WO2015012094A1 - Optical interference sensor, and measurement system using same - Google Patents

Optical interference sensor, and measurement system using same Download PDF

Info

Publication number
WO2015012094A1
WO2015012094A1 PCT/JP2014/068039 JP2014068039W WO2015012094A1 WO 2015012094 A1 WO2015012094 A1 WO 2015012094A1 JP 2014068039 W JP2014068039 W JP 2014068039W WO 2015012094 A1 WO2015012094 A1 WO 2015012094A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical path
displacement
sensor
optical
Prior art date
Application number
PCT/JP2014/068039
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 稔
穆之 高原
義治 平山
元史 加志
Original Assignee
白山工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白山工業株式会社 filed Critical 白山工業株式会社
Priority to JP2015528213A priority Critical patent/JP6002329B2/en
Publication of WO2015012094A1 publication Critical patent/WO2015012094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements

Definitions

  • the present invention uses a light (laser light) interferometry (homodyne interference or Mach-Zehnder interference) to accurately and physically reduce the physical quantity such as the velocity and acceleration of the sensor object, and to further increase the dynamic range and height.
  • the present invention relates to an optical interference sensor that measures at a sampling frequency and a measurement system using the same.
  • a dynamic coil method in which a vibrator having a coil wound inside a magnetic force of a permanent magnet is freely vibrated to measure an electromagnetic induction current, or a coil is wound inside a magnetic force.
  • a servo method in which control is performed so as not to generate displacement of the vibrator and measurement, or a capacitance type in which a capacitor is formed of two metal plates and acceleration is measured from a change in capacitance.
  • the time change of the displacement of the vibrator is converted into an electric signal such as an electromagnetic induction current or a capacitance, and then the velocity or the acceleration is obtained.
  • the design of the response characteristics of the vibrator (the vibrator that continuously displaces from a small acceleration to a large acceleration in the target frequency range) and the improvement in the accuracy of digitization of the electric signal corresponding to the change
  • sensors are made.
  • a vibrator capable of obtaining a large displacement in a frequency band (0.01 Hz to 100 Hz) corresponding to earthquake motion is not suitable for practical use because the size of a pendulum or a spring is large.
  • a servo-type accelerometer has been developed, and a high dynamic range is realized with a structure with a small displacement by providing a current that offsets the displacement.
  • the dynamic range is limited when measuring electrical signals (the lower one is 1 / f noise or thermal noise of the amplifier and the higher one is the operating voltage limit of the electronic circuit), so the voltage range is about 1 ⁇ V
  • the resolution is limited to about 140 dB at ⁇ 5 V, and 146 to 150 dB is said to be the limit even if low noise or devising an electronic circuit.
  • the electrical design and the mechanical design are complicated to improve the accuracy, which makes the handling delicate and expensive, making the sensor unsuitable for practical use.
  • a capacitive sensor using MEMS Micro Electro Mechanical Systems
  • MEMS Micro Electro Mechanical Systems
  • the dynamic range is about 100 dB from the limit of capacitance measurement.
  • the above-mentioned capacitive acceleration sensor is required to reduce the distance between the electrodes or to increase the area of the electrodes.
  • the movable region of the movable electrode be large. Therefore, development is in progress in the direction of increasing the area of the electrode. Due to such trade-off, the dynamic range of the capacitive MEMS acceleration sensor is only about 100 dB.
  • the senor can continuously and accurately measure even in a high temperature environment of 300 ° C. or higher.
  • the present invention has been made under the circumstances as described above, and it is an object of the present invention to provide a sensor which is easy to process by MEMS technology and can be integrally molded without a joint part connecting parts, and operates with no power By this, continuous measurement is possible even in high temperature environments of 300 ° C. or higher, physical quantities can be measured with a high dynamic range and high sampling frequency, and an optical interference sensor having a high resolution of about 160 dB and a measurement system using the same It is.
  • the present invention relates to an optical interference type sensor, and the above object of the present invention is characterized in that the inside of the sensor main body is provided with a vibrator supported by a spring member in the vibration direction, A displacement surface provided and a reference surface provided coaxially with the displacement surface are provided on the rear surface of the vibrator, and light is irradiated to the reference surface and light reflected from the reference surface is received. A second optical path system that irradiates the light to the displacement surface and receives reflected light from the displacement surface, and the first optical path system or the second optical path system. By measuring the optical path difference between the reference surface and the displacement surface by combining the light received by the first optical path system and the second optical path system with the interposed delay unit. To be achieved.
  • the present invention relates to a measurement system, and the above object of the present invention is to provide each of the optical interference type sensors and a measurement light signal generation unit which generates intensity modulated and phase modulated measurement light signals as light for irradiation. And a sensor signal arithmetic processing unit that receives a time division multiplexed signal of the received light, converts it into an electrical signal and digitizes it, and outputs a phase variation signal based on the measurement light, the reference light and the interference light as a sensor signal This is achieved by providing
  • a conventional acceleration sensor selects electronic components that operate even at high temperature for a certain period, incorporates it in a heat insulation box, etc., and measures acceleration at 200 ° C for several months while cooling with a Peltier element. There is no sensor that operates continuously for more than one year.
  • the optical interference type sensor of the present invention is a homodyne interference type or Mach-Zehnder type optical interference type sensor fabricated by processing from Si single crystal or SiO 2 single crystal by MEMS technology, and the relative displacement of both sides of the vibrator is The velocity and acceleration are calculated by obtaining at a high sampling frequency of 1 MHz or more.
  • the optical interference sensor does not need a power supply, so there is no need to consider the influence of temperature by the electronic components, and it operates in high temperature environment with Si or SiO 2 optical fiber, sensor body, spring, reflective surface In addition, it is possible to fabricate a sensor that operates normally even at high temperatures for a long time. Since Si single crystal has a melting point of 1400 ° C at normal pressure, and low temperature quartz structure up to about 500 ° C at normal pressure, SiO 2 single crystal has physical properties without any layer transition at about 300 ° C. It changes continuously.
  • the measurement range is limited to a range up to half the laser light wavelength, and the dynamic range is limited to 100 dB. Met.
  • a laser beam having a wavelength of, for example, 1.55 ⁇ m is used as a light pulse of 1 to 10 nsec, and the light pulse is irradiated with a light pulse whose phase is shifted by 90 °.
  • the change in relative displacement is detected by light-to-electrical conversion of the interference light and digitization.
  • the relative displacement with the reflecting mirror placed on the object is detected by using the reflecting mirror connected to the optical fiber as a fixed point (reference plane) different from the sensor object It has become.
  • Such a conventional method has a problem that it is not possible to remove an error factor inside the optical fiber system, such as minute displacement of the optical fiber and the influence of temperature up to the fixed point, as well as the displacement of the sensor object.
  • the reference surface is provided inside the object (sensor main body), and the relative displacement of the displacement surface within the motion system of the object is directly measured. The measured value indicates only the displacement due to the vibration characteristic of the vibrator. Therefore, there is an advantage that it is not affected by measurement errors due to minute vibrations or temperature of the fiber system.
  • a metal spring material such as phosphor bronze but a Si single crystal or SiO 2 single crystal suitable for MEMS processing is used as the material of the vibrator or the spring.
  • the Si single crystal and the SiO 2 single crystal have a temperature coefficient and a Young's modulus smaller than that of a metal material, and behave as a completely elastic body with respect to a minute acceleration.
  • a metal material such as phosphor bronze may not cause displacement or fly displacement when it receives a microacceleration due to the lattice defect of the crystal structure or the variation of the adhesion of grain boundaries.
  • the Si single crystal or the SiO 2 single crystal by using the Si single crystal or the SiO 2 single crystal, the homogeneity of the material is maintained, and the linearity at the time of the minute displacement by the minute acceleration is maintained, and the minute acceleration (eg, 1 nG) is measured by measuring the minute displacement. ) To large accelerations (e.g. 10 G) can be detected.
  • a vibrator of Si single crystal or SiO 2 single crystal is adopted, which is suitable as a method for detecting micro displacement.
  • the optical interference sensor according to the present invention is manufactured by etching a single crystal substrate of Si or SiO 2 (quartz) by MEMS (Micro Electro Mechanical Systems) technology, and sealing the space between the spring member and the vibrator (shield) It is processed to make it a closed space.
  • MEMS Micro Electro Mechanical Systems
  • One of the vibrators provided in the space in the sensor body is the displacement surface (light reflection surface), and the other is the reference surface (light reflection surface).
  • the relative displacement of the displacement surface with respect to the reference surface is in the range of 1 nm to 10 mm.
  • a sampling frequency of 1 MHz to 100 MHz with a resolution of 1 pm to 1 nm for example, a large dynamic range (for example, 140 dB to It is a sensor that can be obtained at 170 dB).
  • the measurement data obtained by the optical interference type sensor can be easily used as a speed sensor or an acceleration sensor by performing arithmetic processing at a high sampling frequency.
  • the resolution of relative displacement is increased to 10 pm in the process of decimating to the sampling frequency (10 Hz to 10 kHz) determined by vibration measurement. Perform decimation filter processing to obtain acceleration.
  • the relative displacement of the displacement surface of the vibrator with respect to the reference surface is measured with a resolution of 10 pm in a range of ⁇ 1 mm, and a velocity sensor and an acceleration sensor with a dynamic range of 166 dB can be realized at a sampling frequency of 1 kHz.
  • the optical interference type sensor of the present invention When the optical interference type sensor of the present invention is applied to an acceleration sensor, it responds accurately to minute accelerations (about 1 nG) to large accelerations (about 10 G) and outputs corresponding displacements in the range of ⁇ 10 pm to ⁇ 1 mm
  • the structure of the vibrator is used.
  • measurement is performed by a change in distance between electrode plates or a change in electrode plate area due to sliding of the electrode plate, but there are electrical limitations, etc. I could not take the range.
  • the present invention is characterized in that there is no electrode surface, and a large displacement can be accurately measured together with a small displacement.
  • a method of measuring the physical quantity using optical interferometry, with relative displacement of the displacement surface and the reference surface and the associated physical quantities, with the both surfaces of the vibrator as displacement surfaces and reference surfaces for example, patent No. , Patent No. 5118246 (second patent)).
  • a single-axis spring portion is formed inside the sensor body, and both surfaces of the vibrator supported by the spring portion are respectively used as a displacement surface and a reference surface, and a reflection mirror of laser light is provided on each surface.
  • the displacement amount (acceleration, velocity) of the vibrator due to the external force is obtained by deriving the optical path difference from the interference signal of each reflected light.
  • the light irradiated to the reference surface and the displacement surface is reflected from the reflecting surface in the same direction, and based on the interference signal of homodyne interference or Mach-Zehnder interference
  • the optical path difference can be determined.
  • the vibrator and the spring member have a symmetrical shape with respect to the center (center line) of the sensor body in the vibration direction, and a closed space is formed by the spring member seamlessly connecting the vibrator and the sensor body. It has a damper effect along with the vibration of.
  • the present invention uses the principle of optical interferometry disclosed in Japanese Patent No. 5118004 (first patent) and Japanese Patent No. 5118246 (second patent) to the present applicant, and the outline thereof will be described first.
  • FIG. 1 is a schematic configuration of an optical interference type sensor (homodyne interference) disclosed in Japanese Patent No. 5118004 (first patent), and a reference light R of an optical pulse as shown in FIG.
  • the light is incident on the optical coupler 10 and irradiated (reference light R) from the optical fiber 12, and the irradiated light is reflected from the reference reflection surface 14.
  • measurement light S of an optical pulse as shown in FIG. 2 (B) is incident from the optical fiber 11 to the optical coupler 10 and is irradiated from the optical fiber 13 with a delay time t / 2, and the irradiated light (measurement light S) is reflected from the measurement reflection surface 15.
  • the reference reflection surface 14 is irradiated with the reference light R and the reflected light is received by the same optical fiber 12, and the measurement reflection surface 15 is irradiated with the measurement light S as well.
  • the light reception is also performed by the same optical fiber 13, and it is called a homodyne interference type in which light emission and reception are performed by one optical fiber.
  • the light reflected from the reference reflecting surface 14 and the measurement reflecting surface 15 is multiplexed by the optical coupler 10 and emitted from the incident optical fiber 11 as reflected light R, I, S. Since the input light pulse is short, it is considered that the light level does not change during that time.
  • the reflected light multiplexed by the optical coupler 10 includes the reference light R and the measurement light S, as well as the interference light I in which the reference light R and the measurement light S interfere with each other.
  • the phase difference ⁇ between the light R and the measurement light S that is, the phase difference ⁇ between the reference surface (the reference reflection surface 14) and the measurement surface (the measurement reflection surface 15) is expressed by the following equation 1.
  • the characteristic of cos ⁇ with respect to the phase change is as shown in FIG. 3, and the interference light I of the reflected light, the reference light R, and the measurement light S are measured to obtain cos ⁇ .
  • An optical interference sensor can be configured.
  • FIG. 4 is a schematic configuration of an optical interference type sensor (homodyne interference) shown in Japanese Patent No. 5118246 (second patent), and the phase difference 90 ° between the regions # 1 and # 2 as shown in FIG. 5 (A). While the reference light R of the light pulse having the following is input from the optical fiber 21 to the optical coupler 20 and is irradiated from the optical fiber 22 (reference light R), the irradiation light is reflected from the reference reflection surface 24 and is transmitted to the optical fiber 22. It will be incident. Also, measurement light S of an optical pulse having a phase difference of 90 ° in the regions # 1 and # 2 as shown in FIG.
  • the optical fiber 5B is made incident from the optical fiber 21 to the optical coupler 20, and the optical fiber has a delay time t / 2. While being irradiated from 23, the irradiation light (measurement light S) is reflected from the measurement reflection surface 25 and enters the optical fiber 23. The time ratio of the regions # 1 and # 2 is 2 to 1 in any pulse.
  • the light reflected from the reference reflection surface 24 and the measurement reflection surface 25 is multiplexed by the optical coupler 20 and emitted from the optical fiber 21 as the reflected light R, I1, I2, and S.
  • the light irradiated to the reference reflection surface 24 and the measurement reflection surface 25 is both reflected, so the reflected light is, as shown in FIG. 5C, the reference light R, the measurement light S, the reference light R and the measurement light. Since S contains two different interference lights I1 and I2 that interfere, interference outputs of a plurality of different phases are obtained.
  • the maximum measurable phase is only ⁇ 90 ° (half wavelength), and it is the principle that it exceeds this
  • a constant frequency for example, 1 MHz
  • FIG. 6 shows a state of continuous measurement by cos ⁇ 1 and cos ⁇ 2 having a 90 ° phase difference.
  • the measured value is always selected between 1 / ⁇ 2 and -1 / ⁇ 2.
  • the fluctuation direction of the phase is determined from the difference from the phase measured immediately before. This makes it possible to measure the displacement beyond the half wavelength length.
  • the measurement principle of the first and second patents described above is applied to construct an optical interference type sensor described below and a measurement system using the same.
  • FIG. 7 is a plan view and a connection diagram showing a structural example (sensor first embodiment) of the homodyne interference type, single-axis support type light interference type sensor 100 according to the present invention, which is a sensor to be measured
  • the main body 110 is integrally manufactured from the Si crystal substrate or the SiO 2 crystal substrate by the MEMS technology, and the sensor main body 110 has four rectangular hollow portions 111 and four U-shaped straight springs 112A. , 112B, 113A, 113B are provided in the cavity 111.
  • the vibrator 114 and the springs 112A to 113B are also manufactured by MEMS technology.
  • the vibrator 114, the springs 112A and 112B, and the springs 113A and 113B are symmetrical with respect to the center line CL1 in the vibration direction (X direction in the drawing), and the vibrator 114 has negligible change in the Y direction. It stays at the center of the structure and is displaced to one axis in the X direction.
  • a mirror surface processed flat reflective surface (displacement surface) 115 is provided at the center of the front surface of the vibrator 114, and a mirror surface processed flat reflective surface (reference surface) is provided at the center of the back surface of the transducer 114.
  • 116 are provided.
  • the sensor body 110 may be, for example, 10 mm in length and width, 400 ⁇ m in thickness, and the reflecting surfaces 115 and 116 may be mirrors.
  • the hollow portion 111 is sealed by a borosilicate glass plate or the like after MEMS processing to form a closed space. That is, the vibrator 114 and the springs 112A to 113B are disposed in the closed space.
  • the inside of the closed space may be a vacuum or may be filled with a gas.
  • the measurement system 300 is connected to an optical fiber 101A for transmitting light (laser light) to be irradiated, and an optical fiber 101C for entering reflected light from the optical circulator 101.
  • An optical coupler 102 is connected to the optical fiber 101 through an optical fiber 101B.
  • the reflecting surface 116 serving as the reference surface is irradiated with light
  • the optical fiber 102A for receiving the reflected light and the reflecting surface 115 serving as the displacement surface is irradiated with light via the delay portion 103, and the reflection thereof
  • An optical fiber 102B for receiving light is connected.
  • collimators 104A and 104B for reliably performing parallel irradiation and parallel light reception of light are provided at the respective tips of the optical fibers 102A and 102B, but this is not essential.
  • the measurement light signal generated by the measurement system 300 passes through the optical fiber 101A, the optical circulator 101, the optical fiber 101B, the optical coupler 102, the optical fiber 102A, the collimator 104A, and the reflection surface 116 of the reference surface. It is irradiated.
  • the reflection surface 116 is a plane, and the reflected light reflected from the reflection surface 116 passes the collimator 104A, the optical fiber 102A, the optical coupler 102, the optical fiber 101B, the optical circulator 101, and the optical fiber 101C to the measurement system 300. It is incident.
  • the measurement light signal demultiplexed by the optical coupler 102 passes through the optical fiber 102B provided with the delay unit 103 and the collimator 104B and is irradiated to the reflection surface 115 to be a displacement surface, and the reflection light reflected from the reflection surface 115 is reverse.
  • the optical fiber 102B, the optical coupler 102, the optical fiber 101B, and the optical circulator 101 enters the measurement system 300 from the optical fiber 101C.
  • the vibrator 114 since the vibrator 114 is symmetrical with respect to the center line CL1 and is equally supported by the four springs 112A to 113B, the vibrator 114 vibrates in the vibration direction (X Displacement in the other direction (eg, Y direction), and negligible displacement. As a result, the reflection surface 115 of the displacement surface is also displaced only in the vibration direction (X direction), so that the optical path difference can be measured reliably and accurately.
  • the reference surface 116 and the displacement surface 115 are on the same line and integral with the vibrator 114, it is possible to measure the optical path difference as twice the displacement amount of the vibrator.
  • FIG. 8 is a plan view and a connection diagram showing a structural example (sensor second embodiment) of the Mach-Zehnder interference type, single-axis support type light interference type sensor 120 according to the present invention, which is an object to be measured
  • the sensor body 130 is integrally manufactured from a Si crystal substrate or a SiO 2 crystal substrate by MEMS technology, and the sensor body 130 has a rectangular cavity 131 and is U-shaped.
  • the vibrator 134 supported by four springs 132A, 132B, 133A, and 133B formed in a straight line is provided in the hollow portion 131.
  • the vibrator 134, the springs 132A and 132B, and the springs 133A and 133B have a symmetrical shape with respect to the center line CL2 in the vibration direction (X direction in the drawing).
  • the displacement is negligible in the Y direction, and is displaced along one axis in the X direction.
  • a reflective surface (displacement surface) 135 having a reflection characteristic in the shape of a V-shaped mirror-processed cross-section is provided at the center on the front surface of the vibrator 134, and a mirror processing is provided at the center on the back surface of the vibrator 134.
  • a reflecting surface (reference surface) 136 having retroreflective characteristics is provided in a V-shaped cross section.
  • the hollow portion 134 is shielded and sealed by a borosilicate glass plate or the like to form a closed space.
  • the reflecting surface (displacement surface) 135 and the reflecting surface (reference surface) 136 may be V-shaped mirrors.
  • the measurement system 300 is connected to an optical fiber 121 for transmitting light to be irradiated (laser light) and an optical fiber 126 for receiving reflected light.
  • the optical fiber 121 is connected to an optical coupler 122 for dividing the irradiation light, and the optical fiber 126 is connected to an optical coupler 127 for multiplexing the reflected light.
  • the optical coupler 122 is connected to an optical fiber 123A for irradiating light to the reflection surface 136 serving as a reference surface, and an optical fiber 123B for irradiating light via the delay unit 124 to the reflection surface 135 serving as a displacement surface.
  • the optical coupler 127 is connected to an optical fiber 128A that receives the reflected light from the reflecting surface 136 and an optical fiber 128B that receives the reflected light from the reflecting surface 13.
  • collimators 125A, 125B and 129A, 129B are provided at each end of the optical fibers 123A, 123B and 128A, 128B for reliably performing parallel irradiation and parallel reception of light, but this is not essential. .
  • the reflecting surfaces 135 and 136 have a V-shaped (orthogonal) shape, and the light irradiated to one of the surfaces is changed in direction and reflected from the other surface in the same direction as the incident light. It has the property of recursion. In addition to the V-shaped (orthogonal) shape, it is also possible to use a prism to form a reflective surface of similar retrograde characteristics.
  • the measurement optical signal generated by the measurement system 300 is split by the optical coupler 122 through the optical fiber 121, and one of the split optical signals is transmitted through the optical fiber 123A and the collimator 125A to the reflective surface 136 of the reference surface.
  • the other is irradiated to the reflective surface 135 of the displacement surface through the optical fiber 123B and the collimator 125B.
  • the reflected light from the reflecting surface 136 is incident on the optical coupler 127 through the collimator 129A and the optical fiber 128A, and the reflected light from the reflecting surface 135 is incident on the optical coupler 127 through the collimator 129B and the optical fiber 128B.
  • the light combined by the optical coupler 127 is incident on the measurement system 300 through the optical fiber 126.
  • the vibrator 134 is symmetrical with respect to the center line CL2 and is equally supported back and forth by the four springs 132A to 133B.
  • the vibrator 134 is displaced only in the vibration direction (X direction) and negligible in the other directions (for example, Y direction).
  • the reflection surface 135 of the displacement surface is also displaced only in the vibration direction (X direction), so that the optical path difference can be measured reliably and accurately.
  • the reference surface 136 and the displacement surface 136 are colinear and integral with the vibrator, and are reflected twice by the V-shaped reference surface 136 and the displacement surface 136, so the optical path difference is 4 It can measure by the amount of displacement of double.
  • the spring member and the vibrator both constitute a sealed closed space shielded by the ceiling plate and the bottom plate, and the left and right Due to the change in space volume, the viscosity of the filling gas brings about a damper effect. As a result, the collision between the vibrator and the sensor main body when a large acceleration is applied is avoided, and durability is provided.
  • the vibrator and the spring member are structured to be symmetrical with respect to the vibration direction, and the effect of reducing the sensitivity of the other axes other than the vibration direction is large.
  • the measurement system of FIG. 9 is a homodyne interference type shown in the first embodiment of the sensor, using a plurality (three in this example) of single-axis support type optical interference type sensors 100, such as acceleration applied to each sensor
  • the example (system 1st Embodiment) which measures a physical quantity is shown.
  • the sensors # 1 to # 3 have the same structure, and are the same as the contents described in FIG. In FIG. 9, the sensor # 3 is omitted.
  • the measurement system 300 includes a measurement light signal generation unit 310 and a sensor signal calculation processing unit 320.
  • the measurement light signal generation unit 310 intensity-modulates the continuous laser light generated by the highly stable laser light source 311.
  • a light intensity modulation unit 312 that generates a light pulse and an optical phase modulation unit 313 that shifts the phase of the light pulse by 90 ° ( ⁇ / 2) and outputs the light pulse.
  • the measurement light signal generation unit 310 generates a measurement signal and a reference signal used as a reference for measurement.
  • the measurement light signal (light pulse) from the light phase modulation unit 313 is incident on the optical circulator 101 through the optical fiber 101A, and is further incident on the optical coupler 160 through the optical fiber 101B.
  • the measurement light signal generation unit 310 outputs a measurement light signal with a pulse width of 3 t at a cycle T.
  • the 3t pulse is configured to be phase modulated such that the front 2t width and the rear 1t width are 90 ° out of phase (orthogonal phase).
  • the optical signal for measurement is demultiplexed by the optical coupler 160, and one is irradiated to the reflecting portion of the sensor # 1 through the optical coupler CP1 of the sensor # 1 as described above, and the other is the optical fiber 161A having the delaying portion 161B.
  • the light passes through the light coupler 162.
  • One of the lights demultiplexed by the optical coupler 162 passes through the optical coupler CP2 of the sensor # 2 and is irradiated to the reflecting portion of the sensor # 2, and the other light passes through the optical fiber 163A including the delaying portion 163B and the sensor # 3.
  • the light is incident on the optical coupler CP3 of the sensor # 3 and is irradiated to the reflection part of the sensor # 3.
  • the light irradiated to the reflecting surface of each reference surface of sensors # 1 to # 3 and the reflecting mirror of each displacement surface is received by the same optical fiber, and the light received by sensor # 3 is combined by optical coupler CP3
  • the combined light is input to the optical coupler 162 through the optical fiber 163A.
  • the light received by the sensor # 2 is multiplexed by the optical coupler CP2, the multiplexed light is multiplexed by the optical coupler 162, and the multiplexed light is incident on the optical coupler 160 through the optical fiber 161A.
  • the light received by the sensor # 1 is multiplexed by the optical coupler CP1, the multiplexed light is multiplexed by the optical coupler 160, and the multiplexed light is incident on the optical circulator 101 through the optical fiber 101B. Further, the light is incident on the sensor signal processing unit 320 in the measurement system 300 through the optical fiber 101C.
  • the optical signals of the sensors # 1, # 2, and # 3 incident on the sensor signal processing unit 320 are time division multiplexed optical signals, and in the signals of the respective sensors, there is no optical signal (Z), reference The light portion (R), the interference light portions (I1, I2), and the measurement light portion (S) are included.
  • the timing of the incident pulse and the delay amount by the delay units 162B and 163B shown in FIG. 9 are combined, and when incident, interference light by sensor # 1, interference light by sensor # 2, sensor The interference light due to # 3 is received (analyzed at different reception timings) independently by the sensor signal processing unit 320 and analyzed.
  • the sensor signal processing unit 320 inputs light signals (R, I1, I2, S) for the sensors # 1 to # 3, converts them into electric signals by the light-electric conversion unit (O / E) 321, and converts the electric signals into analog signals.
  • a / D converter 322 digitizes the signal.
  • the digitized signal is limited in the necessary frequency band respectively by the R filter 323A, the I1 filter 323B, the I2 filter 323C, and the S filter 323D, and is input to the cos operation unit 324.
  • cos ⁇ 1 and cos ⁇ 2 are calculated according to the following equations (2) and (3).
  • cos ⁇ 1 and cos ⁇ 2 are in a phase relationship of 90 ° apart.
  • the cos ⁇ 1 and cos ⁇ 2 calculated by the cos calculation unit 324 are input to the difference calculation unit 325, the ⁇ 1, ⁇ 2, ⁇ 1 and ⁇ 2 are calculated, and the calculated difference ⁇ is input to the integration calculation unit 326 with a period T.
  • the difference calculation unit 325 executes the following processes (1) to (7) using cos ⁇ 1 and cos ⁇ 2. (1) With respect to cos ⁇ 1 and cos ⁇ 2, one having an absolute value close to 0 is identified. (2) The magnitudes of cos ⁇ 1 and cos ⁇ 2 are compared and identified.
  • the difference with cos ⁇ 1 and cos ⁇ 2 on the side closer to the absolute value of 0 is selected as ⁇ and output.
  • the difference ⁇ calculated by the difference calculation unit 325 is input to the integration calculation unit 326, the difference calculation unit 326 integrates the difference ⁇ , and the integrated value is output as the displacement sensor signal ⁇ s.
  • a / D conversion is performed on the electrical signal that has been subjected to optical-to-electrical conversion, and then digital filtering is performed. However, the electrical signal is subjected to analog filtering processing and then A / D conversion to be digitized. Also good.
  • the sensors # 1 to # 3 have the same structure, and are the same as the contents described in FIG. Further, the measurement system 300 is also the same as the system first embodiment of FIG. 9, so the description is omitted, and the sensor # 3 is omitted in FIG.
  • the measurement optical signal from the measurement optical signal generation unit 310 in the measurement system 300 is incident on the optical coupler 170 through the optical fiber 101A, and one of the lights demultiplexed by the optical coupler 170 passes through the optical fiber 170A and the sensor
  • the light is input to the # 1 optical coupler CP11, and the other is input to the optical coupler 172 through the optical fiber 170B including the delay unit 170C.
  • One of the lights demultiplexed by the optical coupler 172 is incident on the optical coupler CP21 of the sensor # 2 through the optical fiber 172A, and the other is incident on the optical coupler CP31 of the sensor # 3 through the optical fiber 172B including the delay unit 172C. Be done.
  • the two reflected lights from the sensor # 3 are multiplexed by the optical coupler CP32, and the multiplexed light is incident on the optical coupler 178 through the optical fiber 178B. Further, the two reflected lights from the sensor # 2 are multiplexed by the optical coupler CP22, and the multiplexed light is incident on the optical coupler 178 through the optical fiber 178A.
  • the light multiplexed by the optical coupler 178 is incident on the optical coupler 176 through the optical fiber 176B, the two reflected lights from the sensor # 1 are multiplexed by the optical coupler CP12, and the multiplexed light is transmitted to the optical fiber 176A. The light passes through the light coupler 176.
  • the light coupled by the optical coupler 176 is incident on the sensor signal processing unit 320 in the measurement system 300 through the optical fiber 101C.
  • the optical signals of the sensors # 1, # 2, and # 3 incident on the sensor signal processing unit 320 are time division multiplexed optical signals, and there are no optical signal (Z) in each sensor signal, the reference light portion (R), interference light portions (I1, I2), measurement light portion (S) are included.
  • the reference plane is disposed on the same axial line (center line) of the back surface of the transducer, but as shown in the third embodiment (homodyne interference) of FIG.
  • the mirror surface-treated reflecting surface (reference surface) 116 may be provided in a fixed portion close to the center line CL1 of the sensor main body 110 together with the hollow portion. Light is irradiated from the optical fiber 102A to the reflection surface (reference surface) 116 through the collimator 104A, and light reflected from the reflection surface (reference surface) 116 is incident to the optical fiber 102A through the collimator 104A.
  • a V-shaped reflection surface (reference surface) 136 mirror-processed is provided on the fixed portion near the center line CL2 of the sensor body 130 together with the cavity portion. It has a structure. Light is irradiated from the optical fiber 1129A to the reflection surface (reference surface) 136 through the collimator 125A, and the reflected light V-reflected by the reflection surface (reference surface) 136 is incident to the optical fiber 128A through the collimator 129A. As described above, even if the reference surface fixed to the sensor main body is provided, the displacement of the sensor can be measured by the change of the optical path length.
  • the sensor 160 according to the fifth embodiment shown in FIG. 13 corresponds to the second embodiment shown in FIG. 8 and is provided on the side of the sensor main body 130 and has a plurality of V-shaped mirror surfaces 161 provided with a plurality of V-shaped mirror surfaces;
  • a jagged mirror 162 provided with a plurality of V-shaped mirrors is provided as a reference surface and a displacement surface so that the unevenness is opposite to the jagged mirror 161 and is oppositely provided.
  • the facing relationship of the jagged mirror surfaces 161 and 162 on the displacement surface is as shown in FIG.
  • the optical path difference can be made n times.
  • the measurement repetition period is 1 MHz (1 ⁇ sec), and the wavelength of light for measurement is 1.55 ⁇ m.
  • the half amplitude of the measurement target is 1.55 mm, which is 1000 times of 1.55 ⁇ m, it can be obtained 4000 times at 2000 wavelengths and 1/2 wavelength in a round trip. Therefore, 72 dB can be obtained at 4000 times 1 ⁇ sec.
  • 60 dB can be obtained by A / D sampling the half wavelength with 10 bits.
  • sensors that measure physical quantities such as acceleration and velocity include a dynamic coil type, a servo type, and a capacitance type, but these all convert physical quantities into electrical signals and measure them, so the upper limit and lower limit Both have limits.
  • the lower limit of measurement in the present method, displacement is not converted into an electrical signal, but is handled only by light measurement. Therefore, a minute signal can be measured regardless of the limit inherent to the electrical signal.
  • the measurement upper limit since the measurement upper limit only depends on the magnitude of displacement of the vibrator, a dynamic range of 140 dB can be realized if there is a vibrator having a displacement of ⁇ 1 mm.
  • the acceleration sensor in the conventional light measurement is limited to displacement measurement within a half wavelength, and the dynamic range up to 100 dB is the limit.
  • the produced vibrator has a displacement of up to ⁇ 1 mm, and the vibration can be captured as a relative displacement between the reference surface of the sensor body and the displacement surface of the front surface of the vibrator.
  • the acceleration measurement of 140 dB can be realized by using a sensor device capable of measuring the relative displacement of ⁇ 1 mm by using the measurement method based on the optical interference method shown in Patents 5118004 and 5118246.
  • interference light of time division multiplexing can be captured and processed, so that the configuration of a multipoint measurement system in which a plurality of sensors are connected to an optical fiber becomes possible.
  • the optical interference type sensor according to the present invention does not use an electronic circuit in the sensor unit, all parts except the measurement system unit operate with no power. Accordingly, the present invention can be used for a non-power 4D observation network for resource exploration in a submarine environment where stable operation is required for a long time under a high temperature environment where electronic circuits do not operate, and a submarine earthquake observation network.
  • a sensorless network without a power source for constructing a seafloor seismic observation network, a microminiature sensor as a microdevice for minimally invasive medical treatment, and a microminiature multipoint connection sensor for incorporating an articulated robot.
  • Optical interference sensor (homodyne type) DESCRIPTION OF SYMBOLS 101 Optical circulator 102, 122, 127 Optical coupler 116, 136 Reflection surface (reference surface) 115, 135 Reflective surface (displacement surface) 120 Optical interference sensor (Mach-Zehnder type) 200 Optical interference sensor (Mach-Zehnder type) 211, 221 optical coupler 231 reflective surface (reference surface) 233 Reflective surface (displacement surface) 300 Measurement System 310 Measurement Optical Signal Generator 311 Laser Light Source 312 Light Intensity Modulator 313 Optical Phase Modulator 320 Sensor Signal Arithmetic Processor 321 Optical-Electric Converter (O / E) 324 cos operation unit 325 difference operation unit 326 integration operation unit

Abstract

[Problem] To provide a high-resolution optical interference sensor which, not having component-connecting joints, is easily processed with MEMS technology and can be formed as a single body, is capable of continuous measurement even in high-temperature environments, and can measure physical quantities with a high dynamic range and a high sampling frequency; and to provide a measurement system using said sensor. [Solution] An oscillator supported by a spring member in the vibration direction is provided inside of the sensor main body. A displacement surface is arranged on the front surface of the oscillator in the oscillation direction, and a reference surface is arranged coaxially with the displacement surface on the rear surface of the oscillator. The sensor is further provided with a first optical path system which irradiates the reference surface with light and receives light reflected from the reference surface, a second optical path system which irradiates the displacement surface with light and receives light reflected from the displacement surface, and a delay unit which is inserted between the first optical path system and the second optical path system. By multiplexing the light received in the first optical path system and the second optical path system, it becomes possible to measure the optical path difference of the reference surface and the displacement surface.

Description

光干渉式センサ及びそれを用いた計測システムOptical interference sensor and measurement system using the same
 本発明は、光(レーザ光)の干渉法(ホモダイン干渉若しくはマッハツェンダー干渉)を利用して、センサ対象物の速度や加速度等の物理量を正確に且つコンパクトな手法で、更に高ダイナミックレンジ及び高サンプリング周波数で計測する光干渉式センサ及びそれを用いた計測システムに関する。 The present invention uses a light (laser light) interferometry (homodyne interference or Mach-Zehnder interference) to accurately and physically reduce the physical quantity such as the velocity and acceleration of the sensor object, and to further increase the dynamic range and height. The present invention relates to an optical interference sensor that measures at a sampling frequency and a measurement system using the same.
 従来加速度、速度などの物理量を計測するセンサとしては、永久磁石の磁力の内部でコイルを巻いた振動子を自由振動させて電磁誘導電流を計測する動コイル方式、或いは磁力の内部でコイルを巻いた振動子の変位が発生しないように制御して計測するサーボ方式、或いは2枚の金属板でコンデンサを形成し、その静電容量の変化から加速度を計測する静電容量式などがある。これらは、振動子の変位の時間的変化を電磁誘導電流や静電容量などの電気信号に変換してから、速度や加速度を求めるという方式をとっている。 Conventionally, as a sensor for measuring physical quantities such as acceleration and velocity, a dynamic coil method in which a vibrator having a coil wound inside a magnetic force of a permanent magnet is freely vibrated to measure an electromagnetic induction current, or a coil is wound inside a magnetic force. There is a servo method in which control is performed so as not to generate displacement of the vibrator and measurement, or a capacitance type in which a capacitor is formed of two metal plates and acceleration is measured from a change in capacitance. In these systems, the time change of the displacement of the vibrator is converted into an electric signal such as an electromagnetic induction current or a capacitance, and then the velocity or the acceleration is obtained.
 これらの方法では、振動子の応答特性(目的の周波数領域で、微小加速度から大きな加速度まで連続的に変位を起こす振動子)の設計と、変化に対応する電気信号のディジタル化の精度向上という設計上の制限の中で、センサが作製される。例えば地震動を観測する場合、地震動に相当する周波数帯域(0.01Hz~100Hz)で変位を大きくとれる振動子は、振り子やバネのサイズが大きくなって実用には適さない。この問題に対し、サーボ型加速度計が開発され、変位を相殺させるような電流を与えることにより、変位が少ない構造で高ダイナミックレンジを実現している。 In these methods, the design of the response characteristics of the vibrator (the vibrator that continuously displaces from a small acceleration to a large acceleration in the target frequency range) and the improvement in the accuracy of digitization of the electric signal corresponding to the change Within the above limitations, sensors are made. For example, when observing earthquake motion, a vibrator capable of obtaining a large displacement in a frequency band (0.01 Hz to 100 Hz) corresponding to earthquake motion is not suitable for practical use because the size of a pendulum or a spring is large. In response to this problem, a servo-type accelerometer has been developed, and a high dynamic range is realized with a structure with a small displacement by providing a current that offsets the displacement.
 しかしこの方法でも、ダイナミックレンジが電気信号を計測するに際して限界(低い方は増幅器の1/fノイズや熱雑音、高い方は電子回路の動作電圧の限界)があるため、電圧範囲は約1μV~±5V程度、分解能は140dB程度が限界であり、低ノイズや電子回路の工夫をしても、146~150dBが限界と言われている。また、同時にこの方法では、精度向上のためには電気設計も機構設計も複雑となり、取り扱いが繊細でかつ高コストで実用化には不向きのセンサとなっている。 However, even with this method, the dynamic range is limited when measuring electrical signals (the lower one is 1 / f noise or thermal noise of the amplifier and the higher one is the operating voltage limit of the electronic circuit), so the voltage range is about 1 μV The resolution is limited to about 140 dB at ± 5 V, and 146 to 150 dB is said to be the limit even if low noise or devising an electronic circuit. At the same time, in this method, the electrical design and the mechanical design are complicated to improve the accuracy, which makes the handling delicate and expensive, making the sensor unsuitable for practical use.
 一方、低コストで小型の加速度センサを実現するために、MEMS(Micro Electro Mechanical Systems)技術を用いた静電容量式センサが開発されてきた。それは、小さな加速度に応答する微小な変位の変化を検出するために、2つの極板の間に小さな隙間を空けたコンデンサを構成し、振動によってそのコンデンサ間の隙間の距離が変化したり、極板がスライドすることによってコンデンサの面積が変化したりすることによる静電容量の変化を検出する方法である。 On the other hand, in order to realize a low-cost and compact acceleration sensor, a capacitive sensor using MEMS (Micro Electro Mechanical Systems) technology has been developed. It consists of a capacitor with a small gap between the two plates in order to detect small changes in displacement in response to small accelerations, and the vibration changes the distance of the gap between the capacitors and the plates This is a method of detecting a change in capacitance due to a change in area of a capacitor or the like by sliding.
 この方法は、小型で低コストの加速度センサは実現するものの、静電容量の計測の限界から、ダイナミックレンジは100dB程度となっているのが実情である。 Although this method realizes a compact and low-cost acceleration sensor, the dynamic range is about 100 dB from the limit of capacitance measurement.
特開2010-71939号公報JP, 2010-71939, A 特開2011-202961号公報JP, 2011-202961, A 特表2008-500547号公報Japanese Patent Application Publication No. 2008-500547 特開2011-185943号公報JP, 2011-185943, A 特許第5118004号公報Patent No. 5118004 gazette 特許第5118246号公報Patent No. 5118246 gazette 特許第4153464号公報Patent No. 4153464
 前述の静電容量型の加速度センサは、感度を大きくするためには電極間の距離を小さくするか、電極の面積を大きくすることが要求される。一方で、より大きな振動でも計測できるような測定をしようとすると、可動電極の可動領域が大きいことが要求される。そのため、電極の面積を大きくする方向で開発が進められている。このようなトレードオフのために、静電容量型のMEMS加速度センサのダイナミックレンジは、100dB程度にとどまっている。 In order to increase the sensitivity, the above-mentioned capacitive acceleration sensor is required to reduce the distance between the electrodes or to increase the area of the electrodes. On the other hand, in order to measure even larger vibrations, it is required that the movable region of the movable electrode be large. Therefore, development is in progress in the direction of increasing the area of the electrode. Due to such trade-off, the dynamic range of the capacitive MEMS acceleration sensor is only about 100 dB.
 また、従来の光干渉法では、光ファイバに接続した反射鏡を固定点として、計測対象物(変位面)に設置した反射鏡との相対的な変位を算出している。かかる従来方法では、対象物の変位だけでなく、光ファイバの微小な変位、固定点までの温度の影響など、光ファイバ系内部の誤差要因を除去できないという問題がある。 Further, in the conventional light interference method, relative displacement with respect to the reflecting mirror placed on the measurement object (displacement surface) is calculated with the reflecting mirror connected to the optical fiber as a fixed point. Such a conventional method has a problem that it is not possible to remove an error factor inside the optical fiber system such as a minute displacement of the optical fiber and an influence of temperature up to the fixing point as well as the displacement of the object.
 一方、従来MEMS技術で静電容量型のセンサを作成しようとすると、感度を高くすることが難しかった。例えば特表2008-500547号公報(特許文献3)若しくは特開2011-185943号公報(特許文献4)では、高感度の静電容量型MEMS加速度計を作成するために、コンデンサの電極面をスライドすることにより電極板の面積を変えて静電容量を変更する仕組みになっている。さらに、固有周期を下げるために柔らかいバネを入れながら、振動方向以外の振動を避けるために中間枠帯を設けている。しかし、中間枠帯を入れても電極間距離を変える方向は完全には防げないため、電極板のズレによる静電容量変化と、電極間距離の変化による静電容量の変化とを区別することができないという問題がある。 On the other hand, it has been difficult to increase the sensitivity when trying to create a capacitive sensor using conventional MEMS technology. For example, in Japanese Patent Application Publication No. 2008-550547 (Patent Document 3) or Japanese Patent Application Publication No. 2011-185943 (Patent Document 4), the electrode surface of the capacitor is slid to create a highly sensitive capacitive MEMS accelerometer. By changing the area of the electrode plate to change the capacitance. Furthermore, an intermediate frame is provided to avoid vibrations other than the vibration direction while inserting a soft spring to lower the natural period. However, even if an intermediate frame is inserted, the direction in which the inter-electrode distance is changed can not be completely prevented. Therefore, it is necessary to distinguish between the capacitance change due to the displacement of the electrode plate and the capacitance change due to the inter-electrode distance change. There is a problem that you can not
 更に、センサとしては300℃以上の高温度の環境においても、連続して正確に計測できることが強く要請されている。 Furthermore, it is strongly demanded that the sensor can continuously and accurately measure even in a high temperature environment of 300 ° C. or higher.
 本発明は上述のような事情よりなされたものであり、本発明の目的は、部品を繋げるジョイント部を持たずMEMS技術によって加工が容易でかつ一体成形が可能であり、無電源で作動するセンサにより、300℃以上の高温環境下でも連続計測が可能で、高ダイナミックレンジ及び高サンプリング周波数で物理量を計測でき、160dB程度の高分解能を有する光干渉式センサ及びそれを用いた計測システムを提供することにある。 The present invention has been made under the circumstances as described above, and it is an object of the present invention to provide a sensor which is easy to process by MEMS technology and can be integrally molded without a joint part connecting parts, and operates with no power By this, continuous measurement is possible even in high temperature environments of 300 ° C. or higher, physical quantities can be measured with a high dynamic range and high sampling frequency, and an optical interference sensor having a high resolution of about 160 dB and a measurement system using the same It is.
 本発明は光干渉式センサに関し、本発明の上記目的は、センサ本体の内部に、振動方向に対してバネ部材で支持された振動子を備え、前記振動方向に向かって前記振動子の前面に配設された変位面と、前記振動子の後面に、前記変位面と同軸に配設された基準面とを備え、光を前記基準面に照射すると共に、前記基準面からの反射光を受光する第1の光路系と、前記光を前記変位面に照射すると共に、前記変位面からの反射光を受光する第2の光路系と、前記第1の光路系又は前記第2の光路系に介挿された遅延部とを具備し、前記第1の光路系及び前記第2の光路系で受光された光を合波することによって、前記基準面と前記変位面の光路差を計測ことにより達成される。 The present invention relates to an optical interference type sensor, and the above object of the present invention is characterized in that the inside of the sensor main body is provided with a vibrator supported by a spring member in the vibration direction, A displacement surface provided and a reference surface provided coaxially with the displacement surface are provided on the rear surface of the vibrator, and light is irradiated to the reference surface and light reflected from the reference surface is received. A second optical path system that irradiates the light to the displacement surface and receives reflected light from the displacement surface, and the first optical path system or the second optical path system. By measuring the optical path difference between the reference surface and the displacement surface by combining the light received by the first optical path system and the second optical path system with the interposed delay unit. To be achieved.
 本発明は計測システムに関し、本発明の上記目的は、前記各光干渉式センサと、強度変調及び位相変調された計測用光信号を発生し、前記照射用の光とする計測用光信号発生部と、前記受光された光の時分割多重信号を受光し、光-電気変換してディジタル化し、計測光、参照光及び干渉光に基づく位相変動信号をセンサ信号として出力するセンサ信号演算処理部とを具備することにより達成される。 The present invention relates to a measurement system, and the above object of the present invention is to provide each of the optical interference type sensors and a measurement light signal generation unit which generates intensity modulated and phase modulated measurement light signals as light for irradiation. And a sensor signal arithmetic processing unit that receives a time division multiplexed signal of the received light, converts it into an electrical signal and digitizes it, and outputs a phase variation signal based on the measurement light, the reference light and the interference light as a sensor signal This is achieved by providing
 例えば従来の加速度センサは、高温でも一定時間動作する電子部品を選定して保温箱などに内蔵し、ペルチェ素子で冷却させながら数ヶ月間、200℃で加速度計測を行っているが、高温環境下で1年間以上継続して動作するセンサは存在しない。しかしながら、本発明の光干渉式センサは、Si単結晶若しくはSiO2単結晶からMEMS技術で加工作製されたホモダイン干渉方式若しくはマッハツェンダー方式の光干渉式センサであり、振動子の両面の相対変位を、1MHz以上の高サンプリング周波数で求めることにより、速度及び加速度を算出している。光干渉式センサは電源を必要としないので、電子部品による温度の影響を考慮する必要がなく、高温環境下で動作するSi若しくはSiO2で光ファイバ、センサ本体、バネ、反射面(反射鏡)を一体構成しているので、高温でも長時間正常に動作するセンサの作製が可能となる。Si単結晶は常圧では融点が1400℃、SiO2単結晶は常圧では500℃程度まで低温型石英の構造であるので、300℃程度の状態ではいずれも層転移を起こすことなく、物性が連続的に変化する。 For example, a conventional acceleration sensor selects electronic components that operate even at high temperature for a certain period, incorporates it in a heat insulation box, etc., and measures acceleration at 200 ° C for several months while cooling with a Peltier element. There is no sensor that operates continuously for more than one year. However, the optical interference type sensor of the present invention is a homodyne interference type or Mach-Zehnder type optical interference type sensor fabricated by processing from Si single crystal or SiO 2 single crystal by MEMS technology, and the relative displacement of both sides of the vibrator is The velocity and acceleration are calculated by obtaining at a high sampling frequency of 1 MHz or more. The optical interference sensor does not need a power supply, so there is no need to consider the influence of temperature by the electronic components, and it operates in high temperature environment with Si or SiO 2 optical fiber, sensor body, spring, reflective surface In addition, it is possible to fabricate a sensor that operates normally even at high temperatures for a long time. Since Si single crystal has a melting point of 1400 ° C at normal pressure, and low temperature quartz structure up to about 500 ° C at normal pressure, SiO 2 single crystal has physical properties without any layer transition at about 300 ° C. It changes continuously.
 また、従来、光干渉法を利用し、無電源で動作する加速度計は存在しているが、計測範囲がレーザ光波長の1/2までの領域に限られており、ダイナミックレンジは100dBが限界であった。しかしながら、本発明の光干渉式センサ及び計測システムでは、照射する例えば波長1.55μmのレーザ光を1~10nsecの光パルスとし、位相を90°ずらせた光パルスと共に反射面に照射し、その反射光との干渉光を光-電気変換し、更にディジタル化することによって相対変位の変化を検出する方法を採用している。そのため、レーザ光の波長の1/2という制限がなく、1pm~10nmの分解能を保ったまま半波長の10,000倍(7.7mm)を超える変位を連続的に検出することができる。これにより、例えば0.1nmの分解能で2mmまでの変位を1MHzで測定するモードでは、144dBのダイナミックレンジを実現することができる。 Also, conventionally, although there are accelerometers that operate with no power supply using optical interferometry, the measurement range is limited to a range up to half the laser light wavelength, and the dynamic range is limited to 100 dB. Met. However, in the optical interference type sensor and measurement system of the present invention, a laser beam having a wavelength of, for example, 1.55 μm is used as a light pulse of 1 to 10 nsec, and the light pulse is irradiated with a light pulse whose phase is shifted by 90 °. In this method, the change in relative displacement is detected by light-to-electrical conversion of the interference light and digitization. Therefore, there is no limitation of 1⁄2 of the wavelength of the laser light, and it is possible to continuously detect displacement exceeding 10,000 times (7.7 mm) of the half wavelength while maintaining the resolution of 1 pm to 10 nm. Thus, for example, in the mode of measuring the displacement up to 2 mm at a resolution of 0.1 nm at 1 MHz, a dynamic range of 144 dB can be realized.
 従来の光干渉法では、光ファイバに接続した反射鏡をセンサ対象物とは異なる固定点(基準面)として、対象物(変位面)に設置した反射鏡との相対的な変位を検出するようになっている。かかる従来方法では、センサ対象物の変位だけでなく、光ファイバの微小な変位、固定点までの温度の影響など、光ファイバ系内部の誤差要因を除去できないという問題がある。これに対し本発明の光干渉式センサでは、対象物(センサ本体)の内部に基準面を設け、対象物の運動系内部での変位面の相対的な変位を直接計測するようにしているので、計測値は振動子の振動特性による変位だけを示す。そのため、ファイバ系の微小振動や温度による計測誤差の影響を受けない利点がある。 In the conventional optical interferometry, the relative displacement with the reflecting mirror placed on the object (displacement surface) is detected by using the reflecting mirror connected to the optical fiber as a fixed point (reference plane) different from the sensor object It has become. Such a conventional method has a problem that it is not possible to remove an error factor inside the optical fiber system, such as minute displacement of the optical fiber and the influence of temperature up to the fixed point, as well as the displacement of the sensor object. On the other hand, in the optical interference type sensor of the present invention, the reference surface is provided inside the object (sensor main body), and the relative displacement of the displacement surface within the motion system of the object is directly measured. The measured value indicates only the displacement due to the vibration characteristic of the vibrator. Therefore, there is an advantage that it is not affected by measurement errors due to minute vibrations or temperature of the fiber system.
 本発明では、振動子やバネの材質としてりん青銅などの金属バネ材料ではなく、MEMS加工に適したSi単結晶やSiO2単結晶を用いている。Si単結晶やSiO2単結晶は金属材料に比べて温度係数、ヤング率が小さく、微小加速度に対し完全弾性体として挙動する。一方、りん青銅など金属材料は、結晶構造の格子欠陥や粒界の固着力のばらつきにより、微小加速度を受けた時に変位を起こさなかったり、飛び変位を生じることがある。しかし、Si単結晶やSiO2単結晶を用いることにより、材料の均質性が保持されると共に、微小加速度による微小変位時の線形性が保持され、微小変位を計測することで微小加速度(例えば1nG)から大加速度(例えば10G)までを検出することができる。本発明では微小変位計測(分解能で0.1nm以下)を実現するため、Si単結晶やSiO2単結晶の振動子を採用しており、微小変位を検出する方式として適切である。 In the present invention, not a metal spring material such as phosphor bronze but a Si single crystal or SiO 2 single crystal suitable for MEMS processing is used as the material of the vibrator or the spring. The Si single crystal and the SiO 2 single crystal have a temperature coefficient and a Young's modulus smaller than that of a metal material, and behave as a completely elastic body with respect to a minute acceleration. On the other hand, a metal material such as phosphor bronze may not cause displacement or fly displacement when it receives a microacceleration due to the lattice defect of the crystal structure or the variation of the adhesion of grain boundaries. However, by using the Si single crystal or the SiO 2 single crystal, the homogeneity of the material is maintained, and the linearity at the time of the minute displacement by the minute acceleration is maintained, and the minute acceleration (eg, 1 nG) is measured by measuring the minute displacement. ) To large accelerations (e.g. 10 G) can be detected. In the present invention, in order to realize micro displacement measurement (0.1 nm or less in resolution), a vibrator of Si single crystal or SiO 2 single crystal is adopted, which is suitable as a method for detecting micro displacement.
光干渉型センサ(第1特許)の原理を説明するための構成図である。It is a block diagram for demonstrating the principle of an optical interference type sensor (1st patent). 光干渉型センサ(第1特許)の動作例を示すタイムチャートある。It is a time chart which shows the operation example of an optical interference type sensor (the 1st patent). 光干渉型センサ(第1特許)の特性例を示す図である。It is a figure which shows the example of a characteristic of an optical interference type sensor (1st patent). 光干渉型センサ(第2特許)の原理を説明するための構成図である。It is a block diagram for demonstrating the principle of an optical interference type | mold sensor (2nd patent). 光干渉型センサ(第2特許)の動作例を示すタイムチャートである。It is a time chart which shows the operation example of an optical interference type sensor (the 2nd patent). 光干渉型センサ(第2特許)の特性例を示す図である。It is a figure which shows the example of a characteristic of an optical interference type sensor (2nd patent). 本発明に係る光干渉式センサの第1実施形態の結線・構造例を示す平面構成図である。It is a plane block diagram showing the example of wire connection and structure of a 1st embodiment of an optical interference type sensor concerning the present invention. 本発明に係る光干渉式センサの第2実施形態の結線・構造例を示す平面構成図である。It is a plane block diagram showing the example of wire connection and structure of a 2nd embodiment of an optical interference type sensor concerning the present invention. 本発明に係る光干渉式センサ(ホモダイン型)を複数用いた計測システムの構成例(システム第1実施形態)を示すブロック構成図である。It is a block block diagram which shows the structural example (system 1st Embodiment) of the measurement system which used two or more optical interference type sensors (homodyne type | mold) which concern on this invention. 本発明に係る光干渉式センサ(マッハツェンダー型)を複数用いた計測システムの構成例(システム第2実施形態)を示すブロック構成図である。It is a block block diagram which shows the structural example (system 2nd Embodiment) of the measurement system which used two or more optical interference type sensors (Mach-Zehnder type | mold) which concern on this invention. 本発明に係る光干渉式センサの第3実施形態の結線・構造例を示す平面構成図である。It is a plane block diagram showing the example of wire connection and structure of a 3rd embodiment of an optical interference type sensor concerning the present invention. 本発明に係る光干渉式センサの第4実施形態の結線・構造例を示す平面構成図である。It is a plane block diagram showing the example of wire connection and structure of a 4th embodiment of an optical interference type sensor concerning the present invention. 本発明に係る光干渉式センサの第5実施形態の結線・構造例を示す平面構成図である。It is a plane block diagram showing the example of wire connection and structure of a 5th embodiment of an optical interference type sensor concerning the present invention. 第5実施形態の一部を詳細に示す断面図である。It is sectional drawing which shows a part of 5th Embodiment in detail.
 本発明に係る光干渉式センサは、Si若しくはSiO2(石英)の単結晶基板をMEMS(Micro Electro Mechanical Systems)技術でエッチング処理して作製し、バネ部材と振動子の空間を密閉(シールド)処理して閉空間としている。センサ本体内の空間に設けられた振動子の一方を変位面(光の反射面)、他方を基準面(光の反射面)とし、基準面に対する変位面の相対変位1nm~10mm位の範囲を、例えば1pm~1nmの分解能で1MHz~100MHzのサンプリング周波数を用いて光干渉法で計測することによって、振動子の変位面が外力によって受ける物理量を正確かつ高速度に、大きなダイナミックレンジ(例えば140dB~170dB)で求めることが可能なセンサである。光干渉式センサで得られた計測データを、高サンプリング周波数で演算処理することによって、容易に速度センサや加速度センサとして利用することができる。 The optical interference sensor according to the present invention is manufactured by etching a single crystal substrate of Si or SiO 2 (quartz) by MEMS (Micro Electro Mechanical Systems) technology, and sealing the space between the spring member and the vibrator (shield) It is processed to make it a closed space. One of the vibrators provided in the space in the sensor body is the displacement surface (light reflection surface), and the other is the reference surface (light reflection surface). The relative displacement of the displacement surface with respect to the reference surface is in the range of 1 nm to 10 mm. For example, by measuring the light interference method using a sampling frequency of 1 MHz to 100 MHz with a resolution of 1 pm to 1 nm, for example, a large dynamic range (for example, 140 dB to It is a sensor that can be obtained at 170 dB). The measurement data obtained by the optical interference type sensor can be easily used as a speed sensor or an acceleration sensor by performing arithmetic processing at a high sampling frequency.
 高サンプリング周波数(1MHz~100MHz)で計測された振動子の変位面の変位データから、振動計測で求められるサンプリング周波数(10Hz~10kHz)にデシメーションする過程で相対変位の分解能を10pmに上げ、速度、加速度を求めるデシメーションフィルタ処理を行う。これにより、振動子の変位面の基準面に対する相対変位を10pmの分解能で±1mmの範囲で計測し、サンプリング周波数1kHzでダイナミックレンジ166dBの速度センサ、加速度センサを実現できる。 From the displacement data of the displacement surface of the transducer measured at high sampling frequency (1 MHz to 100 MHz), the resolution of relative displacement is increased to 10 pm in the process of decimating to the sampling frequency (10 Hz to 10 kHz) determined by vibration measurement. Perform decimation filter processing to obtain acceleration. As a result, the relative displacement of the displacement surface of the vibrator with respect to the reference surface is measured with a resolution of 10 pm in a range of ± 1 mm, and a velocity sensor and an acceleration sensor with a dynamic range of 166 dB can be realized at a sampling frequency of 1 kHz.
 本発明の光干渉式センサを加速度センサに適用した場合、微小な加速度(約1nG)から大加速度まで(約10G)に正確に応答し、それに対応する変位を±10pm~±1mmの範囲で出力する振動子の構造を用いている。従来の静電容量型MEMS加速度センサでは、電極板間距離の変化若しくは電極板がスライドすることによる電極板面積の変化によって計測を行っていたが、それらには電気的限界などがあり、高ダイナミックレンジを取ることができなかった。しかし、本発明では電極面は存在せず、小さな変位と共に、大きな変位をも正確に計測できることに特徴がある。 When the optical interference type sensor of the present invention is applied to an acceleration sensor, it responds accurately to minute accelerations (about 1 nG) to large accelerations (about 10 G) and outputs corresponding displacements in the range of ± 10 pm to ± 1 mm The structure of the vibrator is used. In the conventional capacitive MEMS acceleration sensor, measurement is performed by a change in distance between electrode plates or a change in electrode plate area due to sliding of the electrode plate, but there are electrical limitations, etc. I could not take the range. However, the present invention is characterized in that there is no electrode surface, and a large displacement can be accurately measured together with a small displacement.
 本発明では、振動子の両面を変位面及び基準面とし、変位面及び基準面の相対変位及びそれに伴う物理量を、光干渉法を用いた物理量の計測方法(例えば特許第5118004号(第1特許)、特許第5118246号(第2特許))によって計測する。具体的には、センサ本体の内部に1軸のバネ部を構成し、このバネ部で支持された振動子の両面をそれぞれ変位面及び基準面とし、それぞれの面にレーザ光の反射ミラーを設ける。外力による本振動子の変位量(加速度、速度)は、それぞれの反射光の干渉信号から光路差を導くことで求める。 In the present invention, a method of measuring the physical quantity using optical interferometry, with relative displacement of the displacement surface and the reference surface and the associated physical quantities, with the both surfaces of the vibrator as displacement surfaces and reference surfaces (for example, patent No. , Patent No. 5118246 (second patent)). Specifically, a single-axis spring portion is formed inside the sensor body, and both surfaces of the vibrator supported by the spring portion are respectively used as a displacement surface and a reference surface, and a reflection mirror of laser light is provided on each surface. . The displacement amount (acceleration, velocity) of the vibrator due to the external force is obtained by deriving the optical path difference from the interference signal of each reflected light.
 振動子が振動方向の1軸方向に変位する1軸支持式では、基準面と変位面に照射された光が反射面から同方向に反射され、ホモダイン干渉若しくはマッハツェンダー干渉の干渉信号に基づいて光路差を求めることができる。 In the uniaxial supporting type in which the vibrator is displaced in one axial direction of the vibration direction, the light irradiated to the reference surface and the displacement surface is reflected from the reflecting surface in the same direction, and based on the interference signal of homodyne interference or Mach-Zehnder interference The optical path difference can be determined.
 振動子とバネ部材はセンサ本体の振動方向の中心(中心線)に対して対称形の形状を有し、振動子とセンサ本体の間をシームレスに結ぶバネ部材で閉空間を形成し、振動子の振動に伴ってダンパ効果を持つようになっている。 The vibrator and the spring member have a symmetrical shape with respect to the center (center line) of the sensor body in the vibration direction, and a closed space is formed by the spring member seamlessly connecting the vibrator and the sensor body. It has a damper effect along with the vibration of.
 本発明は、本出願人に係る特許第5118004号(第1特許)及び特許第5118246号(第2特許)に開示されている光干渉法の原理を用いており、先ずその概略を説明する。 The present invention uses the principle of optical interferometry disclosed in Japanese Patent No. 5118004 (first patent) and Japanese Patent No. 5118246 (second patent) to the present applicant, and the outline thereof will be described first.
 図1は、特許第5118004号(第1特許)に示される光干渉型センサ(ホモダイン干渉)の概略構成であり、図2(A)に示すような光パルスの参照光Rが、光ファイバ11から光カプラ10に入射されて光ファイバ12から照射(参照光R)されると共に、その照射光が基準反射面14から反射される。また、図2(B)に示すような光パルスの計測光Sが光ファイバ11から光カプラ10に入射され、遅延時間t/2をもって光ファイバ13から照射されると共に、その照射光(計測光S)が計測反射面15から反射される。本例は、基準反射面14に対して、参照光Rの照射もその反射光の受光も同一の光ファイバ12で行い、計測反射面15に対して、計測光Sの照射もその反射光の受光も同一の光ファイバ13で行うようになっており、1本の光ファイバで投受光を行うホモダイン干渉型と称される。基準反射面14及び計測反射面15から反射された光は光カプラ10で合波され、反射光R,I,Sとして、入射された光ファイバ11から出射される。入力される光パルスは短いので、その間は光のレベルは変化しないと考える。 FIG. 1 is a schematic configuration of an optical interference type sensor (homodyne interference) disclosed in Japanese Patent No. 5118004 (first patent), and a reference light R of an optical pulse as shown in FIG. The light is incident on the optical coupler 10 and irradiated (reference light R) from the optical fiber 12, and the irradiated light is reflected from the reference reflection surface 14. Also, measurement light S of an optical pulse as shown in FIG. 2 (B) is incident from the optical fiber 11 to the optical coupler 10 and is irradiated from the optical fiber 13 with a delay time t / 2, and the irradiated light (measurement light S) is reflected from the measurement reflection surface 15. In this example, the reference reflection surface 14 is irradiated with the reference light R and the reflected light is received by the same optical fiber 12, and the measurement reflection surface 15 is irradiated with the measurement light S as well. The light reception is also performed by the same optical fiber 13, and it is called a homodyne interference type in which light emission and reception are performed by one optical fiber. The light reflected from the reference reflecting surface 14 and the measurement reflecting surface 15 is multiplexed by the optical coupler 10 and emitted from the incident optical fiber 11 as reflected light R, I, S. Since the input light pulse is short, it is considered that the light level does not change during that time.
 光カプラ10で合波された反射光は図2(C)に示すように、参照光R、計測光Sと共に、参照光R及び計測光Sが干渉する干渉光Iを含むことになり、参照光R及び計測光Sの位相差θ、つまり基準面(基準反射面14)と計測面(計測反射面15)との位相差θは、下記数1で表される。なお、計測光Sは同一経路で照射され、その反射光Sも同一経路を経るので、合計遅延時間はt/2+t/2=tとなる。 As shown in FIG. 2C, the reflected light multiplexed by the optical coupler 10 includes the reference light R and the measurement light S, as well as the interference light I in which the reference light R and the measurement light S interfere with each other. The phase difference θ between the light R and the measurement light S, that is, the phase difference θ between the reference surface (the reference reflection surface 14) and the measurement surface (the measurement reflection surface 15), is expressed by the following equation 1. The measurement light S is irradiated in the same path, and the reflected light S also travels in the same path, so the total delay time is t / 2 + t / 2 = t.
Figure JPOXMLDOC01-appb-M000001
 そして、位相変化に対するcosθの特性は図3に示すようになり、反射光の干渉光I,参照光R,計測光Sを計測してcosθを求めることにより、光信号レベル変動の影響を受けない光干渉型センサを構成することができる。
Figure JPOXMLDOC01-appb-M000001
Then, the characteristic of cos θ with respect to the phase change is as shown in FIG. 3, and the interference light I of the reflected light, the reference light R, and the measurement light S are measured to obtain cos θ. An optical interference sensor can be configured.
 図4は、特許第5118246号(第2特許)に示される光干渉型センサ(ホモダイン干渉)の概略構成であり、図5(A)に示すような領域#1及び#2で位相差90°を有する光パルスの参照光Rが、光ファイバ21から光カプラ20に入射されて光ファイバ22から照射(参照光R)されると共に、その照射光が基準反射面24から反射され光ファイバ22に入射する。また、図5(B)に示すような領域#1及び#2で位相差90°を有する光パルスの計測光Sが光ファイバ21から光カプラ20に入射され、遅延時間t/2をもって光ファイバ23から照射されると共に、その照射光(計測光S)が計測反射面25から反射されて光ファイバ23に入射する。なお、領域#1及び#2の時間比はいずれのパルスも2対1となっている。基準反射面24及び計測反射面25から反射された光は光カプラ20で合波され、反射光R,I1,I2,Sとして入射された光ファイバ21から出射される。 FIG. 4 is a schematic configuration of an optical interference type sensor (homodyne interference) shown in Japanese Patent No. 5118246 (second patent), and the phase difference 90 ° between the regions # 1 and # 2 as shown in FIG. 5 (A). While the reference light R of the light pulse having the following is input from the optical fiber 21 to the optical coupler 20 and is irradiated from the optical fiber 22 (reference light R), the irradiation light is reflected from the reference reflection surface 24 and is transmitted to the optical fiber 22. It will be incident. Also, measurement light S of an optical pulse having a phase difference of 90 ° in the regions # 1 and # 2 as shown in FIG. 5B is made incident from the optical fiber 21 to the optical coupler 20, and the optical fiber has a delay time t / 2. While being irradiated from 23, the irradiation light (measurement light S) is reflected from the measurement reflection surface 25 and enters the optical fiber 23. The time ratio of the regions # 1 and # 2 is 2 to 1 in any pulse. The light reflected from the reference reflection surface 24 and the measurement reflection surface 25 is multiplexed by the optical coupler 20 and emitted from the optical fiber 21 as the reflected light R, I1, I2, and S.
 基準反射面24及び計測反射面25に照射された光はいずれも反射されるので、反射光は図5(C)に示すように、参照光R、計測光Sと共に、参照光R及び計測光Sが干渉する2つの異なる干渉光I1及びI2を含むことになり、複数の異なる位相の干渉出力が得られる。 The light irradiated to the reference reflection surface 24 and the measurement reflection surface 25 is both reflected, so the reflected light is, as shown in FIG. 5C, the reference light R, the measurement light S, the reference light R and the measurement light. Since S contains two different interference lights I1 and I2 that interfere, interference outputs of a plurality of different phases are obtained.
 第1特許では、参照光と計測光の位相関係が、位相差90度を動作点としたときに、計測可能な位相の最大は±90°(半波長)しかなく、これを越えることは原理的に不可能であるが、第2特許では、90°位相をずらした光パルスを一定の周波数(例えば1MHz)で入力することにより、その壁を乗り越えて計測することが可能になっている。 In the first patent, when the phase difference between the reference light and the measurement light is 90 degrees, the maximum measurable phase is only ± 90 ° (half wavelength), and it is the principle that it exceeds this Although not possible, in the second patent, it is possible to measure over the wall by inputting an optical pulse whose phase is shifted by 90 ° at a constant frequency (for example, 1 MHz).
 図6は、90°位相差があるcosθ1とcosθ2による連続計測の様子を示している。計測値は両者の値のうち、1/√2と-1/√2の間にあるものを常に選択する。位相の変動方向は、直前に計測した位相との差から判定する。このことにより、その半波長の長さを越えた変位を計測することが可能となる。 FIG. 6 shows a state of continuous measurement by cos θ1 and cos θ2 having a 90 ° phase difference. Of the two values, the measured value is always selected between 1 / √2 and -1 / √2. The fluctuation direction of the phase is determined from the difference from the phase measured immediately before. This makes it possible to measure the displacement beyond the half wavelength length.
 本発明では上述した第1特許及び第2特許の計測原理を応用し、以下に説明する光干渉式センサ及びそれを用いた計測システムを構築する。 In the present invention, the measurement principle of the first and second patents described above is applied to construct an optical interference type sensor described below and a measurement system using the same.
 図7は、本発明に係るホモダイン干渉型で、1軸支持式の光干渉式センサ100の構造例(センサ第1実施形態)を示す平面構成図及び結線図であり、計測対象物であるセンサ本体110はSi結晶体基板若しくはSiO2結晶体基板からMEMS技術によって一体的に作製され、センサ本体110は方形状の空洞部111を有し、U字状の直線で形成された4つのバネ112A,112B,113A,113Bで支持された振動子114を空洞部111内に備えている。振動子114及びバネ112A~113BもMEMS技術によって作製される。振動子114並びにバネ112Aと112B、バネ113Aと113Bは、振動方向(図示X方向)の中心線CL1に対して対称な形状となっており、振動子114はY方向には無視できる程度の変化にとどまり、X方向の1軸に変位する構造になっている。振動子114の前面中央部には、鏡面処理された平面な反射面(変位面)115が設けられており、振動子114の後面中央部には鏡面処理された平面な反射面(基準面)116が設けられている。センサ本体110は、例えば縦横が10mm、厚さは400μmであり、反射面115及び116はミラーであっても良い。 FIG. 7 is a plan view and a connection diagram showing a structural example (sensor first embodiment) of the homodyne interference type, single-axis support type light interference type sensor 100 according to the present invention, which is a sensor to be measured The main body 110 is integrally manufactured from the Si crystal substrate or the SiO 2 crystal substrate by the MEMS technology, and the sensor main body 110 has four rectangular hollow portions 111 and four U-shaped straight springs 112A. , 112B, 113A, 113B are provided in the cavity 111. The vibrator 114 and the springs 112A to 113B are also manufactured by MEMS technology. The vibrator 114, the springs 112A and 112B, and the springs 113A and 113B are symmetrical with respect to the center line CL1 in the vibration direction (X direction in the drawing), and the vibrator 114 has negligible change in the Y direction. It stays at the center of the structure and is displaced to one axis in the X direction. A mirror surface processed flat reflective surface (displacement surface) 115 is provided at the center of the front surface of the vibrator 114, and a mirror surface processed flat reflective surface (reference surface) is provided at the center of the back surface of the transducer 114. 116 are provided. The sensor body 110 may be, for example, 10 mm in length and width, 400 μm in thickness, and the reflecting surfaces 115 and 116 may be mirrors.
 図示はしないが、空洞部111はMEMS加工の後、硼珪酸ガラス板などでシールドされて密閉され、閉空間となっている。つまり、閉空間内に振動子114、バネ112A~113Bが配設されている。閉空間内は真空であっても、気体が充填されていても良い。 Although not shown, the hollow portion 111 is sealed by a borosilicate glass plate or the like after MEMS processing to form a closed space. That is, the vibrator 114 and the springs 112A to 113B are disposed in the closed space. The inside of the closed space may be a vacuum or may be filled with a gas.
 計測システム300は後述するが、計測システム300には、照射する光(レーザ光)を伝送する光ファイバ101A、反射された光を光サーキュレータ101から入射する光ファイバ101Cが接続されており、光サーキュレータ101には光ファイバ101Bを経て光カプラ102が接続されている。光カプラ102には、基準面となる反射面116に光を照射し、その反射光を受光する光ファイバ102Aと、変位面となる反射面115に遅延部103を経て光を照射し、その反射光を受光する光ファイバ102Bとが接続されている。また、光ファイバ102A及び102Bの各先端には、光の平行照射及び平行受光を確実に行うためのコリメータ104A及び104Bが設けられているが、必須のものではない。 Although the measurement system 300 will be described later, the measurement system 300 is connected to an optical fiber 101A for transmitting light (laser light) to be irradiated, and an optical fiber 101C for entering reflected light from the optical circulator 101. An optical coupler 102 is connected to the optical fiber 101 through an optical fiber 101B. In the optical coupler 102, the reflecting surface 116 serving as the reference surface is irradiated with light, the optical fiber 102A for receiving the reflected light, and the reflecting surface 115 serving as the displacement surface is irradiated with light via the delay portion 103, and the reflection thereof An optical fiber 102B for receiving light is connected. Further, collimators 104A and 104B for reliably performing parallel irradiation and parallel light reception of light are provided at the respective tips of the optical fibers 102A and 102B, but this is not essential.
 このような構成において、計測システム300で発生された計測用光信号は、光ファイバ101A、光サーキュレータ101、光ファイバ101B、光カプラ102、光ファイバ102A、コリメータ104Aを経て基準面の反射面116に照射される。反射面116は平面であり、反射面116から反射された反射光は、逆にコリメータ104A、光ファイバ102A、光カプラ102、光ファイバ101B、光サーキュレータ101を経て、光ファイバ101Cから計測システム300に入射される。光カプラ102で分波された計測用光信号は、遅延部103を具備した光ファイバ102B、コリメータ104Bを経て変位面となる反射面115に照射され、反射面115から反射された反射光は逆にコリメータ104B、光ファイバ102B、光カプラ102、光ファイバ101B、光サーキュレータ101を経て、光ファイバ101Cから計測システム300に入射される。 In such a configuration, the measurement light signal generated by the measurement system 300 passes through the optical fiber 101A, the optical circulator 101, the optical fiber 101B, the optical coupler 102, the optical fiber 102A, the collimator 104A, and the reflection surface 116 of the reference surface. It is irradiated. The reflection surface 116 is a plane, and the reflected light reflected from the reflection surface 116 passes the collimator 104A, the optical fiber 102A, the optical coupler 102, the optical fiber 101B, the optical circulator 101, and the optical fiber 101C to the measurement system 300. It is incident. The measurement light signal demultiplexed by the optical coupler 102 passes through the optical fiber 102B provided with the delay unit 103 and the collimator 104B and is irradiated to the reflection surface 115 to be a displacement surface, and the reflection light reflected from the reflection surface 115 is reverse. Through the collimator 104B, the optical fiber 102B, the optical coupler 102, the optical fiber 101B, and the optical circulator 101, and enters the measurement system 300 from the optical fiber 101C.
 本実施形態では、振動子114が中心線CL1に対して対称であると共に、4つのバネ112A~113Bで均等に前後に支持されているので、振動運動に対して振動子114は振動方向(X方向)にのみ変位し、他の方向(例えばY方向)には無視できる程度の変位である。その結果、変位面の反射面115も振動方向(X方向)にのみ変位するので、確実にかつ正確に光路差を計測することができる。本実施形態では、基準面116及び変位面115は同一線上にかつ振動子114と一体になっているので、光路差を振動子の変位量の2倍として計測することができる。 In this embodiment, since the vibrator 114 is symmetrical with respect to the center line CL1 and is equally supported by the four springs 112A to 113B, the vibrator 114 vibrates in the vibration direction (X Displacement in the other direction (eg, Y direction), and negligible displacement. As a result, the reflection surface 115 of the displacement surface is also displaced only in the vibration direction (X direction), so that the optical path difference can be measured reliably and accurately. In the present embodiment, since the reference surface 116 and the displacement surface 115 are on the same line and integral with the vibrator 114, it is possible to measure the optical path difference as twice the displacement amount of the vibrator.
 図8は、本発明に係るマッハツェンダー干渉型で、1軸支持式の光干渉式センサ120の構造例(センサ第2実施形態)を示す平面構成図及び結線図であり、計測対象物であるセンサ本体130はセンサ第1実施形態と同様に、Si結晶体基板若しくはSiO2結晶体基板からMEMS技術によって一体的に作製され、センサ本体130は方形状の空洞部131を有し、U字状の直線で形成された4つのバネ132A,132B,133A,133Bで支持された振動子134を空洞部131内に備えている。センサ第1実施形態と同様に、振動子134並びにバネ132Aと132B、バネ133Aと133Bは、振動方向(図示X方向)の中心線CL2に対して対称な形状となっており、振動子134はY方向には無視できる程度の変位にとどまり、X方向の1軸に変位する構造になっている。振動子134の前面中央部には、鏡面処理された断面V字状の形状で再帰特性を有する反射面(変位面)135が設けられており、振動子134の後面中央部には、鏡面処理された断面V字状の形状で再帰特性を有する反射面(基準面)136が設けられている。本例も空洞部134はMEMS加工の後、硼珪酸ガラス板等でシールドされて密閉され、閉空間となっている。反射面(変位面)135及び反射面(基準面)136はV型ミラーであっても良い。 FIG. 8 is a plan view and a connection diagram showing a structural example (sensor second embodiment) of the Mach-Zehnder interference type, single-axis support type light interference type sensor 120 according to the present invention, which is an object to be measured As in the first embodiment, the sensor body 130 is integrally manufactured from a Si crystal substrate or a SiO 2 crystal substrate by MEMS technology, and the sensor body 130 has a rectangular cavity 131 and is U-shaped. The vibrator 134 supported by four springs 132A, 132B, 133A, and 133B formed in a straight line is provided in the hollow portion 131. As in the first embodiment of the sensor, the vibrator 134, the springs 132A and 132B, and the springs 133A and 133B have a symmetrical shape with respect to the center line CL2 in the vibration direction (X direction in the drawing). The displacement is negligible in the Y direction, and is displaced along one axis in the X direction. A reflective surface (displacement surface) 135 having a reflection characteristic in the shape of a V-shaped mirror-processed cross-section is provided at the center on the front surface of the vibrator 134, and a mirror processing is provided at the center on the back surface of the vibrator 134. A reflecting surface (reference surface) 136 having retroreflective characteristics is provided in a V-shaped cross section. Also in this example, after the MEMS processing, the hollow portion 134 is shielded and sealed by a borosilicate glass plate or the like to form a closed space. The reflecting surface (displacement surface) 135 and the reflecting surface (reference surface) 136 may be V-shaped mirrors.
 計測システム300には、照射する光(レーザ光)を伝送する光ファイバ121及び反射光を入射する光ファイバ126が接続されている。光ファイバ121には照射光を分波する光カプラ122が接続され、光ファイバ126には反射光を合波する光カプラ127が接続されている。光カプラ122には、基準面となる反射面136に光を照射する光ファイバ123Aと、変位面となる反射面135に遅延部124を経て光を照射する光ファイバ123Bとが接続されている。また、光カプラ127には、反射面136からの反射光を受光する光ファイバ128Aと、反射面13からの反射光を受光する光ファイバ128Bとが接続されている。また、光ファイバ123A,123B及び128A,128Bの各先端には、光の平行照射及び平行受光を確実に行うためのコリメータ125A,125B及び129A,129Bが設けられているが、必須のものではない。 The measurement system 300 is connected to an optical fiber 121 for transmitting light to be irradiated (laser light) and an optical fiber 126 for receiving reflected light. The optical fiber 121 is connected to an optical coupler 122 for dividing the irradiation light, and the optical fiber 126 is connected to an optical coupler 127 for multiplexing the reflected light. The optical coupler 122 is connected to an optical fiber 123A for irradiating light to the reflection surface 136 serving as a reference surface, and an optical fiber 123B for irradiating light via the delay unit 124 to the reflection surface 135 serving as a displacement surface. Further, the optical coupler 127 is connected to an optical fiber 128A that receives the reflected light from the reflecting surface 136 and an optical fiber 128B that receives the reflected light from the reflecting surface 13. In addition, collimators 125A, 125B and 129A, 129B are provided at each end of the optical fibers 123A, 123B and 128A, 128B for reliably performing parallel irradiation and parallel reception of light, but this is not essential. .
 なお、反射面135及び136はV字状(直交)の形状となっており、いずれも一方の面に照射された光が方向変換され、他方の面から入射と同一方向に反射されるような再帰特性を有している。V字状(直交)の形状だけではなく、プリズムを用いて同様な再帰特性の反射面を形成することも可能である。 The reflecting surfaces 135 and 136 have a V-shaped (orthogonal) shape, and the light irradiated to one of the surfaces is changed in direction and reflected from the other surface in the same direction as the incident light. It has the property of recursion. In addition to the V-shaped (orthogonal) shape, it is also possible to use a prism to form a reflective surface of similar retrograde characteristics.
 このような構成において、計測システム300で発生された計測用光信号は、光ファイバ121を経て光カプラ122で分波され、一方は光ファイバ123A、コリメータ125Aを経て基準面の反射面136に照射され、他方は光ファイバ123B、コリメータ125Bを経て変位面の反射面135に照射される。反射面136からの反射光は、コリメータ129A、光ファイバ128Aを経て光カプラ127に入射され、反射面135からの反射光は、コリメータ129B、光ファイバ128Bを経て光カプラ127に入射される。光カプラ127で合波された光は、光ファイバ126を経て計測システム300に入射される。 In such a configuration, the measurement optical signal generated by the measurement system 300 is split by the optical coupler 122 through the optical fiber 121, and one of the split optical signals is transmitted through the optical fiber 123A and the collimator 125A to the reflective surface 136 of the reference surface. The other is irradiated to the reflective surface 135 of the displacement surface through the optical fiber 123B and the collimator 125B. The reflected light from the reflecting surface 136 is incident on the optical coupler 127 through the collimator 129A and the optical fiber 128A, and the reflected light from the reflecting surface 135 is incident on the optical coupler 127 through the collimator 129B and the optical fiber 128B. The light combined by the optical coupler 127 is incident on the measurement system 300 through the optical fiber 126.
 本センサ実施形態2もセンサ実施形態1と同様に、振動子134が中心線CL2に対して対称であると共に、4つのバネ132A~133Bで均等に前後に支持されているので、振動運動に対して振動子134は振動方向(X方向)にのみ変位し、他の方向(例えばY方向)には無視できる程度の変位である。その結果、変位面の反射面135も振動方向(X方向)にのみ変位するので、確実にかつ正確に光路差を計測することができる。本実施形態では、基準面136及び変位面136は同一線上にかつ振動子と一体になっていると共に、V字状の基準面136及び変位面136で2回反射されるため、光路差を4倍の変位量で計測することができる。 In the sensor embodiment 2 as well as the sensor embodiment 1, the vibrator 134 is symmetrical with respect to the center line CL2 and is equally supported back and forth by the four springs 132A to 133B. Thus, the vibrator 134 is displaced only in the vibration direction (X direction) and negligible in the other directions (for example, Y direction). As a result, the reflection surface 135 of the displacement surface is also displaced only in the vibration direction (X direction), so that the optical path difference can be measured reliably and accurately. In the present embodiment, the reference surface 136 and the displacement surface 136 are colinear and integral with the vibrator, and are reflected twice by the V-shaped reference surface 136 and the displacement surface 136, so the optical path difference is 4 It can measure by the amount of displacement of double.
 上記ホモダイン干渉型及びマッハツェンダー干渉型の1軸支持式センサは、いずれもバネ部材と振動子は天井板及び底板でシールドされた密閉の閉空間を構成し、振動子の運動に伴って左右の空間体積が変化することにより、充填気体の粘性によりダンパ効果をもたらす。これにより、大きな加速度がかかった時の振動子とセンサ本体との衝突を避け、耐久性をもたらす。振動子とバネ部材は振動方向に対して対称な形を持つ構造であり、振動方向以外の他軸感度を下げる効果が大きい。 In the homodyne interference type and the Mach-Zehnder interference type single-axis support sensor, the spring member and the vibrator both constitute a sealed closed space shielded by the ceiling plate and the bottom plate, and the left and right Due to the change in space volume, the viscosity of the filling gas brings about a damper effect. As a result, the collision between the vibrator and the sensor main body when a large acceleration is applied is avoided, and durability is provided. The vibrator and the spring member are structured to be symmetrical with respect to the vibration direction, and the effect of reducing the sensitivity of the other axes other than the vibration direction is large.
 次に、上述した光干渉式センサを用いた計測システムの構成例を、図面に示して説明する。 Next, a configuration example of a measurement system using the above-described optical interference type sensor will be described with reference to the drawings.
 図9の計測システムは、センサの第1実施形態で示したホモダイン干渉型で、1軸支持式の光干渉式センサ100を複数(本例では3個)用いて、各センサに加わる加速度等の物理量を計測する例(システム第1実施形態)を示している。センサ#1~#3は同一の構造であり、図7で説明した内容と同一であるので説明を省略する。なお、図9では、センサ#3を省略している。 The measurement system of FIG. 9 is a homodyne interference type shown in the first embodiment of the sensor, using a plurality (three in this example) of single-axis support type optical interference type sensors 100, such as acceleration applied to each sensor The example (system 1st Embodiment) which measures a physical quantity is shown. The sensors # 1 to # 3 have the same structure, and are the same as the contents described in FIG. In FIG. 9, the sensor # 3 is omitted.
 計測システム300は計測用光信号発生部310及びセンサ信号演算処理部320で構成されており、計測用光信号発生部310は、高安定のレーザ光源311で発生された連続レーザ光を強度変調して光パルスを生成する光強度変調部312と、光パルスの位相を90°(π/2)ずらせて出力する光位相変調部313とで構成されている。計測用光信号発生部310は計測信号及び計測の参照として使用する参照信号を発生する。光位相変調部313からの計測用光信号(光パルス)は、光ファイバ101Aを経て光サーキュレータ101に入射され、更に光ファイバ101Bを経て光カプラ160に入射される。計測用光信号発生部310は、周期Tでパルス幅3tの計測用光信号を出力する。この3tパルスは前方の2t幅と後方の1t幅を、位相が90°異なる(直交位相)よう位相変調した構成になっている。計測用光信号は光カプラ160で分波され、一方はセンサ#1の光カプラCP1を経て前述のようにセンサ#1の反射部に照射され、他方は遅延部161Bを具備する光ファイバ161Aを経て光カプラ162に入射される。光カプラ162で分波された一方の光は、センサ#2の光カプラCP2を経てセンサ#2の反射部に照射され、他方の光は遅延部163Bを具備する光ファイバ163Aを経てセンサ#3の光カプラCP3に入射され、センサ#3の反射部に照射される。 The measurement system 300 includes a measurement light signal generation unit 310 and a sensor signal calculation processing unit 320. The measurement light signal generation unit 310 intensity-modulates the continuous laser light generated by the highly stable laser light source 311. A light intensity modulation unit 312 that generates a light pulse and an optical phase modulation unit 313 that shifts the phase of the light pulse by 90 ° (π / 2) and outputs the light pulse. The measurement light signal generation unit 310 generates a measurement signal and a reference signal used as a reference for measurement. The measurement light signal (light pulse) from the light phase modulation unit 313 is incident on the optical circulator 101 through the optical fiber 101A, and is further incident on the optical coupler 160 through the optical fiber 101B. The measurement light signal generation unit 310 outputs a measurement light signal with a pulse width of 3 t at a cycle T. The 3t pulse is configured to be phase modulated such that the front 2t width and the rear 1t width are 90 ° out of phase (orthogonal phase). The optical signal for measurement is demultiplexed by the optical coupler 160, and one is irradiated to the reflecting portion of the sensor # 1 through the optical coupler CP1 of the sensor # 1 as described above, and the other is the optical fiber 161A having the delaying portion 161B. The light passes through the light coupler 162. One of the lights demultiplexed by the optical coupler 162 passes through the optical coupler CP2 of the sensor # 2 and is irradiated to the reflecting portion of the sensor # 2, and the other light passes through the optical fiber 163A including the delaying portion 163B and the sensor # 3. The light is incident on the optical coupler CP3 of the sensor # 3 and is irradiated to the reflection part of the sensor # 3.
 センサ#1~#3の各基準面の反射面及び各変位面の反射鏡に照射された光はそれぞれ同一の光ファイバで受光され、センサ#3で受光された光は光カプラCP3で合波され、合波された光は光ファイバ163Aを経て光カプラ162に入射される。センサ#2で受光された光は光カプラCP2で合波され、合波された光は光カプラ162で合波され、合波された光は光ファイバ161Aを経て光カプラ160に入射される。また、センサ#1で受光された光は光カプラCP1で合波され、合波された光は光カプラ160で合波され、合波された光は光ファイバ101Bを経て光サーキュレータ101に入射され、更に光ファイバ101Cを経て計測システム300内のセンサ信号演算処理部320に入射される。センサ信号演算処理部320に入射されるセンサ#1、#2、#3の光信号は時分割多重光信号であり、各々のセンサの信号の中に、光信号の無い部分(Z)、参照光部分(R)、干渉光部分(I1,I2)、計測光部分(S)を含んでいる。 The light irradiated to the reflecting surface of each reference surface of sensors # 1 to # 3 and the reflecting mirror of each displacement surface is received by the same optical fiber, and the light received by sensor # 3 is combined by optical coupler CP3 The combined light is input to the optical coupler 162 through the optical fiber 163A. The light received by the sensor # 2 is multiplexed by the optical coupler CP2, the multiplexed light is multiplexed by the optical coupler 162, and the multiplexed light is incident on the optical coupler 160 through the optical fiber 161A. The light received by the sensor # 1 is multiplexed by the optical coupler CP1, the multiplexed light is multiplexed by the optical coupler 160, and the multiplexed light is incident on the optical circulator 101 through the optical fiber 101B. Further, the light is incident on the sensor signal processing unit 320 in the measurement system 300 through the optical fiber 101C. The optical signals of the sensors # 1, # 2, and # 3 incident on the sensor signal processing unit 320 are time division multiplexed optical signals, and in the signals of the respective sensors, there is no optical signal (Z), reference The light portion (R), the interference light portions (I1, I2), and the measurement light portion (S) are included.
 複数のセンサを観測する場合、入射するパルスのタイミングと図9に示す遅延部162B及び163Bによる遅延量とを合わせて、入射したときにセンサ#1による干渉光、センサ#2による干渉光、センサ#3による干渉光をそれぞれ(受信タイミングをずらして)独立にセンサ信号演算処理部320で受信し解析する。 When a plurality of sensors are observed, the timing of the incident pulse and the delay amount by the delay units 162B and 163B shown in FIG. 9 are combined, and when incident, interference light by sensor # 1, interference light by sensor # 2, sensor The interference light due to # 3 is received (analyzed at different reception timings) independently by the sensor signal processing unit 320 and analyzed.
 センサ信号演算処理部320はセンサ#1~#3について光信号(R,I1,I2,S)を入力し、光-電気変換部(O/E)321で電気信号に変換し、そのアナログ電気信号をA/D変換部322においてディジタル化する。ディジタル化された信号はRフィルタ323A、I1フィルタ323B、I2フィルタ323C、Sフィルタ323Dにおいてそれぞれ必要な周波数帯域の制限を受け、cos演算部324に入力され、cos演算部324においてパルス入力直前の光信号がない部分をゼロ点として、参照光R,干渉光I1,I2,計測光Sのゼロ点補正後、cosθ1及びcosθ2が下記数2及び数3に従って演算される。 The sensor signal processing unit 320 inputs light signals (R, I1, I2, S) for the sensors # 1 to # 3, converts them into electric signals by the light-electric conversion unit (O / E) 321, and converts the electric signals into analog signals. A / D converter 322 digitizes the signal. The digitized signal is limited in the necessary frequency band respectively by the R filter 323A, the I1 filter 323B, the I2 filter 323C, and the S filter 323D, and is input to the cos operation unit 324. After zero correction of the reference light R, the interference lights I1 and I2, and the measurement light S with a portion having no signal as a zero point, cos θ1 and cos θ2 are calculated according to the following equations (2) and (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-I000004
ただし、干渉光I1と干渉光I2は直交位相にあることから、cosθ1とcosθ2は90°離れた位相関係にある。
 
cos演算部324で演算されたcosθ1及びcosθ2が、差分演算部325に入力され、θ1、θ2、Δθ1、Δθ2が演算され、演算された差分Δθが周期Tで積算演算部326に入力される。差分演算部325では、cosθ1とcosθ2を用いて次の(1)~(7)の処理を実行する。
(1)cosθ1、cosθ2について、絶対値が0に近い方を識別する。
(2)cosθ1、cosθ2について、その大小を比較して識別する。
(3)cosθ1、cosθ2が参照光位相で90°離れていること、絶対値が0に近い側を基準として、2つの大小の条件から、余弦曲線上に2つのcosθ位置を定める。
(4)余弦曲線上の定められたcosθ1、cosθ2位置より、その角度θ1、θ2を求める。
(5)1周期前のcosθ1、cosθ2より得られた角度をθ1a、θ2aとする。
(6)1周期前との位相変化の差分ΔθをΔθ1=θ1-θ1a、Δθ2=θ2-θ2aとして求める。
(7)差分Δθ1、Δθ2より、cosθ1、cosθ2で、絶対値が0に近い側の差分をΔθとして選択し、出力する。
 
差分演算部325で演算された差分Δθは積算演算部326に入力され、積算演算部326で差分Δθが積算され、積算値が変位センサ信号θsとして出力される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-I000004
However, since the interference light I1 and the interference light I2 are in quadrature, cos θ1 and cos θ2 are in a phase relationship of 90 ° apart.

The cos θ1 and cos θ2 calculated by the cos calculation unit 324 are input to the difference calculation unit 325, the θ1, θ2, Δθ1 and Δθ2 are calculated, and the calculated difference Δθ is input to the integration calculation unit 326 with a period T. The difference calculation unit 325 executes the following processes (1) to (7) using cos θ1 and cos θ2.
(1) With respect to cos θ1 and cos θ2, one having an absolute value close to 0 is identified.
(2) The magnitudes of cos θ1 and cos θ2 are compared and identified.
(3) Two cos θ positions are determined on the cosine curve from two large and small conditions on the basis that the cos θ 1 and cos θ 2 are 90 ° apart in the reference light phase and the absolute value is close to 0 side.
(4) From the cos θ1 and cos θ2 positions defined on the cosine curve, the angles θ1 and θ2 are determined.
(5) Let θ1a and θ2a be the angles obtained from cos θ1 and cos θ2 one cycle before.
(6) The difference Δθ of the phase change with one cycle before is obtained as Δθ1 = θ1−θ1a, Δθ2 = θ2−θ2a.
(7) From the differences Δθ1 and Δθ2, the difference with cos θ1 and cos θ2 on the side closer to the absolute value of 0 is selected as Δθ and output.

The difference Δθ calculated by the difference calculation unit 325 is input to the integration calculation unit 326, the difference calculation unit 326 integrates the difference Δθ, and the integrated value is output as the displacement sensor signal θs.
 なお、本例では3個の光干渉式センサ100(#1~#3)を設置しているが、1つでも良く、或いは4個以上のセンサについても同様に適用できる。また、光-電気変換された電気信号をA/D変換して後にディジタル的なフィルタ処理を施しているが、電気信号をアナログでフィルタ処理して後にA/D変換してディジタル化処理しても良い。 Although three light interference sensors 100 (# 1 to # 3) are provided in this example, one may be used or four or more sensors may be similarly applied. In addition, although A / D conversion is performed on the electrical signal that has been subjected to optical-to-electrical conversion, and then digital filtering is performed. However, the electrical signal is subjected to analog filtering processing and then A / D conversion to be digitized. Also good.
 次に、図8で説明したマッハツェンダー干渉型で、1軸支持式の光干渉式センサ120を複数(本例は3個)用いて、各センサに加わる加速度等の物理量を計測する例(システム第2実施形態)を図10に示して説明する。センサ#1~#3は同一の構造であり、図8で説明した内容と同一であるので説明を省略する。また、計測システム300も同図9のシステム第1実施形態と同様であり、説明を省略し、図10ではセンサ#3を省略している。 Next, an example of measuring a physical quantity such as acceleration applied to each sensor using a plurality of (three in this example) optical interference type sensors 120 of the Mach-Zehnder interference type described in FIG. The second embodiment will be described with reference to FIG. The sensors # 1 to # 3 have the same structure, and are the same as the contents described in FIG. Further, the measurement system 300 is also the same as the system first embodiment of FIG. 9, so the description is omitted, and the sensor # 3 is omitted in FIG.
 計測システム300内の計測用光信号発生部310からの計測用光信号は、光ファイバ101Aを経て光カプラ170に入射され、光カプラ170で分波された光の一方は光ファイバ170Aを経てセンサ#1の光カプラCP11に入射され、他方は遅延部170Cを具備する光ファイバ170Bを経て光カプラ172に入射される。光カプラ172で分波された光の一方は光ファイバ172Aを経てセンサ#2の光カプラCP21に入射され、他方は遅延部172Cを具備する光ファイバ172Bを経てセンサ#3の光カプラCP31に入射される。 The measurement optical signal from the measurement optical signal generation unit 310 in the measurement system 300 is incident on the optical coupler 170 through the optical fiber 101A, and one of the lights demultiplexed by the optical coupler 170 passes through the optical fiber 170A and the sensor The light is input to the # 1 optical coupler CP11, and the other is input to the optical coupler 172 through the optical fiber 170B including the delay unit 170C. One of the lights demultiplexed by the optical coupler 172 is incident on the optical coupler CP21 of the sensor # 2 through the optical fiber 172A, and the other is incident on the optical coupler CP31 of the sensor # 3 through the optical fiber 172B including the delay unit 172C. Be done.
 センサ#3からの2つの反射光は光カプラCP32で合波され、合波された光は光ファイバ178Bを経て光カプラ178に入射される。また、センサ#2からの2つの反射光は光カプラCP22で合波され、合波された光は光ファイバ178Aを経て光カプラ178に入射される。光カプラ178で合波された光は光ファイバ176Bを経て光カプラ176に入射され、センサ#1からの2つの反射光は光カプラCP12で合波され、合波された光は光ファイバ176Aを経て光カプラ176に入射される。光カプラ176で合波された光は光ファイバ101Cを経て計測システム300内のセンサ信号演算処理部320に入射される。センサ信号演算処理部320に入射されるセンサ#1、#2、#3の光信号は時分割多重光信号であり、各々のセンサ信号の中に光信号の無い部分(Z)、参照光部分(R)、干渉光部分(I1,I2)、計測光部分(S)を含んでいる。 The two reflected lights from the sensor # 3 are multiplexed by the optical coupler CP32, and the multiplexed light is incident on the optical coupler 178 through the optical fiber 178B. Further, the two reflected lights from the sensor # 2 are multiplexed by the optical coupler CP22, and the multiplexed light is incident on the optical coupler 178 through the optical fiber 178A. The light multiplexed by the optical coupler 178 is incident on the optical coupler 176 through the optical fiber 176B, the two reflected lights from the sensor # 1 are multiplexed by the optical coupler CP12, and the multiplexed light is transmitted to the optical fiber 176A. The light passes through the light coupler 176. The light coupled by the optical coupler 176 is incident on the sensor signal processing unit 320 in the measurement system 300 through the optical fiber 101C. The optical signals of the sensors # 1, # 2, and # 3 incident on the sensor signal processing unit 320 are time division multiplexed optical signals, and there are no optical signal (Z) in each sensor signal, the reference light portion (R), interference light portions (I1, I2), measurement light portion (S) are included.
 なお、本例では3個の光センサ120(#1~#3)で説明しているが、1つでも良く、或いは4個以上のセンサについても同様に適用できる。本マッハツェンダー干渉では、照射用の光ファイバとは異なる反射光用の光ファイバに反射光を入射させることにより、反射光と照射光の干渉が起こらず、照射光パルスを連続的に照射した結果発生する干渉光を連続的に伝送できる。これにより、ホモダイン干渉に比べ、1本の光ファイバにより多数のセンサの接続が可能になる。 In the present embodiment, although three photosensors 120 (# 1 to # 3) are described, one photosensor may be used, or four or more sensors may be similarly applied. In this Mach-Zehnder interference, by causing the reflected light to be incident on the optical fiber for reflected light different from the optical fiber for irradiation, the interference between the reflected light and the irradiation light does not occur, and the result of continuously irradiating the irradiation light pulse Interference light generated can be transmitted continuously. This enables connection of a large number of sensors by one optical fiber as compared to homodyne interference.
 以下、本発明に係る光干渉式センサの更に他の実施形態について説明するが、これらセンサについても上記計測システムを同様に適用することができる。 Hereinafter, although the other embodiment of the optical interference type | mold sensor which concerns on this invention is described, the said measurement system is applicable similarly about these sensors.
 上述の光干渉式センサの各実施形態ではいずれも、基準面を振動子後面の同一軸線(中心線)上に配置しているが、図11の第3実施形態(ホモダイン干渉)に示すように、センサ本体110の中心線CL1に近い固定部に、鏡面処理された反射面(基準面)116を空洞部共に設けた構造としても良い。反射面(基準面)116に光ファイバ102Aからコリメータ104Aを経て光照射され、反射面(基準面)116からの反射光がコリメータ104Aを経て光ファイバ102Aに入射される。 In each of the embodiments of the optical interference type sensor described above, the reference plane is disposed on the same axial line (center line) of the back surface of the transducer, but as shown in the third embodiment (homodyne interference) of FIG. Alternatively, the mirror surface-treated reflecting surface (reference surface) 116 may be provided in a fixed portion close to the center line CL1 of the sensor main body 110 together with the hollow portion. Light is irradiated from the optical fiber 102A to the reflection surface (reference surface) 116 through the collimator 104A, and light reflected from the reflection surface (reference surface) 116 is incident to the optical fiber 102A through the collimator 104A.
 また、図12の第4実施形態(マッハツェンダー干渉)は、センサ本体130の中心線CL2に近い固定部に、鏡面処理されたV字状の反射面(基準面)136を空洞部共に設けた構造としている。反射面(基準面)136に光ファイバ1129Aからコリメータ125Aを経て光照射され、反射面(基準面)136でV字反射された反射光がコリメータ129Aを経て光ファイバ128Aに入射される。このように、センサ本体に固定された基準面を設けるようにしても、前述と同様に、センサの変位を光路長の変化で計測することができる。 Further, in the fourth embodiment (Mach-Zehnder interference) of FIG. 12, a V-shaped reflection surface (reference surface) 136 mirror-processed is provided on the fixed portion near the center line CL2 of the sensor body 130 together with the cavity portion. It has a structure. Light is irradiated from the optical fiber 1129A to the reflection surface (reference surface) 136 through the collimator 125A, and the reflected light V-reflected by the reflection surface (reference surface) 136 is incident to the optical fiber 128A through the collimator 129A. As described above, even if the reference surface fixed to the sensor main body is provided, the displacement of the sensor can be measured by the change of the optical path length.
 図13に示す第5実施形態のセンサ160は、図8に示す第2実施形態に対応するものであり、センサ本体130側に設けられ、V字状鏡面を複数備えたギザギザ状鏡面161と、このギザギザ状鏡面161に凹凸が逆に対向するように振動子134側に設けられ、V字状鏡面を複数備えたギザギザ状鏡面162とが、基準面及び変位面としてそれぞれ設けられている。例えば、変位面でのギザギザ状鏡面161及び162の対向関係は図14に示すようになっており、コリメータ125Bから照射された光LG1は、各V字鏡面で次々に反射され、最後に振動子側の鏡面で反射された光LG19がコリメータ129Bに入射される。このように複数回、光をギザギザ状鏡面161及び162でn(2以上の整数)回反射させることにより、光路差をn倍とすることができる。 The sensor 160 according to the fifth embodiment shown in FIG. 13 corresponds to the second embodiment shown in FIG. 8 and is provided on the side of the sensor main body 130 and has a plurality of V-shaped mirror surfaces 161 provided with a plurality of V-shaped mirror surfaces; A jagged mirror 162 provided with a plurality of V-shaped mirrors is provided as a reference surface and a displacement surface so that the unevenness is opposite to the jagged mirror 161 and is oppositely provided. For example, the facing relationship of the jagged mirror surfaces 161 and 162 on the displacement surface is as shown in FIG. 14, and the light LG1 emitted from the collimator 125B is reflected one after another by each V-shaped mirror and finally the vibrator The light LG19 reflected by the side mirror surface is incident on the collimator 129B. By thus reflecting light n times (an integer of 2 or more) by the jagged mirror surfaces 161 and 162 a plurality of times, the optical path difference can be made n times.
 
次に、ダイナミックレンジについて説明する。

Next, the dynamic range will be described.
 測定繰返し周期を1MHz(1μsec)とし、測定するための光の波長を1.55μmとする。測定対象の片振幅を1.55μmの1000倍の1.55mmとすると、往復で2000波長、1/2波長で4000回取れることになる。そのため、1μsecの4000倍で72dBが得られる。その1/2波長を10bitでA/Dサンプルすることにより、60dBを得ることができる。その得られた計測データに含まれる、変位信号に無関係なホワイトノイズは、信号抽出の帯域を0.01Hzから50Hzに絞ることによって削減できる。サンプリング周波数を1MHzから125Hzまでデシメーションすると、√(1/8000)=1/89が39dBである。以上より、ダイナミックレンジは72+60+39=171dB程度取れる可能性がある。 The measurement repetition period is 1 MHz (1 μsec), and the wavelength of light for measurement is 1.55 μm. Assuming that the half amplitude of the measurement target is 1.55 mm, which is 1000 times of 1.55 μm, it can be obtained 4000 times at 2000 wavelengths and 1/2 wavelength in a round trip. Therefore, 72 dB can be obtained at 4000 times 1 μsec. 60 dB can be obtained by A / D sampling the half wavelength with 10 bits. The white noise irrelevant to the displacement signal included in the obtained measurement data can be reduced by narrowing the signal extraction band from 0.01 Hz to 50 Hz. Decimating the sampling frequency from 1 MHz to 125 Hz, √ (1/8000) = 1/89 is 39 dB. From the above, the dynamic range may be about 72 + 60 + 39 = 171 dB.
 以下に本発明の主な特徴を列挙して説明する。 The main features of the present invention will be listed and described below.
 光計測とMEMS技術を用いているため電子部品を使わず、対環境性が良く、無電源で高温環境に適している。光計測とMEMS技術を用いているため、約10mm四方と小型である。また、MEMS技術でSi単結晶若しくはSiO2単結晶の微小振動子(格子欠陥極小、微細加工で厚さ20μm長さ5mmのバネ)を作製しているので、微小加速度に応答する振動子である。 Because it uses optical measurement and MEMS technology, it does not use electronic components, is environmentally friendly, and is suitable for high temperature environments with no power supply. Because it uses light measurement and MEMS technology, it is small, about 10 mm square. In addition, it is a vibrator that responds to minute acceleration because a micro-oscillator of Si single crystal or SiO 2 single crystal (lattice defect minimum, spring of 20 μm thickness and 5 mm length by micro processing) is fabricated by MEMS technology. .
 振動子の基準面と振動子先端の変位面に再帰性反射面を設け、それぞれからの反射光を干渉させることにより、基準面と振動子先端の相対変位だけを抽出するので、振動子の微小変形を捉える光計測が可能である。 Since only the relative displacement of the reference surface and the tip of the transducer is extracted by providing a retroreflecting surface on the displacement surface of the reference surface of the transducer and the displacement surface of the tip of the transducer, it is possible to Light measurement that captures deformation is possible.
 従来、加速度、速度等の物理量を計測するセンサとしては、動コイル式、サーボ式、静電容量式などがあるが、これらはいずれも物理量を電気信号に変換して計測するため、上限、下限共に限界がある。計測の下限については、本方法では変位を電気信号に直さず、光計測だけで扱うので、電気信号特有の限界とは関係なく、微小信号を計測することができる。本方法では、測定上限は振動子の変位の大きさに依存するだけなので、±1mmの変位を持つ振動子があれば140dBのダイナミックレンジが実現できる。 Conventionally, sensors that measure physical quantities such as acceleration and velocity include a dynamic coil type, a servo type, and a capacitance type, but these all convert physical quantities into electrical signals and measure them, so the upper limit and lower limit Both have limits. With regard to the lower limit of measurement, in the present method, displacement is not converted into an electrical signal, but is handled only by light measurement. Therefore, a minute signal can be measured regardless of the limit inherent to the electrical signal. In this method, since the measurement upper limit only depends on the magnitude of displacement of the vibrator, a dynamic range of 140 dB can be realized if there is a vibrator having a displacement of ± 1 mm.
 また従来の光計測での加速度センサは、1/2波長以内の変位計測に限られており、100dBまでのダイナミックレンジが限界であった。本方法によると、作製した振動子は±1mmまでの変位を持ち、その振動を、センサ本体の基準面と振動子前面の変位面の相対変位として捉えることができる。特許5118004号と特許5118246号に示される光干渉法による計測方式を用いて、上記±1mmの相対変位を計測できるセンサ装置とすることで、140dBの加速度計測が実現できる。また、計測用光パルスを時分割で制御することで、時分割多重の干渉光を捉え信号処理できるので、光ファイバに複数個のセンサを接続した多点計測システムの構成が可能となる。 In addition, the acceleration sensor in the conventional light measurement is limited to displacement measurement within a half wavelength, and the dynamic range up to 100 dB is the limit. According to this method, the produced vibrator has a displacement of up to ± 1 mm, and the vibration can be captured as a relative displacement between the reference surface of the sensor body and the displacement surface of the front surface of the vibrator. The acceleration measurement of 140 dB can be realized by using a sensor device capable of measuring the relative displacement of ± 1 mm by using the measurement method based on the optical interference method shown in Patents 5118004 and 5118246. In addition, by controlling the measurement light pulse by time division, interference light of time division multiplexing can be captured and processed, so that the configuration of a multipoint measurement system in which a plurality of sensors are connected to an optical fiber becomes possible.
 本発明に係る光干渉式センサは、センサ部に電子回路を使用しないので、計測システム部を除く全ての部分が無電源で作動する。これにより、電子回路が作動しない高温環境下、長期間安定動作が要求される海底環境下での資源探査用の無電源4D観測網、及び海底地震観測網に利用可能である。 Since the optical interference type sensor according to the present invention does not use an electronic circuit in the sensor unit, all parts except the measurement system unit operate with no power. Accordingly, the present invention can be used for a non-power 4D observation network for resource exploration in a submarine environment where stable operation is required for a long time under a high temperature environment where electronic circuits do not operate, and a submarine earthquake observation network.
 また、海底地震観測網を構築するための無電源のセンサネットワーク、低侵襲医療用マイクロデバイスとしての超小型のセンサ、多関節ロボット内蔵用の超小型多点接続のセンサにも応用可能である。 In addition, it can be applied to a sensorless network without a power source for constructing a seafloor seismic observation network, a microminiature sensor as a microdevice for minimally invasive medical treatment, and a microminiature multipoint connection sensor for incorporating an articulated robot.
10,20    光カプラ
14、24    反射面(基準面)
15、25    反射面(計測面)
100      光干渉式センサ(ホモダイン型)
101      光サーキュレータ
102、122、127  光カプラ
116、136  反射面(基準面)
115、135  反射面(変位面)
120      光干渉式センサ(マッハツェンダー型)
200      光干渉式センサ(マッハツェンダー型)
211、221  光カプラ
231      反射面(基準面)
233      反射面(変位面)
300      計測システム
310      計測用光信号発生部
311      レーザ光源
312      光強度変調部
313      光位相変調部
320      センサ信号演算処理部
321      光-電気変換部(O/E)
324      cos演算部
325      差分演算部
326      積算演算部
10, 20 Optical couplers 14, 24 Reflecting surface (reference surface)
15, 25 reflective surface (measurement surface)
100 Optical interference sensor (homodyne type)
DESCRIPTION OF SYMBOLS 101 Optical circulator 102, 122, 127 Optical coupler 116, 136 Reflection surface (reference surface)
115, 135 Reflective surface (displacement surface)
120 Optical interference sensor (Mach-Zehnder type)
200 Optical interference sensor (Mach-Zehnder type)
211, 221 optical coupler 231 reflective surface (reference surface)
233 Reflective surface (displacement surface)
300 Measurement System 310 Measurement Optical Signal Generator 311 Laser Light Source 312 Light Intensity Modulator 313 Optical Phase Modulator 320 Sensor Signal Arithmetic Processor 321 Optical-Electric Converter (O / E)
324 cos operation unit 325 difference operation unit 326 integration operation unit

Claims (9)

  1. センサ本体の内部に、振動方向に対してバネ部材で支持された振動子を備え、前記振動方向に向かって前記振動子の前面に配設された変位面と、前記振動子の後面に、前記変位面と同軸に配設された基準面とを備え、
    光を前記基準面に照射すると共に、前記基準面からの反射光を受光する第1の光路系と、前記光を前記変位面に照射すると共に、前記変位面からの反射光を受光する第2の光路系と、前記第1の光路系又は前記第2の光路系に介挿された遅延部とを具備し、
    前記第1の光路系及び前記第2の光路系で受光された光を合波することによって、前記基準面と前記変位面の光路差を計測できるようになっていることを特徴とする光干渉式センサ。
    Inside the sensor main body, a vibrator supported by a spring member in the vibration direction is provided, and a displacement surface disposed on the front surface of the vibrator in the vibration direction and a rear surface of the vibrator are provided. And a reference surface disposed coaxially with the displacement surface,
    A first optical path system that irradiates light to the reference surface and receives reflected light from the reference surface, and irradiates the light to the displacement surface and second that receives the reflected light from the displacement surface And a delay unit interposed in the first optical path system or the second optical path system,
    Optical interference characterized in that the optical path difference between the reference surface and the displacement surface can be measured by combining the light received by the first optical path system and the second optical path system. Expression sensor.
  2. 前記バネ部材は、前記振動子を前記振動方向に対して前後に、かつ前記中心に対して両側で支持するようになっている請求項1に記載の光干渉式センサ。 The optical interference sensor according to claim 1, wherein the spring member supports the vibrator back and forth with respect to the vibration direction and on both sides with respect to the center.
  3. 前記第1の光路系及び前記第2の光路系の照射部及び受光部にコリメータが設けられている請求項1又は2に記載の光干渉式センサ。 The light interference type sensor according to claim 1 or 2, wherein a collimator is provided in an irradiation unit and a light receiving unit of the first optical path system and the second optical path system.
  4. センサ本体の内部に、振動方向に対してバネ部材で支持された振動子を備え、前記振動方向に向かって前記振動子の前面配設されたV字状の変位面と、前記振動子の後面に、前記変位面と同軸に配設されたV字状の基準面とを備え、
    光を前記基準面の一方に照射する第1の光路系と、
    前記基準面の一方から方向変換された他方からの反射光を受光する第2の光路系と、
    前記光を前記変位面の一方に照射する第3の光路系と、
    前記変位面の一方から方向変換された他方からの反射光を受光する第4の光路系と、
    前記第1~第4の光路系のいずれかに介挿された遅延部とを具備し、
    前記第2の光路系及び前記第4の光路系で受光された光を合波することによって、前記基準面と前記変位面の光路差を計測できるようになっていることを特徴とする光干渉式センサ。
    Inside the sensor body, a vibrator supported by a spring member in the vibration direction is provided, and a V-shaped displacement surface of the vibrator disposed in the front direction in the vibration direction, and a rear surface of the vibrator And a V-shaped reference surface disposed coaxially with the displacement surface,
    A first optical path system for emitting light to one of the reference surfaces;
    A second optical path system that receives the reflected light from the other of the reference planes that has been changed in direction from one of the reference planes;
    A third optical path system for irradiating the light to one of the displacement surfaces;
    A fourth optical path system that receives reflected light from one of the displacement surfaces that has been directionally converted from one of the displacement surfaces;
    And a delay unit interposed in any one of the first to fourth optical path systems,
    Optical interference characterized in that the optical path difference between the reference surface and the displacement surface can be measured by combining the light received by the second optical path system and the fourth optical path system. Expression sensor.
  5. 前記V字状の基準面及び前記V字状の変位面が、複数のV状形状を有するギザギザ形状であると共に、前記各基準面及び変位面と対向するように、複数のV状形状を有するギザギザ形状の2つの反射面が配設されており、
    前記基準面の一方に照射された光が前記基準面及び前記対向する反射面で複数回反射されて前記第2の光路に入射され、かつ前記変位面の一方に照射された光が前記変位面及び前記対向する変位面で複数回反射されて前記第4の光路に入射されるようになっている請求項4に記載の光干渉式センサ。
    The V-shaped reference surface and the V-shaped displacement surface are in a jagged shape having a plurality of V-shaped shapes, and have a plurality of V-shaped shapes so as to face the reference surfaces and the displacement surfaces. Two jagged reflective surfaces are provided,
    The light irradiated to one of the reference surfaces is reflected a plurality of times by the reference surface and the opposite reflecting surface and is incident on the second optical path, and the light irradiated to one of the displacement surfaces is the displacement surface 5. The optical interference sensor according to claim 4, wherein the light is reflected a plurality of times by the opposing displacement surface and is incident on the fourth light path.
  6. センサ本体の内部に、振動方向に対してバネ部材で支持された振動子を備え、前記振動方向に向かって前記振動子の前面に配設された変位面と、前記振動子の後面に、前記変位面と同軸に配設された基準面とを備え、
    光を前記基準面に照射すると共に、前記基準面からの反射光を受光する第1の光路系と、前記光を前記変位面に照射すると共に、前記変位面からの反射光を受光する第2の光路系と、前記第1の光路系又は前記第2の光路系に介挿された遅延部とを具備し、
    前記第1の光路系及び前記第2の光路系で受光された光を合波する光干渉式センサと、
    強度変調及び位相変調された計測用光信号を発生し、前記照射用の光とする計測用光信号発生部と、
    前記受光された光の時分割多重信号を受光し、光-電気変換してディジタル化し、計測光、参照光及び干渉光に基づく位相変動信号をセンサ信号として出力するセンサ信号演算処理部と、
    を具備して成ることを特徴とする計測システム。
    Inside the sensor main body, a vibrator supported by a spring member in the vibration direction is provided, and a displacement surface disposed on the front surface of the vibrator in the vibration direction and a rear surface of the vibrator are provided. And a reference surface disposed coaxially with the displacement surface,
    A first optical path system that irradiates light to the reference surface and receives reflected light from the reference surface, and irradiates the light to the displacement surface and second that receives the reflected light from the displacement surface And a delay unit interposed in the first optical path system or the second optical path system,
    An optical interference sensor that combines the light received by the first optical path system and the second optical path system;
    A measurement light signal generation unit that generates a measurement light signal that is intensity-modulated and phase-modulated and that is the light for irradiation;
    A sensor signal arithmetic processing unit that receives a time division multiplexed signal of the received light, converts it into an electrical-to-electrical conversion and digitizes it, and outputs a phase variation signal based on measurement light, reference light and interference light as a sensor signal;
    The measurement system characterized by comprising.
  7. 前記干渉式センサが複数設けられ、複数の前記干渉式センサが光サーキュレータ及び光カプラを介して前記計測用光信号発生部及び前記センサ信号演算処理部に接続されている請求項6に記載の計測システム。 7. The measurement according to claim 6, wherein a plurality of the interference sensors are provided, and the plurality of the interference sensors are connected to the measurement light signal generation unit and the sensor signal processing unit via an optical circulator and an optical coupler. system.
  8. センサ本体の内部に、振動方向に対してバネ部材で支持された振動子を備え、前記振動方向に向かって前記振動子の前面配設されたV字状の変位面と、前記振動子の後面に、前記変位面と同軸に配設されたV字状の基準面とを備え、
    光を前記基準面の一方に照射する第1の光路系と、
    前記基準面の一方から方向変換された他方からの反射光を受光する第2の光路系と、
    前記光を前記変位面の一方に照射する第3の光路系と、
    前記変位面の一方から方向変換された他方からの反射光を受光する第4の光路系と、
    前記第1~第4の光路系のいずれかに介挿された遅延部とを具備し、
    前記第2の光路系及び前記第4の光路系で受光された光を合波する干渉式センサと、
    強度変調及び位相変調された計測用光信号を発生し、前記照射用の光とする計測用光信号発生部と、
    前記受光された光の時分割多重信号を受光し、光-電気変換してディジタル化し、計測光、参照光及び干渉光に基づく位相変動信号をセンサ信号として出力するセンサ信号演算処理部と、
    を具備して成ることを特徴とする計測システム。
    Inside the sensor body, a vibrator supported by a spring member in the vibration direction is provided, and a V-shaped displacement surface of the vibrator disposed in the front direction in the vibration direction, and a rear surface of the vibrator And a V-shaped reference surface disposed coaxially with the displacement surface,
    A first optical path system for emitting light to one of the reference surfaces;
    A second optical path system that receives the reflected light from the other of the reference planes that has been changed in direction from one of the reference planes;
    A third optical path system for irradiating the light to one of the displacement surfaces;
    A fourth optical path system that receives reflected light from one of the displacement surfaces that has been directionally converted from one of the displacement surfaces;
    And a delay unit interposed in any one of the first to fourth optical path systems,
    An interferometric sensor that combines the light received by the second optical path system and the fourth optical path system;
    A measurement light signal generation unit that generates a measurement light signal that is intensity-modulated and phase-modulated and that is the light for irradiation;
    A sensor signal arithmetic processing unit that receives a time division multiplexed signal of the received light, converts it into an electrical-to-electrical conversion and digitizes it, and outputs a phase variation signal based on measurement light, reference light and interference light as a sensor signal;
    The measurement system characterized by comprising.
  9. 前記干渉式センサが複数設けられ、複数の前記干渉式センサが光カプラを介して前記計測用光信号発生部及び前記センサ信号演算処理部に接続されている請求項8に記載の計測システム。 The measurement system according to claim 8, wherein a plurality of the interference sensors are provided, and the plurality of interference sensors are connected to the measurement light signal generation unit and the sensor signal arithmetic processing unit via an optical coupler.
PCT/JP2014/068039 2013-07-25 2014-07-07 Optical interference sensor, and measurement system using same WO2015012094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528213A JP6002329B2 (en) 2013-07-25 2014-07-07 Optical interference sensor and measurement system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-154512 2013-07-25
JP2013154512 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015012094A1 true WO2015012094A1 (en) 2015-01-29

Family

ID=52393142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068039 WO2015012094A1 (en) 2013-07-25 2014-07-07 Optical interference sensor, and measurement system using same

Country Status (2)

Country Link
JP (1) JP6002329B2 (en)
WO (1) WO2015012094A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030865A (en) * 2018-10-09 2018-12-18 贵阳学院 A kind of dumbbell slide block type optical fiber acceleration transducer and its application method
CN109141491A (en) * 2018-09-29 2019-01-04 成都凯天电子股份有限公司 Pressure-type optical fiber is slightly variable sensor
US10323978B2 (en) 2015-04-20 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Vibration visualization element including optical member
US10655952B2 (en) 2016-06-14 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Visualizer, measurement system, and measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142253A (en) * 1996-11-07 1998-05-29 Suzuki Motor Corp Vibration detecting sensor and vibration measuring device using the sensor
US20020036251A1 (en) * 2000-06-28 2002-03-28 Ulrich Johann Inertial sensor for the mounting and checking of an inertial reference in a satellite
US20040046111A1 (en) * 2002-09-10 2004-03-11 The Regents Of The University Of California Fiber optic micro accelerometer
US20040149037A1 (en) * 2003-02-05 2004-08-05 Digonnet Michel J.F. Fiber optic accelerometer
JP2008538607A (en) * 2005-04-21 2008-10-30 ノースロップ・グラマン・コーポレーション Fiber optic acceleration transducer
US20090219546A1 (en) * 2008-03-03 2009-09-03 Lockheed Martin Corporation Interferometric Gravity Sensor
JP2010117333A (en) * 2008-11-12 2010-05-27 Hakusan Kogyo Kk Optical fiber sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142253A (en) * 1996-11-07 1998-05-29 Suzuki Motor Corp Vibration detecting sensor and vibration measuring device using the sensor
US20020036251A1 (en) * 2000-06-28 2002-03-28 Ulrich Johann Inertial sensor for the mounting and checking of an inertial reference in a satellite
US20040046111A1 (en) * 2002-09-10 2004-03-11 The Regents Of The University Of California Fiber optic micro accelerometer
US20040149037A1 (en) * 2003-02-05 2004-08-05 Digonnet Michel J.F. Fiber optic accelerometer
JP2008538607A (en) * 2005-04-21 2008-10-30 ノースロップ・グラマン・コーポレーション Fiber optic acceleration transducer
US20090219546A1 (en) * 2008-03-03 2009-09-03 Lockheed Martin Corporation Interferometric Gravity Sensor
JP2010117333A (en) * 2008-11-12 2010-05-27 Hakusan Kogyo Kk Optical fiber sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323978B2 (en) 2015-04-20 2019-06-18 Panasonic Intellectual Property Management Co., Ltd. Vibration visualization element including optical member
US10655952B2 (en) 2016-06-14 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Visualizer, measurement system, and measurement method
CN109141491A (en) * 2018-09-29 2019-01-04 成都凯天电子股份有限公司 Pressure-type optical fiber is slightly variable sensor
CN109030865A (en) * 2018-10-09 2018-12-18 贵阳学院 A kind of dumbbell slide block type optical fiber acceleration transducer and its application method

Also Published As

Publication number Publication date
JPWO2015012094A1 (en) 2017-03-02
JP6002329B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
Lu et al. Review of micromachined optical accelerometers: from mg to sub-μg
US11467394B2 (en) Capacitive charge based self-sensing and position observer for electrostatic MEMS mirrors
EP3683585B1 (en) Resonant opto-mechanical accelerometer for use in navigation grade environments
US8885170B2 (en) Gyroscope utilizing torsional springs and optical sensing
CN101608944B (en) Optical fiber vibration sensing head and manufacturing method thereof
WO2015012094A1 (en) Optical interference sensor, and measurement system using same
Rao et al. A high-resolution area-change-based capacitive MEMS tilt sensor
EP2643711B1 (en) Low frequency folded pendulum and vertical seismic sensor utilizing such a folded pendulum
CN102759635A (en) Micro-optical acceleration sensor integrated with grating piezoelectric modulation and detection method thereof
Sheikhaleh et al. Design and analysis of a novel MOEMS gyroscope using an electrostatic comb-drive actuator and an optical sensing system
EP3835795B1 (en) Vibrating beam accelerometer with pressure damping
Hortschitz et al. An optical in-plane MEMS vibration sensor
US7443509B1 (en) Optical and electronic interface for optically coupled resonators
AU2012247104A1 (en) Low frequency folded pendulum and vertical seismic sensor utilizing such a folded pendulum
CN101576383B (en) Two-path optical interference fine optical micro-electro-mechanical gyroscope
CN101509772A (en) Optical phase detecting high precision silicon microelectromechanical gyroscope
CN101046381B (en) Microelectromechanical photoconductive interference gyro
Qu et al. A Nano-g MOEMS Accelerometer Featuring Electromagnetic Force Balance with 157-dB Dynamic Range
Wong et al. Design and fabrication of monolithic photonic crystal fiber acoustic sensor
CN111812355B (en) Low stress sensitivity silicon micro resonant accelerometer structure
Wu et al. A novel optical accelerometer based on slant-ended fiber
CN112782427A (en) Resonator electrode configuration for avoiding capacitive feed-through of vibrating beam accelerometers
CN112782428A (en) Vibrating beam accelerometer with pressure damping
Yang et al. High-Sensitivity MOEMS Gyroscope Based on Photonic Crystal Wavelength Modulation
Zhang et al. Laser self-mixing interferometer for MEMS dynamic measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830207

Country of ref document: EP

Kind code of ref document: A1