WO2015014815A1 - THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS - Google Patents

THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS Download PDF

Info

Publication number
WO2015014815A1
WO2015014815A1 PCT/EP2014/066219 EP2014066219W WO2015014815A1 WO 2015014815 A1 WO2015014815 A1 WO 2015014815A1 EP 2014066219 W EP2014066219 W EP 2014066219W WO 2015014815 A1 WO2015014815 A1 WO 2015014815A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pharmaceutically acceptable
formula
polymorph
solvate
Prior art date
Application number
PCT/EP2014/066219
Other languages
French (fr)
Inventor
David Craig Mc Gowan
Pierre Jean-Marie Bernard Raboisson
Original Assignee
Janssen R&D Ireland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2014298540A priority Critical patent/AU2014298540B2/en
Priority to DK14744834.4T priority patent/DK3027624T3/en
Priority to CA2913691A priority patent/CA2913691C/en
Priority to EP14744834.4A priority patent/EP3027624B1/en
Priority to MX2016001464A priority patent/MX368625B/en
Priority to SG11201510736PA priority patent/SG11201510736PA/en
Priority to BR112016001570-3A priority patent/BR112016001570B1/en
Priority to EP18164850.2A priority patent/EP3404031B1/en
Priority to EA201690303A priority patent/EA036162B1/en
Priority to JP2016530483A priority patent/JP6401788B2/en
Priority to US14/908,237 priority patent/US9556199B2/en
Priority to CN201480042656.8A priority patent/CN105492446B/en
Application filed by Janssen R&D Ireland filed Critical Janssen R&D Ireland
Priority to KR1020167002021A priority patent/KR102322425B1/en
Priority to UAA201601818A priority patent/UA117253C2/en
Priority to ES14744834T priority patent/ES2701239T3/en
Priority to NZ714519A priority patent/NZ714519B2/en
Publication of WO2015014815A1 publication Critical patent/WO2015014815A1/en
Priority to IL242872A priority patent/IL242872B/en
Priority to PH12015502797A priority patent/PH12015502797B1/en
Priority to ZA2016/00655A priority patent/ZA201600655B/en
Priority to HK16105881.3A priority patent/HK1217707A1/en
Priority to US15/420,055 priority patent/US10316043B2/en
Priority to AU2018256591A priority patent/AU2018256591B2/en
Priority to US16/405,518 priority patent/US10822347B2/en
Priority to IL266897A priority patent/IL266897B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This invention relates to thieno[3,2-c ]pyrimidine derivatives, processes for their preparation, pharmaceutical compositions, and their use in treating viral infections.
  • the present invention relates to the use of thieno[3,2-c ]pyrimidine derivatives in the treatment of viral infections, immune or inflammatory disorders, whereby the modulation, or agonism, of toll-like-receptors (TLRs) is involved.
  • TLRs toll-like-receptors
  • Toll-Like Receptors are primary transmembrane proteins characterized by an extracellular leucine rich domain and a cytoplasmic extension that contains a conserved region.
  • the innate immune system can recognize pathogen-associated molecular patterns via these TLRs expressed on the cell surface of certain types of immune cells. Recognition of foreign pathogens activates the production of cytokines and upregulation of co-stimulatory molecules on phagocytes. This leads to the modulation of T cell behaviour.
  • TLR1 to TLR13 TLRs
  • TLR1 to TLR13 TLRs
  • equivalent forms of many of these have been found in other mammalian species.
  • equivalents of certain TLR found in humans are not present in all mammals.
  • a gene coding for a protein analogous to TLR10 in humans is present in mice, but appears to have been damaged at some point in the past by a retrovirus.
  • mice express TLRs 1 1 , 12, and 13, none of which are represented in humans.
  • Other mammals may express TLRs which are not found in humans.
  • Other non-mammalian species may have TLRs distinct from mammals, as demonstrated by TLR14, which is found in the Takifugu pufferfish. This may complicate the process of using experimental animals as models of human innate immunity.
  • R 2 is selected from hydrogen, halogen, C 1-6 alkyl or C 3 - 6 cycloalkyl
  • R 3 is C 1-8 alkyl optionally substituted by one or more substituents independently selected from aryl, aryloxy, halogen, hydroxyl, alkylamino, dialkylamino, C 1-6 alkenyl, C 1-6 alkoxy, carboxylic acid, carboxylic ester, carboxylic amide, nitrile, sulfonamide, sulfamide, acyl sulfonamide, or
  • R 3 is an alkylaryl optionally substituted by one or more substituents independently selected from aryl, aryloxy, halogen, alkylamino, dialkylamino, C 1-6 alkyl, C 1-6 alkenyl, C 1-6 alkoxy, carboxylic acid, carboxylic ester, carboxylic amide, nitrile, sulfonamide, sulfamide, or acyl sulfonamide.
  • the compounds of formula (I) and their pharmaceutically acceptable salts, tautomer(s), stereo-isomeric forms, solvate or polymorph thereof have activity as pharmaceuticals, in particular as modulators of Toll-Like Receptors 7 and 8 (especially TLR 8).
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, tautomer, stereo-isomeric form, solvate or polymorph thereof together with one or more pharmaceutically acceptable excipients, diluents or carriers.
  • a compound of formula (I) or a pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof according to the current invention, or a pharmaceutical composition comprising said compound of formula(l) or a pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof can be used as a medicament.
  • a compound of formula (I) or its pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof, or said pharmaceutical composition comprising said compound of formula (I) or a pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof can be used accordingly in the treatment of a disorder in which the modulation of TLR7 and /or TLR8 is involved preferably TLR8.
  • (Ci -8 )-alkyl and "(Ci- 6 )-alkyl” refers to a straight-chain, branched-chain or cyclic saturated aliphatic hydrocarbon containing the specified number of carbon atoms.
  • halogen refers to fluorine, chlorine, bromine or iodine.
  • alkylaryl refers to a straight-chain or branched-chain saturated aliphatic hydrocarbon containing the specified number of carbon atoms substituted by an aryl wherein “aryl” is defined as below.
  • alkenyl refers to an alkyl as defined above consisting of at least two carbon atoms and at least one carbon-carbon double bond.
  • cycloalkyl refers to a carbocyclic ring containing the specified number of carbon atoms.
  • alkoxy refers to an alkyl (carbon and hydrogen chain) group singular bonded to oxygen like for instance a methoxy group or ethoxy group.
  • aryl means an aromatic ring structure optionally comprising one or two heteroatoms selected from N, O and S, in particular from N and O.
  • Said aromatic ring structure may have 5, 6 or 7 ring atoms.
  • said aromatic ring structure may have 5 or 6 ring atoms.
  • aryloxy refers to an aromatic ring structure. Said aromatic group is singularly bonded to oxygen.
  • any chemical formula with bonds shown only as solid lines and not as solid wedged or hashed wedged bonds, or otherwise indicated as having a particular configuration (e.g. R, S) around one or more atoms contemplates each possible stereoisomer, or mixture of two or more stereoisomers.
  • stereoisomers “stereoisomeric forms” or “stereochemically isomeric forms” hereinbefore or hereinafter are used interchangeably.
  • the invention includes all stereoisomers of the compounds of the invention either as a pure stereoisomer or as a mixture of two or more stereoisomers.
  • Enantiomers are stereoisomers that are non-superimposable mirror images of each other.
  • a 1 : 1 mixture of a pair of enantiomers is a racemate or racemic mixture.
  • Diastereomers are stereoisomers that are not enantiomers, i.e. they are not related as mirror images. If a compound contains a double bond, the substituents may be in the E or the Z configuration. If a compound contains an at least disubstituted non-aromatic cyclic group, the substituents may be in the cis or trans configuration.
  • the invention includes enantiomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof, whenever chemically possible.
  • the meaning of all those terms, i.e. enantiomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof are known to the skilled person.
  • the absolute configuration is specified according to the Cahn-lngold-Prelog system.
  • the configuration at an asymmetric atom is specified by either R or S.
  • Resolved stereoisomers whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light.
  • resolved enantiomers whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light.
  • stereoisomer is substantially free, i.e. associated with less than 50%, preferably less than 20%, more preferably less than 10%, even more preferably less than 5%, in particular less than 2% and most preferably less than 1 %, of the other stereoisomers.
  • a compound of Formula (I) is for instance specified as (R)
  • a compound of Formula (I) is for instance specified as E
  • this means that the compound is substantially free of the Z isomer
  • a compound of Formula (I) is for instance specified as cis, this means that the compound is substantially free of the trans isomer.
  • Pharmaceutically acceptable salts of the compounds of formula (I) include the acid addition and base salts thereof. Suitable acid addition salts are formed from acids which form nontoxic salts. Suitable base salts are formed from bases which form non-toxic salts.
  • the compounds of the invention may also exist in unsolvated and solvated forms.
  • solvate is used herein to describe a molecular complex comprising the compound of the invention and one or more pharmaceutically acceptable solvent molecules, for example, ethanol.
  • polymorph refers to the ability of the compound of the invention to exist in more than one form or crystal structure.
  • the compounds of the present invention may be administered as crystalline or amorphous products. They may be obtained for example as solid plugs, powders, or films by methods such as precipitation, crystallization, freeze drying, spray drying, or evaporative drying. They may be administered alone or in combination with one or more other compounds of the invention or in combination with one or more other drugs. Generally, they will be administered as a formulation in association with one or more pharmaceutically acceptable excipients.
  • excipient is used herein to describe any ingredient other than the compound(s) of the invention. The choice of excipient depends largely on factors such as the particular mode of administration, the effect of the excipient on solubility and stability, and the nature of the dosage form.
  • compositions of the present invention may be formulated into various pharmaceutical forms for administration purposes.
  • compositions there may be cited all compositions usually employed for systemically administering drugs.
  • an effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration.
  • a pharmaceutically acceptable carrier which carrier may take a wide variety of forms depending on the form of preparation desired for administration.
  • These pharmaceutical compositions are desirably in unitary dosage form suitable, for example, for oral, rectal, or percutaneous administration.
  • any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs, emulsions, and solutions; or solid carriers such as starches, sugars, kaolin, diluents, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. Also included are solid form preparations that can be converted, shortly before use, to liquid forms.
  • the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions.
  • These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment.
  • the compounds of the present invention may also be administered via inhalation or insufflation by means of methods and formulations employed in the art for administration via this way.
  • the compounds of the present invention may be administered to the lungs in the form of a solution, a suspension or a dry powder.
  • Unit dosage form refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • unit dosage forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, suppositories, injectable solutions or suspensions and the like, and segregated multiples thereof.
  • an effective daily amount would be from 0.01 mg/kg to 50 mg/kg body weight, more preferably from 0.1 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.
  • the exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art.
  • the effective amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention.
  • the effective amount ranges mentioned above are therefore only guidelines and are not intended to limit the scope or use of the invention to any extent.
  • the alcohol in intermediates of type II can be converted to chlorine using described methods and chlorinating agents, such as POCI 3 , often with heat and in the presence of solvent, and optionally with base.
  • the 4-chloro intermediate can then be used to form products of type III by heating with the amine in base and polar solvent (e.g. acetonitrile).
  • the LC measurement was performed using an Acquity UPLC (Waters) system comprising a binary pump, a sample organizer, a column heater (set at 55 °C), a diode-array detector (DAD) and a column as specified in the respective methods below.
  • Flow from the column was split to a MS spectrometer.
  • the MS detector was configured with an electrospray ionization source. Mass spectra were acquired by scanning from 100 to 1000 in 0.18 seconds using a dwell time of 0.02 seconds.
  • the capillary needle voltage was 3.5 kV and the source temperature was maintained at 140 °C. Nitrogen was used as the nebulizer gas.
  • TLR7 and TLR8 activity The ability of compounds to activate human TLR7 and/or TLR8 was assessed in a cellular reporter assay using HEK293 cells transiently transfected with a TLR7 or TLR8 expression vector and N FKB-IUC reporter construct.
  • HEK293 cells were grown in culture medium (DMEM supplemented with 10% FCS and 2 mM Glutamine).
  • DMEM fetal bovine serum
  • a transfection reagent for transfection of cells in 15 cm dishes, cells were detached with Trypsin-EDTA, transfected with a mix of CMV-TLR7 or TLR8 plasmid (1700 ng), N FKB-IUC plasmid (850 ng) and a transfection reagent and incubated for 48 h at 37°C in a humidified 5% C0 2 atmosphere. Transfected cells were then washed in PBS, detached with Trypsin- EDTA and resuspended in medium to a density of 1.25 x 10 5 cells/mL.
  • Compound toxicity was determined in parallel using a similar dilution series of compound with 40 ⁇ per well of cells transfected with the CMV-TLR7 construct alone (1.25 x 10 5 cells/mL), in 384-well plates. Cell viability was measured after 6 hours incubation at 37°C, 5% C0 2 by adding 15 ⁇ of ATP lite (Perkin Elmer) per well and reading on a ViewLux ultraHTS microplate imager (Perkin Elmer). Data was reported as CC 50 .
  • the potential of compounds to induce IFN-I was also evaluated by measuring the activation of interferon-stimulated responsive elements (ISRE) by conditioned media from PBMC.
  • ISRE interferon-stimulated responsive elements
  • the ISRE element of sequence GAAACTGAAACT is highly responsive to the STAT1-STAT2- IRF9 transcription factor, activated upon binding of IFN-I to their receptor IFNAR (Clontech, PT3372-5W).
  • the plasmid pISRE-Luc from Clontech contains 5 copies of this ISRE element, followed by the firefly luciferase ORF.
  • a HEK293 cell line stably transfected with pISRE-Luc (HEK-ISREluc) was established to profile the conditioned PBMC cell culture media.
  • PBMCs were prepared from buffy coats of at least two donors using a standard Ficoll centrifugation protocol. Isolated PBMCs were resuspended in RPMI medium supplemented with 10% human AB serum and 2 x 10 5 cells/well were dispensed into 384- well plates containing compounds (70 ⁇ _ total volume). After overnight incubation, 10 ⁇ _ of supernatant was transferred to 384-well plates containing 5 x 10 3 HEK-ISREluc cells/well in 30 ⁇ _ (plated the day before).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

This invention relates to thieno[3,2-d]pyrimidinesderivatives, processes for their preparation, pharmaceutical compositions, and their use in treating viral infections.

Description

THIENO[3,2-rf]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL
INFECTIONS
This invention relates to thieno[3,2-c ]pyrimidine derivatives, processes for their preparation, pharmaceutical compositions, and their use in treating viral infections.
The present invention relates to the use of thieno[3,2-c ]pyrimidine derivatives in the treatment of viral infections, immune or inflammatory disorders, whereby the modulation, or agonism, of toll-like-receptors (TLRs) is involved. Toll-Like Receptors are primary transmembrane proteins characterized by an extracellular leucine rich domain and a cytoplasmic extension that contains a conserved region. The innate immune system can recognize pathogen-associated molecular patterns via these TLRs expressed on the cell surface of certain types of immune cells. Recognition of foreign pathogens activates the production of cytokines and upregulation of co-stimulatory molecules on phagocytes. This leads to the modulation of T cell behaviour. It has been estimated that most mammalian species have between ten and fifteen types of Toll-like receptors. Thirteen TLRs (named TLR1 to TLR13) have been identified in humans and mice together, and equivalent forms of many of these have been found in other mammalian species. However, equivalents of certain TLR found in humans are not present in all mammals. For example, a gene coding for a protein analogous to TLR10 in humans is present in mice, but appears to have been damaged at some point in the past by a retrovirus. On the other hand, mice express TLRs 1 1 , 12, and 13, none of which are represented in humans. Other mammals may express TLRs which are not found in humans. Other non-mammalian species may have TLRs distinct from mammals, as demonstrated by TLR14, which is found in the Takifugu pufferfish. This may complicate the process of using experimental animals as models of human innate immunity.
For reviews on TLRs see the following journal articles. Hoffmann, J.A., Nature, 426, p33-38, 2003; Akira, S., Takeda, K., and Kaisho, T., Annual Rev. Immunology, 21 , p335-376, 2003; Ulevitch, R. J., Nature Reviews: Immunology, 4, p512-520, 2004.
Compounds indicating activity on Toll-Like receptors have been previously described such as purine derivatives in WO 2006/1 17670, adenine derivatives in WO 98/01448 and WO 99/28321 , and pyrimidines in WO 2009/067081.
However, there exists a strong need for novel Toll-Like receptor modulators having preferred selectivity, higher potency, and an improved safety profile compared to the compounds of the prior art. In accordance with the present invention a compound of formula (I) is provided
Figure imgf000003_0001
(I) or a pharmaceutically acceptable salt, tautomer(s), stereo-isomeric form, solvate or polymorph thereof, wherein R is selected from hydrogen, halogen, -CH3 or -CF3,
R2 is selected from hydrogen, halogen, C1-6 alkyl or C3-6 cycloalkyl,
R3 is C1-8 alkyl optionally substituted by one or more substituents independently selected from aryl, aryloxy, halogen, hydroxyl, alkylamino, dialkylamino, C1-6 alkenyl, C1-6 alkoxy, carboxylic acid, carboxylic ester, carboxylic amide, nitrile, sulfonamide, sulfamide, acyl sulfonamide, or
R3 is an alkylaryl optionally substituted by one or more substituents independently selected from aryl, aryloxy, halogen, alkylamino, dialkylamino, C1-6 alkyl, C1-6 alkenyl, C1-6 alkoxy, carboxylic acid, carboxylic ester, carboxylic amide, nitrile, sulfonamide, sulfamide, or acyl sulfonamide. The compounds of formula (I) and their pharmaceutically acceptable salts, tautomer(s), stereo-isomeric forms, solvate or polymorph thereof have activity as pharmaceuticals, in particular as modulators of Toll-Like Receptors 7 and 8 (especially TLR 8).
In a further aspect the present invention provides a pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, tautomer, stereo-isomeric form, solvate or polymorph thereof together with one or more pharmaceutically acceptable excipients, diluents or carriers.
Furthermore a compound of formula (I) or a pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof according to the current invention, or a pharmaceutical composition comprising said compound of formula(l) or a pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof can be used as a medicament. Another aspect of the invention is that a compound of formula (I) or its pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof, or said pharmaceutical composition comprising said compound of formula (I) or a pharmaceutically acceptable salt, solvate, tautomer, stereo-isomeric form or polymorph thereof can be used accordingly in the treatment of a disorder in which the modulation of TLR7 and /or TLR8 is involved preferably TLR8.
The term "(Ci-8)-alkyl" and "(Ci-6)-alkyl" refers to a straight-chain, branched-chain or cyclic saturated aliphatic hydrocarbon containing the specified number of carbon atoms.
The term "halogen" refers to fluorine, chlorine, bromine or iodine. The term "alkylaryl" refers to a straight-chain or branched-chain saturated aliphatic hydrocarbon containing the specified number of carbon atoms substituted by an aryl wherein "aryl" is defined as below.
The term "alkenyl" refers to an alkyl as defined above consisting of at least two carbon atoms and at least one carbon-carbon double bond. The term "cycloalkyl" refers to a carbocyclic ring containing the specified number of carbon atoms.
The term "alkoxy" refers to an alkyl (carbon and hydrogen chain) group singular bonded to oxygen like for instance a methoxy group or ethoxy group.
The term "aryl" means an aromatic ring structure optionally comprising one or two heteroatoms selected from N, O and S, in particular from N and O. Said aromatic ring structure may have 5, 6 or 7 ring atoms. In particular, said aromatic ring structure may have 5 or 6 ring atoms.
The term "aryloxy" refers to an aromatic ring structure. Said aromatic group is singularly bonded to oxygen. As used herein, any chemical formula with bonds shown only as solid lines and not as solid wedged or hashed wedged bonds, or otherwise indicated as having a particular configuration (e.g. R, S) around one or more atoms, contemplates each possible stereoisomer, or mixture of two or more stereoisomers. The terms "stereoisomers", "stereoisomeric forms" or "stereochemically isomeric forms" hereinbefore or hereinafter are used interchangeably. The invention includes all stereoisomers of the compounds of the invention either as a pure stereoisomer or as a mixture of two or more stereoisomers.
Enantiomers are stereoisomers that are non-superimposable mirror images of each other. A 1 : 1 mixture of a pair of enantiomers is a racemate or racemic mixture.
Diastereomers (or diastereoisomers) are stereoisomers that are not enantiomers, i.e. they are not related as mirror images. If a compound contains a double bond, the substituents may be in the E or the Z configuration. If a compound contains an at least disubstituted non-aromatic cyclic group, the substituents may be in the cis or trans configuration.
Therefore, the invention includes enantiomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof, whenever chemically possible. The meaning of all those terms, i.e. enantiomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof are known to the skilled person. The absolute configuration is specified according to the Cahn-lngold-Prelog system. The configuration at an asymmetric atom is specified by either R or S. Resolved stereoisomers whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light. For instance, resolved enantiomers whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light.
When a specific stereoisomer is identified, this means that said stereoisomer is substantially free, i.e. associated with less than 50%, preferably less than 20%, more preferably less than 10%, even more preferably less than 5%, in particular less than 2% and most preferably less than 1 %, of the other stereoisomers. Thus, when a compound of Formula (I) is for instance specified as (R), this means that the compound is substantially free of the (S) isomer; when a compound of Formula (I) is for instance specified as E, this means that the compound is substantially free of the Z isomer; when a compound of Formula (I) is for instance specified as cis, this means that the compound is substantially free of the trans isomer.
Pharmaceutically acceptable salts of the compounds of formula (I) include the acid addition and base salts thereof. Suitable acid addition salts are formed from acids which form nontoxic salts. Suitable base salts are formed from bases which form non-toxic salts.
The compounds of the invention may also exist in unsolvated and solvated forms. The term "solvate" is used herein to describe a molecular complex comprising the compound of the invention and one or more pharmaceutically acceptable solvent molecules, for example, ethanol. The term "polymorph" refers to the ability of the compound of the invention to exist in more than one form or crystal structure.
The compounds of the present invention may be administered as crystalline or amorphous products. They may be obtained for example as solid plugs, powders, or films by methods such as precipitation, crystallization, freeze drying, spray drying, or evaporative drying. They may be administered alone or in combination with one or more other compounds of the invention or in combination with one or more other drugs. Generally, they will be administered as a formulation in association with one or more pharmaceutically acceptable excipients. The term "excipient" is used herein to describe any ingredient other than the compound(s) of the invention. The choice of excipient depends largely on factors such as the particular mode of administration, the effect of the excipient on solubility and stability, and the nature of the dosage form.
The compounds of the present invention or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, for example, for oral, rectal, or percutaneous administration. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs, emulsions, and solutions; or solid carriers such as starches, sugars, kaolin, diluents, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. Also included are solid form preparations that can be converted, shortly before use, to liquid forms. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment. The compounds of the present invention may also be administered via inhalation or insufflation by means of methods and formulations employed in the art for administration via this way. Thus, in general the compounds of the present invention may be administered to the lungs in the form of a solution, a suspension or a dry powder.
It is especially advantageous to formulate the aforementioned pharmaceutical compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such unit dosage forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, suppositories, injectable solutions or suspensions and the like, and segregated multiples thereof.
Those of skill in the treatment of infectious diseases will be able to determine the effective amount from the test results presented hereinafter. In general it is contemplated that an effective daily amount would be from 0.01 mg/kg to 50 mg/kg body weight, more preferably from 0.1 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.
The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art.
Furthermore, it is evident that the effective amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective amount ranges mentioned above are therefore only guidelines and are not intended to limit the scope or use of the invention to any extent.
Preparation of compounds of formula (I) Overall scheme.
Figure imgf000008_0001
I I I
The preparation of compounds of type I are described in the literature (Synthetic Communications, 9(8), p731 -4, 1979; Synthetic Communications, 32(16), 2565-2568; 2002). 3-aminothiophene-2-carboxylat.es are mixed with cyanamide in a polar solvent (e.g. ethanol) containing acid (e.g. HCI) to form intermediates II with heat as described in the literature (Synthesis, (9), p1428, 2010). Intermediate II in polar, aprotic solvent can be mixed with BOP or PyBOP in combination with a base (e.g. DBU) and the amine to lead to the formation of final products (III) at room temperature. Alternatively, the alcohol in intermediates of type II can be converted to chlorine using described methods and chlorinating agents, such as POCI3, often with heat and in the presence of solvent, and optionally with base. After isolation, the 4-chloro intermediate can then be used to form products of type III by heating with the amine in base and polar solvent (e.g. acetonitrile).
Figure imgf000008_0002
B 1
Into a 50 mL glass vial was placed B (500 mg, 2.76 mmol), anhydrous DMF (5 ml_), DBU (1 .26 g, 8.28 mmol), n-butylamine (605 mg, 8.3 mmol), and BOP (1 .46 g, 3.31 mmol). The vial was sealed and shaken for 16 hours at room temperature. LC-MS showed conversion to product. The crude reaction mixture was purified by preparatory HPLC (RP SunFire Prep C18 OBD-10 μηη, 30 x 150 mm, mobile phase 0.25% aq. ammonium carbonate, to acetonitrile). The best fractions were pooled and the solvents were removed under reduced pressure to afford a white solid, 1. LC-MS m/z = 237 (M+H).
Table 1. Compounds of formula (I) and corresponding analytical data. Compounds were prepared according to the methods described in the experimental section.
LC Method, LC-MS Mass
# STRUCTURE XH NMR
Rt (min) Found (M+H)
1H NMR (400 MHz, DMSO-d6) δ
ppm0.91 (t, J=7.4 Hz, 3 H), 1.33
(dq, J=14.9, 7.4 Hz, 2 H), 1.49-
1 A, 0.8 237
1.61 (m,2H), 3.35 (s, 3 H), 3.36
- 3.42 (m, 2 H), 5.74 (s, 2 H),
6.69 (s, 1 H), 7.03 (t, J=5.5 Hz,
1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm0.91 (t, J=7.4 Hz, 3 H), 1.26
2 - 1.42 (m, 2 H), 1.48- 1.62 (m, 2 B, 1.52 237
T 1L H), 2.17 (d, J=1.1 Hz, 3 H), 3.37- 3.46 (m,2H), 5.83 (s, 2 H), 7.14
(s, 1 H), 7.43 (d, J=1.1 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm0.90 (t, J=7.4 Hz, 3 H), 1.27
3 - 1.35 (m, 2H), 1.36 (s, 9 H), B, 1.83 279
1.47- 1.60 (m, 2 H), 3.35-3.43
(m, 2 H), 5.72 (s, 2 H), 6.73 (s, 1
H), 7.04 (t, J=5.5 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm0.85 (br. s., 3 H), 1.17-1.39
(m, 4 H), 1.43- 1.56 (m, 1 H),
4 MM 1.65 (br. s., 1 H), 3.39-3.54 (m,
A, 0.70 267
2 H), 4.26 (d, J=4.4 Hz, 1 H),
4.65 (br. s., 1 H), 5.75 (s, 2 H),
6.84 (d, J=8.4 Hz, 1 H), 6.95 (d,
J=5.3 Hz, 1 H), 7.81 (d, J=5.3 Hz,
1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm 0.78 - 0.94 (m, 3 H), 1.16- 1.41 (m, 2 H), 1.45- 1.69 (m, 2
5 H), 3.47- 3.53 (m, 1 H), 4.30 - A, 0.63 253
4.47 (m, 2 H), 7.18-7.28 (m, 1
Figure imgf000009_0001
H), 7.77 (br. s., 2 H), 8.18 (d,
J=5.3 Hz, 1 H), 8.92 (d, J=8.4 Hz,
1 H), 13.26 (br.s., 1 H) LC Method, LC-MS Mass
STRUCTURE XH NMR
Rt (min) Found (M+H)
1H NMR (400 MHz, DMSO-d6) δ
ppm 0.84 (br. s., 3 H), 1.19-1.39
(m, 4 H), 1.42- 1.57 (m, 1 H),
HM 1.65 (br. s., 1 H), 3.37-3.55 (m,
A, 0.70 267
2 H), 3.71 -4.21 (m, 1 H), 4.28
(d, J=4.6 Hz, 1 H), 5.97 (br. s., 2
H), 6.97 (d,J=5.3 Hz, 1 H), 7.05
(d, J=8.4 Hz, 1 H), 7.84 (d, J=5.3
Hz, 1 H)
1H NMR (400 MHz,
CHLOROFORM-d) δ ppm 0.98 (t,
J=7.4 Hz, 3 H), 1.39 - 1.51 (m, 2
H), 1.61 - 1.69 (m, 2 H), 1.74 (s, B, 0.71 223 —Nil 1 H), 3.59 (td, J=7.2, 5.7 Hz, 2
H), 4.71 (br. s., 2 H), 7.11 (d,
J=5.3 Hz, 1 H), 7.56 (d, J=5.3 Hz,
1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm 0.81 -0.93 (m, 3 H), 1.20- 1.40 (m, 4 H), 1.52- 1.65 (m, 2
H), 1.74 (q,J=6.6 Hz, 2 H), 3.40 - A, 0.76 281
3.50 (m, 2 H), 4.38-4.52 (m, 2
H), 7.22 (d, J=5.5 Hz, 1 H), 7.63 - 7.82 (m,2H), 8.18 (d, J=5.5 Hz,
Figure imgf000010_0001
1 H), 8.82 (d, J=8.4 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm 0.89 (t, J=7.3 Hz, 3 H), 1.16
(d,J=6.6 Hz, 3 H), 1.26- 1.38 (m,
2 H), 1.39-1.51 (m, 1 H), 1.53- A, 0.82 237
1.64 (m, 1 H), 4.28-4.39 (m, 1
H), 5.77 (s, 2 H), 6.95 (d, J=5.3
Hz, 1 H), 7.01 (d, J=8.4 Hz, 1 H),
7.81 (d, J=5.3 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm 0.84 - 0.98 (m, 3 H), 1.27- 1.51 (m, 2 H), 1.57- 1.70 (m, 1
H), 1.80- 1.98 (m, 1 H), 3.69 (s, A, 0.76 281
3 H), 4.76-4.92 (m, 1 H), 7.27
(d, J=5.3 Hz, 1 H), 7.89 (br. s.,
Figure imgf000010_0002
2 H), 8.26 (d, J=5.3 Hz, 1 H),
9.47 (d, J=7.3 Hz, 1 H) LC Method, LC-MS Mass
STRUCTURE XH NMR
Rt (min) Found (M+H)
1H NMR (400 MHz, DMSO-d6) δ
NN ppm 0.87 (t, J=6.9 Hz, 3 H), 1.25
- 1.37 (m, 4 H), 1.57 (br. s., 2 H), A, 0.84 237
3.39 - 3.44 (m, 2 H), 5.80 (s, 2
H), 6.95 (d, J=5.3 Hz, 1 H), 7.25
(s, 1 H), 7.80 (d, J=5.3 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm 0.88 (t, J=7.3 Hz, 3 H), 1.21
- 1.43 (m, 2 H), 1.50 (dtd, J=13.5,
9.0, 9.0, 5.0 Hz, 1 H), 1.57 - 1.69
A, 0.61 253.1 (m, 1 H), 3.38 - 3.53 (m, 2 H),
J H 4.29 (d, J=4.6 Hz, 1 H), 4.62 (br.
s., 1 H), 5.80 (s, 2 H), 6.87 (d,
J=8.4 Hz, 1 H), 6.96 (d, J=5.3 Hz,
1 H), 7.82 (d, J=5.3 Hz, 1 H)
1H NMR (400 MHz,
CHLOROFORM-d) δ ppm 0.95 (t,
J=7.3 Hz, 3 H), 1.32 - 1.50 (m,
2 H), 1.51 - 1.71 (m, 2 H), 2.31
(d, J=1.1 Hz, 3 H), 3.34 (s, 1 H), A, 0.67 267.1 3.67 (dd, J=1 1.0, 6.4 Hz, 1 H),
3.83 (dd, J=1 1.0, 3.3 Hz, 1 H),
4.19 - 4.38 (m, 1 H), 4.77 (d,
J=7.3 Hz, 1 H), 4.87 (s, 2 H),
7.19 (d, J=1.1 Hz, 1 H)
1H NMR (400 MHz, DMSO-d6) δ
ppm 0.80 - 0.94 (m, 3 H),
1.20 - 1.39 (m, 4 H), 1.49 - 1.64 (m, 2 H), 2.17 (d, B, 1.69 251.0
1 Γ J = l . l Hz, 3 H), 3.36 - 3.43
(m, 2 H), 5.82 (s, 2 H), 7.15
(t, J = 5.5 Hz, 1 H), 7.43 (d,
J = l . l Hz, 1 H)
1H NMR (400 MHz,
CHLOROFORM-d) δ ppm 0.96 (t,
J=7.4 Hz, 3 H), 1.22 - 1.33 (m, 1
H), 1.35 - 1.52 (m, 1 H), 1.74 - 1.86 (m, 1 H), 1.87 - 2.01 (m, 1 E, 1.02 295.2 H), 2.33 (d, J=1.1 Hz, 3 H), 3.76
0 (s, 3 H), 4.75 (br. s., 2 H), 4.97
(td, J=7.5, 5.6 Hz, 1 H), 5.10 (d,
J=7.7 Hz, 1 H), 7.22 (d, J=1.1 Hz,
1 H)
Figure imgf000012_0001
Figure imgf000013_0001
Analytical Methods
General information: the LC measurement was performed using an Acquity UPLC (Waters) system comprising a binary pump, a sample organizer, a column heater (set at 55 °C), a diode-array detector (DAD) and a column as specified in the respective methods below. Flow from the column was split to a MS spectrometer. The MS detector was configured with an electrospray ionization source. Mass spectra were acquired by scanning from 100 to 1000 in 0.18 seconds using a dwell time of 0.02 seconds. The capillary needle voltage was 3.5 kV and the source temperature was maintained at 140 °C. Nitrogen was used as the nebulizer gas.
LC-MS Methods. LC-MS Flow Run Method Column Mobile phase Gradient (mL/min)/ time code Temp (°C) (min)
A: 10mM
Waters :
A CH3COONH4 in From 95% A to
BEH C18
95% H20 + 5% 5% A in 1 .3 min, 0.8/55 2
(1.7μΓΠ, 2.1
CH3CNB: held for 0.7 min.
x 50mm)
CH3CN
A: 10mM From 100% A to
Waters :
B CH3COONH4 in 5% A in 2.10 min,
HSS T3
95% H20 + 5% to 0% A in 0.90 0.8/55 3.5 (1.8μηΊ, 2.1
CH3CN min, to 5% A in
x 100mm)
B: CH3CN 0.5min
100% A for 1 min,
CF3COOH 0.1%
Agilent: TC- to 40% A in 4min,
in water, B:
C18 (δμηι, to15% A in
C CF3COOH 0.05% 0.8/50 10.5
2.1x50mm) 2.5min, to 100%
in CH3CN
A in 2min
90% A for
CF3COOH 0.1%
Agilent: TC- 0.8min, to 20% A
in water, B:
C18 (δμηι, in 3.7min, held
D CF3COOH 0.05% 0.8/50 10.5
2.1x50mm) for 3min, back to
in CH3CN
90% A in 2min.
A: 10mM
From 95% A to
CH3COONH4 in
Waters : 5% A in 1 .3 min,
BEH C18 90% H20 + 10% held for 0.2 min,
E CH3CN 0.7/70 1.8
(1.7μη"ΐ, to 95% A in
2.1 *50mm) 0.2 min held for
B: MeOH 0.1 min.
Biological Activity of compounds of formula (I)
Description of Biological Assays
Assessment of TLR7 and TLR8 activity The ability of compounds to activate human TLR7 and/or TLR8 was assessed in a cellular reporter assay using HEK293 cells transiently transfected with a TLR7 or TLR8 expression vector and N FKB-IUC reporter construct.
Briefly, HEK293 cells were grown in culture medium (DMEM supplemented with 10% FCS and 2 mM Glutamine). For transfection of cells in 15 cm dishes, cells were detached with Trypsin-EDTA, transfected with a mix of CMV-TLR7 or TLR8 plasmid (1700 ng), N FKB-IUC plasmid (850 ng) and a transfection reagent and incubated for 48 h at 37°C in a humidified 5% C02 atmosphere. Transfected cells were then washed in PBS, detached with Trypsin- EDTA and resuspended in medium to a density of 1.25 x 105 cells/mL. Forty microliters of cells were then dispensed into each well in 384-well plates, where 200 nl_ of compound in 100% DMSO was already present. Following 6 hours incubation at 37°C, 5% C02, the luciferase activity was determined by adding 15 μΙ_ of Steady Lite Plus substrate (Perkin Elmer) to each well and readout performed on a ViewLux ultraHTS microplate imager (Perkin Elmer). Dose response curves were generated from measurements performed in quadruplicates. Lowest effective concentrations (LEC) values, defined as the concentration that induces an effect which is at least two fold above the standard deviation of the assay, were determined for each compound.
Compound toxicity was determined in parallel using a similar dilution series of compound with 40 μί per well of cells transfected with the CMV-TLR7 construct alone (1.25 x 105 cells/mL), in 384-well plates. Cell viability was measured after 6 hours incubation at 37°C, 5% C02 by adding 15 μί of ATP lite (Perkin Elmer) per well and reading on a ViewLux ultraHTS microplate imager (Perkin Elmer). Data was reported as CC50.
In parallel, a similar dilution series of compound was used (200 nL of compound in 100% DMSO) with 40 μί per well of cells transfected with N FKB-IUC reporter construct alone (1.25 x 105 cells/mL). Six hours after incubation at 37°C, 5% C02, the luciferase activity was determined by adding 15 μΙ of Steady Lite Plus substrate (Perkin Elmer) to each well and readout performed on a ViewLux ultraHTS microplate imager (Perkin Elmer). Counterscreen data is reported as LEC. Activation of ISRE promoter elements
The potential of compounds to induce IFN-I was also evaluated by measuring the activation of interferon-stimulated responsive elements (ISRE) by conditioned media from PBMC. The ISRE element of sequence GAAACTGAAACT is highly responsive to the STAT1-STAT2- IRF9 transcription factor, activated upon binding of IFN-I to their receptor IFNAR (Clontech, PT3372-5W). The plasmid pISRE-Luc from Clontech (ref. 631913) contains 5 copies of this ISRE element, followed by the firefly luciferase ORF. A HEK293 cell line stably transfected with pISRE-Luc (HEK-ISREluc) was established to profile the conditioned PBMC cell culture media. Briefly, PBMCs were prepared from buffy coats of at least two donors using a standard Ficoll centrifugation protocol. Isolated PBMCs were resuspended in RPMI medium supplemented with 10% human AB serum and 2 x 105 cells/well were dispensed into 384- well plates containing compounds (70 μΙ_ total volume). After overnight incubation, 10 μΙ_ of supernatant was transferred to 384-well plates containing 5 x 103 HEK-ISREluc cells/well in 30 μΙ_ (plated the day before). Following 24 hours of incubation, activation of the ISRE elements was measured by assaying luciferase activity using 40 L/well Steady Lite Plus substrate (Perkin Elmer) and measured with ViewLux ultraHTS microplate imager (Perkin Elmer). The stimulating activity of each compound on the HEK-ISREluc cells was reported as LEC value, defined as the compound concentration applied to the PBMCs resulting in a luciferase activity at least two fold above the standard deviation of the assay. The LEC in turn indicates the degree of ISRE activation on transfer of a defined amount of PBMC culture medium. Recombinant interferon a-2a (Roferon-A) was used as a standard control compound.
Table 2. Biological Activity of compounds of formula (I).
Figure imgf000016_0001
Figure imgf000017_0001
All compounds showed no activity (LEC >25 μΜ) in the HEK 293 NF-kB counterscreen assay described above.

Claims

Claims
1. A compound of formula (I)
Figure imgf000018_0001
or a pharmaceutically acceptable salt, tautomer(s), stereo-isomeric form, solvate or polymorph thereof, wherein
Ri is selected from hydrogen, halogen, -CH3 or -CF3,
R2 is selected from hydrogen, halogen, C1-6 alkyl or C3-6 cycloalkyl,
R3 is Ci-8 alkyl optionally substituted by one or more substituents independently selected from aryl, aryloxy, halogen, hydroxyl, alkylamino, dialkylamino, Ci-6 alkenyl, Ci-6 alkoxy, carboxylic acid, carboxylic ester, carboxylic amide, nitrile, sulfonamide, sulfamide, acyl sulfonamide, or
R3 is an alkylaryl optionally substituted by one or more substituents independently selected from aryl, aryloxy, halogen, alkylamino, dialkylamino, C1-6 alkyl, C1-6 alkenyl, C1-6 alkoxy, carboxylic acid, carboxylic ester, carboxylic amide, nitrile, sulfonamide, sulfamide, or acyl sulfonamide.
2. A compound according to claim 1 wherein Ri and R2 are both hydrogen and wherein R3 is Ci-8 alkyl substituted by hydroxyl.
3. A compound according to claim 2 having the structure
Figure imgf000018_0002
4. A pharmaceutical composition comprising a compound of formula (I) or a pharmaceutically acceptable salt, tautomer(s), stereo-isomeric forms , solvate or polymorph thereof according to claim 1 together with one or more pharmaceutically acceptable excipients, diluents or carriers.
5. A compound of formula (I) or a pharmaceutically acceptable salt, tautomer(s), stereo- isomeric forms, solvate or polymorph thereof according to claim 1 or a pharmaceutical composition according to claim 4 for use as a medicament.
6. A compound of formula (I) or a pharmaceutically acceptable salt, tautomer(s), stereo- isomeric forms , solvate or polymorph thereof according to claim 1 , or a pharmaceutical composition according to claim 4 for use in the treatment of a disorder in which the modulation of TLR7 and /or TLR8 is involved, preferably TLR8.
PCT/EP2014/066219 2013-07-30 2014-07-29 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS WO2015014815A1 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
KR1020167002021A KR102322425B1 (en) 2013-07-30 2014-07-29 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
DK14744834.4T DK3027624T3 (en) 2013-07-30 2014-07-29 THIENO [3,2-D] PYRIMIDINE DERIVATIVES FOR TREATING VIRUS INFECTIONS
UAA201601818A UA117253C2 (en) 2013-07-30 2014-07-29 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
MX2016001464A MX368625B (en) 2013-07-30 2014-07-29 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS.
SG11201510736PA SG11201510736PA (en) 2013-07-30 2014-07-29 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
BR112016001570-3A BR112016001570B1 (en) 2013-07-30 2014-07-29 TIENO DERIVATIVES [3,2-D] PYRIMIDINES AND PHARMACEUTICAL COMPOSITION THAT UNDERSTANDS THEM FOR THE TREATMENT OF VIRAL INFECTIONS
EP18164850.2A EP3404031B1 (en) 2013-07-30 2014-07-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
EA201690303A EA036162B1 (en) 2013-07-30 2014-07-29 THIENO[3,2-d]PYRIMIDINE DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
JP2016530483A JP6401788B2 (en) 2013-07-30 2014-07-29 Thieno [3,2-d] pyrimidine derivatives for viral infection treatment
US14/908,237 US9556199B2 (en) 2013-07-30 2014-07-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
CN201480042656.8A CN105492446B (en) 2013-07-30 2014-07-29 Thieno [3,2-d] pyrimidine derivatives for treating viral infection
AU2014298540A AU2014298540B2 (en) 2013-07-30 2014-07-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
CA2913691A CA2913691C (en) 2013-07-30 2014-07-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
EP14744834.4A EP3027624B1 (en) 2013-07-30 2014-07-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
ES14744834T ES2701239T3 (en) 2013-07-30 2014-07-29 Derivatives of thieno [3,2-d] pyrimidines for the treatment of viral infections
NZ714519A NZ714519B2 (en) 2014-07-29 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
IL242872A IL242872B (en) 2013-07-30 2015-12-01 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
PH12015502797A PH12015502797B1 (en) 2013-07-30 2015-12-16 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
ZA2016/00655A ZA201600655B (en) 2013-07-30 2016-01-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
HK16105881.3A HK1217707A1 (en) 2013-07-30 2016-05-24 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections [32-d]
US15/420,055 US10316043B2 (en) 2013-07-30 2017-01-30 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
AU2018256591A AU2018256591B2 (en) 2013-07-30 2018-11-01 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
US16/405,518 US10822347B2 (en) 2013-07-30 2019-05-07 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
IL266897A IL266897B (en) 2013-07-30 2019-05-27 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13178534.7 2013-07-30
EP13178534 2013-07-30

Related Child Applications (3)

Application Number Title Priority Date Filing Date
EP18164850.2A Previously-Filed-Application EP3404031B1 (en) 2013-07-30 2014-07-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
US14/908,237 A-371-Of-International US9556199B2 (en) 2013-07-30 2014-07-29 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
US15/420,055 Continuation US10316043B2 (en) 2013-07-30 2017-01-30 Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections

Publications (1)

Publication Number Publication Date
WO2015014815A1 true WO2015014815A1 (en) 2015-02-05

Family

ID=48874951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/066219 WO2015014815A1 (en) 2013-07-30 2014-07-29 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS

Country Status (21)

Country Link
US (3) US9556199B2 (en)
EP (2) EP3404031B1 (en)
JP (1) JP6401788B2 (en)
KR (1) KR102322425B1 (en)
CN (2) CN108912137B (en)
AU (2) AU2014298540B2 (en)
BR (1) BR112016001570B1 (en)
CA (1) CA2913691C (en)
CL (1) CL2015003767A1 (en)
DK (2) DK3404031T3 (en)
EA (1) EA036162B1 (en)
ES (2) ES2836881T3 (en)
HK (1) HK1217707A1 (en)
IL (2) IL242872B (en)
MX (1) MX368625B (en)
MY (1) MY179503A (en)
PH (1) PH12015502797B1 (en)
SG (2) SG10201804306VA (en)
UA (1) UA117253C2 (en)
WO (1) WO2015014815A1 (en)
ZA (1) ZA201600655B (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670205B2 (en) 2015-03-04 2017-06-06 Gilead Sciences, Inc. Toll like receptor modulator compounds
WO2018045144A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Toll like receptor modulator compounds
WO2019165374A1 (en) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds as hbv replication inhibitors
WO2019193542A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides
WO2019195181A1 (en) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
WO2019193533A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'2'-cyclic dinucleotides
WO2019193543A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides
WO2019200247A1 (en) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
US10640499B2 (en) 2016-09-02 2020-05-05 Gilead Sciences, Inc. Toll like receptor modulator compounds
WO2020092528A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
WO2020092621A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
US10662416B2 (en) 2016-10-14 2020-05-26 Precision Biosciences, Inc. Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome
WO2020162705A1 (en) 2019-02-08 2020-08-13 성균관대학교산학협력단 Toll-like receptor 7 or 8 agonist-cholesterol complex, and use of same
WO2020178769A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
WO2020178768A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020178770A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
WO2020214652A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020214663A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020237025A1 (en) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2021067181A1 (en) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Hbv vaccines and methods treating hbv
WO2021113765A1 (en) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2021177679A1 (en) 2020-03-02 2021-09-10 성균관대학교산학협력단 Live-pathogen-mimetic nanoparticles based on pathogen cell wall skeleton, and production method thereof
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2022031057A1 (en) 2020-08-04 2022-02-10 성균관대학교산학협력단 Conjugate of functional drug and toll-like receptor 7 or 8 agonist of which active site is temporarily inactivated and use thereof
WO2022031011A1 (en) 2020-08-04 2022-02-10 성균관대학교산학협력단 Kinetically acting adjuvant ensemble
WO2022031021A1 (en) 2020-08-04 2022-02-10 성균관대학교산학협력단 Mrna vaccine comprising adjuvant capable of kinetic control
US11286257B2 (en) 2019-06-28 2022-03-29 Gilead Sciences, Inc. Processes for preparing toll-like receptor modulator compounds
WO2022241134A1 (en) 2021-05-13 2022-11-17 Gilead Sciences, Inc. COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG194131A1 (en) 2011-04-08 2013-11-29 Janssen R & D Ireland Pyrimidine derivatives for the treatment of viral infections
EP2776439B1 (en) 2011-11-09 2018-07-04 Janssen Sciences Ireland UC Purine derivatives for the treatment of viral infections
PL2872515T3 (en) 2012-07-13 2017-05-31 Janssen Sciences Ireland Uc Macrocyclic purines for the treatment of viral infections
PT2906563T (en) 2012-10-10 2018-05-23 Janssen Sciences Ireland Uc Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
MY171115A (en) 2012-11-16 2019-09-26 Janssen Sciences Ireland Uc Heterocyclic substituted 2-amino-quinazoline derivatives for the treatment of viral infections
AU2014220717B2 (en) 2013-02-21 2018-03-29 Janssen Sciences Ireland Uc 2-aminopyrimidine derivatives for the treatment of viral infections
WO2014154859A1 (en) 2013-03-29 2014-10-02 Janssen R&D Ireland Macrocyclic deaza-purinones for the treatment of viral infections
US10377738B2 (en) 2013-05-24 2019-08-13 Janssen Sciences Ireland Unlimited Company Pyridone derivatives for the treatment of viral infections and further diseases
SI3030563T1 (en) 2013-06-27 2017-12-29 Janssen Sciences Ireland Uc Pyrrolo (3,2-d) pyrimidine derivatives for the treatment of viral infections and other diseases
KR102322425B1 (en) * 2013-07-30 2021-11-05 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
WO2018002319A1 (en) 2016-07-01 2018-01-04 Janssen Sciences Ireland Uc Dihydropyranopyrimidines for the treatment of viral infections
KR102450287B1 (en) 2016-09-29 2022-09-30 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 Pyrimidine prodrugs for treatment of viral infections and additional diseases
WO2019084060A1 (en) 2017-10-24 2019-05-02 Silverback Therapeutics, Inc. Conjugates and methods of use thereof for selective delivery of immune-modulatory agents
KR20200100113A (en) 2017-12-15 2020-08-25 실버백 테라퓨틱스, 인크. Antibody construct-drug conjugate for the treatment of hepatitis
TW202415645A (en) 2018-03-01 2024-04-16 愛爾蘭商健生科學愛爾蘭無限公司 2,4-diaminoquinazoline derivatives and medical uses thereof
JP7326319B2 (en) * 2018-04-03 2023-08-15 メルク・シャープ・アンド・ドーム・エルエルシー Benzothiophenes and Related Compounds as STING Agonists
US20200113912A1 (en) 2018-09-12 2020-04-16 Silverback Therapeutics, Inc. Methods and Compositions for the Treatment of Disease with Immune Stimulatory Conjugates
JP2022536855A (en) 2019-06-19 2022-08-19 シルバーバック セラピューティックス インコーポレイテッド Anti-mesothelin antibodies and their immunoconjugates
CN114269753B (en) * 2019-09-29 2024-03-05 四川科伦博泰生物医药股份有限公司 Nitrogen-containing bicyclic compound, pharmaceutical composition containing same, preparation method and application thereof
CA3151322A1 (en) 2019-10-01 2021-04-08 Silverback Therapeutics, Inc. Combination therapy with immune stimulatory conjugates
US11179473B2 (en) 2020-02-21 2021-11-23 Silverback Therapeutics, Inc. Nectin-4 antibody conjugates and uses thereof
KR20230047361A (en) 2020-07-01 2023-04-07 아르스 파마슈티컬스 인크. Anti-ASGR1 antibody conjugates and uses thereof
JP2024518709A (en) 2021-04-10 2024-05-02 プロファウンドバイオ ユーエス カンパニー FOLR1-BINDING AGENTS, CONJUGATS THEREOF AND METHODS OF USING SAME
TW202308699A (en) 2021-04-23 2023-03-01 美商普方生物製藥美國公司 Cd70 binding agents, conjugates thereof and methods of using the same
TW202320857A (en) 2021-07-06 2023-06-01 美商普方生物製藥美國公司 Linkers, drug linkers and conjugates thereof and methods of using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899263A2 (en) * 1997-08-13 1999-03-03 Fujirebio Inc. Fused pyrimidine derivatives and medicaments thereof for a blood oxygen partial pressure amelioration
WO2003055890A1 (en) * 2001-12-21 2003-07-10 Bayer Pharmaceuticals Corporation Thienopyrimidine derivative compounds as inhibitors of prolylpeptidase, inducers of apoptosis and cancer treatment agents
WO2011062372A2 (en) * 2009-11-19 2011-05-26 Korea Institute Of Science And Technology 2, 4, 7 -substituted thieno [3, 2 -d] pyrimidine compounds as protein kinase inhibitors
WO2012136834A1 (en) * 2011-04-08 2012-10-11 Janssen R&D Ireland Pyrimidine derivatives for the treatment of viral infections
WO2012156498A1 (en) * 2011-05-18 2012-11-22 Janssen R&D Ireland Quinazoline derivatives for the treatment of viral infections and further diseases
WO2013068438A1 (en) * 2011-11-09 2013-05-16 Janssen R&D Ireland Purine derivatives for the treatment of viral infections

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610889B2 (en) 1987-09-03 1997-05-14 日本臓器製薬株式会社 New crosslinked adenine derivatives
TW552261B (en) 1996-07-03 2003-09-11 Japan Energy Corp Novel purine derivative
NZ333302A (en) 1996-08-28 2000-08-25 Pfizer Substituted 6,5-hetero-bicyclic derivatives for the prevention or inhibition of a disorder that can be treated by antagonising corticotropin releasing factor
ATE229527T1 (en) 1996-10-04 2002-12-15 Kyorin Seiyaku Kk PYRAZOLOPYRIDYLPYRAZINONE DERIVATIVES AND A METHOD FOR THE PRODUCTION THEREOF
AR012634A1 (en) 1997-05-02 2000-11-08 Sugen Inc QUINAZOLINE BASED COMPOUND, FAMACEUTICAL COMPOSITION THAT UNDERSTANDS IT, METHOD TO SYNTHESIZE IT, ITS USE, METHODS OF MODULATION OF THE DESERINE / TREONIN PROTEIN-KINASE FUNCTION AND IN VITRO METHOD TO IDENTIFY COMPOUNDS THAT MODULATE
AU732361B2 (en) 1997-11-28 2001-04-26 Dainippon Sumitomo Pharma Co., Ltd. Novel heterocyclic compounds
TW572758B (en) 1997-12-22 2004-01-21 Sumitomo Pharma Type 2 helper T cell-selective immune response inhibitors comprising purine derivatives
US6187777B1 (en) 1998-02-06 2001-02-13 Amgen Inc. Compounds and methods which modulate feeding behavior and related diseases
ATE245641T1 (en) 1998-02-17 2003-08-15 Tularik Inc ANTIVIRAL PYRIMIDINE DERIVATIVES
US6110929A (en) 1998-07-28 2000-08-29 3M Innovative Properties Company Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof
JP4315300B2 (en) 1998-08-10 2009-08-19 大日本住友製薬株式会社 Novel quinazoline derivatives
JP4342007B2 (en) 1998-08-10 2009-10-14 大日本住友製薬株式会社 Quinazoline derivatives
ATE267175T1 (en) 1998-08-27 2004-06-15 Sumitomo Pharma PYRIMIDINE DERIVATIVES
US6583148B1 (en) 1999-04-08 2003-06-24 Krenitsky Pharmaceuticals, Inc. Neurotrophic substituted pyrimidines
CA2323008C (en) 1999-10-11 2005-07-12 Pfizer Inc. Pharmaceutically active compounds
WO2002088079A2 (en) 2001-05-01 2002-11-07 Bristol-Myers Squibb Company Dual inhibitors of pde 7 and pde 4
TW200407143A (en) 2002-05-21 2004-05-16 Bristol Myers Squibb Co Pyrrolotriazinone compounds and their use to treat diseases
US7091232B2 (en) 2002-05-21 2006-08-15 Allergan, Inc. 4-(substituted cycloalkylmethyl) imidazole-2-thiones, 4-(substituted cycloalkenylmethyl) imidazole-2-thiones, 4-(substituted cycloalkylmethyl) imidazol-2-ones and 4-(substituted cycloalkenylmethyl) imidazol-2-ones and related compounds
JPWO2003104230A1 (en) 2002-06-07 2005-10-06 協和醗酵工業株式会社 Bicyclic pyrimidine derivatives
JP4768263B2 (en) 2002-09-27 2011-09-07 大日本住友製薬株式会社 Novel adenine compounds and uses thereof
US8455458B2 (en) 2002-10-16 2013-06-04 Arthrodynamic Technologies, Animal Health Division, Inc. Composition and method for treating connective tissue damage
KR20060016817A (en) 2003-06-20 2006-02-22 콜리 파마슈티칼 게엠베하 Small molecule toll-like receptor (tlr) antagonists
CA2537450C (en) 2003-09-05 2012-04-17 Anadys Pharmaceuticals, Inc. Administration of tlr7 ligands and prodrugs thereof for treatment of infection by hepatitis c virus
EP1728793B1 (en) 2004-03-26 2016-02-03 Sumitomo Dainippon Pharma Co., Ltd. 9-substituted 8-oxoadenine compound
US20070225303A1 (en) 2004-03-26 2007-09-27 Haruhisa Ogita 8-Oxoadenine Compound
WO2007084413A2 (en) 2004-07-14 2007-07-26 Ptc Therapeutics, Inc. Methods for treating hepatitis c
US7923554B2 (en) 2004-08-10 2011-04-12 Janssen Pharmaceutica N.V. HIV inhibiting 1,2,4-triazin-6-one derivatives
JP2008519083A (en) 2004-11-09 2008-06-05 エフ.ホフマン−ラ ロシュ アーゲー Aminoquinazoline compounds
US7498409B2 (en) 2005-03-24 2009-03-03 Schering Corporation Screening assay for TLR7, TLR8 and TLR9 agonists and antagonists
WO2006117670A1 (en) 2005-05-04 2006-11-09 Pfizer Limited 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
AR054122A1 (en) 2005-05-12 2007-06-06 Tibotec Pharm Ltd PIRIDO [2,3-D] USEFUL PYRIMIDES AS HCV INHIBITORS, AND METHODS FOR THE PREPARATION OF THE SAME
US7994360B2 (en) 2005-05-16 2011-08-09 Xtl Biopharmaceuticals Ltd. Benzofuran compounds
CN101296907B (en) 2005-09-01 2013-03-27 弗·哈夫曼-拉罗切有限公司 Diaminopyrimidines as P2X3 and P2X2/3 modulators
EP1939198A4 (en) 2005-09-22 2012-02-15 Dainippon Sumitomo Pharma Co Novel adenine compound
WO2007056208A2 (en) * 2005-11-02 2007-05-18 Cytovia, Inc. N-arylalkyl-thienopyrimidin-4-amines and analogs as activators of caspases and inducers of apoptosis and the use thereof
EP1970373A1 (en) 2005-12-02 2008-09-17 Mitsubishi Tanabe Pharma Corporation Alicyclic heterocyclic compound
EP1987030B1 (en) 2006-02-17 2011-11-09 Pfizer Limited 3 -deazapurine derivatives as tlr7 modulators
US9259426B2 (en) 2006-07-20 2016-02-16 Gilead Sciences, Inc. 4,6-di- and 2,4,6-trisubstituted quinazoline derivatives useful for treating viral infections
WO2008009077A2 (en) 2006-07-20 2008-01-24 Gilead Sciences, Inc. 4,6-dl- and 2,4,6-trisubstituted quinazoline derivatives and pharmaceutical compositions useful for treating viral infections
EP2114950B1 (en) * 2006-12-07 2016-03-09 Genentech, Inc. Phosphoinositide 3-kinase inhibitor compounds and methods of use
AU2007335962B2 (en) 2006-12-20 2012-09-06 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
WO2008115319A2 (en) 2007-02-07 2008-09-25 Regents Of The University Of California Conjugates of synthetic tlr agonists and uses therefor
JP2008222557A (en) 2007-03-08 2008-09-25 Kotobuki Seiyaku Kk PYRROLO[3,2-d]PYRIMIDINE DERIVATIVE AND PHARMACEUTICAL COMPOSITION COMPRISING THE SAME AS EFFECTIVE COMPONENT
WO2008114008A1 (en) 2007-03-19 2008-09-25 Astrazeneca Ab 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7 ) modulators
JPWO2008114819A1 (en) 2007-03-20 2010-07-08 大日本住友製薬株式会社 New adenine compounds
AR065784A1 (en) 2007-03-20 2009-07-01 Dainippon Sumitomo Pharma Co DERIVATIVES OF 8-OXO ADENINE, DRUGS THAT CONTAIN THEM AND USES AS THERAPEUTIC AGENTS FOR ALLERGIC, ANTIVIRAL OR ANTIBACTERIAL DISEASES.
JP5268120B2 (en) 2007-05-22 2013-08-21 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Benzimidazolone chymase inhibitor
US7968544B2 (en) 2007-06-29 2011-06-28 Gilead Sciences, Inc. Modulators of toll-like receptor 7
EA201000201A1 (en) 2007-08-10 2010-12-30 ГЛАКСОСМИТКЛАЙН ЭлЭлСи NITROGEN-CONTAINING BICYCLIC CHEMICALS FOR THE TREATMENT OF VIRAL INFECTIONS
US8440681B2 (en) 2007-08-28 2013-05-14 Irm Llc 2-biphenylamino-4-aminopyrimidine derivatives as kinase inhibitors
WO2009030998A1 (en) 2007-09-05 2009-03-12 Coley Pharmaceutical Group, Inc. Pyrimidine compounds as toll-like receptor (tlr) agonists
PE20091236A1 (en) 2007-11-22 2009-09-16 Astrazeneca Ab PYRIMIDINE DERIVATIVES AS IMMUNOMODULATORS OF TLR7
ES2389994T3 (en) 2007-12-24 2012-11-05 Janssen R&D Ireland Macrocyclic Indoles as hepatitis C virus inhibitors
EP2259788A4 (en) 2008-02-07 2011-03-16 Univ California Treatment of bladder diseases with a tlr7 activator
MX2010009738A (en) * 2008-03-03 2010-09-30 Irm Llc Compounds and compositions as tlr activity modulators.
WO2009134624A1 (en) 2008-04-28 2009-11-05 Merck & Co., Inc. Hcv ns3 protease inhibitors
US8946239B2 (en) 2008-07-10 2015-02-03 Duquesne University Of The Holy Spirit Substituted pyrrolo, -furano, and cyclopentylpyrimidines having antimitotic and/or antitumor activity and methods of use thereof
UY31982A (en) 2008-07-16 2010-02-26 Boehringer Ingelheim Int DERIVATIVES OF 1,2-DIHYDROPIRIDIN-3-CARBOXAMIDS N-SUBSTITUTED
MX2011012337A (en) 2009-05-21 2011-12-08 Dainippon Sumitomo Pharma Co Novel pyrimidine derivatives and their use in the treatment of cancer and further diseases.
US8637525B2 (en) 2009-07-31 2014-01-28 Bristol-Myers Squibb Company Compounds for the reduction of beta-amyloid production
TWI468402B (en) 2009-07-31 2015-01-11 必治妥美雅史谷比公司 Compounds for the reduction of β-amyloid production
WO2011049987A2 (en) 2009-10-20 2011-04-28 Eiger Biopharmaceuticals, Inc. Azaindazoles to treat flaviviridae virus infection
NZ598933A (en) 2009-10-22 2013-04-26 Gilead Sciences Inc Derivatives of purine or deazapurine useful for the treatment of (inter alia) viral infections
JP2013032290A (en) 2009-11-20 2013-02-14 Dainippon Sumitomo Pharma Co Ltd Novel fused pyrimidine derivative
DE102010040233A1 (en) 2010-09-03 2012-03-08 Bayer Schering Pharma Aktiengesellschaft Bicyclic aza heterocycles and their use
WO2012067269A1 (en) 2010-11-19 2012-05-24 Dainippon Sumitomo Pharma Co., Ltd. Aminoalkoxyphenyl compounds and their use in the treatment of disease
WO2012066335A1 (en) 2010-11-19 2012-05-24 Astrazeneca Ab Phenol compounds als toll -like receptor 7 agonists
EP2691156A1 (en) * 2011-03-30 2014-02-05 Boehringer Ingelheim International GmbH Anticoagulant antidotes
JP6283320B2 (en) 2012-02-08 2018-02-21 ヤンセン・サイエンシズ・アイルランド・ユーシー Piperidino-pyrimidine derivatives for the treatment of viral infections
LT2841428T (en) 2012-04-24 2018-12-10 Vertex Pharmaceuticals Incorporated Dna-pk inhibitors
PL2872515T3 (en) 2012-07-13 2017-05-31 Janssen Sciences Ireland Uc Macrocyclic purines for the treatment of viral infections
CN104781239B (en) 2012-08-10 2019-03-01 爱尔兰詹森科学公司 For treating the alkyl derivative of virus infection and other disease
EP2712866A1 (en) 2012-10-01 2014-04-02 Centre National de la Recherche Scientifique (CNRS) 1,2,4-triazine derivatives for the treatment of viral infections
KR102198128B1 (en) 2012-10-05 2021-01-05 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 Acylaminopyrimidine derivatives for the treatment of viral infections and further diseases
PT2906563T (en) 2012-10-10 2018-05-23 Janssen Sciences Ireland Uc Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
MY171115A (en) 2012-11-16 2019-09-26 Janssen Sciences Ireland Uc Heterocyclic substituted 2-amino-quinazoline derivatives for the treatment of viral infections
AU2014220717B2 (en) 2013-02-21 2018-03-29 Janssen Sciences Ireland Uc 2-aminopyrimidine derivatives for the treatment of viral infections
WO2014154859A1 (en) 2013-03-29 2014-10-02 Janssen R&D Ireland Macrocyclic deaza-purinones for the treatment of viral infections
KR102322425B1 (en) * 2013-07-30 2021-11-05 얀센 사이언시즈 아일랜드 언리미티드 컴퍼니 THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
US9701661B2 (en) 2014-07-11 2017-07-11 Northwestern University 2-imidazolyl-pyrimidine scaffolds as potent and selective inhibitors of neuronal nitric oxide synthase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0899263A2 (en) * 1997-08-13 1999-03-03 Fujirebio Inc. Fused pyrimidine derivatives and medicaments thereof for a blood oxygen partial pressure amelioration
WO2003055890A1 (en) * 2001-12-21 2003-07-10 Bayer Pharmaceuticals Corporation Thienopyrimidine derivative compounds as inhibitors of prolylpeptidase, inducers of apoptosis and cancer treatment agents
WO2011062372A2 (en) * 2009-11-19 2011-05-26 Korea Institute Of Science And Technology 2, 4, 7 -substituted thieno [3, 2 -d] pyrimidine compounds as protein kinase inhibitors
WO2012136834A1 (en) * 2011-04-08 2012-10-11 Janssen R&D Ireland Pyrimidine derivatives for the treatment of viral infections
WO2012156498A1 (en) * 2011-05-18 2012-11-22 Janssen R&D Ireland Quinazoline derivatives for the treatment of viral infections and further diseases
WO2013068438A1 (en) * 2011-11-09 2013-05-16 Janssen R&D Ireland Purine derivatives for the treatment of viral infections

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7268064B2 (en) 2015-03-04 2023-05-02 ギリアード サイエンシーズ, インコーポレイテッド Toll-like receptor modulating 4,6-diamino-pyrido[3,2-d]pyrimidine compounds
JP2017203033A (en) * 2015-03-04 2017-11-16 ギリアード サイエンシーズ, インコーポレイテッド TOLL-LIKE RECEPTOR MODULATING 4,6-DIAMINO-PYRIDO[3,2-d]PYRIMIDINE COMPOUNDS
JP2021046456A (en) * 2015-03-04 2021-03-25 ギリアード サイエンシーズ, インコーポレイテッド TOLL-LIKE RECEPTOR MODULATING 4,6-DIAMINO-PYRIDO[3,2-d]PYRIMIDINE COMPOUND
US10285990B2 (en) 2015-03-04 2019-05-14 Gilead Sciences, Inc. Toll like receptor modulator compounds
US9670205B2 (en) 2015-03-04 2017-06-06 Gilead Sciences, Inc. Toll like receptor modulator compounds
US10370342B2 (en) 2016-09-02 2019-08-06 Gilead Sciences, Inc. Toll like receptor modulator compounds
US11827609B2 (en) 2016-09-02 2023-11-28 Gilead Sciences, Inc. Toll like receptor modulator compounds
US11124487B2 (en) 2016-09-02 2021-09-21 Gilead Sciences, Inc. Toll like receptor modulator compounds
US10640499B2 (en) 2016-09-02 2020-05-05 Gilead Sciences, Inc. Toll like receptor modulator compounds
WO2018045144A1 (en) 2016-09-02 2018-03-08 Gilead Sciences, Inc. Toll like receptor modulator compounds
US10662416B2 (en) 2016-10-14 2020-05-26 Precision Biosciences, Inc. Engineered meganucleases specific for recognition sequences in the hepatitis B virus genome
US11274285B2 (en) 2016-10-14 2022-03-15 Precision Biosciences, Inc. Engineered meganucleases specific for recognition sequences in the Hepatitis B virus genome
US11203610B2 (en) 2017-12-20 2021-12-21 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
US10966999B2 (en) 2017-12-20 2021-04-06 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′ cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2019165374A1 (en) 2018-02-26 2019-08-29 Gilead Sciences, Inc. Substituted pyrrolizine compounds as hbv replication inhibitors
WO2019195181A1 (en) 2018-04-05 2019-10-10 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis b virus protein x
US11292812B2 (en) 2018-04-06 2022-04-05 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotides
WO2019193533A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'2'-cyclic dinucleotides
WO2019193542A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides
US11149052B2 (en) 2018-04-06 2021-10-19 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2′3′-cyclic dinucleotides
WO2019193543A1 (en) 2018-04-06 2019-10-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides
US11142750B2 (en) 2018-04-12 2021-10-12 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome
US11788077B2 (en) 2018-04-12 2023-10-17 Precision Biosciences, Inc. Polynucleotides encoding optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome
WO2019200247A1 (en) 2018-04-12 2019-10-17 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2019211799A1 (en) 2018-05-03 2019-11-07 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
WO2020092621A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
EP4371987A1 (en) 2018-10-31 2024-05-22 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
WO2020092528A1 (en) 2018-10-31 2020-05-07 Gilead Sciences, Inc. Substituted 6-azabenzimidazole compounds having hpk1 inhibitory activity
WO2020162705A1 (en) 2019-02-08 2020-08-13 성균관대학교산학협력단 Toll-like receptor 7 or 8 agonist-cholesterol complex, and use of same
WO2020178770A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotides and prodrugs thereof
WO2020178768A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
US11766447B2 (en) 2019-03-07 2023-09-26 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3′3′-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
WO2020178769A1 (en) 2019-03-07 2020-09-10 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides and prodrugs thereof
WO2020214663A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US11396509B2 (en) 2019-04-17 2022-07-26 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US11583531B2 (en) 2019-04-17 2023-02-21 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020214652A1 (en) 2019-04-17 2020-10-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020237025A1 (en) 2019-05-23 2020-11-26 Gilead Sciences, Inc. Substituted exo-methylene-oxindoles which are hpk1/map4k1 inhibitors
US11286257B2 (en) 2019-06-28 2022-03-29 Gilead Sciences, Inc. Processes for preparing toll-like receptor modulator compounds
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
WO2021067181A1 (en) 2019-09-30 2021-04-08 Gilead Sciences, Inc. Hbv vaccines and methods treating hbv
WO2021113765A1 (en) 2019-12-06 2021-06-10 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis b virus genome
WO2021177679A1 (en) 2020-03-02 2021-09-10 성균관대학교산학협력단 Live-pathogen-mimetic nanoparticles based on pathogen cell wall skeleton, and production method thereof
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
WO2022031057A1 (en) 2020-08-04 2022-02-10 성균관대학교산학협력단 Conjugate of functional drug and toll-like receptor 7 or 8 agonist of which active site is temporarily inactivated and use thereof
WO2022031021A1 (en) 2020-08-04 2022-02-10 성균관대학교산학협력단 Mrna vaccine comprising adjuvant capable of kinetic control
WO2022031011A1 (en) 2020-08-04 2022-02-10 성균관대학교산학협력단 Kinetically acting adjuvant ensemble
WO2022241134A1 (en) 2021-05-13 2022-11-17 Gilead Sciences, Inc. COMBINATION OF A TLR8 MODULATING COMPOUND AND ANTI-HBV siRNA THERAPEUTICS
WO2022271677A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271659A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
WO2022271684A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds

Also Published As

Publication number Publication date
CN108912137B (en) 2021-04-09
DK3404031T3 (en) 2020-12-14
EA201690303A1 (en) 2016-06-30
CN108912137A (en) 2018-11-30
ES2701239T3 (en) 2019-02-21
AU2018256591B2 (en) 2020-03-19
US20170298079A1 (en) 2017-10-19
KR102322425B1 (en) 2021-11-05
MX368625B (en) 2019-10-08
KR20160035583A (en) 2016-03-31
EP3404031A1 (en) 2018-11-21
HK1217707A1 (en) 2017-01-20
US20190330227A1 (en) 2019-10-31
DK3027624T3 (en) 2019-01-07
EP3404031B1 (en) 2020-09-23
MX2016001464A (en) 2016-06-02
UA117253C2 (en) 2018-07-10
ZA201600655B (en) 2022-03-30
PH12015502797A1 (en) 2016-03-14
US10316043B2 (en) 2019-06-11
PH12015502797B1 (en) 2016-03-14
EP3027624A1 (en) 2016-06-08
AU2014298540B2 (en) 2018-08-09
IL266897B (en) 2020-11-30
US20160168164A1 (en) 2016-06-16
CL2015003767A1 (en) 2016-07-08
AU2018256591A1 (en) 2018-11-22
US9556199B2 (en) 2017-01-31
JP6401788B2 (en) 2018-10-10
EP3027624B1 (en) 2018-09-12
CA2913691A1 (en) 2015-02-05
BR112016001570B1 (en) 2020-12-15
IL242872B (en) 2019-06-30
ES2836881T3 (en) 2021-06-28
CN105492446A (en) 2016-04-13
MY179503A (en) 2020-11-09
CN105492446B (en) 2018-08-03
IL242872A0 (en) 2016-02-01
EA036162B1 (en) 2020-10-08
IL266897A (en) 2019-07-31
SG11201510736PA (en) 2016-02-26
CA2913691C (en) 2022-01-25
US10822347B2 (en) 2020-11-03
SG10201804306VA (en) 2018-06-28
JP2016525148A (en) 2016-08-22
NZ714519A (en) 2021-07-30
AU2014298540A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
AU2018256591B2 (en) Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
AU2017289418B2 (en) Dihydropyranopyrimidines for the treatment of viral infections
US9284304B2 (en) Substituted pyrimidines as toll-like receptor modulators
EP2958900B1 (en) 2-aminopyrimidine derivatives for the treatment of viral infections
DK2812331T3 (en) PIPERIDINOPYRIMIDINE DERIVATIVES FOR TREATING VIRUS INFECTIONS
AU2013326579B2 (en) 1,2,4-triazine derivatives for the treatment of viral infections.
EP2925729A1 (en) Heterocyclic substituted 2-amino-quinazoline derivatives for the treatment of viral infections
NZ714519B2 (en) THIENO[3,2-d]PYRIMIDINES DERIVATIVES FOR THE TREATMENT OF VIRAL INFECTIONS
NZ709769B2 (en) 2-aminopyrimidine derivatives for the treatment of viral infections

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042656.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14744834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2913691

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 242872

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12015502797

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2014298540

Country of ref document: AU

Date of ref document: 20140729

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016530483

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167002021

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908237

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/001464

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016001570

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014744834

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201690303

Country of ref document: EA

Ref document number: A201601818

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 112016001570

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160125