WO2015010806A1 - Système et procédé d'application d'une matière pâteuse - Google Patents

Système et procédé d'application d'une matière pâteuse Download PDF

Info

Publication number
WO2015010806A1
WO2015010806A1 PCT/EP2014/060528 EP2014060528W WO2015010806A1 WO 2015010806 A1 WO2015010806 A1 WO 2015010806A1 EP 2014060528 W EP2014060528 W EP 2014060528W WO 2015010806 A1 WO2015010806 A1 WO 2015010806A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
light
application system
light beam
application
Prior art date
Application number
PCT/EP2014/060528
Other languages
German (de)
English (en)
Inventor
Olaf LEONHARDT
Original Assignee
Sca Schucker Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sca Schucker Gmbh & Co. Kg filed Critical Sca Schucker Gmbh & Co. Kg
Publication of WO2015010806A1 publication Critical patent/WO2015010806A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/082Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to a condition of the discharged jet or spray, e.g. to jet shape, spray pattern or droplet size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45238Tape, fiber, glue, material dispensing in layers, beads, filling, sealing

Definitions

  • the invention relates to an application system for a pasty mass, in particular for an adhesive or a sealant, with an application device for producing a directed in a Massestrahlraum mass jet of pasty mass applicator and with an optical monitoring device for monitoring the Massestrahlraum.
  • Such application systems are used to apply pasty masses, such as adhesives or sealants, on workpieces.
  • application systems are widely used with robots in the automotive industry.
  • the application device is moved by means of the robot, for example along an adhesive seam to be applied, and the mass jet emerging from the application nozzle is directed onto the workpiece.
  • there is no monitoring of the order so that the workpieces must be subsequently subjected to a quality control. It is possible that job errors are detected late, if a large number of workpieces has already been processed incorrectly.
  • the invention is based on the idea of monitoring a deflection of the mass beam from the desired nominal mass beam direction and promptly indicating to the user that from two different spatial directions, which respectively deviate from the desired mass beam direction, one light beam is directed to the mass beam and observed becomes. If the mass beam is undesirably deflected to the side out of the desired mass beam direction, then the point of impact of at least one of the two light beams moves on the mass beam, which in turn can be observed and evaluated.
  • the application device and the monitoring device are fixedly connected to one another and jointly movable by means of a mechanical drive device, for example by means of a robot.
  • a monitoring of the mass beam can then take place continuously during the entire order process.
  • the monitoring device is mounted stationary, while only the application device is movable by means of a mechanical drive device.
  • the applicator device can be readjusted before continuing with the order.
  • the feeding of the application device to the monitoring device can, for example, always be carried out between the machining of two workpieces by the application device moving into a stationary station containing the monitoring device.
  • the inventive principle presupposes that the transmission directions of the light beams are arranged transversely to one another and in each case transversely to the mass beam. The highest accuracy is obtained when the two transmission directions are substantially perpendicular to each other and each aligned substantially perpendicular to the mass direction of rotation.
  • the first light receiver is designed to observe an impact point of the first light beam on the mass beam
  • the second light receiver is designed to observe an impact point of the second light beam on the mass beam.
  • the transmitting and receiving devices it is possible for the transmitting and receiving devices to each be designed to measure an angle between the respective light beam and a line running through its impact point on the mass beam and a defined measuring point in or on the associated light receiver. The observation of the mass beam then takes place according to the triangulation principle, according to which at least one of the measured angles changes when the mass beam is deflected out of its desired mass-beam direction.
  • the light emitter in each case transmit pulsed light, in particular pulsed laser light, to the respective impingement point on the mass beam and that the transmitting and receiving devices are respectively designed for measuring the propagation time of the pulsed light.
  • the transit time of the light from the light transmitter to the point of impact on the mass beam and from there to the respective light receiver is measured.
  • the light transit time is in linear dependence on the distance of the impingement of the light emitter and the light receiver, so that a deflection of the mass beam from the desired mass beam direction in the change of the light propagation time of at least one of the transmitting and receiving devices affects.
  • the transmitting and receiving devices each have a light barrier and are designed for the measurement of a light beam interruption by the mass beam.
  • the first and the second light beam can be designed so that they have a width at the mass beam in each spatial direction which is at most as large as the extent of the mass beam in this spatial direction.
  • the light barriers can then be positioned, similar to a crosshair, so that the mass beam always interrupts them when it runs in the desired mass beam direction. As soon as the light receiver of one of the light barriers detects light, this is a sign that the mass beam has been deflected out of its desired mass beam direction.
  • the first and the second light beam each have a width in at least one spatial direction, which is greater than the extent of the mass beam in this spatial direction, and that the associated light receiver for the reception of light over the entire width of the relevant Light beam is formed. This makes it possible not only to obtain the binary information "deflected / not deflected", but also to measure the degree of a possible deflection of the mass beam.
  • FIG. 1 a, b, c an application system according to a first embodiment in a side view and in two perspective views;
  • the application system 10 according to the first exemplary embodiment illustrated in FIGS. 1 a, b, c has an application device 12, which is equipped with an application nozzle 14.
  • the application nozzle 14 is used to apply a mass jet 16 of a pasty adhesive or sealant to a workpiece.
  • the mass beam 16 is shown extending in a vertical mass beam direction 18.
  • the application system 10 also has a monitoring device 20, which has a first and a second transmitting and receiving device 22,24.
  • the first transmitting and receiving device 22 has a first light transmitter 26 and a first light receiver 28.
  • the first light transmitter 26 transmits a first light beam 30 in a direction perpendicular to the mass beam direction 18 first transmission direction 32 in the direction of the mass beam 16.
  • the second transmitting and receiving device 24 has a second light transmitter 34 and a second light receiver 36.
  • Light emitter 34 transmits a second light beam 38 in a second transmission direction 14 onto the mass beam 16, which is oriented both substantially perpendicular to the mass radiation direction 18 and to the first transmission direction 32.
  • the two light transmitters 26, 34 are of identical construction, so that the two light beams 30, 38 correspond in their intensity and shape.
  • the two light receivers 28, 36 observe the points of impact 42a, 42b of the associated light beams 30 and 38 on the mass beam 16 and respectively measure an angle CM, C (2, which is enclosed by the respective light beam 30, 38 and a line 44, which passes through the respective point of impact 42a, 42b and a defined measuring point 46 on or in the associated light receiver 28, 36.
  • the mass beam 16 is shown in the drawing at least one of the angles CM, C (2, and an evaluation of the monitoring device 20 detects a deviation of the mass-beam direction of the setpoint is changed by perpendicular, downwardly extending Massestrahlraum 18 by unwanted external influences or an error in the application system 10 in another direction
  • the monitoring device 20 thus operates according to the triangulation principle, and its light transmitters 26, 34 are preferably lasers.
  • the application system 10 ' according to the second exemplary embodiment (FIGS. 2 a, b, c) has essentially the same structure as the application system 10 according to the first embodiment, so that identical components are provided with the same reference numerals. However, it does not work according to the triangulation principle, but measures the transit time of the light, which is present here as pulsed laser light. The transit time of the two light beams 30, 38 from the respective light transmitter 26, 34 to the respective impingement point 42 a, 42 b and back to the light receiver (not shown) is measured. If the mass beam 16 is deflected out of the direction of mass beam direction 18 shown in the drawing, which extends vertically downwards, this is reflected in a change in at least one of the transit times measured by one of the two transmitting and receiving devices 22, 24.
  • the application system 10 "according to the third exemplary embodiment (FIGS. 3 a, b, c) also makes use of essential principles of the first exemplary embodiments, so that the same components are provided with the same reference numerals here as in the first exemplary embodiments
  • the transmitting and receiving devices 22,24 each have a beam photoelectric sensor 48,50 the first light transmitter 26 and the first light receiver 28, while a second beam light barrier 50 has the second light emitter 34 and the second light receiver 36.
  • the two light beams 30,38 are again perpendicular to each other and perpendicular to the mass beam 16 aligned and focused on this and offset each other by a small height difference, so that they form a crosshair in plan view and in the illustrated in the drawing vertically downward direction of mass beam 18 both of the mass beam 16th to be interrupted.
  • Their cross section is in each case smaller than the cross section of the mass beam 16, so that at a sufficiently large deflection of the mass beam 16 from the shown in the drawing, vertically downwardly pointing mass beam direction 18 at least the interruption of one of the light beams 30,38 is canceled, so that the associated Light receiver 28,36 receives light and transmits this signal to the evaluation.
  • the application device 12 and the monitoring device 20 are each firmly connected to each other.
  • the orientation of the transmission directions 32, 40 in the exemplary embodiments shown is perpendicular to one another and not perpendicular to the mass-radiation direction 18.
  • the transmission directions 32, 40 may rather include different acute angles with one another and with the mass-radiation direction 18.
  • the invention relates to an application system 10,10 ', 10 "for a pasty mass, in particular for an adhesive or a sealant, with an application nozzle 14 for generating a directed in a mass beam direction 18 mass beam 16 of the pasty mass Having an application device 12 and with an optical monitoring device 20 for monitoring the Massestrahlraum 18th
  • the monitoring device 20 has at least two transmitting and receiving devices 22, 24 for light, of which a first 22 has a first light transmitter 26 emitting a first light beam 30 in a first transmission direction 32 oriented transversely to the mass beam direction 18 and a first light receiver 28 for observing the first light beam 30 and a second 24 has a second light beam 38 in a transversely to the mass direction of radiation 18 and transverse to the first transmission direction 32 aligned second transmission direction 40 emitting second light emitter 34 and a second light receiver 36 for observation of the second light beam 38.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un système d'application (10, 10', 10") d'une matière pâteuse, en particulier d'un produit adhésif ou d'un produit d'étanchéité, comportant un dispositif d'application (12) présentant une buse d'application (14) servant à produire un jet de matière (16) orienté dans une direction (18) de jet de matière, et comportant un dispositif optique de surveillance (20) servant à surveiller la direction (18) du jet de matière. Selon l'invention, le dispositif de surveillance (20) présente au moins deux dispositifs émetteurs-récepteurs (22, 24) de lumière, dont le premier (22) présente un premier émetteur de lumière (26) émettant un premier faisceau de lumière (20) dans une première direction d'émission (32) orientée transversalement à la direction (18) du jet de matière et un premier récepteur de lumière (28) servant à l'observation du premier faisceau de lumière (20), et dont le deuxième (24) présente un deuxième émetteur de lumière (34) émettant un deuxième faisceau de lumière (38) dans une deuxième direction d'émission (40) orientée transversalement à la direction (18) du jet de matière et transversalement à la première direction d'émission (32) et un deuxième récepteur de lumière (36) servant à l'observation du deuxième faisceau de lumière (38).
PCT/EP2014/060528 2013-07-22 2014-05-22 Système et procédé d'application d'une matière pâteuse WO2015010806A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013012081.0 2013-07-22
DE102013012081.0A DE102013012081A1 (de) 2013-07-22 2013-07-22 Aufftragssystem und Auftragsverfahren für eine pastöse Masse

Publications (1)

Publication Number Publication Date
WO2015010806A1 true WO2015010806A1 (fr) 2015-01-29

Family

ID=51014257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/060528 WO2015010806A1 (fr) 2013-07-22 2014-05-22 Système et procédé d'application d'une matière pâteuse

Country Status (2)

Country Link
DE (1) DE102013012081A1 (fr)
WO (1) WO2015010806A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186678A1 (fr) * 2016-04-25 2017-11-02 Rehm Thermal Systems Gmbh Dispositif et procédé pour mesurer un jet de laque pour le revêtement de cartes de circuit imprimé
CN110966933A (zh) * 2019-11-30 2020-04-07 河北科技大学 一种针对点胶机的针头位置偏差测量方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845639A (en) * 1987-12-11 1989-07-04 Robotic Vision Systems, Inc. Robotic sealant calibration
DE10048749A1 (de) 2000-09-29 2002-04-11 Josef Schucker Anordnung zum Aufbringen von Klebstoff auf ein Werkstück
DE102005010847A1 (de) * 2005-03-07 2006-09-21 Rea Elektronik Gmbh Verfahren und Vorrichtung zur Messung einer austretenden Flüssigkeit
DE102010011580A1 (de) * 2010-03-16 2011-09-22 Vollmer Werke Maschinenfabrik Gmbh Vorrichtung und Verfahren zum Vermessen eines, insbesondere als Lichtleiter genutzten, Flüssigkeitsstrahls

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845639A (en) * 1987-12-11 1989-07-04 Robotic Vision Systems, Inc. Robotic sealant calibration
DE10048749A1 (de) 2000-09-29 2002-04-11 Josef Schucker Anordnung zum Aufbringen von Klebstoff auf ein Werkstück
DE102005010847A1 (de) * 2005-03-07 2006-09-21 Rea Elektronik Gmbh Verfahren und Vorrichtung zur Messung einer austretenden Flüssigkeit
DE102010011580A1 (de) * 2010-03-16 2011-09-22 Vollmer Werke Maschinenfabrik Gmbh Vorrichtung und Verfahren zum Vermessen eines, insbesondere als Lichtleiter genutzten, Flüssigkeitsstrahls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186678A1 (fr) * 2016-04-25 2017-11-02 Rehm Thermal Systems Gmbh Dispositif et procédé pour mesurer un jet de laque pour le revêtement de cartes de circuit imprimé
CN109153030A (zh) * 2016-04-25 2019-01-04 雷姆热系统有限责任公司 用于测量用于对电路板进行涂覆的涂料射束的设备和方法
US11524310B2 (en) 2016-04-25 2022-12-13 Rehm Thermal Systems Gmbh Device and method for measuring a varnish jet for varnishing circuit boards
CN110966933A (zh) * 2019-11-30 2020-04-07 河北科技大学 一种针对点胶机的针头位置偏差测量方法及装置
CN110966933B (zh) * 2019-11-30 2021-07-20 河北科技大学 一种针对点胶机的针头位置偏差测量方法及装置

Also Published As

Publication number Publication date
DE102013012081A1 (de) 2015-03-12

Similar Documents

Publication Publication Date Title
DE102006018558B4 (de) Verfahren zum automatischen Aufbringen oder Erzeugen und Überwachen einer auf einem Substrat aufgebrachten Struktur mit Ermittlung von geometrischen Abmessungen
DE4422497C2 (de) Vorrichtung und Verfahren zum optoelektronischen Erfassen von Gegenständen
DE2633391C2 (de) Anordnung zur Prüfung oder Ausrichtung rechtwinklig sich schneidender Achsen
EP1837622B1 (fr) Procédé et dispositif pour déterminer les données géométriques de bornes formées par sertissage
EP2917000A1 (fr) Procédé et système de production pour positionner deux unités mobiles dans une position relative mutuelle
DE102012212278A1 (de) Anordnung zum Erzeugen von Bohrungen oder Schweißnähten
WO2017080640A1 (fr) Étalonnage d'un système comprenant un moyen de transport et au moins un robot
WO2019120557A1 (fr) Dispositif optique d'application ou de production et de surveillance automatiques d'une structure déposée sur un substrat avec détermination de dimensions géométriques et procédé correspondant
DE102017121087A1 (de) Verfahren zum Positionieren eines Mittelpunkts auf einer geometrischen Achse bei einer Werkzeugmaschine
DE102017010055A1 (de) Laserstrahlschweißen von geometrischen Figuren mit OCT-Nahtführung
WO2015010806A1 (fr) Système et procédé d'application d'une matière pâteuse
DE102016007586A1 (de) Neuartige Vorrichtung/en zum automatischen Aufbringen oder Erzeugen und Überwachen einer auf einem Substrat aufgebrachten Struktur mit Ermittlung von geometrischen Abmessungen sowie ein entsprechendes Verfahren
EP2455710A2 (fr) Appareil à laser rotatif et procédé de commande d'un rayon laser
EP3449207B1 (fr) Dispositif et procédé pour mesurer un jet de laque pour le revêtement de cartes de circuits imprimés
DE202010008808U1 (de) Bearbeitungswerkzeug
EP2998699B1 (fr) Procédé de traitement d'une référence de hauteur pour un outil d'un engin, dispositif et procédé de réglage en hauteur d'un outil d'un engin, engin
DE3611896C2 (fr)
DE102009036013A1 (de) Verfahren zur Bearbeitung von Werkstücken
EP1291614A1 (fr) Mesure de coordonnées par calibrage de rectitude et d'angle et correction subséquente des valeurs de mesure
DE3710068C2 (fr)
DE102019113441A1 (de) Verfahren zur Zuordnung des intrinsischen Koordinatensystems eines ersten Aggregats eines Fahrzeuges zur Erfassung des Raumes seitlich des Fahrzeuges relativ zu einem fahrzeugbezogenen Koordinatensystem und Vorrichtung zur Durchführung des Verfahrens
AT522419B1 (de) Messvorrichtung zur Bestimmung des Biegewinkels
DE102013103136B4 (de) Faser-Legevorrichtung
DE102018124208B4 (de) Verfahren und Vorrichtung zur Überwachung eines Laserbearbeitungsprozesses an einem Werkstück sowie dazugehöriges Laserbearbeitungssystem
DE19632696C1 (de) Verfahren und Vorrichtung zum Messen der Überlappungsbreite eines Überlappungsstoßes von zwei flach aufeinanderliegenden Werkstücken

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14732824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14732824

Country of ref document: EP

Kind code of ref document: A1