015015596A1/en
Publication of WO2015015596A1 publication Critical patent/WO2015015596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery system.
  • the storage battery module constituting this is generally configured by connecting a plurality of battery cells in series and parallel.
  • Lithium ion batteries are widely known as large capacity secondary batteries. In handling lithium ion batteries, measures such as prevention of high voltage charging and deterioration of performance due to overdischarge are required. For this reason, a storage battery module that is mounted on a hybrid electric vehicle or an electric vehicle and that uses a lithium ion battery for each battery cell generally monitors the battery state such as voltage, current, and temperature for each battery cell. It has the function to control each battery cell according to.
  • Patent Documents 1 and 2 As a method for realizing control of a battery cell in accordance with the battery state as described above, for example, techniques disclosed in Patent Documents 1 and 2 below are known.
  • a discharge circuit and a switch are provided for each battery cell, and the switch is controlled to open and close according to the state of charge (SOC) of each battery cell.
  • SOC state of charge
  • the battery cell control method by the assembled battery control means disclosed in Patent Document 2 when there is a group of battery cells whose SOC is higher than a predetermined charging state, the battery cell group is stopped when charging / discharging of the assembled battery is stopped.
  • the single battery control means corresponding to the above, the battery cells of the battery cell group are discharged to adjust the SOC variation between the battery cell groups.
  • the battery control device since it is necessary to provide a discharge circuit and a switch for each battery cell in the battery control device, the battery control device may be increased in cost and reliability. There is. Further, in the battery cell control method disclosed in Patent Document 2, since the SOC variation is adjusted when charging / discharging of the assembled battery is stopped, the SOC variation cannot be adjusted in real time during charging / discharging.
  • a battery system includes a battery cell group configured by one or a plurality of battery cells, and a battery cell that is provided corresponding to the battery cell group and obtains a measurement result regarding a charge state of the battery cell of the battery cell group. And a battery pack management device that performs wireless or wired communication between the management device and the battery cell management device.
  • the battery cell management device transmits the measurement result to the assembled battery management device using the power supplied from the battery cells of the battery cell group. Further, the assembled battery management device estimates the charge state of the battery cells of the battery cell group based on the measurement result transmitted from the battery cell management device, and based on the estimation result of the charge state, Change the amount of communication between them.
  • the present invention it is possible to adjust the SOC variation of the battery cell in real time during charge / discharge without requiring a special circuit or component.
  • FIG. 1 is a diagram showing a configuration of an in-vehicle system including a battery system according to an embodiment of the present invention.
  • the in-vehicle system shown in FIG. 1 is mounted on a vehicle such as a hybrid electric vehicle or an electric vehicle, and includes a battery system 1, an inverter 2, a motor 3, a relay box 4, and a host controller 5.
  • the battery system 1 includes one or a plurality of battery cell groups 10 each constituted by one or a plurality of battery cells, and the battery cell management device 100 corresponds to each battery cell group 10. Is provided. Each battery cell management device 100 performs measurement (voltage, current, temperature, etc.) related to the state of charge (SOC: State of Charge) or the deterioration state (SOH: State of Health) of the battery cell group 10. Then, using the power supplied from the battery cells of the battery cell group 10, wireless (or wired) communication is performed with the assembled battery monitoring device 200, and measurement results regarding the charge state and the deterioration state of the battery cell group 10 are obtained. It transmits to the assembled battery monitoring apparatus 200. Details of communication performed at this time will be described later.
  • the assembled battery monitoring device 200 acquires a measurement result related to the charge state or the deterioration state of the battery cell group 10 corresponding to the battery cell management device 100 from each battery cell management device 100. Then, based on the acquired measurement result, the charged state and the deteriorated state of each battery cell group 10 are estimated, and the estimated result is transmitted to the host controller 5.
  • the host controller 5 controls the inverter 2 and the relay box 4 based on the estimation result of the charged state and the deteriorated state of each battery cell group 10 transmitted from the assembled battery monitoring device 200.
  • the inverter 2 converts the DC power supplied from each battery cell group 10 into three-phase AC power when the relay box 4 is in a conductive state, and supplies the three-phase AC power to the motor 3, thereby driving the motor 3 to rotate. Generate driving force. Further, when the vehicle is braked, the battery cells of each battery cell group 10 are charged by converting the three-phase AC regenerative power generated by the motor 3 into DC power and outputting it to each battery cell group 10. The operation of the inverter 2 is controlled by the host controller 5.
  • FIG. 2 is a diagram showing a configuration example of the battery system 1 according to the first embodiment of the present invention.
  • the battery system 1 shown in FIG. 2 further includes a temperature detection unit 300 and a current detection unit 400 in addition to the battery cell group 10, the battery cell management device 100, and the assembled battery monitoring device 200 shown in FIG.
  • FIG. 2 shows an example in which n battery cell groups 10 and n battery cell management devices 100 are provided in the battery system 1.
  • the first, second, and nth battery cell groups 10 are represented by reference numerals 10-1, 10-2, and 10-n, respectively, and the first, second, and nth provided corresponding thereto.
  • the battery cell management devices 100 are denoted by reference numerals 100-1, 100-2, and 100-n, respectively.
  • the temperature detection means 300 detects the temperature of the battery system 1 and outputs the detection result to the assembled battery management apparatus 200 as the temperature of each battery cell group 10.
  • the current detection unit 400 detects a current flowing through the battery cell group 10 connected in series, and outputs the detection result to the assembled battery management apparatus 200.
  • the battery cell management device 100 includes a battery control unit 20 and a communication control unit 30.
  • the battery control unit 20 detects the voltage of each battery cell of the corresponding battery cell group 10 to acquire a measurement result regarding the charging state or the deterioration state of the battery cell group 10, and sends the measurement result to the communication control unit 30. Output.
  • the communication control unit 30 uses the electric power supplied from the battery cells of the corresponding battery cell group 10 to display the voltage detection result of each battery cell input from the battery control unit 20 by wireless (or wired) communication. It transmits to the management apparatus 200.
  • each battery cell management device 100 may be individually connected to the assembled battery management device 200.
  • a plurality of battery cell management devices 100 may be connected in a daisy chain, and one or both ends thereof may be connected to the assembled battery management device 200.
  • the assembled battery management device 200 acquires the temperature detected by the temperature detection means 300 and the current detected by the current detection means 400. Moreover, the voltage of each battery cell of the battery cell group 10 corresponding to each battery cell management apparatus 100 is acquired by performing communication with each battery cell management apparatus 100. Based on these pieces of information, the assembled battery management apparatus 200 can estimate the state of charge (SOC) and the state of deterioration (SOH) of each battery cell group 10.
  • SOC state of charge
  • SOH state of deterioration
  • the assembled battery management apparatus 200 calculates the average SOC of the battery cell group 10 by calculating the average value.
  • the frequency of communication performed with the battery cell management device 100 to which the battery cell group 10 is connected is determined. It is increased more than other battery cell management devices 100.
  • the power consumption required for communication when transmitting the voltage detection result of the battery cell from the battery cell monitoring device 100 to the assembled battery management device 200 is increased more than that of the other battery cell monitoring devices 100.
  • the SOC of the battery cell group 10 connected to the battery cell monitoring device 100 can be relatively lowered, and the SOC can be adjusted with the other battery cell group 10.
  • FIG. 3 is a diagram showing an example of a communication flow between the assembled battery management device 200 and the battery cell management devices 100-1 to 100-n.
  • the assembled battery management device 200 first transmits a command 1 as a command for reading the voltage value of the battery cell group 10-1 to the first battery cell management device 100-1. To do.
  • the battery cell management device 100-1 Upon receiving this command 1, the battery cell management device 100-1 detects the voltage of each battery cell in the connected battery cell group 10-1, and returns the voltage value data as response 1 to the assembled battery management device 200. To do.
  • the assembled battery management device 200 transmits a command 2 as a command for reading the voltage value of the battery cell group 10-2 to the second battery cell management device 100-2 in the same manner.
  • the battery cell management device 100-2 receives this command 2, the battery cell management device 100-2 detects the voltage of each battery cell in the connected battery cell group 10-2, and returns the voltage value data as response 2 to the assembled battery management device 200. To do.
  • the assembled battery management device 200 repeatedly transmits the command and receives the response as described above up to the nth battery cell management device 100-n. Thereby, the voltage value of each battery cell group 10 can be acquired from each battery cell monitoring device 100 as data for calculating the SOC of each battery cell group 10.
  • the communication between the assembled battery management device 200 and the battery cell management devices 100-1 to 100-n using the communication flow described above can be realized by, for example, time division wireless communication using a plurality of communication slots. it can. That is, the assembled battery management device 200 and each battery cell management device 100 (battery cell management devices 100-1 to 100-n) use this communication slot assigned to each battery cell management device 100, respectively. Such time division wireless communication can be performed.
  • the assembled battery management apparatus 200 uses the voltage value of each battery cell group 10 acquired as described above, and the temperature and current values acquired from the temperature detection means 300 and the current detection means 400, respectively. An SOC of 10 is estimated. As a result, for example, it is assumed that the SOC of the battery cell group 10-1 is higher than the value obtained by adding the specified value ⁇ % to the average SOC in the first voltage recognition cycle. In such a case, as shown in FIG. 3, the assembled battery management device 200 transmits command 1 to the battery cell management device 100-1 corresponding to the battery cell group 10-1 in the next second voltage recognition cycle. By increasing the number of times, the number of times response 1 is returned from battery cell management device 100-1 is increased.
  • the number of communication slots assigned to the battery cell management apparatus 100-1 is increased to increase the amount of communication performed with the battery cell management apparatus 100-1.
  • the power consumption in the battery cell group 10-1 can be made larger than that in the other battery cell groups, and the SOC of the battery cell group 10-1 can be relatively lowered.
  • the assembled battery management device 200 has been described as increasing the amount of communication performed with the battery cell management device 100 corresponding to the battery cell group 10 having a high SOC. Conversely, the amount of communication performed with the battery cell management device 100 corresponding to the battery cell group 10 having a low SOC may be reduced. For example, it is assumed that the SOC of battery cell group 10-1 is lower than the value obtained by subtracting the specified value ⁇ % from the average SOC. In such a case, the assembled battery management device 200 does not transmit the command 1 to the battery cell management device 100-1 corresponding to the battery cell group 10-1 in the next voltage recognition cycle.
  • the number of times the response 1 is returned from the battery cell management device 100-1 is reduced, and the number of communication slots assigned to the battery cell management device 100-1 is reduced. Reduce the amount of communication between them.
  • the power consumption in the battery cell group 10-1 can be made smaller than that in the other battery cell groups, and the SOC of the battery cell group 10-1 can be relatively increased.
  • the assembled battery management device 200 changes the amount of communication performed with each battery cell management device 100 based on the estimation result of the SOC of each battery cell group 10. Thereby, the dispersion
  • the amount of communication is increased.
  • the amount of communication may be changed by other methods. For example, a plurality of types of commands are prepared in the assembled battery management device 200, and the length of the response returned from each battery cell management device 100, that is, the length of the communication slot is changed according to the type of the command. To. And according to the magnitude
  • the communication time for transmitting the measurement result is changed. Even in this way, the assembled battery management device 200 can change the amount of communication performed with each battery cell management device 100 based on the estimation result of the SOC of each battery cell group 10. As a result, variation in SOC of each battery cell group 10 can be adjusted.
  • the two methods described above may be used in combination. That is, the assembled battery management device 200 changes each battery cell management device 100 by changing at least one of the communication frequency and the communication time for causing each battery cell management device 100 to transmit the voltage measurement result of the battery cell group 10. The amount of communication performed between the two can be changed.
  • the battery system 1 is provided corresponding to the battery cell group 10 constituted by one or a plurality of battery cells and the battery cell group 10, and the measurement result regarding the charge state of the battery cells of the battery cell group 10
  • a battery cell management device 100 to be acquired and a battery pack management device 200 that performs wireless or wired communication with the battery cell management device 100 are provided.
  • the battery cell management device 100 transmits the measurement result to the assembled battery management device 200 using the power supplied from the battery cells of the battery cell group 10.
  • the assembled battery management device 200 estimates the state of charge (SOC) of the battery cells of the battery cell group 10 based on the measurement result transmitted from the battery cell management device 100, and based on the estimation result of the SOC, the battery cell
  • the amount of communication performed with the management apparatus 100 is changed. Since it did in this way, the dispersion
  • the battery cell management device 100 transmits a measurement result to the assembled battery management device 200 in response to a command from the assembled battery management device 200.
  • the assembled battery management device 200 changes the amount of communication performed with the battery cell management device 100 by changing at least one of the communication frequency and the communication time for causing the battery cell management device 100 to transmit the measurement result. . Since it did in this way, the amount of communication performed between the assembled battery management apparatus 200 and the battery cell management apparatus 100 can be changed appropriately and easily.
  • the battery system 1 includes a plurality of battery cell groups 10 and a plurality of battery cell management devices 100 corresponding to the respective battery cell groups 10.
  • the assembled battery management device 200 and the plurality of battery cell management devices 100 can perform time-division wireless communication using a communication slot assigned to each battery cell management device 100.
  • the assembled battery management device 200 changes the amount of communication performed with the battery cell management device 100 by changing at least one of the number and the length of the communication slots based on the estimation result of the SOC. Since it did in this way, when performing wireless communication between the assembled battery management apparatus 200 and each battery cell management apparatus 100, the communication amount in the wireless communication can be changed appropriately and easily.
  • the battery cell group 10 demonstrated the example comprised with the some battery cell.
  • the SOC can be adjusted between the plurality of battery cell groups 10, but the SOC cannot be adjusted between the plurality of battery cells included in the same battery cell group 10. Therefore, in a second embodiment described below, an example in which such a problem is solved by configuring the battery cell group 10 by one battery cell will be described.
  • FIG. 4 is a diagram showing a configuration example of the battery system 1 according to the second embodiment of the present invention.
  • each battery cell group 10 (battery cell groups 10-1 to 10-m) is configured by one battery cell as compared with the one according to the first embodiment shown in FIG. Is different.
  • m represents the number of battery cell groups 10 (that is, the number of battery cells).
  • the battery cell management device 100 is assigned to each battery cell. Therefore, by using the method described in the first embodiment, the amount of communication performed between each battery cell management device 100 and the battery management device 200 is set to the battery cell corresponding to each battery cell management device 100.
  • the SOC of each battery cell can be adjusted by changing the SOC according to the SOC.
  • the battery cell group 10 is constituted by one battery cell, and the battery cell management device 100 corresponds to one battery cell constituting the battery cell group 10. Is provided. Since it did in this way, SOC can be adjusted between battery cells.
  • the battery cell group 10 was comprised by one battery cell, and the example which enabled adjustment of SOC between battery cells was demonstrated.
  • 3rd Embodiment demonstrated below demonstrates the example which enables adjustment of SOC between battery cells, when the battery cell group 10 is comprised by the some battery cell.
  • FIG. 5 is a diagram showing a configuration example of the battery system 1 according to the third embodiment of the present invention.
  • the battery system 1 shown in FIG. 5 is different from that according to the first embodiment shown in FIG. 2 in that each battery cell management device 100 (battery cell management devices 100-1 to 100-n) has a battery.
  • the control unit 20 is different in that a selection circuit 21 is further mounted.
  • the selection circuit 21 includes a battery cell group connected to the battery control unit 20 for a battery cell that receives power supply when the communication control unit 30 transmits the voltage of the battery cell of the battery cell group 10 to the assembled battery management device 200. Select from 10 battery cells. Using the power supplied from the battery cell selected by the selection circuit 21, the communication control unit 30 uses the wireless (or wired) communication to determine the voltage detection result of each battery cell input from the battery control unit 20. It transmits to the management apparatus 200.
  • the battery cell selection operation by the selection circuit 21 is preferably performed based on an instruction from the assembled battery management device 200.
  • the assembled battery management device 200 uses the selection circuit 21 based on the estimation result of the SOC of each battery cell constituting each battery cell group 10 in the command (see FIG. 3) transmitted to each battery cell management device 100.
  • Each battery cell management apparatus 100 is instructed which battery cell to select.
  • each battery cell management device 100 operates the selection circuit 21 to transfer the corresponding battery cell from the corresponding battery cells of the battery cell group 10 to the communication control unit 30. It can be selected as a power supply source.
  • the battery cell group 10 includes a plurality of battery cells, and each battery cell management device 100 transmits a measurement result to the assembled battery management device 200.
  • a selection circuit 21 is provided for selecting a battery cell to be supplied with power from a plurality of battery cells.
  • the assembled battery management apparatus 200 instructs each battery cell management apparatus 100 to select a battery cell by the selection circuit 21 based on the estimation result of the SOC. Since it did in this way, when battery cell group 10 comprises a plurality of battery cells, SOC can be adjusted between battery cells.

Abstract

This battery system comprises the following: battery-cell groups; battery-cell management apparatuses, each of which obtains measurement results relating to the states of charge of the battery cells in a corresponding battery-cell group; and a battery-pack management apparatus that performs wireless or wired communication with the battery-cell management apparatuses. Each battery-cell management apparatus uses power supplied from the battery cells in the corresponding battery-cell group to transmit the aforementioned measurement results to the battery-pack management apparatus. On the basis of the measurement results transmitted from the battery-cell management apparatuses, the battery-pack management apparatus estimates the states of charge of the battery cells in the battery-cell groups, and on the basis of the results of said estimation, changes the amount of communication performed with the battery-cell management apparatuses.

Description

電池システムBattery system
 本発明は、電池システムに関する。 The present invention relates to a battery system.
 現在、地球環境問題が大きくクローズアップされる中、地球温暖化防止の為に、炭酸ガスの排出削減が求められている。たとえば、炭酸ガスの大きな排出源となっているガソリンエンジンの自動車については、ハイブリッド電気自動車や電気自動車などへの代替が始まっている。ハイブリッド電気自動車や電気自動車の動力用電源として代表的な大型二次電池は、高出力、大容量であることが必要である。そのため、これを構成する蓄電池モジュールは、一般的に、複数の電池セルを直並列接続して構成されている。 Currently, as global environmental problems are greatly highlighted, there is a need to reduce carbon dioxide emissions to prevent global warming. For example, a gasoline engine vehicle, which is a large source of carbon dioxide, has begun to be replaced by a hybrid electric vehicle and an electric vehicle. A large-sized secondary battery representative as a power source for a hybrid electric vehicle or an electric vehicle needs to have a high output and a large capacity. Therefore, the storage battery module constituting this is generally configured by connecting a plurality of battery cells in series and parallel.
 大容量の二次電池としては、リチウムイオン電池が広く知られている。リチウムイオン電池の取扱いでは、高電圧充電の防止や過放電による性能低下の防止などの措置が必要となる。そのため、ハイブリッド電気自動車や電気自動車に搭載され、各電池セルにリチウムイオン電池を用いて構成される蓄電池モジュールは、一般に、電圧、電流、温度などの電池状態を電池セルごとに監視し、電池状態に応じて各電池セルを制御する機能を持っている。 Lithium ion batteries are widely known as large capacity secondary batteries. In handling lithium ion batteries, measures such as prevention of high voltage charging and deterioration of performance due to overdischarge are required. For this reason, a storage battery module that is mounted on a hybrid electric vehicle or an electric vehicle and that uses a lithium ion battery for each battery cell generally monitors the battery state such as voltage, current, and temperature for each battery cell. It has the function to control each battery cell according to.
 上記のような電池状態に応じた電池セルの制御を実現するための方法として、たとえば下記の特許文献1、2にそれぞれ開示されるような技術が知られている。特許文献1に開示された電池制御装置による電池セルの制御方法では、各電池セルに対して放電回路とスイッチを設け、各電池セルの充電状態(SOC)に応じてスイッチを開閉制御することにより、各電池セルのSOCのばらつきを調整している。また、特許文献2に開示された組電池制御手段による電池セルの制御方法では、SOCが所定の充電状態よりも高い電池セルのグループがある場合、組電池の充放電停止時に、その電池セルグループに対応する単電池制御手段の動作を継続させることで、当該電池セルグループの各電池セルを放電させて電池セルグループ間のSOCのばらつきを調整している。 As a method for realizing control of a battery cell in accordance with the battery state as described above, for example, techniques disclosed in Patent Documents 1 and 2 below are known. In the battery cell control method by the battery control device disclosed in Patent Document 1, a discharge circuit and a switch are provided for each battery cell, and the switch is controlled to open and close according to the state of charge (SOC) of each battery cell. The SOC variation of each battery cell is adjusted. Further, in the battery cell control method by the assembled battery control means disclosed in Patent Document 2, when there is a group of battery cells whose SOC is higher than a predetermined charging state, the battery cell group is stopped when charging / discharging of the assembled battery is stopped. By continuing the operation of the single battery control means corresponding to the above, the battery cells of the battery cell group are discharged to adjust the SOC variation between the battery cell groups.
日本国特開2012-135140号公報Japanese Unexamined Patent Publication No. 2012-135140 日本国特開2012-10563号公報Japanese Unexamined Patent Publication No. 2012-10563
 特許文献1に開示された電池セルの制御方法では、各電池セルに対して放電回路とスイッチを電池制御装置内に設ける必要があるため、電池制御装置のコストアップや信頼性の低下につながるおそれがある。また、特許文献2に開示された電池セルの制御方法では、組電池の充放電停止時にSOCのばらつきを調整しているため、充放電中にSOCのばらつきをリアルタイムに調整することはできない。 In the battery cell control method disclosed in Patent Document 1, since it is necessary to provide a discharge circuit and a switch for each battery cell in the battery control device, the battery control device may be increased in cost and reliability. There is. Further, in the battery cell control method disclosed in Patent Document 2, since the SOC variation is adjusted when charging / discharging of the assembled battery is stopped, the SOC variation cannot be adjusted in real time during charging / discharging.
 本発明による電池システムは、1つまたは複数の電池セルにより構成される電池セル群と、電池セル群に対応して設けられ、電池セル群の電池セルの充電状態に関する測定結果を取得する電池セル管理装置と、電池セル管理装置との間で無線または有線通信を行う組電池管理装置と、を備える。この電池システムにおいて、電池セル管理装置は、電池セル群の電池セルから供給される電力を用いて、測定結果を組電池管理装置に送信する。また、組電池管理装置は、電池セル管理装置から送信された測定結果に基づいて、電池セル群の電池セルの充電状態を推定し、充電状態の推定結果に基づいて、電池セル管理装置との間で行う通信の量を変化させる。 A battery system according to the present invention includes a battery cell group configured by one or a plurality of battery cells, and a battery cell that is provided corresponding to the battery cell group and obtains a measurement result regarding a charge state of the battery cell of the battery cell group. And a battery pack management device that performs wireless or wired communication between the management device and the battery cell management device. In this battery system, the battery cell management device transmits the measurement result to the assembled battery management device using the power supplied from the battery cells of the battery cell group. Further, the assembled battery management device estimates the charge state of the battery cells of the battery cell group based on the measurement result transmitted from the battery cell management device, and based on the estimation result of the charge state, Change the amount of communication between them.
 本発明によれば、特別な回路や部品を必要とせずに、充放電中に電池セルのSOCのばらつきをリアルタイムに調整することができる。 According to the present invention, it is possible to adjust the SOC variation of the battery cell in real time during charge / discharge without requiring a special circuit or component.
本発明の一実施形態による電池システムを含む車載システムの構成を示す図である。It is a figure which shows the structure of the vehicle-mounted system containing the battery system by one Embodiment of this invention. 本発明の第1の実施形態による電池システムの構成例を示す図である。It is a figure which shows the structural example of the battery system by the 1st Embodiment of this invention. 組電池管理装置と電池セル管理装置との間の通信フロー例を示す図である。It is a figure which shows the example of a communication flow between an assembled battery management apparatus and a battery cell management apparatus. 本発明の第2の実施形態による電池システムの構成例を示す図である。It is a figure which shows the structural example of the battery system by the 2nd Embodiment of this invention. 本発明の第3の実施形態による電池システムの構成例を示す図である。It is a figure which shows the structural example of the battery system by the 3rd Embodiment of this invention.
 図1は、本発明の一実施形態による電池システムを含む車載システムの構成を示す図である。図1に示す車載システムは、ハイブリッド電気自動車や電気自動車等の車両に搭載されるものであり、電池システム1、インバータ2、モータ3、リレーボックス4および上位コントローラ5を備える。 FIG. 1 is a diagram showing a configuration of an in-vehicle system including a battery system according to an embodiment of the present invention. The in-vehicle system shown in FIG. 1 is mounted on a vehicle such as a hybrid electric vehicle or an electric vehicle, and includes a battery system 1, an inverter 2, a motor 3, a relay box 4, and a host controller 5.
 電池システム1には、1つまたは複数の電池セルによってそれぞれ構成される1つまたは複数の電池セル群10が備えられており、各電池セル群10に対応して、電池セル管理装置100がそれぞれ設けられている。各電池セル管理装置100は、電池セル群10の充電状態(SOC:State of Charge)や劣化状態(SOH:State of Health)に関する測定(電圧、電流、温度等)を行う。そして、電池セル群10の電池セルから供給される電力を用いて、組電池監視装置200との間で無線(または有線)通信を行い、電池セル群10の充電状態や劣化状態に関する測定結果を組電池監視装置200へ送信する。なお、このとき行われる通信の詳細については、後で説明する。 The battery system 1 includes one or a plurality of battery cell groups 10 each constituted by one or a plurality of battery cells, and the battery cell management device 100 corresponds to each battery cell group 10. Is provided. Each battery cell management device 100 performs measurement (voltage, current, temperature, etc.) related to the state of charge (SOC: State of Charge) or the deterioration state (SOH: State of Health) of the battery cell group 10. Then, using the power supplied from the battery cells of the battery cell group 10, wireless (or wired) communication is performed with the assembled battery monitoring device 200, and measurement results regarding the charge state and the deterioration state of the battery cell group 10 are obtained. It transmits to the assembled battery monitoring apparatus 200. Details of communication performed at this time will be described later.
 組電池監視装置200は、各電池セル管理装置100から、当該電池セル管理装置100に対応する電池セル群10の充電状態や劣化状態に関する測定結果を取得する。そして、取得した測定結果に基づいて、各電池セル群10の充電状態や劣化状態を推定し、その推定結果を上位コントローラ5へ送信する。 The assembled battery monitoring device 200 acquires a measurement result related to the charge state or the deterioration state of the battery cell group 10 corresponding to the battery cell management device 100 from each battery cell management device 100. Then, based on the acquired measurement result, the charged state and the deteriorated state of each battery cell group 10 are estimated, and the estimated result is transmitted to the host controller 5.
 上位コントローラ5は、組電池監視装置200から送信された各電池セル群10の充電状態や劣化状態の推定結果に基づいて、インバータ2やリレーボックス4を制御する。インバータ2は、リレーボックス4が導通状態のときに各電池セル群10から供給される直流電力を三相交流電力に変換してモータ3へ供給することにより、モータ3を回転駆動させて車両の駆動力を発生させる。また、車両の制動時には、モータ3により発生された三相交流回生電力を直流電力に変換して各電池セル群10へ出力することにより、各電池セル群10の電池セルを充電する。こうしたインバータ2の動作は、上位コントローラ5によって制御される。 The host controller 5 controls the inverter 2 and the relay box 4 based on the estimation result of the charged state and the deteriorated state of each battery cell group 10 transmitted from the assembled battery monitoring device 200. The inverter 2 converts the DC power supplied from each battery cell group 10 into three-phase AC power when the relay box 4 is in a conductive state, and supplies the three-phase AC power to the motor 3, thereby driving the motor 3 to rotate. Generate driving force. Further, when the vehicle is braked, the battery cells of each battery cell group 10 are charged by converting the three-phase AC regenerative power generated by the motor 3 into DC power and outputting it to each battery cell group 10. The operation of the inverter 2 is controlled by the host controller 5.
(第1の実施形態)
 図2は、本発明の第1の実施形態による電池システム1の構成例を示す図である。図2に示す電池システム1は、図1に示した電池セル群10、電池セル管理装置100および組電池監視装置200に加えて、さらに温度検知手段300および電流検知手段400を有している。なお、図2では、電池セル群10および電池セル管理装置100がn個ずつ電池システム1内に設けられている例を示している。図2において、1番目、2番目、n番目の電池セル群10を符号10-1、10-2、10-nでそれぞれ表し、これらに対応して設けられた1番目、2番目、n番目の電池セル管理装置100を符号100-1、100-2、100-nでそれぞれ表している。
(First embodiment)
FIG. 2 is a diagram showing a configuration example of the battery system 1 according to the first embodiment of the present invention. The battery system 1 shown in FIG. 2 further includes a temperature detection unit 300 and a current detection unit 400 in addition to the battery cell group 10, the battery cell management device 100, and the assembled battery monitoring device 200 shown in FIG. FIG. 2 shows an example in which n battery cell groups 10 and n battery cell management devices 100 are provided in the battery system 1. In FIG. 2, the first, second, and nth battery cell groups 10 are represented by reference numerals 10-1, 10-2, and 10-n, respectively, and the first, second, and nth provided corresponding thereto. The battery cell management devices 100 are denoted by reference numerals 100-1, 100-2, and 100-n, respectively.
 温度検知手段300は、電池システム1の温度を検知し、その検知結果を各電池セル群10の温度として組電池管理装置200に出力する。電流検知手段400は、直列に接続された電池セル群10を流れる電流を検知し、その検知結果を組電池管理装置200に出力する。 The temperature detection means 300 detects the temperature of the battery system 1 and outputs the detection result to the assembled battery management apparatus 200 as the temperature of each battery cell group 10. The current detection unit 400 detects a current flowing through the battery cell group 10 connected in series, and outputs the detection result to the assembled battery management apparatus 200.
 電池セル管理装置100は、電池制御部20および通信制御部30を有している。電池制御部20は、対応する電池セル群10の各電池セルの電圧を検知することで、電池セル群10の充電状態や劣化状態に関する測定結果を取得し、その測定結果を通信制御部30に出力する。通信制御部30は、対応する電池セル群10の電池セルから供給される電力を用いて、電池制御部20から入力された各電池セルの電圧検知結果を、無線(または有線)通信により組電池管理装置200へ送信する。なお、有線通信とする場合は、各電池セル管理装置100を個別に組電池管理装置200に接続してもよい。あるいは、複数の電池セル管理装置100をデイジーチェーン接続し、その一端または両端を組電池管理装置200に接続してもよい。 The battery cell management device 100 includes a battery control unit 20 and a communication control unit 30. The battery control unit 20 detects the voltage of each battery cell of the corresponding battery cell group 10 to acquire a measurement result regarding the charging state or the deterioration state of the battery cell group 10, and sends the measurement result to the communication control unit 30. Output. The communication control unit 30 uses the electric power supplied from the battery cells of the corresponding battery cell group 10 to display the voltage detection result of each battery cell input from the battery control unit 20 by wireless (or wired) communication. It transmits to the management apparatus 200. In the case of wired communication, each battery cell management device 100 may be individually connected to the assembled battery management device 200. Alternatively, a plurality of battery cell management devices 100 may be connected in a daisy chain, and one or both ends thereof may be connected to the assembled battery management device 200.
 組電池管理装置200は、温度検知手段300により検知された温度と、電流検知手段400により検知された電流とを取得する。また、各電池セル管理装置100との間で通信を行うことにより、各電池セル管理装置100に対応する電池セル群10の各電池セルの電圧を取得する。これらの情報に基づいて、組電池管理装置200は、各電池セル群10の充電状態(SOC)や劣化状態(SOH)を推定することができる。 The assembled battery management device 200 acquires the temperature detected by the temperature detection means 300 and the current detected by the current detection means 400. Moreover, the voltage of each battery cell of the battery cell group 10 corresponding to each battery cell management apparatus 100 is acquired by performing communication with each battery cell management apparatus 100. Based on these pieces of information, the assembled battery management apparatus 200 can estimate the state of charge (SOC) and the state of deterioration (SOH) of each battery cell group 10.
 こうして各電池セル群10のSOCが求められたら、組電池管理装置200は、その平均値を算出することで電池セル群10の平均SOCを算出する。その結果、平均SOCよりも所定の規定値Δ%以上高いSOCの電池セル群10がある場合は、その電池セル群10が接続されている電池セル管理装置100との間で行う通信の頻度を他の電池セル管理装置100よりも増加させる。これにより、当該電池セル監視装置100から組電池管理装置200に電池セルの電圧検出結果を送信する際の通信に要する消費電力を、他の電池セル監視装置100よりも増加させるようにする。その結果、当該電池セル監視装置100に接続されている電池セル群10のSOCを相対的に低下させて、他の電池セル群10との間でSOCの調整を図ることができる。 Thus, when the SOC of each battery cell group 10 is obtained, the assembled battery management apparatus 200 calculates the average SOC of the battery cell group 10 by calculating the average value. As a result, when there is a battery cell group 10 with an SOC that is higher than the average SOC by a predetermined specified value Δ% or more, the frequency of communication performed with the battery cell management device 100 to which the battery cell group 10 is connected is determined. It is increased more than other battery cell management devices 100. Thereby, the power consumption required for communication when transmitting the voltage detection result of the battery cell from the battery cell monitoring device 100 to the assembled battery management device 200 is increased more than that of the other battery cell monitoring devices 100. As a result, the SOC of the battery cell group 10 connected to the battery cell monitoring device 100 can be relatively lowered, and the SOC can be adjusted with the other battery cell group 10.
 図3は、組電池管理装置200と電池セル管理装置100-1~100-nとの間の通信フロー例を示す図である。図3に示すように、組電池管理装置200は、最初に1番目の電池セル管理装置100-1に対して、電池セル群10-1の電圧値を読み出すための指令としてのコマンド1を送信する。このコマンド1を受信した電池セル管理装置100-1は、接続されている電池セル群10-1の各電池セルの電圧を検知し、その電圧値データをレスポンス1として組電池管理装置200に返信する。 FIG. 3 is a diagram showing an example of a communication flow between the assembled battery management device 200 and the battery cell management devices 100-1 to 100-n. As shown in FIG. 3, the assembled battery management device 200 first transmits a command 1 as a command for reading the voltage value of the battery cell group 10-1 to the first battery cell management device 100-1. To do. Upon receiving this command 1, the battery cell management device 100-1 detects the voltage of each battery cell in the connected battery cell group 10-1, and returns the voltage value data as response 1 to the assembled battery management device 200. To do.
 次に組電池管理装置200は、2番目の電池セル管理装置100-2に対しても同様に、電池セル群10-2の電圧値を読み出すための指令としてのコマンド2を送信する。このコマンド2を受信した電池セル管理装置100-2は、接続されている電池セル群10-2の各電池セルの電圧を検知し、その電圧値データをレスポンス2として組電池管理装置200に返信する。 Next, the assembled battery management device 200 transmits a command 2 as a command for reading the voltage value of the battery cell group 10-2 to the second battery cell management device 100-2 in the same manner. Receiving this command 2, the battery cell management device 100-2 detects the voltage of each battery cell in the connected battery cell group 10-2, and returns the voltage value data as response 2 to the assembled battery management device 200. To do.
 組電池管理装置200は、以上説明したようなコマンドの送信およびレスポンスの受信を、n番目の電池セル管理装置100-nまで繰り返し行う。これにより、各電池セル監視装置100から、各電池セル群10のSOCを算出するためのデータとして、各電池セル群10の電圧値を取得することができる。 The assembled battery management device 200 repeatedly transmits the command and receives the response as described above up to the nth battery cell management device 100-n. Thereby, the voltage value of each battery cell group 10 can be acquired from each battery cell monitoring device 100 as data for calculating the SOC of each battery cell group 10.
 なお、以上説明した通信フローによる組電池管理装置200と電池セル管理装置100-1~100-nとの間の通信は、たとえば、複数の通信スロットを用いた時分割無線通信により実現することができる。すなわち、組電池管理装置200と各電池セル管理装置100(電池セル管理装置100-1~100-n)とは、各電池セル管理装置100に対してそれぞれ割り当てられた通信スロットを用いて、このような時分割無線通信を行うことができる。 The communication between the assembled battery management device 200 and the battery cell management devices 100-1 to 100-n using the communication flow described above can be realized by, for example, time division wireless communication using a plurality of communication slots. it can. That is, the assembled battery management device 200 and each battery cell management device 100 (battery cell management devices 100-1 to 100-n) use this communication slot assigned to each battery cell management device 100, respectively. Such time division wireless communication can be performed.
 組電池管理装置200は、上記のようにして取得した各電池セル群10の電圧値と、温度検知手段300および電流検知手段400からそれぞれ取得した温度および電流値とに基づいて、各電池セル群10のSOCを推定する。その結果、たとえば1回目の電圧認識周期において、電池セル群10-1のSOCが、平均SOCに規定値Δ%を加えた値よりも高かったとする。このような場合、組電池管理装置200は、図3に示すように、次の2回目の電圧認識周期において、電池セル群10-1に対応する電池セル管理装置100-1に対するコマンド1の送信回数を増やすことで、電池セル管理装置100-1からレスポンス1が返信される回数を増加させる。これにより、電池セル管理装置100-1に対して割り当てられた通信スロットの数を増やして、電池セル管理装置100-1との間で行う通信の量を増加させるようにする。その結果、電池セル群10-1における電力消費量を他の電池セル群よりも大きくして、電池セル群10-1のSOCを相対的に低下させることができる。 The assembled battery management apparatus 200 uses the voltage value of each battery cell group 10 acquired as described above, and the temperature and current values acquired from the temperature detection means 300 and the current detection means 400, respectively. An SOC of 10 is estimated. As a result, for example, it is assumed that the SOC of the battery cell group 10-1 is higher than the value obtained by adding the specified value Δ% to the average SOC in the first voltage recognition cycle. In such a case, as shown in FIG. 3, the assembled battery management device 200 transmits command 1 to the battery cell management device 100-1 corresponding to the battery cell group 10-1 in the next second voltage recognition cycle. By increasing the number of times, the number of times response 1 is returned from battery cell management device 100-1 is increased. As a result, the number of communication slots assigned to the battery cell management apparatus 100-1 is increased to increase the amount of communication performed with the battery cell management apparatus 100-1. As a result, the power consumption in the battery cell group 10-1 can be made larger than that in the other battery cell groups, and the SOC of the battery cell group 10-1 can be relatively lowered.
 なお、以上説明した例では、組電池管理装置200において、SOCの高い電池セル群10に対応する電池セル管理装置100との間で行う通信の量を増加させる様子を説明したが、これとは反対に、SOCの低い電池セル群10に対応する電池セル管理装置100との間で行う通信の量を低減させてもよい。たとえば、電池セル群10-1のSOCが、平均SOCから規定値Δ%を減じた値よりも低かったとする。このような場合、組電池管理装置200は、次の電圧認識周期において、電池セル群10-1に対応する電池セル管理装置100-1に対してコマンド1を送信しないようにする。これにより、電池セル管理装置100-1からレスポンス1が返信される回数を減らし、電池セル管理装置100-1に対して割り当てられた通信スロットの数を減らして、電池セル管理装置100-1との間で行う通信の量を低減させる。その結果、電池セル群10-1における電力消費量を他の電池セル群よりも小さくして、電池セル群10-1のSOCを相対的に上昇させることができる。 In the example described above, the assembled battery management device 200 has been described as increasing the amount of communication performed with the battery cell management device 100 corresponding to the battery cell group 10 having a high SOC. Conversely, the amount of communication performed with the battery cell management device 100 corresponding to the battery cell group 10 having a low SOC may be reduced. For example, it is assumed that the SOC of battery cell group 10-1 is lower than the value obtained by subtracting the specified value Δ% from the average SOC. In such a case, the assembled battery management device 200 does not transmit the command 1 to the battery cell management device 100-1 corresponding to the battery cell group 10-1 in the next voltage recognition cycle. As a result, the number of times the response 1 is returned from the battery cell management device 100-1 is reduced, and the number of communication slots assigned to the battery cell management device 100-1 is reduced. Reduce the amount of communication between them. As a result, the power consumption in the battery cell group 10-1 can be made smaller than that in the other battery cell groups, and the SOC of the battery cell group 10-1 can be relatively increased.
 すなわち、組電池管理装置200は、各電池セル群10のSOCの推定結果に基づいて、各電池セル管理装置100との間で行う通信の量を変化させる。これにより、各電池セル群10のSOCのばらつきを調整することができる。 That is, the assembled battery management device 200 changes the amount of communication performed with each battery cell management device 100 based on the estimation result of the SOC of each battery cell group 10. Thereby, the dispersion | variation in SOC of each battery cell group 10 can be adjusted.
 また、以上説明した例では、組電池管理装置200において、各電池セル管理装置100から電池セル群10の電圧測定結果を送信させるための通信頻度(回数)を増減させることにより、通信の量を変化させることを説明したが、他の方法で通信の量を変化させてもよい。たとえば、組電池管理装置200においてコマンドを複数種類用意しておき、このコマンドの種類に応じて、各電池セル管理装置100から返信されるレスポンスの長さ、すなわち通信スロットの長さを変化させるようにする。そして、対応する電池セル群10のSOCの大きさに応じて、各電池セル管理装置100に対して送信するコマンドの種類を決定することで、各電池セル管理装置100から電池セル群10の電圧測定結果を送信させるための通信時間を変化させるようにする。このようにしても、組電池管理装置200は、各電池セル群10のSOCの推定結果に基づいて、各電池セル管理装置100との間で行う通信の量を変化させることができる。その結果、各電池セル群10のSOCのばらつきを調整することができる。 Moreover, in the example demonstrated above, in the assembled battery management apparatus 200, by increasing / decreasing the communication frequency (number of times) for transmitting the voltage measurement result of the battery cell group 10 from each battery cell management apparatus 100, the amount of communication is increased. Although the change has been described, the amount of communication may be changed by other methods. For example, a plurality of types of commands are prepared in the assembled battery management device 200, and the length of the response returned from each battery cell management device 100, that is, the length of the communication slot is changed according to the type of the command. To. And according to the magnitude | size of SOC of the corresponding battery cell group 10, by determining the kind of command transmitted with respect to each battery cell management apparatus 100, the voltage of the battery cell group 10 from each battery cell management apparatus 100 is determined. The communication time for transmitting the measurement result is changed. Even in this way, the assembled battery management device 200 can change the amount of communication performed with each battery cell management device 100 based on the estimation result of the SOC of each battery cell group 10. As a result, variation in SOC of each battery cell group 10 can be adjusted.
 なお、組電池管理装置200と各電池セル管理装置100との間で行う通信の量を変化させるために、以上説明したような2つの方法を組み合わせて用いてもよい。すなわち、組電池管理装置200は、各電池セル管理装置100に電池セル群10の電圧測定結果を送信させるための通信頻度および通信時間の少なくとも一方を変化させることにより、各電池セル管理装置100との間で行う通信の量を変化させることができる。 In addition, in order to change the amount of communication performed between the assembled battery management device 200 and each battery cell management device 100, the two methods described above may be used in combination. That is, the assembled battery management device 200 changes each battery cell management device 100 by changing at least one of the communication frequency and the communication time for causing each battery cell management device 100 to transmit the voltage measurement result of the battery cell group 10. The amount of communication performed between the two can be changed.
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。 According to the first embodiment of the present invention described above, the following operational effects are obtained.
(1)電池システム1は、1つまたは複数の電池セルにより構成される電池セル群10と、電池セル群10に対応して設けられ、電池セル群10の電池セルの充電状態に関する測定結果を取得する電池セル管理装置100と、電池セル管理装置100との間で無線または有線通信を行う組電池管理装置200とを備える。電池セル管理装置100は、電池セル群10の電池セルから供給される電力を用いて、測定結果を組電池管理装置200に送信する。組電池管理装置200は、電池セル管理装置100から送信された測定結果に基づいて、電池セル群10の電池セルの充電状態(SOC)を推定し、そのSOCの推定結果に基づいて、電池セル管理装置100との間で行う通信の量を変化させる。このようにしたので、特別な回路や部品を必要とせずに、充放電中に電池セルのSOCのばらつきをリアルタイムに調整することができる。 (1) The battery system 1 is provided corresponding to the battery cell group 10 constituted by one or a plurality of battery cells and the battery cell group 10, and the measurement result regarding the charge state of the battery cells of the battery cell group 10 A battery cell management device 100 to be acquired and a battery pack management device 200 that performs wireless or wired communication with the battery cell management device 100 are provided. The battery cell management device 100 transmits the measurement result to the assembled battery management device 200 using the power supplied from the battery cells of the battery cell group 10. The assembled battery management device 200 estimates the state of charge (SOC) of the battery cells of the battery cell group 10 based on the measurement result transmitted from the battery cell management device 100, and based on the estimation result of the SOC, the battery cell The amount of communication performed with the management apparatus 100 is changed. Since it did in this way, the dispersion | variation in SOC of a battery cell can be adjusted in real time during charging / discharging, without requiring a special circuit and components.
(2)電池セル管理装置100は、組電池管理装置200からの指令に応じて測定結果を組電池管理装置200に送信する。組電池管理装置200は、電池セル管理装置100に測定結果を送信させるための通信頻度および通信時間の少なくとも一方を変化させることにより、電池セル管理装置100との間で行う通信の量を変化させる。このようにしたので、組電池管理装置200と電池セル管理装置100との間で行われる通信の量を適切かつ容易に変化させることができる。 (2) The battery cell management device 100 transmits a measurement result to the assembled battery management device 200 in response to a command from the assembled battery management device 200. The assembled battery management device 200 changes the amount of communication performed with the battery cell management device 100 by changing at least one of the communication frequency and the communication time for causing the battery cell management device 100 to transmit the measurement result. . Since it did in this way, the amount of communication performed between the assembled battery management apparatus 200 and the battery cell management apparatus 100 can be changed appropriately and easily.
(3)電池システム1は、電池セル群10と、各電池セル群10に対応する電池セル管理装置100とをそれぞれ複数ずつ有している。組電池管理装置200と複数の電池セル管理装置100は、各電池セル管理装置100に対して割り当てられた通信スロットを用いて時分割無線通信を行うことができる。この場合、組電池管理装置200は、SOCの推定結果に基づいて通信スロットの数および長さの少なくとも一方を変化させることにより、電池セル管理装置100との間で行う通信の量を変化させる。このようにしたので、組電池管理装置200と各電池セル管理装置100との間で無線通信を行う場合に、その無線通信における通信の量を適切かつ容易に変化させることができる。 (3) The battery system 1 includes a plurality of battery cell groups 10 and a plurality of battery cell management devices 100 corresponding to the respective battery cell groups 10. The assembled battery management device 200 and the plurality of battery cell management devices 100 can perform time-division wireless communication using a communication slot assigned to each battery cell management device 100. In this case, the assembled battery management device 200 changes the amount of communication performed with the battery cell management device 100 by changing at least one of the number and the length of the communication slots based on the estimation result of the SOC. Since it did in this way, when performing wireless communication between the assembled battery management apparatus 200 and each battery cell management apparatus 100, the communication amount in the wireless communication can be changed appropriately and easily.
(第2の実施形態)
 次に本発明の第2の実施形態について説明する。上述した第1の実施形態では、電池セル群10を複数の電池セルで構成した例を説明した。この場合、複数の電池セル群10間でのSOCの調整は可能であるが、同一の電池セル群10に含まれる複数の電池セル間でSOCを調整することはできない。そこで、以下に説明する第2の実施形態では、電池セル群10を1つの電池セルで構成することにより、このような課題を解決した例について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In 1st Embodiment mentioned above, the battery cell group 10 demonstrated the example comprised with the some battery cell. In this case, the SOC can be adjusted between the plurality of battery cell groups 10, but the SOC cannot be adjusted between the plurality of battery cells included in the same battery cell group 10. Therefore, in a second embodiment described below, an example in which such a problem is solved by configuring the battery cell group 10 by one battery cell will be described.
 図4は、本発明の第2の実施形態による電池システム1の構成例を示す図である。図4に示す電池システム1は、図2に示した第1の実施形態によるものと比較して、各電池セル群10(電池セル群10-1~10-m)が1つの電池セルによって構成されている点が異なっている。なお、図4において、mは電池セル群10の個数(すなわち電池セルの個数)を表している。 FIG. 4 is a diagram showing a configuration example of the battery system 1 according to the second embodiment of the present invention. In the battery system 1 shown in FIG. 4, each battery cell group 10 (battery cell groups 10-1 to 10-m) is configured by one battery cell as compared with the one according to the first embodiment shown in FIG. Is different. In FIG. 4, m represents the number of battery cell groups 10 (that is, the number of battery cells).
 図4に示すように、本実施形態の電池システム1では、個々の電池セルに対して電池セル管理装置100がそれぞれ割り当てられている。そのため、第1の実施形態で説明したような方法を用いて、各電池セル管理装置100と電池管理装置200との間で行われる通信の量を、各電池セル管理装置100に対応する電池セルのSOCに応じて変化させることにより、各電池セルのSOCを調整することができる。 As shown in FIG. 4, in the battery system 1 of the present embodiment, the battery cell management device 100 is assigned to each battery cell. Therefore, by using the method described in the first embodiment, the amount of communication performed between each battery cell management device 100 and the battery management device 200 is set to the battery cell corresponding to each battery cell management device 100. The SOC of each battery cell can be adjusted by changing the SOC according to the SOC.
 以上説明した本発明の第2の実施形態によれば、電池セル群10は1つの電池セルにより構成されており、電池セル管理装置100は、電池セル群10を構成する1つの電池セルに対応して設けられている。このようにしたので、電池セル間でSOCを調整することができる。 According to the second embodiment of the present invention described above, the battery cell group 10 is constituted by one battery cell, and the battery cell management device 100 corresponds to one battery cell constituting the battery cell group 10. Is provided. Since it did in this way, SOC can be adjusted between battery cells.
(第3の実施形態)
 次に本発明の第3の実施形態について説明する。上述した第2の実施形態では、電池セル群10を1つの電池セルで構成することにより、電池セル間でのSOCの調整を可能とした例を説明した。これに対して、以下に説明する第3の実施形態では、電池セル群10を複数の電池セルで構成した場合において、電池セル間でのSOCの調整を可能とする例について説明する。
(Third embodiment)
Next, a third embodiment of the present invention will be described. In 2nd Embodiment mentioned above, the battery cell group 10 was comprised by one battery cell, and the example which enabled adjustment of SOC between battery cells was demonstrated. On the other hand, 3rd Embodiment demonstrated below demonstrates the example which enables adjustment of SOC between battery cells, when the battery cell group 10 is comprised by the some battery cell.
 図5は、本発明の第3の実施形態による電池システム1の構成例を示す図である。図5に示す電池システム1は、図2に示した第1の実施形態によるものと比較して、各電池セル管理装置100(電池セル管理装置100-1~100-n)に備えられた電池制御部20において、選択回路21がさらに搭載されている点が異なっている。 FIG. 5 is a diagram showing a configuration example of the battery system 1 according to the third embodiment of the present invention. The battery system 1 shown in FIG. 5 is different from that according to the first embodiment shown in FIG. 2 in that each battery cell management device 100 (battery cell management devices 100-1 to 100-n) has a battery. The control unit 20 is different in that a selection circuit 21 is further mounted.
 選択回路21は、通信制御部30が電池セル群10の電池セルの電圧を組電池管理装置200に送信する際に電力供給を受ける電池セルを、電池制御部20に接続されている電池セル群10の電池セルの中から選択する。選択回路21により選択された電池セルから供給される電力を用いて、通信制御部30は、電池制御部20から入力された各電池セルの電圧検知結果を、無線(または有線)通信により組電池管理装置200へ送信する。 The selection circuit 21 includes a battery cell group connected to the battery control unit 20 for a battery cell that receives power supply when the communication control unit 30 transmits the voltage of the battery cell of the battery cell group 10 to the assembled battery management device 200. Select from 10 battery cells. Using the power supplied from the battery cell selected by the selection circuit 21, the communication control unit 30 uses the wireless (or wired) communication to determine the voltage detection result of each battery cell input from the battery control unit 20. It transmits to the management apparatus 200.
 なお、選択回路21による電池セルの選択動作は、組電池管理装置200からの指示に基づいて行うことが好ましい。たとえば、組電池管理装置200は、各電池セル管理装置100へ送信するコマンド(図3参照)において、各電池セル群10を構成する各電池セルのSOCの推定結果に基づいて、選択回路21によりどの電池セルを選択させるかを各電池セル管理装置100に対して指示する。この組電池管理装置200からの指示に応じて、各電池セル管理装置100は選択回路21を動作させ、対応する電池セル群10の電池セルの中から、該当する電池セルを通信制御部30への電力供給源として選択することができる。 Note that the battery cell selection operation by the selection circuit 21 is preferably performed based on an instruction from the assembled battery management device 200. For example, the assembled battery management device 200 uses the selection circuit 21 based on the estimation result of the SOC of each battery cell constituting each battery cell group 10 in the command (see FIG. 3) transmitted to each battery cell management device 100. Each battery cell management apparatus 100 is instructed which battery cell to select. In response to the instruction from the assembled battery management device 200, each battery cell management device 100 operates the selection circuit 21 to transfer the corresponding battery cell from the corresponding battery cells of the battery cell group 10 to the communication control unit 30. It can be selected as a power supply source.
 以上説明した本発明の第3の実施形態によれば、電池セル群10は複数の電池セルにより構成されており、各電池セル管理装置100は、測定結果を組電池管理装置200に送信する際の電力供給を受ける電池セルを複数の電池セルの中から選択する選択回路21を備える。組電池管理装置200は、SOCの推定結果に基づいて、選択回路21により選択する電池セルを各電池セル管理装置100に対して指示する。このようにしたので、電池セル群10を複数の電池セルで構成した場合において、電池セル間でSOCを調整することができる。 According to the third embodiment of the present invention described above, the battery cell group 10 includes a plurality of battery cells, and each battery cell management device 100 transmits a measurement result to the assembled battery management device 200. A selection circuit 21 is provided for selecting a battery cell to be supplied with power from a plurality of battery cells. The assembled battery management apparatus 200 instructs each battery cell management apparatus 100 to select a battery cell by the selection circuit 21 based on the estimation result of the SOC. Since it did in this way, when battery cell group 10 comprises a plurality of battery cells, SOC can be adjusted between battery cells.
 なお、以上説明した各実施形態や各種の変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired.
1・・・・電池システム
10・・・・電池セル群
20・・・・電池制御部
21・・・・選択回路
30・・・・通信制御部
100・・・電池セル管理装置
200・・・組電池管理装置
300・・・温度検知手段
400・・・電流検知手段
DESCRIPTION OF SYMBOLS 1 ... Battery system 10 ... Battery cell group 20 ... Battery control part 21 ... Selection circuit 30 ... Communication control part 100 ... Battery cell management apparatus 200 ... Battery pack management device 300 ... temperature detection means 400 ... current detection means

Claims (5)

  1.  1つまたは複数の電池セルにより構成される電池セル群と、
     前記電池セル群に対応して設けられ、前記電池セル群の電池セルの充電状態に関する測定結果を取得する電池セル管理装置と、
     前記電池セル管理装置との間で無線または有線通信を行う組電池管理装置と、を備え、
     前記電池セル管理装置は、前記電池セル群の電池セルから供給される電力を用いて、前記測定結果を前記組電池管理装置に送信し、
     前記組電池管理装置は、前記電池セル管理装置から送信された前記測定結果に基づいて、前記電池セル群の電池セルの充電状態を推定し、前記充電状態の推定結果に基づいて、前記電池セル管理装置との間で行う通信の量を変化させる電池システム。
    A battery cell group composed of one or more battery cells;
    A battery cell management device that is provided corresponding to the battery cell group and acquires a measurement result relating to a charge state of the battery cell of the battery cell group;
    An assembled battery management device that performs wireless or wired communication with the battery cell management device,
    The battery cell management device uses the power supplied from the battery cells of the battery cell group to transmit the measurement result to the battery pack management device,
    The assembled battery management device estimates a state of charge of the battery cells of the battery cell group based on the measurement result transmitted from the battery cell management device, and based on the estimation result of the state of charge, the battery cell A battery system that changes the amount of communication with the management device.
  2.  請求項1に記載の電池システムにおいて、
     前記電池セル管理装置は、前記組電池管理装置からの指令に応じて前記測定結果を前記組電池管理装置に送信し、
     前記組電池管理装置は、前記電池セル管理装置に前記測定結果を送信させるための通信頻度および通信時間の少なくとも一方を変化させることにより、前記電池セル管理装置との間で行う通信の量を変化させる電池システム。
    The battery system according to claim 1,
    The battery cell management device transmits the measurement result to the assembled battery management device according to a command from the assembled battery management device,
    The assembled battery management device changes the amount of communication performed with the battery cell management device by changing at least one of a communication frequency and a communication time for causing the battery cell management device to transmit the measurement result. Battery system to let you.
  3.  請求項1または2に記載の電池システムにおいて、
     前記電池システムは、前記電池セル群と、各電池セル群に対応する前記電池セル管理装置とをそれぞれ複数ずつ有しており、
     前記組電池管理装置と前記複数の電池セル管理装置は、各電池セル管理装置に対して割り当てられた通信スロットを用いて時分割無線通信を行い、
     前記組電池管理装置は、前記充電状態の推定結果に基づいて前記通信スロットの数および長さの少なくとも一方を変化させることにより、前記電池セル管理装置との間で行う通信の量を変化させる電池システム。
    The battery system according to claim 1 or 2,
    The battery system includes a plurality of the battery cell groups and a plurality of the battery cell management devices corresponding to the respective battery cell groups,
    The assembled battery management device and the plurality of battery cell management devices perform time division wireless communication using a communication slot assigned to each battery cell management device,
    The battery pack management device changes the amount of communication with the battery cell management device by changing at least one of the number and the length of the communication slots based on the estimation result of the state of charge. system.
  4.  請求項1または2に記載の電池システムにおいて、
     前記電池セル群は、1つの電池セルにより構成されており、
     前記電池セル管理装置は、前記電池セル群を構成する1つの電池セルに対応して設けられている電池システム。
    The battery system according to claim 1 or 2,
    The battery cell group is composed of one battery cell,
    The battery cell management device is a battery system provided corresponding to one battery cell constituting the battery cell group.
  5.  請求項1または2に記載の電池システムにおいて、
     前記電池セル群は、複数の電池セルにより構成されており、
     前記電池セル管理装置は、前記測定結果を前記組電池管理装置に送信する際の電力供給を受ける電池セルを前記複数の電池セルの中から選択する選択回路を備え、
     前記組電池管理装置は、前記充電状態の推定結果に基づいて、前記選択回路により選択する電池セルを前記電池セル管理装置に対して指示する電池システム。
    The battery system according to claim 1 or 2,
    The battery cell group is composed of a plurality of battery cells,
    The battery cell management device includes a selection circuit that selects, from the plurality of battery cells, a battery cell that receives power supply when transmitting the measurement result to the assembled battery management device,
    The battery pack management device instructs the battery cell management device to select a battery cell to be selected by the selection circuit based on the estimation result of the state of charge.
PCT/JP2013/070761 2013-07-31 2013-07-31 Battery system WO2015015596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070761 WO2015015596A1 (en) 2013-07-31 2013-07-31 Battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070761 WO2015015596A1 (en) 2013-07-31 2013-07-31 Battery system

Publications (1)

Publication Number Publication Date
WO2015015596A1 true WO2015015596A1 (en) 2015-02-05

Family

ID=52431173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070761 WO2015015596A1 (en) 2013-07-31 2013-07-31 Battery system

Country Status (1)

Country Link
WO (1) WO2015015596A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201127A (en) * 1996-12-27 1998-07-31 Nec Corp Communication system
JP2011059931A (en) * 2009-09-09 2011-03-24 Tokai Rika Co Ltd Remote control system and rechargeable communication terminal
WO2012039096A1 (en) * 2010-09-21 2012-03-29 三洋電機株式会社 Illumination apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201127A (en) * 1996-12-27 1998-07-31 Nec Corp Communication system
JP2011059931A (en) * 2009-09-09 2011-03-24 Tokai Rika Co Ltd Remote control system and rechargeable communication terminal
WO2012039096A1 (en) * 2010-09-21 2012-03-29 三洋電機株式会社 Illumination apparatus

Similar Documents

Publication Publication Date Title
JP5715694B2 (en) Battery control device, battery system
JP6840525B2 (en) Battery control method, battery control device, and battery pack
JP5687340B2 (en) Battery control device, battery system
JP6445190B2 (en) Battery control device
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
US10756548B2 (en) Quick charging device with switching unit for individual battery module discharging
JP5819443B2 (en) Battery control device, battery system
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
KR101921641B1 (en) Battery management apparatus and method
JP5670556B2 (en) Battery control device
JP6764673B2 (en) Battery control device, battery module, battery pack, and battery control method
TWI804503B (en) Power storage system and electric equipment
US11230199B2 (en) Motor-driven vehicle and control method for motor-driven vehicle
JPWO2012147121A1 (en) Battery pack
Vardhan et al. Modeling of single inductor based battery balancing circuit for hybrid electric vehicles
KR101863700B1 (en) Battery Management System
KR20140052525A (en) Circuit for charging battery and boosting voltage of battery and method for charging battery
KR20140070217A (en) Energy storage system having control algorithm for charging and discharging test
WO2015199178A1 (en) Balance correction control device, balance correction system, and power storage system
US20140210414A1 (en) Storage battery system
JP2018170904A (en) Battery controller
WO2015015596A1 (en) Battery system
JP2012165580A (en) Control device of power storage device
JP2013243790A (en) Apparatus for controlling power source
JP2019118186A (en) Battery management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP