WO2015014362A1 - Verfahren zur bestimmung eines fehlers in einem elektronisch kommutierten elektromotor - Google Patents

Verfahren zur bestimmung eines fehlers in einem elektronisch kommutierten elektromotor Download PDF

Info

Publication number
WO2015014362A1
WO2015014362A1 PCT/DE2014/200370 DE2014200370W WO2015014362A1 WO 2015014362 A1 WO2015014362 A1 WO 2015014362A1 DE 2014200370 W DE2014200370 W DE 2014200370W WO 2015014362 A1 WO2015014362 A1 WO 2015014362A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
measured
current
phases
phase
Prior art date
Application number
PCT/DE2014/200370
Other languages
English (en)
French (fr)
Inventor
Stefan SCHMAUS
Markus Dietrich
Martin Zimmermann
Francis Moebs
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Priority to DE112014003578.5T priority Critical patent/DE112014003578A5/de
Priority to KR1020167004976A priority patent/KR102215985B1/ko
Priority to US14/909,534 priority patent/US10162009B2/en
Publication of WO2015014362A1 publication Critical patent/WO2015014362A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the invention relates to a method for determining a fault in an electronically commutated electric motor, wherein in each motor phase at least one stator coil of the electric motor is connected in parallel, wherein a motor phase is energized and the current flowing through this motor phase current is measured.
  • Motor phase are connected in parallel. In the case of a fault of such a coil connected in parallel, however, a current flow continues to take place. The electric motor is still running, but with reduced performance. If this defective electric motor operated as a functional, can cause serious damage to the electric motor.
  • the invention is therefore based on the object to provide a method for determining an error in an electronically commutated electric motor, in which two stator coils of the motor are connected in parallel in each motor phase, in which a defect is reliably detected in an engine phase, although the engine even further running.
  • this object is achieved in that the three motor phases are energized one after the other and the current flowing during this energization in the respective motor phase current is measured, the measured currents in the three motor phases are compared and detected a defect of the electric motor, if the measured Currents differ from each other.
  • the deviation of the currents can be positive or negative depending on the interconnection.
  • a defect of a coil in the first motor phase is concluded.
  • a defective coil in a parallel connection relatively large differences in the currents occur.
  • the motor phase in a delta circuit of the three motor phases, is detected as defective, in which the current measured directly above the motor phase is lower than the current which is measured together across the other two motor phases connected in series. This is due to the fact that in a delta connection, the terminal resistance is calculated from the amounts of all three motor phases. As a result, the clamping resistance changes in all energizing cases.
  • the motor phase is detected as defective, in which the measured current is higher than the current measured separately in the other two motor phases.
  • the clamping resistor just corresponds to two series-connected phases, and therefore the current flowing through a defective coil phase behaves differently than the current flowing through the two remaining phases with correctly operating coils.
  • the three motor phases for current measurement are subjected to the same voltage. This is particularly important because the same starting conditions for the current measurement must be present at the three motor phases of the electric motor, so that the measured currents are comparable.
  • a control unit is used for current measurement, which performs the verification of the motor phases in a diagnostic mode.
  • this is the same control unit which is provided for driving the electric motor.
  • Control unit itself is a measuring resistor installed, which is used for current measurement at the individual motor phases.
  • the proposed method represents a particularly cost-effective method for detecting defects in the electrically commutated electric motor.
  • FIG. 1 shows a schematic diagram of an electro-hydraulic coupling system
  • FIG 3 shows an exemplary embodiment of a star connection of the motor phases of the electric motor.
  • Fig. 1 an electro-hydraulic clutch system is shown, as it is in today
  • Such a coupling system has a Hydrostatak- tor 1, as it is known for example from DE 10 2010 047 801 A1.
  • This hydrostatic actuator 1 comprises an actuator housing 2, in which a piston 3 is movably arranged.
  • the piston 3 is driven by an electrically commutated electric motor 4, which is controlled by a control unit 5 via an output stage 6.
  • the output stage 6 is arranged in the actuator housing 2.
  • the hydrostatic actuator 1 Via a hydraulic line 7, the hydrostatic actuator 1 is connected to a slave cylinder 8, which moves a clutch 9.
  • the adjustment of the position of the clutch 9 is due to the drive of the arranged in a donor cylinder not shown piston 3 by the electric motor 4 in the hydrostatic actuator. 1
  • FIG. 2 shows by way of example a triangular connection of the motor phases U, V, W of the electric motor. Motors 4 shown.
  • Each motor phase U, V, W contains two parallel connected stator coils 10, 1 1; 12, 13; 14, 15 of the electric motor 4.
  • the coils 10, 1 1; 12, 13; 14, 15 are identical and have the same resistance R sp .
  • a defective or normally functioning coil 10, 1 1; 12, 13; 14, 15 the resistance of the phase changes.
  • a terminal resistance R is effective , i for example between terminals A and B of
  • the deviation of the current I conductor, 1. flowing through the motor phase U, in which the defective coil 10 is included, is conductor, 2 ⁇
  • the resistance increases by a factor of 3/2. In the other two cases by a factor of 9/8. If the three phases are energized in succession, the current when the defective coil 10 is directly between the terminals A, B, by 1/3 less than in the two cases in which the other two motor phases V, W are measured.
  • a star connection corresponds to the terminal resistance Rgefel between the terminal points A, B, C currently two series-connected motor phases U, V, W. Is now in one of these motor phases U, V, W one of If both parallel coils 10, 1 1 are defective, the terminal resistance R is increased by a factor of 3/2.
  • the measured current I conductor, 1 in the motor phase U thus reduces with unchanged drive voltage to 2/3 of the current leads in the normal state. If the three motor phases U, V, W are energized one after the other, the current I conductor, 1 is 50% higher during energization without a defective coil than when the defective motor phase U is energized, compared to the other two motor phases V, W.
  • the resistance of the normal phase Rphase is R r ⁇ phase - I _ R r ⁇ sp-
  • the terminal resistance R tot amt between terminal points B and C corresponds to
  • the terminal resistance R geS amt which is between the terminals A, B and A, C, where in each case a parallel circuit is included with a defective coil 10, is measured

Abstract

Die Erfindung betrifft ein Verfahren zur Bestimmung eines Fehlers in einem elektronisch kommutierten Elektromotor, bei welchem in jeder Motorphase mindestens eine Statorspule des Elektromotors parallel verschaltet ist, wobei eine Motorphase bestromt wird und der durch diese Motorphase fließende Strom gemessen wird. Bei einem Verfahren, bei welchem ein Defekt des Elektromotors zuverlässig erkannt wird, werden die drei Motorphasen nacheinander bestromt und der während dieser Bestromung auftretende Strom der einzelnen Motorphasen gemessen, wobei die in den drei Motorphasen gemessenen Ströme miteinander verglichen werden und auf einen Defekt des Elektromotors erkannt wird, wenn die gemessenen Ströme voneinander abweichen.

Description

Verfahren zur Bestimmung eines Fehlers in einem elektronisch kommutierten Elektromotor
Die Erfindung betrifft ein Verfahren zur Bestimmung eines Fehlers in einem elektronisch kommutierten Elektromotor, bei welchem in jeder Motorphase mindestens eine Statorspule des Elektromotors parallel verschaltet ist, wobei eine Motorphase bestromt wird und der durch diese Motorphase fließende Strom gemessen wird.
Aus der DE 10 201 1 083 217 A1 ist ein Verfahren zur Überprüfung der Phasen eines elektronisch kommutierten Elektromotors bekannt. Bei diesem zu überprüfenden Elektromotor sind die jeweils zwei Spulen, welche in jeder Motorphase des Elektromotors angeordnet sind, in Reihe geschaltet. Um eine Phasenunterbrechung zuverlässig zu erkennen, werden nacheinander mindestens zwei Kommutierungsschritte des Elektromotors angestoßen und bei jedem Kommutierungsschritt eine Strommessung durchgeführt. Wird in einer Motorphase dabei bei der Strommessung eines Stromausfalls detektiert, wird auf eine Unterbrechung der Motorphase geschlossen.
Es gibt aber auch Elektromotoren, bei welchen die beiden Spulen in der jeweiligen
Motorphase parallel verschaltet sind. Bei einem Fehler einer solchen parallel verschalteten Spule findet aber weiter ein Stromfluss statt. Der Elektromotor läuft dadurch immer noch, aber mit nur reduzierter Leistungsfähigkeit. Wird dieser defekte Elektromotor wie ein funktionsfähiger betrieben, können schwerwiegende Folgeschäden am Elektromotor entstehen.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Bestimmung eines Fehlers in einem elektronisch kommutierten Elektromotor anzugeben, bei welchem in jeder Motorphase zwei Statorspulen des Motors parallel verschaltet sind, bei dem ein Defekt in einer Motorphase zuverlässig erkannt wird, obwohl der Motor noch weiter läuft.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die drei Motorphasen nacheinander bestromt werden und der während dieser Bestromung in der jeweiligen Motorphase fließende Strom gemessen wird, wobei die in den drei Motorphasen gemessenen Ströme verglichen werden und auf einen Defekt des Elektromotors erkannt wird, wenn die gemessenen Ströme voneinander abweichen. Die Abweichung der Ströme kann dabei je nach Verschaltung positiv oder negativ sein. Es ist aber immer zuverlässig darauf zu schließen, dass eine Motorphase, d.h. insbesondere eine der parallel verschalteten Spulen in der jeweiligen Motorphase, defekt ist. Durch das Messen der drei Motorphasen direkt hintereinander können Umwelteinflüsse eliminiert werden und die relativ hohen Unterschiede in den Strömen direkt detektiert werden.
Vorteilhafterweise wird bei einer Abweichung eines, in einer ersten Motorphase gemessenen ersten Stromes von den beiden Strömen, die in den anderen beiden Motorphasen gemessen werden, auf einen Defekt einer Spule in der ersten Motorphase geschlossen. Bei einer defekten Spule in einer Parallelverschaltung treten relativ große Unterschiede in den Strömen auf. Allerdings muss dabei zwischen einer Dreieckschaltung und einer Sternschaltung unterschieden werden.
In einer Ausgestaltung wird bei einer Dreieckschaltung der drei Motorphasen die Motorphase als defekt erkannt, bei welcher der direkt über der Motorphase gemessene Strom niedriger ist, als der Strom, welcher gemeinsam über den beiden anderen in Reihe geschalteten Motorphasen gemessen wird. Dies ist darauf zurückzuführen, dass bei einer Dreieckschaltung sich der Klemmenwiderstand aus den Beträgen aller drei Motorphasen berechnet. Dadurch ändert sich der Klemmwiderstand in allen Bestromungsfällen.
In einer Alternative wird bei einer Sternschaltung der drei Motorphasen die Motorphase als defekt erkannt, bei welcher der gemessene Strom höher ist als der in den beiden anderen Motorphasen getrennt gemessene Strom. Hier entspricht der Klemmwiderstand gerade zwei in Reihe verschalteten Phasen, weshalb sich der Strom, welcher durch eine Phase mit defekter Spule fließt, sich anders verhält als der Strom, welcher durch die zwei verbleibenden Phasen mit korrekt arbeitenden Spulen fließt.
In einer Variante werden die drei Motorphasen zur Strommessung mit der gleichen Spannung beaufschlagt. Dies ist insbesondere deshalb von Bedeutung, da für die Strommessung dieselben Ausgangsbedingungen an den drei Motorphasen des Elektromotors vorhanden müssen, damit die gemessenen Ströme vergleichbar sind.
In einer Weiterbildung wird der Elektromotor nach Feststellung eines Fehlers in einen
Notbetrieb umgeschaltet. Durch einen solchen Notbetrieb kann eine weitere Schädigung des Elektromotors, beispielsweise durch Überhitzung, zuverlässig verhindert werden.
In einer Ausführungsform wird zur Strommessung ein Steuergerät verwendet, welches die Überprüfung der Motorphasen in einem Diagnosemodus durchführt. Vorteilhafterweise ist dies dasselbe Steuergerät, welches zur Ansteuerung des Elektromotors vorgesehen ist. In dem Steuergerät selbst ist dabei ein Messwiderstand verbaut, welcher zur Strommessung an den einzelnen Motorphasen genutzt wird. Dadurch stellt das vorgeschlagene Verfahren eine besonders kostengünstige Methode dar, um Defekte an dem elektrisch kommutierten Elektromotor feststellen zu können.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigen:
Fig. 1 : Prinzipdarstellung eines elektrohydraulischen Kupplungssystems,
Fig. 2: ein Ausführungsbeispiel für eine Dreiecksverschaltung der Motorphasen des
Elektromotors,
Fig. 3: ein Ausführungsbeispiel für eine Sternverschaltung der Motorphasen des Elektromotors.
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
In Fig. 1 ist ein elektrohydraulisches Kupplungssystem dargestellt, wie es heute in
Kraftfahrzeugen zum Einsatz kommt. Ein solches Kupplungssystem weist einen Hydrostatak- tor 1 auf, wie er beispielsweise aus der DE 10 2010 047 801 A1 bekannt ist. Dieser Hydrosta- taktor 1 umfasst ein Aktorgehäuse 2, in dem ein Kolben 3 beweglich angeordnet ist. Der Kolben 3 wird von einem elektrisch kommutierten Elektromotor 4 angetrieben, der von einem Steuergerät 5 über eine Endstufe 6 angesteuert wird. Die Endstufe 6 ist dabei im Aktorgehäuse 2 angeordnet.
Über eine Hydraulikleitung 7 ist der Hydrostataktor 1 mit einem Nehmerzylinder 8 verbunden, welcher eine Kupplung 9 bewegt. Die Verstellung der Position der Kupplung 9 erfolgt aufgrund des Antriebes des in einem nicht weiter dargestellten Geberzylinder angeordneten Kolbens 3 durch den Elektromotor 4 im Hydrostataktor 1.
Im Betrieb der Kupplung 9 wird der Elektromotor 4 von dem Steuergerät 5 in einem
Kommutierungsmodus angesteuert, wobei der Elektromotor 4 über drei Phasen U; V; W verfügt. In Fig. 2 ist beispielhaft eine Dreieckverschaltung der Motorphasen U, V, W des Elektro- motors 4 gezeigt. Jede Motorphase U, V, W enthält dabei zwei parallel zueinander verschaltete Statorspulen 10, 1 1 ; 12, 13; 14, 15 des Elektromotors 4. Die Spulen 10, 1 1 ; 12, 13; 14, 15 sind dabei identisch und besitzen denselben Widerstand Rsp. Je nachdem, ob eine Motorphase U, V, W eine defekte oder normal funktionierende Spule 10, 1 1 ; 12, 13; 14, 15 enthält, ändert sich der Widerstand der Phase.
Der Widerstand bei einer defekten Phase Rphase.det beträgt
Rphase.def Rsp
Der Widerstand der normalen Phase Rphase entspricht
R r^Phase - — _ R ^s -
2
Bei einer Strommessung wirkt ein Klemmenwiderstand RgeSamt,i beispielsweise zwischen den Klemmen A und B von
gesamt, 1
R~Phase,def
Figure imgf000006_0001
Der Klemmenwiderstand Rgesamt,2, welcher bei einer Strommessung zwischen den Klemmen A, C bzw. B, C erhalten wird, beträgt
* 1 - 3 R
Vjesamt,2 i 1 o SP
R-Phase ^Phase + ^Phase,def
Der nach dem ohmschen Widerstand zwischen den Klemmen A und B fließende Strom I Leiter, 1 beträgt
Figure imgf000006_0002
Der Strom lLeiter,2, welcher zwischen den Klemmen A und B gemessen wird, welcher aber über die zwei Motorphasen V (Klemme B und C) und W (Klemme C und A) detektiert wird, ergibt:
I I Leiter, 2 - _ u - u
R gesamt,! 3 R„
8 *
Die Abweichung des Stromes I Leiter, 1. der durch die Motorphase U fließt, in welcher die defekte Spule 10 enthalten ist, beträgt Leiter, 2 ^
^Leiter,!
Befindet sich die defekte Spule 10 direkt zwischen den Klemmen A, B unter gleicher
Spannung, steigt der Widerstand um den Faktor 3/2. In den beiden anderen Fällen um den Faktor 9/8. Werden nun nacheinander die drei Phasen bestromt, ist der Strom, wenn sich die defekte Spule 10 direkt zwischen den Klemmen A, B befindet, um 1/3 geringer als in den beiden Fällen, bei welchen die beiden anderen Motorphasen V, W ausgemessen werden.
Bei einer Sternschaltung, wie sie in Fig. 3 dargestellt ist, entspricht der Klemmenwiderstand Rgesamt zwischen den Klemmenpunkten A, B, C gerade zwei in Reihe verschalteten Motorphasen U, V, W. Ist nun in einer dieser Motorphasen U, V, W eine der beiden parallelen Spulen 10, 1 1 defekt, steigt der Klemmenwiderstand RgeSamt um einen Faktor 3/2. Der gemessene Strom I Leiter, 1 in der Motorphase U reduziert sich somit bei unveränderter Ansteuerspannung auf 2/3 des Stromes Leitet im Normalzustand. Werden nun nacheinander die drei Motorphasen U, V, W bestromt, ist bei der Bestromung ohne defekte Spule der Strom I Leiter, 1 um 50% höher als wenn die defekte Motorphase U bestromt wird, im Vergleich zu den anderen beiden Motorphasen V, W.
Auch bei der Sternverschaltung gilt, dass der Widerstand der defekten Phase Rphase.det
Rphase.def Rsp ist.
Der Widerstand der normalen Phase Rphase beträgt R r^Phase - I _ R r^sp-
2
Der Klemmenwiderstand RgeSamt zwischen den Klemmenpunkten B und C entspricht dabei
Rgesamt 2 Rphase Rsp-
Der Klemmenwiderstand RgeSamt, welcher zwischen den Klemmenpunkten A, B und A, C, wo jeweils eine Parallelschaltung mit einer defekten Spule 10 enthalten ist, gemessen wird, beträgt
3
Rgesamt,2 Rphase "*~ Rphase.def ~ Rsp-
Der Strom I Leiter, 1. welcher zwischen der normalen Motorphase V und den Klemmenpunkten B und C gemessen wird, beträgt
Leiter, 1 -— u — U
Der an den defekten Spulenphasen gemessene Strom zwischen den Klemmen A, B und A, C beträgt
U _ 2
lLeiter,2 _ lo- gesamt, 2
2 3 RRsP 3
Die Abweichung der Ströme beträgt dabei
/ Leiter. X _ 3
I 1 Leiter, 2 2 ^
Mit dieser Methode kann zuverlässig auch bei elektronisch kommutierten Elektromotoren, die in jeder Motorphase eine Parallelschaltung zweier Statorspulen aufweist, festgestellt werden, ob der Elektromotor korrekt arbeitet. Bezuqszeichenliste
1 Hydrostataktor
Aktorgehäuse
Kolben
Elektromotor
5 Steuergerät
6 Endstufe
7 Hydraulikleitung
8 Nehmerzylinder
9 Kupplung
10 Spule
1 1 Spule
12 Spule
13 Spule
14 Spule
A Klemmenpunkt
B Klemmenpunkt
C Klemmenpunkt
U Motorphase
V Motorphase
W Motorphase

Claims

Patentansprüche
1 . Verfahren zur Bestimmung eines Fehlers in einem elektronisch kommutierten Elektromotor, bei welchem in jeder Motorphase (U, V, W) mindestens eine Statorspule (10, 1 1 ; 12, 13; 14, 15) des Elektromotors (4) parallel verschaltet ist, wobei eine Motorphase (U, V, W) bestromt wird und der durch diese Motorphasen (U, V, W) fließende Strom gemessen wird, dadurch gekennzeichnet, dass die drei Motorphasen (U, V, W) nacheinander bestromt werden und der während dieser Bestromung auftretende Strom der einzelnen Motorphasen (U, V, W) gemessen wird, wobei die in den drei Motorphasen (U, V, W) gemessenen Ströme miteinander verglichen werden und auf einen Defekt des Elektromotors (4) erkannt wird, wenn die gemessenen Ströme voneinander abweichen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass bei einer Abweichung eines, in einer ersten Motorphase (U) gemessenen ersten Stromes von den beiden Strömen, die in den beiden anderen Motorphasen (V, W) gemessen wurden, auf einen Defekt einer Spule (10) in der ersten Motorphase (U) geschlossen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass bei einer Dreieckschaltung der drei Motorphasen (U, V, W) die Motorphase (U) als defekt erkannt wird, bei welcher der direkt über der Motorphase (U) gemessene Strom niedriger ist als der Strom, welcher über zwei, in Reihe geschaltete Motorphasen (V, W) gemessen wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass bei einer Sternschaltung der drei Motorphasen (U, V, W) die Motorphase (U) als Defekt erkannt wird, bei welcher der gemessene Strom höher ist als der in den beiden anderen Motorphasen (V, W) getrennt gemessene Strom.
5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die drei Motorphasen (U, V, W) zur Strommessung mit der gleichen Spannung beaufschlagt werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektromotor (4) nach Feststellung eines Fehlers in einem Notbetrieb umgeschaltet wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Strommessung ein Steuergerät (5) verwendet wird, welches die Überprüfung der Motorphasen (U, V, W) in einem Diagnosemodus durchführt.
PCT/DE2014/200370 2013-08-02 2014-08-01 Verfahren zur bestimmung eines fehlers in einem elektronisch kommutierten elektromotor WO2015014362A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014003578.5T DE112014003578A5 (de) 2013-08-02 2014-08-01 Verfahren zur Bestimmung eines Fehlers in einem elektronisch kommutierten Elektromotor
KR1020167004976A KR102215985B1 (ko) 2013-08-02 2014-08-01 전자 정류식 전기 모터에서 결함 결정 방법
US14/909,534 US10162009B2 (en) 2013-08-02 2014-08-01 Method for determining a fault in an electronically commutated electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013215192.6 2013-08-02
DE102013215192 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015014362A1 true WO2015014362A1 (de) 2015-02-05

Family

ID=51494057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200370 WO2015014362A1 (de) 2013-08-02 2014-08-01 Verfahren zur bestimmung eines fehlers in einem elektronisch kommutierten elektromotor

Country Status (4)

Country Link
US (1) US10162009B2 (de)
KR (1) KR102215985B1 (de)
DE (2) DE102014215130A1 (de)
WO (1) WO2015014362A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10778135B2 (en) 2018-10-31 2020-09-15 Hamilton Sunstrand Corporation Motor parallel winding differential current protection
DE102019209769A1 (de) 2019-07-03 2021-01-07 Rolls-Royce Deutschland Ltd & Co Kg Überwachung einer elektrischen Maschine hinsichtlich des Vorliegens eines Fehlerfalls
FR3137181A1 (fr) * 2022-06-24 2023-12-29 Safran Electrical & Power Dispositif de détection d’un défaut de court-circuit dans un enroulement d’une machine électrique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064172A (en) * 1997-02-11 2000-05-16 Power Superconductor Applications Corporation Method and apparatus for detection, classification and reduction of internal electrical faults in alternating current propulsion machinery using synchronous detection scheme
JP2011012999A (ja) * 2009-06-30 2011-01-20 Toshiba Corp 回転電機の試験方法及び製造方法
WO2011009751A1 (de) * 2009-07-24 2011-01-27 Conti Temic Microelectronic Gmbh Verfahren zur diagnose von stromsensoren einer drehfeldmaschine während deren betriebs
JP2011083396A (ja) * 2009-10-15 2011-04-28 Hitachi Appliances Inc ドラム式洗濯乾燥機
DE102010047801A1 (de) 2009-10-29 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Hydrostataktor
US20110187304A1 (en) * 2010-02-02 2011-08-04 Gm Global Technology Operations, Inc. Motor phase winding fault detection method and apparatus
DE102011083217A1 (de) 2011-09-22 2013-03-28 Schaeffler Technologies AG & Co. KG Verfahren zur Überprüfung der Phasen eines elektrisch kommutierten Elektromotors

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057962A (en) * 1990-01-22 1991-10-15 General Electric Company Microprocessor-based protective relay system
US5574346A (en) * 1995-05-15 1996-11-12 Delco Electronics Corporation On and off state fault detection circuit for a multi-phase brushed or brushless DC motor
DE102004028213A1 (de) * 2004-06-09 2005-12-29 Robert Bosch Gmbh Generatorregler mit Diagnosefunktion für Halbleiterbauelemente
US7253634B1 (en) * 2006-03-31 2007-08-07 General Electric Company Generator protection methods and systems self-tuning to a plurality of characteristics of a machine
US7834573B2 (en) * 2007-07-31 2010-11-16 Caterpillar Inc Winding fault detection system
US20100060289A1 (en) * 2008-09-05 2010-03-11 Skf Usa, Inc. System for Electrical Apparatus Testing
US20100091419A1 (en) * 2008-10-15 2010-04-15 Vedula Sastry V Motor drive ground fault detection
EP2251702B1 (de) * 2009-05-05 2011-07-13 SMA Solar Technology AG Verdrahtungs-Prüfvorrichtung
US8258737B2 (en) * 2009-06-24 2012-09-04 Casey John R Electric machine with non-coaxial rotors
DE102009055055A1 (de) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Verfahren zur Fehlererkennung bei einer durch einen Wechselrichter angesteuerten elektrischen Maschine in einem Kraftfahrzeug und Vorrichtung zur Überwachung eines Betriebs der elektrischen Maschine
DE102011079398A1 (de) * 2010-12-21 2012-06-21 Siemens Aktiengesellschaft Überwachung und Fehlerdiagnose einer elektrischen Maschine
US8319466B2 (en) * 2011-02-21 2012-11-27 Rockwell Automation Technologies, Inc. Modular line-to-ground fault identification
JP2012189403A (ja) * 2011-03-10 2012-10-04 Hitachi Mitsubishi Hydro Corp 回転電機
US8837096B2 (en) * 2012-03-13 2014-09-16 Thoratec Corporation Fault monitor for fault tolerant implantable pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064172A (en) * 1997-02-11 2000-05-16 Power Superconductor Applications Corporation Method and apparatus for detection, classification and reduction of internal electrical faults in alternating current propulsion machinery using synchronous detection scheme
JP2011012999A (ja) * 2009-06-30 2011-01-20 Toshiba Corp 回転電機の試験方法及び製造方法
WO2011009751A1 (de) * 2009-07-24 2011-01-27 Conti Temic Microelectronic Gmbh Verfahren zur diagnose von stromsensoren einer drehfeldmaschine während deren betriebs
JP2011083396A (ja) * 2009-10-15 2011-04-28 Hitachi Appliances Inc ドラム式洗濯乾燥機
DE102010047801A1 (de) 2009-10-29 2011-05-05 Schaeffler Technologies Gmbh & Co. Kg Hydrostataktor
US20110187304A1 (en) * 2010-02-02 2011-08-04 Gm Global Technology Operations, Inc. Motor phase winding fault detection method and apparatus
DE102011083217A1 (de) 2011-09-22 2013-03-28 Schaeffler Technologies AG & Co. KG Verfahren zur Überprüfung der Phasen eines elektrisch kommutierten Elektromotors

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANTONINO-DAVIU J ET AL: "Detection of combined faults in induction machines with stator parallel branches through the DWT of the startup current", MECHANICAL SYSTEMS AND SIGNAL PROCESSING, LONDON, GB, vol. 23, no. 7, 1 October 2009 (2009-10-01), pages 2336 - 2351, XP026157451, ISSN: 0888-3270, [retrieved on 20090225], DOI: 10.1016/J.YMSSP.2009.02.007 *
APSLEY J M ET AL: "Analysis of Multi-Phase Induction Machines with Winding Faults", ELECTRIC MACHINES AND DRIVES, 2005 IEEE INTERNATIONAL CONFERENCE ON MAY 15, 2005, PISCATAWAY, NJ, USA,IEEE, 15 May 2005 (2005-05-15), pages 249 - 255, XP010854449, ISBN: 978-0-7803-8987-8 *
CLAUDIO BRUZZESE: "Eccentricity diagnosis in 2p-Pole alternators through superimposition of four 2(p+-1)-pole virtual machines", POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2012 IEEE INTERNATIONAL CONFERENCE ON, IEEE, 16 December 2012 (2012-12-16), pages 1 - 6, XP032346476, ISBN: 978-1-4673-4506-4, DOI: 10.1109/PEDES.2012.6484419 *
LI YONGGANG ET AL: "The new method on rotor winding inter turn short-circuit fault measure of turbine generator", ELECTRIC MACHINES AND DRIVES CONFERENCE, 2003. IEMDC'03. IEEE INTERNAT IONAL JUNE 1-4, 2003, PISCATAWAY, NJ, USA,IEEE, vol. 3, 1 June 2003 (2003-06-01), pages 1483 - 1487, XP010644367, ISBN: 978-0-7803-7817-9 *
LIANGLIANG HAO ET AL: "Steady-State Calculation and Online Monitoring of Interturn Short Circuit of Field Windings in Synchronous Machines", IEEE TRANSACTIONS ON ENERGY CONVERSION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 27, no. 1, 1 March 2012 (2012-03-01), pages 128 - 138, XP011418673, ISSN: 0885-8969, DOI: 10.1109/TEC.2011.2169264 *
WISNIEWSKI J ET AL: "Control of Axial Flux Permanent Magnet Motor by the PIPCRM method at standstill and at low speed", 2008 13TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE : [EPE-PEMC 2008] ; POZNAN, POLAND, 1 - 3 SEPTEMBER 2008, IEEE, PISCATAWAY, NJ, USA, 1 September 2008 (2008-09-01), pages 2254 - 2260, XP031343906, ISBN: 978-1-4244-1741-4 *

Also Published As

Publication number Publication date
KR20160039247A (ko) 2016-04-08
US20160178699A1 (en) 2016-06-23
DE112014003578A5 (de) 2016-05-04
DE102014215130A1 (de) 2015-02-05
US10162009B2 (en) 2018-12-25
KR102215985B1 (ko) 2021-02-16

Similar Documents

Publication Publication Date Title
EP2715932B1 (de) Verfahren und vorrichtung zum betrieb eines bürstenlosen motors
DE102015008831A1 (de) Hochvolt-Netz und Verfahren zum Lokalisieren eines Isolationsfehlers in einem Hochvolt-Netz für ein Kraftfahrzeug
EP1490700B1 (de) Schaltungsanordnung und verfahren zum überprüfen eines stromkreises
WO2003069768A1 (de) Verfahren zur fehlererkennung für elektromotoren
DE102006057801B4 (de) Verfahren und Vorrichtung zum Diagostizieren der Funktionsfähigkeit einer Kühlmittelpumpe
DE102011105502A1 (de) Verfahren zum Abgleich eines Phasenversatzes zwischen einem Rotorlagesensor und der Rotorlage eines elektrisch kommutierten Motors
DE102015105260A1 (de) Motorsteuerungsvorrichtung mit Funktion zur Erfassung eines Fehlers in einer Isolationswiderstandsverschlechterungserfassungseinheit eines Motors und Fehlererfassungsverfahren
DE102015202440A1 (de) Verfahren zum Betreiben eines an eine elektrische Maschine angeschlossenen aktiven Umrichters und Mittel zu dessen Implementierung
WO2015014362A1 (de) Verfahren zur bestimmung eines fehlers in einem elektronisch kommutierten elektromotor
WO2007042159A1 (de) Ansteursystem für eine elektrische maschine
EP3696558A1 (de) Vorrichtung und verfahren zur automatischen prüfung eines schaltorgans
EP3257134A1 (de) Verfahren zum betreiben eines an eine elektrische maschine angeschlossenen aktiven umrichters und mittel zu dessen implementierung
DE102010000852A1 (de) Verfahren zum Betrieb eines bürstenlosen Motors
DE102014212572B4 (de) Verfahren zur Erlangung eines Hinweises, insbesondere Anfangshinweises auf eine mögliche fehlerhafte Lastbedingung eines mehrphasigen Elektromotors
DE102011083217A1 (de) Verfahren zur Überprüfung der Phasen eines elektrisch kommutierten Elektromotors
DE102012208631A1 (de) Verfahren und Vorrichtung zum Betrieb eines bürstenlosen Motors
DE112018003803T5 (de) Anomaliediagnosevorrichtung für treiberschaltkreis
EP2044317B1 (de) Verfahren zur ermittlung eines fehlers in einer kraftstoffzumesseinheit eines einspritzsystems
DE102016215237A1 (de) Betreiben eines Generatorreglers
DE102015224471A1 (de) Motorsteuervorrichtung zum Überwachen eines Elektromotors für ein Kraftfahrzeug
DE102008042390A1 (de) Verfahren zur Diagnose von Fehlerzuständen einer im Stern gewickelten Drehfeldmaschine
WO2020025221A1 (de) Diagnoseverfahren und diagnosevorrichtung zum verifizieren einer funktionsfähigkeit einer elektromechanischen last, sowie ein computerprogrammprodukt und ein fahrzeug
DE102018105381A1 (de) Verfahren zur Erkennung eines Kurzschlusses eines mechatronischen Kupplungsaktors in einem Fahrzeug
DE10040246A1 (de) Verfahren und Vorrichtung zur Ansteuerung wenigstens eines Verbrauchers
DE102011083472A1 (de) Verfahren und Vorrichtung zum Überprüfen einer Funktionsfähigkeit eines Versorgungsspannungsschalters für eine Treiberschaltung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14761563

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909534

Country of ref document: US

Ref document number: 112014003578

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167004976

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014003578

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14761563

Country of ref document: EP

Kind code of ref document: A1