WO2015014225A1 - 应用于X/Gamma射线集装箱/车辆检查设备的散列排布探测器 - Google Patents

应用于X/Gamma射线集装箱/车辆检查设备的散列排布探测器 Download PDF

Info

Publication number
WO2015014225A1
WO2015014225A1 PCT/CN2014/082741 CN2014082741W WO2015014225A1 WO 2015014225 A1 WO2015014225 A1 WO 2015014225A1 CN 2014082741 W CN2014082741 W CN 2014082741W WO 2015014225 A1 WO2015014225 A1 WO 2015014225A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
circuit board
module
arm
ray source
Prior art date
Application number
PCT/CN2014/082741
Other languages
English (en)
French (fr)
Inventor
康克军
李荐民
李元景
李玉兰
顾菁宇
王伟珍
宋全伟
张清军
明申金
王学武
宫辉
薛涛
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to AU2014299147A priority Critical patent/AU2014299147B2/en
Priority to PL14831858.7T priority patent/PL3029452T3/pl
Priority to SG11201600690UA priority patent/SG11201600690UA/en
Priority to US14/769,308 priority patent/US9915751B2/en
Priority to RU2015143012A priority patent/RU2624603C1/ru
Priority to GB1516144.1A priority patent/GB2525826B/en
Priority to EP14831858.7A priority patent/EP3029452B1/en
Priority to JP2015546844A priority patent/JP6078656B2/ja
Priority to BR112015032636-6A priority patent/BR112015032636B1/pt
Publication of WO2015014225A1 publication Critical patent/WO2015014225A1/zh
Priority to SA516370489A priority patent/SA516370489B1/ar

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/26Passive interrogation, i.e. by measuring radiation emitted by objects or goods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]

Definitions

  • This invention relates to the field of X/Gamma ray safety inspections, and more particularly to detector arrangements in X/Gamma ray inspection systems. Background technique
  • an X/Gamma ray container/vehicle inspection system using a container as the object to be inspected is usually used.
  • the X/Gamma ray container/vehicle inspection system consists of the X/Gamma ray imaging subsystem, the scanning control subsystem, the operational inspection subsystem and the radiation safety subsystem.
  • the X/Gamma ray imaging subsystem is the core of the entire system and consists of a ray source, detector and data acquisition and control module for generating X/Gamma ray transmission images.
  • the source When scanning the inspected container/vehicle, the source generates high-energy X/Gamma ray pulses that penetrate the inspected cargo, and the high-sensitivity detector array receives the X/Gamma ray and converts it into an output signal, which is acquired and controlled by the data.
  • the module generates a series of digital image signals in real time. When the entire scanning process is over, the system automatically generates a complete image of the container/vehicle being inspected.
  • the detector requires the alignment of the X/Gamma source as much as possible.
  • the detector module is a module of multiple detector units side by side, the existing X/Gamma ray container/vehicle inspection system
  • the detectors are often arranged in an array arrangement as shown in Figure 1 and in an arc arrangement as shown in Figure 2.
  • Figure 1 is a schematic diagram of the layout of an array detector.
  • the array arrangement saves space and facilitates folding and transportation. However, there are large angular differences and gaps between the detector modules, resulting in large differences in the crosstalk between the detector units in the detector module.
  • Figure 2 is a schematic view of the layout of the arc-shaped detector. In the arc arrangement, although each detector unit is facing the beam direction, the arc arrangement takes up a large space, and the detector is far away from the radiation source (such as an accelerator, an X-ray machine, an artificial radiation source, etc.). The signal is small. Summary of the invention
  • the invention discloses a novel detector arrangement, which adopts a hash arrangement, and each detector unit is mounted with an X/Gamma ray source to greatly reduce the detector frame while improving the imaging quality. size of.
  • a detector module is provided, the detector module being mounted on a detector arm, the detector module comprising one or more detector units arranged in a hash, wherein each detector module Each probe The unit is aligned with the beam center of the source.
  • the source of radiation is a source of X/Gamma radiation.
  • each detector unit is mounted at a different angle depending on its height in the detector arm to ensure that each detector unit is aligned with the beam center.
  • the detector module is a detector circuit board that is attached to the detector arm, wherein the shape of the detector circuit board is related to the position of the detector circuit board on the detector arm.
  • the shape of the detector circuit board comprises a rectangular shape and a parallelogram with an increasing internal angular difference.
  • a rectangular detector circuit board is mounted on the detector arm at a position parallel to the source of the radiation source, and a parallelogram detector circuit board with an increasing internal angular difference is present in the detector
  • the arm is mounted above or below the rectangular detector circuit board, wherein the smaller interior angle of the parallelogram is equal to the angle between the beam of radiation and the detector arm from the center of the beam source of the source.
  • the detector unit is attached to the detector circuit board and is coupled to the data acquisition and control module via a terminal, and the crystal of the detector unit is coupled to the diode in an end or side manner.
  • the present invention also provides a method of installing a detector module, wherein each detector module comprises one or more detector units arranged in a hash, the method comprising: mounting the detector module on a detector arm And aligning each detector unit in the detector module with the beam center of the source.
  • FIG. 1 For a more complete understanding of the present invention, the following description will be described with reference to the accompanying drawings in which: FIG.
  • Figure 2 is a schematic layout of a curved arrangement detector
  • Figure 3 is a schematic view showing the layout of a hash detector according to the present invention.
  • Figure 4 is a schematic illustration of a detector unit of a hash detector layout secured to a boom by a circuit board in accordance with the present invention. as well as
  • FIG. 5 is a schematic illustration of two typical circuit board mounting arrangements in accordance with the present invention. detailed description
  • the invention discloses a novel detector arrangement, which adopts a hash arrangement, and each detector unit is mounted with an X/Gamma ray source to greatly reduce the detector frame while improving the imaging quality. size of.
  • FIG. 3 is a schematic illustration of the layout of a hash detector in accordance with the present invention.
  • the hash-displaced detectors are modified on the basis of the original array arrangement, and the detector units 35 are arranged in a hash arrangement to ensure that each detector unit 35 is provided.
  • X/Gamma rays generated by the radiation source 31 The bundle 32 is transmitted through the vehicle under test 33 to the detector unit 35.
  • the angle at which the detector unit 35 is mounted is related to the height at which it is located. This arrangement combines the advantages of array arrangement and arc arrangement to make up for the shortcomings of both.
  • a plurality of detector modules are disposed on a vertical detector arm 34.
  • Each detector module includes a plurality of side-by-side detector units 35 (e.g., 16, 32, 64, etc.).
  • Each detector unit 35 in each detector module is aligned with the beam center of the source 31 in accordance with the direction of the X/Gamma beam 34 represented by the dashed line in FIG. 3, and the detector unit 35 is at the detector arm 34.
  • the position of the upper mounting i.e., the angle with the ground
  • a plurality of detector units 35 in the lower detector module closest to the ground have the smallest angle to the ground.
  • the angle between the plurality of detector units 35 in the detector module and the ground gradually increases (in this example, from a negative angle to a zero to a positive angle), In order to align with the beam center of the radiation source 31.
  • the plurality of detector units 35 in the middle detector module form an angle with the ground that is greater than the angle of the plurality of detector units 35 in the lower detector module to the ground.
  • the angles of the plurality of detector units 35 in the intermediate detector module with the ground are gradually increased to align with the beam center of the radiation source 31. .
  • the plurality of detector units 35 in the detector module located farthest from the ground have the largest angle with the ground, and the angles of the plurality of detector units 35 in the upper detector module with the ground gradually Increased to align with the beam center of the ray source 31.
  • the individual detector units 35 are adjusted according to the height of each detector unit 35 on the detector arm 34. The angle formed by the ground.
  • the hash arrangement in Fig. 3 has small crosstalk, large signal, and space saving. Compared with the array arrangement shown in Fig. 1, the hash arrangement in Fig. 3 has uniform scattering crosstalk and low noise. Moreover, the hash arrangement in accordance with the present invention minimizes the thickness of the detector arm 34.
  • FIG. 4 is a schematic illustration of a detector unit of a hash detector layout secured to a boom by a circuit board in accordance with the present invention.
  • a total of 30 detector circuit boards 43 are mounted on the detector arm 42.
  • the board can be mounted with numbers, for example from top to bottom, and 30 detector boards are numbered as board 1, board 2, board 30. The number of boards can be more or less.
  • the detector circuit board 43 can also be numbered from bottom to top.
  • Each detector circuit board 43 is mounted with a plurality of detector units (for example, 16, 32, 64, etc.), and the angle at which the detector unit is mounted on the boom 42 is related to the height of the beam to ensure that the detector unit is aligned with the beam.
  • the direction of illumination of 41 is provided.
  • the shape of the circuit board 43 at different positions is also different.
  • a rectangular circuit and a parallelogram circuit board are utilized.
  • the arm frame 42 is at the same level as the radiation source (not shown), and the arm frame 42 and the beam 41 are perpendicular to each other, and the circuit board 43 has a rectangular shape.
  • the angle between the beam 41 and the boom 42 is also offset by 90 degrees, and the shape of the circuit board 43 is a parallelogram with an increasing internal angular difference.
  • One of the inner corners is equal to the angle between the beam 41 and the boom 42 and is also getting smaller and smaller.
  • Figure 5 is a schematic illustration of two exemplary circuit board mounting arrangements in accordance with the present invention.
  • the left side view in FIG. 5 is a schematic view of the mounting manner of the rectangular circuit board shown in FIG. 4, and the right side view in FIG. 5 is a plurality of parallelogram electric forms shown in FIG.
  • the circuit board (including a rectangular circuit board or a parallelogram circuit board) includes a detector unit 52 or 52' and a terminal 53 or 53'.
  • the detector unit 52 or 52' is fixed to the circuit board 1.
  • the crystal of the detector unit 52 or 52' is connected to a diode (not shown).
  • the detector unit 52 or 52' is connected via a terminal 53 or 53' to an electronics system (not shown) including a front end, sample hold, post processing, data storage, gain control, and communication, such as a data acquisition and control module.
  • the detector unit 52 or 52' may be a coupling of a single crystal photodetector, or a combination of several smaller crystal and photodetector couplings, and the crystal and diode may be coupled in any manner (eg End face, side).
  • a plurality of side-by-side detector units 52 are arranged in parallel with the bottom edge of the rectangle so as to be mounted, for example, on the detector arm as shown in Fig. 4 at a position equal to the source of the radiation.
  • a plurality of side-by-side detector units 52' are arranged in parallel with the bottom sides of the parallel polygons so as to be mounted, for example, on the upper portion of the detector arms as shown in Fig. 4.
  • the shape of the parallel polygonal circuit board 1 shown on the right side of Fig. 5 may vary depending on the height in which it is mounted in the detector arm.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种应用于X/Gama射线集装箱/车辆检査设备的射线检测系统,包括探测器模块,该探测器模块被安装在探测器臂(34)上,该探测器模块包括散列排布的一个或多个探测器单元(35),其中每个探测器模块中的每个探测器单元(35)对准射线源(31)的束流中心安装,从而在提高成像质量的同时大幅度减小探测器框架的尺寸。

Description

应用于 X/Gamma射线集装箱 /车辆检査设备的散列排布探测器 本申请基于申请号为 201310321325.5、 申请日为 2013年 7月 29日的中国专利申请提 出, 并要求该中国专利申请的优先权, 该中国专利申请的全部内容在此引入本申请作为参 考。 技术领域
本发明涉及 X/Gamma射线安全检査领域, 更特别地涉及 X/Gamma射线检査系统中 的探测器排列。 背景技术
在 X/Gamma射线安全检査领域中, 通常使用以集装箱为被检物件的 X/Gamma射线 集装箱 /车辆检査系统。 X/Gamma射线集装箱 /车辆检査系统由 X/Gamma射线成像分系统、 扫描控制分系统、 运行检査分系统和辐射安全分系统组成。 其中 X/Gamma射线成像分系 统是整个系统的核心, 由射线源、探测器和数据获取与控制模块组成,用来生成 X/Gamma 射线透射图像。 在对被检集装箱 /车辆进行扫描时, 射线源产生高能 X/Gamma射线脉冲, 穿透被检货物, 高灵敏度探测器阵列接收 X/Gamma射线并将之转换成输出信号, 由数据 获取与控制模块实时生成一系列的数字图像信号。 当整个扫描过程结束时, 系统自动生成 被检集装箱 /车辆的完整图像。
要获得高质量的图像, 探测器要求尽可能的对准 X/Gamma射线源的方向, 探测器模 块为多个探测器单元并排组成的模块,现有的 X/Gamma射线集装箱 /车辆检査系统的探测 器常采用如图 1所示的阵列式排布和如图 2所示的弧形排布两种方式。但是这两种排布方 式都存在明显的不足。
图 1是阵列式探测器布局示意图。 阵列式的排布方式, 虽然能够节省空间, 方便折叠 和运输, 但是各个探测器模块之间存在比较大的角度差异和缝隙, 导致探测器模块内各探 测器单元间的散射串扰差异很大。 图 2是弧形排布探测器布局示意图。 弧形排布方式, 虽 然各个探测器单元都正对束流方向, 但是弧形排布所占空间较大, 探测器距离射线源(比 如加速器、 X光机、 人工放射源等) 较远, 信号小。 发明内容
本发明公开了一种新型的探测器排列方式, 该排列方式采用散列排布, 每个探测器单 元均对准 X/Gamma射线源安装, 在提高成像质量的同时大幅度减小探测器框架的尺寸。
根据本发明的一个方面, 提供一种探测器模块, 该探测器模块被安装在探测器臂上, 该探测器模块包括散列排布的一个或多个探测器单元,其中每个探测器模块中的每个探测 器单元对准射线源的束流中心安装。
根据本发明的另一个方面, 所述射线源是 X/Gamma射线源。
根据本发明的另一个方面, 每个探测器单元安装的角度不同, 与其在探测器臂中的高 度有关, 以保证每个探测器单元均对准束流中心。
根据本发明的另一个方面, 所述探测器模块是固定在探测器臂上的探测器电路板, 其 中探测器电路板的形状与探测器电路板在探测器臂上的位置有关。
根据本发明的另一个方面,所述探测器电路板的形状包括矩形和相邻内角差逐渐增大 的平行四边形。
根据本发明的另一个方面,矩形的探测器电路板在探测器臂上被安装为与射线源处于 同一水平面位置处,并且相邻内角差逐渐增大的平行四边形的探测器电路板在探测器臂上 被安装在矩形的探测器电路板的上面或下面,其中平行四边形的较小内角与射线源的束流 中心发出的射线束和探测器臂的夹角相等。
根据本发明的另一个方面,探测器单元固定在探测器电路板上且通过接线端子与数据 获取与控制模块连接, 并且探测器单元的晶体与二极管以端面或侧面方式相耦合。
此外, 本发明还提供了一种安装探测器模块的方法, 其中每个探测器模块包括散列排 布的一个或多个探测器单元, 该方法包括: 将该探测器模块安装在探测器臂上; 以及将该 探测器模块中的每个探测器单元与射线源的束流中心对准。 附图说明
为了更完整地理解对本发明, 现在结合附图对随后的说明书进行描述, 其中: 图 1是阵列式探测器布局示意图;
图 2是弧形排布探测器布局示意图;
图 3是根据本发明的散列式探测器布局示意图;
图 4 是根据本发明的散列式探测器布局的通过电路板固定在臂架上的探测器单元的 示意图。 以及
图 5是根据本发明的两种典型的电路板安装方式示意图。 具体实施方式
本发明公开了一种新型的探测器排列方式, 该排列方式采用散列排布, 每个探测器单 元均对准 X/Gamma射线源安装, 在提高成像质量的同时大幅度减小探测器框架的尺寸。 为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图并举实施例, 对本发明 技术方案作进一步说明。
图 3是根据本发明的散列式探测器布局示意图。如图 3所示, 散列排布的探测器在原 有阵列式排布的基础上, 对每一个探测器模块进行改进, 使其中的探测器单元 35散列排 列, 保证每个探测器单元 35对准 X/Gamma射线源 31。 射线源 31生成的 X/Gamma射线 束 32透射通过被检车辆 33而到达探测器单元 35。 探测器单元 35安装的角度和所在高度 有关。 此种排列方法综合了阵列式排布和弧形排布的优点, 弥补了两者的不足。
参考图 3, 在本发明的一个实施例中, 多个探测器模块布置在竖直的探测器臂 34上。 每一个探测器模块包括多个并排的探测器单元 35 (例如 16、 32、 64路等) 。 每个探测器 模块中的每个探测器单元 35都按照图 3中虚线所代表的 X/Gamma射线束 34的方向对准 射线源 31的束流中心, 且探测器单元 35在探测器臂 34上安装的位置 (即, 与地面所成 的角度) 与该探测器单元 35所在的高度有关。 如图 3所示, 例如, 离地面最近的下方的 探测器模块中的多个探测器单元 35与地面所成的角度最小。 随着探测器模块安装位置的 升高, 探测器模块中的多个探测器单元 35与地面所成的角度逐渐增大 (在本例中, 从负 角度变为零再变为正角度) , 以便与射线源 31 的束流中心对准。 中间的探测器模块中的 多个探测器单元 35与地面所成的角度大于下方的探测器模块中的多个探测器单元 35与地 面所成的角度。 并且, 随着探测器模块安装位置的继续升高, 在中间的探测器模块中的多 个探测器单元 35与地面所成的角度也逐渐增大,以便与射线源 31的束流中心对准。最后, 离地面最远的上方的探测器模块中的多个探测器单元 35与地面所成的角度最大, 且上方 的探测器模块中的多个探测器单元 35与地面所成的角度也逐渐增大以便与射线源 31的束 流中心对准。为了使每个探测器模块中的每个探测器单元 35都与射线源 31的束流中心对 准, 根据各个探测器单元 35在探测器臂 34上的高度, 来调整各个探测器单元 35与地面 所成的角度。
与图 2所示的弧形排列相比, 图 3中的散列排布串扰小, 信号大, 且节省空间。 与图 1所示的阵列排列相比, 图 3中的散列排布的散射串扰均匀, 噪声小。 并且, 根据本发明 的散列排布最大限度地减小了探测器臂 34的厚度。
图 4 是根据本发明的散列式探测器布局的通过电路板固定在臂架上的探测器单元的 示意图。如图 4所示, 探测器臂 42上共安装有 30个探测器电路板 43。 电路板可以采用编 号来安装, 例如从上到下, 30个探测器电路板被编号为电路板 1、 电路板 2…电路板 30。 电路板的数量可以更多或更少。在另一个实施例中,也可以从下到上编号探测器电路板 43。 每块探测器电路板 43安装有若干探测器单元(例如 16、 32、 64路等) , 其探测器单元在 臂架 42上安装的角度与所在高度有关, 以保证探测器单元对准射线束 41的照射方向。 而 且, 在探测器臂 42上, 不同位置的电路板 43形状也不同。 在图 4所示的实施例中, 利用 了矩形电路和平行四边形电路板。 如图 4所示, 臂架 42上与射线源 (未示出) 处于同一 水平面的位置处, 臂架 42和射线束 41相互垂直, 该处电路板 43的形状呈矩形。 随着电 路板 43在臂架上安装的位置的升高或降低, 射线束 41和臂架 42的夹角亦偏离 90度, 电 路板 43的形状呈相邻内角差越来越大的平行四边形,其中的一个内角与射线束 41和臂架 42的夹角相等, 也越来越小。 接下来, 在图 5中示出了这两种典型的电路板。
图 5是根据本发明的两种典型的电路板安装方式示意图。图 5中左边的视图是图 4所 示的矩形电路板的安装方式示意图,而图 5中右边的视图是图 4所示的多个平行四边形电 路板中的一个示例平行四边形电路板的安装方式示意图。
如图 5所示, 电路板 (包括矩形电路板或平行四边形电路板) 包括探测器单元 52或 52'和接线端子 53或 53'。 探测器单元 52或 52'固定在电路板 1上。 探测器单元 52或 52' 的晶体和二极管 (未示出) 连接。 探测器单元 52或 52'通过接线端子 53或 53'连接到包括 前端、 采样保持、 后处理、 数据存储、 增益控制以及通讯的电子学系统 (未示出) , 比如 数据获取与控制模块。 特别地, 探测器单元 52或 52'可以是单个晶体的光电探测器的耦合 体, 也可以若干个更小的晶体和光电探测器的耦合体的组合, 晶体和二极管可以采用任何 耦合方式 (例如端面、 侧面) 。
在图 5左边所示的矩形电路板中,若干并排的探测器单元 52与矩形的底边平行布置, 以便于例如安装在如图 4所示的探测器臂上与射线源等高的位置。在图 5右边所示的平行 多边形电路板中, 若干并排的探测器单元 52'与平行多边形的底边平行布置, 以便于例如 安装在如图 4所示的探测器臂的上部。如之前参考图 4所说明的, 图 5右边所示的平行多 边形电路板 1的形状可以随其安装在探测器臂中的高度而变化。在探测器臂上安装的高度 与射线源高度的差值越大, 平行多边形电路板的相邻内角差越大, 越偏离矩形 (如在图 5 左边所示的矩形电路板的形状) , 而在探测器臂上与射线源的高度越小, 平行多边形电路 板的相邻内角差越小, 越接近矩形 (如在图 5左边所示的矩形电路板的形状) 。
以上公开的仅为本发明的具体实施例, 但是本发明并非局限于此, 本领域的技术人员 可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。显然这些改动和变型均 应属于本发明要求的保护范围保护内。

Claims

权利要求
I、 一种探测器模块, 该探测器模块被安装在探测器臂上, 该探测器模块包括散列排 布的一个或多个探测器单元,其中每个探测器模块中的每个探测器单元对准射线源的束流 中心安装。
2. 如权利要求 1所述的探测器模块, 其中所述射线源是 X/Gamma射线源。
3. 如权利要求 1所述的探测器模块, 其中每个探测器单元安装的角度不同, 与其在 探测器臂中的高度有关, 以保证每个探测器单元均对准束流中心。
4. 如权利要求 1所述的探测器模块, 其中所述探测器模块是固定在探测器臂上的探 测器电路板, 其中探测器电路板的形状与探测器电路板在探测器臂上的位置有关。
5. 如权利要求 4所述的探测器模块, 其中所述探测器电路板的形状包括矩形和相邻 内角差逐渐增大的平行四边形。
6. 如权利要求 5所述的探测器模块, 其中矩形的探测器电路板在探测器臂上被安装 为与射线源处于同一水平面位置处,并且相邻内角差逐渐增大的平行四边形的探测器电路 板在探测器臂上被安装在矩形的探测器电路板的上面或下面,其中平行四边形的较小内角 与射线源的束流中心发出的射线束和探测器臂的夹角相等。
7. 如权利要求 4-6 之一所述的探测器模块, 其中探测器单元固定在探测器电路板上 且通过接线端子与数据获取与控制模块连接,并且探测器单元的晶体与二极管以端面或侧 面方式相耦合。
8. 一种安装探测器模块的方法, 其中每个探测器模块包括散列排布的一个或多个探 测器单元, 该方法包括:
将该探测器模块安装在探测器臂上; 以及
将该探测器模块中的每个探测器单元与射线源的束流中心对准。
9. 如权利要求 8所述的方法, 其中所述射线源是 X/Gamma射线源。
10. 如权利要求 8所述的方法,其中每个探测器单元安装的角度与其在探测器臂中的 高度有关。
I I. 如权利要求 8所述的方法,其中所述探测器模块是固定在探测器臂上的探测器电 路板, 其中探测器电路板的形状与探测器电路板在探测器臂上的位置有关。
12. 如权利要求 11所示的方法, 其中所述探测器电路板的形状包括矩形和相邻内角 差逐渐增大的平行四边形。
13. 如权利要求 12所述的方法, 还包括: 将矩形的探测器电路板安装在探测器臂上 与射线源处于同一水平面位置处,以及将相邻内角差逐渐增大的平行四边形的探测器电路 板安装在探测器臂上在矩形的探测器电路板的上面或下面,其中平行四边形的较小内角与 射线源的束流中心发出的射线束和探测器臂的夹角相等。
14. 如权利要求 11-13之一所述的方法, 还包括: 将探测器单元固定在探测器电路板 上且通过接线端子与数据获取与控制模块连接,以及将探测器单元的晶体与二极管以端面 或侧面方式相耦合。
15. 一种射线检测系统, 包括用于生成射线透射图像的射线成像分系统, 该射线成像 分系统包括:
射线源, 所述射线源产生穿透被检测对象的射线脉冲;
探测器模块,该探测器模块被安装在探测器臂上,且该探测器模块包括散列排布的一 个或多个探测器单元,其中该探测器模块中的每个探测器单元对准所述射线源安装,所述 探测器模块接收从所述射线源产生的穿透被检测对象的射线脉冲并将其转换为输出信号; 禾口
数据获取与控制模块,所述数据获取与控制模块根据所述输出信号实时生成数字图像 信号。
16. 如权利要求 15所述的射线检测系统, 其中所述射线源是 X/Gamma射线源。
17. 如权利要求 15所述的射线检测系统, 其中每个探测器单元安装的角度与其在探 测器臂中的高度有关。
18. 如权利要求 15所述的射线检测系统, 其中所述探测器模块是固定在探测器臂架 内的探测器电路板, 其中探测器电路板的形状与探测器电路板在探测器臂架内的位置有 关。
19. 如权利要求 18所述的射线检测系统, 其中所述探测器电路板的形状包括矩形和 相邻内角差逐渐增大的平行四边形。
20. 如权利要求 19所述的射线检测系统, 其中矩形的探测器电路板在探测器臂上被 安装为与射线源处于同一水平面位置处,并且相邻内角差逐渐增大的平行四边形的探测器 电路板在探测器臂上被安装在矩形的探测器电路板的上面或下面,其中平行四边形的较小 内角与射线源的束流中心发出的射线束和探测器臂的夹角相等。
21. 如权利要求 18-20之一所述的射线检测系统, 其中探测器单元固定在探测器电路 板上且通过接线端子与所述数据获取与控制模块连接,并且探测器单元的晶体与二极管以 端面或侧面方式相耦合。
PCT/CN2014/082741 2013-07-29 2014-07-22 应用于X/Gamma射线集装箱/车辆检查设备的散列排布探测器 WO2015014225A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU2014299147A AU2014299147B2 (en) 2013-07-29 2014-07-22 Detectors in hash arrangement for X/Gamma ray container/vehicle inspection device
PL14831858.7T PL3029452T3 (pl) 2013-07-29 2014-07-22 Detektory w konfiguracji rozproszonej dla sprzętu do kontroli kontenerów/pojazdów promieniowaniem rentgenowskim/gamma
SG11201600690UA SG11201600690UA (en) 2013-07-29 2014-07-22 Detectors in hash arrangement for x/gamma ray container/vehicle inspection device
US14/769,308 US9915751B2 (en) 2013-07-29 2014-07-22 Detector in a scattered configuration applied to X/gamma ray container/vehicle inspection equipment
RU2015143012A RU2624603C1 (ru) 2013-07-29 2014-07-22 Детектор с рассредоточенной конфигурацией для досмотрового оборудования контейнера/транспортного средства рентгеновскими/гамма-лучами
GB1516144.1A GB2525826B (en) 2013-07-29 2014-07-22 Detector in a scattered configuration applied to x/gamma ray container/vehicle inspection equipment
EP14831858.7A EP3029452B1 (en) 2013-07-29 2014-07-22 Detectors in scattered configuration for x/gamma ray container/vehicle inspection equipment
JP2015546844A JP6078656B2 (ja) 2013-07-29 2014-07-22 検査機モジュール、検査機モジュール取付方法、及び放射線検出システム
BR112015032636-6A BR112015032636B1 (pt) 2013-07-29 2014-07-22 módulo de detecção, método para instalação de módulos de detecção e sistema de detecção por raio
SA516370489A SA516370489B1 (ar) 2013-07-29 2016-01-28 كاشفات في تجهيزة تجزئة لوسيلة فحص حاوية/ مركبة بأشعة إكس/ جاما

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310321325.5 2013-07-29
CN201310321325.5A CN104345070B (zh) 2013-07-29 2013-07-29 探测器模块、安装探测器模块的方法及射线检测系统

Publications (1)

Publication Number Publication Date
WO2015014225A1 true WO2015014225A1 (zh) 2015-02-05

Family

ID=52430980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082741 WO2015014225A1 (zh) 2013-07-29 2014-07-22 应用于X/Gamma射线集装箱/车辆检查设备的散列排布探测器

Country Status (13)

Country Link
US (1) US9915751B2 (zh)
EP (1) EP3029452B1 (zh)
JP (1) JP6078656B2 (zh)
CN (1) CN104345070B (zh)
AU (1) AU2014299147B2 (zh)
BR (1) BR112015032636B1 (zh)
GB (1) GB2525826B (zh)
HK (1) HK1204053A1 (zh)
PL (1) PL3029452T3 (zh)
RU (1) RU2624603C1 (zh)
SA (1) SA516370489B1 (zh)
SG (1) SG11201600690UA (zh)
WO (1) WO2015014225A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616088C2 (ru) * 2015-09-30 2017-04-12 Андрей Александрович Каплун Способ определения направления на источник ядерного излучения
JP2018523117A (ja) * 2015-12-04 2018-08-16 同方威視技術股▲分▼有限公司 セキュリティ検査機器及び放射線検出方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106483153A (zh) * 2016-12-23 2017-03-08 同方威视技术股份有限公司 双能探测器及辐射检查系统
CN107092037B (zh) * 2017-04-07 2024-05-14 北京华力兴科技发展有限责任公司 探测器组件和车辆检查装置
CN107677693B (zh) * 2017-09-26 2020-06-09 同方威视技术股份有限公司 用于物品安全检查的扫描成像系统及其成像方法
CN113406710A (zh) * 2020-03-17 2021-09-17 同方威视技术股份有限公司 探测器模块、探测器设备和检查设备
CN112304983A (zh) * 2020-04-13 2021-02-02 丹东东方测控技术股份有限公司 一种多探测器式在线灰分仪
EP3951436A1 (en) * 2020-08-04 2022-02-09 Mettler-Toledo, LLC Detector array and apparatus for absorption imaging comprising said detector array
CN114152993A (zh) * 2021-12-30 2022-03-08 同方威视科技(北京)有限公司 辐射检查系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570407A (en) * 1994-06-30 1996-10-29 Harris Corporation Distortionless x-ray inspection
WO1998004193A1 (en) * 1996-07-25 1998-02-05 Analogic Corporation X-ray tomography system with substantially continuous radiation detection zone
JP2001017420A (ja) * 1999-07-05 2001-01-23 Shimadzu Corp X線ct装置
CN202794067U (zh) * 2012-09-19 2013-03-13 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
CN103135121A (zh) * 2011-11-28 2013-06-05 Ge医疗系统环球技术有限公司 用于消除串扰的线段形模块ct探测器和方法
CN203519517U (zh) * 2013-07-29 2014-04-02 同方威视技术股份有限公司 探测器模块和射线检测系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560877A (en) * 1982-12-29 1985-12-24 General Electric Company Solid state detector module
JPH02218990A (ja) * 1989-02-20 1990-08-31 Shimadzu Corp 放射線検出素子アレイおよび放射線画像撮影装置
WO1999008132A1 (en) 1997-08-06 1999-02-18 Eg & G Astrophysics Side-by-side detector array for dual energy x-ray imaging system
DE19922346C2 (de) * 1999-05-14 2003-06-18 Siemens Ag Röntgendiagnostikeinrichtung für Tomosynthese oder Schichtung
CN1185482C (zh) * 2001-08-14 2005-01-19 清华大学 航空集装箱/托盘货物检查系统
JP4538321B2 (ja) * 2002-10-02 2010-09-08 リビール イメージング テクノロジーズ, インコーポレイテッド 折り重ねアレイct荷物スキャナ
JP2004184163A (ja) * 2002-12-02 2004-07-02 Hitachi Medical Corp 放射線検出器及び医用画像診断装置
RU2418291C2 (ru) * 2005-10-24 2011-05-10 Эмерикэн Сайэнс Энд Энджиниэринг, Инк. Способ (варианты) и система досмотра объекта
US20080298546A1 (en) * 2007-05-31 2008-12-04 General Electric Company Cargo container inspection method
CN101441183B (zh) * 2007-11-20 2011-08-24 同方威视技术股份有限公司 一种拖车安全检查系统
CN101470084B (zh) * 2007-12-28 2011-12-28 同方威视技术股份有限公司 一种双视角扫描装置的臂架结构
US8338788B2 (en) 2009-07-29 2012-12-25 Spectrum Dynamics Llc Method and system of optimized volumetric imaging
US9173618B2 (en) * 2009-11-05 2015-11-03 General Electric Company Diagnostic imaging system and method using multiple types of imaging detectors
US8204171B2 (en) * 2010-10-11 2012-06-19 General Electric Company Multi-faceted tileable detector for volumetric computed tomography imaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570407A (en) * 1994-06-30 1996-10-29 Harris Corporation Distortionless x-ray inspection
WO1998004193A1 (en) * 1996-07-25 1998-02-05 Analogic Corporation X-ray tomography system with substantially continuous radiation detection zone
JP2001017420A (ja) * 1999-07-05 2001-01-23 Shimadzu Corp X線ct装置
CN103135121A (zh) * 2011-11-28 2013-06-05 Ge医疗系统环球技术有限公司 用于消除串扰的线段形模块ct探测器和方法
CN202794067U (zh) * 2012-09-19 2013-03-13 同方威视技术股份有限公司 一种行李物品ct安检系统及其探测器装置
CN203519517U (zh) * 2013-07-29 2014-04-02 同方威视技术股份有限公司 探测器模块和射线检测系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616088C2 (ru) * 2015-09-30 2017-04-12 Андрей Александрович Каплун Способ определения направления на источник ядерного излучения
JP2018523117A (ja) * 2015-12-04 2018-08-16 同方威視技術股▲分▼有限公司 セキュリティ検査機器及び放射線検出方法
US10823874B2 (en) 2015-12-04 2020-11-03 Nuctech Company Limited Security inspection equipment and radiation detection method

Also Published As

Publication number Publication date
GB2525826B (en) 2020-09-23
BR112015032636B1 (pt) 2020-10-20
EP3029452A1 (en) 2016-06-08
AU2014299147B2 (en) 2016-10-27
CN104345070A (zh) 2015-02-11
GB201516144D0 (en) 2015-10-28
EP3029452A4 (en) 2017-03-29
SG11201600690UA (en) 2016-02-26
GB2525826A (en) 2015-11-04
RU2624603C1 (ru) 2017-07-04
JP2015537223A (ja) 2015-12-24
JP6078656B2 (ja) 2017-02-08
EP3029452B1 (en) 2023-05-10
HK1204053A1 (zh) 2015-11-06
US9915751B2 (en) 2018-03-13
CN104345070B (zh) 2018-03-23
SA516370489B1 (ar) 2017-09-27
AU2014299147A1 (en) 2016-02-25
US20160231453A1 (en) 2016-08-11
BR112015032636A2 (pt) 2017-07-25
PL3029452T3 (pl) 2023-09-18

Similar Documents

Publication Publication Date Title
WO2015014225A1 (zh) 应用于X/Gamma射线集装箱/车辆检查设备的散列排布探测器
US8928608B2 (en) Touch screen, touch system and method for positioning a touch object in touch system
US7819580B2 (en) Arm frame structure and scan apparatus having the same
AU2015281626A1 (en) Detector device, dual energy CT system and detection method using same
US9354186B2 (en) X-ray sensor and signal processing assembly for an X-ray computed tomography machine
US20110096903A1 (en) Multiview x-ray inspection system
CN108981589B (zh) 一种用于测量杯口高度的装置及方法
CN203858376U (zh) 卡匣内玻璃基板的检测装置
US20120049074A1 (en) Detector array with pre-focused anti-scatter grid
CN213456732U (zh) 一种x光安检设备光路装置
KR101955213B1 (ko) 초음파 센서 및 영상 분석 겸용 수위 계측기
CN107436131A (zh) 一种激光准直设备的平面度测量系统及其测量方法
WO2023125409A1 (zh) 安检设备、安检系统及安检方法
CN101939667B (zh) 用于检测图像的设备和方法
JP6411775B2 (ja) X線撮像システムおよびx線撮像方法
JP2007278792A (ja) 放射線検出装置及び放射線検出システム
CN107076543A (zh) 差分照明
CN216747495U (zh) 一种x射线矿物分选机柜
CN214011091U (zh) 一种x射线影像探测器及相应的安检系统
CN219496207U (zh) 一种用于检测晶体缺陷的装置
CN108007947A (zh) 一种曲面x射线成像装置及方法
KR20110138947A (ko) 영상취득모듈간의 간격이 가변되는 방사선원 탐지장치와 이를 이용한 방사선원 탐지 거리측정 오차 유지 방법
WO2019179358A1 (zh) 分拣柜及快件检测方法
JP2015141142A (ja) 透過像撮像システム
CN116183639A (zh) 面阵探测器、探测方法及相应的集装箱/车辆检查系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14769308

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1516144

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140722

WWE Wipo information: entry into national phase

Ref document number: 1516144.1

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 2014831858

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015032636

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: P114/2016

Country of ref document: AE

ENP Entry into the national phase

Ref document number: 2014299147

Country of ref document: AU

Date of ref document: 20140722

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015143012

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015032636

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151228