WO2015011871A1 - Route determination device and autonomous mobile body system provided with same - Google Patents

Route determination device and autonomous mobile body system provided with same Download PDF

Info

Publication number
WO2015011871A1
WO2015011871A1 PCT/JP2014/003251 JP2014003251W WO2015011871A1 WO 2015011871 A1 WO2015011871 A1 WO 2015011871A1 JP 2014003251 W JP2014003251 W JP 2014003251W WO 2015011871 A1 WO2015011871 A1 WO 2015011871A1
Authority
WO
WIPO (PCT)
Prior art keywords
observation
route
observation region
unit
route determination
Prior art date
Application number
PCT/JP2014/003251
Other languages
French (fr)
Japanese (ja)
Inventor
啓高 青木
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2015011871A1 publication Critical patent/WO2015011871A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/48Means for searching for underwater objects
    • B63C11/49Floating structures with underwater viewing devices, e.g. with windows ; Arrangements on floating structures of underwater viewing devices, e.g. on boats
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B2035/006Unmanned surface vessels, e.g. remotely controlled

Definitions

  • the present invention relates to a route determination device for determining a route on which a mobile body should move and an autonomous mobile body system including the route determination device.
  • An unmanned observation ship is used to observe the shape of the seabed, riverbed, lake bottom, etc., and to search for lost items in the water.
  • An unmanned observation ship can observe an area (such as a shallow or narrow waterway) that cannot be entered by a manned observation ship, and can be safely observed under bad weather conditions.
  • Patent Document 1 describes an unmanned boat automatic observation system in which a user can set an observation route.
  • the unmanned boat automatic observation system described in Patent Document 1 includes an unmanned boat and a wireless controller system.
  • the unmanned boat and the wireless controller system are configured to communicate with each other.
  • the unmanned boat sails to trace the automatically generated observation route based on the observation instruction from the wireless controller system, and observes the state of the water and the bottom of the water.
  • the wireless controller system includes a display and operation switches.
  • a display When the reference observation line is input by the operation switch, a plurality of observation routes are automatically generated from the input reference observation line.
  • the display shows a reference observation line and a plurality of observation routes along with a topographic map of the observation location.
  • the above-mentioned plurality of observation routes are generated by translating the input reference observation line a plurality of times at a fixed distance. For this reason, it is difficult for the user to intuitively recognize in which region a plurality of observation routes are generated when the reference observation line is input.
  • a plurality of observations are made by arranging a plurality of straight lines extending in a direction perpendicular to the inputted reference observation line at a constant interval in the direction in which the reference observation line extends.
  • a route is generated.
  • an unmanned boat is navigated in a loop shape in advance, and its route is stored based on position data transmitted from the GPS (Global Positioning System) of the unmanned boat.
  • An observation route is automatically generated in the stored loop-like route.
  • the time required for setting the observation route becomes long.
  • An object of the present invention is to provide a route determination device capable of easily and quickly setting a moving route of a moving body and an autonomous moving body system including the same.
  • a route determination device is a route determination device that determines a route to be moved by a mobile object having a predetermined observation function, and sets an observation region for setting an observation region by the mobile object
  • a display unit for displaying an image, an operation unit operated by a user to draw a point and a line on the observation region setting image displayed on the display unit, and a point and a line drawn on the observation region setting image
  • An observation region setting unit that sets an observation region based on a function that represents a line that passes through both ends of the observation region, and a route determination unit that determines a route that the moving body should move within the observation region set by the observation region setting unit Is.
  • the observation area setting screen is displayed on the display unit.
  • the observation area is set based on a function representing a line passing through both ends of the drawn point and the straight line. A route on which the moving body should move within the set observation area is determined.
  • the user can easily recognize a region surrounded by a line passing through both ends of the point and the straight line when drawing the point and the straight line on the observation region setting screen. Therefore, it becomes possible to set the moving path of the moving body easily and in a short time.
  • a route determination device is a route determination device that determines a route to be moved by a mobile object having a predetermined observation function, and is an observation region for setting an observation region by the mobile object
  • a display unit for displaying a setting image, an operation unit operated by a user to draw at least first and second straight lines on the observation region setting image displayed on the display unit, and an observation region setting image
  • An observation region setting unit for setting an observation region based on a function representing a line passing through both ends of the drawn first straight line and both ends of the second straight line, and within the observation region set by the observation region setting unit
  • a route determination unit that determines a route on which the moving body should move.
  • the observation area setting screen is displayed on the display unit.
  • the user operates the operation unit to draw the first straight line and the second straight line on the observation region setting screen
  • the both ends of the drawn first straight line and the both ends of the second straight line are displayed.
  • An observation region is set based on a function representing a line passing through. A route on which the moving body should move within the set observation area is determined.
  • a route determination device is a route determination device that determines a route to be moved by a mobile object having a predetermined observation function, and is an observation for setting an observation region by the mobile object.
  • a display unit for displaying a region setting image, an operation unit operated by a user to draw at least the first, second and third points on the observation region setting image displayed on the display unit; and an observation region
  • An observation area setting unit for setting an observation area based on a function representing a line connecting the first, second, and third points drawn on the setting image, and movement within the observation area set by the observation area setting unit
  • a route determination unit that determines a route on which the body should move.
  • the observation area setting screen is displayed on the display unit.
  • the lines that pass through the drawn first, second, and third points are represented.
  • An observation area is set based on the function. A route on which the moving body should move within the set observation area is determined.
  • the display unit may display the observation region set by the observation region setting unit on the observation region setting image.
  • the observation area set by the observation area setting unit is displayed on the observation area setting image. Accordingly, the user can accurately recognize the set observation area.
  • the operation unit is configured to be able to designate the first direction
  • the route determination unit is configured to be in a second direction that intersects the first direction while the moving body reciprocates in the first direction within the observation region.
  • a route that moves by a certain amount of displacement may be determined as a route to be moved.
  • the user can easily specify the direction in which the moving body reciprocates during observation as a desired direction.
  • the operation unit may be configured to be able to specify a certain amount of displacement.
  • the user can easily specify a certain amount of displacement in the second direction as a desired value.
  • the observation function may have an observable range
  • the route determination unit may set a certain amount of displacement below the observable range within the observation area by the observation function.
  • the constant displacement is set to be below the range that can be observed by the observation function.
  • the moving body is configured to be movable on the water and has an observation function for observing underwater conditions as an observation function.
  • the route determination unit calculates an observable range based on the water depth in the observation area. May be.
  • the observable range is calculated by the observation function based on the water depth.
  • the underwater state can be observed in the entire range within the observation region.
  • At least a part of the route to be moved is that the moving body turns from the end portion of one forward path parallel to the first direction and moves to the start end portion of one return path parallel to the first direction.
  • the path determination unit determines that the mobile body is moving in the second direction.
  • the route that passes between one forward route and one return route is changed to a route to be moved so that a range not observed by the observation function can be observed while moving from the beginning of one forward route to the end of one return route. May be included.
  • the moving body moves in the second direction by turning from at the end of one forward path and moving to the start end of one return path parallel to the first direction in at least part of the path to be moved.
  • the route that passes between one forward route and one return route is included in the route to be moved.
  • the moving body moves along a path that passes between one outbound path and one returning path, an unobservable range is observed while the moving body moves from the beginning of one outbound path to the end of one returning path. . Therefore, the observable range in the observation area becomes large. Thereby, a highly reliable observation result can be obtained.
  • the moving body has an energy source for storing energy for moving the moving body, and the route determining unit returns from the starting position to the starting position through a route to be moved in the observation region.
  • the route to be moved may be determined so that the length of the route up to is equal to or shorter than the distance corresponding to the distance that the moving body can move due to the energy remaining in the energy source.
  • An autonomous mobile body system includes a mobile body and the route determining device, and the mobile body has a main body portion having a predetermined observation function and a movement for moving the main body portion. Based on the mechanism, the current position acquisition unit for acquiring the current position of the main body unit, and the current position acquired by the current position acquisition unit, the main body unit moves along the route determined by the route determination unit. And a control unit for controlling the mechanism.
  • an observation area by the mobile body is set by the above route determination device, and a route on which the mobile body should move within the set observation area is determined.
  • the moving mechanism is controlled based on the current position acquired by the current position acquisition unit, and the main body moves along the route determined by the route determination unit. Thereby, the observation area is observed.
  • the moving route of the moving body is determined by the route determining device, an autonomous moving body system capable of easily and quickly setting the moving route of the moving body is realized.
  • FIG. 1 is a diagram showing an overall configuration of an autonomous mobile system according to the first embodiment.
  • FIG. 2 is a side view of the ship.
  • FIG. 3 is a plan view of the ship.
  • FIG. 4 is a block diagram showing a control system of the autonomous mobile system.
  • FIG. 5 is a diagram illustrating an example of an image displayed on the display unit when the observation area is set in the first embodiment.
  • FIG. 6 is a diagram for explaining a first method for determining a route on which a ship should move.
  • FIG. 7 is a diagram for explaining a second method of determining a route on which the ship should move.
  • FIG. 8 is a diagram for explaining a third method for determining a route on which a ship should move.
  • FIG. 1 is a diagram showing an overall configuration of an autonomous mobile system according to the first embodiment.
  • FIG. 2 is a side view of the ship.
  • FIG. 3 is a plan view of the ship.
  • FIG. 4 is a block diagram showing a
  • FIG. 9 is a diagram for explaining a fourth method for determining a route on which a ship should move.
  • FIG. 10 is a flowchart showing a series of processes when determining the route of the ship in the first embodiment.
  • FIG. 11 is a flowchart showing details of route determination processing by the route determination unit.
  • FIG. 12 is a flowchart showing details of route determination processing by the route determination unit.
  • FIG. 13 is a diagram illustrating another area setting example according to the first embodiment.
  • FIG. 14 is a diagram illustrating an example of an image displayed on the display unit when the observation area is set in the second embodiment.
  • FIG. 15 is a flowchart showing a series of processes when determining the route of the ship in the second embodiment.
  • FIG. 16 is a diagram illustrating another area setting example according to the second embodiment.
  • FIG. 17 is a diagram illustrating an example of an image displayed on the display unit when the observation area is set according to the third embodiment.
  • FIG. 18 is a flowchart showing a series of processes when determining the route of a ship in the third embodiment.
  • FIG. 19 is a diagram illustrating another area setting example according to the third embodiment.
  • the route determination device determines a route on which the moving body should move.
  • the ship which can move on the water and has a predetermined observation function is demonstrated as an example of a moving body.
  • FIG. 1 is a diagram illustrating an overall configuration of an autonomous mobile system according to a first embodiment.
  • the autonomous mobile body system 1 includes a ship 100 and a route determination device 500.
  • various kinds of information are transmitted and received between the ship 100 and the route determination device 500 by wireless communication.
  • the ship 100 receives a route to be moved from the route determination device 500 and moves on the water along the received route to be moved.
  • FIG. 2 is a side view of the ship 100
  • FIG. 3 is a plan view of the ship 100
  • the ship 100 includes a hull 101 and a cover member 102.
  • the hull 101 has a concave cross-sectional shape and opens upward.
  • the cover member 102 is attached to the hull 101 so as to cover the opening of the hull 101 from above.
  • a communication antenna 150 and a GPS (Global Positioning System) 350 are attached to the cover member 102.
  • partition plates 103a and 103b are provided inside the hull 101.
  • the partition plates 103a and 103b partition the space in the hull 101 into a bow portion 101a, a central portion 101b, and a stern portion 101c.
  • a storage chamber 104 is formed in the central portion 101b.
  • the storage chamber 104 is formed by denting the bottom of the hull 101 upward.
  • the holding mechanism 210 holds the observation apparatus 200 so that it can be raised and lowered between the inside of the storage chamber 104 and a position below the hull 101.
  • sonar (sound navigation) ranging is used as the observation device 200. Underwater conditions can be observed with the observation device 200 positioned below the hull 101.
  • FIG. 3 shows a state where the cover member 102 is removed.
  • the direction from the central portion 101b toward the bow is referred to as the front
  • the direction from the central portion 101b toward the stern is referred to as the rear.
  • Two motors 110a and 110b are provided at a position behind the storage chamber 104 in the central portion 101b.
  • One ends of rod-shaped members 111a and 111b are attached to the rotation shafts of the motors 110a and 110b, respectively.
  • the rod-shaped members 111a and 111b are held so as to protrude through the bottom of the hull 101 from the central portion 101b in the hull 101 and protrude into the water.
  • Screws 112a and 112b are attached to the other ends of the rod-shaped members 111a and 111b, respectively.
  • the motors 110a and 110b operate, the screws 112a and 112b rotate, and the ship 100 moves forward or backward on the water.
  • Two rudder members 121a and 121b are provided at positions behind the two screws 112a and 112b so as to extend downward from the bottom of the hull 101.
  • the stern portion 101c is provided with two motors 120a and 120b for driving the rudder members 121a and 121b.
  • the motors 120a and 120b When the motors 120a and 120b are operated, the rudder members 121a and 121b swing around a rotating shaft (not shown). Thereby, the ship 100 turns right or left on the water.
  • a bow thruster 131 is provided at a position near the partition plate 103a below the hull 101.
  • a motor 130 for driving the bow thruster 131 is provided in the vicinity of the front end of the central portion 101b. When the motor 130 is operated, a propulsive force that is directed rightward or leftward is generated at the bow.
  • a control box 140 is provided in front of the storage chamber 104 in the central portion 101 b, and a plurality (four in this example) of batteries 107 are provided on the sides of the storage chamber 104.
  • the control box 140 includes a control unit 300, a storage unit 301, an orientation sensor 302, and an attitude sensor 303. Details of each component built in the control box 140 will be described later.
  • the battery 107 stores energy to be supplied to each component of the ship 100.
  • FIG. 4 is a block diagram showing a control system of the autonomous mobile system 1.
  • the route determination device 500 includes a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, a RAM (Random Access Memory) 503, a storage unit 504, a display unit 505, an operation unit 506, and A communication antenna 550 is included.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a communication antenna 550 is included.
  • the communication antenna 550 is connected to the CPU 501 of the route determination device 500 via a communication device (not shown).
  • a wireless router is used as the communication device.
  • the ship 100 also includes a communication antenna 150 and a wireless router. Thereby, the ship 100 and the route determination device 500 are connected via the communication antennas 150 and 550 by a wireless LAN (local area network).
  • a wireless LAN local area network
  • the storage unit 504 includes a recording medium such as a hard disk or a non-volatile memory, for example, and stores a route on which the ship 100 should move and an observation result by the observation device 200. Furthermore, the storage unit 504 is configured to be able to store various information such as the observation performance of the observation device 200, the movement performance of the ship 100, and map information.
  • the observation performance of observation apparatus 200 includes the spread angle of ultrasonic waves transmitted from sonar.
  • the movement performance of the ship 100 includes the minimum turning radius of the ship 100.
  • the map information includes water depths such as ponds, swamps, lakes, and seas.
  • the display unit 505 is composed of, for example, a liquid crystal display panel or an organic EL (electroluminescence) panel, and displays an observation region setting image described later.
  • the operation unit 506 includes, for example, a keyboard and a pointing device. A mouse or a joystick is used as the pointing device.
  • the display unit 505 and the operation unit 506 may be integrally configured by a touch panel. In this case, it is preferable that the operation unit 506 further includes a touch pen. In the present embodiment, it is possible to draw points and straight lines by the operation unit 506 on an observation area setting image described later displayed on the display unit 505.
  • ROM 502 stores a control program of CPU 501 and the like.
  • the RAM 503 stores various data and functions as a work area for the CPU 501.
  • the CPU 501 executes the control program stored in the ROM 502, the functions of the observation region setting unit 511, the route determination unit 512, the display control unit 513, and the remaining energy acquisition unit 514 are realized.
  • the display control unit 513 causes the display unit 505 to display an observation region setting image for setting an observation region by the ship 100.
  • the observation region setting unit 511 when a point and a line are drawn on the observation region setting image by the operation unit 506, draws a line passing through the drawn point and both ends of the drawn straight line. Deriving one or more functions to represent.
  • the observation area setting unit 511 sets an area surrounded by one or more lines represented by one or more derived functions as an observation area.
  • the route determination unit 512 determines a route on which the ship 100 should move within the observation region set by the observation region setting unit 511. The route determination method will be described later.
  • the display control unit 513 causes the display unit 505 to display the determined route.
  • the energy remaining amount acquisition unit 514 acquires the remaining amount of energy (in this example, the amount of electricity) remaining in the battery 107 in FIG. 3 from the ship 100 by wireless communication.
  • the route determination unit 512 can determine a route on which the ship 100 should move based on the remaining energy acquired by the remaining energy acquisition unit 514.
  • the ship 100 includes motors 110a, 110b, 120a, 120b, 130, a communication antenna 150, an observation device 200, a holding mechanism 210, a control unit 300, a storage unit 301, an orientation sensor 302, an attitude sensor 303, a GPS 350, and a power supply device 400.
  • the communication antenna 150 is electrically connected to each component of the ship 100 via a communication device (not shown).
  • a wireless router is used as a communication device (not shown).
  • the GPS 350 includes a GPS antenna 351 and a current position calculation unit 352.
  • the GPS antenna 351 receives a signal from a GPS satellite.
  • the current position calculation unit 352 calculates the current position of the ship 100 based on the signal received by the GPS antenna 351.
  • the power supply device 400 includes the battery 107 in FIG. 3 and a power supply circuit (not shown), and supplies the energy of the battery 107 to each component of the ship 100.
  • the storage unit 301 includes a recording medium such as a hard disk or a non-volatile memory, for example, and stores a route on which the ship 100 should move and an observation result by the observation device 200.
  • the direction sensor 302 includes, for example, a magnetic sensor, and detects the moving direction of the ship 100.
  • the attitude sensor 303 includes a gyroscope, for example, and detects the attitude of the ship 100.
  • the control unit 300 includes a CPU (Central Processing Unit) and a memory, or a microcomputer, and controls the operation of each component of the ship 100. For example, the control unit 300 controls the motors 110a, 110b, 120a, 120b, and 130 so that the ship 100 moves along a route to be moved based on outputs from the direction sensor 302, the attitude sensor 303, and the GPS 350. To do. In addition, the control unit 300 controls the observation device 200 and the holding mechanism 210 so that the observation is performed.
  • a CPU Central Processing Unit
  • each of the observation region setting unit 511, the route determination unit 512, the display control unit 513, and the remaining energy acquisition unit 514 in the route determination device 500 is realized by hardware and software.
  • the observation region setting unit 511, the route determination unit 512, the display control unit 513, and the remaining energy acquisition unit 514 may be realized by hardware such as an electronic circuit. Some of these components may be realized by hardware such as a CPU and a memory and software such as a computer program.
  • FIG. 5 is a diagram illustrating an example of an image displayed on the display unit 505 at the time of setting the observation area in the first embodiment.
  • the observation region setting image 10 is displayed on the screen 505s of the display unit 505.
  • the observation area setting image 10 is a map generated based on map information.
  • an image representing the lake 20 is shown as a dot pattern at the center of the observation region setting image 10.
  • the user draws one point 31 and one straight line 32 on the observation region setting image 10 by operating the operation unit 506.
  • the observation region setting unit 511 in FIG. 4 derives one or a plurality of functions representing the drawn points 31 and lines passing through both ends of the straight line 32.
  • the function represents an ellipse.
  • a line represented by a function derived on the observation region setting image 10 is displayed as a dotted line.
  • the drawing end button RB is displayed on the screen 505s together with the observation region setting image 10. After the point 31 and the straight line 32 are drawn by the user, the drawing end button RB is operated. As a result, the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG. In this example, an area surrounded by an ellipse represented by the derived function is set as the observation area 34.
  • the observation region setting unit 511 may derive a function representing a circle passing through both ends of the point 31 and the straight line 32. In this case, an area surrounded by a circle represented by the derived function is set as the observation area 34.
  • the observation region setting unit 511 may derive a function representing a triangle having apexes at both ends of the point 31 and the straight line 32. Specifically, the observation region setting unit 511 derives a function representing a straight line passing through the point 31 and one end of the straight line 32 and deriving a function representing a straight line passing through the point 31 and the other end of the straight line 32. A function representing the straight line 32 may be derived. In this case, an area surrounded by three straight lines represented by the three derived functions is set as the observation area 34. Thus, the observation region 34 may be set by a plurality of functions.
  • FIG. 6 is a diagram for explaining a first determination method of a route on which the ship 100 should move.
  • FIG. 6A shows an example of an image displayed on the display unit 505 when the observation condition is designated.
  • the observation conditions include directions in which the observation start point 41 and the ship 100 should reciprocate during observation.
  • the direction in which the ship 100 should reciprocate during observation is referred to as a first direction.
  • the user operates the operation unit 506 to specify the observation start point and the first direction as the observation conditions.
  • the user can specify a certain distance that the ship 100 should move in the second direction intersecting the first direction while reciprocating in the first direction.
  • the distance that the ship 100 should move in the second direction while reciprocating is referred to as an observation pitch.
  • the first direction and the second direction are orthogonal.
  • the observation start point 41, the first direction, and the observation pitch are designated by the user as observation conditions, and the route on which the ship 100 should move is determined based on those conditions. .
  • the observation start point 41 is specified so as to overlap a part of the line 33.
  • the first direction is designated as the vertical direction on the observation region setting image 10 (the north-south direction on the map).
  • the observation pitch is specified as 3 m. When the observation pitch is not designated, the observation pitch is automatically set in the second route determination method described later.
  • the determined route 43 When the route on which the ship 100 is to be moved is determined by designating the observation conditions of FIG. 6A, the determined route 43 has an observation start point 41 and an observation end as shown in FIG. 6B. Along with the point 42, it is displayed on the screen 505s.
  • the user can easily set the first direction to a desired direction, and can easily set the observation pitch to a desired value. .
  • FIG. 7 is a diagram for explaining a second determination method of the route that the ship 100 should move.
  • the observation pitch is set by the second route determination method.
  • the water depth of the lake 20 is stored in advance in the storage unit 504 of FIG. 4 as map information.
  • Fig. 7 (a) shows a front view of the ship 100 floating on the water as seen from the front.
  • a sonar is used as the observation device 200
  • ultrasonic waves are transmitted from the observation device 200 toward the lower side of the ship 100 at a predetermined spread angle ⁇ . Therefore, when the shape of the bottom of the water is observed by the observation device 200, the observable range changes according to the depth.
  • the width W2 of the bottom B2 that can be observed by the observation device 200 in the left-right direction of the ship 100 is larger than the width W1 of the bottom B1 that can be observed by the observation device 200. growing.
  • the observable range in the left-right direction of the ship 100 based on the water depth in the observation region 34 and the spread angle ⁇ of the ultrasonic wave transmitted from the observation device 200 (in this example, the width of the water bottom). Is calculated. Further, the observation pitch is set so as to be less than the observable range, and the route on which the ship 100 should move is determined. This prevents the occurrence of a range that is not observed in the observation region 34. Therefore, a highly reliable observation result can be obtained.
  • FIG. 7B shows a display example of the route 43 to be moved determined by the second route determination method.
  • the water depth of the portion shown by the dot pattern is small (greater than 1 m and 5 m or less) and the water depth of the portion shown by hatching is large (greater than 5 m and less than 10 m)
  • the observation pitch pt1 set in the region with a small water depth is smaller than the observation pitch pt2 set in the region with a large water depth.
  • FIG. 8 is a diagram for explaining a third determination method of the route that the ship 100 should move.
  • a route 43 to be moved is determined so that the ship 100 moves from west to east while reciprocating in the north-south direction.
  • the water depth of the lake 20 is assumed to be constant.
  • the observation pitch pt When the observation pitch pt is smaller than twice the minimum turning radius, the ship 100 cannot move from the terminal end 51b of one forward path 51 to the start end 52a of the next return path 52. Therefore, the observation pitch pt needs to be set to a value that is twice or more the minimum turning radius regardless of the observable range of the observation apparatus 200. For example, it is assumed that the observable range is smaller than twice the minimum turning radius of the ship 100. In this case, as indicated by hatching in FIG. 8A, a range 59 that is not observed by the observation device 200 before the ship 100 moves from the start end 51a of one forward path 51 to the end 52b of the next return path 52. Occurs.
  • the ship 100 can move from the terminal end portion 51b of one forward route 51 to the start end portion 52a of the next return route 52, and between the one forward route 51 and the next return route 52.
  • the route is determined by the following method so that the range 59 that is not observed between them does not occur.
  • the observation pitch pt is set to be twice or more the minimum turning radius.
  • the same route 44 as the route 43 in FIG. 8A is determined as the route to be moved.
  • the route 45 passing between the adjacent forward and return routes in the route 44 is a route to be further moved so that a range that is not observed by the observation device 200 is observed while the ship 100 moves on the route 44. It is determined. In this case, a range that is not observed while the ship 100 moves along the path 44 is observed while the ship 100 moves along the path 45.
  • the route 44 on which the ship 100 reciprocates at the observation pitch pt is determined as a part of the route to be moved, it passes between the adjacent forward and return routes at the distance of the observation pitch pt.
  • the route 45 is included in the route to be moved. This prevents the occurrence of a range 59 that is not observed in the observation region 34. Therefore, a highly reliable observation result can be obtained.
  • a position where the ship 100 is floated on the lake before the observation is started and the ship 100 is recovered from the lake after the observation is started is called a start position.
  • the start position is specified in advance as an observation condition together with the observation start point 41, the first direction, and the observation pitch.
  • FIG. 9 is a diagram for explaining a fourth method for determining a route on which the ship 100 should move.
  • the ship 100 should move based on the observation start point 41, the first direction, the observation pitch and the start position designated in advance and the remaining energy acquired by the remaining energy acquisition unit 514 in FIG. A path 43 is determined.
  • the length corresponding to the distance that the ship 100 can move based on the remaining amount of energy acquired by the remaining energy acquisition unit 514 is referred to as a movable length.
  • the length of the route of the ship 100 until the ship 100 moves from the start position to the observation region 34 and returns to the start position after observation by the observation device 200 is a movable length.
  • the route 43 to be moved in the observation area 34 is determined so as to be as follows.
  • the route to be moved in the observation region 34 is indicated by a thick solid line on the observation region setting image 10. Further, a path 47a connecting the start position 46 and the observation start point 41 and a path 47b connecting the start position 46 and the observation end point 42 are indicated by alternate long and short dash lines.
  • the route 43 is determined so that the total length of the routes 43, 47a, 47b is equal to or less than the movable length. This prevents the ship 100 from stopping due to insufficient energy in the route from the start position 46 to the observation region 34 and returning to the start position 46.
  • FIG. 10 is a flowchart showing a series of processes when determining the route of the ship 100 in the first embodiment.
  • the display control unit 513 of the CPU 501 displays the observation region setting image 10 on the screen 505s of the display unit 505 (step S11).
  • the observation area setting unit 511 of the CPU 501 determines whether a point and a straight line are drawn by the operation of the operation unit 506 by the user (step S12).
  • the observation area setting unit 511 derives a function representing the drawn point and a line passing through both ends of the drawn straight line (step S13). Subsequently, the observation region setting unit 511 sets the region surrounded by the line 33 represented by the derived function as the observation region 34 by operating the drawing end button RB in FIG. S14). Thereafter, the display control unit 513 displays the set observation region 34 on the screen 505s (step S15).
  • the route determination unit 512 of the CPU 501 determines whether or not an observation condition is designated by the user operating the operation unit 506 (step S16). When the observation condition is specified, the route determination unit 512 performs route determination processing for determining a route that the ship 100 should move in the observation region 34 (step S17). A detailed flow of the route determination process will be described later.
  • the display control unit 513 displays the set observation region 34 on the screen 505s (step S18). Further, the route determination unit 512 transmits the route that the determined ship 100 should move to the ship 100 (step S19). Thereby, in the ship 100, the route which the received ship 100 should move is memorize
  • 11 and 12 are flowcharts showing the details of the route determination process in step S17 by the route determination unit 512.
  • the user can specify whether or not the remaining amount of energy should be considered as an observation condition by operating the operation unit 506.
  • the route determination unit 512 of the CPU 501 determines whether an observation pitch is designated as an observation condition (step S21). When the observation pitch is designated, the route determination unit 512 determines whether or not the designation that the remaining energy is to be taken into account is designated as the observation condition (step S22). When it is not specified that the remaining amount of energy should be considered, the route determination unit 512 determines a route on which the ship 100 should move based on the specified observation start point, the first direction, and the observation pitch ( Step S23). The process of step S23 corresponds to a route determination process by the first route determination method.
  • the route determination unit 512 calculates the movable length based on the remaining energy acquired by the remaining energy acquisition unit 514 (step S24). ). The route determination unit 512 also sets the observation start point and the first direction so that the length of the route of the ship 100 from the start position to the observation region 34 and back to the start position is less than the movable length. Based on the observation pitch, the start position, and the movable length, a route on which the ship 100 should move in the observation region 34 is determined (step S25). Steps S24 and S25 correspond to route determination processing by the fourth route determination method.
  • the route determination unit 512 determines whether or not the water depth of the observation region 34 is stored in the storage unit 504 of FIG. 4 (step S26). When the water depth of the observation region 34 is stored in the storage unit 504, the route determination unit 512 calculates the observable range of the observation device 200 (step S27).
  • the route determination unit 512 determines whether or not the calculated observable range is equal to or more than twice the minimum turning radius of the ship 100 (step S28).
  • the route determination unit 512 prevents the unobservable range from being generated between the adjacent forward path and the return path, and the ship 100 is equal to one.
  • the observation pitch is set to be less than the observable range and at least twice the minimum turning radius so that it can turn from the end of the forward path to the start of the next return path (step S29).
  • the route determination unit 512 determines a route on which the ship 100 should move based on the observation start point, the first direction, and the set observation pitch (step S30).
  • the processing in steps S29 and S30 corresponds to route determination processing by the second route determination method.
  • the route determination unit 512 can turn the ship 100 between the adjacent forward and return paths.
  • the observation pitch is set to a value that is at least twice the minimum turning radius (step S31).
  • the route determination unit 512 determines a part of the route on which the ship 100 should move based on the designated observation start point and first direction, and the set observation pitch, and the entire observation region 34 In order to observe the range, a route that passes between the outgoing route and the return route that are adjacent at the observation pitch is included in the route to be moved (step S32). Steps S31 and S32 correspond to route determination processing by the third route determination method.
  • the route determination unit 512 determines that the ship 100 is based on the observation start point, the first direction, and the observation pitch stored in advance. A route to be moved is determined (step S33).
  • the route determination process is completed when the route determination unit 512 performs any one of the above steps S23, S25, S30, S32, and S33.
  • the observation area 34 is set by drawing one point 31 and one straight line 32 on the observation area setting image 10.
  • one point 31 and a plurality of straight lines 32 may be drawn on the observation region setting image 10.
  • one or a plurality of functions representing lines passing through both ends of one point 31 and all the straight lines 32 are derived, and the observation is surrounded by one or a plurality of lines represented by the derived one or more functions.
  • An area is set.
  • a plurality of points 31 and one straight line 32 may be drawn on the observation region setting image 10.
  • one or a plurality of functions representing lines passing through both points 31 and both ends of one straight line 32 are derived and surrounded by one or a plurality of lines represented by the derived one or more functions.
  • An observation area is set.
  • a plurality of points 31 and a plurality of straight lines 32 may be drawn on the observation region setting image 10.
  • one or more functions representing lines passing through both ends of all the points 31 and all the straight lines 32 are derived, and the observation is surrounded by one or more lines represented by the derived one or more functions.
  • An area is set.
  • FIG. 13 is a diagram illustrating another area setting example according to the first embodiment.
  • the observation region setting unit 511 derives one or a plurality of functions representing lines passing through both ends of the two points 31 and the two straight lines 32.
  • the function represents a spline curve.
  • the drawing end button RB is operated.
  • the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG.
  • an area surrounded by a spline curve represented by the derived function is set as the observation area 34.
  • the observation region setting image 10 is displayed on the display unit 505 when the observation region 34 is set by the ship 100.
  • the user can draw the point 31 and the straight line 32 on the observation region setting image 10 by operating the operation unit 506.
  • An observation region 34 is set based on a function representing a drawn point 31 and a line 33 passing through both ends of the straight line 32. A route on which the ship 100 should move within the set observation region 34 is determined.
  • the route determination apparatus according to the second embodiment is the same as the first embodiment except that the setting method of the observation region 34 by the observation region setting unit 511 in FIG. 4 is different.
  • one or a plurality of functions representing lines passing through both ends of all drawn straight lines are obtained. Derived. A region surrounded by one or more lines represented by the derived one or more functions is set as an observation region.
  • FIG. 14 is a diagram illustrating an example of an image displayed on the display unit 505 at the time of setting an observation area according to the second embodiment.
  • the observation region setting image 10 is displayed on the screen 505s of the display unit 505.
  • the user draws two straight lines 32 on the observation region setting image 10 by operating the operation unit 506.
  • the observation region setting unit 511 derives one or a plurality of functions representing lines passing through both ends of one drawn straight line 32 and both ends of the other straight line 32.
  • a function representing a straight line passing through one end of one straight line 32 and one end of the other straight line 32 and a function representing a straight line passing through one end of one straight line 32 and the other end of the other straight line 32 are shown. Is derived by the observation region setting unit 511.
  • a function representing a straight line passing through the other end of one straight line 32 and one end of the other straight line 32 and a function representing a straight line passing through the other end of one straight line 32 and the other end of the other straight line 32 is derived by the observation region setting unit 511.
  • four functions are derived.
  • a line represented by a function derived on the observation area setting image 10 is displayed as a dotted line.
  • the drawing end button RB is operated.
  • the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG.
  • a rectangular area surrounded by four straight lines represented by the four derived functions is set as the observation area 34.
  • the observation region setting unit 511 may derive a function representing a circle or an ellipse that passes through both ends of the two straight lines 32.
  • a function representing a circle or an ellipse that passes through both ends of the two straight lines 32 In this case, an area surrounded by a circle or an ellipse represented by the derived function is set as the observation area 34.
  • FIG. 15 is a flowchart showing a series of processes at the time of determining the route of the ship 100 in the second embodiment.
  • the display control unit 513 of the CPU 501 displays the observation region setting image 10 on the screen 505s of the display unit 505 (step S51).
  • the observation area setting unit 511 of the CPU 501 determines whether or not at least two straight lines have been drawn by the operation of the operation unit 506 by the user (step S52).
  • the observation region setting unit 511 derives a function representing a line passing through both ends of all drawn straight lines (step S53). Subsequently, the observation region setting unit 511 sets the region surrounded by the line 33 represented by the derived function as the observation region 34 by operating the drawing end button RB in FIG. S54). Thereafter, the CPU 501 in FIG. 4 executes steps S55, S56, S57, S58, and S59 corresponding to steps S15, S16, S17, S18, and S19 in FIG.
  • the observation region 34 is set by drawing two straight lines 32 on the observation region setting image 10. Not limited to this, three or more straight lines 32 may be drawn on the observation region setting image 10. In this case, one or more functions representing lines passing through both ends of all the straight lines 32 are derived, and an area surrounded by one or more lines represented by the derived one or more functions is set as an observation area. Is done.
  • FIG. 16 is a diagram illustrating another area setting example according to the second embodiment.
  • four straight lines 32 are drawn on the observation region setting image 10.
  • the observation region setting unit 511 derives one or a plurality of functions representing the line 33 that passes through both ends of the four straight lines 32.
  • eight functions representing eight straight lines passing through adjacent ends of the four straight lines 32 are derived.
  • the drawing end button RB is operated.
  • the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG.
  • an octagonal region surrounded by eight straight lines represented by the eight derived functions is set as the observation region 34.
  • the observation region setting unit 511 may derive a function representing a spline curve that passes through both ends of the four straight lines 32.
  • a function representing a spline curve that passes through both ends of the four straight lines 32 is set as the observation area 34.
  • the user when the user draws at least two or more straight lines 32 on the observation area setting image 10, the user can easily make a region surrounded by lines passing through both ends of all the drawn straight lines 32. Can be recognized. Therefore, it is possible to easily and quickly set a route that the ship 100 should move.
  • a route determination apparatus is the same as the first embodiment except that the observation region setting method by the observation region setting unit 511 in FIG. 4 is different.
  • one or a plurality of functions representing lines passing through all the drawn points are derived.
  • a region surrounded by one or more lines represented by the derived one or more functions is set as an observation region.
  • FIG. 17 is a diagram illustrating an example of an image displayed on the display unit 505 when the observation region is set in the third embodiment.
  • the observation region setting image 10 is displayed on the screen 505s of the display unit 505.
  • the user draws three points 31 on the observation region setting image 10 by operating the operation unit 506.
  • the observation region setting unit 511 derives one or a plurality of functions representing a line passing through the three drawn points 31.
  • the function represents an ellipse.
  • a line represented by a function derived on the observation area setting image 10 is displayed as a dotted line.
  • the drawing end button RB is operated.
  • the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG.
  • an area surrounded by an ellipse represented by the derived function is set as the observation area 34.
  • the observation region setting unit 511 may derive a function representing a circle passing through the three points 31.
  • a function representing a circle passing through the three points 31 an area surrounded by a circle represented by the derived function is set as the observation area 34.
  • observation region setting unit 511 may derive three functions representing three lines passing through each of the two points 31. In this case, a triangular area surrounded by three straight lines represented by the three derived functions is set as the observation area 34.
  • FIG. 18 is a flowchart showing a series of processes when determining the route of the ship 100 according to the third embodiment.
  • the display control unit 513 of the CPU 501 displays the observation region setting image 10 on the screen 505s of the display unit 505 (step S61).
  • the observation area setting unit 511 of the CPU 501 determines whether or not at least three points have been drawn by the operation of the operation unit 506 by the user (step S62).
  • the observation region setting unit 511 derives a function representing a line passing through all the drawn points (step S63). Subsequently, the observation region setting unit 511 sets the region surrounded by the line 33 represented by the derived function as the observation region 34 by operating the drawing end button RB in FIG. S64). Thereafter, in the CPU 501 of FIG. 4, the processes of steps S65, S66, S67, S68, and S69 corresponding to the processes of steps S15, S16, S17, S18, and S19 of FIG. 10 are executed.
  • the observation area 34 is set by drawing three points 31 on the observation area setting image 10. Not limited to this, four or more points 31 may be drawn on the observation region setting image 10. In this case, one or more functions representing lines passing through all the points 31 are derived, and an area surrounded by one or more lines represented by the derived one or more functions is set as an observation area.
  • FIG. 19 is a diagram illustrating another area setting example according to the third embodiment. As shown in FIG. 19A, eight points 31 are drawn on the observation region setting image 10 in this example. In this case, the observation region setting unit 511 derives one or a plurality of functions representing a line passing through the eight points 31. In this example, the function represents a spline curve.
  • the drawing end button RB is operated.
  • the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG.
  • an area surrounded by a spline curve represented by the derived function is set as the observation area 34.
  • the user when the user draws at least three or more points 31 on the observation region setting image 10, the user easily recognizes a region surrounded by a line passing through all the drawn points 31. be able to. Therefore, it is possible to easily and quickly set a route that the ship 100 should move.
  • a battery 107 that stores electric power is used as an energy source for moving the ship 100.
  • a fuel tank that stores fuel such as gasoline instead of the battery 107 or in addition to the battery 107 may be used.
  • the screws 112a and 112b that move the ship 100 forward or backward are driven by the engine instead of the motors 110a and 110b.
  • the ship 100 and the route determination device 500 are provided separately.
  • wireless communication is performed between the ship 100 and the route determination device 500.
  • the route determination device 500 may be provided in the hull 101 of the ship 100. In this case, each component of the ship 100 and the route determination device 500 may be connected by wire and wired communication may be performed.
  • a sonar is used as the observation device 200 provided in the ship 100.
  • the observation apparatus 200 may include other observation devices such as a radar or a camera instead of or in addition to the sonar.
  • map information is stored in the storage unit 504.
  • An observation area setting image 10 is generated based on the stored map information.
  • the map information may be obtained by downloading from a predetermined server via the Internet instead of being stored in the storage unit 504 in advance.
  • the autonomous mobile body system 1 includes a ship 100 as a mobile body having an observation function.
  • the autonomous mobile body system 1 includes a vehicle, a helicopter, an airplane, or a walking robot having an observation function and capable of moving on a predetermined route by autonomous control instead of the ship 100 as a mobile body. May be.
  • the ship 100 is an example of a moving body
  • the routes 43, 44, and 45 are examples of routes that the ship 100 should move
  • the route determination device 500 is an example of a route determination device
  • an observation region 34 is an example of an observation region
  • the observation region setting image 10 is an example of an observation region setting image
  • the display unit 505 is an example of a display unit.
  • any one point 31 in FIGS. 5 and 13 is an example of a point
  • any one straight line 32 in FIGS. 5 and 13 is an example of a straight line
  • the operation unit 506 is an example of an operation unit.
  • the observation region setting unit 511 is an example of an observation region setting unit
  • the route determination unit 512 is an example of a route determination unit.
  • any two straight lines 32 in FIGS. 14 and 16 are examples of the first and second straight lines, respectively, and any three points 31 in FIGS. 17 and 19 are the first, second and second straight lines, respectively.
  • the first direction is an example of the first direction
  • the second direction is an example of the second direction
  • the magnitudes of the observation pitches pt, pt1, and pt2 are constant displacement amounts.
  • the observable range is an example of an observable range
  • the sonar observation function is an example of an observation function for observing an underwater state.
  • the route 44 is an example of at least a part of a route to be moved
  • the end portion 51b of one forward path 51 is an example of the end portion of one forward route
  • the start end portion 52a of the next return route 52 is one return route.
  • the range 59 that is not observed by the observation device 200 is an example of a range that is not observed by the observation function
  • the path 45 is an example of a path that passes between one forward path and one return path
  • 107 is an example of an energy source
  • the start position 46 is an example of a start position.
  • the observation device 200 and the hull 101 that holds the observation device 200 are examples of the main body, and the motors 110a, 110b, 120a, 120b, and 130, the screws 112a and 112b, the rudder members 121a and 121b, and the bow thruster 131 are examples of the moving mechanism.
  • the GPS 350 is an example of the current position acquisition unit
  • the control unit 300 is an example of the control unit
  • the autonomous mobile system 1 is an example of the autonomous mobile system.
  • the present invention can be effectively used for an autonomous mobile body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Provided is an autonomous mobile body system that comprises a mobile body and a route determination device. The mobile body has a predetermined observation function. The route determination device comprises a display unit, an operation unit, an observation area setting unit, and a route determination unit. The display unit uses a display to display an observation area setting image for setting an area that is to be observed by the mobile body. Operation of the operation unit by a user causes a point and a straight line to be drawn on the observation area setting image. The observation area setting unit sets an observation area on the basis of a function that represents a line that passes through the point and both end sections of the straight line that are drawn on the observation area setting image. The route determination unit determines a route along which the mobile body moves within the set observation area.

Description

経路決定装置およびそれを備える自律移動体システムRoute determining apparatus and autonomous mobile system including the same
 本発明は、移動体が移動すべき経路を決定する経路決定装置およびそれを備える自律移動体システムに関する。 The present invention relates to a route determination device for determining a route on which a mobile body should move and an autonomous mobile body system including the route determination device.
 海底、川底または湖底等の形状観測および水中の遺失物探索等を行うために無人観測船が用いられる。無人観測船によれば、有人観測船では進入できないような領域(浅瀬または狭い水路等)の観測が可能であり、悪天候下での観測も安全に実施することができる。このような無人観測船のシステムとして、特許文献1には、使用者が観測航路を設定可能な無人ボート自動観測システムが記載されている。 An unmanned observation ship is used to observe the shape of the seabed, riverbed, lake bottom, etc., and to search for lost items in the water. An unmanned observation ship can observe an area (such as a shallow or narrow waterway) that cannot be entered by a manned observation ship, and can be safely observed under bad weather conditions. As such an unmanned observation ship system, Patent Document 1 describes an unmanned boat automatic observation system in which a user can set an observation route.
特許第4404943号公報Japanese Patent No. 4404943
 特許文献1に記載された無人ボート自動観測システムは、無人ボートおよび無線コントローラシステムを備える。無人ボートおよび無線コントローラシステムは相互に通信可能に構成される。無人ボートは、無線コントローラシステムからの観測指示に基づいて、自動的に生成された観測航路をトレースするように航行し、水中および水底の様子を観測する。 The unmanned boat automatic observation system described in Patent Document 1 includes an unmanned boat and a wireless controller system. The unmanned boat and the wireless controller system are configured to communicate with each other. The unmanned boat sails to trace the automatically generated observation route based on the observation instruction from the wireless controller system, and observes the state of the water and the bottom of the water.
 無線コントローラシステムは、ディスプレイおよび操作スイッチを含む。操作スイッチにより基準観測線が入力されると、入力された基準観測線から複数の観測航路が自動的に生成される。ディスプレイには、基準観測線および複数の観測航路が観測場所の地形図とともに表示される。 The wireless controller system includes a display and operation switches. When the reference observation line is input by the operation switch, a plurality of observation routes are automatically generated from the input reference observation line. The display shows a reference observation line and a plurality of observation routes along with a topographic map of the observation location.
 上記の複数の観測航路は、入力された基準観測線を一定の距離隔てて複数回平行移動させることにより生成される。そのため、使用者は、基準観測線の入力時に複数の観測航路がどのような領域に生成されるのかを直感的に認識することが難しい。 The above-mentioned plurality of observation routes are generated by translating the input reference observation line a plurality of times at a fixed distance. For this reason, it is difficult for the user to intuitively recognize in which region a plurality of observation routes are generated when the reference observation line is input.
 また、特許文献1に記載された他の例では、入力された基準観測線に対して垂直な方向に延びる複数の直線を、基準観測線が延びる方向に一定の間隔で並べることにより複数の観測航路が生成される。しかしながら、この場合にも、使用者は、基準観測線の入力時に複数の観測航路がどのような領域に生成されるのかを直感的に認識することが難しい。そのため、基準観測線の設定に熟練を要する。 In another example described in Patent Document 1, a plurality of observations are made by arranging a plurality of straight lines extending in a direction perpendicular to the inputted reference observation line at a constant interval in the direction in which the reference observation line extends. A route is generated. However, also in this case, it is difficult for the user to intuitively recognize in which region the plurality of observation routes are generated when the reference observation line is input. Therefore, skill is required to set the reference observation line.
 また、特許文献1に記載されたさらに他の例では、予め無人ボートをループ状に航行させるとともに、無人ボートのGPS(Global Positioning System)から送信される位置データに基づいてその航路を記憶する。記憶されたループ状の航路内に観測航路が自動的に生成される。しかしながら、この場合、無人ボートを事前に航行させる必要があるため、観測航路の設定に必要な時間が長くなる。 In yet another example described in Patent Document 1, an unmanned boat is navigated in a loop shape in advance, and its route is stored based on position data transmitted from the GPS (Global Positioning System) of the unmanned boat. An observation route is automatically generated in the stored loop-like route. However, in this case, since it is necessary to navigate the unmanned boat in advance, the time required for setting the observation route becomes long.
 本発明の目的は、移動体の移動経路を容易かつ短時間で設定可能な経路決定装置およびそれを備える自律移動体システムを提供することである。 An object of the present invention is to provide a route determination device capable of easily and quickly setting a moving route of a moving body and an autonomous moving body system including the same.
 (1)本発明の一局面に従う経路決定装置は、所定の観測機能を有する移動体の移動すべき経路を決定する経路決定装置であって、移動体による観測領域を設定するための観測領域設定画像を表示する表示部と、表示部に表示される観測領域設定画像上に点および直線を描画するために使用者により操作される操作部と、観測領域設定画像上に描画された点および直線の両端部を通る線を表す関数に基づいて観測領域を設定する観測領域設定部と、観測領域設定部により設定された観測領域内で移動体が移動すべき経路を決定する経路決定部を備えるものである。 (1) A route determination device according to an aspect of the present invention is a route determination device that determines a route to be moved by a mobile object having a predetermined observation function, and sets an observation region for setting an observation region by the mobile object A display unit for displaying an image, an operation unit operated by a user to draw a point and a line on the observation region setting image displayed on the display unit, and a point and a line drawn on the observation region setting image An observation region setting unit that sets an observation region based on a function that represents a line that passes through both ends of the observation region, and a route determination unit that determines a route that the moving body should move within the observation region set by the observation region setting unit Is.
 その経路決定装置においては、観測領域設定画面が表示部に表示される。使用者が操作部を操作することにより観測領域設定画面上に点および直線が描画されると、描画された点および直線の両端部を通る線を表す関数に基づいて観測領域が設定される。設定された観測領域内で移動体が移動すべき経路が決定される。 In the route determination device, the observation area setting screen is displayed on the display unit. When a point and a line are drawn on the observation area setting screen by the user operating the operation unit, the observation area is set based on a function representing a line passing through both ends of the drawn point and the straight line. A route on which the moving body should move within the set observation area is determined.
 この場合、使用者は、観測領域設定画面上に点および直線を描画する際に、点および直線の両端部を通る線で取り囲まれる領域を容易に認識することができる。したがって、移動体の移動経路を容易かつ短時間で設定することが可能になる。 In this case, the user can easily recognize a region surrounded by a line passing through both ends of the point and the straight line when drawing the point and the straight line on the observation region setting screen. Therefore, it becomes possible to set the moving path of the moving body easily and in a short time.
 (2)本発明の他の局面に従う経路決定装置は、所定の観測機能を有する移動体の移動すべき経路を決定する経路決定装置であって、移動体による観測領域を設定するための観測領域設定画像を表示する表示部と、表示部に表示される観測領域設定画像上に少なくとも第1および第2の直線を描画するために使用者により操作される操作部と、観測領域設定画像上に描画された第1の直線の両端部および第2の直線の両端部を通る線を表す関数に基づいて観測領域を設定する観測領域設定部と、観測領域設定部により設定された観測領域内で移動体が移動すべき経路を決定する経路決定部とを備えるものである。 (2) A route determination device according to another aspect of the present invention is a route determination device that determines a route to be moved by a mobile object having a predetermined observation function, and is an observation region for setting an observation region by the mobile object A display unit for displaying a setting image, an operation unit operated by a user to draw at least first and second straight lines on the observation region setting image displayed on the display unit, and an observation region setting image An observation region setting unit for setting an observation region based on a function representing a line passing through both ends of the drawn first straight line and both ends of the second straight line, and within the observation region set by the observation region setting unit And a route determination unit that determines a route on which the moving body should move.
 その経路決定装置においては、観測領域設定画面が表示部に表示される。使用者が操作部を操作することにより観測領域設定画面上に第1の直線および第2の直線が描画されると、描画された第1の直線の両端部および第2の直線の両端部を通る線を表す関数に基づいて観測領域が設定される。設定された観測領域内で移動体が移動すべき経路が決定される。 In the route determination device, the observation area setting screen is displayed on the display unit. When the user operates the operation unit to draw the first straight line and the second straight line on the observation region setting screen, the both ends of the drawn first straight line and the both ends of the second straight line are displayed. An observation region is set based on a function representing a line passing through. A route on which the moving body should move within the set observation area is determined.
 この場合、使用者は、観測領域設定画面上に第1の直線および第2の直線を描画する際に、第1の直線の両端部および第2の直線の両端部を通る線で取り囲まれる領域を容易に認識することができる。したがって、移動体の移動経路を容易かつ短時間で設定することが可能になる。 In this case, when the user draws the first straight line and the second straight line on the observation area setting screen, the area surrounded by lines passing through both ends of the first straight line and both ends of the second straight line. Can be easily recognized. Therefore, it becomes possible to set the moving path of the moving body easily and in a short time.
 (3)本発明のさらに他の局面に従う経路決定装置は、所定の観測機能を有する移動体の移動すべき経路を決定する経路決定装置であって、移動体による観測領域を設定するための観測領域設定画像を表示する表示部と、表示部に表示される観測領域設定画像上に少なくとも第1、第2および第3の点を描画するために使用者により操作される操作部と、観測領域設定画像上に描画された第1、第2および第3の点を結ぶ線を表す関数に基づいて観測領域を設定する観測領域設定部と、観測領域設定部により設定された観測領域内で移動体が移動すべき経路を決定する経路決定部とを備えるものである。 (3) A route determination device according to still another aspect of the present invention is a route determination device that determines a route to be moved by a mobile object having a predetermined observation function, and is an observation for setting an observation region by the mobile object. A display unit for displaying a region setting image, an operation unit operated by a user to draw at least the first, second and third points on the observation region setting image displayed on the display unit; and an observation region An observation area setting unit for setting an observation area based on a function representing a line connecting the first, second, and third points drawn on the setting image, and movement within the observation area set by the observation area setting unit And a route determination unit that determines a route on which the body should move.
 その経路決定装置においては、観測領域設定画面が表示部に表示される。使用者が操作部を操作することにより観測領域設定画面上に第1、第2および第3の点が描画されると、描画された第1、第2および第3の点を通る線を表す関数に基づいて観測領域が設定される。設定された観測領域内で移動体が移動すべき経路が決定される。 In the route determination device, the observation area setting screen is displayed on the display unit. When the first, second, and third points are drawn on the observation area setting screen by operating the operation unit by the user, the lines that pass through the drawn first, second, and third points are represented. An observation area is set based on the function. A route on which the moving body should move within the set observation area is determined.
 この場合、使用者は、観測領域設定画面上に第1、第2および第3の点を描画する際に、第1、第2および第3の点を通る線で取り囲まれる領域を容易に認識することができる。したがって、移動体の移動経路を容易かつ短時間で設定することが可能になる。 In this case, when the user draws the first, second, and third points on the observation region setting screen, the user easily recognizes the region surrounded by the line passing through the first, second, and third points. can do. Therefore, it becomes possible to set the moving path of the moving body easily and in a short time.
 (4)表示部は、観測領域設定部により設定された観測領域を観測領域設定画像上に表示してもよい。 (4) The display unit may display the observation region set by the observation region setting unit on the observation region setting image.
 この場合、観測領域設定部により設定された観測領域が観測領域設定画像上に表示される。それにより、使用者は、設定された観測領域を正確に認識することができる。 In this case, the observation area set by the observation area setting unit is displayed on the observation area setting image. Accordingly, the user can accurately recognize the set observation area.
 (5)操作部は、第1の方向を指定可能に構成され、経路決定部は、観測領域内で移動体が第1の方向に往復移動しつつ第1の方向に交差する第2の方向に一定変位量ずつ移動する経路を移動すべき経路として決定してもよい。 (5) The operation unit is configured to be able to designate the first direction, and the route determination unit is configured to be in a second direction that intersects the first direction while the moving body reciprocates in the first direction within the observation region. Alternatively, a route that moves by a certain amount of displacement may be determined as a route to be moved.
 この場合、使用者は、観測時に移動体が往復移動する方向を所望の方向に容易に指定することができる。 In this case, the user can easily specify the direction in which the moving body reciprocates during observation as a desired direction.
 (6)操作部は、一定変位量を指定可能に構成されてもよい。 (6) The operation unit may be configured to be able to specify a certain amount of displacement.
 この場合、使用者は、第2の方向における一定変位量を所望の値に容易に指定することができる。 In this case, the user can easily specify a certain amount of displacement in the second direction as a desired value.
 (7)観測機能は、観測可能な範囲を有し、経路決定部は、一定変位量を観測領域内で観測機能により観測可能な範囲以下に設定してもよい。 (7) The observation function may have an observable range, and the route determination unit may set a certain amount of displacement below the observable range within the observation area by the observation function.
 この場合、一定変位量が観測機能により観測可能な範囲以下に設定される。それにより、観測領域において移動体が一往復移動する場合に、隣り合う往路と復路との間で観測機能により観測されない範囲が発生することが防止される。したがって、信頼性の高い観測結果を得ることができる。 In this case, the constant displacement is set to be below the range that can be observed by the observation function. Thereby, when the moving body reciprocates once in the observation area, it is possible to prevent a range that is not observed by the observation function between the adjacent forward path and return path. Therefore, a highly reliable observation result can be obtained.
 (8)移動体は、水上を移動可能に構成されるとともに観測機能として水中の状態を観測する観測機能を有し、経路決定部は、観測領域内の水深に基づいて観測可能な範囲を算出してもよい。 (8) The moving body is configured to be movable on the water and has an observation function for observing underwater conditions as an observation function. The route determination unit calculates an observable range based on the water depth in the observation area. May be.
 この場合、水深に基づいて観測機能により観測可能な範囲が算出される。それにより、観測領域内の全範囲において水中の状態が観測可能となる。 In this case, the observable range is calculated by the observation function based on the water depth. Thereby, the underwater state can be observed in the entire range within the observation region.
 (9)移動すべき経路の少なくとも一部は、移動体が第1の方向に平行な一の往路の終端部から旋回して第1の方向に平行な一の復路の始端部に移動することにより第2の方向に移動するように決定され、経路決定部は、観測領域内で観測機能により観測可能な範囲が移動体の最小旋回半径の2倍の値よりも小さい場合に、移動体が一の往路の始端部から一の復路の終端部まで移動する間に観測機能により観測されない範囲が観測されるように、一の往路と一の復路との間を通る経路を移動すべき経路に含めてもよい。 (9) At least a part of the route to be moved is that the moving body turns from the end portion of one forward path parallel to the first direction and moves to the start end portion of one return path parallel to the first direction. When the range that can be observed by the observation function in the observation area is smaller than twice the minimum turning radius of the mobile body, the path determination unit determines that the mobile body is moving in the second direction. The route that passes between one forward route and one return route is changed to a route to be moved so that a range not observed by the observation function can be observed while moving from the beginning of one forward route to the end of one return route. May be included.
 この場合、移動体は移動すべき経路の少なくとも一部で一の往路の終端部から旋回して第1の方向に平行な一の復路の始端部に移動することにより第2の方向に移動する。 In this case, the moving body moves in the second direction by turning from at the end of one forward path and moving to the start end of one return path parallel to the first direction in at least part of the path to be moved. .
 観測機能により観測可能な範囲が移動体の最小旋回半径の2倍の値よりも小さい場合に、一の往路と一の復路との間を通る経路を移動すべき経路に含められる。移動体が一の往路と一の復路との間を通る経路を移動することにより、移動体が一の往路の始端部から一の復路の終端部まで移動する間に観測されない範囲が観測される。したがって、観測領域内で観測可能な範囲が大きくなる。それにより、信頼性の高い観測結果を得ることができる。 When the range that can be observed by the observation function is smaller than twice the minimum turning radius of the moving object, the route that passes between one forward route and one return route is included in the route to be moved. As the moving body moves along a path that passes between one outbound path and one returning path, an unobservable range is observed while the moving body moves from the beginning of one outbound path to the end of one returning path. . Therefore, the observable range in the observation area becomes large. Thereby, a highly reliable observation result can be obtained.
 (10)移動体は、当該移動体を移動させるためのエネルギーを蓄えるエネルギー源を有し、経路決定部は、移動体が発進位置から観測領域内の移動すべき経路を通って発進位置に戻るまでの経路の長さがエネルギー源に残存するエネルギーにより移動体が移動可能な距離に相当する長さ以下になるように、移動すべき経路を決定してもよい。 (10) The moving body has an energy source for storing energy for moving the moving body, and the route determining unit returns from the starting position to the starting position through a route to be moved in the observation region. The route to be moved may be determined so that the length of the route up to is equal to or shorter than the distance corresponding to the distance that the moving body can move due to the energy remaining in the energy source.
 この場合、移動体が発進位置から発進して発進位置に戻るまでの間にエネルギー不足により移動体が停止することが防止される。 In this case, it is prevented that the moving body stops due to lack of energy before the moving body starts from the start position and returns to the start position.
 (11)本発明のさらに他の局面に従う自律移動体システムは、移動体と、上記の経路決定装置とを備え、移動体は、所定の観測機能を有する本体部と、本体部を移動させる移動機構と、本体部の現在位置を取得する現在位置取得部と、現在位置取得部により取得される現在位置に基づいて、経路決定部により決定された経路に沿って本体部が移動するように移動機構を制御する制御部とを含むものである。 (11) An autonomous mobile body system according to still another aspect of the present invention includes a mobile body and the route determining device, and the mobile body has a main body portion having a predetermined observation function and a movement for moving the main body portion. Based on the mechanism, the current position acquisition unit for acquiring the current position of the main body unit, and the current position acquired by the current position acquisition unit, the main body unit moves along the route determined by the route determination unit. And a control unit for controlling the mechanism.
 その自律移動体システムにおいては、上記の経路決定装置により、移動体による観測領域が設定され、設定された観測領域内で移動体が移動すべき経路が決定される。移動体においては、現在位置取得部により取得される現在位置に基づいて、移動機構が制御され、本体部が経路決定部により決定された経路に沿って移動する。それにより、観測領域の観測が行われる。 In the autonomous mobile system, an observation area by the mobile body is set by the above route determination device, and a route on which the mobile body should move within the set observation area is determined. In the moving body, the moving mechanism is controlled based on the current position acquired by the current position acquisition unit, and the main body moves along the route determined by the route determination unit. Thereby, the observation area is observed.
 この場合、移動体の移動経路が上記の経路決定装置により決定されるので、移動体の移動経路を容易かつ短時間で設定可能な自律移動体システムが実現される。 In this case, since the moving route of the moving body is determined by the route determining device, an autonomous moving body system capable of easily and quickly setting the moving route of the moving body is realized.
 本発明によれば、移動体が移動すべき経路が容易かつ短時間で設定可能となる。 According to the present invention, it is possible to easily and quickly set a route on which the moving body should move.
図1は第1の実施の形態に係る自律移動体システムの全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of an autonomous mobile system according to the first embodiment. 図2は船舶の側面図である。FIG. 2 is a side view of the ship. 図3は船舶の平面図である。FIG. 3 is a plan view of the ship. 図4は自律移動体システムの制御系を示すブロック図である。FIG. 4 is a block diagram showing a control system of the autonomous mobile system. 図5は第1の実施の形態における観測領域設定時に表示部に表示される画像の一例を示す図である。FIG. 5 is a diagram illustrating an example of an image displayed on the display unit when the observation area is set in the first embodiment. 図6は船舶が移動すべき経路の第1の決定方法を説明するための図である。FIG. 6 is a diagram for explaining a first method for determining a route on which a ship should move. 図7は船舶が移動すべき経路の第2の決定方法を説明するための図である。FIG. 7 is a diagram for explaining a second method of determining a route on which the ship should move. 図8は船舶が移動すべき経路の第3の決定方法を説明するための図である。FIG. 8 is a diagram for explaining a third method for determining a route on which a ship should move. 図9は船舶が移動すべき経路の第4の決定方法を説明するための図である。FIG. 9 is a diagram for explaining a fourth method for determining a route on which a ship should move. 図10は第1の実施の形態における船舶の経路決定時の一連の処理を示すフローチャートである。FIG. 10 is a flowchart showing a series of processes when determining the route of the ship in the first embodiment. 図11は経路決定部による経路決定処理の詳細を示すフローチャートである。FIG. 11 is a flowchart showing details of route determination processing by the route determination unit. 図12は経路決定部による経路決定処理の詳細を示すフローチャートである。FIG. 12 is a flowchart showing details of route determination processing by the route determination unit. 図13は第1の実施の形態における他の領域設定例を示す図である。FIG. 13 is a diagram illustrating another area setting example according to the first embodiment. 図14は第2の実施の形態における観測領域設定時に表示部に表示される画像の一例を示す図である。FIG. 14 is a diagram illustrating an example of an image displayed on the display unit when the observation area is set in the second embodiment. 図15は第2の実施の形態における船舶の経路決定時の一連の処理を示すフローチャートである。FIG. 15 is a flowchart showing a series of processes when determining the route of the ship in the second embodiment. 図16は第2の実施の形態における他の領域設定例を示す図である。FIG. 16 is a diagram illustrating another area setting example according to the second embodiment. 図17は第3の実施の形態における観測領域設定時に表示部に表示される画像の一例を示す図である。FIG. 17 is a diagram illustrating an example of an image displayed on the display unit when the observation area is set according to the third embodiment. 図18は第3の実施の形態における船舶の経路決定時の一連の処理を示すフローチャートである。FIG. 18 is a flowchart showing a series of processes when determining the route of a ship in the third embodiment. 図19は第3の実施の形態における他の領域設定例を示す図である。FIG. 19 is a diagram illustrating another area setting example according to the third embodiment.
 以下、本発明の一実施の形態に係る経路決定装置およびそれを備える自律移動体システムについて説明する。経路決定装置は、移動体が移動すべき経路を決定する。以下では、移動体の一例として、水上を移動可能でかつ所定の観測機能を有する船舶を説明する。 Hereinafter, a route determination device according to an embodiment of the present invention and an autonomous mobile system including the same will be described. The route determination device determines a route on which the moving body should move. Below, the ship which can move on the water and has a predetermined observation function is demonstrated as an example of a moving body.
 [1]第1の実施の形態
 (1)自律移動体システムの概略構成
 図1は、第1の実施の形態に係る自律移動体システムの全体構成を示す図である。図1に示すように、自律移動体システム1は、船舶100および経路決定装置500を含む。後述するように、船舶100と経路決定装置500との間では、無線通信により種々の情報の送受信が行われる。船舶100は、例えば経路決定装置500から移動すべき経路を受信し、受信された移動すべき経路に沿って水上を移動する。
[1] First Embodiment (1) Schematic Configuration of Autonomous Mobile System FIG. 1 is a diagram illustrating an overall configuration of an autonomous mobile system according to a first embodiment. As shown in FIG. 1, the autonomous mobile body system 1 includes a ship 100 and a route determination device 500. As will be described later, various kinds of information are transmitted and received between the ship 100 and the route determination device 500 by wireless communication. For example, the ship 100 receives a route to be moved from the route determination device 500 and moves on the water along the received route to be moved.
 (2)船舶の構成
 図2は船舶100の側面図であり、図3は船舶100の平面図である。図2に示すように、船舶100は、船体101およびカバー部材102を含む。船体101は、凹型の断面形状を有し、上方に向かって開口する。カバー部材102は、船体101の開口部を上方から覆うように船体101に取り付けられる。カバー部材102には、通信アンテナ150およびGPS(全地球測位システム:Global Positioning System)350が取り付けられている。船体101の内部には仕切り板103a,103bが設けられる。仕切り板103a,103bは、船体101内の空間を船首部101a、中央部101bおよび船尾部101cに区画する。
(2) Configuration of Ship FIG. 2 is a side view of the ship 100, and FIG. 3 is a plan view of the ship 100. As shown in FIG. 2, the ship 100 includes a hull 101 and a cover member 102. The hull 101 has a concave cross-sectional shape and opens upward. The cover member 102 is attached to the hull 101 so as to cover the opening of the hull 101 from above. A communication antenna 150 and a GPS (Global Positioning System) 350 are attached to the cover member 102. Inside the hull 101, partition plates 103a and 103b are provided. The partition plates 103a and 103b partition the space in the hull 101 into a bow portion 101a, a central portion 101b, and a stern portion 101c.
 中央部101bに収容室104が形成されている。収容室104は、船体101の底を上方に凹ませることにより形成されている。保持機構210は、観測装置200を収容室104の内部と船体101の下方の位置との間で昇降可能に保持する。本実施の形態では、観測装置200としてソナー(sound navigation ranging)が用いられる。観測装置200が船体101の下方に位置する状態で、水中の状態を観測することができる。 A storage chamber 104 is formed in the central portion 101b. The storage chamber 104 is formed by denting the bottom of the hull 101 upward. The holding mechanism 210 holds the observation apparatus 200 so that it can be raised and lowered between the inside of the storage chamber 104 and a position below the hull 101. In the present embodiment, sonar (sound navigation) ranging is used as the observation device 200. Underwater conditions can be observed with the observation device 200 positioned below the hull 101.
 図3では、カバー部材102が取り外された状態が示される。図3に示すように、船舶100において、中央部101bから船首に向かう方向を前方と呼び、中央部101bから船尾に向かう方向を後方と呼ぶ。 FIG. 3 shows a state where the cover member 102 is removed. As shown in FIG. 3, in the ship 100, the direction from the central portion 101b toward the bow is referred to as the front, and the direction from the central portion 101b toward the stern is referred to as the rear.
 中央部101bにおける収容室104の後方の位置に2つのモータ110a,110bが設けられる。モータ110a,110bの回転軸に、棒状部材111a,111bの一端がそれぞれ取り付けられる。この状態で、棒状部材111a,111bは船体101内の中央部101bから船体101の底を突き抜けて水中に突出するように保持される。棒状部材111a,111bの他端には、スクリュー112a,112bがそれぞれ取り付けられる。モータ110a,110bが作動することによりスクリュー112a,112bが回転し、船舶100が水上で前進または後退する。 Two motors 110a and 110b are provided at a position behind the storage chamber 104 in the central portion 101b. One ends of rod-shaped members 111a and 111b are attached to the rotation shafts of the motors 110a and 110b, respectively. In this state, the rod-shaped members 111a and 111b are held so as to protrude through the bottom of the hull 101 from the central portion 101b in the hull 101 and protrude into the water. Screws 112a and 112b are attached to the other ends of the rod-shaped members 111a and 111b, respectively. When the motors 110a and 110b operate, the screws 112a and 112b rotate, and the ship 100 moves forward or backward on the water.
 2つのスクリュー112a,112bの後方の位置で、船体101の底から下方に延びるように2つの舵部材121a,121bが設けられる。船尾部101cには、舵部材121a,121bを駆動する2つのモータ120a,120bが設けられる。モータ120a,120bが作動することにより舵部材121a,121bが図示しない回転軸を中心として揺動する。それにより、船舶100が水上で右方向または左方向に旋回する。 Two rudder members 121a and 121b are provided at positions behind the two screws 112a and 112b so as to extend downward from the bottom of the hull 101. The stern portion 101c is provided with two motors 120a and 120b for driving the rudder members 121a and 121b. When the motors 120a and 120b are operated, the rudder members 121a and 121b swing around a rotating shaft (not shown). Thereby, the ship 100 turns right or left on the water.
 図2に示すように、船体101の下部で仕切り板103aの近傍の位置にバウスラスタ131が設けられている。中央部101bの前端部近傍には、バウスラスタ131を駆動するモータ130が設けられる。モータ130が作動することにより、船首に右方向または左方向に向かう推進力が発生する。 As shown in FIG. 2, a bow thruster 131 is provided at a position near the partition plate 103a below the hull 101. A motor 130 for driving the bow thruster 131 is provided in the vicinity of the front end of the central portion 101b. When the motor 130 is operated, a propulsive force that is directed rightward or leftward is generated at the bow.
 また、図3に示すように、中央部101bには、収容室104の前方に制御ボックス140が設けられ、収容室104の側方に複数(本例では4つ)のバッテリ107が設けられる。制御ボックス140には、制御部300、記憶部301、方位センサ302および姿勢センサ303が内蔵される。制御ボックス140に内蔵される各構成要素の詳細は後述する。バッテリ107は、船舶100の各構成要素に供給すべきエネルギーを蓄える。 Further, as shown in FIG. 3, a control box 140 is provided in front of the storage chamber 104 in the central portion 101 b, and a plurality (four in this example) of batteries 107 are provided on the sides of the storage chamber 104. The control box 140 includes a control unit 300, a storage unit 301, an orientation sensor 302, and an attitude sensor 303. Details of each component built in the control box 140 will be described later. The battery 107 stores energy to be supplied to each component of the ship 100.
 (3)自律移動体システムの制御系
 図4は、自律移動体システム1の制御系を示すブロック図である。まず、経路決定装置500について説明する。図4に示すように、経路決定装置500は、CPU(中央演算処理装置)501、ROM(リードオンリメモリ)502、RAM(ランダムアクセスメモリ)503、記憶部504、表示部505、操作部506および通信アンテナ550を含む。
(3) Control System of Autonomous Mobile System FIG. 4 is a block diagram showing a control system of the autonomous mobile system 1. First, the route determination device 500 will be described. As shown in FIG. 4, the route determination device 500 includes a CPU (Central Processing Unit) 501, a ROM (Read Only Memory) 502, a RAM (Random Access Memory) 503, a storage unit 504, a display unit 505, an operation unit 506, and A communication antenna 550 is included.
 通信アンテナ550は、図示しない通信装置を介して経路決定装置500のCPU501に接続される。本例では、通信装置として無線ルータが用いられる。後述するように、船舶100も通信アンテナ150および無線ルータを含む。それにより、船舶100と経路決定装置500とが、通信アンテナ150,550を介して無線LAN(ローカルエリアネットワーク)で接続される。 The communication antenna 550 is connected to the CPU 501 of the route determination device 500 via a communication device (not shown). In this example, a wireless router is used as the communication device. As will be described later, the ship 100 also includes a communication antenna 150 and a wireless router. Thereby, the ship 100 and the route determination device 500 are connected via the communication antennas 150 and 550 by a wireless LAN (local area network).
 記憶部504は、例えばハードディスクまたは不揮発性メモリ等の記録媒体を含み、船舶100が移動すべき経路および観測装置200による観測結果を記憶する。さらに、記憶部504は、観測装置200の観測性能、船舶100の移動性能および地図情報等の種々の情報を記憶可能に構成される。本実施の形態においては、観測装置200の観測性能は、ソナーから発信される超音波の広がり角を含む。また、船舶100の移動性能は、船舶100の最小旋回半径を含む。さらに、地図情報は池、沼、湖および海等の水深を含む。 The storage unit 504 includes a recording medium such as a hard disk or a non-volatile memory, for example, and stores a route on which the ship 100 should move and an observation result by the observation device 200. Furthermore, the storage unit 504 is configured to be able to store various information such as the observation performance of the observation device 200, the movement performance of the ship 100, and map information. In the present embodiment, the observation performance of observation apparatus 200 includes the spread angle of ultrasonic waves transmitted from sonar. Further, the movement performance of the ship 100 includes the minimum turning radius of the ship 100. Further, the map information includes water depths such as ponds, swamps, lakes, and seas.
 表示部505は、例えば液晶ディスプレイパネルまたは有機EL(エレクトロルミネッセンス)パネルにより構成され、後述の観測領域設定画像を表示する。操作部506は、例えばキーボードおよびポインティングデバイスを含む。ポインティングデバイスとしては、マウスまたはジョイスティック等が用いられる。表示部505および操作部506はタッチパネルにより一体的に構成されてもよい。この場合、操作部506はさらにタッチペンを含むことが好ましい。本実施の形態では、表示部505に表示される後述の観測領域設定画像上に操作部506により点および直線を描画することが可能である。 The display unit 505 is composed of, for example, a liquid crystal display panel or an organic EL (electroluminescence) panel, and displays an observation region setting image described later. The operation unit 506 includes, for example, a keyboard and a pointing device. A mouse or a joystick is used as the pointing device. The display unit 505 and the operation unit 506 may be integrally configured by a touch panel. In this case, it is preferable that the operation unit 506 further includes a touch pen. In the present embodiment, it is possible to draw points and straight lines by the operation unit 506 on an observation area setting image described later displayed on the display unit 505.
 ROM502は、CPU501の制御プログラム等を記憶する。RAM503は、種々のデータを記憶するとともにCPU501の作業領域として機能する。CPU501がROM502に記憶された制御プログラムを実行することにより、観測領域設定部511、経路決定部512、表示制御部513およびエネルギー残量取得部514の機能が実現される。 ROM 502 stores a control program of CPU 501 and the like. The RAM 503 stores various data and functions as a work area for the CPU 501. When the CPU 501 executes the control program stored in the ROM 502, the functions of the observation region setting unit 511, the route determination unit 512, the display control unit 513, and the remaining energy acquisition unit 514 are realized.
 表示制御部513は、船舶100による観測領域を設定するための観測領域設定画像を表示部505に表示させる。本実施の形態においては、観測領域設定部511は、操作部506により観測領域設定画像上に点および直線が描画された場合に、描画された点および描画された直線の両端部を通る線を表す1または複数の関数を導出する。また、観測領域設定部511は、導出された1または複数の関数により表される1または複数の線で取り囲まれる領域を観測領域として設定する。 The display control unit 513 causes the display unit 505 to display an observation region setting image for setting an observation region by the ship 100. In the present embodiment, the observation region setting unit 511, when a point and a line are drawn on the observation region setting image by the operation unit 506, draws a line passing through the drawn point and both ends of the drawn straight line. Deriving one or more functions to represent. The observation area setting unit 511 sets an area surrounded by one or more lines represented by one or more derived functions as an observation area.
 経路決定部512は、観測領域設定部511により設定された観測領域内で船舶100が移動すべき経路を決定する。経路の決定方法については後述する。経路決定部512により経路が決定されると、表示制御部513は、決定された経路を表示部505に表示させる。 The route determination unit 512 determines a route on which the ship 100 should move within the observation region set by the observation region setting unit 511. The route determination method will be described later. When the route is determined by the route determination unit 512, the display control unit 513 causes the display unit 505 to display the determined route.
 エネルギー残量取得部514は、無線通信により船舶100から図3のバッテリ107に残存するエネルギー(本例では電気量)の残量を取得する。経路決定部512は、エネルギー残量取得部514により取得されるエネルギー残量に基づいて船舶100が移動すべき経路を決定することが可能である。 The energy remaining amount acquisition unit 514 acquires the remaining amount of energy (in this example, the amount of electricity) remaining in the battery 107 in FIG. 3 from the ship 100 by wireless communication. The route determination unit 512 can determine a route on which the ship 100 should move based on the remaining energy acquired by the remaining energy acquisition unit 514.
 船舶100は、モータ110a,110b,120a,120b,130、通信アンテナ150、観測装置200、保持機構210、制御部300、記憶部301、方位センサ302、姿勢センサ303、GPS350および電源装置400を含む。通信アンテナ150は、図示しない通信装置を介して船舶100の各構成要素に電気的に接続される。本例では、図示しない通信装置として無線ルータが用いられる。 The ship 100 includes motors 110a, 110b, 120a, 120b, 130, a communication antenna 150, an observation device 200, a holding mechanism 210, a control unit 300, a storage unit 301, an orientation sensor 302, an attitude sensor 303, a GPS 350, and a power supply device 400. . The communication antenna 150 is electrically connected to each component of the ship 100 via a communication device (not shown). In this example, a wireless router is used as a communication device (not shown).
 GPS350は、GPSアンテナ351および現在位置算出部352を含む。GPSアンテナ351は、GPS衛星からの信号を受信する。現在位置算出部352は、GPSアンテナ351により受信された信号に基づいて、船舶100の現在位置を算出する。 The GPS 350 includes a GPS antenna 351 and a current position calculation unit 352. The GPS antenna 351 receives a signal from a GPS satellite. The current position calculation unit 352 calculates the current position of the ship 100 based on the signal received by the GPS antenna 351.
 電源装置400は、図3のバッテリ107および図示しない電源回路を含み、バッテリ107のエネルギーを船舶100の各構成要素に供給する。 The power supply device 400 includes the battery 107 in FIG. 3 and a power supply circuit (not shown), and supplies the energy of the battery 107 to each component of the ship 100.
 記憶部301は、例えばハードディスクまたは不揮発性メモリ等の記録媒体を含み、船舶100が移動すべき経路および観測装置200による観測結果を記憶する。方位センサ302は、例えば磁気センサを含み、船舶100の移動方向を検出する。姿勢センサ303は、例えばジャイロスコープを含み、船舶100の姿勢を検出する。 The storage unit 301 includes a recording medium such as a hard disk or a non-volatile memory, for example, and stores a route on which the ship 100 should move and an observation result by the observation device 200. The direction sensor 302 includes, for example, a magnetic sensor, and detects the moving direction of the ship 100. The attitude sensor 303 includes a gyroscope, for example, and detects the attitude of the ship 100.
 制御部300は、CPU(中央演算処理装置)およびメモリ、またはマイクロコンピュータからなり、船舶100の各構成要素の動作を制御する。例えば、制御部300は、方位センサ302、姿勢センサ303およびGPS350からの出力に基づいて、船舶100が移動すべき経路に沿って移動するように各モータ110a,110b,120a,120b,130を制御する。また、制御部300は、観測が行われるように、観測装置200および保持機構210を制御する。 The control unit 300 includes a CPU (Central Processing Unit) and a memory, or a microcomputer, and controls the operation of each component of the ship 100. For example, the control unit 300 controls the motors 110a, 110b, 120a, 120b, and 130 so that the ship 100 moves along a route to be moved based on outputs from the direction sensor 302, the attitude sensor 303, and the GPS 350. To do. In addition, the control unit 300 controls the observation device 200 and the holding mechanism 210 so that the observation is performed.
 図4の例では、経路決定装置500における観測領域設定部511、経路決定部512、表示制御部513およびエネルギー残量取得部514の各々が、ハードウェアとソフトウェアとにより実現される。これに限らず、観測領域設定部511、経路決定部512、表示制御部513およびエネルギー残量取得部514は、電子回路等のハードウェアで実現されてもよい。また、これらの構成要素の一部がCPUおよびメモリ等のハードウェアとコンピュータプログラム等のソフトウェアとにより実現されてもよい。 In the example of FIG. 4, each of the observation region setting unit 511, the route determination unit 512, the display control unit 513, and the remaining energy acquisition unit 514 in the route determination device 500 is realized by hardware and software. However, the observation region setting unit 511, the route determination unit 512, the display control unit 513, and the remaining energy acquisition unit 514 may be realized by hardware such as an electronic circuit. Some of these components may be realized by hardware such as a CPU and a memory and software such as a computer program.
 (4)船舶が移動すべき経路の決定手順
 (4-1)観測領域の設定
 最初に、使用者が図4の操作部506を操作することにより、表示部505の画面上で観測装置200による観測領域が設定される。図5は、第1の実施の形態における観測領域設定時に表示部505に表示される画像の一例を示す図である。
(4) Procedure for determining route on which ship should move (4-1) Setting of observation area First, the user operates the operation unit 506 in FIG. An observation area is set. FIG. 5 is a diagram illustrating an example of an image displayed on the display unit 505 at the time of setting the observation area in the first embodiment.
 図5(a)に示すように、観測領域の設定が開始されると、表示部505の画面505s上に観測領域設定画像10が表示される。観測領域設定画像10は、地図情報に基づいて生成される地図である。本例では、観測領域設定画像10の中央部に湖20を表す画像がドットパターンで示される。 As shown in FIG. 5A, when the setting of the observation region is started, the observation region setting image 10 is displayed on the screen 505s of the display unit 505. The observation area setting image 10 is a map generated based on map information. In this example, an image representing the lake 20 is shown as a dot pattern at the center of the observation region setting image 10.
 本実施の形態においては、使用者は、操作部506を操作することにより、観測領域設定画像10上に1つの点31および1本の直線32を描画する。この場合、描画された点31および直線32の両端部を通る線を表す1または複数の関数が図4の観測領域設定部511により導出される。本例では、関数は楕円を表す。使用者による点31および直線32の描画中には、観測領域設定画像10上に導出された関数により表される線が点線で表示される。 In the present embodiment, the user draws one point 31 and one straight line 32 on the observation region setting image 10 by operating the operation unit 506. In this case, the observation region setting unit 511 in FIG. 4 derives one or a plurality of functions representing the drawn points 31 and lines passing through both ends of the straight line 32. In this example, the function represents an ellipse. During the drawing of the point 31 and the straight line 32 by the user, a line represented by a function derived on the observation region setting image 10 is displayed as a dotted line.
 使用者が点31および直線32の描画を行う際には、画面505s上に観測領域設定画像10とともに描画終了ボタンRBが表示される。使用者により点31および直線32が描画された後、描画終了ボタンRBが操作される。それにより、図5(b)に太い実線で示すように、画面505sに線33が強調表示される。本例では、導出された関数により表される楕円で取り囲まれる領域が観測領域34として設定される。 When the user draws the point 31 and the straight line 32, the drawing end button RB is displayed on the screen 505s together with the observation region setting image 10. After the point 31 and the straight line 32 are drawn by the user, the drawing end button RB is operated. As a result, the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG. In this example, an area surrounded by an ellipse represented by the derived function is set as the observation area 34.
 観測領域設定部511は、点31および直線32の両端部を通る円を表す関数を導出してもよい。この場合、導出された関数により表される円で取り囲まれる領域が観測領域34として設定される。 The observation region setting unit 511 may derive a function representing a circle passing through both ends of the point 31 and the straight line 32. In this case, an area surrounded by a circle represented by the derived function is set as the observation area 34.
 また、観測領域設定部511は、点31および直線32の両端部を頂点とする三角形を表す関数を導出してもよい。具体的には、観測領域設定部511は、点31と直線32の一端部とを通る直線を表す関数を導出し、点31と直線32の他端部とを通る直線を表す関数を導出し、直線32を表す関数を導出してもよい。この場合、導出された3つの関数により表される3本の直線で取り囲まれる領域が観測領域34として設定される。このように、観測領域34が、複数の関数により設定されてもよい。 Further, the observation region setting unit 511 may derive a function representing a triangle having apexes at both ends of the point 31 and the straight line 32. Specifically, the observation region setting unit 511 derives a function representing a straight line passing through the point 31 and one end of the straight line 32 and deriving a function representing a straight line passing through the point 31 and the other end of the straight line 32. A function representing the straight line 32 may be derived. In this case, an area surrounded by three straight lines represented by the three derived functions is set as the observation area 34. Thus, the observation region 34 may be set by a plurality of functions.
 (4-2)第1の経路決定方法
 観測領域34が設定された後、設定された観測領域34内で船舶100が移動すべき経路が決定される。図6は、船舶100が移動すべき経路の第1の決定方法を説明するための図である。
(4-2) First Route Determination Method After the observation region 34 is set, a route on which the ship 100 should move in the set observation region 34 is determined. FIG. 6 is a diagram for explaining a first determination method of a route on which the ship 100 should move.
 経路の決定前には、予め観測条件が指定される。図6(a)に観測条件の指定時に表示部505に表示される画像の一例が示される。本実施の形態では、観測条件は、観測開始点41および船舶100が観測時に往復移動すべき方向を含む。以下、船舶100が観測時に往復移動すべき方向を第1の方向と呼ぶ。この場合、使用者は、操作部506を操作することにより、観測条件として、観測開始点および第1の方向を指定する。 * Observation conditions are specified in advance before the route is determined. FIG. 6A shows an example of an image displayed on the display unit 505 when the observation condition is designated. In the present embodiment, the observation conditions include directions in which the observation start point 41 and the ship 100 should reciprocate during observation. Hereinafter, the direction in which the ship 100 should reciprocate during observation is referred to as a first direction. In this case, the user operates the operation unit 506 to specify the observation start point and the first direction as the observation conditions.
 ここで、使用者は、船舶100が第1の方向に往復移動しつつ第1の方向に交差する第2の方向に移動すべき一定の距離を指定することができる。以下、船舶100が往復移動しつつ第2の方向に移動すべき距離を観測ピッチと呼ぶ。本例では、第1の方向と第2の方向とは直交する。 Here, the user can specify a certain distance that the ship 100 should move in the second direction intersecting the first direction while reciprocating in the first direction. Hereinafter, the distance that the ship 100 should move in the second direction while reciprocating is referred to as an observation pitch. In this example, the first direction and the second direction are orthogonal.
 第1の経路決定方法では、観測条件として使用者により観測開始点41、第1の方向および観測ピッチが指定されることにより、それらの条件に基づいて船舶100が移動すべき経路が決定される。 In the first route determination method, the observation start point 41, the first direction, and the observation pitch are designated by the user as observation conditions, and the route on which the ship 100 should move is determined based on those conditions. .
 図6(a)の観測領域設定画像10においては、観測開始点41が線33の一部に重なるように指定される。また、白抜きの矢印48で示されるように、第1の方向が観測領域設定画像10上の縦方向(地図上の南北方向)に指定される。さらに、入力枠49に示されるように、観測ピッチが3mに指定される。なお、観測ピッチが指定されない場合、後述する第2の経路決定方法において観測ピッチは自動で設定される。 In the observation region setting image 10 of FIG. 6A, the observation start point 41 is specified so as to overlap a part of the line 33. Further, as indicated by the white arrow 48, the first direction is designated as the vertical direction on the observation region setting image 10 (the north-south direction on the map). Further, as shown in the input frame 49, the observation pitch is specified as 3 m. When the observation pitch is not designated, the observation pitch is automatically set in the second route determination method described later.
 図6(a)の観測条件が指定されることにより船舶100が移動すべき経路が決定されると、図6(b)に示すように、決定された経路43が観測開始点41および観測終了点42とともに画面505s上に表示される。このように、第1の経路決定方法によれば、使用者は、第1の方向を所望の方向に容易に設定することができ、かつ観測ピッチを所望の値に容易に設定することができる。 When the route on which the ship 100 is to be moved is determined by designating the observation conditions of FIG. 6A, the determined route 43 has an observation start point 41 and an observation end as shown in FIG. 6B. Along with the point 42, it is displayed on the screen 505s. Thus, according to the first route determination method, the user can easily set the first direction to a desired direction, and can easily set the observation pitch to a desired value. .
 (4-3)第2の経路決定方法
 図7は、船舶100が移動すべき経路の第2の決定方法を説明するための図である。上記のように、観測条件の設定時に観測ピッチが指定されない場合、第2の経路決定方法により観測ピッチが設定される。本例では、湖20の水深が地図情報として予め図4の記憶部504に記憶されているものとする。
(4-3) Second Route Determination Method FIG. 7 is a diagram for explaining a second determination method of the route that the ship 100 should move. As described above, when the observation pitch is not specified when setting the observation conditions, the observation pitch is set by the second route determination method. In this example, it is assumed that the water depth of the lake 20 is stored in advance in the storage unit 504 of FIG. 4 as map information.
 図7(a)に水上に浮かぶ船舶100を前方から見た正面図が示される。図7(a)に示すように、観測装置200としてソナーが用いられる場合には、観測装置200から船舶100の下方に向かって所定の広がり角θで超音波が発信される。したがって、観測装置200により水底の形状を観測する場合には、深さに応じて観測可能範囲が変化する。 Fig. 7 (a) shows a front view of the ship 100 floating on the water as seen from the front. As shown in FIG. 7A, when a sonar is used as the observation device 200, ultrasonic waves are transmitted from the observation device 200 toward the lower side of the ship 100 at a predetermined spread angle θ. Therefore, when the shape of the bottom of the water is observed by the observation device 200, the observable range changes according to the depth.
 例えば、水底B2が水底B1よりも深い位置にある場合、船舶100の左右方向において観測装置200により観測可能な水底B2の幅W2は、観測装置200により観測可能な水底B1の幅W1に比べて大きくなる。 For example, when the bottom B2 is deeper than the bottom B1, the width W2 of the bottom B2 that can be observed by the observation device 200 in the left-right direction of the ship 100 is larger than the width W1 of the bottom B1 that can be observed by the observation device 200. growing.
 そこで、第2の経路決定方法では、観測領域34における水深および観測装置200から発信される超音波の広がり角θに基づいて船舶100の左右方向における観測可能範囲(本例では、水底の幅)が算出される。また、観測可能範囲以下となるように観測ピッチが設定され、船舶100が移動すべき経路が決定される。それにより、観測領域34内で観測されない範囲が発生することが防止される。したがって、信頼性の高い観測結果を得ることができる。 Therefore, in the second route determination method, the observable range in the left-right direction of the ship 100 based on the water depth in the observation region 34 and the spread angle θ of the ultrasonic wave transmitted from the observation device 200 (in this example, the width of the water bottom). Is calculated. Further, the observation pitch is set so as to be less than the observable range, and the route on which the ship 100 should move is determined. This prevents the occurrence of a range that is not observed in the observation region 34. Therefore, a highly reliable observation result can be obtained.
 図7(b)に、第2の経路決定方法により決定された移動すべき経路43の表示例が示される。図7(b)に示される湖20においては、ドットパターンで示される部分の水深が小さく(1mよりも大きく5m以下)、ハッチングで示される部分の水深が大きい(5mよりも大きく10m以下)ものとする。この場合、水深の小さい領域で設定される観測ピッチpt1が、水深の大きい領域で設定される観測ピッチpt2に比べて小さくなる。 FIG. 7B shows a display example of the route 43 to be moved determined by the second route determination method. In the lake 20 shown in FIG. 7 (b), the water depth of the portion shown by the dot pattern is small (greater than 1 m and 5 m or less) and the water depth of the portion shown by hatching is large (greater than 5 m and less than 10 m) And In this case, the observation pitch pt1 set in the region with a small water depth is smaller than the observation pitch pt2 set in the region with a large water depth.
 (4-4)第3の経路決定方法
 図8は、船舶100が移動すべき経路の第3の決定方法を説明するための図である。例えば、図8(a)に示すように、船舶100が南北方向に往復移動しつつ西から東に移動するように移動すべき経路43が決定された場合を想定する。本例では、湖20の水深は一定であるものとする。
(4-4) Third Route Determination Method FIG. 8 is a diagram for explaining a third determination method of the route that the ship 100 should move. For example, as shown in FIG. 8A, it is assumed that a route 43 to be moved is determined so that the ship 100 moves from west to east while reciprocating in the north-south direction. In this example, the water depth of the lake 20 is assumed to be constant.
 観測ピッチptが最小旋回半径の2倍の値よりも小さいと、船舶100は一の往路51の終端部51bから次の復路52の始端部52aに移動することができない。そのため、観測ピッチptは観測装置200の観測可能範囲によらず最小旋回半径の2倍以上の値に設定する必要がある。例えば、観測可能範囲が船舶100の最小旋回半径の2倍の値よりも小さい場合を想定する。この場合、図8(a)にハッチングで示すように、船舶100が一の往路51の始端部51aから次の復路52の終端部52bに移動するまでの間に観測装置200により観測されない範囲59が発生する。 When the observation pitch pt is smaller than twice the minimum turning radius, the ship 100 cannot move from the terminal end 51b of one forward path 51 to the start end 52a of the next return path 52. Therefore, the observation pitch pt needs to be set to a value that is twice or more the minimum turning radius regardless of the observable range of the observation apparatus 200. For example, it is assumed that the observable range is smaller than twice the minimum turning radius of the ship 100. In this case, as indicated by hatching in FIG. 8A, a range 59 that is not observed by the observation device 200 before the ship 100 moves from the start end 51a of one forward path 51 to the end 52b of the next return path 52. Occurs.
 そこで、第3の経路決定方法では、船舶100が一の往路51の終端部51bから次の復路52の始端部52aに移動することができるようにかつ一の往路51と次の復路52との間で観測されない範囲59が発生しないように、以下の方法で経路が決定される。 Therefore, in the third route determination method, the ship 100 can move from the terminal end portion 51b of one forward route 51 to the start end portion 52a of the next return route 52, and between the one forward route 51 and the next return route 52. The route is determined by the following method so that the range 59 that is not observed between them does not occur.
 まず、観測可能範囲が船舶100の最小旋回半径の2倍の値よりも小さい場合に、観測ピッチptが最小旋回半径の2倍以上の大きさとなるように設定される。それにより、図8(b)に示すように、図8(a)の経路43と同じ経路44が移動すべき経路として決定される。 First, when the observable range is smaller than twice the minimum turning radius of the ship 100, the observation pitch pt is set to be twice or more the minimum turning radius. As a result, as shown in FIG. 8B, the same route 44 as the route 43 in FIG. 8A is determined as the route to be moved.
 続いて、船舶100が経路44を移動する間に観測装置200により観測されない範囲が観測されるように、経路44において隣り合う往路と復路との間を通る経路45が、さらに移動すべき経路として決定される。この場合、船舶100が経路44を移動する間に観測されない範囲が、船舶100が経路45を移動する間に観測される。 Subsequently, the route 45 passing between the adjacent forward and return routes in the route 44 is a route to be further moved so that a range that is not observed by the observation device 200 is observed while the ship 100 moves on the route 44. It is determined. In this case, a range that is not observed while the ship 100 moves along the path 44 is observed while the ship 100 moves along the path 45.
 このように、本例では、船舶100が観測ピッチptで往復移動する経路44が移動すべき経路の一部として決定された後、観測ピッチptの距離で隣り合う往路と復路との間を通る経路45が移動すべき経路に含められる。それにより、観測領域34内で観測されない範囲59が発生することが防止される。したがって、信頼性の高い観測結果を得ることができる。 Thus, in this example, after the route 44 on which the ship 100 reciprocates at the observation pitch pt is determined as a part of the route to be moved, it passes between the adjacent forward and return routes at the distance of the observation pitch pt. The route 45 is included in the route to be moved. This prevents the occurrence of a range 59 that is not observed in the observation region 34. Therefore, a highly reliable observation result can be obtained.
 (4-5)第4の経路決定方法
 以下の説明では、観測開始前に船舶100が湖上に浮かべられるとともに観測開始後に船舶100が湖上から回収される位置を、発進位置と呼ぶ。本例では、発進位置が、観測開始点41、第1の方向および観測ピッチとともに予め観測条件として指定されるものとする。
(4-5) Fourth Route Determination Method In the following description, a position where the ship 100 is floated on the lake before the observation is started and the ship 100 is recovered from the lake after the observation is started is called a start position. In this example, it is assumed that the start position is specified in advance as an observation condition together with the observation start point 41, the first direction, and the observation pitch.
 図9は、船舶100が移動すべき経路の第4の決定方法を説明するための図である。本例では、予め指定された観測開始点41、第1の方向、観測ピッチおよび発進位置と図4のエネルギー残量取得部514により取得されるエネルギー残量とに基づいて船舶100が移動すべき経路43が決定される。以下、エネルギー残量取得部514により取得されるエネルギー残量により船舶100が移動可能な距離に相当する長さを移動可能長さと呼ぶ。 FIG. 9 is a diagram for explaining a fourth method for determining a route on which the ship 100 should move. In this example, the ship 100 should move based on the observation start point 41, the first direction, the observation pitch and the start position designated in advance and the remaining energy acquired by the remaining energy acquisition unit 514 in FIG. A path 43 is determined. Hereinafter, the length corresponding to the distance that the ship 100 can move based on the remaining amount of energy acquired by the remaining energy acquisition unit 514 is referred to as a movable length.
 具体的には、第4の経路決定方法では、船舶100が発進位置から観測領域34に移動して観測装置200による観測後に発進位置に戻るまでの船舶100の経路の長さが移動可能長さ以下となるように観測領域34内の移動すべき経路43が決定される。 Specifically, in the fourth route determination method, the length of the route of the ship 100 until the ship 100 moves from the start position to the observation region 34 and returns to the start position after observation by the observation device 200 is a movable length. The route 43 to be moved in the observation area 34 is determined so as to be as follows.
 図9の例では、観測領域設定画像10上に、観測領域34内の移動すべき経路が太い実線で示される。また、発進位置46と観測開始点41とを結ぶ経路47aおよび発進位置46と観測終了点42とを結ぶ経路47bが一点鎖線で示される。この場合、経路43,47a,47bの合計長さが移動可能長さ以下となるように経路43が決定される。それにより、船舶100が発進位置46から観測領域34に移動して発進位置46に戻るまでの経路において、エネルギー不足により船舶100が停止することが防止される。 In the example of FIG. 9, the route to be moved in the observation region 34 is indicated by a thick solid line on the observation region setting image 10. Further, a path 47a connecting the start position 46 and the observation start point 41 and a path 47b connecting the start position 46 and the observation end point 42 are indicated by alternate long and short dash lines. In this case, the route 43 is determined so that the total length of the routes 43, 47a, 47b is equal to or less than the movable length. This prevents the ship 100 from stopping due to insufficient energy in the route from the start position 46 to the observation region 34 and returning to the start position 46.
 (5)処理フロー
 図10は、第1の実施の形態における船舶100の経路決定時の一連の処理を示すフローチャートである。図10に示すように、初めに、CPU501の表示制御部513は、表示部505の画面505s上に観測領域設定画像10を表示する(ステップS11)。この状態で、CPU501の観測領域設定部511は、使用者による操作部506の操作により、点および直線が描画されたか否かを判定する(ステップS12)。
(5) Process Flow FIG. 10 is a flowchart showing a series of processes when determining the route of the ship 100 in the first embodiment. As shown in FIG. 10, first, the display control unit 513 of the CPU 501 displays the observation region setting image 10 on the screen 505s of the display unit 505 (step S11). In this state, the observation area setting unit 511 of the CPU 501 determines whether a point and a straight line are drawn by the operation of the operation unit 506 by the user (step S12).
 点および直線が描画された場合、観測領域設定部511は、描画された点および描画された直線の両端部を通る線を表す関数を導出する(ステップS13)。続いて、観測領域設定部511は、図5(a)の描画終了ボタンRBが操作されることにより、導出された関数により表される線33で取り囲まれる領域を観測領域34として設定する(ステップS14)。その後、表示制御部513は、設定された観測領域34を画面505s上に表示する(ステップS15)。 When the point and the straight line are drawn, the observation area setting unit 511 derives a function representing the drawn point and a line passing through both ends of the drawn straight line (step S13). Subsequently, the observation region setting unit 511 sets the region surrounded by the line 33 represented by the derived function as the observation region 34 by operating the drawing end button RB in FIG. S14). Thereafter, the display control unit 513 displays the set observation region 34 on the screen 505s (step S15).
 次に、CPU501の経路決定部512は、使用者が操作部506を操作することにより、観測条件が指定されたか否かを判定する(ステップS16)。観測条件が指定されると、経路決定部512は、観測領域34内で船舶100が移動すべき経路を決定するための経路決定処理を行う(ステップS17)。経路決定処理の詳細なフローについては後述する。 Next, the route determination unit 512 of the CPU 501 determines whether or not an observation condition is designated by the user operating the operation unit 506 (step S16). When the observation condition is specified, the route determination unit 512 performs route determination processing for determining a route that the ship 100 should move in the observation region 34 (step S17). A detailed flow of the route determination process will be described later.
 その後、表示制御部513は、設定された観測領域34を画面505s上に表示する(ステップS18)。また、経路決定部512は、決定された船舶100が移動すべき経路を船舶100へ送信する(ステップS19)。それにより、船舶100においては、受信された船舶100が移動すべき経路が記憶部301(図4)に記憶される。 Thereafter, the display control unit 513 displays the set observation region 34 on the screen 505s (step S18). Further, the route determination unit 512 transmits the route that the determined ship 100 should move to the ship 100 (step S19). Thereby, in the ship 100, the route which the received ship 100 should move is memorize | stored in the memory | storage part 301 (FIG. 4).
 図11および図12は、経路決定部512によるステップS17の経路決定処理の詳細を示すフローチャートである。本例では、使用者は、操作部506を操作することにより、観測条件としてエネルギー残量を考慮すべきか否かを指定することができるものとする。 11 and 12 are flowcharts showing the details of the route determination process in step S17 by the route determination unit 512. In this example, it is assumed that the user can specify whether or not the remaining amount of energy should be considered as an observation condition by operating the operation unit 506.
 経路決定処理が開始されると、CPU501の経路決定部512は、観測条件として観測ピッチが指定されているか否かを判定する(ステップS21)。観測ピッチが指定されている場合、経路決定部512は、観測条件としてエネルギー残量を考慮すべき旨の指定がされているか否かを判定する(ステップS22)。エネルギー残量を考慮すべき旨の指定がされていない場合、経路決定部512は、指定された観測開始点、第1の方向および観測ピッチに基づいて船舶100が移動すべき経路を決定する(ステップS23)。ステップS23の処理は第1の経路決定方法による経路の決定処理に相当する。 When the route determination process is started, the route determination unit 512 of the CPU 501 determines whether an observation pitch is designated as an observation condition (step S21). When the observation pitch is designated, the route determination unit 512 determines whether or not the designation that the remaining energy is to be taken into account is designated as the observation condition (step S22). When it is not specified that the remaining amount of energy should be considered, the route determination unit 512 determines a route on which the ship 100 should move based on the specified observation start point, the first direction, and the observation pitch ( Step S23). The process of step S23 corresponds to a route determination process by the first route determination method.
 一方、エネルギー残量を考慮すべき旨の指定がされている場合、経路決定部512は、エネルギー残量取得部514により取得されるエネルギー残量に基づいて移動可能長さを算出する(ステップS24)。また、経路決定部512は、発進位置から観測領域34に移動して発進位置に戻るまでの船舶100の経路の長さが移動可能長さ以下となるように、観測開始点、第1の方向、観測ピッチ、発進位置および移動可能長さに基づいて観測領域34内で船舶100が移動すべき経路を決定する(ステップS25)。ステップS24,25の処理は第4の経路決定方法による経路の決定処理に相当する。 On the other hand, when it is specified that the remaining amount of energy should be considered, the route determination unit 512 calculates the movable length based on the remaining energy acquired by the remaining energy acquisition unit 514 (step S24). ). The route determination unit 512 also sets the observation start point and the first direction so that the length of the route of the ship 100 from the start position to the observation region 34 and back to the start position is less than the movable length. Based on the observation pitch, the start position, and the movable length, a route on which the ship 100 should move in the observation region 34 is determined (step S25). Steps S24 and S25 correspond to route determination processing by the fourth route determination method.
 上記のステップS21において、観測ピッチが指定されていない場合、経路決定部512は、観測領域34の水深が図4の記憶部504に記憶されているか否かを判定する(ステップS26)。観測領域34の水深が記憶部504に記憶されている場合、経路決定部512は、観測装置200の観測可能範囲を算出する(ステップS27)。 In the above step S21, when the observation pitch is not designated, the route determination unit 512 determines whether or not the water depth of the observation region 34 is stored in the storage unit 504 of FIG. 4 (step S26). When the water depth of the observation region 34 is stored in the storage unit 504, the route determination unit 512 calculates the observable range of the observation device 200 (step S27).
 続いて、経路決定部512は、算出された観測可能範囲が船舶100の最小旋回半径の2倍の値以上であるか否かを判定する(ステップS28)。 Subsequently, the route determination unit 512 determines whether or not the calculated observable range is equal to or more than twice the minimum turning radius of the ship 100 (step S28).
 観測可能範囲が船舶100の最小旋回半径の2倍の値以上である場合、経路決定部512は、隣り合う往路と復路との間で観測不可能な範囲が生じないようにかつ船舶100が一の往路の終端部から次の復路の始端部に旋回可能となるように、観測ピッチを観測可能範囲以下かつ最小旋回半径の2倍以上に設定する(ステップS29)。 When the observable range is equal to or more than twice the minimum turning radius of the ship 100, the route determination unit 512 prevents the unobservable range from being generated between the adjacent forward path and the return path, and the ship 100 is equal to one. The observation pitch is set to be less than the observable range and at least twice the minimum turning radius so that it can turn from the end of the forward path to the start of the next return path (step S29).
 その後、経路決定部512は、観測開始点、第1の方向および設定された観測ピッチとに基づいて船舶100が移動すべき経路を決定する(ステップS30)。ステップS29,S30の処理は第2の経路決定方法による経路の決定処理に相当する。 Thereafter, the route determination unit 512 determines a route on which the ship 100 should move based on the observation start point, the first direction, and the set observation pitch (step S30). The processing in steps S29 and S30 corresponds to route determination processing by the second route determination method.
 一方、上記のステップS28において、観測可能範囲が船舶100の最小旋回半径の2倍の値よりも小さい場合、経路決定部512は、隣り合う往路と復路との間で船舶100が旋回可能となるように観測ピッチを最小旋回半径の2倍以上の値に設定する(ステップS31)。 On the other hand, when the observable range is smaller than twice the minimum turning radius of the ship 100 in the above step S28, the route determination unit 512 can turn the ship 100 between the adjacent forward and return paths. Thus, the observation pitch is set to a value that is at least twice the minimum turning radius (step S31).
 その後、経路決定部512は、指定された観測開始点および第1の方向と、設定された観測ピッチとに基づいて船舶100が移動すべき経路の一部を決定するとともに、観測領域34の全範囲が観測されるように観測ピッチで隣り合う往路と復路との間を通る経路を移動すべき経路に含める(ステップS32)。ステップS31,S32の処理は第3の経路決定方法による経路の決定処理に相当する。 Thereafter, the route determination unit 512 determines a part of the route on which the ship 100 should move based on the designated observation start point and first direction, and the set observation pitch, and the entire observation region 34 In order to observe the range, a route that passes between the outgoing route and the return route that are adjacent at the observation pitch is included in the route to be moved (step S32). Steps S31 and S32 correspond to route determination processing by the third route determination method.
 図4の記憶部504には、観測領域34の水深が不明である場合に設定されるべき予め定められた観測ピッチが記憶されている。この観測ピッチは、例えば最小旋回半径の2倍の値に設定される。上記のステップS26において、観測領域34の水深が記憶部504に記憶されていない場合、経路決定部512は、観測開始点、第1の方向および予め記憶された観測ピッチとに基づいて船舶100が移動すべき経路を決定する(ステップS33)。 4 stores a predetermined observation pitch to be set when the water depth of the observation region 34 is unknown. This observation pitch is set to a value twice the minimum turning radius, for example. When the water depth of the observation region 34 is not stored in the storage unit 504 in step S26 described above, the route determination unit 512 determines that the ship 100 is based on the observation start point, the first direction, and the observation pitch stored in advance. A route to be moved is determined (step S33).
 経路決定部512による上記のステップS23,S25,S30,S32,S33のいずれかの処理が行われることにより、経路決定処理が終了する。 The route determination process is completed when the route determination unit 512 performs any one of the above steps S23, S25, S30, S32, and S33.
 (6)他の領域設定例
 上記の例では、観測領域設定画像10上に1つの点31および1本の直線32が描画されることにより、観測領域34が設定される。これに限らず、観測領域設定画像10上に1つの点31および複数の直線32が描画されてもよい。この場合、1つの点31および全ての直線32の両端部を通る線を表す1または複数の関数が導出され、導出された1または複数の関数により表される1または複数の線で取り囲まれる観測領域が設定される。
(6) Other Area Setting Examples In the above example, the observation area 34 is set by drawing one point 31 and one straight line 32 on the observation area setting image 10. Not limited to this, one point 31 and a plurality of straight lines 32 may be drawn on the observation region setting image 10. In this case, one or a plurality of functions representing lines passing through both ends of one point 31 and all the straight lines 32 are derived, and the observation is surrounded by one or a plurality of lines represented by the derived one or more functions. An area is set.
 また、観測領域設定画像10上に複数の点31および1本の直線32が描画されてもよい。この場合、全ての点31および1本の直線32の両端部を通る線を表す1または複数の関数が導出され、導出された1または複数の関数により表される1または複数の線で取り囲まれる観測領域が設定される。 Further, a plurality of points 31 and one straight line 32 may be drawn on the observation region setting image 10. In this case, one or a plurality of functions representing lines passing through both points 31 and both ends of one straight line 32 are derived and surrounded by one or a plurality of lines represented by the derived one or more functions. An observation area is set.
 さらに、観測領域設定画像10上に複数の点31および複数の直線32が描画されてもよい。この場合、全ての点31および全ての直線32の両端部を通る線を表す1または複数の関数が導出され、導出された1または複数の関数により表される1または複数の線で取り囲まれる観測領域が設定される。 Furthermore, a plurality of points 31 and a plurality of straight lines 32 may be drawn on the observation region setting image 10. In this case, one or more functions representing lines passing through both ends of all the points 31 and all the straight lines 32 are derived, and the observation is surrounded by one or more lines represented by the derived one or more functions. An area is set.
 図13は、第1の実施の形態における他の領域設定例を示す図である。図13(a)に示すように、本例では観測領域設定画像10上に2つの点31および2本の直線32が描画される。この場合、観測領域設定部511は、2つの点31および2本の直線32のそれぞれの両端部を通る線を表す1または複数の関数を導出する。本例では、関数はスプライン曲線を表す。使用者により点31および直線32が描画された後、描画終了ボタンRBが操作される。それにより、図13(b)に太い実線で示すように、画面505sに線33が強調表示される。本例では、導出された関数により表されるスプライン曲線で取り囲まれる領域が観測領域34として設定される。 FIG. 13 is a diagram illustrating another area setting example according to the first embodiment. As shown in FIG. 13A, in this example, two points 31 and two straight lines 32 are drawn on the observation region setting image 10. In this case, the observation region setting unit 511 derives one or a plurality of functions representing lines passing through both ends of the two points 31 and the two straight lines 32. In this example, the function represents a spline curve. After the point 31 and the straight line 32 are drawn by the user, the drawing end button RB is operated. As a result, the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG. In this example, an area surrounded by a spline curve represented by the derived function is set as the observation area 34.
 (7)効果
 本実施の形態においては、船舶100による観測領域34の設定時に、表示部505に観測領域設定画像10が表示される。使用者は、操作部506を操作することにより、観測領域設定画像10上に点31および直線32を描画することができる。描画された点31および直線32の両端部を通る線33を表す関数に基づいて観測領域34が設定される。設定された観測領域34内で船舶100が移動すべき経路が決定される。
(7) Effect In the present embodiment, the observation region setting image 10 is displayed on the display unit 505 when the observation region 34 is set by the ship 100. The user can draw the point 31 and the straight line 32 on the observation region setting image 10 by operating the operation unit 506. An observation region 34 is set based on a function representing a drawn point 31 and a line 33 passing through both ends of the straight line 32. A route on which the ship 100 should move within the set observation region 34 is determined.
 この場合、使用者は、観測領域設定画像10上に点31および直線32を描画する際に、点31および直線32の両端部を通る線で取り囲まれる領域を比較的容易に認識することができる。したがって、船舶100が移動すべき経路を容易かつ短時間で設定することが可能になる。 In this case, when the user draws the point 31 and the straight line 32 on the observation region setting image 10, the user can relatively easily recognize the region surrounded by the line passing through both ends of the point 31 and the straight line 32. . Therefore, it is possible to easily and quickly set a route that the ship 100 should move.
 [2]第2の実施の形態
 第2の実施の形態に係る経路決定装置は、図4の観測領域設定部511による観測領域34の設定方法が異なる点を除いて、第1の実施の形態に係る経路決定装置500と同じ構成および動作を有する。
[2] Second Embodiment The route determination apparatus according to the second embodiment is the same as the first embodiment except that the setting method of the observation region 34 by the observation region setting unit 511 in FIG. 4 is different. The same configuration and operation as the route determination device 500 according to FIG.
 本実施の形態においては、操作部506により観測領域設定画像10上に少なくとも2本の直線が描画された場合に、描画された全ての直線の両端部を通る線を表す1または複数の関数が導出される。導出された1または複数の関数により表される1または複数の線で取り囲まれる領域が観測領域として設定される。 In the present embodiment, when at least two straight lines are drawn on the observation region setting image 10 by the operation unit 506, one or a plurality of functions representing lines passing through both ends of all drawn straight lines are obtained. Derived. A region surrounded by one or more lines represented by the derived one or more functions is set as an observation region.
 使用者による観測領域34の設定例を説明する。図14は、第2の実施の形態における観測領域設定時に表示部505に表示される画像の一例を示す図である。 An example of setting the observation area 34 by the user will be described. FIG. 14 is a diagram illustrating an example of an image displayed on the display unit 505 at the time of setting an observation area according to the second embodiment.
 図14(a)に示すように、観測領域の設定が開始されると、表示部505の画面505s上に観測領域設定画像10が表示される。使用者は、操作部506を操作することにより、観測領域設定画像10上に2本の直線32を描画する。この場合、描画された一方の直線32の両端部および他方の直線32の両端部を通る線を表す1または複数の関数が観測領域設定部511により導出される。本例では、一方の直線32の一端部と他方の直線32の一端部とを通る直線を表す関数および一方の直線32の一端部と他方の直線32の他端部とを通る直線を表す関数が観測領域設定部511により導出される。また、一方の直線32の他端部と他方の直線32の一端部とを通る直線を表す関数および一方の直線32の他端部と他方の直線32の他端部とを通る直線を表す関数が観測領域設定部511により導出される。このように、本例では、4つの関数が導出される。 As shown in FIG. 14A, when the setting of the observation region is started, the observation region setting image 10 is displayed on the screen 505s of the display unit 505. The user draws two straight lines 32 on the observation region setting image 10 by operating the operation unit 506. In this case, the observation region setting unit 511 derives one or a plurality of functions representing lines passing through both ends of one drawn straight line 32 and both ends of the other straight line 32. In this example, a function representing a straight line passing through one end of one straight line 32 and one end of the other straight line 32 and a function representing a straight line passing through one end of one straight line 32 and the other end of the other straight line 32 are shown. Is derived by the observation region setting unit 511. Further, a function representing a straight line passing through the other end of one straight line 32 and one end of the other straight line 32 and a function representing a straight line passing through the other end of one straight line 32 and the other end of the other straight line 32. Is derived by the observation region setting unit 511. Thus, in this example, four functions are derived.
 使用者による直線32の描画中には、観測領域設定画像10上に導出された関数により表される線が点線で表示される。使用者により2本の直線32が描画された後、描画終了ボタンRBが操作される。それにより、図14(b)に太い実線で示すように、画面505sに線33が強調表示される。本例では、導出された4つの関数により表される4本の直線で取り囲まれる四角形の領域が観測領域34として設定される。 During the drawing of the straight line 32 by the user, a line represented by a function derived on the observation area setting image 10 is displayed as a dotted line. After two straight lines 32 are drawn by the user, the drawing end button RB is operated. As a result, the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG. In this example, a rectangular area surrounded by four straight lines represented by the four derived functions is set as the observation area 34.
 上記の例に限らず、観測領域設定部511は、2本の直線32の両端部を通る円または楕円を表す関数を導出してもよい。この場合、導出された関数により表される円または楕円で取り囲まれる領域が観測領域34として設定される。 Not limited to the above example, the observation region setting unit 511 may derive a function representing a circle or an ellipse that passes through both ends of the two straight lines 32. In this case, an area surrounded by a circle or an ellipse represented by the derived function is set as the observation area 34.
 図15は、第2の実施の形態における船舶100の経路決定時の一連の処理を示すフローチャートである。図15に示すように、初めに、CPU501の表示制御部513は、表示部505の画面505s上に観測領域設定画像10を表示する(ステップS51)。この状態で、CPU501の観測領域設定部511は、使用者による操作部506の操作により、少なくとも2本の直線が描画されたか否かを判定する(ステップS52)。 FIG. 15 is a flowchart showing a series of processes at the time of determining the route of the ship 100 in the second embodiment. As shown in FIG. 15, first, the display control unit 513 of the CPU 501 displays the observation region setting image 10 on the screen 505s of the display unit 505 (step S51). In this state, the observation area setting unit 511 of the CPU 501 determines whether or not at least two straight lines have been drawn by the operation of the operation unit 506 by the user (step S52).
 少なくとも2本の直線が描画された場合、観測領域設定部511は、描画された全ての直線の両端部を通る線を表す関数を導出する(ステップS53)。続いて、観測領域設定部511は、図14(a)の描画終了ボタンRBが操作されることにより、導出された関数により表される線33で取り囲まれる領域を観測領域34として設定する(ステップS54)。その後、図4のCPU501においては、図10のステップS15,S16,S17,S18,S19の処理にそれぞれ相当するステップS55,S56,S57,S58,S59の処理が実行される。 When at least two straight lines are drawn, the observation region setting unit 511 derives a function representing a line passing through both ends of all drawn straight lines (step S53). Subsequently, the observation region setting unit 511 sets the region surrounded by the line 33 represented by the derived function as the observation region 34 by operating the drawing end button RB in FIG. S54). Thereafter, the CPU 501 in FIG. 4 executes steps S55, S56, S57, S58, and S59 corresponding to steps S15, S16, S17, S18, and S19 in FIG.
 図14(a),(b)の例では、観測領域設定画像10上に2本の直線32が描画されることにより、観測領域34が設定される。これに限らず、観測領域設定画像10上に3本以上の直線32が描画されてもよい。この場合、全ての直線32の両端部を通る線を表す1または複数の関数が導出され、導出された1または複数の関数により表される1または複数の線で取り囲まれる領域が観測領域として設定される。 14A and 14B, the observation region 34 is set by drawing two straight lines 32 on the observation region setting image 10. Not limited to this, three or more straight lines 32 may be drawn on the observation region setting image 10. In this case, one or more functions representing lines passing through both ends of all the straight lines 32 are derived, and an area surrounded by one or more lines represented by the derived one or more functions is set as an observation area. Is done.
 図16は、第2の実施の形態における他の領域設定例を示す図である。図16(a)に示すように、本例では観測領域設定画像10上に4本の直線32が描画される。この場合、観測領域設定部511は、4本の直線32の両端部を通る線33を表す1または複数の関数を導出する。本例では、4本の直線32の隣り合う端部を通る8本の直線を表す8つの関数が導出される。 FIG. 16 is a diagram illustrating another area setting example according to the second embodiment. As shown in FIG. 16A, in this example, four straight lines 32 are drawn on the observation region setting image 10. In this case, the observation region setting unit 511 derives one or a plurality of functions representing the line 33 that passes through both ends of the four straight lines 32. In this example, eight functions representing eight straight lines passing through adjacent ends of the four straight lines 32 are derived.
 使用者により4本の直線32が描画された後、描画終了ボタンRBが操作される。それにより、図16(b)に太い実線で示すように、画面505sに線33が強調表示される。本例では、導出された8つの関数により表される8本の直線で取り囲まれる八角形の領域が観測領域34として設定される。 After the four straight lines 32 are drawn by the user, the drawing end button RB is operated. As a result, the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG. In this example, an octagonal region surrounded by eight straight lines represented by the eight derived functions is set as the observation region 34.
 上記の例に限らず、観測領域設定部511は、4本の直線32の両端部を通るスプライン曲線を表す関数を導出してもよい。この場合、導出された関数により表されるスプライン曲線で取り囲まれる領域が観測領域34として設定される。 Not limited to the above example, the observation region setting unit 511 may derive a function representing a spline curve that passes through both ends of the four straight lines 32. In this case, an area surrounded by a spline curve represented by the derived function is set as the observation area 34.
 本実施の形態においては、使用者は、観測領域設定画像10上に少なくとも2本以上の直線32を描画する際に、描画された全ての直線32の両端部を通る線で取り囲まれる領域を容易に認識することができる。したがって、船舶100が移動すべき経路を容易かつ短時間で設定することが可能になる。 In the present embodiment, when the user draws at least two or more straight lines 32 on the observation area setting image 10, the user can easily make a region surrounded by lines passing through both ends of all the drawn straight lines 32. Can be recognized. Therefore, it is possible to easily and quickly set a route that the ship 100 should move.
 [3]第3の実施の形態
 第3の実施の形態に係る経路決定装置は、図4の観測領域設定部511による観測領域34の設定方法が異なる点を除いて、第1の実施の形態に係る経路決定装置500と同じ構成および動作を有する。
[3] Third Embodiment A route determination apparatus according to a third embodiment is the same as the first embodiment except that the observation region setting method by the observation region setting unit 511 in FIG. 4 is different. The same configuration and operation as the route determination device 500 according to FIG.
 本実施の形態においては、操作部506により観測領域設定画像10上に少なくとも3つの点が描画された場合に、描画された全ての点を通る線を表す1または複数の関数が導出される。導出された1または複数の関数により表される1または複数の線で取り囲まれる領域が観測領域として設定される。 In the present embodiment, when at least three points are drawn on the observation region setting image 10 by the operation unit 506, one or a plurality of functions representing lines passing through all the drawn points are derived. A region surrounded by one or more lines represented by the derived one or more functions is set as an observation region.
 使用者による観測領域34の設定例を説明する。図17は、第3の実施の形態における観測領域設定時に表示部505に表示される画像の一例を示す図である。 An example of setting the observation area 34 by the user will be described. FIG. 17 is a diagram illustrating an example of an image displayed on the display unit 505 when the observation region is set in the third embodiment.
 図17(a)に示すように、観測領域の設定が開始されると、表示部505の画面505s上に観測領域設定画像10が表示される。使用者は、操作部506を操作することにより、観測領域設定画像10上に3つの点31を描画する。この場合、描画された3つの点31を通る線を表す1または複数の関数が観測領域設定部511により導出される。本例では、関数は楕円を表す。 As shown in FIG. 17A, when the setting of the observation region is started, the observation region setting image 10 is displayed on the screen 505s of the display unit 505. The user draws three points 31 on the observation region setting image 10 by operating the operation unit 506. In this case, the observation region setting unit 511 derives one or a plurality of functions representing a line passing through the three drawn points 31. In this example, the function represents an ellipse.
 使用者による点31の描画中には、観測領域設定画像10上に導出された関数により表される線が点線で表示される。使用者により3つの点31が描画された後、描画終了ボタンRBが操作される。それにより、図17(b)に太い実線で示すように、画面505sに線33が強調表示される。本例では、導出された関数により表される楕円で取り囲まれる領域が観測領域34として設定される。 During the drawing of the point 31 by the user, a line represented by a function derived on the observation area setting image 10 is displayed as a dotted line. After the three points 31 are drawn by the user, the drawing end button RB is operated. As a result, the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG. In this example, an area surrounded by an ellipse represented by the derived function is set as the observation area 34.
 上記の例に限らず、観測領域設定部511は、3つの点31を通る円を表す関数を導出してもよい。この場合、導出された関数により表される円で取り囲まれる領域が観測領域34として設定される。 Not limited to the above example, the observation region setting unit 511 may derive a function representing a circle passing through the three points 31. In this case, an area surrounded by a circle represented by the derived function is set as the observation area 34.
 また、観測領域設定部511は、各2つの点31を通る3本の線を表す3つの関数を導出してもよい。この場合、導出された3つの関数により表される3本の直線で取り囲まれる三角形の領域が観測領域34として設定される。 Further, the observation region setting unit 511 may derive three functions representing three lines passing through each of the two points 31. In this case, a triangular area surrounded by three straight lines represented by the three derived functions is set as the observation area 34.
 図18は、第3の実施の形態における船舶100の経路決定時の一連の処理を示すフローチャートである。図18に示すように、初めに、CPU501の表示制御部513は、表示部505の画面505s上に観測領域設定画像10を表示する(ステップS61)。この状態で、CPU501の観測領域設定部511は、使用者による操作部506の操作により、少なくとも3つの点が描画されたか否かを判定する(ステップS62)。 FIG. 18 is a flowchart showing a series of processes when determining the route of the ship 100 according to the third embodiment. As shown in FIG. 18, first, the display control unit 513 of the CPU 501 displays the observation region setting image 10 on the screen 505s of the display unit 505 (step S61). In this state, the observation area setting unit 511 of the CPU 501 determines whether or not at least three points have been drawn by the operation of the operation unit 506 by the user (step S62).
 少なくとも3つの点が描画された場合、観測領域設定部511は、描画された全ての点を通る線を表す関数を導出する(ステップS63)。続いて、観測領域設定部511は、図17(a)の描画終了ボタンRBが操作されることにより、導出された関数により表される線33で取り囲まれる領域を観測領域34として設定する(ステップS64)。その後、図4のCPU501においては、図10のステップS15,S16,S17,S18,S19の処理にそれぞれ相当するステップS65,S66,S67,S68,S69の処理が実行される。 When at least three points are drawn, the observation region setting unit 511 derives a function representing a line passing through all the drawn points (step S63). Subsequently, the observation region setting unit 511 sets the region surrounded by the line 33 represented by the derived function as the observation region 34 by operating the drawing end button RB in FIG. S64). Thereafter, in the CPU 501 of FIG. 4, the processes of steps S65, S66, S67, S68, and S69 corresponding to the processes of steps S15, S16, S17, S18, and S19 of FIG. 10 are executed.
 図17(a),(b)の例では、観測領域設定画像10上に3つの点31が描画されることにより、観測領域34が設定される。これに限らず、観測領域設定画像10上に4つ以上の点31が描画されてもよい。この場合、全ての点31を通る線を表す1または複数の関数が導出され、導出された1または複数の関数により表される1または複数の線で取り囲まれる領域が観測領域として設定される。 17A and 17B, the observation area 34 is set by drawing three points 31 on the observation area setting image 10. Not limited to this, four or more points 31 may be drawn on the observation region setting image 10. In this case, one or more functions representing lines passing through all the points 31 are derived, and an area surrounded by one or more lines represented by the derived one or more functions is set as an observation area.
 図19は、第3の実施の形態における他の領域設定例を示す図である。図19(a)に示すように、本例では観測領域設定画像10上に8つの点31が描画される。この場合、観測領域設定部511は、8つの点31を通る線を表す1または複数の関数を導出する。本例では、関数はスプライン曲線を表す。 FIG. 19 is a diagram illustrating another area setting example according to the third embodiment. As shown in FIG. 19A, eight points 31 are drawn on the observation region setting image 10 in this example. In this case, the observation region setting unit 511 derives one or a plurality of functions representing a line passing through the eight points 31. In this example, the function represents a spline curve.
 使用者により8つの点31が描画された後、描画終了ボタンRBが操作される。それにより、図19(b)に太い実線で示すように、画面505sに線33が強調表示される。本例では、導出された関数により表されるスプライン曲線で取り囲まれる領域が観測領域34として設定される。 After the eight points 31 are drawn by the user, the drawing end button RB is operated. As a result, the line 33 is highlighted on the screen 505s as shown by a thick solid line in FIG. In this example, an area surrounded by a spline curve represented by the derived function is set as the observation area 34.
 本実施の形態においては、使用者は、観測領域設定画像10上に少なくとも3つ以上の点31を描画する際に、描画された全ての点31を通る線で取り囲まれる領域を容易に認識することができる。したがって、船舶100が移動すべき経路を容易かつ短時間で設定することが可能になる。 In the present embodiment, when the user draws at least three or more points 31 on the observation region setting image 10, the user easily recognizes a region surrounded by a line passing through all the drawn points 31. be able to. Therefore, it is possible to easily and quickly set a route that the ship 100 should move.
 [4]他の実施の形態
 (1)上記実施の形態においては、船舶100を移動させるためのエネルギー源として電力を蓄えるバッテリ107が用いられる。これに限らず、船舶100を移動させるためのエネルギー源として、バッテリ107に代えてまたはバッテリ107に加えて、ガソリン等の燃料を貯留する燃料タンクが用いられてもよい。この場合、例えば船舶100を前進または後退させるスクリュー112a,112bが、モータ110a,110bに代えてエンジンで駆動される。
[4] Other Embodiments (1) In the above embodiment, a battery 107 that stores electric power is used as an energy source for moving the ship 100. In addition to this, as an energy source for moving the ship 100, a fuel tank that stores fuel such as gasoline instead of the battery 107 or in addition to the battery 107 may be used. In this case, for example, the screws 112a and 112b that move the ship 100 forward or backward are driven by the engine instead of the motors 110a and 110b.
 (2)上記実施の形態においては、船舶100と経路決定装置500とがそれぞれ別体で設けられる。また、船舶100と経路決定装置500との間で無線通信が行われる。これに限らず、経路決定装置500は、船舶100の船体101内に設けられてもよい。この場合、船舶100の各構成要素と経路決定装置500とが有線で接続され、有線通信が行われてもよい。 (2) In the above embodiment, the ship 100 and the route determination device 500 are provided separately. In addition, wireless communication is performed between the ship 100 and the route determination device 500. Not limited to this, the route determination device 500 may be provided in the hull 101 of the ship 100. In this case, each component of the ship 100 and the route determination device 500 may be connected by wire and wired communication may be performed.
 (3)上記実施の形態においては、船舶100に設けられる観測装置200としてソナーが用いられる。これに限らず、観測装置200は、ソナーに代えてまたはソナーに加えてレーダまたはカメラ等の他の観測機器を有してもよい。 (3) In the above embodiment, a sonar is used as the observation device 200 provided in the ship 100. However, the observation apparatus 200 may include other observation devices such as a radar or a camera instead of or in addition to the sonar.
 (4)上記実施の形態においては、記憶部504に地図情報が記憶される。記憶された地図情報に基づいて観測領域設定画像10が生成される。これに限らず、地図情報は、予め記憶部504に記憶される代わりに、インターネットを経由して所定のサーバからダウンロードすることにより取得されてもよい。 (4) In the above embodiment, map information is stored in the storage unit 504. An observation area setting image 10 is generated based on the stored map information. Not limited to this, the map information may be obtained by downloading from a predetermined server via the Internet instead of being stored in the storage unit 504 in advance.
 (5)上記実施の形態に係る自律移動体システム1は、観測機能を有する移動体として船舶100を備える。これに限らず、自律移動体システム1は、船舶100に代えて、観測機能を有しかつ予め定められた経路を自律制御により移動可能な車両、ヘリコプタ、飛行機または歩行ロボット等を移動体として備えてもよい。 (5) The autonomous mobile body system 1 according to the above embodiment includes a ship 100 as a mobile body having an observation function. Not limited to this, the autonomous mobile body system 1 includes a vehicle, a helicopter, an airplane, or a walking robot having an observation function and capable of moving on a predetermined route by autonomous control instead of the ship 100 as a mobile body. May be.
 [5]請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
[5] Correspondence between each constituent element of claim and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each element of the embodiment will be described. It is not limited to.
 上記実施の形態では、船舶100が移動体の例であり、経路43,44,45が船舶100の移動すべき経路の例であり、経路決定装置500が経路決定装置の例であり、観測領域34が観測領域の例であり、観測領域設定画像10が観測領域設定画像の例であり、表示部505が表示部の例である。 In the above embodiment, the ship 100 is an example of a moving body, the routes 43, 44, and 45 are examples of routes that the ship 100 should move, the route determination device 500 is an example of a route determination device, and an observation region 34 is an example of an observation region, the observation region setting image 10 is an example of an observation region setting image, and the display unit 505 is an example of a display unit.
 また、図5および図13におけるいずれか1つの点31が点の例であり、図5および図13におけるいずれか1本の直線32が直線の例であり、操作部506が操作部の例であり、観測領域設定部511が観測領域設定部の例であり、経路決定部512が経路決定部の例である。 Also, any one point 31 in FIGS. 5 and 13 is an example of a point, any one straight line 32 in FIGS. 5 and 13 is an example of a straight line, and the operation unit 506 is an example of an operation unit. Yes, the observation region setting unit 511 is an example of an observation region setting unit, and the route determination unit 512 is an example of a route determination unit.
 また、図14および図16におけるいずれか2本の直線32がそれぞれ第1および第2の直線の例であり、図17および図19におけるいずれか3つの点31がそれぞれ第1、第2および第3の点の例であり、第1の方向が第1の方向の例であり、第2の方向が第2の方向の例であり、観測ピッチpt,pt1,pt2の大きさが一定変位量の例であり、観測可能範囲が観測可能な範囲の例であり、ソナーによる観測機能が水中の状態を観測する観測機能の例である。 Further, any two straight lines 32 in FIGS. 14 and 16 are examples of the first and second straight lines, respectively, and any three points 31 in FIGS. 17 and 19 are the first, second and second straight lines, respectively. 3, the first direction is an example of the first direction, the second direction is an example of the second direction, and the magnitudes of the observation pitches pt, pt1, and pt2 are constant displacement amounts. The observable range is an example of an observable range, and the sonar observation function is an example of an observation function for observing an underwater state.
 また、経路44が移動すべき経路の少なくとも一部の例であり、一の往路51の終端部51bが一の往路の終端部の例であり、次の復路52の始端部52aが一の復路の始端部の例であり、観測装置200により観測されない範囲59が観測機能により観測されない範囲の例であり、経路45が一の往路と一の復路との間を通る経路の例であり、バッテリ107がエネルギー源の例であり、発進位置46が発進位置の例である。 In addition, the route 44 is an example of at least a part of a route to be moved, the end portion 51b of one forward path 51 is an example of the end portion of one forward route, and the start end portion 52a of the next return route 52 is one return route. The range 59 that is not observed by the observation device 200 is an example of a range that is not observed by the observation function, and the path 45 is an example of a path that passes between one forward path and one return path, 107 is an example of an energy source, and the start position 46 is an example of a start position.
 また、観測装置200およびそれを保持する船体101が本体部の例であり、モータ110a,110b,120a,120b,130、スクリュー112a,112b、舵部材121a,121bおよびバウスラスタ131が移動機構の例であり、GPS350が現在位置取得部の例であり、制御部300が制御部の例であり、自律移動体システム1が自律移動体システムの例である。 The observation device 200 and the hull 101 that holds the observation device 200 are examples of the main body, and the motors 110a, 110b, 120a, 120b, and 130, the screws 112a and 112b, the rudder members 121a and 121b, and the bow thruster 131 are examples of the moving mechanism. Yes, the GPS 350 is an example of the current position acquisition unit, the control unit 300 is an example of the control unit, and the autonomous mobile system 1 is an example of the autonomous mobile system.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As each constituent element in the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、自律移動体に有効に利用することができる。 The present invention can be effectively used for an autonomous mobile body.

Claims (11)

  1. 所定の観測機能を有する移動体の移動すべき経路を決定する経路決定装置であって、
     前記移動体による観測領域を設定するための観測領域設定画像を表示する表示部と、
     前記表示部に表示される観測領域設定画像上に点および直線を描画するために使用者により操作される操作部と、
     前記観測領域設定画像上に描画された前記点および前記直線の両端部を通る線を表す関数に基づいて前記観測領域を設定する観測領域設定部と、
     前記観測領域設定部により設定された観測領域内で前記移動体が移動すべき経路を決定する経路決定部を備える、経路決定装置。
    A route determination device for determining a route to be moved by a mobile object having a predetermined observation function,
    A display unit for displaying an observation region setting image for setting an observation region by the moving body;
    An operation unit operated by a user to draw a point and a line on the observation region setting image displayed on the display unit;
    An observation region setting unit that sets the observation region based on a function representing a line that passes through both ends of the point and the straight line drawn on the observation region setting image;
    A route determination device comprising: a route determination unit that determines a route on which the moving body should move within an observation region set by the observation region setting unit.
  2. 所定の観測機能を有する移動体の移動すべき経路を決定する経路決定装置であって、
     前記移動体による観測領域を設定するための観測領域設定画像を表示する表示部と、
     前記表示部に表示される観測領域設定画像上に少なくとも第1および第2の直線を描画するために使用者により操作される操作部と、
     前記観測領域設定画像上に描画された前記第1の直線の両端部および前記第2の直線の両端部を通る線を表す関数に基づいて前記観測領域を設定する観測領域設定部と、
     前記観測領域設定部により設定された観測領域内で前記移動体が移動すべき経路を決定する経路決定部とを備える、経路決定装置。
    A route determination device for determining a route to be moved by a mobile object having a predetermined observation function,
    A display unit for displaying an observation region setting image for setting an observation region by the moving body;
    An operation unit operated by a user to draw at least first and second straight lines on an observation region setting image displayed on the display unit;
    An observation region setting unit for setting the observation region based on a function representing a line passing through both ends of the first straight line and both ends of the second straight line drawn on the observation region setting image;
    A route determination device comprising: a route determination unit that determines a route that the moving body should move in the observation region set by the observation region setting unit.
  3. 所定の観測機能を有する移動体の移動すべき経路を決定する経路決定装置であって、
     前記移動体による観測領域を設定するための観測領域設定画像を表示する表示部と、
     前記表示部に表示される観測領域設定画像上に少なくとも第1、第2および第3の点を描画するために使用者により操作される操作部と、
     前記観測領域設定画像上に描画された前記第1、第2および第3の点を結ぶ線を表す関数に基づいて前記観測領域を設定する観測領域設定部と、
     前記観測領域設定部により設定された観測領域内で前記移動体が移動すべき経路を決定する経路決定部とを備える、経路決定装置。
    A route determination device for determining a route to be moved by a mobile object having a predetermined observation function,
    A display unit for displaying an observation region setting image for setting an observation region by the moving body;
    An operation unit operated by a user to draw at least the first, second, and third points on the observation region setting image displayed on the display unit;
    An observation region setting unit that sets the observation region based on a function representing a line connecting the first, second, and third points drawn on the observation region setting image;
    A route determination device comprising: a route determination unit that determines a route that the moving body should move in the observation region set by the observation region setting unit.
  4. 前記表示部は、前記観測領域設定部により設定された前記観測領域を前記観測領域設定画像上に表示する、請求項1~3のいずれか一項に記載の経路決定装置。 The route determination device according to any one of claims 1 to 3, wherein the display unit displays the observation region set by the observation region setting unit on the observation region setting image.
  5. 前記操作部は、第1の方向を指定可能に構成され、
     前記経路決定部は、前記観測領域内で前記移動体が前記第1の方向に往復移動しつつ前記第1の方向に交差する第2の方向に一定変位量ずつ移動する経路を前記移動すべき経路として決定する、請求項1~4のいずれか一項に記載の経路決定装置。
    The operation unit is configured to be able to specify the first direction,
    The path determination unit should move along a path in which the moving body moves by a certain amount of displacement in a second direction intersecting the first direction while reciprocating in the first direction within the observation area. The route determination device according to any one of claims 1 to 4, wherein the route determination device determines the route.
  6. 前記操作部は、前記一定変位量を指定可能に構成された、請求項5記載の経路決定装置。 The route determination device according to claim 5, wherein the operation unit is configured to be able to specify the constant displacement amount.
  7. 前記観測機能は、観測可能な範囲を有し、
     前記経路決定部は、前記一定変位量を前記観測領域内で前記観測機能により観測可能な範囲以下に設定する、請求項5記載の経路決定装置。
    The observation function has an observable range;
    The route determination device according to claim 5, wherein the route determination unit sets the constant displacement amount within a range that can be observed by the observation function within the observation region.
  8. 前記移動体は、水上を移動可能に構成されるとともに前記観測機能として水中の状態を観測する観測機能を有し、
     前記経路決定部は、前記観測領域内の水深に基づいて前記観測可能な範囲を算出する、請求項7記載の経路決定装置。
    The moving body is configured to be movable on water and has an observation function for observing a state in water as the observation function.
    The route determination device according to claim 7, wherein the route determination unit calculates the observable range based on a water depth in the observation region.
  9. 前記移動すべき経路の少なくとも一部は、前記移動体が前記第1の方向に平行な一の往路の終端部から旋回して前記第1の方向に平行な一の復路の始端部に移動することにより前記第2の方向に移動するように決定され、
     前記経路決定部は、前記観測領域内で前記観測機能により観測可能な範囲が前記移動体の最小旋回半径の2倍の値よりも小さい場合に、前記移動体が前記一の往路の始端部から前記一の復路の終端部まで移動する間に前記観測機能により観測されない範囲が観測されるように、前記一の往路と前記一の復路との間を通る経路を前記移動すべき経路に含める、請求項7記載の移動体の経路決定装置。
    At least a part of the route to be moved is such that the movable body turns from the end portion of one forward path parallel to the first direction and moves to the start end portion of one return path parallel to the first direction. Determined to move in the second direction,
    When the range that can be observed by the observation function within the observation area is smaller than twice the minimum turning radius of the moving body, the route determination unit is configured to move the moving body from the start end of the one forward path. Including a path that passes between the one forward path and the one return path in the path to be moved so that a range that is not observed by the observation function is observed while moving to the end of the one return path; The route determination device for a moving body according to claim 7.
  10. 前記移動体は、当該移動体を移動させるためのエネルギーを蓄えるエネルギー源を有し、
     前記経路決定部は、前記移動体が発進位置から前記観測領域内の移動すべき経路を通って前記発進位置に戻るまでの経路の長さが前記エネルギー源に残存するエネルギーにより前記移動体が移動可能な距離に相当する長さ以下になるように、前記移動すべき経路を決定する、請求項1~9のいずれか一項に記載の経路決定装置。
    The mobile body has an energy source for storing energy for moving the mobile body,
    The route determination unit is configured to move the moving body by energy remaining in the energy source until the moving body returns from the starting position to the starting position through a path to be moved in the observation region. The route determination device according to any one of claims 1 to 9, wherein the route to be moved is determined so as to be equal to or less than a length corresponding to a possible distance.
  11. 移動体と、
     請求項1~10のいずれか一項に記載の経路決定装置とを備え、
     前記移動体は、
     前記所定の観測機能を有する本体部と、
     前記本体部を移動させる移動機構と、
     前記本体部の現在位置を取得する現在位置取得部と、
     前記現在位置取得部により取得される現在位置に基づいて、前記経路決定部により決定された経路に沿って前記本体部が移動するように前記移動機構を制御する制御部とを含む、自律移動体システム。
    A moving object,
    A route determination device according to any one of claims 1 to 10,
    The moving body is
    A main body having the predetermined observation function;
    A moving mechanism for moving the main body,
    A current position acquisition unit for acquiring a current position of the main body;
    An autonomous mobile body including a control unit that controls the moving mechanism so that the main body unit moves along the route determined by the route determination unit based on the current position acquired by the current position acquisition unit system.
PCT/JP2014/003251 2013-07-22 2014-06-17 Route determination device and autonomous mobile body system provided with same WO2015011871A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-151356 2013-07-22
JP2013151356A JP5885707B2 (en) 2013-07-22 2013-07-22 Route determining apparatus and autonomous mobile system including the same

Publications (1)

Publication Number Publication Date
WO2015011871A1 true WO2015011871A1 (en) 2015-01-29

Family

ID=52392939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003251 WO2015011871A1 (en) 2013-07-22 2014-06-17 Route determination device and autonomous mobile body system provided with same

Country Status (2)

Country Link
JP (1) JP5885707B2 (en)
WO (1) WO2015011871A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056458A1 (en) * 2019-04-04 2022-09-14 Single Buoy Moorings Inc A method for inspection of catenary anchor lines connected to a floating object
EP4067822A1 (en) * 2021-03-31 2022-10-05 Navico Holding AS Automatic navigation of a marine environment area

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6966473B2 (en) * 2016-12-13 2021-11-17 ヤマハ発動機株式会社 Mobile system
KR102034239B1 (en) * 2017-10-20 2019-11-08 국방과학연구소 Apparatus for planing, executing under water object search and method thereof
JP7104405B2 (en) * 2018-06-18 2022-07-21 本多電子株式会社 Nautical chart image display device and nautical chart image display system
CN110135752B (en) * 2019-05-22 2023-05-02 华东理工大学 Scheduling method for complete orders with switching time
US12065230B1 (en) 2022-02-15 2024-08-20 Brunswick Corporation Marine propulsion control system and method with rear and lateral marine drives
US12110088B1 (en) 2022-07-20 2024-10-08 Brunswick Corporation Marine propulsion system and method with rear and lateral marine drives

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099900A (en) * 1998-09-21 2000-04-07 Mitsubishi Electric Corp Method and device for identifying target within territorial waters
JP2004212192A (en) * 2002-12-27 2004-07-29 Senaa Kk Maneuvering support system, maneuvering support program, and three-dimensional image generation method for maneuvering support
JP2009132319A (en) * 2007-11-30 2009-06-18 Ihi Corp Turning method at formation navigation and the formation
JP2010107307A (en) * 2008-10-29 2010-05-13 Mitsubishi Heavy Ind Ltd Underwater sailing body and method of formation navigation in same
JP2010126001A (en) * 2008-11-27 2010-06-10 Koden Kk Unmanned boat automatic observation system and unmanned boat automatic observation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099900A (en) * 1998-09-21 2000-04-07 Mitsubishi Electric Corp Method and device for identifying target within territorial waters
JP2004212192A (en) * 2002-12-27 2004-07-29 Senaa Kk Maneuvering support system, maneuvering support program, and three-dimensional image generation method for maneuvering support
JP2009132319A (en) * 2007-11-30 2009-06-18 Ihi Corp Turning method at formation navigation and the formation
JP2010107307A (en) * 2008-10-29 2010-05-13 Mitsubishi Heavy Ind Ltd Underwater sailing body and method of formation navigation in same
JP2010126001A (en) * 2008-11-27 2010-06-10 Koden Kk Unmanned boat automatic observation system and unmanned boat automatic observation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056458A1 (en) * 2019-04-04 2022-09-14 Single Buoy Moorings Inc A method for inspection of catenary anchor lines connected to a floating object
EP4067822A1 (en) * 2021-03-31 2022-10-05 Navico Holding AS Automatic navigation of a marine environment area

Also Published As

Publication number Publication date
JP2015020645A (en) 2015-02-02
JP5885707B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5885707B2 (en) Route determining apparatus and autonomous mobile system including the same
US12037090B2 (en) Automatic docking device
JP4404943B1 (en) Unmanned boat automatic observation system and unmanned boat automatic observation method
JP5010332B2 (en) Underwater vehicle motion control device and underwater vehicle
US7267068B2 (en) Method for maneuvering a marine vessel in response to a manually operable control device
EP1775211A2 (en) Method for positioning a marine vessel and marine vessel
WO2018100749A1 (en) Small ship and method for controlling same
WO2018100748A1 (en) Small ship and method for controlling same
US11971478B2 (en) Steering assemblies and associated methods
WO2021085274A1 (en) Ship docking assistance device
WO2018100751A1 (en) Navigation system
WO2020111044A1 (en) Control target generation device and ship-steering control device
US20220373662A1 (en) Sonar steering systems and associated methods
JP2008107943A (en) Stable robust control unit for sailing body, stable robust control system, stable robust control method and stable robust control program
JP2012203682A (en) Display method of on-board control device for underwater sailing body
WO2018100750A1 (en) Small ship
WO2018100746A1 (en) Small ship and method for controlling same
JP2008247102A (en) Method and device for holding fixed point position of single-shaft single-rudder vessel
US11573087B1 (en) Boat maneuvering control method for boat and boat maneuvering control system for boat
Ferri et al. Adaptive mission planning for cooperative autonomous maritime vehicles
WO2018100745A1 (en) Small ship and method for controlling same
Liu et al. Adventure-I: A mini-AUV prototype for education and research
Ferreira et al. Enhancing autonomous capabilities and human-robot interaction for unmanned surface vehicles
Kemna et al. Constraint-induced formation switching for adaptive environmental sampling
US12013699B1 (en) Boat maneuvering control method for boat and boat maneuvering control system for boat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14830309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14830309

Country of ref document: EP

Kind code of ref document: A1