WO2015012093A1 - Organic electroluminescent element production method and coat solution - Google Patents

Organic electroluminescent element production method and coat solution Download PDF

Info

Publication number
WO2015012093A1
WO2015012093A1 PCT/JP2014/068021 JP2014068021W WO2015012093A1 WO 2015012093 A1 WO2015012093 A1 WO 2015012093A1 JP 2014068021 W JP2014068021 W JP 2014068021W WO 2015012093 A1 WO2015012093 A1 WO 2015012093A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
light
coating
range
Prior art date
Application number
PCT/JP2014/068021
Other languages
French (fr)
Japanese (ja)
Inventor
小林 康伸
晃央 前田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015528212A priority Critical patent/JPWO2015012093A1/en
Publication of WO2015012093A1 publication Critical patent/WO2015012093A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element and a coating solution. More specifically, the present invention relates to a method for manufacturing a flexible organic EL element that reduces waveguide loss and improves light extraction efficiency without impairing light transmittance, and a coating liquid used in the manufacturing method.
  • Organic electroluminescence elements that use organic electroluminescence (EL) are thin-film, completely solid elements that can emit light at a low voltage of several volts to several tens of volts, and have high brightness. It has many excellent features such as high luminous efficiency, thinness and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources. On the other hand, the light extraction efficiency of the organic EL element is about 20%, and it is known that the loss in the element is large.
  • FIG. 2 is a schematic cross-sectional view of a conventional organic EL element.
  • the organic EL element 300 includes a metal electrode 302, an organic functional layer 304 having a refractive index of approximately 1.8, a transparent electrode 306 having a refractive index of approximately 1.8, and a refractive index of approximately 1.5 in order from the lower layer in the drawing.
  • a transparent substrate 308 is laminated. Note that arrows represented by reference numerals 310a to 310e in the drawing indicate characteristic light among the light generated from the organic functional layer 304.
  • the light 310a is light perpendicular to the light emitting surface of the organic functional layer 304, and is transmitted through the transparent substrate 308 and extracted to the light extraction side (air side).
  • the light 310b is light that is incident on the interface between the transparent substrate 308 and air at a shallow angle less than the critical angle, and is refracted at the interface between the transparent substrate 308 and air and extracted to the light extraction side.
  • the light 310c is light that is incident on the interface between the transparent substrate 308 and air at an angle deeper than the critical angle, and is light that is totally reflected at the interface between the transparent substrate 308 and air and cannot be extracted to the light extraction side.
  • the loss due to this is called substrate loss, and there is usually a loss of about 20%.
  • the light 310 d is light that satisfies the resonance condition among light incident on the interface between the transparent electrode 306 and the transparent substrate 308 at an angle deeper than the critical angle, and is totally reflected at the interface between the transparent electrode 306 and the transparent substrate 308.
  • the light is generated in a guided mode and is confined in the organic functional layer 304 and the transparent electrode 306.
  • the loss due to this is called waveguide loss, and there is usually a loss of about 20-25%.
  • the light 310 e is light that enters the metal electrode 302 and interacts with free electrons in the metal electrode 302 to generate a plasmon mode, which is a kind of waveguide mode, and is confined in the vicinity of the surface of the metal electrode 302. This loss is called plasmon loss, and there is usually a loss of about 30-40%.
  • an organic EL element having a structure in which a light extraction layer for extracting light is laminated between a transparent electrode and a substrate is conventionally known.
  • a method for forming a light extraction layer a method of using a thermosetting resin and curing the coating film by heating is common. This can be realized because it is a glass substrate.
  • a coating method spin coating or slot die coating is generally used. This can also be said to be a coating method that can be used because it is a glass substrate having no problem in surface smoothness.
  • organic EL elements have been required to have flexible characteristics that can bend the light source itself, which is not found in conventional lighting and LED lighting. Realization of such flexible characteristics is difficult as long as glass is used for the substrate.
  • An ultra-thin glass substrate has been devised to give glass flexibility, but it is difficult to handle because it is easily broken, and there is a limit to use it for mass-produced products.
  • resin materials are inherently flexible and do not break, and some materials are as transparent as glass. If a substrate containing these resins as a main component is used, an organic EL element having flexibility can be manufactured. However, since the resin material is organic, it is vulnerable to heat.
  • thermosetting resin As described above, in order to give flexibility to the organic EL element, it is possible to produce a light extraction layer using a resin substrate and using a resin other than the thermosetting resin by using an inkjet coating method or the like. Necessary. Among these conditions, it was particularly difficult to apply and film a resin other than a thermosetting resin by an ink jet coating method.
  • an ultraviolet curable resin is mentioned as a resin other than the thermosetting resin, but the ultraviolet curable resin is generally made of a monomer.
  • the coating solution containing this ultraviolet curable resin has a low viscosity for use in the inkjet coating method.
  • a drying process is required to harden the film, but if a normal heating method is used for drying, the resin substrate is deformed by heat, and the performance and yield as an organic EL element are greatly reduced. End up. For this reason, in order to give an organic EL element flexibility, it has been necessary to devise materials and process conditions that have not existed in the past.
  • Patent Document 1 discloses a technique for defining the viscosity of a particle dispersion coating liquid and forming a light extraction layer by spray coating or ink jet coating as a coating method.
  • a structure of the light extraction layer a light scattering layer, a smoothing layer having a high refractive index and requiring smoothness on the surface from the viewpoint of film forming properties of the electrode, which requires precise coating
  • the light extraction layer forming technique disclosed in Patent Document 1 is for a so-called light scattering layer and not for a smoothing layer.
  • the present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is a flexible organic EL that reduces waveguide loss and improves light extraction efficiency without impairing light transmittance. It is providing the coating liquid used for the manufacturing method of an element, and the said manufacturing method.
  • the present inventor sequentially has a light scattering layer, a smoothing layer, a first electrode, an organic functional layer, and a second electrode on a resin substrate in a process of examining the cause of the above-described problem.
  • a smoothing layer in the step of forming a smoothing layer, it contains high-refractive-index nanosol particles, a binder, and an organic solvent, and has a viscosity in the range of 3 to 30 mPa ⁇ s.
  • Excimer light is applied to the step of preparing a coating solution, the step of applying the coating solution by an ink jet coating method, the step of irradiating the coating solution after application with a wavelength-controlled infrared ray, and the coating solution after drying. And the step of curing by irradiation, it has been found that waveguide loss can be reduced and light extraction efficiency can be improved without impairing light transmittance while maintaining flexibility. It led to.
  • a coating liquid comprising nanosol particles having a high refractive index, a binder, and an organic solvent, and having a viscosity in the range of 3 to 30 mPa ⁇ s.
  • Item 5 The coating solution according to Item 4, wherein the organic solvent has a viscosity in the range of 5 to 100 mPa ⁇ s.
  • a resin substrate is used as a support substrate of an organic EL element and a binder such as an ultraviolet curable resin can be applied and formed into a film by an ink jet coating method, flexibility as an organic EL element can be maintained.
  • a coating solution containing a binder such as an ultraviolet curable resin has a problem of low viscosity when used in an inkjet coating method. Therefore, it is considered that by incorporating an organic solvent in the coating solution, the viscosity of the coating solution can be adjusted within a predetermined range, and the light extraction efficiency of the organic EL element can be improved while maintaining flexibility.
  • the method for producing an organic EL element of the present invention comprises a step of forming a light scattering layer on a resin substrate, and a step of forming a smoothing layer on the light scattering layer, and a step of forming the smoothing layer. Then, a step of preparing a coating solution containing high refractive index nanosol particles, a binder, and an organic solvent and having a viscosity in the range of 3 to 30 mPa ⁇ s, and coating the coating solution by an inkjet coating method
  • the method includes a step, a step of irradiating the coating liquid after application with a wavelength-controlled infrared ray and drying, and a step of irradiating the coating liquid after drying with an excimer light and curing. This feature is a technical feature common to the inventions according to claims 1 to 6.
  • the viscosity of the organic solvent is preferably in the range of 5 to 100 mPa ⁇ s from the viewpoint of ejection stability.
  • the vapor pressure of the organic solvent is preferably in the range of 1.0 to 1000 Pa from the viewpoint of preventing nozzle clogging.
  • the coating liquid of the present invention contains high refractive index nanosol particles, a binder, and an organic solvent, and has a viscosity in the range of 3 to 30 mPa ⁇ s.
  • the viscosity of the organic solvent is preferably in the range of 5 to 100 mPa ⁇ s from the viewpoint of ejection stability, and further, from the viewpoint of preventing nozzle clogging, the vapor pressure is 1.
  • a range of 0 to 1000 Pa is preferable.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • FIG. 1 shows an example of the configuration of the organic EL element according to the present invention.
  • the organic EL element 100 is configured by laminating a light extraction layer 20, a first electrode 30, an organic functional layer 40, and a second electrode 50 on a resin substrate 10 having flexibility.
  • the light extraction layer 20 includes a light scattering layer 22 and a smoothing layer 24, and is laminated on the resin substrate 10 in this order.
  • the organic functional layer 40 includes a hole injection layer 41, a hole transport layer 42, a light emitting layer 43, an electron transport layer 44, and an electron injection layer 45, and is stacked on the first electrode 30 in this order.
  • the light extraction layer is a layer provided between the resin substrate and the first electrode, and has a two-layer structure in which a light scattering layer and a smoothing layer are laminated in order from the resin substrate side.
  • the light extraction layer is provided to extract waveguide mode light confined in the light emitting layer of the organic EL element and plasmon mode light reflected from the second electrode.
  • the smoothing layer according to the present invention has a structure in which nano-sol particles having a high refractive index are contained in a binder.
  • the nanosol particle is a fine particle (colloidal particle) having a particle size of nanometer order dispersed in a dispersion medium, and is defined as a particle having a particle size in the range of 1 to 300 nm. Is done.
  • the particles include discrete particles (primary particles) and aggregated particles (secondary particles).
  • the nanosol particles including the secondary particles Define.
  • the same light scattering layer as described later can be used, but an ultraviolet curable resin or an electron beam curable resin can be used.
  • an ultraviolet curable resin is more preferable because the physical properties of the coating liquid can be adjusted with an organic solvent. Because UV curable resin cures in just a few seconds with UV light energy, unlike thermosetting methods, it is less susceptible to damage and deformation due to heating, it can be manufactured efficiently, and there are no variations in quality. Can be mentioned. Thereby, since deformation of the substrate does not occur even when the resin substrate is used, no manufacturing trouble occurs, and the yield can be improved.
  • the highly refractive particles contained in the smoothing layer are preferably fine particle nanosols.
  • the lower limit of the refractive index of the highly refractive particles is preferably 1.7 or more in a bulk state, more preferably 1.85 or more, still more preferably 2.0 or more, and 2.5 The above is particularly preferable.
  • the upper limit of the refractive index of the highly refractive particles is preferably 3.0 or less. If the refractive index of the highly refractive particles is 1.7 or more, the objective effect of the present invention can be sufficiently exhibited. When the refractive index of the highly refractive particles is 3.0 or less, multiple scattering in the layer is suppressed and transparency is not lowered.
  • the average particle size of the highly refractive particles is preferably in the range of 5 to 300 nm, more preferably in the range of 10 to 200 nm, and particularly preferably in the range of 20 to 100 nm. If the average particle diameter of the high refractive particles is 5 nm or more, the high refractive particles are prevented from aggregating and the transparency is not lowered. In addition, the surface area of the high refractive particles as a whole is not increased, and the catalytic activity is suppressed, so that deterioration of the smoothing layer and adjacent layers can be prevented. When the average particle diameter of the highly refractive particles is 300 nm or less, the transparency of the smoothing layer is not lowered.
  • the average particle size distribution is not particularly limited as long as the effect of the present invention is not impaired, and may be wide or narrow, or may have a plurality of distributions.
  • the average particle diameter in the present invention can be measured by, for example, an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or image processing of an electron micrograph.
  • the lower limit of the content of the highly refractive particles is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more with respect to the total mass. Further, the upper limit of the content of the highly refractive particles is preferably 97% by mass or less, and more preferably 95% by mass or less. If the content of the highly refractive particles is 50% by mass or more, it becomes easy to set the refractive index of the smoothing layer to 1.80 or more. When the content of the high refractive particles is 97% by mass or less, there is no hindrance to the production by the coating method of the smoothing layer, and the strength and bending resistance of the layer after drying are not lowered.
  • the high refractive index nanosol particles are not particularly limited and may be appropriately selected according to the purpose.
  • the fine particles may be organic fine particles or inorganic fine particles. Preferably there is.
  • organic fine particles having a high refractive index include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, crosslinked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like.
  • the inorganic fine particles having a high refractive index include inorganic oxide particles made of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony and the like.
  • the inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO (Indium Tin Oxide: indium tin oxide). ), SiO 2, ZrSiO 4, zeolite, and among them, TiO 2, BaTiO 3, ZrO 2, ZnO, SnO 2 are preferred, TiO 2 is most preferred. Further, among TiO 2 , rutile type is preferable to anatase type because the weather resistance of the light scattering layer and the adjacent layer is high because the catalytic activity is low, and the refractive index is high.
  • These highly refractive particles may be subjected to a surface treatment on the particle surface from the viewpoint of improving the dispersibility and stability of the dispersion when dispersed in a binder.
  • the surface treatment material include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types. Among these, from the viewpoint of the stability of the dispersion, the surface treatment material is preferably a different inorganic oxide and / or metal hydroxide, more preferably a metal hydroxide.
  • the coating amount (in general, this coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle to the mass of the particles). Is preferably in the range of 0.01 to 99% by mass.
  • the coating amount of the surface treatment material is 0.01% by mass or more, the effect of improving the dispersibility and stability by the surface treatment can be sufficiently obtained.
  • the coating amount is 99% by mass or less, the refractive index of the high refractive index smoothing layer can be kept high.
  • quantum dots described in International Publication No. 2009/014707, US Pat. No. 6,608,439, etc. can be suitably used.
  • the smoothing layer is preferably a high refractive index layer having a refractive index in the range of 1.7 to 2.0. If the refractive index of the smoothing layer is 1.7 or more, the light can be guided to the resin substrate side without confining the waveguide mode light in the organic functional layer or the transparent electrode. If the refractive index of the smoothing layer is 2.0 or less, the film strength of the smoothing layer can be maintained high.
  • the smoothing layer may be formed of a single material having a refractive index in the range of 1.7 to 2.0, or two or more compounds may be mixed to form a layer.
  • the refractive index of the smoothing layer can be substituted by a calculated refractive index calculated by a total value obtained by multiplying the refractive index specific to each material by the mixing ratio.
  • the refractive index of each material may be less than 1.7 or higher than 2.0, and the refractive index of the smoothing layer formed by mixing is in the range of 1.7 to 2.0. It only has to be.
  • the smoothing layer has a flatness that allows the first electrode to be satisfactorily formed thereon.
  • the flatness is such that the surface roughness Ra is less than 100 nm, preferably less than 30 nm, more preferably less than 10 nm, and most preferably less than 5 nm.
  • surface roughness Ra is arithmetic mean roughness and is surface roughness prescribed
  • the surface roughness Ra was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII. The measurement range for one time was 10 ⁇ m ⁇ 10 ⁇ m, the measurement location was changed, and the measurement was performed three times. The average of the Ra values obtained in each measurement was taken as the measurement value.
  • the function of the smoothing layer is to smooth the surface of the light scattering layer to prevent the first electrode from being uneven, and to prevent the electrode from being short-circuited, so-called short-circuiting, so that the light-emitting layer does not shine.
  • the other is that the light scattering layer mainly has the function of scattering, whereas the smoothing layer mainly passes the emitted light without reflecting it at the interface.
  • the method for producing the smoothing layer of the present invention mainly comprises: (I) a step of preparing a coating liquid containing high-refractive-index nanosol particles, a binder, and an organic solvent, and having a viscosity in the range of 3 to 30 mPa ⁇ s; (Ii) a step of applying a coating liquid by an inkjet coating method; (Iii) A step of irradiating the coating liquid after coating with a wavelength-controlled infrared ray and drying; (Iv) a step of irradiating and curing the excimer light to the coating solution after drying; have.
  • each step will be described.
  • the coating solution adjustment step the coating solution is prepared so that the viscosity is in the range of 3 to 30 mPa ⁇ s. More specifically, the viscosity of the coating solution is adjusted by adding an organic solvent in addition to the high refractive index nanosol particles and the binder.
  • the viscosity of the coating solution is adjusted within the range of 3 to 30 mPa ⁇ s. However, when the viscosity of the coating solution is smaller than 3 mPa ⁇ s, the coating solution cannot be held by the head nozzle when performing inkjet coating. It will flow out and will not be ejected accurately. When the viscosity of the coating solution is greater than 30 mPa ⁇ s, the fluidity of the coating solution is reduced, so that the emission property of the coating solution from the ink jet nozzle is lowered, and in the worst case, the coating solution cannot be emitted.
  • the viscosity of the coating solution is preferably in the range of 4 to 25 mPa ⁇ s, more preferably in the range of 5 to 15 mPa ⁇ s.
  • the viscosity is a value measured at 25 ° C. using a conical plate type rotational viscometer.
  • organic solvent used in the smoothing layer coating solution examples include 1,2-butanediol, 1,2-pentanediol, 1,3-butanediol, 1,3-propanediol, 1,4-butanediol, 1-octanol, 2-amino-2-methyl-1-propanol, 2,2 '-(n-butyl) iminodiethanol, 2-octanol, 2-dibutylaminoethanol, 2-pyrrolidone, 2-phenoxyethanol, 2-butanol 2-propanol, 2-methyl-1,3-propanediol, 2-methyl-1-propanol, 2-methyl-2,4-pentanediol (PD), 2-methylcyclohexanone, 3,3,5-trimethyl Cyclohexanone, 3,4-dimethylcyclohexanone, isophorone, 4-methylcyclohexanone, n-undec Alcohol, n-nonyl alcohol
  • the viscosity of the organic solvent is preferably in the range of 5 to 100 mPa ⁇ s. If the viscosity of the organic solvent is 5 mPa ⁇ s or more, the viscosity of the coating solution can be adjusted. If the viscosity of the organic solvent is 100 mPa ⁇ s or less, the miscibility with the binder (resin) and nanosol particles of the smoothing layer can be ensured, and a uniform coating solution can be obtained. Can be kept in.
  • the vapor pressure of the organic solvent is preferably in the range of 1.0 to 1000 Pa. If the vapor pressure of the organic solvent is 1.0 Pa or more, it can be dried using a wavelength-controlled infrared heater, and the residual solvent can be reduced. When the vapor pressure of the organic solvent is 1000 Pa or less, the drying rate of the smoothing layer coating liquid is suppressed, and clogging of the nozzle due to drying at the inkjet nozzle portion is improved.
  • a means for measuring the vapor pressure there are various methods such as a static method, a boiling point method, an isoteniscope, a gas flow method, a DSC method, etc., depending on the property of the sample, the sample amount, and the magnitude of the vapor pressure.
  • the method applied is different.
  • the solvent vapor pressure at 25 ° C. was measured using the “static method” with the widest application range.
  • the static method is a method in which the temperature is kept constant and the equilibrium vapor pressure at that temperature is directly measured using a pressure gauge.
  • Examples of the organic solvent having a preferable viscosity and vapor pressure used in the coating solution for the smoothing layer include 1,2-butanediol, 1,2-pentanediol, 1,3-butanediol, and 1,3-propanediol.
  • organic solvents may be used alone or in combination of two or more. Moreover, even if it is a solvent other than these, if the conditions of a viscosity and vapor pressure are satisfy
  • fills the said viscosity or vapor pressure may be comprised from 1 type of organic solvents, and may be comprised from 2 or more types of organic solvents.
  • two organic solvents whose viscosity or vapor pressure is not within the above range may be mixed so that the viscosity or vapor pressure in the mixed organic solvent is within the above range, or the viscosity may be
  • An organic solvent having a vapor pressure within the above range may be mixed with an organic solvent having a vapor pressure within the above range so as to satisfy both the viscosity and vapor pressure conditions.
  • the coating method for the smoothing layer coating liquid is characterized by coating using an inkjet coating method.
  • an inkjet head used in the inkjet coating method an on-demand system or a continuous system may be used.
  • Discharge methods include electro-mechanical conversion methods (eg, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), and electro-thermal conversion methods (eg, thermal Specific examples include an ink jet type, a bubble jet (registered trademark) type, an electrostatic suction type (for example, an electric field control type, a slit jet type, etc.), and a discharge type (for example, a spark jet type).
  • any discharge method may be used.
  • a serial head method, a line head method, or the like can be used without limitation.
  • (Iii) Drying step In the drying step, using a wavelength-controlled infrared heater that absorbs infrared rays, the coating solution after application is irradiated with infrared rays to dry the coating solution.
  • infrared rays having a central wavelength in the region of 1 to 3.5 ⁇ m and 70% or more of the integrated value of all outputs are irradiated in the region.
  • the central wavelength is in the region of 1 to 3.5 ⁇ m
  • the filament temperature is in the range of 450 to 2600 ° C., and such a temperature range is derived by the Wien displacement law.
  • the drying treatment conditions are not particularly limited, but the irradiation time can be adjusted by the surface temperature of the infrared filament and the wavelength control filter.
  • the filament temperature is in the range of 450 to 2600 ° C. (preferably 600 to 1200 ° C.)
  • the wavelength control filter surface temperature is less than 200 ° C. (preferably less than 150 ° C.)
  • the irradiation time is in the range of 10 seconds to 30 minutes.
  • the dried smoothing layer is cured by irradiating with excimer light having a wavelength in the range of 150 to 230 nm.
  • the light source used for curing include a mercury lamp, a metal halide lamp, and an excimer lamp (wavelength 177 nm or wavelength 222 nm). Among these, an excimer lamp (wavelength 222 nm) is preferable.
  • the exposure amount is preferably in the range of 100 to 10000 mJ, more preferably in the range of 300 to 8000 mJ, and particularly preferably in the range of 400 to 6000 mJ. If the exposure amount is 100 mJ or more, the coating film can be effectively cured, and if the exposure amount is 10000 mJ or less, the organic matter on the coating film surface is not destroyed and the refractive index can be prevented from decreasing. it can.
  • An example of such an irradiation apparatus is a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm.
  • Noble gas atoms such as Xe, Kr, Ar, Ne, etc. are called inert gases because they are not chemically bonded to form molecules.
  • rare gas atoms excited atoms
  • excimer light having a wavelength of 172 nm is emitted when the excited excimer molecule Xe 2 * transitions to the ground state, as shown in the following reaction formula.
  • the excimer lamp is characterized by high light generation efficiency because radiation concentrates on one wavelength and almost no light other than necessary is emitted. As a result, it is possible to light up with low power input. Further, light having a long wavelength that causes a temperature rise is not emitted, and energy is irradiated at a single wavelength in the ultraviolet region, so that the temperature of the object can be kept relatively low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • a dielectric barrier discharge lamp has a structure in which a discharge occurs between electrodes via a dielectric.
  • at least one electrode is disposed between a dielectric discharge vessel and the outside thereof. That's fine.
  • a dielectric barrier discharge lamp for example, a rare gas such as Xe is sealed in a double cylindrical discharge vessel composed of a thick tube and a thin tube made of quartz glass, and a net-like second discharge vessel is formed outside the discharge vessel.
  • a dielectric barrier discharge lamp generates a dielectric barrier discharge inside a discharge vessel by applying a high-frequency voltage or the like between electrodes, and generates excimer light when excimer molecules such as Xe generated by the discharge dissociate. .
  • the light scattering layer has a structure in which light scattering particles are dispersed in a binder.
  • an organic-inorganic hybrid polymer having an organic polymer structure and a polysiloxane structure is preferable.
  • the refractive index of the organic-inorganic hybrid polymer without light scattering particles is about 1.5, but by dispersing the light scattering particles in an appropriate amount, the refractive index of the light scattering layer may be 1.5 or more. it can.
  • the light scattering particles are almost transparent, light is hardly absorbed by the light scattering particles, so that the light extraction efficiency is not lowered.
  • the light scattering particles having such a size that light is scattered are used, the light scattering effect of the waveguide mode can be obtained, and more light can be extracted.
  • the refractive index of the light scattering layer is preferably a high refractive index layer in the range of 1.7 to 2.0, like the smoothing layer.
  • the way of thinking of the refractive index when forming with the mixture is the same as in the case of the smoothing layer.
  • Organic polymer structure As the organic polymer structure of the organic-inorganic hybrid polymer, a known polymer can be used without particular limitation. For example, an alkyl group, an aryl group, an araalkyl group, a cycloalkyl group, an amino group.
  • hydrophilic polymers examples include water-soluble polymers, water-dispersible polymers, colloid-dispersible polymers, or mixtures thereof.
  • examples of these polymers include acrylic, polyester, polyamide, polyurethane, and fluorine polymers such as polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, and polyacryl.
  • polymer components such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, and water-soluble polyvinyl butyral. These polymers may be used independently and may have 2 or more types.
  • polysiloxane structure examples include polysiloxane (including polysilsesquioxane) having a Si—O—Si bond.
  • the polysiloxane may contain [R 3 SiO 1/2 ], [R 2 SiO], [RSiO 3/2 ] and [SiO 2 ] as general structural units.
  • R represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, etc.), an aryl group (for example, a phenyl group), an unsaturated alkyl group (for example, a vinyl group). Etc.) are independently selected.
  • Examples of specific polysiloxane structures include [PhSiO 3/2 ], [MeSiO 3/2 ], [HSiO 3/2 ], [MePhSiO], [Ph 2 SiO], [PhViSiO], [ViSiO 3/2 ].
  • Vi represents a vinyl group
  • [MeHSiO] [MeViSiO]
  • [Me 2 SiO] [Me 3 SiO 1/2 ] and the like.
  • Mixtures and copolymers of polysiloxanes can also be used.
  • the light-scattering particles contained in the light-scattering layer are preferably transparent particles having an average particle size equal to or greater than the region that causes Mie scattering in the visible light region.
  • the lower limit is preferably 0.2 ⁇ m or more.
  • the upper limit of the average particle diameter is not particularly limited as long as the effect of the present invention is not impaired.
  • the average particle diameter in the present invention can be measured by, for example, an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or image processing of an electron micrograph.
  • the light scattering particle is not particularly limited and may be appropriately selected depending on the purpose.
  • the light scattering particle may be an organic fine particle or an inorganic fine particle, and among them, an inorganic fine particle having a high refractive index may be used. preferable.
  • organic fine particles having a high refractive index include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, crosslinked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
  • the inorganic fine particles having a high refractive index examples include inorganic oxide particles made of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony and the like.
  • Specific examples of the inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, SiO 2 , ZrSiO 4 , zeolite.
  • TiO 2 , BaTiO 3 , ZrO 2 , ZnO and SnO 2 are preferable, and TiO 2 is most preferable.
  • rutile type is preferable to anatase type because the weather resistance of the light scattering layer and the adjacent layer is high because the catalytic activity is low, and the refractive index is high.
  • these light scattering particles may be subjected to a surface treatment on the particle surface from the viewpoint of improving the dispersibility and stability of the dispersion when dispersed in a binder.
  • the surface treatment material include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types. Among these, from the viewpoint of the stability of the dispersion, the surface treatment material is preferably a different inorganic oxide and / or metal hydroxide, more preferably a metal hydroxide.
  • the coating amount (in general, this coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle to the mass of the particles). Is preferably in the range of 0.01 to 99% by mass.
  • the coating amount of the surface treatment material is 0.01% by mass or more, the effect of improving the dispersibility and stability by the surface treatment can be sufficiently obtained.
  • the coating amount is 99% by mass or less, the refractive index of the light scattering layer having a high refractive index can be kept high.
  • quantum dots described in International Publication No. 2009/014707, US Pat. No. 6,608,439, and the like can be suitably used.
  • the light scattering particles preferably have a refractive index of 1.7 or more, more preferably 1.85 or more, and particularly preferably 2.0 or more. If the refractive index is 1.7 or more, a sufficient difference in refractive index with respect to the binder can be obtained, and the effect of improving the light extraction efficiency can be obtained without reducing the amount of light scattering.
  • the upper limit of the refractive index of the light scattering particles is preferably less than 3.0. If the refractive index is less than 3.0, multiple scattering in the layer is suppressed, and transparency is not lowered.
  • light scattering particles are actually polydisperse particles and difficult to arrange regularly, they have a diffraction effect locally, but in many cases, the light extraction efficiency is changed by changing the direction of light by diffusion. To improve.
  • the method for producing a light scattering layer according to the present invention mainly comprises: (I) applying a coating liquid in which light scattering particles are dispersed in a binder on a resin substrate to form a light scattering layer; (Ii) heating the light scattering layer within a range of 100 to 280 ° C., or irradiating excimer light having a wavelength within a range of 150 to 230 nm;
  • the present invention is not particularly limited thereto.
  • each step will be described.
  • the light scattering layer is formed by applying a coating liquid in which light scattering particles are dispersed in a binder serving as a medium on a resin substrate.
  • the coating method of the coating liquid includes a roll coating method, a bar coating method, a casting method, a die coating method, Various coating methods such as a blade coating method, a curtain coating method, a spray coating method, and a doctor coating method can be used.
  • the light scattering layer according to the present invention is preferably cured after drying.
  • a drying apparatus used for drying the light scattering layer a commonly used drying apparatus can be used, and examples thereof include a contact hot plate and a non-contact IR heater. These apparatuses can be used without any particular limitation as long as they can heat the coating film.
  • (Ii-2) Step of curing light scattering layer The light scattering layer according to the present invention is cured by irradiating excimer light having a wavelength within the range of 150 to 230 nm described above, instead of the drying step. Is preferred.
  • the second electrode has a role as a cathode and a role as a mirror that reflects light toward the resin substrate.
  • a metal material having a reflectance of 60% or more such as aluminum, silver, nickel, titanium, sodium, calcium, or an alloy containing any of them can be used.
  • the organic functional layer is a single layer or a plurality of layers made of an organic compound or a complex including a light emitting layer.
  • a lithium fluoride layer, an inorganic metal salt layer, a layer containing them, or the like may be formed at an arbitrary position.
  • the light-emitting layer is made of at least one light-emitting material, and a fluorescent compound, a phosphorescent compound, or the like can be used as the light-emitting material.
  • the configuration of the organic functional layer for example, the following configurations (i) to (v) can be adopted including the above-described configuration.
  • a configuration in which two sets of organic functional layers are stacked or a configuration in which three sets of organic functional layers are stacked can be employed. With such a configuration, light can be emitted more efficiently.
  • the hole transport layer is made of a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons but having a remarkably small ability to transport holes. By preventing this, the recombination probability between electrons and holes can be improved.
  • the hole injection layer and the electron injection layer are layers provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the first electrode is an electrode opposite to the second electrode, and as a constituent material thereof, for example, a conductive transparent material having a transmittance of 40% or more such as CuI, ITO, SnO 2 , ZnO, indium zinc oxide (IZO), etc. Can be used.
  • the first electrode may be a transparent electrode containing silver or an alloy containing silver as a main component.
  • the main component means a component having the highest component ratio among the components constituting the first electrode.
  • the composition ratio is preferably 60% by mass or more, more preferably 90% by mass or more, and particularly preferably 98% by mass or more.
  • the transparency of the transparent electrode means that the light transmittance at a wavelength of 550 nm is 50% or more.
  • the first electrode may have a configuration in which silver or an alloy layer mainly containing silver is divided into a plurality of layers as necessary. Furthermore, the first electrode preferably has a thickness in the range of 4 to 9 nm. When the thickness is less than 9 nm, the absorption component or reflection component of the layer is small, and the transmittance of the transparent electrode is increased. Further, when the thickness is thicker than 4 nm, sufficient conductivity of the layer can be ensured.
  • Examples of the alloy mainly composed of silver (Ag) constituting the first electrode include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.
  • a method using a wet process such as a coating method, an ink jet method, a coating method, a dipping method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc.
  • a method using a dry process such as a coating method, an ink jet method, a coating method, a dipping method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc.
  • the vapor deposition method is preferably applied.
  • the resin substrate holds the entire organic EL element and transmits light.
  • a transparent material such as a resin having a thickness in the range of 0.05 to 1 mm can be used.
  • a resin substrate is preferably used. If a flexible film-like material such as a resin film is used as the substrate, continuous production is possible, and the production volume can be dramatically improved.
  • the surface light source can be curved and light can be emitted in various directions, so that an unprecedented light source can be created.
  • the weight is light and the range of use is greatly expanded.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (
  • the tensile strength is in the range of 20 to 80 kg / mm 2
  • the elastic modulus in an arbitrary direction parallel to the substrate surface is in the range of 1000 to 2500 kg / mm 2 . It is preferable that the breaking elongation in an arbitrary direction parallel to the substrate surface is 5% or more.
  • a film made of an inorganic material, an organic material, or a hybrid thereof may be formed on the surface of the substrate.
  • Such a film has a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 of 1 ⁇ 10 ⁇ 3 g / (M 2 ⁇ 24h)
  • the following is a gas barrier film, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 -3 ml / (m 2 ⁇ 24h ⁇ atm) or less, and water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) is a high gas barrier film having 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. Those are preferred.
  • any material having a function of suppressing the intrusion of moisture, oxygen, or the like that deteriorates the element may be used.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the laminated structure can be formed, for example, by alternately laminating inorganic layers and organic layers a plurality of times.
  • Examples of a method for forming a gas barrier film include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma polymerization method. , Plasma CVD method, laser CVD method, thermal CVD method, coating method and the like.
  • the refractive index of the resin substrate is around 1.5.
  • a known lens sheet, prism sheet, or the like can be provided on the resin substrate.
  • the organic EL element is configured by laminating the first electrode, the organic functional layer, and the second electrode on the resin substrate.
  • a part of the first electrode is exposed at one end, and a part of the second electrode is exposed at the other end to form an electrode part.
  • a UV curable organic product manufactured by JSR Corporation on one side of a polyethylene naphthalate film made by Teijin DuPont Films Ltd., extremely low heat yield PEN Q83
  • a polyethylene naphthalate film made by Teijin DuPont Films Ltd., extremely low heat yield PEN Q83
  • OPSTAR Z7535 was applied so that the layer thickness after application and drying was 4 ⁇ m, and then cured conditions: 1.0 J / cm 2 , in an air atmosphere, using a high-pressure mercury lamp, drying conditions: 80 Curing was carried out at 3 ° C. for 3 minutes to form a bleed-out prevention layer.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the opposite surface of the resin substrate so that the layer thickness after application and drying is 4 ⁇ m, and then drying conditions; 80 After drying at 3 ° C. for 3 minutes, curing was carried out under an air atmosphere using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a flat layer.
  • the maximum cross-sectional height Rt (p) of the obtained flat layer was 16 nm with a surface roughness specified by JIS B 0601.
  • the surface roughness was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII.
  • the measurement range for one time was 10 ⁇ m ⁇ 10 ⁇ m, the measurement location was changed, and the measurement was performed three times.
  • the average of the Rt values obtained in each measurement was taken as the measurement value.
  • the thickness of the resin substrate produced as described above was 133 ⁇ m.
  • the first gas barrier layer was applied to the surface of the flat layer of the resin substrate with a coating solution containing an inorganic precursor compound using a vacuum extrusion type coater so that the dry layer thickness was 150 nm.
  • the coating solution containing the inorganic precursor compound is a non-catalytic perhydropolysilazane 20% by mass dibutyl ether solution (AZ Electronic Materials Co., Ltd. Aquamica NN120-20) and an amine catalyst containing 5% by mass solids.
  • Hydropolysilazane 20% by weight dibutyl ether solution (Aquamica NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) was used in combination, and after adjusting the amine catalyst to 1% by weight of solid content, it was further diluted with dibutyl ether. This was prepared as a 5% by mass dibutyl ether solution.
  • the film was dried under conditions of a drying temperature of 80 ° C., a drying time of 300 seconds, and a dew point of 5 ° C. in a dry atmosphere.
  • the resin substrate was gradually cooled to 25 ° C., and the coating surface was subjected to modification treatment by irradiation with vacuum ultraviolet rays in a vacuum ultraviolet irradiation apparatus.
  • a vacuum ultraviolet irradiation device an Xe excimer lamp having a double tube structure for irradiating vacuum ultraviolet rays of 172 nm was used.
  • the substrate on which the gas barrier layer was formed was dried in the same manner as described above, and further subjected to the second modification treatment under the same conditions to form a gas barrier layer having a dry layer thickness of 150 nm.
  • a second gas barrier layer was formed on the first gas barrier layer to produce a PEN substrate (film) having gas barrier properties.
  • the above PEN film with a gas barrier layer was cut to 60 mm ⁇ 80 mm, fixed to a Teflon (registered trademark) frame (equivalent to a tension of 100 N / m), and the following operation was performed.
  • the PEN substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, the following compound 10 is placed in a resistance heating boat made of tantalum, and these substrate holder and heating boat are vacuum deposited. Attached to the first vacuum chamber of the apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing the compound 10, and the deposition rate was within the range of 0.1 to 0.2 nm / second.
  • a base layer made of the compound 10 having a layer thickness of 25 nm was provided on the substrate.
  • the substrate formed up to the base layer is transferred to the second vacuum chamber while being vacuumed, the second vacuum chamber is depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then the heating boat containing silver is energized and heated, and the deposition rate is increased.
  • An electrode layer made of silver having a thickness of 8 nm is formed on a substrate (underlying layer) within a range of 0.1 to 0.2 nm / second, and a first electrode having a laminated structure of the underlayer and the electrode layer is produced. did.
  • the heating boat used was made of tungsten resistance heating material.
  • each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
  • a heating boat containing ⁇ -NPD represented by the following structural formula is energized and heated, and hole transport serving as both a hole injecting layer and a hole transporting layer made of ⁇ -NPD
  • the injection layer was formed on the electrode layer constituting the first electrode. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 140 nm.
  • each of the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were energized independently, respectively.
  • a light emitting layer composed of the light emitting compound Ir-4 was formed on the hole transport injection layer.
  • the layer thickness was 30 nm.
  • a hole-blocking layer made of BAlq was formed on the light-emitting layer by heating by heating a heating boat containing BAlq represented by the following structural formula as a hole-blocking material.
  • the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
  • a heating boat containing tris (8-quinolinol) aluminum (Alq 3 ) as an electron transporting material and a heating boat containing potassium fluoride are energized independently to each other, and consist of Alq 3 and potassium fluoride.
  • An electron transport layer was formed on the hole blocking layer.
  • the layer thickness was 30 nm.
  • a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer.
  • the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
  • the second electrode side of the organic EL element 101 was covered with an epoxy resin having a thickness of 300 ⁇ m, further covered with an aluminum foil having a thickness of 12 ⁇ m, and then cured and sealed. Sealing was performed in a glove box (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
  • the above-mentioned TiO 2 particles and a solvent are mixed and cooled at room temperature, and then the standard of the microchip step (SM-3 MSmm 3 mm ⁇ ) is applied to an ultrasonic disperser (SMH UH-50). Dispersion was added for 10 minutes under the conditions to prepare a TiO 2 dispersion. Next, while stirring the TiO 2 dispersion at 100 rpm, the resin was mixed and added little by little. After the addition was completed, the stirring speed was increased to 500 rpm, and the mixture was mixed for 10 minutes, and then a hydrophobic PVDF 0.45 ⁇ m filter (manufactured by Whatman). The desired coating solution for light scattering layer was obtained.
  • SSH UH-50 ultrasonic disperser
  • the coating solution on the PEN substrate by the ink jet coating method After applying the coating solution on the PEN substrate by the ink jet coating method, it is simply dried (80 ° C., 2 minutes), and further subjected to a drying treatment for 5 minutes under an output condition of a substrate temperature of less than 80 ° C. by wavelength control IR described later. Executed.
  • Excimer irradiation equipment MODEL MEIRH-M-1-200-222-H-KM-G, wavelength 222 nm, lamp filled gas KrCl ⁇ Reforming treatment conditions> Excimer light intensity 2J / cm 2 (222nm) Stage heating temperature 60 °C Oxygen concentration in the irradiation device
  • the high refractive index UV curable resin and the solvent are mixed, mixed at 500 rpm for 1 minute, and then filtered through a hydrophobic PVDF 0.45 ⁇ m filter (manufactured by Whatman) for the intended smoothing layer.
  • a coating solution was obtained.
  • simple drying 80 ° C., 2 minutes
  • a drying process was performed for 5 minutes under an output condition with a substrate temperature of less than 80 ° C. by wavelength control IR. .
  • the drying process was performed by attaching two quartz glass plates that absorb infrared rays having a wavelength of 3.5 ⁇ m or more to an IR irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.) using a wavelength-controlled infrared heater, and glass. Flowing cooling air between the plates). At this time, the cooling air was set at 200 L / min, and the tube surface quartz glass temperature was suppressed to less than 120 ° C.
  • the substrate temperature was measured by placing K thermocouples on the upper and lower surfaces of the substrate and 5 mm above the substrate and connecting them to NR2000 (manufactured by Keyence Corporation).
  • the curing reaction was promoted under the following modification treatment conditions, a smoothing layer having a layer thickness of 0.7 ⁇ m was formed, and a light extraction layer having a two-layer structure of a light scattering layer and a smoothing layer was produced.
  • Excimer irradiation equipment MODEL MEIRH-M-1-200-222-H-KM-G, wavelength 222 nm, lamp filled gas KrCl ⁇ Reforming treatment conditions> Excimer light intensity 2J / cm 2 (222nm) Stage heating temperature 60 °C Oxygen concentration in the irradiation device
  • the refractive index of the smoothing layer single layer was 1.89.
  • the light extraction layer produced as described above had a transmittance T of 67% and a haze value Hz of 50%.
  • a haze value is a haze value as a light extraction layer which laminated
  • the refractive index at a wavelength of 550 nm of the entire light extraction layer was measured using a sopra ellipsometer based on D542, and found to be 1.88.
  • Organic EL Element 103 In production of the organic EL element 102, the solvent ratio of propylene glycol monomethyl ether and 2-methyl-2,4-pentanediol as the organic solvent of the smoothing layer coating solution is 70 mass.
  • the organic EL element 103 was produced in the same manner except that an organic solvent of% / 30% by mass was used and the formulation was formulated at a ratio of 10 ml so that the solid content concentration was 12% by mass.
  • organic EL element 104 In the preparation of the organic EL element 102, the solvent ratio of propylene glycol monomethyl ether and 2-methyl-2,4-pentanediol as the organic solvent of the smoothing layer coating solution was 30 mass.
  • the organic EL element 104 was produced in the same manner except that the organic solvent was% / 70% by mass and the formulation was designed in a ratio of 10 ml so that the solid content concentration was 12% by mass.
  • organic EL element 105 In the preparation of organic EL element 102, the organic solvent of the smoothing layer coating solution is only 2-methyl-2,4-pentanediol, so that the solid content concentration is 12% by mass. In addition, the organic EL element 105 was produced in the same manner except that the formulation was designed in a ratio of 10 ml.
  • organic EL element 107 In preparation of organic EL element 102, the organic solvent of the coating solution for the smoothing layer is only 1,5-pentanediol, and the amount of 10 ml so that the solid content concentration is 12% by mass.
  • the organic EL element 107 was produced in the same manner except that the prescription was designed at the ratio.
  • the drawing conditions of the ink jet coating method were an appropriate liquid amount of 40.0 ng by adjusting the applied voltage, a resolution of 360 dpi ⁇ 450 dpi, and single pass printing for each pattern film.
  • the substrate temperature was maintained at 25 ° C. during printing.
  • Immediately after printing by inkjet it was dried for 10 minutes at an output of 100% (2 kW) using a wavelength control IR heater manufactured by NGK. Density unevenness was visually evaluated according to the following evaluation criteria for the pattern recorded on the PEN film. The evaluation results are shown in Table 1. In addition, the thing of the evaluation criteria 3 was set as the pass.
  • the film formability is an index representing the state when the coating liquid is applied on the substrate.
  • the coating film is preferably uniformly coated. When uneven coating, repelling, streaks, etc. occur, not only the original function of the light scattering layer is exhibited, but also the light emitting efficiency of the organic EL element itself decreases. May end up. Then, about each produced organic EL element, the film-forming state of the smoothing layer was evaluated visually according to the following evaluation criteria. The evaluation results are shown in Table 1. In addition, the thing of the evaluation criteria 3 was set as the pass.
  • the organic EL elements 103 to 106 of the present invention are more stable than the organic EL elements 101, 102, and 107 of the comparative examples in terms of ejection stability, density unevenness, It turns out that it is excellent in all of film forming property and the luminous efficiency of an organic EL element.
  • organic EL element 202 Preparation of organic EL element 202
  • the organic solvent of the smoothing layer coating solution is only toluene, and the formulation is designed in a ratio of 10 ml so that the solid content concentration is 12% by mass.
  • An organic EL element 202 was produced in the same manner except that.
  • organic EL element 203 Preparation of organic EL element 203
  • the organic solvent of the smoothing layer coating solution is only 2-butanol, and the solid content concentration is 12% by mass at a ratio of 10 ml.
  • An organic EL device 203 was produced in the same manner except that the formulation was designed.
  • organic EL element 204 In preparation of the organic EL element 201, the organic solvent of the coating solution for the smoothing layer is only tetrahydrofurfuryl alcohol (THFA), and 10 ml so that the solid content concentration is 12% by mass.
  • THFA tetrahydrofurfuryl alcohol
  • An organic EL element 204 was produced in the same manner except that the formulation was designed according to the ratio of the amounts.
  • organic EL element 205 In preparation of the organic EL element 201, the organic solvent of the smoothing layer coating solution is only 2-methyl-2,4-pentanediol (PD), and the solid content concentration is 12% by mass. Thus, an organic EL element 205 was produced in the same manner except that the formulation was designed at a ratio of 10 ml.
  • PD 2-methyl-2,4-pentanediol
  • organic EL element 206 In production of the organic EL element 201, the organic solvent of the smoothing layer coating solution is only tetraethylene glycol, and the solid content concentration is 12% by mass in a ratio of 10 ml. An organic EL element 206 was produced in the same manner except that the formulation was designed.
  • organic EL element 207 In preparation of organic EL element 201, the organic solvent of the smoothing layer coating solution is only 1,3-butanediol, and the solid content concentration is 12% by mass.
  • the organic EL element 207 was produced in the same manner except that the prescription was designed at the ratio.
  • the organic EL elements 204 to 207 and 209 of the present invention are more stable than the organic EL elements 201 to 203 and 208 of the comparative example in terms of ejection stability and concentration. It turns out that it is more excellent in all of nonuniformity, film-forming property, and the luminous efficiency of an organic EL element.
  • the organic EL elements 204, 205, 207, and 209 have greatly improved luminous efficiency compared to the organic EL element 206. From the above, it has been confirmed that the use of an organic solvent having a viscosity and vapor pressure within a certain range as the organic solvent contained in the smoothing layer is more useful for improving the light extraction efficiency.
  • the present invention provides a method for manufacturing a flexible organic EL element that reduces waveguide loss and improves light extraction efficiency without impairing light transmittance, and a coating liquid used in the manufacturing method. In particular, it can be suitably used.

Abstract

An objective of the present invention is to provide a method for producing a flexible organic EL element whereby waveguide loss is reduced and light extraction efficiency is improved without loss of optical transparency. This organic EL element production method comprises a step of forming a light-scattering layer over a resin substrate and a step of forming a smoothing layer over the light-scattering layer, characterized by having in the step of forming the smoothing layer: a step of preparing a coat solution having a viscosity in the range of 3 to 30 mPa・s and containing high-refractive index nanosol particles, a binder and an organic solvent, a step of applying the coat solution by an inkjet coating method, a step of drying the applied coat solution by irradiating with a wavelength-controlled infrared radiation, and a step of curing the dried coat solution by irradiating with an excimer beam.

Description

有機エレクトロルミネッセンス素子の製造方法、及び塗布液Manufacturing method of organic electroluminescence device and coating liquid
 本発明は、有機エレクトロルミネッセンス素子の製造方法、及び塗布液に関する。より詳しくは、光透過性を損なうことなく、導波損失を低減し、光取り出し効率を向上させる、フレキシブル性を有する有機EL素子の製造方法、及び当該製造方法に用いられる塗布液に関する。 The present invention relates to a method for producing an organic electroluminescence element and a coating solution. More specifically, the present invention relates to a method for manufacturing a flexible organic EL element that reduces waveguide loss and improves light extraction efficiency without impairing light transmittance, and a coating liquid used in the manufacturing method.
 有機材料のエレクトロルミネッセンス(electroluminescence:EL)を利用した有機エレクトロルミネッセンス素子(有機EL素子)は、数V~数十V程度の低電圧で発光が可能な薄膜型の完全固体素子であり、高輝度、高発光効率、薄型、軽量といった多くの優れた特徴を有している。このため、各種ディスプレイのバックライト、看板や非常灯等の表示板、照明光源等の面発光体として近年注目されている。一方、有機EL素子の光取り出し効率は20%程度であり、素子内での損失が大きいことが知られている。 Organic electroluminescence elements (organic EL elements) that use organic electroluminescence (EL) are thin-film, completely solid elements that can emit light at a low voltage of several volts to several tens of volts, and have high brightness. It has many excellent features such as high luminous efficiency, thinness and light weight. For this reason, it has been attracting attention in recent years as surface light emitters such as backlights for various displays, display boards such as signboards and emergency lights, and illumination light sources. On the other hand, the light extraction efficiency of the organic EL element is about 20%, and it is known that the loss in the element is large.
 図2は、従来の有機EL素子の概略断面図である。有機EL素子300は、図中の下層から順に、金属電極302、屈折率が約1.8の有機機能層304、屈折率が約1.8の透明電極306、屈折率が約1.5の透明基板308が積層されて構成される。なお、図中の符号310a~310eで表される矢印は、有機機能層304から発生した光のうち特徴的なものを示している。 FIG. 2 is a schematic cross-sectional view of a conventional organic EL element. The organic EL element 300 includes a metal electrode 302, an organic functional layer 304 having a refractive index of approximately 1.8, a transparent electrode 306 having a refractive index of approximately 1.8, and a refractive index of approximately 1.5 in order from the lower layer in the drawing. A transparent substrate 308 is laminated. Note that arrows represented by reference numerals 310a to 310e in the drawing indicate characteristic light among the light generated from the organic functional layer 304.
 光310aは、有機機能層304の発光面に対して垂直方向の光であり、透明基板308を透過して光取り出し側(空気側)に取り出される。
 光310bは、透明基板308と空気との界面に臨界角以下の浅い角度で入射した光であり、透明基板308と空気との界面で屈折して光取り出し側に取り出される。
 光310cは、透明基板308と空気との界面に臨界角より深い角度で入射した光であり、透明基板308と空気との界面で全反射して光取り出し側に取り出せない光である。これによる損失を基板損失と呼び、通常20%程度の損失がある。
 光310dは、透明電極306と透明基板308との界面に臨界角より深い角度で入射した光のうち共振条件を満たした光であり、透明電極306と透明基板308との界面で全反射して導波モードが発生し、有機機能層304及び透明電極306内に閉じ込められる光である。これによる損失を導波損失と呼び、通常20~25%程度の損失がある。
 光310eは、金属電極302へ入射して金属電極302内の自由電子と作用し、導波モードの一種であるプラズモンモードが発生して、金属電極302の表面近傍に閉じ込められる光である。これによる損失をプラズモン損失と呼び、通常30~40%程度の損失がある。
The light 310a is light perpendicular to the light emitting surface of the organic functional layer 304, and is transmitted through the transparent substrate 308 and extracted to the light extraction side (air side).
The light 310b is light that is incident on the interface between the transparent substrate 308 and air at a shallow angle less than the critical angle, and is refracted at the interface between the transparent substrate 308 and air and extracted to the light extraction side.
The light 310c is light that is incident on the interface between the transparent substrate 308 and air at an angle deeper than the critical angle, and is light that is totally reflected at the interface between the transparent substrate 308 and air and cannot be extracted to the light extraction side. The loss due to this is called substrate loss, and there is usually a loss of about 20%.
The light 310 d is light that satisfies the resonance condition among light incident on the interface between the transparent electrode 306 and the transparent substrate 308 at an angle deeper than the critical angle, and is totally reflected at the interface between the transparent electrode 306 and the transparent substrate 308. The light is generated in a guided mode and is confined in the organic functional layer 304 and the transparent electrode 306. The loss due to this is called waveguide loss, and there is usually a loss of about 20-25%.
The light 310 e is light that enters the metal electrode 302 and interacts with free electrons in the metal electrode 302 to generate a plasmon mode, which is a kind of waveguide mode, and is confined in the vicinity of the surface of the metal electrode 302. This loss is called plasmon loss, and there is usually a loss of about 30-40%.
 このように、従来の有機EL素子300においては、基板損失、導波損失及びプラズモン損失があることから、それらの損失を少なくすれば、より多くの光を取り出すことが可能となる。 Thus, in the conventional organic EL element 300, there are substrate loss, waveguide loss, and plasmon loss. Therefore, if these losses are reduced, more light can be extracted.
 光取り出し効率を向上させることを目的として、透明電極と基板との間に、光を取り出すための光取り出し層を積層した構成を有する有機EL素子が従来知られている。
 従来考えられてきた光取り出し層の成膜方法としては、熱硬化性樹脂を用い、加熱することで塗膜を硬化させる方法が一般的である。これは、ガラス基板であるがゆえに実現できたものである。また、塗布方法としては、スピン塗布やスロットダイ塗布が一般的である。これも表面平滑性に問題のないガラス基板だからこそ用いることができる塗布方法といえる。
For the purpose of improving the light extraction efficiency, an organic EL element having a structure in which a light extraction layer for extracting light is laminated between a transparent electrode and a substrate is conventionally known.
As a conventional method for forming a light extraction layer, a method of using a thermosetting resin and curing the coating film by heating is common. This can be realized because it is a glass substrate. As a coating method, spin coating or slot die coating is generally used. This can also be said to be a coating method that can be used because it is a glass substrate having no problem in surface smoothness.
 一方で、近年、有機EL素子には従来の照明やLED照明にはない、光源自体を曲げられる、フレキシブルな特性が求められるようになってきた。このようなフレキシブルな特性の実現は、基板にガラスを使用している限り困難である。ガラスにフレキシブル性を持たせるために極薄ガラス基板も考案されているが、割れやすいために取り扱いが困難であり、量産品に使用するには限界がある。 On the other hand, in recent years, organic EL elements have been required to have flexible characteristics that can bend the light source itself, which is not found in conventional lighting and LED lighting. Realization of such flexible characteristics is difficult as long as glass is used for the substrate. An ultra-thin glass substrate has been devised to give glass flexibility, but it is difficult to handle because it is easily broken, and there is a limit to use it for mass-produced products.
 これに対し、樹脂素材であれば元々柔軟性を有しており、割れることもなく、ガラスに匹敵するほど透明性の高い素材もある。これら樹脂を主成分とした基板を用いれば、フレキシブル性を有した有機EL素子を作製することが可能となる。しかし、樹脂素材は、有機物であることから熱に弱い。 In contrast, resin materials are inherently flexible and do not break, and some materials are as transparent as glass. If a substrate containing these resins as a main component is used, an organic EL element having flexibility can be manufactured. However, since the resin material is organic, it is vulnerable to heat.
 以上のように、有機EL素子にフレキシブル性を持たせるためには、樹脂基板を用い、インクジェット塗布法等を使用して、熱硬化性樹脂以外の樹脂を用いて光取り出し層を作製することが必要となる。これら条件の中でも特に困難であったのが、熱硬化性樹脂以外の樹脂をインクジェット塗布法により塗布成膜することであった。 As described above, in order to give flexibility to the organic EL element, it is possible to produce a light extraction layer using a resin substrate and using a resin other than the thermosetting resin by using an inkjet coating method or the like. Necessary. Among these conditions, it was particularly difficult to apply and film a resin other than a thermosetting resin by an ink jet coating method.
 通常、熱硬化性樹脂以外の樹脂といえば、紫外線硬化性樹脂が挙げられるが、紫外線硬化性樹脂はモノマーからなることが一般的である。この紫外線硬化性樹脂を含む塗布液は、インクジェット塗布法で使用するには粘度が低い。また、硬膜させるためには乾燥工程が必要となるが、乾燥に通常の加熱方式を使用すると、樹脂基板が熱により変形してしまい、有機EL素子としての性能や歩留まりが大幅に低下してしまう。このため、有機EL素子にフレキシブル性を持たせるためには、従来にない素材、プロセス条件を考案する必要があった。 Usually, an ultraviolet curable resin is mentioned as a resin other than the thermosetting resin, but the ultraviolet curable resin is generally made of a monomer. The coating solution containing this ultraviolet curable resin has a low viscosity for use in the inkjet coating method. In addition, a drying process is required to harden the film, but if a normal heating method is used for drying, the resin substrate is deformed by heat, and the performance and yield as an organic EL element are greatly reduced. End up. For this reason, in order to give an organic EL element flexibility, it has been necessary to devise materials and process conditions that have not existed in the past.
 例えば、特許文献1には、粒子分散物塗布液の粘度を規定し、塗布方式としてスプレー塗布、インクジェット塗布法で光取り出し層を成膜する技術が開示されている。
 ところで、光取り出し層の構成としては、光散乱層と、高屈折率を有し、かつ電極の成膜性の観点から表面に極めて平滑性が求められる、精密塗布が必要な平滑化層と、を有する2層積層構造が知られているが、上記特許文献1に開示されている光取り出し層の成膜技術は、いわゆる光散乱層に対するものであり、平滑化層に対するものではない。
For example, Patent Document 1 discloses a technique for defining the viscosity of a particle dispersion coating liquid and forming a light extraction layer by spray coating or ink jet coating as a coating method.
By the way, as a structure of the light extraction layer, a light scattering layer, a smoothing layer having a high refractive index and requiring smoothness on the surface from the viewpoint of film forming properties of the electrode, which requires precise coating, However, the light extraction layer forming technique disclosed in Patent Document 1 is for a so-called light scattering layer and not for a smoothing layer.
 以上の理由から、フレキシブル性を実現させるために、成膜性、光学的な性能に優れた有機EL素子の製造方法が望まれていた。 For these reasons, a method for producing an organic EL element excellent in film formability and optical performance has been desired to realize flexibility.
欧州特許第1947910号明細書European Patent No. 1947910
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、光透過性を損なうことなく、導波損失を低減し、光取り出し効率を向上させる、フレキシブル性を有する有機EL素子の製造方法、及び当該製造方法に用いられる塗布液を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is a flexible organic EL that reduces waveguide loss and improves light extraction efficiency without impairing light transmittance. It is providing the coating liquid used for the manufacturing method of an element, and the said manufacturing method.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、樹脂基板上に、光散乱層、平滑化層、第1電極、有機機能層、及び第2電極が順次積層された有機EL素子の製造方法において、平滑化層を形成する工程では、高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内である塗布液を調製する工程と、塗布液をインクジェット塗布法により塗布する工程と、塗布後の塗布液に、波長制御赤外線を照射して乾燥する工程と、乾燥後の塗布液に、エキシマ光を照射して硬化する工程と、を有することにより、フレキシブル性を保持したままで、光透過性を損なうことなく、導波損失を低減し、光取り出し効率を向上させることができることを見出し、本発明に至った。 In order to solve the above-mentioned problems, the present inventor sequentially has a light scattering layer, a smoothing layer, a first electrode, an organic functional layer, and a second electrode on a resin substrate in a process of examining the cause of the above-described problem. In the method for producing a laminated organic EL device, in the step of forming a smoothing layer, it contains high-refractive-index nanosol particles, a binder, and an organic solvent, and has a viscosity in the range of 3 to 30 mPa · s. Excimer light is applied to the step of preparing a coating solution, the step of applying the coating solution by an ink jet coating method, the step of irradiating the coating solution after application with a wavelength-controlled infrared ray, and the coating solution after drying. And the step of curing by irradiation, it has been found that waveguide loss can be reduced and light extraction efficiency can be improved without impairing light transmittance while maintaining flexibility. It led to.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.樹脂基板上に、光散乱層、平滑化層、第1電極、有機機能層、及び第2電極が順次積層された有機エレクトロルミネッセンス素子の製造方法であって、
 前記樹脂基板上に、前記光散乱層を形成する工程と、
 前記光散乱層上に、前記平滑化層を形成する工程と、
を備え、
 前記平滑化層を形成する工程では、
 高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内である塗布液を調製する工程と、
 前記塗布液をインクジェット塗布法により塗布する工程と、
 塗布後の前記塗布液に、波長制御赤外線を照射して乾燥する工程と、
 乾燥後の前記塗布液に、エキシマ光を照射して硬化する工程と、
を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
1. A method for producing an organic electroluminescent element in which a light scattering layer, a smoothing layer, a first electrode, an organic functional layer, and a second electrode are sequentially laminated on a resin substrate,
Forming the light scattering layer on the resin substrate;
Forming the smoothing layer on the light scattering layer;
With
In the step of forming the smoothing layer,
A step of preparing a coating liquid containing high refractive index nanosol particles, a binder, and an organic solvent and having a viscosity in the range of 3 to 30 mPa · s;
Applying the coating solution by an ink jet coating method;
A step of irradiating the coating liquid after coating with a wavelength-controlled infrared ray and drying,
A step of irradiating and curing the coating liquid after drying with excimer light;
The manufacturing method of the organic electroluminescent element characterized by having.
 2.前記有機溶媒の粘度が、5~100mPa・sの範囲内であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子の製造方法。 2. 2. The method for producing an organic electroluminescent element according to item 1, wherein the viscosity of the organic solvent is in the range of 5 to 100 mPa · s.
 3.前記有機溶媒の蒸気圧が、1.0~1000Paの範囲内であることを特徴とする第1項又は第2項に記載の有機エレクトロルミネッセンス素子の製造方法。 3. 3. The method for producing an organic electroluminescent element according to item 1 or 2, wherein the vapor pressure of the organic solvent is in a range of 1.0 to 1000 Pa.
 4.高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内であることを特徴とする塗布液。 4. A coating liquid comprising nanosol particles having a high refractive index, a binder, and an organic solvent, and having a viscosity in the range of 3 to 30 mPa · s.
 5.前記有機溶媒の粘度が、5~100mPa・sの範囲内であることを特徴とする第4項に記載の塗布液。 5. Item 5. The coating solution according to Item 4, wherein the organic solvent has a viscosity in the range of 5 to 100 mPa · s.
 6.前記有機溶媒の蒸気圧が、1.0~1000Paの範囲内であることを特徴とする第4項又は第5項に記載の塗布液。 6. 6. The coating solution according to item 4 or 5, wherein the vapor pressure of the organic solvent is in the range of 1.0 to 1000 Pa.
 本発明の上記手段により、光透過性を損なうことなく、導波損失を低減し、光取り出し効率を向上させた、フレキシブル性を有する有機EL素子の製造方法、及び当該製造方法に用いられる塗布液を提供することができる。 By the above-described means of the present invention, a method for producing a flexible organic EL element having reduced waveguide loss and improved light extraction efficiency without impairing light transmittance, and a coating solution used in the production method Can be provided.
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 すなわち、有機EL素子の支持基板として、樹脂基板を用いて、インクジェット塗布法により紫外線硬化性樹脂等のバインダーを塗布、成膜することができれば、有機EL素子としてのフレキシブル性を保持させることができるが、紫外線硬化性樹脂等のバインダーを含む塗布液は、インクジェット塗布法で使用するには粘度が低いという問題があった。
 そこで、塗布液に有機溶媒を含有させることで、塗布液の粘度を所定の範囲に調整可能とし、フレキシブル性を保持したまま、有機EL素子の光取り出し効率を向上させることができたと考えられる。
That is, if a resin substrate is used as a support substrate of an organic EL element and a binder such as an ultraviolet curable resin can be applied and formed into a film by an ink jet coating method, flexibility as an organic EL element can be maintained. However, a coating solution containing a binder such as an ultraviolet curable resin has a problem of low viscosity when used in an inkjet coating method.
Therefore, it is considered that by incorporating an organic solvent in the coating solution, the viscosity of the coating solution can be adjusted within a predetermined range, and the light extraction efficiency of the organic EL element can be improved while maintaining flexibility.
本発明に係る有機EL素子の一例を示す概略断面図Schematic sectional view showing an example of an organic EL device according to the present invention 従来の有機EL素子の概略断面図Schematic sectional view of a conventional organic EL device
 本発明の有機EL素子の製造方法は、樹脂基板上に、光散乱層を形成する工程と、光散乱層上に、平滑化層を形成する工程と、を備え、平滑化層を形成する工程では、高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内である塗布液を調製する工程と、塗布液をインクジェット塗布法により塗布する工程と、塗布後の塗布液に、波長制御赤外線を照射して乾燥する工程と、乾燥後の塗布液に、エキシマ光を照射して硬化する工程と、を有することを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。 The method for producing an organic EL element of the present invention comprises a step of forming a light scattering layer on a resin substrate, and a step of forming a smoothing layer on the light scattering layer, and a step of forming the smoothing layer. Then, a step of preparing a coating solution containing high refractive index nanosol particles, a binder, and an organic solvent and having a viscosity in the range of 3 to 30 mPa · s, and coating the coating solution by an inkjet coating method The method includes a step, a step of irradiating the coating liquid after application with a wavelength-controlled infrared ray and drying, and a step of irradiating the coating liquid after drying with an excimer light and curing. This feature is a technical feature common to the inventions according to claims 1 to 6.
 本発明の実施態様としては、吐出安定性の観点から、有機溶媒の粘度が5~100mPa・sの範囲内であることが好ましい。 As an embodiment of the present invention, the viscosity of the organic solvent is preferably in the range of 5 to 100 mPa · s from the viewpoint of ejection stability.
 本発明の実施態様としては、ノズル詰まり防止の観点から、有機溶媒の蒸気圧が1.0~1000Paの範囲内であることが好ましい。 As an embodiment of the present invention, the vapor pressure of the organic solvent is preferably in the range of 1.0 to 1000 Pa from the viewpoint of preventing nozzle clogging.
 また、本発明の塗布液は、高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含み、かつ粘度が3~30mPa・sの範囲内である。
 本発明の実施態様としては、吐出安定性の観点から、有機溶媒の粘度が5~100mPa・sの範囲内であることが好ましく、更には、ノズル詰まりの防止の観点から、蒸気圧が1.0~1000Paの範囲内であることが好ましい。
The coating liquid of the present invention contains high refractive index nanosol particles, a binder, and an organic solvent, and has a viscosity in the range of 3 to 30 mPa · s.
In an embodiment of the present invention, the viscosity of the organic solvent is preferably in the range of 5 to 100 mPa · s from the viewpoint of ejection stability, and further, from the viewpoint of preventing nozzle clogging, the vapor pressure is 1. A range of 0 to 1000 Pa is preferable.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
≪有機EL素子の構成≫
 図1に、本発明に係る有機EL素子の構成として、その一例を示している。
 図1に示すとおり、有機EL素子100は、フレキシブル性を有する樹脂基板10上に、光取り出し層20、第1電極30、有機機能層40、第2電極50が順次積層され、構成されている。
 光取り出し層20は、光散乱層22及び平滑化層24から構成され、この順に樹脂基板10上に積層されている。
 有機機能層40は、正孔注入層41、正孔輸送層42、発光層43、電子輸送層44及び電子注入層45から構成され、この順に第1電極30上に積層されている。
≪Configuration of organic EL element≫
FIG. 1 shows an example of the configuration of the organic EL element according to the present invention.
As shown in FIG. 1, the organic EL element 100 is configured by laminating a light extraction layer 20, a first electrode 30, an organic functional layer 40, and a second electrode 50 on a resin substrate 10 having flexibility. .
The light extraction layer 20 includes a light scattering layer 22 and a smoothing layer 24, and is laminated on the resin substrate 10 in this order.
The organic functional layer 40 includes a hole injection layer 41, a hole transport layer 42, a light emitting layer 43, an electron transport layer 44, and an electron injection layer 45, and is stacked on the first electrode 30 in this order.
 以下、本発明に係る有機EL素子100を構成する各層について説明する。 Hereinafter, each layer constituting the organic EL element 100 according to the present invention will be described.
≪光取り出し層(20)≫
 光取り出し層は、樹脂基板と第1電極との間に設けられる層であり、樹脂基板側から順に、光散乱層と平滑化層とが積層された2層構造となっている。
 光取り出し層は、有機EL素子の発光層内に閉じ込められる導波モード光や第2電極から反射されるプラズモンモード光を取り出すために設けられる。
≪Light extraction layer (20) ≫
The light extraction layer is a layer provided between the resin substrate and the first electrode, and has a two-layer structure in which a light scattering layer and a smoothing layer are laminated in order from the resin substrate side.
The light extraction layer is provided to extract waveguide mode light confined in the light emitting layer of the organic EL element and plasmon mode light reflected from the second electrode.
<平滑化層(24)>
(1)平滑化層の構成及び特性
 本発明に係る平滑化層は、バインダー中に高屈折率のナノゾル粒子が含有された構成となっている。
 なお、本発明において、ナノゾル粒子とは、分散媒中に分散される粒径がナノ・メートル・オーダーの微粒子(コロイド状粒子)をいい、粒径が1~300nmの範囲内である粒子と定義される。粒子には、一つ一つばらばらの状態の粒子(1次粒子)と、凝集した状態の粒子(2次粒子)とが存在するが、本発明においては、2次粒子まで含めてナノゾル粒子と定義する。
<Smoothing layer (24)>
(1) Structure and characteristics of smoothing layer The smoothing layer according to the present invention has a structure in which nano-sol particles having a high refractive index are contained in a binder.
In the present invention, the nanosol particle is a fine particle (colloidal particle) having a particle size of nanometer order dispersed in a dispersion medium, and is defined as a particle having a particle size in the range of 1 to 300 nm. Is done. The particles include discrete particles (primary particles) and aggregated particles (secondary particles). In the present invention, the nanosol particles including the secondary particles Define.
 平滑化層に用いられるバインダーとしては、後述する光散乱層と同様のものも使用可能であるが、紫外線硬化性樹脂や電子線硬化性樹脂を用いることができる。中でも、紫外線硬化性樹脂は、有機溶媒により塗布液の物性を調整できるため、より好ましい。
 紫外線硬化性樹脂は、紫外線の光エネルギーによって僅か数秒で硬化するため、熱硬化方式と異なり、加熱によるダメージや変形が起こりにくいこと、効率よく製造できること、品質のバラツキがないこと、等の利点が挙げられる。これにより、樹脂基板を用いたときにも基板の変形が起こらないため、製造上トラブルが発生せず、また歩留まりを向上させることが可能となる。
As the binder used for the smoothing layer, the same light scattering layer as described later can be used, but an ultraviolet curable resin or an electron beam curable resin can be used. Among these, an ultraviolet curable resin is more preferable because the physical properties of the coating liquid can be adjusted with an organic solvent.
Because UV curable resin cures in just a few seconds with UV light energy, unlike thermosetting methods, it is less susceptible to damage and deformation due to heating, it can be manufactured efficiently, and there are no variations in quality. Can be mentioned. Thereby, since deformation of the substrate does not occur even when the resin substrate is used, no manufacturing trouble occurs, and the yield can be improved.
 平滑化層に含有される高屈折粒子としては、微粒子のナノゾルであることが好ましい。
 高屈折粒子の屈折率の下限としては、バルクの状態で1.7以上であることが好ましく、1.85以上であることがより好ましく、2.0以上であることが更に好ましく、2.5以上であることが特に好ましい。また、高屈折粒子の屈折率の上限としては、3.0以下であることが好ましい。高屈折粒子の屈折率が1.7以上であれば、本発明の目的効果を十分に発揮することができる。高屈折粒子の屈折率が3.0以下であれば、層中での多重散乱を抑制し、透明性を低下させることがない。
The highly refractive particles contained in the smoothing layer are preferably fine particle nanosols.
The lower limit of the refractive index of the highly refractive particles is preferably 1.7 or more in a bulk state, more preferably 1.85 or more, still more preferably 2.0 or more, and 2.5 The above is particularly preferable. In addition, the upper limit of the refractive index of the highly refractive particles is preferably 3.0 or less. If the refractive index of the highly refractive particles is 1.7 or more, the objective effect of the present invention can be sufficiently exhibited. When the refractive index of the highly refractive particles is 3.0 or less, multiple scattering in the layer is suppressed and transparency is not lowered.
 高屈折粒子の平均粒径としては、5~300nmの範囲内であることが好ましく、10~200nmの範囲内であることがより好ましく、20~100nmの範囲内であることが特に好ましい。高屈折粒子の平均粒径が5nm以上であれば、高屈折粒子が凝集するのを抑え、透明性を低下させることがない。また、高屈折粒子全体としての表面積が大きくならず、触媒活性を抑えるため、平滑化層や隣接する層の劣化を防止することができる。高屈折粒子の平均粒径が300nm以下であれば、平滑化層の透明性を低下させることがない。平均粒径の分布は、本発明の効果を損なわない限りにおいて特に制限されず、広くても狭くてもよいし、複数の分布を持っていてもよい。
 なお、本発明における平均粒径は、例えば、日機装社製ナノトラックUPA-EX150といった動的光散乱法を利用した装置や、電子顕微鏡写真の画像処理により測定することができる。
The average particle size of the highly refractive particles is preferably in the range of 5 to 300 nm, more preferably in the range of 10 to 200 nm, and particularly preferably in the range of 20 to 100 nm. If the average particle diameter of the high refractive particles is 5 nm or more, the high refractive particles are prevented from aggregating and the transparency is not lowered. In addition, the surface area of the high refractive particles as a whole is not increased, and the catalytic activity is suppressed, so that deterioration of the smoothing layer and adjacent layers can be prevented. When the average particle diameter of the highly refractive particles is 300 nm or less, the transparency of the smoothing layer is not lowered. The average particle size distribution is not particularly limited as long as the effect of the present invention is not impaired, and may be wide or narrow, or may have a plurality of distributions.
The average particle diameter in the present invention can be measured by, for example, an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or image processing of an electron micrograph.
 高屈折粒子の含有量の下限としては、全体質量に対して、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。また、高屈折粒子の含有量の上限としては、97質量%以下であることが好ましく、95質量%以下であることがより好ましい。高屈折粒子の含有量が50質量%以上であれば、平滑化層の屈折率を1.80以上とすることが容易となる。高屈折粒子の含有量が97質量%以下であれば、平滑化層の塗布法による作製に支障がなく、また、乾燥後の層の強度や耐屈曲性を低下させることがない。 The lower limit of the content of the highly refractive particles is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more with respect to the total mass. Further, the upper limit of the content of the highly refractive particles is preferably 97% by mass or less, and more preferably 95% by mass or less. If the content of the highly refractive particles is 50% by mass or more, it becomes easy to set the refractive index of the smoothing layer to 1.80 or more. When the content of the high refractive particles is 97% by mass or less, there is no hindrance to the production by the coating method of the smoothing layer, and the strength and bending resistance of the layer after drying are not lowered.
 高屈折率のナノゾル粒子としては、特に制限はなく、目的に応じて適宜選択することができ、有機微粒子であっても、無機微粒子であってもよいが、中でも高屈折率を有する無機微粒子であることが好ましい。
 高屈折率を有する有機微粒子としては、例えば、ポリメチルメタクリレートビーズ、アクリル-スチレン共重合体ビーズ、メラミンビーズ、ポリカーボネートビーズ、スチレンビーズ、架橋ポリスチレンビーズ、ポリ塩化ビニルビーズ、ベンゾグアナミン-メラミンホルムアルデヒドビーズ等が挙げられる。
 高屈折率を有する無機微粒子としては、例えば、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、スズ、アンチモン等の中から選ばれる少なくとも一つの酸化物からなる無機酸化物粒子が挙げられる。無機酸化物粒子としては、具体的には、ZrO、TiO、BaTiO、Al、In、ZnO、SnO、Sb、ITO(Indium Tin Oxide:インジウムチンオキサイド)、SiO、ZrSiO、ゼオライト等が挙げられ、中でも、TiO、BaTiO、ZrO、ZnO、SnOが好ましく、TiOが最も好ましい。また、TiOの中でも、アナターゼ型よりルチル型であることが、触媒活性が低いため光散乱層や隣接する層の耐候性が高くなり、更に屈折率が高いことから好ましい。
The high refractive index nanosol particles are not particularly limited and may be appropriately selected according to the purpose. The fine particles may be organic fine particles or inorganic fine particles. Preferably there is.
Examples of organic fine particles having a high refractive index include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, crosslinked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
Examples of the inorganic fine particles having a high refractive index include inorganic oxide particles made of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony and the like. Specific examples of the inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO (Indium Tin Oxide: indium tin oxide). ), SiO 2, ZrSiO 4, zeolite, and among them, TiO 2, BaTiO 3, ZrO 2, ZnO, SnO 2 are preferred, TiO 2 is most preferred. Further, among TiO 2 , rutile type is preferable to anatase type because the weather resistance of the light scattering layer and the adjacent layer is high because the catalytic activity is low, and the refractive index is high.
 また、これらの高屈折粒子は、バインダー中に分散させた際の分散液の分散性や安定性向上の観点から、粒子表面に表面処理を施してもよい。
 表面処理材としては、例えば、酸化ケイ素や酸化ジルコニウム等の異種無機酸化物、水酸化アルミニウム等の金属水酸化物、オルガノシロキサン、ステアリン酸等の有機酸等が挙げられる。これら表面処理材は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。中でも、分散液の安定性の観点から、表面処理材としては、異種無機酸化物及び/又は金属水酸化物が好ましく、金属水酸化物がより好ましい。
 無機酸化物粒子が、表面処理材で表面被覆処理されている場合、その被覆量(一般的に、この被覆量は、粒子の質量に対する当該粒子の表面に用いた表面処理材の質量割合で示される。)は、0.01~99質量%の範囲内であることが好ましい。表面処理材の被覆量が0.01質量%以上であれば、表面処理による分散性や安定性の向上効果を十分に得ることができる。また、被覆量が99質量%以下であれば、高屈折率の平滑化層の屈折率を高く維持することができる。
These highly refractive particles may be subjected to a surface treatment on the particle surface from the viewpoint of improving the dispersibility and stability of the dispersion when dispersed in a binder.
Examples of the surface treatment material include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types. Among these, from the viewpoint of the stability of the dispersion, the surface treatment material is preferably a different inorganic oxide and / or metal hydroxide, more preferably a metal hydroxide.
When the inorganic oxide particles are surface-coated with a surface treatment material, the coating amount (in general, this coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle to the mass of the particles). Is preferably in the range of 0.01 to 99% by mass. When the coating amount of the surface treatment material is 0.01% by mass or more, the effect of improving the dispersibility and stability by the surface treatment can be sufficiently obtained. Moreover, if the coating amount is 99% by mass or less, the refractive index of the high refractive index smoothing layer can be kept high.
 その他、高屈折粒子としては、国際公開第2009/014707号や米国特許第6608439号明細書等に記載の量子ドットも好適に用いることができる。 In addition, as the highly refractive particles, quantum dots described in International Publication No. 2009/014707, US Pat. No. 6,608,439, etc. can be suitably used.
 また、平滑化層は、屈折率が1.7~2.0の範囲内である高屈折率層であることが好ましい。平滑化層の屈折率が1.7以上であれば、有機機能層や透明電極中に導波モードの光が閉じ込められることなく、樹脂基板側へ光を導くことができる。また、平滑化層の屈折率が2.0以下であれば、平滑化層の膜強度を高く維持することができる。
 平滑化層は、屈折率が1.7~2.0の範囲内である単独の素材で層形成してもよいし、2種類以上の化合物を混合して層形成してもよい。このような混合系の場合、平滑化層の屈折率は、各々の素材固有の屈折率に混合比率を乗じた合算値により算出される計算屈折率でも代用可能である。また、この場合、各々の素材の屈折率は、1.7未満若しくは2.0より大きくてもよく、混合して形成された平滑化層の屈折率が1.7~2.0の範囲内となっていればよい。
The smoothing layer is preferably a high refractive index layer having a refractive index in the range of 1.7 to 2.0. If the refractive index of the smoothing layer is 1.7 or more, the light can be guided to the resin substrate side without confining the waveguide mode light in the organic functional layer or the transparent electrode. If the refractive index of the smoothing layer is 2.0 or less, the film strength of the smoothing layer can be maintained high.
The smoothing layer may be formed of a single material having a refractive index in the range of 1.7 to 2.0, or two or more compounds may be mixed to form a layer. In the case of such a mixed system, the refractive index of the smoothing layer can be substituted by a calculated refractive index calculated by a total value obtained by multiplying the refractive index specific to each material by the mixing ratio. In this case, the refractive index of each material may be less than 1.7 or higher than 2.0, and the refractive index of the smoothing layer formed by mixing is in the range of 1.7 to 2.0. It only has to be.
 平滑化層は、この上に第1電極を良好に形成させる平坦性を有することが重要である。その平坦性は、表面粗さRaが100nm未満、好ましくは30nm未満、より好ましくは10nm未満、最も好ましくは5nm未満である。
 なお、本発明において、表面粗さRaとは、算術平均粗さのことであり、JIS B 0601で規定される表面粗さである。表面粗さRaは、SII社製のAFM(原子間力顕微鏡)SPI3800N DFMを用いて測定した。1回の測定範囲は10μm×10μmとし、測定箇所を変えて3回の測定を行い、それぞれの測定で得られたRaの値を平均したものを測定値とした。
It is important that the smoothing layer has a flatness that allows the first electrode to be satisfactorily formed thereon. The flatness is such that the surface roughness Ra is less than 100 nm, preferably less than 30 nm, more preferably less than 10 nm, and most preferably less than 5 nm.
In addition, in this invention, surface roughness Ra is arithmetic mean roughness and is surface roughness prescribed | regulated by JISB0601. The surface roughness Ra was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII. The measurement range for one time was 10 μm × 10 μm, the measurement location was changed, and the measurement was performed three times. The average of the Ra values obtained in each measurement was taken as the measurement value.
 平滑化層の機能としては、光散乱層の表面を平滑にして第1電極に凹凸ができるのを防ぎ、電極が短絡、いわゆるショートが起きて発光層が光らなくなることを防止することである。もう一つは、光散乱層は散乱の機能を主体としているのに対し、平滑化層は発光した光を界面で反射させずに通過させることを主体とする。このように、両者で機能を分けることで素子構成の自由度を大きくすることができ、これにより有機EL素子の信頼性をより向上させることができる。 The function of the smoothing layer is to smooth the surface of the light scattering layer to prevent the first electrode from being uneven, and to prevent the electrode from being short-circuited, so-called short-circuiting, so that the light-emitting layer does not shine. The other is that the light scattering layer mainly has the function of scattering, whereas the smoothing layer mainly passes the emitted light without reflecting it at the interface. Thus, by dividing the function between the two, the degree of freedom of the element configuration can be increased, and thereby the reliability of the organic EL element can be further improved.
(2)平滑化層の作製方法
 本発明の平滑化層の作製方法は、主に、
(i)高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内である塗布液を調製する工程と、
(ii)塗布液をインクジェット塗布法により塗布する工程と、
(iii)塗布後の塗布液に、波長制御赤外線を照射して乾燥する工程と、
(iv)乾燥後の塗布液に、エキシマ光を照射して硬化する工程と、
を有している。
 以下、各工程について説明する。
(2) Method for producing smoothing layer The method for producing the smoothing layer of the present invention mainly comprises:
(I) a step of preparing a coating liquid containing high-refractive-index nanosol particles, a binder, and an organic solvent, and having a viscosity in the range of 3 to 30 mPa · s;
(Ii) a step of applying a coating liquid by an inkjet coating method;
(Iii) A step of irradiating the coating liquid after coating with a wavelength-controlled infrared ray and drying;
(Iv) a step of irradiating and curing the excimer light to the coating solution after drying;
have.
Hereinafter, each step will be described.
(i)塗布液調整工程
 塗布液調整工程では、粘度が3~30mPa・sの範囲内となるように、塗布液が調製される。
 より具体的には、高屈折率のナノゾル粒子、バインダーに加えて、有機溶媒を含有させることで、塗布液の粘度を調整する。
(I) Coating Solution Adjustment Step In the coating solution adjustment step, the coating solution is prepared so that the viscosity is in the range of 3 to 30 mPa · s.
More specifically, the viscosity of the coating solution is adjusted by adding an organic solvent in addition to the high refractive index nanosol particles and the binder.
 塗布液の粘度は、3~30mPa・sの範囲内に調製されるが、塗布液の粘度が3mPa・sより小さい場合には、インクジェット塗布を行う場合にヘッドのノズルで塗布液を保持できずに流れ出してしまい、正確に射出しなくなる。塗布液の粘度が30mPa・sより大きい場合には、塗布液の流動性が小さくなるために、インクジェットノズルからの塗布液の出射性が低下してしまい、最悪の場合塗布液が出射できなくなる。
 塗布液の粘度としては、好ましくは4~25mPa・sの範囲内であり、より好ましくは5~15mPa・sの範囲内である。
 なお、本発明において、粘度は円錐平板型回転粘度計を用いて25℃で測定した値を使用した。
The viscosity of the coating solution is adjusted within the range of 3 to 30 mPa · s. However, when the viscosity of the coating solution is smaller than 3 mPa · s, the coating solution cannot be held by the head nozzle when performing inkjet coating. It will flow out and will not be ejected accurately. When the viscosity of the coating solution is greater than 30 mPa · s, the fluidity of the coating solution is reduced, so that the emission property of the coating solution from the ink jet nozzle is lowered, and in the worst case, the coating solution cannot be emitted.
The viscosity of the coating solution is preferably in the range of 4 to 25 mPa · s, more preferably in the range of 5 to 15 mPa · s.
In the present invention, the viscosity is a value measured at 25 ° C. using a conical plate type rotational viscometer.
 平滑化層用塗布液に使用される有機溶媒としては、1,2-ブタンジオール、1,2-ペンタンジオール、1,3-ブタンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1-オクタノール、2-アミノ-2-メチル-1-プロパノール、2,2′-(n-ブチル)イミノジエタノール、2-オクタノール、2-ジブチルアミノエタノール、2-ピロリドン、2-フェノキシエタノール、2-ブタノール、2-プロパノール、2-メチル-1,3-プロパンジオール、2-メチル-1-プロパノール、2-メチル-2,4-ペンタンジオール(PD)、2-メチルシクロヘキサノン、3,3,5-トリメチルシクロヘキサノン、3,4-ジメチルシクロヘキサノン、イソホロン、4-メチルシクロヘキサノン、n-ウンデシルアルコール、n-ノニルアルコール、エチレングリコール、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジプロピレングリコール、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジメチルアミノエタノール、テトラエチレングリコール、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールモノブチルエーテル、テトラヒドロチオフェン-1,1-ジオキシド、トリエチレングリコール、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリデシルアルコール、トリプロピレングリコール、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、乳酸ブチル、プロピレングリコール、ベンジルアルコール、ポリプロピレングリコールモノメチルエーテル、モノアセチン、2-アミノエタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール(THFA)、2-(イソプロピルアミノ)エタノール等が挙げられる。
 これらの有機溶媒は、単独で使用してもよいし、2種以上を混合して使用してもよい。
Examples of the organic solvent used in the smoothing layer coating solution include 1,2-butanediol, 1,2-pentanediol, 1,3-butanediol, 1,3-propanediol, 1,4-butanediol, 1-octanol, 2-amino-2-methyl-1-propanol, 2,2 '-(n-butyl) iminodiethanol, 2-octanol, 2-dibutylaminoethanol, 2-pyrrolidone, 2-phenoxyethanol, 2-butanol 2-propanol, 2-methyl-1,3-propanediol, 2-methyl-1-propanol, 2-methyl-2,4-pentanediol (PD), 2-methylcyclohexanone, 3,3,5-trimethyl Cyclohexanone, 3,4-dimethylcyclohexanone, isophorone, 4-methylcyclohexanone, n-undec Alcohol, n-nonyl alcohol, ethylene glycol, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether, dipropylene glycol, dipropylene glycol monoethyl Ether, dipropylene glycol monobutyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monomethyl ether, dimethylaminoethanol, tetraethylene glycol, tetraethylene glycol dimethyl ether, tetraethylene glycol monobutyl ether, tet Hydrothiophene-1,1-dioxide, triethylene glycol, triethylene glycol monobutyl ether, triethylene glycol monomethyl ether, tridecyl alcohol, tripropylene glycol, tripropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, butyl lactate, propylene glycol Benzyl alcohol, polypropylene glycol monomethyl ether, monoacetin, 2-aminoethanol, cyclohexanol, tetrahydrofurfuryl alcohol (THFA), 2- (isopropylamino) ethanol and the like.
These organic solvents may be used alone or in combination of two or more.
 また、本発明においては、有機溶媒の粘度が5~100mPa・sの範囲内であることが好ましい。有機溶媒の粘度が5mPa・s以上であれば、塗布液の粘度を調整することができるようになる。有機溶媒の粘度が100mPa・s以下であれば、平滑化層のバインダー(樹脂)やナノゾル粒子との混和性を確保でき、均一な塗布液にすることができるため、インクジェット方式における出射性を良好に保つことができる。 In the present invention, the viscosity of the organic solvent is preferably in the range of 5 to 100 mPa · s. If the viscosity of the organic solvent is 5 mPa · s or more, the viscosity of the coating solution can be adjusted. If the viscosity of the organic solvent is 100 mPa · s or less, the miscibility with the binder (resin) and nanosol particles of the smoothing layer can be ensured, and a uniform coating solution can be obtained. Can be kept in.
 さらに、有機溶媒の蒸気圧が1.0~1000Paの範囲内であることが好ましい。有機溶媒の蒸気圧が1.0Pa以上であれば、波長制御赤外線ヒーターを用いて乾燥することができ、残留溶媒を低減させることが可能となる。有機溶媒の蒸気圧が1000Pa以下であれば、平滑化層用塗布液の乾燥速度が抑制され、インクジェットノズル部分での乾燥によるノズルの詰まりが改善される。
 また、蒸気圧を測定するための手段としては、静止法、沸点法、アイソテニスコープ、気体流通法、DSC法等の様々な手法があり、試料の性状や試料量、蒸気圧の大きさによって適用する手法が異なってくる。本発明においては、適用範囲が最も広い「静止法」を用いて25℃における溶媒蒸気圧の測定を行った。静止法とは、温度を一定にしてその温度における平衡蒸気圧を圧力計を用いて直接測定する方法である。
Furthermore, the vapor pressure of the organic solvent is preferably in the range of 1.0 to 1000 Pa. If the vapor pressure of the organic solvent is 1.0 Pa or more, it can be dried using a wavelength-controlled infrared heater, and the residual solvent can be reduced. When the vapor pressure of the organic solvent is 1000 Pa or less, the drying rate of the smoothing layer coating liquid is suppressed, and clogging of the nozzle due to drying at the inkjet nozzle portion is improved.
In addition, as a means for measuring the vapor pressure, there are various methods such as a static method, a boiling point method, an isoteniscope, a gas flow method, a DSC method, etc., depending on the property of the sample, the sample amount, and the magnitude of the vapor pressure. The method applied is different. In the present invention, the solvent vapor pressure at 25 ° C. was measured using the “static method” with the widest application range. The static method is a method in which the temperature is kept constant and the equilibrium vapor pressure at that temperature is directly measured using a pressure gauge.
 平滑化層用塗布液に使用される、好ましい粘度、蒸気圧を有する有機溶媒としては、1,2-ブタンジオール、1,2-ペンタンジオール、1,3-ブタンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1-オクタノール、1-ブタノール、1-プロパノール、1-ペンタノール、2-アミノ-2-メチル-1-プロパノール、2,2′-(n-ブチル)イミノジエタノール、2-オクタノール、2-ジブチルアミノエタノール、2-ピロリドン、2-フェノキシエタノール、2-ブタノール、2-プロパノール、2-メチル-1,3-プロパンジオール、2-メチル-1-プロパノール、2-メチル-2,4-ペンタンジオール(PD)、2-メチルシクロヘキサノン、3,3,5-トリメチルシクロヘキサノン、3,4-ジメチルシクロヘキサノン、イソホロン、4-ヒドロキシ-4-メチル-2-ペンタノン、4-メチルシクロヘキサノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、n-ウンデシルアルコール、n-ノニルアルコール、γ-ブチロラクトン、エチレングリコール、エチレングリコールジエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、乳酸ブチル、ジエタノールアミン、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、シクロヘキサノン、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジメチルアミノメタノール、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールモノブチルエーテル、テトラヒドロチオフェン-1,1-ジオキシド、トリデシルアルコール、トリプロピレングリコール、トリプロピレングリコールモノモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート、ベンジルアルコール、ポリエチレングリコールモノメチルエーテル、モノアセチン、2-アミノエタノール、シクロヘキサノール、テトラヒドロフルフリルアルコール(THFA)、2-(イソプロピルアミノ)エタノール等が挙げられる。
 これらの有機溶媒は、単独で使用してもよいし、2種以上を混合して使用してもよい。また、これら以外の溶媒でも、2種類以上を混合することで粘度、蒸気圧の条件を満たすのであれば、その組み合わせも使用することができる。
Examples of the organic solvent having a preferable viscosity and vapor pressure used in the coating solution for the smoothing layer include 1,2-butanediol, 1,2-pentanediol, 1,3-butanediol, and 1,3-propanediol. 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1-octanol, 1-butanol, 1-propanol, 1-pentanol, 2-amino-2-methyl-1-propanol 2,2 '-(n-butyl) iminodiethanol, 2-octanol, 2-dibutylaminoethanol, 2-pyrrolidone, 2-phenoxyethanol, 2-butanol, 2-propanol, 2-methyl-1,3-propanediol 2-methyl-1-propanol, 2-methyl-2,4-pentanediol (PD), 2-methylcyclohexane Non, 3,3,5-trimethylcyclohexanone, 3,4-dimethylcyclohexanone, isophorone, 4-hydroxy-4-methyl-2-pentanone, 4-methylcyclohexanone, N, N-dimethylacetamide, N, N-dimethylformamide , N-undecyl alcohol, n-nonyl alcohol, γ-butyrolactone, ethylene glycol, ethylene glycol diethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol Monomethyl ether, ethylene glycol monomethyl ether acetate, butyl lactate, diethanolamine, diethylene glycol dimethyl ether Ter, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether, cyclohexanone, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monomethyl ether, dimethylamino Methanol, tetraethylene glycol dimethyl ether, tetraethylene glycol monobutyl ether, tetrahydrothiophene-1,1-dioxide, tridecyl alcohol, tripropylene glycol, tripropylene glycol monomonobutyl ether, tripropylene glycol monomethyl ether, propylene Glycol, propylene glycol monoethyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate, benzyl alcohol, polyethylene glycol monomethyl ether, monoacetin, 2-aminoethanol, cyclohexanol, tetrahydrofurfuryl alcohol (THFA), 2 -(Isopropylamino) ethanol and the like.
These organic solvents may be used alone or in combination of two or more. Moreover, even if it is a solvent other than these, if the conditions of a viscosity and vapor pressure are satisfy | filled by mixing 2 or more types, the combination can also be used.
 上記のような有機溶媒を塗布液に添加することにより、塗布液の乾燥が抑制され、塗布液の物性変動が小さくなり、インクジェット塗布法特有の飛翔速度低下、及び乾燥による粘度上昇での出射不良を改善することができ、歩留まりを向上させることが可能となる。
 なお、上記粘度又は蒸気圧を満たす有機溶媒は、1種の有機溶媒から構成されていてもよいし、2種以上の有機溶媒から構成されていてもよい。例えば、粘度又は蒸気圧が上記範囲内ではない2種の有機溶媒を混合して、混合された有機溶媒での粘度又は蒸気圧が上記範囲内となるように調製してもよいし、粘度が上記範囲内である有機溶媒と蒸気圧が上記範囲内である有機溶媒とを混合して、粘度及び蒸気圧の両条件を満たすように調製してもよい。
By adding the organic solvent as described above to the coating liquid, drying of the coating liquid is suppressed, fluctuations in the physical properties of the coating liquid are reduced, the flying speed is reduced due to the ink jet coating method, and the emission is poor due to increased viscosity due to drying. Can be improved, and the yield can be improved.
In addition, the organic solvent which satisfy | fills the said viscosity or vapor pressure may be comprised from 1 type of organic solvents, and may be comprised from 2 or more types of organic solvents. For example, two organic solvents whose viscosity or vapor pressure is not within the above range may be mixed so that the viscosity or vapor pressure in the mixed organic solvent is within the above range, or the viscosity may be An organic solvent having a vapor pressure within the above range may be mixed with an organic solvent having a vapor pressure within the above range so as to satisfy both the viscosity and vapor pressure conditions.
(ii)インクジェット塗布法による塗布工程
 平滑化層用塗布液の塗布方法としては、インクジェット塗布法を用いて塗布することを特徴とする。
 インクジェット塗布法で用いられるインクジェットヘッドとしては、オンデマンド方式でもコンティニュアス方式でもよい。また、吐出方式としては、電気-機械変換方式(例えば、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型、シェアードウォール型等)、電気-熱変換方式(例えば、サーマルインクジェット型、バブルジェット(登録商標)型等)、静電吸引方式(例えば、電界制御型、スリットジェット型等)、放電方式(例えば、スパークジェット型等)などを具体的な例として挙げることができるが、いずれの吐出方式を用いてもよい。また、印字方式としては、シリアルヘッド方式、ラインヘッド方式等を制限なく用いることができる。
(Ii) Coating step by inkjet coating method The coating method for the smoothing layer coating liquid is characterized by coating using an inkjet coating method.
As an inkjet head used in the inkjet coating method, an on-demand system or a continuous system may be used. Discharge methods include electro-mechanical conversion methods (eg, single cavity type, double cavity type, bender type, piston type, shear mode type, shared wall type, etc.), and electro-thermal conversion methods (eg, thermal Specific examples include an ink jet type, a bubble jet (registered trademark) type, an electrostatic suction type (for example, an electric field control type, a slit jet type, etc.), and a discharge type (for example, a spark jet type). However, any discharge method may be used. As a printing method, a serial head method, a line head method, or the like can be used without limitation.
(iii)乾燥工程
 乾燥工程では、赤外線を吸収する波長制御赤外線ヒーターを用いて、塗布後の塗布液に対し、赤外線を照射して塗布液を乾燥させる。
(Iii) Drying step In the drying step, using a wavelength-controlled infrared heater that absorbs infrared rays, the coating solution after application is irradiated with infrared rays to dry the coating solution.
 赤外線として、中心波長が1~3.5μmの領域に存在し、かつ全出力の積算値の70%以上がその領域に存在する赤外線を照射する。
 なお、赤外線の「中心波長が1~3.5μmの領域に存在する」とは、フィラメント温度が450~2600℃の範囲内にあることをいい、かかる温度範囲はウィーンの変位則によって導き出される。
As infrared rays, infrared rays having a central wavelength in the region of 1 to 3.5 μm and 70% or more of the integrated value of all outputs are irradiated in the region.
In the infrared, “the central wavelength is in the region of 1 to 3.5 μm” means that the filament temperature is in the range of 450 to 2600 ° C., and such a temperature range is derived by the Wien displacement law.
 乾燥処理の条件としては、特に制限はないが、赤外線フィラメント及び波長制御フィルターの表面温度により、照射時間を調節することができる。例えば、フィラメント温度が450~2600℃(好ましくは600~1200℃)の範囲内で、波長制御フィルター表面温度が200℃未満(好ましくは150℃未満)で、照射時間が10秒~30分の範囲内で乾燥処理をすることができる。これにより、層厚分布の高い均一性、高いパターニング精度を有する平滑化層を得ることができる。 The drying treatment conditions are not particularly limited, but the irradiation time can be adjusted by the surface temperature of the infrared filament and the wavelength control filter. For example, the filament temperature is in the range of 450 to 2600 ° C. (preferably 600 to 1200 ° C.), the wavelength control filter surface temperature is less than 200 ° C. (preferably less than 150 ° C.), and the irradiation time is in the range of 10 seconds to 30 minutes. Can be dried. Thereby, a smoothing layer having high uniformity of layer thickness distribution and high patterning accuracy can be obtained.
(iv)硬化工程
 硬化工程では、150~230nmの範囲内の波長のエキシマ光を照射することにより、乾燥させた平滑化層を硬化させる。
 硬化に使用される光源としては、水銀ランプ、メタルハライドランプ、エキシマランプ(波長177nm又は波長222nm)等が挙げられるが、中でもエキシマランプ(波長222nm)であることが好ましい。
 また、その露光量は、好ましくは100~10000mJの範囲内、より好ましくは300~8000mJの範囲内、特に好ましくは400~6000mJの範囲内である。露光量が100mJ以上であれば塗膜を効果的に硬化させることができ、露光量が10000mJ以下であれば、塗膜表面の有機物を破壊せず、屈折率が低下するのを防止することができる。
(Iv) Curing Step In the curing step, the dried smoothing layer is cured by irradiating with excimer light having a wavelength in the range of 150 to 230 nm.
Examples of the light source used for curing include a mercury lamp, a metal halide lamp, and an excimer lamp (wavelength 177 nm or wavelength 222 nm). Among these, an excimer lamp (wavelength 222 nm) is preferable.
The exposure amount is preferably in the range of 100 to 10000 mJ, more preferably in the range of 300 to 8000 mJ, and particularly preferably in the range of 400 to 6000 mJ. If the exposure amount is 100 mJ or more, the coating film can be effectively cured, and if the exposure amount is 10000 mJ or less, the organic matter on the coating film surface is not destroyed and the refractive index can be prevented from decreasing. it can.
 このような照射装置の一例として、100~230nmの範囲内の真空紫外線を発する希ガスエキシマランプが挙げられる。 An example of such an irradiation apparatus is a rare gas excimer lamp that emits vacuum ultraviolet rays within a range of 100 to 230 nm.
 Xe、Kr、Ar、Ne等の希ガス原子は、化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガス原子(励起原子)は、他の原子と結合して分子を作ることができる。
 例えば、Xe(キセノン)の場合、下記反応式で示されるように、励起されたエキシマ分子であるXe が基底状態に遷移するときに、波長172nmのエキシマ光を発光する。
Noble gas atoms such as Xe, Kr, Ar, Ne, etc. are called inert gases because they are not chemically bonded to form molecules. However, rare gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules.
For example, in the case of Xe (xenon), excimer light having a wavelength of 172 nm is emitted when the excited excimer molecule Xe 2 * transitions to the ground state, as shown in the following reaction formula.
 e+Xe→Xe
 Xe+2Xe→Xe +Xe
 Xe →Xe+Xe+hν(172nm)
e + Xe → Xe *
Xe * + 2Xe → Xe 2 * + Xe
Xe 2 * → Xe + Xe + hν (172 nm)
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので、光の発生効率が高いことが挙げられる。これにより、低い電力の投入で点灯させることが可能である。また、温度上昇の要因となる波長の長い光は発せず、紫外線領域の単一波長でエネルギーを照射するため、対象物の温度を比較的低く保つことができる。さらには、始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。 The excimer lamp is characterized by high light generation efficiency because radiation concentrates on one wavelength and almost no light other than necessary is emitted. As a result, it is possible to light up with low power input. Further, light having a long wavelength that causes a temperature rise is not emitted, and energy is irradiated at a single wavelength in the ultraviolet region, so that the temperature of the object can be kept relatively low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
 エキシマ光を効率よく照射する光源としては、誘電体バリアー放電ランプが挙げられる。
 誘電体バリアー放電ランプの構成としては、電極間に誘電体を介して放電を起こすものであり、一般的には、誘電体からなる放電容器とその外部とに少なくとも一方の電極が配置されていればよい。誘電体バリアー放電ランプとして、例えば、石英ガラスで構成された太い管と細い管とからなる二重円筒状の放電容器中にXe等の希ガスが封入され、該放電容器の外部に網状の第1の電極を設け、内管の内側に他の電極を設けたものがある。誘電体バリアー放電ランプは、電極間に高周波電圧等を加えることによって放電容器内部に誘電体バリアー放電を発生させ、該放電により生成されたXe等のエキシマ分子が解離する際にエキシマ光を発生させる。
As a light source for efficiently irradiating excimer light, a dielectric barrier discharge lamp can be mentioned.
A dielectric barrier discharge lamp has a structure in which a discharge occurs between electrodes via a dielectric. In general, at least one electrode is disposed between a dielectric discharge vessel and the outside thereof. That's fine. As a dielectric barrier discharge lamp, for example, a rare gas such as Xe is sealed in a double cylindrical discharge vessel composed of a thick tube and a thin tube made of quartz glass, and a net-like second discharge vessel is formed outside the discharge vessel. There is one in which one electrode is provided and another electrode is provided inside the inner tube. A dielectric barrier discharge lamp generates a dielectric barrier discharge inside a discharge vessel by applying a high-frequency voltage or the like between electrodes, and generates excimer light when excimer molecules such as Xe generated by the discharge dissociate. .
<光散乱層(22)>
(1)光散乱層の構成及び特性
 光散乱層は、バインダー中に光散乱粒子を分散させた構造を有する。該バインダーは種々の素材が適用できるが、有機ポリマー構造及びポリシロキサン構造を有する有機無機ハイブリッドポリマーであることが好ましい。
 光散乱粒子が入っていない状態の有機無機ハイブリッドポリマーの屈折率は1.5程度であるが、光散乱粒子を適量分散させることで、光散乱層の屈折率を1.5以上とすることができる。また、光散乱粒子がほぼ透明であれば、光散乱粒子で光はほとんど吸収されないので、光取り出し効率を低下させることがない。また、光散乱粒子として、光が散乱する大きさのものを用いれば、導波モードの光の散乱効果が得られ、より多くの光を取り出すことができる。
<Light scattering layer (22)>
(1) Configuration and characteristics of light scattering layer The light scattering layer has a structure in which light scattering particles are dispersed in a binder. Although various materials can be applied to the binder, an organic-inorganic hybrid polymer having an organic polymer structure and a polysiloxane structure is preferable.
The refractive index of the organic-inorganic hybrid polymer without light scattering particles is about 1.5, but by dispersing the light scattering particles in an appropriate amount, the refractive index of the light scattering layer may be 1.5 or more. it can. Further, if the light scattering particles are almost transparent, light is hardly absorbed by the light scattering particles, so that the light extraction efficiency is not lowered. In addition, if light scattering particles having such a size that light is scattered are used, the light scattering effect of the waveguide mode can be obtained, and more light can be extracted.
 光散乱層の屈折率は、平滑化層同様に、1.7~2.0の範囲内である高屈折率層であることが好ましい。
 混合物で形成する際の屈折率の考え方は、上記平滑化層の場合と同様である。
The refractive index of the light scattering layer is preferably a high refractive index layer in the range of 1.7 to 2.0, like the smoothing layer.
The way of thinking of the refractive index when forming with the mixture is the same as in the case of the smoothing layer.
(1.1)バインダー
 本発明に係る光散乱層のバインダーの例を以下に示す。
(1.1) Binder Examples of the binder of the light scattering layer according to the present invention are shown below.
(1.1.1)有機ポリマー構造
 有機無機ハイブリッドポリマーの有機ポリマー構造としては、公知のポリマーを特に制限なく使用可能であり、例えば、アルキル基、アリール基、アラアルキル基、シクロアルキル基、アミノ基、イミノ基、シアノ基、ニトロ基、ニトロソ基、アゾ基、ジアゾ基、アジ基、カルボニル基、フェニル基、ヒドロキシ基、ペルオキシ基、アシル基、アセチル基、アルデヒド基、カルボキシ基、アミド基、イミド基、エステル基、オキシム基、チオール基、スルホ基、ウレア基、イソニトリル基、アレン基、アクリロイル基、メタクリロイル基、エポキシ基、オキセタン基、イソシアネート基、の構造を有するポリマー、不飽和ポリエステル(テレフタル酸系、オルトフタル酸系、イソフタル酸系、ビスフェノール系、ジシクロ系、含ハロゲン酸系、含ハロゲンビスフェノール系等)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の骨格を有するポリマー等を用いることができる。
(1.1.1) Organic polymer structure As the organic polymer structure of the organic-inorganic hybrid polymer, a known polymer can be used without particular limitation. For example, an alkyl group, an aryl group, an araalkyl group, a cycloalkyl group, an amino group. , Imino group, cyano group, nitro group, nitroso group, azo group, diazo group, azide group, carbonyl group, phenyl group, hydroxy group, peroxy group, acyl group, acetyl group, aldehyde group, carboxy group, amide group, imide Group, ester group, oxime group, thiol group, sulfo group, urea group, isonitrile group, allene group, acryloyl group, methacryloyl group, epoxy group, oxetane group, isocyanate group, polymer having structure, unsaturated polyester (terephthalic acid , Orthophthalic acid, isophthalic acid, bisphenol , Dicyclo, halogen-containing, halogen-containing bisphenol, etc.), polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene It is possible to use a polymer having a skeleton such as (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, polyimide, and polyetherimide. it can.
 また、親水性ポリマーを用いることも可能であり、そのような親水性ポリマーとしては、水溶性ポリマー、水分散性ポリマー、コロイド分散性ポリマー又はそれらの混合物が挙げられる。これらのポリマーとしては、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等のポリマーが挙げられ、例えば、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、カゼイン、デンプン、寒天、カラギーナン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、水溶性ポリビニルブチラール等のポリマー成分を挙げることができる。
 これらのポリマーは、単独で用いてもよいし、2種類以上を有していてもよい。
It is also possible to use hydrophilic polymers, and examples of such hydrophilic polymers include water-soluble polymers, water-dispersible polymers, colloid-dispersible polymers, or mixtures thereof. Examples of these polymers include acrylic, polyester, polyamide, polyurethane, and fluorine polymers such as polyvinyl alcohol, gelatin, polyethylene oxide, polyvinyl pyrrolidone, casein, starch, agar, carrageenan, and polyacryl. Examples thereof include polymer components such as acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, and water-soluble polyvinyl butyral.
These polymers may be used independently and may have 2 or more types.
(1.1.2)ポリシロキサン構造
 ポリシロキサン構造としては、例えば、Si-O-Si結合を有するポリシロキサン(ポリシルセスキオキサンを含む)を挙げることができる。
 ポリシロキサンとしては、具体的には、一般構造単位としての〔RSiO1/2〕、〔RSiO〕、〔RSiO3/2〕及び〔SiO〕を含むことができる。ここで、Rは、水素原子、炭素数1~20のアルキル基(例えば、メチル基、エチル基、プロピル基等)、アリール基(例えば、フェニル基等)、不飽和アルキル基(例えば、ビニル基等)からなる群より独立して選択される。特定のポリシロキサン構造の例としては、〔PhSiO3/2〕、〔MeSiO3/2〕、〔HSiO3/2〕、〔MePhSiO〕、〔PhSiO〕、〔PhViSiO〕、〔ViSiO3/2〕(Viはビニル基を表す。)、〔MeHSiO〕、〔MeViSiO〕、〔MeSiO〕、〔MeSiO1/2〕等が挙げられる。また、ポリシロキサンの混合物やコポリマーも使用可能である。
(1.1.2) Polysiloxane Structure Examples of the polysiloxane structure include polysiloxane (including polysilsesquioxane) having a Si—O—Si bond.
Specifically, the polysiloxane may contain [R 3 SiO 1/2 ], [R 2 SiO], [RSiO 3/2 ] and [SiO 2 ] as general structural units. Here, R represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, etc.), an aryl group (for example, a phenyl group), an unsaturated alkyl group (for example, a vinyl group). Etc.) are independently selected. Examples of specific polysiloxane structures include [PhSiO 3/2 ], [MeSiO 3/2 ], [HSiO 3/2 ], [MePhSiO], [Ph 2 SiO], [PhViSiO], [ViSiO 3/2 ]. (Vi represents a vinyl group), [MeHSiO], [MeViSiO], [Me 2 SiO], [Me 3 SiO 1/2 ] and the like. Mixtures and copolymers of polysiloxanes can also be used.
(1.2)光散乱粒子
 光散乱層に含有される光散乱粒子は、可視光域のMie散乱を生じさせる領域以上の平均粒径を有する透明な粒子であることが好ましく、その平均粒径の下限としては0.2μm以上であることが好ましい。
 一方、平均粒径の上限としては、本発明の効果を阻害しない限りにおいて、特に制限されるものではない。
 なお、本発明における平均粒径は、例えば、日機装社製ナノトラックUPA-EX150といった動的光散乱法を利用した装置や、電子顕微鏡写真の画像処理により測定することができる。
(1.2) Light-scattering particles The light-scattering particles contained in the light-scattering layer are preferably transparent particles having an average particle size equal to or greater than the region that causes Mie scattering in the visible light region. The lower limit is preferably 0.2 μm or more.
On the other hand, the upper limit of the average particle diameter is not particularly limited as long as the effect of the present invention is not impaired.
The average particle diameter in the present invention can be measured by, for example, an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or image processing of an electron micrograph.
 光散乱粒子としては、特に制限はなく、目的に応じて適宜選択することができ、有機微粒子であっても、無機微粒子であってもよいが、中でも高屈折率を有する無機微粒子であることが好ましい。
 高屈折率を有する有機微粒子としては、例えば、ポリメチルメタクリレートビーズ、アクリル-スチレン共重合体ビーズ、メラミンビーズ、ポリカーボネートビーズ、スチレンビーズ、架橋ポリスチレンビーズ、ポリ塩化ビニルビーズ、ベンゾグアナミン-メラミンホルムアルデヒドビーズ等が挙げられる。
 高屈折率を有する無機微粒子としては、例えば、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、スズ、アンチモン等の中から選ばれる少なくとも一つの酸化物からなる無機酸化物粒子が挙げられる。無機酸化物粒子としては、具体的には、ZrO、TiO、BaTiO、Al、In、ZnO、SnO、Sb、ITO、SiO、ZrSiO、ゼオライト等が挙げられ、中でも、TiO、BaTiO、ZrO、ZnO、SnOが好ましく、TiOが最も好ましい。また、TiOの中でも、アナターゼ型よりルチル型であることが、触媒活性が低いため光散乱層や隣接する層の耐候性が高くなり、更に屈折率が高いことから好ましい。
The light scattering particle is not particularly limited and may be appropriately selected depending on the purpose. The light scattering particle may be an organic fine particle or an inorganic fine particle, and among them, an inorganic fine particle having a high refractive index may be used. preferable.
Examples of organic fine particles having a high refractive index include polymethyl methacrylate beads, acrylic-styrene copolymer beads, melamine beads, polycarbonate beads, styrene beads, crosslinked polystyrene beads, polyvinyl chloride beads, benzoguanamine-melamine formaldehyde beads, and the like. Can be mentioned.
Examples of the inorganic fine particles having a high refractive index include inorganic oxide particles made of at least one oxide selected from zirconium, titanium, aluminum, indium, zinc, tin, antimony and the like. Specific examples of the inorganic oxide particles include ZrO 2 , TiO 2 , BaTiO 3 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , ITO, SiO 2 , ZrSiO 4 , zeolite. Among them, TiO 2 , BaTiO 3 , ZrO 2 , ZnO and SnO 2 are preferable, and TiO 2 is most preferable. Further, among TiO 2 , rutile type is preferable to anatase type because the weather resistance of the light scattering layer and the adjacent layer is high because the catalytic activity is low, and the refractive index is high.
 また、これらの光散乱粒子は、バインダー中に分散させた際の分散液の分散性や安定性向上の観点から、粒子表面に表面処理を施してもよい。
 表面処理材としては、例えば、酸化ケイ素や酸化ジルコニウム等の異種無機酸化物、水酸化アルミニウム等の金属水酸化物、オルガノシロキサン、ステアリン酸等の有機酸等が挙げられる。これら表面処理材は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。中でも、分散液の安定性の観点から、表面処理材としては、異種無機酸化物及び/又は金属水酸化物が好ましく、金属水酸化物がより好ましい。
 無機酸化物粒子が、表面処理材で表面被覆処理されている場合、その被覆量(一般的に、この被覆量は、粒子の質量に対する当該粒子の表面に用いた表面処理材の質量割合で示される。)は、0.01~99質量%の範囲内であることが好ましい。表面処理材の被覆量が0.01質量%以上であれば、表面処理による分散性や安定性の向上効果を十分に得ることができる。また、被覆量が99質量%以下であれば、高屈折率の光散乱層の屈折率を高く維持することができる。
Further, these light scattering particles may be subjected to a surface treatment on the particle surface from the viewpoint of improving the dispersibility and stability of the dispersion when dispersed in a binder.
Examples of the surface treatment material include different inorganic oxides such as silicon oxide and zirconium oxide, metal hydroxides such as aluminum hydroxide, organic acids such as organosiloxane and stearic acid, and the like. These surface treatment materials may be used individually by 1 type, and may be used in combination of multiple types. Among these, from the viewpoint of the stability of the dispersion, the surface treatment material is preferably a different inorganic oxide and / or metal hydroxide, more preferably a metal hydroxide.
When the inorganic oxide particles are surface-coated with a surface treatment material, the coating amount (in general, this coating amount is indicated by the mass ratio of the surface treatment material used on the surface of the particle to the mass of the particles). Is preferably in the range of 0.01 to 99% by mass. When the coating amount of the surface treatment material is 0.01% by mass or more, the effect of improving the dispersibility and stability by the surface treatment can be sufficiently obtained. Moreover, if the coating amount is 99% by mass or less, the refractive index of the light scattering layer having a high refractive index can be kept high.
 その他、光散乱粒子としては、国際公開第2009/014707号や米国特許第6608439号明細書等に記載の量子ドットも好適に用いることができる。 In addition, as the light scattering particles, quantum dots described in International Publication No. 2009/014707, US Pat. No. 6,608,439, and the like can be suitably used.
 光散乱粒子は、その屈折率が1.7以上であることが好ましく、1.85以上であることがより好ましく、2.0以上であることが特に好ましい。屈折率が1.7以上であれば、バインダーに対して十分な屈折率差が得られ、光の散乱量を減少させることなく、光取り出し効率の向上効果を得ることができる。
 一方で、光散乱粒子の屈折率の上限は3.0未満であることが好ましい。屈折率が3.0未満であれば、層中での多重散乱を抑え、透明性を低下させることがない。
The light scattering particles preferably have a refractive index of 1.7 or more, more preferably 1.85 or more, and particularly preferably 2.0 or more. If the refractive index is 1.7 or more, a sufficient difference in refractive index with respect to the binder can be obtained, and the effect of improving the light extraction efficiency can be obtained without reducing the amount of light scattering.
On the other hand, the upper limit of the refractive index of the light scattering particles is preferably less than 3.0. If the refractive index is less than 3.0, multiple scattering in the layer is suppressed, and transparency is not lowered.
 光散乱粒子は、実際には、多分散粒子であることや規則的に配置することが難しいことから、局部的には回折効果を有するものの、多くは拡散により光の方向を変化させ光取り出し効率を向上させる。 Although light scattering particles are actually polydisperse particles and difficult to arrange regularly, they have a diffraction effect locally, but in many cases, the light extraction efficiency is changed by changing the direction of light by diffusion. To improve.
(2)光散乱層の作製方法
 本発明に係る光散乱層の作製方法は、主に、
(i)樹脂基板上に、バインダー中に光散乱粒子を分散した塗布液を塗布し、光散乱層を形成する工程と、
(ii)光散乱層に対し、100~280℃の範囲内で加熱する工程、又は150~230nmの範囲内の波長のエキシマ光を照射する工程と、
を有しているが、特にこれに限定されるものではない。
 以下、各工程について説明する。
(2) Method for producing light scattering layer The method for producing a light scattering layer according to the present invention mainly comprises:
(I) applying a coating liquid in which light scattering particles are dispersed in a binder on a resin substrate to form a light scattering layer;
(Ii) heating the light scattering layer within a range of 100 to 280 ° C., or irradiating excimer light having a wavelength within a range of 150 to 230 nm;
However, the present invention is not particularly limited thereto.
Hereinafter, each step will be described.
(i)光散乱層を形成する工程
 光散乱層は、媒体となるバインダー中に光散乱粒子を分散した塗布液を、樹脂基板上に塗布することで形成する。
 塗布液の塗布方法としては、グラビア印刷法、フレキソ印刷法、オフセット印刷法、スクリーン印刷法、インクジェット印刷法等の各種印刷方法に加えて、ロールコート法、バーコート法、キャスティング法、ダイコート法、ブレードコート法、カーテンコート法、スプレーコート法、ドクターコート法等の各種塗布法を用いることができる。
(I) Step of forming light scattering layer The light scattering layer is formed by applying a coating liquid in which light scattering particles are dispersed in a binder serving as a medium on a resin substrate.
In addition to various printing methods such as gravure printing method, flexographic printing method, offset printing method, screen printing method, and ink jet printing method, the coating method of the coating liquid includes a roll coating method, a bar coating method, a casting method, a die coating method, Various coating methods such as a blade coating method, a curtain coating method, a spray coating method, and a doctor coating method can be used.
(ii-1)光散乱層を乾燥する工程
 本発明に係る光散乱層は、乾燥後に硬化させるのが好ましい。光散乱層の乾燥に用いられる乾燥装置としては、一般に使用されているものが使用でき、例えば、接触式のホットプレート、非接触式のIRヒーター等が挙げられる。これらの装置は、塗布膜を加熱できるものであれば使用に際して特に制限無く用いることができる。
(Ii-1) Step of drying the light scattering layer The light scattering layer according to the present invention is preferably cured after drying. As a drying apparatus used for drying the light scattering layer, a commonly used drying apparatus can be used, and examples thereof include a contact hot plate and a non-contact IR heater. These apparatuses can be used without any particular limitation as long as they can heat the coating film.
(ii-2)光散乱層を硬化する工程
 本発明に係る光散乱層は、上記乾燥工程に代えて、上述した150~230nmの範囲内の波長のエキシマ光を照射することにより、硬化させることが好ましい。
(Ii-2) Step of curing light scattering layer The light scattering layer according to the present invention is cured by irradiating excimer light having a wavelength within the range of 150 to 230 nm described above, instead of the drying step. Is preferred.
≪第2電極(50)≫
 第2電極には、陰極としての役割と、光を樹脂基板側に反射させるミラーとしての役割とがある。
 第2電極の構成材料としては、例えば、アルミニウム、銀、ニッケル、チタン、ナトリウム、カルシウム等の反射率が60%以上の金属材料や、それらのいずれかを含む合金等を用いることができる。
≪Second electrode (50) ≫
The second electrode has a role as a cathode and a role as a mirror that reflects light toward the resin substrate.
As a constituent material of the second electrode, for example, a metal material having a reflectance of 60% or more such as aluminum, silver, nickel, titanium, sodium, calcium, or an alloy containing any of them can be used.
≪有機機能層(40)≫
 有機機能層は、発光層を含む、有機化合物又は錯体からなる単層又は複数層であり、例えば、陽極(第1電極)と接する正孔輸送層、発光材料で形成された発光層、陰極(第2電極)と接する電子輸送層等からなり、数nm~数百nmの厚さを有している。また、フッ化リチウム層や無機金属塩の層あるいはそれらを含有する層等が、任意の位置に形成されていてもよい。発光層は、少なくとも1種の発光材料からなり、発光材料としては蛍光発光性化合物又はリン光発光性化合物等を用いることができる。
≪Organic functional layer (40) ≫
The organic functional layer is a single layer or a plurality of layers made of an organic compound or a complex including a light emitting layer. For example, a hole transport layer in contact with the anode (first electrode), a light emitting layer formed of a light emitting material, a cathode ( It has an electron transport layer in contact with the second electrode) and has a thickness of several nm to several hundred nm. Further, a lithium fluoride layer, an inorganic metal salt layer, a layer containing them, or the like may be formed at an arbitrary position. The light-emitting layer is made of at least one light-emitting material, and a fluorescent compound, a phosphorescent compound, or the like can be used as the light-emitting material.
 有機機能層の構成としては、上述の構成も含めて、例えば、以下の(i)~(v)の構成等を採用できる。 As the configuration of the organic functional layer, for example, the following configurations (i) to (v) can be adopted including the above-described configuration.
(i)(陽極)/発光層/電子輸送層/(陰極)
(ii)(陽極)/正孔輸送層/発光層/電子輸送層/(陰極)
(iii)(陽極)/正孔輸送層/発光層/正孔阻止層/電子輸送層/(陰極)
(iv)(陽極)/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極)(v)(陽極)/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/(陰極)
(I) (anode) / light emitting layer / electron transport layer / (cathode)
(Ii) (anode) / hole transport layer / light emitting layer / electron transport layer / (cathode)
(Iii) (anode) / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / (cathode)
(Iv) (anode) / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / (cathode) (v) (anode) / hole injection layer / hole transport layer / light emitting layer / Hole blocking layer / electron transport layer / electron injection layer / (cathode)
 また、有機機能層を2セット分スタックした構成や、3セット分スタックした構成も採用することができる。このような構成とすることにより、より効率よく発光させることが可能となる。 Also, a configuration in which two sets of organic functional layers are stacked or a configuration in which three sets of organic functional layers are stacked can be employed. With such a configuration, light can be emitted more efficiently.
 正孔輸送層は、正孔を輸送する機能を有する材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は、単層又は複数層設けることができる。 The hole transport layer is made of a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 電子輸送層は、電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層又は複数層設けることができる。 The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 正孔阻止層は、広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで、電子と正孔との再結合確率を向上させることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons but having a remarkably small ability to transport holes. By preventing this, the recombination probability between electrons and holes can be improved.
 正孔注入層及び電子注入層は、駆動電圧低下や発光輝度向上のために、電極と発光層間に設けられる層のことである。 The hole injection layer and the electron injection layer are layers provided between the electrode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
≪第1電極(30)≫
 第1電極は、第2電極の反対電極であり、その構成材料としては、例えば、CuI、ITO、SnO、ZnO、インジウムジンクオキシド(IZO)等の透過率が40%以上の導電性透明材料を用いることができる。
≪First electrode (30) ≫
The first electrode is an electrode opposite to the second electrode, and as a constituent material thereof, for example, a conductive transparent material having a transmittance of 40% or more such as CuI, ITO, SnO 2 , ZnO, indium zinc oxide (IZO), etc. Can be used.
(銀を主成分とした透明電極)
 本発明においては、第1電極を銀又は銀を主成分とする合金を含む透明電極としてもよい。
 なお、主成分とは、第1電極を構成する成分のうち、構成比率が最も高い成分をいう。その構成比率としては、60質量%以上であることが好ましく、90質量%以上であることがより好ましく、98質量%以上であることが特に好ましい。また、透明電極の透明とは、波長550nmでの光透過率が50%以上であることをいう。
(Transparent electrode based on silver)
In the present invention, the first electrode may be a transparent electrode containing silver or an alloy containing silver as a main component.
The main component means a component having the highest component ratio among the components constituting the first electrode. The composition ratio is preferably 60% by mass or more, more preferably 90% by mass or more, and particularly preferably 98% by mass or more. Moreover, the transparency of the transparent electrode means that the light transmittance at a wavelength of 550 nm is 50% or more.
 第1電極は、銀又は銀を主成分とした合金の層が、必要に応じて複数の層に分けて積層された構成であってもよい。
 さらに、第1電極は、厚さが4~9nmの範囲内にあることが好ましい。厚さが9nmより薄い場合には、層の吸収成分又は反射成分が少なく、透明電極の透過率が大きくなる。また、厚さが4nmより厚い場合には、層の導電性を十分に確保することができる。
The first electrode may have a configuration in which silver or an alloy layer mainly containing silver is divided into a plurality of layers as necessary.
Furthermore, the first electrode preferably has a thickness in the range of 4 to 9 nm. When the thickness is less than 9 nm, the absorption component or reflection component of the layer is small, and the transmittance of the transparent electrode is increased. Further, when the thickness is thicker than 4 nm, sufficient conductivity of the layer can be ensured.
 第1電極を構成する銀(Ag)を主成分とする合金としては、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。 Examples of the alloy mainly composed of silver (Ag) constituting the first electrode include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), and silver indium (AgIn). ) And the like.
 このような第1電極の作製方法としては、塗布法、インクジェット法、コーティング法、ディップ法等のウェットプロセスを用いる方法や、蒸着法(抵抗加熱、EB法等)、スパッタ法、CVD法等のドライプロセスを用いる方法等が挙げられる。中でも、蒸着法が好ましく適用される。 As a method for manufacturing such a first electrode, a method using a wet process such as a coating method, an ink jet method, a coating method, a dipping method, a vapor deposition method (resistance heating, EB method, etc.), a sputtering method, a CVD method, etc. Examples include a method using a dry process. Among these, the vapor deposition method is preferably applied.
≪樹脂基板(10)≫
 樹脂基板は、有機EL素子全体を保持するとともに、光を透過するものである。
 樹脂基板としては、例えば、0.05~1mmの範囲内の厚さを有する樹脂等の透明材料を用いることができる。本発明においては、樹脂素材の基板が好適に用いられる。基板として、樹脂フィルム等のフレキシブルなフィルム状の材料を用いれば、連続生産が可能となり、生産量を飛躍的に向上させることができ、ガラスと異なり柔軟性があるため割れることがなく、製品形態時において面光源を湾曲させることができ、種々の方向に向かって発光させることができるため従来にない光源を創造することができ、更には重量も軽いため使用範囲が大きく広がる。
≪Resin substrate (10) ≫
The resin substrate holds the entire organic EL element and transmits light.
As the resin substrate, for example, a transparent material such as a resin having a thickness in the range of 0.05 to 1 mm can be used. In the present invention, a resin substrate is preferably used. If a flexible film-like material such as a resin film is used as the substrate, continuous production is possible, and the production volume can be dramatically improved. In some cases, the surface light source can be curved and light can be emitted in various directions, so that an unprecedented light source can be created. Furthermore, the weight is light and the range of use is greatly expanded.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)等のシクロオレフィン系樹脂等を用いることができる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc. can be used.
 フレキシブル性を備えた樹脂基板としては、その引っ張り強度が20~80kg/mmの範囲内であり、基板表面に平行な任意の方向での弾性率が1000~2500kg/mmの範囲内であり、基板表面に平行な任意の方向での破壊伸度が5%以上であるものが好ましい。 As a resin substrate having flexibility, its tensile strength is in the range of 20 to 80 kg / mm 2 , and the elastic modulus in an arbitrary direction parallel to the substrate surface is in the range of 1000 to 2500 kg / mm 2 . It is preferable that the breaking elongation in an arbitrary direction parallel to the substrate surface is 5% or more.
 基板の表面には、無機物、有機物又はそれらのハイブリッドによる被膜が形成されていてもよい。このような被膜としては、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のガスバリアー性フィルムであるもの、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・atm)以下、及び水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高ガスバリアー性フィルムであるものが好適である。 A film made of an inorganic material, an organic material, or a hybrid thereof may be formed on the surface of the substrate. Such a film has a water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 of 1 × 10 −3 g / (M 2 · 24h) The following is a gas barrier film, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 -3 ml / (m 2 · 24h · atm) or less, and water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is a high gas barrier film having 1 × 10 −3 g / (m 2 · 24 h) or less. Those are preferred.
 ガスバリアー性の被膜を形成する材料としては、素子を劣化させる水分や酸素等の浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらに、被膜の脆弱性を改良させるために、被膜に積層構造を持たせることがより好ましい。積層構造は、例えば、無機層と有機層とを交互に複数回積層することにより形成することができる。 As a material for forming a gas barrier film, any material having a function of suppressing the intrusion of moisture, oxygen, or the like that deteriorates the element may be used. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. . Furthermore, in order to improve the brittleness of the coating, it is more preferable to give the coating a laminated structure. The laminated structure can be formed, for example, by alternately laminating inorganic layers and organic layers a plurality of times.
 ガスバリアー性の被膜を形成する方法としては、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等が挙げられる。 Examples of a method for forming a gas barrier film include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma polymerization method. , Plasma CVD method, laser CVD method, thermal CVD method, coating method and the like.
 樹脂基板の屈折率は、1.5前後である。 The refractive index of the resin substrate is around 1.5.
≪その他の構成≫
 樹脂基板から空気中に効率よく光を取り出すため、樹脂基板上に、既知のレンズシートやプリズムシート等を設けることもできる。
≪Other composition≫
In order to efficiently extract light from the resin substrate into the air, a known lens sheet, prism sheet, or the like can be provided on the resin substrate.
≪有機EL素子の使用方法≫
 有機EL素子は、上記のように、樹脂基板上に、第1電極と有機機能層と第2電極とが積層され構成されている。当該有機EL素子においては、一方の端部で第1電極の一部を露出させ、他方の端部で第2電極の一部を露出させて電極部を形成し、この電極部を電源部(不図示)の各々の電源配線(不図示)に接続して、有機機能層に所定の直流電圧を印加することで、発光させることができる。
≪Use of organic EL elements≫
As described above, the organic EL element is configured by laminating the first electrode, the organic functional layer, and the second electrode on the resin substrate. In the organic EL element, a part of the first electrode is exposed at one end, and a part of the second electrode is exposed at the other end to form an electrode part. By connecting to each power supply wiring (not shown) (not shown) and applying a predetermined DC voltage to the organic functional layer, light can be emitted.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
[実施例1]
≪有機EL素子の作製≫
(1)有機EL素子101の作製
(1.1)樹脂基板の準備
 基板として、60mm×80mm×0.125mmの透明なPEN基板に特開2012-116101号公報の実施例1を参照にして、ガスバリアー層を形成した。
[Example 1]
<< Production of organic EL elements >>
(1) Preparation of organic EL element 101 (1.1) Preparation of resin substrate As a substrate, a transparent PEN substrate of 60 mm × 80 mm × 0.125 mm was referred to Example 1 of JP2012-116101A, A gas barrier layer was formed.
 具体的には、両面に易接着加工された幅500mm、厚さ125μmのポリエチレンナフタレートフィルム(帝人デュポンフィルム株式会社製、極低熱収PEN Q83)の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7535を、塗布・乾燥後の層厚が4μmになるように塗布した後、硬化条件;1.0J/cm、空気雰囲気下、高圧水銀ランプ使用、乾燥条件;80℃、3分で硬化を行い、ブリードアウト防止層を形成した。 Specifically, a UV curable organic product manufactured by JSR Corporation on one side of a polyethylene naphthalate film (made by Teijin DuPont Films Ltd., extremely low heat yield PEN Q83) having a width of 500 mm and a thickness of 125 μm that is easily bonded on both sides. / Inorganic hybrid hard coat material OPSTAR Z7535 was applied so that the layer thickness after application and drying was 4 μm, and then cured conditions: 1.0 J / cm 2 , in an air atmosphere, using a high-pressure mercury lamp, drying conditions: 80 Curing was carried out at 3 ° C. for 3 minutes to form a bleed-out prevention layer.
 続けて、上記樹脂基板の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7501を、塗布・乾燥後の層厚が4μmになるように塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cmで硬化を行い、平坦層を形成した。
 得られた平坦層の最大断面高さRt(p)は、JIS B 0601で規定される表面粗さで、16nmであった。
 なお、表面粗さは、SII社製のAFM(原子間力顕微鏡)SPI3800N DFMを用いて測定した。1回の測定範囲は10μm×10μmとし、測定箇所を変えて3回の測定を行い、それぞれの測定で得られたRtの値を平均したものを測定値とした。
Subsequently, a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the opposite surface of the resin substrate so that the layer thickness after application and drying is 4 μm, and then drying conditions; 80 After drying at 3 ° C. for 3 minutes, curing was carried out under an air atmosphere using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a flat layer.
The maximum cross-sectional height Rt (p) of the obtained flat layer was 16 nm with a surface roughness specified by JIS B 0601.
The surface roughness was measured using an AFM (Atomic Force Microscope) SPI3800N DFM manufactured by SII. The measurement range for one time was 10 μm × 10 μm, the measurement location was changed, and the measurement was performed three times. The average of the Rt values obtained in each measurement was taken as the measurement value.
 上記のように作製した樹脂基板の厚さは、133μmであった。 The thickness of the resin substrate produced as described above was 133 μm.
 次いで、樹脂基板の平坦層表面に、無機前駆体化合物を含有する塗布液を、減圧押し出し方式のコーターを用いて、乾燥層厚が150nmとなるように、1層目のガスバリアー層を塗布した。
 無機前駆体化合物を含有する塗布液は、無触媒のパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NN120-20)とアミン触媒を固形分の5質量%含有するパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製アクアミカ NAX120-20)とを混合して用い、アミン触媒を固形分の1質量%に調整した後、更に、ジブチルエーテルで希釈することにより5質量%ジブチルエーテル溶液として作製した。
Next, the first gas barrier layer was applied to the surface of the flat layer of the resin substrate with a coating solution containing an inorganic precursor compound using a vacuum extrusion type coater so that the dry layer thickness was 150 nm. .
The coating solution containing the inorganic precursor compound is a non-catalytic perhydropolysilazane 20% by mass dibutyl ether solution (AZ Electronic Materials Co., Ltd. Aquamica NN120-20) and an amine catalyst containing 5% by mass solids. Hydropolysilazane 20% by weight dibutyl ether solution (Aquamica NAX120-20 manufactured by AZ Electronic Materials Co., Ltd.) was used in combination, and after adjusting the amine catalyst to 1% by weight of solid content, it was further diluted with dibutyl ether. This was prepared as a 5% by mass dibutyl ether solution.
 塗布後、乾燥温度80℃、乾燥時間300秒、乾燥雰囲気の露点5℃の条件下で乾燥させた。 After coating, the film was dried under conditions of a drying temperature of 80 ° C., a drying time of 300 seconds, and a dew point of 5 ° C. in a dry atmosphere.
 乾燥後、樹脂基板を25℃まで徐冷し、真空紫外線照射装置内で、塗布面に真空紫外線照射による改質処理を行った。真空紫外線照射装置の光源としては、172nmの真空紫外線を照射する二重管構造を有するXeエキシマランプを用いた。 After drying, the resin substrate was gradually cooled to 25 ° C., and the coating surface was subjected to modification treatment by irradiation with vacuum ultraviolet rays in a vacuum ultraviolet irradiation apparatus. As a light source of the vacuum ultraviolet irradiation device, an Xe excimer lamp having a double tube structure for irradiating vacuum ultraviolet rays of 172 nm was used.
<改質処理装置>
 株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、波長172nm、ランプ封入ガス Xe
<改質処理条件>
 エキシマ光強度    3J/cm(172nm)
 ステージ加熱温度    100℃
 照射装置内の酸素濃度  1000ppm
<Modification processing equipment>
Excimer irradiation equipment MODEL: MECL-M-1-200, wavelength 172 nm, lamp filled gas Xe
<Reforming treatment conditions>
Excimer light intensity 3J / cm 2 (172nm)
Stage heating temperature 100 ° C
Oxygen concentration in the irradiation device 1000ppm
 改質処理後、ガスバリアー層を形成した基板を、上記と同様にして乾燥させ、更に、同条件にて2回目の改質処理を行い、乾燥層厚150nmのガスバリアー層を形成した。 After the modification treatment, the substrate on which the gas barrier layer was formed was dried in the same manner as described above, and further subjected to the second modification treatment under the same conditions to form a gas barrier layer having a dry layer thickness of 150 nm.
 次いで、1層目のガスバリアー層と同様にして、1層目のガスバリアー層上に2層目のガスバリアー層を形成し、ガスバリアー性を有するPEN基板(フィルム)を作製した。 Subsequently, in the same manner as the first gas barrier layer, a second gas barrier layer was formed on the first gas barrier layer to produce a PEN substrate (film) having gas barrier properties.
 上記のガスバリアー層付PENフィルムを60mm×80mmに断裁し、テフロン(登録商標)枠に固定(張力100N/m相当)し、以下の操作を行った。 The above PEN film with a gas barrier layer was cut to 60 mm × 80 mm, fixed to a Teflon (registered trademark) frame (equivalent to a tension of 100 N / m), and the following operation was performed.
(1.2)第1電極の作製
 上記PEN基板を、市販の真空蒸着装置の基板ホルダーに固定し、下記化合物10をタンタル製抵抗加熱ボートに入れ、これらの基板ホルダーと加熱ボートとを真空蒸着装置の第1真空槽に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、第2真空槽内に取り付けた。
(1.2) Production of first electrode The PEN substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, the following compound 10 is placed in a resistance heating boat made of tantalum, and these substrate holder and heating boat are vacuum deposited. Attached to the first vacuum chamber of the apparatus. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 この状態で、まず、第1真空槽を4×10-4Paまで減圧した後、化合物10の入った加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で基板上に層厚25nmの化合物10からなる下地層を設けた。 In this state, first, the first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing the heating boat containing the compound 10, and the deposition rate was within the range of 0.1 to 0.2 nm / second. A base layer made of the compound 10 having a layer thickness of 25 nm was provided on the substrate.
 次いで、下地層まで形成した基板を真空のまま第2真空槽に移し、第2真空槽を4×10-4Paまで減圧した後、銀の入った加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒の範囲内で、基板(下地層)上に層厚8nmの銀からなる電極層を形成し、下地層と電極層との積層構造からなる第1電極を作製した。 Next, the substrate formed up to the base layer is transferred to the second vacuum chamber while being vacuumed, the second vacuum chamber is depressurized to 4 × 10 −4 Pa, and then the heating boat containing silver is energized and heated, and the deposition rate is increased. An electrode layer made of silver having a thickness of 8 nm is formed on a substrate (underlying layer) within a range of 0.1 to 0.2 nm / second, and a first electrode having a laminated structure of the underlayer and the electrode layer is produced. did.
(1.3)有機機能層の作製
 第1電極が形成された樹脂基板を、中央部に幅30mm×30mmの開口部があるマスクと重ねて市販の真空蒸着装置の基板ホルダーに固定した。また、真空蒸着装置内の加熱ボートの各々に、有機機能層を構成する各材料を、それぞれの層の形成に最適な量で充填した。
(1.3) Production of organic functional layer The resin substrate on which the first electrode was formed was fixed to a substrate holder of a commercially available vacuum deposition apparatus by overlapping with a mask having an opening with a width of 30 mm × 30 mm at the center. Moreover, each material which comprises an organic functional layer was filled with the optimal quantity for formation of each layer to each heating boat in a vacuum evaporation system.
 なお、加熱ボートはタングステン製抵抗加熱用材料で作製されたものを用いた。 The heating boat used was made of tungsten resistance heating material.
 次いで、真空蒸着装置の蒸着室内を真空度4×10-4Paまで減圧し、各材料が入った加熱ボートを順次通電して加熱することにより、以下のように各層を形成した。 Next, the inside of the vapor deposition chamber of the vacuum vapor deposition apparatus was depressurized to a vacuum degree of 4 × 10 −4 Pa, and each layer was formed as follows by sequentially energizing and heating the heating boat containing each material.
 まず、正孔輸送注入材料として、下記構造式に示すα-NPDが入った加熱ボートに通電して加熱し、α-NPDよりなる正孔注入層と正孔輸送層とを兼ねた正孔輸送注入層を、第1電極を構成する電極層上に形成した。この際、蒸着速度0.1~0.2nm/秒、層厚140nmとした。 First, as a hole transport injecting material, a heating boat containing α-NPD represented by the following structural formula is energized and heated, and hole transport serving as both a hole injecting layer and a hole transporting layer made of α-NPD The injection layer was formed on the electrode layer constituting the first electrode. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 140 nm.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 次に、下記構造式に示すホスト材料H4の入った加熱ボートと、下記構造式に示すリン光発光性化合物Ir-4の入った加熱ボートとを、それぞれ独立に通電し、ホスト材料H4とリン光発光性化合物Ir-4とよりなる発光層を、正孔輸送注入層上に形成した。この際、蒸着速度がホスト材料H4:リン光発光性化合物Ir-4=100:6となるように、加熱ボートの通電を調節した。また、層厚30nmとした。 Next, each of the heating boat containing the host material H4 represented by the following structural formula and the heating boat containing the phosphorescent compound Ir-4 represented by the following structural formula were energized independently, respectively. A light emitting layer composed of the light emitting compound Ir-4 was formed on the hole transport injection layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was the host material H4: phosphorescent compound Ir-4 = 100: 6. The layer thickness was 30 nm.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 次いで、正孔阻止材料として下記構造式に示すBAlqが入った加熱ボートに通電して加熱し、BAlqよりなる正孔阻止層を、発光層上に形成した。この際、蒸着速度0.1~0.2nm/秒、層厚10nmとした。 Next, a hole-blocking layer made of BAlq was formed on the light-emitting layer by heating by heating a heating boat containing BAlq represented by the following structural formula as a hole-blocking material. At this time, the deposition rate was 0.1 to 0.2 nm / second, and the layer thickness was 10 nm.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 その後、電子輸送材料としてトリス(8-キノリノール)アルミニウム(Alq)の入った加熱ボートと、フッ化カリウムの入った加熱ボートとを、それぞれ独立に通電し、Alqとフッ化カリウムとよりなる電子輸送層を、正孔阻止層上に形成した。この際、蒸着速度がAlq:フッ化カリウム=75:25になるように、加熱ボートの通電を調節した。また、層厚30nmとした。 Thereafter, a heating boat containing tris (8-quinolinol) aluminum (Alq 3 ) as an electron transporting material and a heating boat containing potassium fluoride are energized independently to each other, and consist of Alq 3 and potassium fluoride. An electron transport layer was formed on the hole blocking layer. At this time, the energization of the heating boat was adjusted so that the deposition rate was Alq 3 : potassium fluoride = 75: 25. The layer thickness was 30 nm.
 次に、電子注入材料としてフッ化カリウムの入った加熱ボートに通電して加熱し、フッ化カリウムよりなる電子注入層を、電子輸送層上に形成した。この際、蒸着速度0.01~0.02nm/秒、層厚1nmとした。 Next, a heating boat containing potassium fluoride as an electron injection material was energized and heated to form an electron injection layer made of potassium fluoride on the electron transport layer. At this time, the deposition rate was 0.01 to 0.02 nm / second, and the layer thickness was 1 nm.
(1.4)第2電極の作製及び封止
 その後、電子注入層まで形成した樹脂基板を、アルミニウム(Al)を入れたタングステン製の抵抗加熱ボートが取り付けられた第2真空槽へ真空状態を保持したまま移送した。アノードと直行するように配置された幅20mm×50mmの開口部があるマスクと重ねて固定した。次いで、処理室内において、成膜速度0.3~0.5nm/秒で、膜厚100nmのAlからなる反射性の第2電極をカソードとして成膜し、有機EL素子101を作製した。
(1.4) Production and Sealing of Second Electrode Thereafter, the resin substrate formed up to the electron injection layer is placed in a vacuum state in a second vacuum chamber to which a resistance heating boat made of tungsten containing aluminum (Al) is attached. It was transferred while holding. It was fixed by overlapping with a mask having an opening with a width of 20 mm × 50 mm arranged so as to be orthogonal to the anode. Next, an organic EL element 101 was manufactured in the processing chamber by forming a reflective second electrode made of Al having a thickness of 100 nm at a film formation rate of 0.3 to 0.5 nm / second as a cathode.
 その後、有機EL素子101の第2電極側を厚さ300μmのエポキシ樹脂で覆い、更に厚さ12μmのアルミニウム箔で覆った後、硬化させ、封止した。封止は、有機EL素子101を大気に接触させることなく、窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)内で行った。 Thereafter, the second electrode side of the organic EL element 101 was covered with an epoxy resin having a thickness of 300 μm, further covered with an aluminum foil having a thickness of 12 μm, and then cured and sealed. Sealing was performed in a glove box (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more) in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere.
(2)有機EL素子102の作製
 有機EL素子101の作製において、基板と第1電極との間に、下記のようにして光散乱層、平滑化層を形成した以外は同様にして、有機EL素子102を作製した。
(2) Preparation of organic EL element 102 In the preparation of the organic EL element 101, an organic EL element was similarly formed except that a light scattering layer and a smoothing layer were formed between the substrate and the first electrode as follows. Element 102 was produced.
(2.1)光散乱層の作製
 屈折率2.4、平均粒径0.25μmのTiO粒子(テイカ(株)製 JR600A)と樹脂溶液(APM社製 ED230AL(有機無機ハイブリッド樹脂))との固形分比率が70体積%/30体積%、プロピレングリコールモノメチルエーテル(PGME)中での固形分濃度が15質量%となるように、10ml量の比率で処方設計した。
(2.1) Production of Light Scattering Layer TiO 2 particles (JR600A manufactured by Teika Co., Ltd.) having a refractive index of 2.4 and an average particle size of 0.25 μm and a resin solution (ED230AL (organic / inorganic hybrid resin) manufactured by APM) The formulation was designed at a ratio of 10 ml so that the solid content ratio of the product was 70% by volume / 30% by volume and the solid content concentration in propylene glycol monomethyl ether (PGME) was 15% by mass.
 具体的には、上記TiO粒子と溶媒とを混合し、常温で冷却しながら、超音波分散機(エスエムテー社製 UH-50)に、マイクロチップステップ(エスエムテー社製 MS-3 3mmφ)の標準条件で10分間分散を加え、TiOの分散液を作製した。
 次いで、TiO分散液を100rpmで撹拌しながら、樹脂を少量ずつ混合添加し、添加完了後、500rpmまで撹拌速度を上げ、10分間混合した後、疎水性PVDF 0.45μmフィルター(ワットマン社製)にて濾過し、目的の光散乱層用塗布液を得た。
Specifically, the above-mentioned TiO 2 particles and a solvent are mixed and cooled at room temperature, and then the standard of the microchip step (SM-3 MSmm 3 mmφ) is applied to an ultrasonic disperser (SMH UH-50). Dispersion was added for 10 minutes under the conditions to prepare a TiO 2 dispersion.
Next, while stirring the TiO 2 dispersion at 100 rpm, the resin was mixed and added little by little. After the addition was completed, the stirring speed was increased to 500 rpm, and the mixture was mixed for 10 minutes, and then a hydrophobic PVDF 0.45 μm filter (manufactured by Whatman). The desired coating solution for light scattering layer was obtained.
 上記塗布液をインクジェット塗布法にてPEN基板上に塗布した後、簡易乾燥(80℃、2分)し、更に、後述する波長制御IRで基板温度80℃未満の出力条件で5分間乾燥処理を実行した。 After applying the coating solution on the PEN substrate by the ink jet coating method, it is simply dried (80 ° C., 2 minutes), and further subjected to a drying treatment for 5 minutes under an output condition of a substrate temperature of less than 80 ° C. by wavelength control IR described later. Executed.
 次いで、下記改質処理条件にて硬化反応を促進し、層厚0.3μmの光散乱層を得た。 Next, the curing reaction was promoted under the following modification treatment conditions to obtain a light scattering layer having a layer thickness of 0.3 μm.
<改質処理装置>
 株式会社エム・ディ・コム製エキシマ照射装置MODEL:MEIRH-M-1-200-222-H-KM-G、波長222nm、ランプ封入ガス KrCl
<改質処理条件>
 エキシマ光強度    2J/cm(222nm)
 ステージ加熱温度    60℃
 照射装置内の酸素濃度  大気
<Modification processing equipment>
Excimer irradiation equipment MODEL: MEIRH-M-1-200-222-H-KM-G, wavelength 222 nm, lamp filled gas KrCl
<Reforming treatment conditions>
Excimer light intensity 2J / cm 2 (222nm)
Stage heating temperature 60 ℃
Oxygen concentration in the irradiation device
(2.1)平滑化層の作製
 次いで、平滑化層用塗布液として、高屈折率UV硬化型樹脂(東洋インキ(株)社製、リオデュラスTYT90-01、ナノゾル粒子:TiO)を、プロピレングリコールモノメチルエーテル(PGME)と2-メチル-2,4-ペンタンジオール(PD)との溶媒比が90質量%/10質量%である有機溶媒中での固形分濃度が12質量%となるように、10ml量の比率で処方設計した。
(2.1) Preparation of smoothing layer Next, a high refractive index UV curable resin (manufactured by Toyo Ink Co., Ltd., Rioduras TYT90-01, nanosol particles: TiO 2 ) was used as a smoothing layer coating solution. The solid content concentration in an organic solvent in which the solvent ratio of glycol monomethyl ether (PGME) and 2-methyl-2,4-pentanediol (PD) is 90% by mass / 10% by mass is 12% by mass. The formulation was designed at a ratio of 10 ml.
 具体的には、上記高屈折率UV硬化型樹脂と溶媒を混合し、500rpmで1分間混合した後、疎水性PVDF 0.45μmフィルター(ワットマン社製)にて濾過し、目的の平滑化層用塗布液を得た。
 上記塗布液をインクジェット塗布法にて光散乱層上に塗布した後、簡易乾燥(80℃、2分)し、更に波長制御IRで基板温度80℃未満の出力条件で5分間乾燥処理を実行した。
Specifically, the high refractive index UV curable resin and the solvent are mixed, mixed at 500 rpm for 1 minute, and then filtered through a hydrophobic PVDF 0.45 μm filter (manufactured by Whatman) for the intended smoothing layer. A coating solution was obtained.
After coating the coating solution on the light scattering layer by the inkjet coating method, simple drying (80 ° C., 2 minutes) was performed, and further, a drying process was performed for 5 minutes under an output condition with a substrate temperature of less than 80 ° C. by wavelength control IR. .
 乾燥処理は、波長制御赤外線ヒーターによる輻射伝熱乾燥(IR照射装置(アルティメットヒーター/カーボン,明々工業株式会社製)に、波長3.5μm以上の赤外線を吸収する石英ガラス板2枚を取り付け、ガラス板間に冷却空気を流す)により行った。
 この際、冷却風は200L/minとし、管面石英ガラス温度は120℃未満に抑えた。基板温度は、K熱電対を、基板上下面及び基板上空5mm部分にそれぞれ配置し、NR2000(キーエンス社製)に接続して測定した。
The drying process was performed by attaching two quartz glass plates that absorb infrared rays having a wavelength of 3.5 μm or more to an IR irradiation device (ultimate heater / carbon, manufactured by Meidyo Kogyo Co., Ltd.) using a wavelength-controlled infrared heater, and glass. Flowing cooling air between the plates).
At this time, the cooling air was set at 200 L / min, and the tube surface quartz glass temperature was suppressed to less than 120 ° C. The substrate temperature was measured by placing K thermocouples on the upper and lower surfaces of the substrate and 5 mm above the substrate and connecting them to NR2000 (manufactured by Keyence Corporation).
 次いで、下記改質処理条件にて硬化反応を促進し、層厚0.7μmの平滑化層を形成し、光散乱層及び平滑化層の2層構造からなる光取り出し層を作製した。 Next, the curing reaction was promoted under the following modification treatment conditions, a smoothing layer having a layer thickness of 0.7 μm was formed, and a light extraction layer having a two-layer structure of a light scattering layer and a smoothing layer was produced.
<改質処理装置>
 株式会社エム・ディ・コム製エキシマ照射装置MODEL:MEIRH-M-1-200-222-H-KM-G、波長222nm、ランプ封入ガス KrCl
<改質処理条件>
 エキシマ光強度    2J/cm(222nm)
 ステージ加熱温度    60℃
 照射装置内の酸素濃度  大気
<Modification processing equipment>
Excimer irradiation equipment MODEL: MEIRH-M-1-200-222-H-KM-G, wavelength 222 nm, lamp filled gas KrCl
<Reforming treatment conditions>
Excimer light intensity 2J / cm 2 (222nm)
Stage heating temperature 60 ℃
Oxygen concentration in the irradiation device
 なお、平滑化層単層での屈折率は、1.89であった。
 上記のようにして作製した光取り出し層の透過率Tは67%、ヘイズ値Hzは50%であった。なお、ヘイズ値は、光散乱層上に平滑化層を積層した光取り出し層としてのヘイズ値である。
 また、D542に基づきソプラ社のエリプソメーターを用いて、光取り出し層全体の波長550nmにおける屈折率を測定したところ、1.88であった。
The refractive index of the smoothing layer single layer was 1.89.
The light extraction layer produced as described above had a transmittance T of 67% and a haze value Hz of 50%. In addition, a haze value is a haze value as a light extraction layer which laminated | stacked the smoothing layer on the light-scattering layer.
In addition, the refractive index at a wavelength of 550 nm of the entire light extraction layer was measured using a sopra ellipsometer based on D542, and found to be 1.88.
(3)有機EL素子103の作製
 有機EL素子102の作製において、平滑化層用塗布液の有機溶媒として、プロピレングリコールモノメチルエーテルと2-メチル-2,4-ペンタンジオールとの溶媒比が70質量%/30質量%である有機溶媒を用い、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子103を作製した。
(3) Production of Organic EL Element 103 In production of the organic EL element 102, the solvent ratio of propylene glycol monomethyl ether and 2-methyl-2,4-pentanediol as the organic solvent of the smoothing layer coating solution is 70 mass. The organic EL element 103 was produced in the same manner except that an organic solvent of% / 30% by mass was used and the formulation was formulated at a ratio of 10 ml so that the solid content concentration was 12% by mass.
(4)有機EL素子104の作製
 有機EL素子102の作製において、平滑化層用塗布液の有機溶媒として、プロピレングリコールモノメチルエーテルと2-メチル-2,4-ペンタンジオールとの溶媒比が30質量%/70質量%である有機溶媒を用い、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子104を作製した。
(4) Preparation of organic EL element 104 In the preparation of the organic EL element 102, the solvent ratio of propylene glycol monomethyl ether and 2-methyl-2,4-pentanediol as the organic solvent of the smoothing layer coating solution was 30 mass. The organic EL element 104 was produced in the same manner except that the organic solvent was% / 70% by mass and the formulation was designed in a ratio of 10 ml so that the solid content concentration was 12% by mass.
(5)有機EL素子105の作製
 有機EL素子102の作製において、平滑化層用塗布液の有機溶媒を2-メチル-2,4-ペンタンジオールのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子105を作製した。
(5) Preparation of organic EL element 105 In the preparation of organic EL element 102, the organic solvent of the smoothing layer coating solution is only 2-methyl-2,4-pentanediol, so that the solid content concentration is 12% by mass. In addition, the organic EL element 105 was produced in the same manner except that the formulation was designed in a ratio of 10 ml.
(6)有機EL素子106の作製
 有機EL素子102の作製において、平滑化層用塗布液の有機溶媒を1,3-ブタンジオールのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子106を作製した。
(6) Preparation of organic EL element 106 In preparation of the organic EL element 102, the organic solvent of the smoothing layer coating solution is only 1,3-butanediol, and the amount of 10 ml is so that the solid content concentration is 12% by mass. The organic EL element 106 was produced in the same manner except that the prescription was designed at the ratio.
(7)有機EL素子107の作製
 有機EL素子102の作製において、平滑化層用塗布液の有機溶媒を1,5-ペンタンジオールのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子107を作製した。
(7) Preparation of organic EL element 107 In preparation of organic EL element 102, the organic solvent of the coating solution for the smoothing layer is only 1,5-pentanediol, and the amount of 10 ml so that the solid content concentration is 12% by mass. The organic EL element 107 was produced in the same manner except that the prescription was designed at the ratio.
≪有機EL素子の評価≫
(1)吐出安定性
 インクジェットヘッド(コニカミノルタ社製「KM512L」)を搭載したインクジェット描画装置を用いて、インクジェット塗布法により、上記作製された基板上に、上記調製された平滑化層用塗布液を吐出して、3cm×3cmのパターンを連続して印字した。
 インクジェット塗布法の描画条件は、印加電圧調整により液適量を40.0ngとし、解像度を360dpi×450dpiとし、パターン膜ごとにシングルパス印字とした。
 連続して100パターンまで印字を行い、光学顕微鏡(100倍)により、着弾したインクを観察し、全ノズル(512本)中において、ノズル欠及びノズル曲がり(着弾位置ずれ)が発生したノズルの数を下記の評価基準に従って評価した。
 評価結果を表1に示す。なお、評価基準3のものを合格とした。
<< Evaluation of organic EL elements >>
(1) Discharge stability Using the inkjet drawing apparatus equipped with an inkjet head (“KM512L” manufactured by Konica Minolta Co., Ltd.), the prepared coating solution for the smoothing layer is formed on the substrate prepared by the inkjet coating method. The 3 cm × 3 cm pattern was continuously printed.
The drawing conditions of the ink jet coating method were an appropriate liquid amount of 40.0 ng by adjusting the applied voltage, a resolution of 360 dpi × 450 dpi, and single pass printing for each pattern film.
Prints up to 100 patterns in succession, observes the landed ink with an optical microscope (100 times), and the number of nozzles with missing nozzles and nozzle bending (landing position deviation) in all nozzles (512) Were evaluated according to the following evaluation criteria.
The evaluation results are shown in Table 1. In addition, the thing of the evaluation criteria 3 was set as the pass.
〔評価基準〕
 3:ノズル欠、ノズル曲がりの発生なし。
 2:ノズル欠の発生はないが、ノズル曲がりの発生あり。
 1:ノズル欠の発生あり。
〔Evaluation criteria〕
3: No missing nozzle or bent nozzle.
2: No nozzle missing, but nozzle bending.
1: Nozzle missing.
(2)濃度ムラ
 4cm×8cmのPENフィルムを超音波洗浄機にて洗剤洗浄、純水洗浄後、UV-オゾン洗浄機を用いて、低圧水銀灯(UV波長254nm、185nm)で30mmの距離から照度2mW/cmで10分間UV照射して処理を行い、基板を得た。
 インクジェットヘッド(コニカミノルタ社製「KM512L」)を搭載したインクジェット描画装置を用いて、インクジェット塗布法により、上記作製された基板上に、上記調製された平滑化層用塗布液を吐出して、評価パターン(3cm×3cm、Wet膜厚10μm)を形成した。
 インクジェット塗布法の描画条件は、印加電圧調整により液適量を40.0ngとし、解像度を360dpi×450dpiとし、パターン膜ごとにシングルパス印字とした。また、基板の温度は、印字時においては25℃に保持された。インクジェットで印字後すぐに日本ガイシ社製の波長制御IRヒーターにより出力100%(2kW)で10分間乾燥させた。
 PENフィルムに記録されたパターンに対して、下記の評価基準に従って濃度ムラを目視で評価した。
 評価結果を表1に示す。なお、評価基準3のものを合格とした。
(2) Density unevenness PEN film of 4cm x 8cm was cleaned with detergent and pure water using an ultrasonic cleaner, and then illuminated from a distance of 30mm using a UV-ozone cleaner with a low-pressure mercury lamp (UV wavelength: 254nm, 185nm). A substrate was obtained by performing UV irradiation at 2 mW / cm 2 for 10 minutes.
Using the inkjet drawing apparatus equipped with an inkjet head (“KM512L” manufactured by Konica Minolta Co., Ltd.), the prepared coating liquid for smoothing layer is ejected onto the prepared substrate by an inkjet application method, and evaluated. A pattern (3 cm × 3 cm, Wet film thickness 10 μm) was formed.
The drawing conditions of the ink jet coating method were an appropriate liquid amount of 40.0 ng by adjusting the applied voltage, a resolution of 360 dpi × 450 dpi, and single pass printing for each pattern film. The substrate temperature was maintained at 25 ° C. during printing. Immediately after printing by inkjet, it was dried for 10 minutes at an output of 100% (2 kW) using a wavelength control IR heater manufactured by NGK.
Density unevenness was visually evaluated according to the following evaluation criteria for the pattern recorded on the PEN film.
The evaluation results are shown in Table 1. In addition, the thing of the evaluation criteria 3 was set as the pass.
〔評価基準〕
 3:目視で濃度ムラが確認されず、高い均質感を有している。
 2:インクジェットヘッドの走査方向と平行に僅かにスジムラが見られる。
 1:明らかなスジムラがみられ、場所によってはハジキやピンホールが見られる。
〔Evaluation criteria〕
3: Density unevenness is not visually confirmed, and has a high homogeneity.
2: Slight unevenness is seen in parallel with the scanning direction of the inkjet head.
1: Obvious stripes are seen, and repelling and pinholes are seen in some places.
(3)成膜性
 成膜性とは、塗布液を基板上に塗設したときの状態を表す指標である。
 塗布膜は、均一に塗設されていることが好ましく、塗布ムラ、ハジキ、スジ等が発生すると、光散乱層本来の機能が発現されないだけでなく、有機EL素子自体の発光効率が低下してしまうことがある。
 そこで、作製した各有機EL素子について、平滑化層の成膜状態を、下記の評価基準に従って目視評価した。
 評価結果を表1に示す。なお、評価基準3のものを合格とした。
(3) Film formability The film formability is an index representing the state when the coating liquid is applied on the substrate.
The coating film is preferably uniformly coated. When uneven coating, repelling, streaks, etc. occur, not only the original function of the light scattering layer is exhibited, but also the light emitting efficiency of the organic EL element itself decreases. May end up.
Then, about each produced organic EL element, the film-forming state of the smoothing layer was evaluated visually according to the following evaluation criteria.
The evaluation results are shown in Table 1. In addition, the thing of the evaluation criteria 3 was set as the pass.
〔評価基準〕
 3:塗布ムラ、ハジキ、スジ等の塗布故障がない。
 2:僅かに塗布故障がある。
 1:実用に耐えない塗布故障がある。
〔Evaluation criteria〕
3: There is no coating failure such as uneven coating, repelling, and streaking.
2: There is a slight coating failure.
1: There is a coating failure that cannot withstand practical use.
(4)発光効率(電力効率)
 作製した各有機EL素子について、室温(約23~25℃の範囲内)で、2.5mA/cmの定電流密度条件下による点灯を行い、分光放射輝度計CS-2000(コニカミノルタ社製)を用いて、各素子の発光輝度を測定し、当該電流値における発光効率(電力効率)を求めた。なお、発光効率は、有機EL素子102の発光効率を100とする相対値で示した。
 測定結果を表1に示す。
(4) Luminous efficiency (power efficiency)
About each produced organic EL element, it lighted on the constant current density condition of 2.5 mA / cm < 2 > at room temperature (within the range of about 23-25 degreeC), and the spectral radiance meter CS-2000 (made by Konica Minolta) ) Was used to measure the light emission luminance of each element, and the light emission efficiency (power efficiency) at the current value was determined. The luminous efficiency is shown as a relative value where the luminous efficiency of the organic EL element 102 is 100.
The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(5)まとめ
 表1から明らかなように、本発明の有機EL素子103~106は、比較例の有機EL素子101、102及び107と比較して、平滑化層の吐出安定性、濃度ムラ、成膜性、及び有機EL素子の発光効率の全てにおいて優れていることがわかる。
 以上から、平滑化層を形成する工程では、高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内である塗布液を調製する工程と、塗布液をインクジェット塗布法により塗布する工程と、塗布後の塗布液に波長制御赤外線を照射して乾燥する工程と、乾燥後の塗布液に、エキシマ光を照射して硬化する工程と、を有する有機EL素子の製造方法が有用であることが確認できた。
(5) Summary As is apparent from Table 1, the organic EL elements 103 to 106 of the present invention are more stable than the organic EL elements 101, 102, and 107 of the comparative examples in terms of ejection stability, density unevenness, It turns out that it is excellent in all of film forming property and the luminous efficiency of an organic EL element.
From the above, in the step of forming the smoothing layer, a step of preparing a coating liquid containing high refractive index nanosol particles, a binder, and an organic solvent and having a viscosity in the range of 3 to 30 mPa · s. A step of applying the coating solution by an inkjet coating method, a step of irradiating the coating solution after application with wavelength-control infrared rays and drying, and a step of irradiating the coating solution after drying with excimer light and curing. It has confirmed that the manufacturing method of the organic EL element which has was useful.
[実施例2]
≪有機EL素子の作製≫
(1)有機EL素子201の作製
 実施例1の有機EL素子102の作製において、平滑化層用塗布液として溶媒を添加せず、固形分濃度が20質量%のまま、インクジェット塗布法で平滑化層用塗布液を塗布した以外は同様にして、有機EL素子201を作製した。
[Example 2]
<< Production of organic EL elements >>
(1) Preparation of organic EL element 201 In preparation of the organic EL element 102 of Example 1, a solvent is not added as a coating solution for the smoothing layer, and the solid content concentration remains at 20% by mass, and smoothing is performed by an inkjet coating method. An organic EL element 201 was produced in the same manner except that the layer coating solution was applied.
(2)有機EL素子202の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒をトルエンのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子202を作製した。
(2) Preparation of organic EL element 202 In preparation of the organic EL element 201, the organic solvent of the smoothing layer coating solution is only toluene, and the formulation is designed in a ratio of 10 ml so that the solid content concentration is 12% by mass. An organic EL element 202 was produced in the same manner except that.
(3)有機EL素子203の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒を2-ブタノールのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子203を作製した。
(3) Preparation of organic EL element 203 In the preparation of the organic EL element 201, the organic solvent of the smoothing layer coating solution is only 2-butanol, and the solid content concentration is 12% by mass at a ratio of 10 ml. An organic EL device 203 was produced in the same manner except that the formulation was designed.
(4)有機EL素子204の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒をテトラヒドロフルフリルアルコール(THFA)のみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子204を作製した。
(4) Preparation of organic EL element 204 In preparation of the organic EL element 201, the organic solvent of the coating solution for the smoothing layer is only tetrahydrofurfuryl alcohol (THFA), and 10 ml so that the solid content concentration is 12% by mass. An organic EL element 204 was produced in the same manner except that the formulation was designed according to the ratio of the amounts.
(5)有機EL素子205の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒を2-メチル-2,4-ペンタンジオール(PD)のみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子205を作製した。
(5) Preparation of organic EL element 205 In preparation of the organic EL element 201, the organic solvent of the smoothing layer coating solution is only 2-methyl-2,4-pentanediol (PD), and the solid content concentration is 12% by mass. Thus, an organic EL element 205 was produced in the same manner except that the formulation was designed at a ratio of 10 ml.
(6)有機EL素子206の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒をテトラエチレングリコールのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子206を作製した。
(6) Production of organic EL element 206 In production of the organic EL element 201, the organic solvent of the smoothing layer coating solution is only tetraethylene glycol, and the solid content concentration is 12% by mass in a ratio of 10 ml. An organic EL element 206 was produced in the same manner except that the formulation was designed.
(7)有機EL素子207の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒を1,3-ブタンジオールのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子207を作製した。
(7) Preparation of organic EL element 207 In preparation of organic EL element 201, the organic solvent of the smoothing layer coating solution is only 1,3-butanediol, and the solid content concentration is 12% by mass. The organic EL element 207 was produced in the same manner except that the prescription was designed at the ratio.
(8)有機EL素子208の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒を1,5-ペンタンジオールのみとし、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子208を作製した。
(8) Production of organic EL element 208 In production of the organic EL element 201, the organic solvent of the smoothing layer coating solution is only 1,5-pentanediol, and the solid content concentration is 12% by mass. The organic EL element 208 was produced in the same manner except that the prescription was designed at the ratio.
(9)有機EL素子209の作製
 有機EL素子201の作製において、平滑化層用塗布液の有機溶媒として、プロピレングリコールモノメチルエーテル(PGME)と1,5-ペンタンジオールとの溶媒比が50質量%/50質量%である有機溶媒を用い、固形分濃度が12質量%となるように、10ml量の比率で処方設計した以外は同様にして、有機EL素子209を作製した。
(9) Production of Organic EL Element 209 In production of the organic EL element 201, the solvent ratio of propylene glycol monomethyl ether (PGME) and 1,5-pentanediol as the organic solvent of the smoothing layer coating solution is 50% by mass. An organic EL device 209 was produced in the same manner except that the organic solvent was / 50% by mass and the formulation was designed at a ratio of 10 ml so that the solid content concentration was 12% by mass.
≪有機EL素子の評価≫
 実施例1と同様にして、平滑化層における吐出安定性、濃度ムラ、成膜性、及び有機EL素子における発光効率を評価、測定した。
 評価結果を表2に示す。
 なお、発光効率は、有機EL素子201の発光効率を100とする相対値で示した。
<< Evaluation of organic EL elements >>
In the same manner as in Example 1, ejection stability in the smoothing layer, density unevenness, film formability, and light emission efficiency in the organic EL element were evaluated and measured.
The evaluation results are shown in Table 2.
The luminous efficiency is shown as a relative value where the luminous efficiency of the organic EL element 201 is 100.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(2)まとめ
 表2から明らかなように、本発明の有機EL素子204~207及び209は、比較例の有機EL素子201~203及び208と比較して、平滑化層の吐出安定性、濃度ムラ、成膜性、及び有機EL素子の発光効率の全てにおいて、より優れていることがわかる。また、有機EL素子204、205、207及び209は、有機EL素子206と比較して、発光効率が大きく向上していた。
 以上から、平滑化層に含有される有機溶媒として、粘度及び蒸気圧が一定の範囲にあるものを使用することが、より光取り出し効率を向上させることに有用であることが確認できた。
(2) Summary As is clear from Table 2, the organic EL elements 204 to 207 and 209 of the present invention are more stable than the organic EL elements 201 to 203 and 208 of the comparative example in terms of ejection stability and concentration. It turns out that it is more excellent in all of nonuniformity, film-forming property, and the luminous efficiency of an organic EL element. In addition, the organic EL elements 204, 205, 207, and 209 have greatly improved luminous efficiency compared to the organic EL element 206.
From the above, it has been confirmed that the use of an organic solvent having a viscosity and vapor pressure within a certain range as the organic solvent contained in the smoothing layer is more useful for improving the light extraction efficiency.
 本発明は、光透過性を損なうことなく、導波損失を低減し、光取り出し効率を向上させる、フレキシブル性を有する有機EL素子の製造方法、及び当該製造方法に用いられる塗布液を提供することに、特に好適に利用することができる。 The present invention provides a method for manufacturing a flexible organic EL element that reduces waveguide loss and improves light extraction efficiency without impairing light transmittance, and a coating liquid used in the manufacturing method. In particular, it can be suitably used.
10 樹脂基板
20 光取り出し層
 22 光散乱層
 24 平滑化層
30 第1電極
40 有機機能層
 41 正孔注入層
 42 正孔輸送層
 43 発光層
 44 電子輸送層
 45 電子注入層
50 第2電極
100 有機EL素子
300 有機EL素子
302 金属電極
304 有機機能層
306 透明電極
308 透明基板
310a,310b,310c,310d,310e 光
DESCRIPTION OF SYMBOLS 10 Resin board | substrate 20 Light extraction layer 22 Light scattering layer 24 Smoothing layer 30 1st electrode 40 Organic functional layer 41 Hole injection layer 42 Hole transport layer 43 Light emitting layer 44 Electron transport layer 45 Electron injection layer 50 2nd electrode 100 Organic EL element 300 Organic EL element 302 Metal electrode 304 Organic functional layer 306 Transparent electrode 308 Transparent substrates 310a, 310b, 310c, 310d, 310e Light

Claims (6)

  1.  樹脂基板上に、光散乱層、平滑化層、第1電極、有機機能層、及び第2電極が順次積層された有機エレクトロルミネッセンス素子の製造方法であって、
     前記樹脂基板上に、前記光散乱層を形成する工程と、
     前記光散乱層上に、前記平滑化層を形成する工程と、
    を備え、
     前記平滑化層を形成する工程では、
     高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内である塗布液を調製する工程と、
     前記塗布液をインクジェット塗布法により塗布する工程と、
     塗布後の前記塗布液に、波長制御赤外線を照射して乾燥する工程と、
     乾燥後の前記塗布液に、エキシマ光を照射して硬化する工程と、
    を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
    A method for producing an organic electroluminescent element in which a light scattering layer, a smoothing layer, a first electrode, an organic functional layer, and a second electrode are sequentially laminated on a resin substrate,
    Forming the light scattering layer on the resin substrate;
    Forming the smoothing layer on the light scattering layer;
    With
    In the step of forming the smoothing layer,
    A step of preparing a coating liquid containing high refractive index nanosol particles, a binder, and an organic solvent and having a viscosity in the range of 3 to 30 mPa · s;
    Applying the coating solution by an ink jet coating method;
    A step of irradiating the coating liquid after coating with a wavelength-controlled infrared ray and drying,
    A step of irradiating and curing the coating liquid after drying with excimer light;
    The manufacturing method of the organic electroluminescent element characterized by having.
  2.  前記有機溶媒の粘度が、5~100mPa・sの範囲内であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 2. The method for producing an organic electroluminescent element according to claim 1, wherein the viscosity of the organic solvent is in a range of 5 to 100 mPa · s.
  3.  前記有機溶媒の蒸気圧が、1.0~1000Paの範囲内であることを特徴とする請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。 3. The method of manufacturing an organic electroluminescent element according to claim 1, wherein the vapor pressure of the organic solvent is in a range of 1.0 to 1000 Pa.
  4.  高屈折率のナノゾル粒子と、バインダーと、有機溶媒とを含有し、かつ粘度が3~30mPa・sの範囲内であることを特徴とする塗布液。 A coating liquid comprising nanosol particles having a high refractive index, a binder, and an organic solvent, and having a viscosity in the range of 3 to 30 mPa · s.
  5.  前記有機溶媒の粘度が、5~100Pa・sの範囲内であることを特徴とする請求項4に記載の塗布液。 The coating solution according to claim 4, wherein the viscosity of the organic solvent is in the range of 5 to 100 Pa · s.
  6.  前記有機溶媒の蒸気圧が、1.0~1000Paの範囲内であることを特徴とする請求項4又は請求項5に記載の塗布液。 6. The coating liquid according to claim 4, wherein the vapor pressure of the organic solvent is in a range of 1.0 to 1000 Pa.
PCT/JP2014/068021 2013-07-26 2014-07-07 Organic electroluminescent element production method and coat solution WO2015012093A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528212A JPWO2015012093A1 (en) 2013-07-26 2014-07-07 Manufacturing method of organic electroluminescence device and coating solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013155133 2013-07-26
JP2013-155133 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015012093A1 true WO2015012093A1 (en) 2015-01-29

Family

ID=52393141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068021 WO2015012093A1 (en) 2013-07-26 2014-07-07 Organic electroluminescent element production method and coat solution

Country Status (2)

Country Link
JP (1) JPWO2015012093A1 (en)
WO (1) WO2015012093A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123760A1 (en) * 2017-12-20 2019-06-27 コニカミノルタ株式会社 Organic electroluminescent element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062215A1 (en) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
JP2011143577A (en) * 2010-01-13 2011-07-28 Konica Minolta Holdings Inc Method for manufacturing gas barrier film, gas barrier film, and organic photoelectric conversion element
JP2011143327A (en) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc Barrier film, method for producing the same, organic photoelectric conversion element having the same, and solar cell having the element
JP2011145438A (en) * 2010-01-14 2011-07-28 Toray Advanced Film Co Ltd Antireflection film
JP2012178268A (en) * 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp Organic electroluminescent element, organic electroluminescent module, organic electroluminescent display device, and organic electroluminescent illumination device
JP2013123895A (en) * 2011-12-16 2013-06-24 Konica Minolta Advanced Layers Inc Gas barrier film and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692446B2 (en) * 2011-03-17 2014-04-08 3M Innovative Properties Company OLED light extraction films having nanoparticles and periodic structures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062215A1 (en) * 2009-11-19 2011-05-26 コニカミノルタホールディングス株式会社 Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element
JP2011143327A (en) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc Barrier film, method for producing the same, organic photoelectric conversion element having the same, and solar cell having the element
JP2011143577A (en) * 2010-01-13 2011-07-28 Konica Minolta Holdings Inc Method for manufacturing gas barrier film, gas barrier film, and organic photoelectric conversion element
JP2011145438A (en) * 2010-01-14 2011-07-28 Toray Advanced Film Co Ltd Antireflection film
JP2012178268A (en) * 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp Organic electroluminescent element, organic electroluminescent module, organic electroluminescent display device, and organic electroluminescent illumination device
JP2013123895A (en) * 2011-12-16 2013-06-24 Konica Minolta Advanced Layers Inc Gas barrier film and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123760A1 (en) * 2017-12-20 2019-06-27 コニカミノルタ株式会社 Organic electroluminescent element
JPWO2019123760A1 (en) * 2017-12-20 2020-12-10 コニカミノルタ株式会社 Organic electroluminescence element
JP7105252B2 (en) 2017-12-20 2022-07-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング organic electroluminescence element

Also Published As

Publication number Publication date
JPWO2015012093A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US9680129B2 (en) Method for manufacturing organic light emitting element including light extracting layer formed by irradiating coating solution
JP6572881B2 (en) Electroluminescent device, lighting device, and method for manufacturing electroluminescent device
TW201722200A (en) Flexible light-emitting device, illumination device, and image display device
JP6783294B2 (en) Transparent electrode and organic electronic device equipped with it
JP2017079098A (en) Optical substrate, transparent conductive member, and organic electroluminescent element
JPWO2015166764A1 (en) Light extraction laminate, organic electroluminescence device and method for producing the same
CN106575547A (en) Transparent electrode, method for producing transparent electrode and electronic device
JP2017077684A (en) Gas barrier film, transparent conductive member, and organic electroluminescent element
JP6428599B2 (en) Organic electroluminescence device and method for manufacturing the same
JP6201807B2 (en) Method for manufacturing organic light emitting device and organic light emitting device
WO2015012093A1 (en) Organic electroluminescent element production method and coat solution
JP2020177923A (en) Flexible light-emitting device, illumination device, and image display device
JP7068182B2 (en) Electronic devices and organic electroluminescence devices
WO2019230617A1 (en) Surface light emission panel and method for manufacturing surface light emission panel
JP6376134B2 (en) Organic electroluminescence device
JP6927968B2 (en) Transparent conductive member and organic electroluminescence element
JP6136551B2 (en) Pattern forming method and coating solution
JP2016036748A (en) Manufacturing method of functional film
JPWO2018110244A1 (en) Organic electroluminescence device
JP6802842B2 (en) Manufacturing method of transparent electrode
JP2010263067A (en) Method of manufacturing pattern electrode, and pattern electrode
JP2017107707A (en) Transparent electrode and organic electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829887

Country of ref document: EP

Kind code of ref document: A1