WO2015010275A1 - Interest point judgement method and interest point judgement device - Google Patents

Interest point judgement method and interest point judgement device Download PDF

Info

Publication number
WO2015010275A1
WO2015010275A1 PCT/CN2013/080007 CN2013080007W WO2015010275A1 WO 2015010275 A1 WO2015010275 A1 WO 2015010275A1 CN 2013080007 W CN2013080007 W CN 2013080007W WO 2015010275 A1 WO2015010275 A1 WO 2015010275A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
filtering
amplitude
current pixel
filter parameter
Prior art date
Application number
PCT/CN2013/080007
Other languages
French (fr)
Chinese (zh)
Inventor
周强
刘峥
许国军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/080007 priority Critical patent/WO2015010275A1/en
Priority to CN201380000883.XA priority patent/CN104541289B/en
Publication of WO2015010275A1 publication Critical patent/WO2015010275A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]

Definitions

  • the present invention relates to a point of interest detection technique, and more particularly to a point of interest determination method and a point of interest determination apparatus. Background technique
  • Image feature extraction is one of the key technologies in the field of image recognition.
  • the core of this technology lies in the detection of Interest Point.
  • FIG. 1 is an exemplary flow chart of an existing point of interest detection method 100.
  • Step 102 Establish a LoG (Laplacian of Gaussian) filtered image pyramid (Image Pyramid) of the original image.
  • LoG Laplacian of Gaussian
  • Image Pyramid filtered image pyramid
  • FIG. 2 is an exemplary flow chart of a prior art LoG filtered image pyramid generation method 200.
  • Step 202 Perform continuous down sampling (Down Sample) on the original image to obtain multiple target images.
  • the original image is downsampled to generate a target image 1.
  • the target image 1 is downsampled to generate a target image 2.
  • the target image 2 is downsampled to generate a target image 3.
  • the original image can be regarded as the target image 0.
  • the above-mentioned downsampling refers to reducing the image to be targeted according to the aspect ratio.
  • a common image down sampling method such as a neighbor sampling method or a bilinear interpolation method can be used.
  • the size of the target image M may be, for example but not limited to, 1/2 of the target image M-1.
  • Step 204 Perform multiple LoG filtering on each target image to generate multiple LoG filtered images of the target image.
  • the target image is first performed. Gaussian filtering to generate a Gaussian filtered image. Next, Laplace filtering is performed on the Gaussian filtered image to generate a LoG filtered image.
  • the Gaussian filter parameters used by Gaussian filtering can be expressed as ⁇ ( ⁇ ) during each LoG filtering process.
  • the Gaussian filter parameter is ⁇ ( ⁇ - 1)
  • the L 0 G filtered image is the upper layer image of the LoG filtered image with Gaussian filter parameter ⁇ ( ⁇ )
  • the LoG filtered image with Gaussian filter parameter ⁇ ( ⁇ + 1) is the LoG with Gaussian filter parameter ⁇ ( ⁇ ) Filter the underlying image of the image.
  • a LoG filtered image and its upper layer image and lower layer image are both derived from the same target image, and the Gaussian filtering parameters used to generate the LoG filtered image and its upper layer image and the lower layer image are ⁇ ( ⁇ ), ⁇ ( ⁇ - 1) and ⁇ ( ⁇ + 1). Furthermore, the Laplacian filter parameters used to generate different LoG filtered images may be different. It can be seen that multiple LoG filtered images of the same target image are sequentially generated in a certain order, and the order can be expressed by Gaussian filtering parameters, that is, multiple LoG filtered images sequentially generated, which are used in the generation process.
  • the Gaussian filtering parameters are ⁇ (1), ⁇ (2), ⁇ (3) ...
  • the LoG filtered image generated based on the Gaussian filter parameter ⁇ ( ⁇ ) is the Nth layer LoG filtered image in these LoG filtered images.
  • a LoG filtered image pyramid can be generated. It is not difficult to find that the LoG filtered image pyramid includes a continuous plurality of sets of images, each set of images includes a plurality of consecutive LoG filtered images, and each set of images is a downsampled image of the previous set of images.
  • the number of LoG filtered images in each group of images can be set according to specific needs. Normally, each set of images contains at least three LoG filtered images.
  • the above steps 202 and 204 may also be performed by crossover, that is, each time a target image is generated, multiple Lo G filtering is performed on the target image to generate multiple L 0 G filters of the target image. image.
  • another method described below may also be used to generate a LoG filtered image pyramid.
  • the original image is subjected to multiple LoG filtering, which is the original image.
  • the image is generated as a set of Lo G filtered images (the set of Lo G filtered images contains multiple Lo G filtered images of the original image).
  • each LoG filtered image in the set of LoG filtered images of the original image is separately downsampled to generate another set of LoG filtered images.
  • each LoG filtered image in the other set of LoG filtered images is downsampled to generate a further set of LoG filtered images.
  • the above process continues until M sets of LoG filtered images are generated.
  • the M sets of LoG filtered images generated in the above sequence can form a LoG filtered image pyramid.
  • FIG. 3 is an exemplary schematic diagram of a conventional LoG filtered image pyramid generation process. As shown in FIG. 3, the original image is subjected to downsampling to generate a target image 1, and the target image 1 is subjected to downsampling to generate a target image 2, wherein the target image 1 is 1/2 of the original image, and the target image 2 is 1/ of the target image 1. 2.
  • Each target image (including the original image) is subjected to three LoG filtering to generate three LoG filtered images of the target image.
  • each LoG filtering process includes first performing Gaussian filtering on the target image to generate a Gaussian filtered image. Then, the Gaussian filtered image is subjected to Laplacian filtering to generate a LoG filtered image.
  • the target image 1 as an example, after three LoG filtering, three LoG filtered images 302-306 are finally generated.
  • the Gaussian filter parameter used to generate the LoG filtered image 302 is ⁇ (1), which is used to generate the LoG filtered image 304.
  • the Gaussian filter parameter is ⁇ (2), and the Gaussian filter parameter used to generate the LoG filtered image 306 is ⁇ (3). Therefore, the LoG filtered image 302 is the upper layer image of the LoG filtered image 304, and the LoG filtered image 306 is the LoG filtered image 304.
  • the underlying image is the Gaussian filter parameter.
  • the first set of images includes three LoG filtered images generated by performing three LoG filtering on the original image, and the second set of images includes three times on the target image 1.
  • Three LoG filtered images generated by LoG filtering, and the third set of images includes three LoG filtered images generated by performing three LoG filtering on the target image 2.
  • the three sets of images constitute a LoG filtered image pyramid 308.
  • the number of times of downsampling and the number of LoG filtered images can be rooted. Set according to specific needs.
  • step 104 points of interest for each LoG filtered image are determined.
  • FIG. 4 is an exemplary schematic diagram of an existing point of interest judging process.
  • three LoG filtered images are shown, which are obtained by performing three LoG filtering on the same target image.
  • the three LoG filtered images are the three LoG filtered images 302-306 in Figure 3.
  • the LoG filtered images 302-306 are ultimately generated by performing three LoG filtering on the target image 1 in Fig. 3.
  • the Gaussian filter parameter used to generate the LoG filtered image 302 is ⁇ (1)
  • the Gaussian filter parameter used to generate the LoG filtered image 304 is ⁇ (2)
  • a LoG filtered image is generated.
  • the Gaussian filter parameter used by 306 is ⁇ (3). Therefore, the LoG filtered image 302 is the upper layer image of the LoG filtered image 304, and the LoG filtered image 306 is the lower layer image of the LoG filtered image 304.
  • the following takes pixel 314 as an example to introduce the judgment process of interest points of LoG filtered images.
  • the amplitude of the pixel 314 needs to be compared with the amplitude of at least 26 other pixels. If the comparison result shows that the amplitude of the pixel 314 is an extreme value (Extremum, such as a maximum value or a minimum value), the determination pixel 314 is a point of interest of the LoG filtered image 304.
  • an extreme value Extremum, such as a maximum value or a minimum value
  • the determination pixel 314 is a point of interest of the LoG filtered image 304.
  • a local area is first defined on the LoG filtered image 304, the local area including at least pixels 314 and 8 pixels around the pixel 314, such as the local area 310 on the LoG filtered image 304.
  • the eight pixels around the pixel 314 are respectively pixels 316-330. That is, the local area 310 is a 3x3 area centered on the pixel 314. In a specific implementation process, the local area 310 may also adopt an NxN area centered on the pixel 314, where N is an odd number greater than 3.
  • the corresponding area on the upper layer image (i.e., LoG filtered image 302) and the lower layer image (i.e., LoG filtered image 306) of the LoG filtered image 304, that is, the upper layer area 308 and the lower layer area 312 are determined. Specifically, the location of the local area 310 on the LoG filtered image 304 is first determined.
  • the coordinates, and then the areas indicated by the above position coordinates on the LoG filtered image 302 (upper layer image of the LoG filtered image 304) and 306 (lower layer image of the LoG filtered image 304), that is, the upper layer area 308 and the lower layer area 312 are determined.
  • the position of the upper layer region 308 on the LoG filtered image 302 (the upper layer image of the LoG filtered image 304) is the same as the position of the local region 310 on the LoG filtered image 304, and the lower layer region 312 is at the LoG filtered image 306 (LoG).
  • the position on the lower layer image of the filtered image 304 is the same as the position of the local area 310 on the LoG filtered image 304.
  • the 26 other pixels are 8 pixels out of the pixel 314 in the local area 310, 9 pixels 332-348 in the upper layer area 308, and 9 pixels 350-366 in the lower layer area 312.
  • the LoG filtered image and the upper layer image and the lower layer image are both derived from the same target image, and the Gaussian filtering parameters used when generating the LoG filtered image and the upper layer image and the lower layer image are respectively ⁇ ( ⁇ ) , ⁇ ( ⁇ _ ⁇ ; ⁇ . ⁇ ( ⁇ + 1).
  • the upper and lower images of the LoG filtered image are used in determining the point of interest of each LoG filtered image. Since the first L 0 G filtered image in each set of LoG filtered images in the LoG filtered image pyramid has no upper layer image, the last L 0 G filtered image has no lower layer image. Therefore, in the specific implementation process, it is often only determined.
  • the interest points of the first LoG filtered image and the other LoG filtered images other than the last LoG filtered image in each group of LoG filtered images may be used. Of course, some existing methods can also be used to determine the points of interest of the first LoG filtered image and the last LoG filtered image.
  • determining whether a pixel is a point of interest of a LoG filtered image in which a pixel is located requires at least 8 pixels around the pixel.
  • the pixel to be judged is at the edge of the image it is in, there may be fewer than eight pixels around the pixel. In this case, the points of interest at the edges of the image may not be judged, and of course, some methods may be used to determine whether the pixels are points of interest of the image in which they are located.
  • step 106 After performing step 104 in method 100, at step 106, according to step 104 Determine the points of interest of each LoG filtered image and determine the points of interest of the original image.
  • various methods can be used to determine the points of interest of the original image based on the interest points of each LoG filtered image.
  • a point of interest judging device is provided to solve the problem that the existing point of interest judging method takes up too much memory.
  • a method for determining a point of interest for determining whether a current pixel is a point of interest of a current image in which a current pixel is located, wherein the current image is performed on a target image by using a first filter parameter set Obtained by filtering, the method includes:
  • the amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
  • a point of interest judging device for determining whether a current pixel is a point of interest of a current image in which a current pixel is located, wherein the current image is a target image by using a first filter parameter group
  • the filtering process is performed, and the device includes:
  • a memory configured to store the current image
  • the processor is configured to perform the following operations:
  • the amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
  • the embodiment of the present invention When determining whether a pixel is a point of interest of an image of the pixel, the embodiment of the present invention does not need to simultaneously load the entire upper layer image and the entire lower layer image of the image in the memory, but only needs to temporarily calculate the local area where the pixel is located. Corresponding regions on the upper layer image and the lower layer image. It can be seen that the technical solution provided by the embodiment of the present invention can greatly reduce the occupation of memory by the point of interest judging process.
  • 1 is an exemplary flowchart of a method for detecting a point of interest
  • FIG. 2 is an exemplary flowchart of a conventional Lo G filtered image pyramid generation method
  • FIG. 3 is an exemplary schematic diagram of a conventional LoG filtered image pyramid generation process
  • FIG. 4 is an exemplary schematic diagram of a prior interest point determination process
  • FIG. 5 is an exemplary flowchart of a method for judging a point of interest according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a process of performing a LoG filtering operation on a target area according to an embodiment of the invention
  • FIG. 7 is a schematic diagram of a process of a reverse symmetric filling method
  • FIG. 8 is an exemplary schematic diagram of a point of interest judging process according to an embodiment of the present invention
  • FIG. 9 is an exemplary flowchart of a method for judging a point of interest according to an embodiment of the present invention
  • FIG. 10 is an illustration of an interest according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing an exemplary hardware structure of a point of interest judging apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing an exemplary hardware configuration of a point of interest judging apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing an exemplary logical structure of a point of interest judging apparatus according to an embodiment of the present invention.
  • Figure 14 is a diagram showing an exemplary logical structure of a point of interest judging device in accordance with an embodiment of the present invention. detailed description
  • FIG. 5 is an exemplary flow chart of a point of interest determination method 500 in accordance with an embodiment of the present invention.
  • Square The method 500 is configured to determine whether the current pixel is a point of interest of a current image where the current pixel is located, wherein the current image is obtained by filtering the target image by using the first filter parameter group.
  • Step 502 Comparing the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and determining, when the comparison result shows that the amplitude of the current pixel is an extreme value, determining the local area in the The corresponding area on the target image serves as the target area.
  • the positional coordinates of the local area on the current image may be first determined, such as determining the positional coordinates of the boundary of the local area on the current image. Then, an area indicated by the position coordinates on the target image, that is, an area surrounded by the boundary coordinates on the target image is determined, and a corresponding area of the partial area on the target image can be obtained.
  • Step 504 Perform filtering processing on the target area by using a second filter parameter group to obtain a second area.
  • Step 506 comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, filtering the target region by using the third filtering parameter group. , get the third area.
  • each filter parameter set (e.g., the first filter parameter set, the second filter parameter set, and the third filter parameter set) may include one or more filter parameters.
  • the description is made by taking two filtering parameters for each filtering parameter group as an example.
  • each filter parameter set includes two filter parameters
  • the two filter parameters may be respectively recorded as a first filter parameter and a second filter parameter.
  • the filtering process may include: performing a first filtering operation on the image to be processed using the first filtering parameter in the filtering parameter group used in the filtering process to obtain a first filtered image; The filtering process used The second filtering parameter in the filtering parameter group performs a second filtering operation on the first filtered image to obtain a second filtered image.
  • the filtering processing according to the first filtering parameter group, the second filtering parameter group, and the third filtering parameter group is performed for the same target image, if the first filtering parameter in the first filtering parameter group is set For ⁇ ( N ), the first filter parameter in the second filter parameter set is set to ⁇ ( ⁇ - 1), and the first filter parameter in the third filter parameter set is set to ⁇ ( ⁇ + 1
  • the second area can be regarded as the upper layer area of the partial area (that is, the second area can be regarded as the corresponding area of the upper area image of the current image in the current image), and the third area can be regarded as the lower layer area of the partial area ( That is, the third area can be regarded as the corresponding area of the above-mentioned partial area in the lower layer image of the current image.
  • the filtering process according to the first filter parameter group, the second filter parameter group, and the third filter parameter group is performed for the same target image, if the first filter parameter group is the first one
  • the filter parameter is set to ⁇ ( ⁇ )
  • the first filter parameter in the second filter parameter set is set to ⁇ ( ⁇ + 1)
  • the first filter parameter in the third filter parameter set is set to ⁇ ( ⁇ - 1)
  • the second area can be regarded as the lower layer area of the local area (ie, the second area can be regarded as the corresponding area of the local image in the lower layer image of the current image)
  • the third area can be regarded as the partial area
  • the upper region ie, the third region can be regarded as the corresponding region of the upper region image of the current image in the current image).
  • the filtered image obtained by separately filtering the same target image using the first filter parameter group, the second filter parameter group, and the third filter parameter group may also be mutually Continuously, as long as the first filter parameter in the first filter parameter group, the second filter parameter group, and the third filter parameter group are different.
  • the first filter parameter in the first filter parameter group is ⁇ ( ⁇ )
  • the first filter parameter in the second filter parameter group is ⁇ ( ⁇ -3)
  • the first filter parameter in the third filter parameter group is ⁇ ( ⁇ + 5).
  • the first filter parameter in the first filter parameter group is ⁇ ( ⁇ ), the first filter parameter in the second filter parameter group is ⁇ ( ⁇ + 2), and the first filter parameter in the third filter parameter group is ⁇ ( ⁇ - 4).
  • the first filter parameter in the first filter parameter group is ⁇ ( ⁇ )
  • the first filter parameter in the second filter parameter group is ⁇ ( ⁇ - 2)
  • the first filter parameter in the third filter parameter group is ⁇ ( ⁇ -5).
  • the first filter parameter in the first filter parameter group is ⁇ ( ⁇ ), and the first filter parameter in the second filter parameter group is ⁇ ( ⁇ + 2)
  • the first filter parameter in the third filter parameter set is ⁇ ( ⁇ + 5).
  • the first filtering parameter may be a Gaussian filtering parameter
  • the second filtering parameter may be a Laplacian filtering parameter
  • the first filtering operation is a Gaussian filtering operation
  • the second filtering operation is a Laplacing operation. Filter operation.
  • the first filtered image is a Gaussian filtered image
  • the second filtered image is a LoG filtered image.
  • the foregoing first filtering parameter may also be a filtering parameter used by other filtering operations than the Gaussian filtering operation
  • the second filtering parameter may also be a filtering parameter used by other filtering operations than the Laplacian filtering operation.
  • the first filtering operation may be other filtering operations than the Gaussian filtering operation
  • the second filtering operation may be other filtering operations than the Laplacian filtering operation.
  • ⁇ ( ⁇ ) is generally referred to as a Gaussian filtering kernel.
  • the Laplacian filter template used in the process can be, for example but not limited to, 1 - 4 1 or
  • ⁇ 2 is called a scale normalization factor.
  • the scale normalization factor of the Laplacian filter template used to generate the current image 1 1 1 image is (k N j) 2
  • the second region is generated.
  • the scale normalization factor of the Laplacian filter template used is (k ⁇ j) 2 or (k N+1 j) 2
  • the scale normalization factor of the Laplacian filter template used to generate the third region is (k N "j) 2 or (k N - 1 j ) 2.
  • the Gaussian filter parameter and the Laplacian filter parameter are both ⁇ ( ⁇ ).
  • the Gaussian filter parameters and the Laplacian filter parameters in the same filter parameter group may be separately set, and there may be no association between the two.
  • FIG. 6 is a schematic diagram of a process of performing a LoG filtering operation on a target area according to an embodiment of the invention.
  • the target image 600 includes a target area 602, the central pixel of the target area 602 is the pixel 604, the size of the area is 3x3, and the filtering window size of the Gaussian filter is 5x5, Laplacian filtering The filter window size is 3x3.
  • Gaussian filtering of the target region 602 in accordance with the Gaussian filtering principle requires the use of a region 606 of the target image 600 centered on the pixel 604 and having a size of 7x7.
  • Gaussian filtering of the target region 602 After performing Gaussian filtering on the target region 602, if Laplace filtering is performed on the Gaussian filtered target region 602, a region having a size of 5x5 is required, and the region is passed through the pixel 604 on the target image 600. It is obtained by Gaussian filtering of the center 608 of the size 5x5. According to the Gaussian filtering principle, Gaussian filtering of the region 608 requires the use of a region 610 of the target image 600 centered on the pixel 604 and having a size of 9x9.
  • the filter window size of the Gaussian filter is ⁇ , where ⁇ is an odd number greater than or equal to 3, and the specific value can be set according to specific needs.
  • the filtering window size of Laplacian filtering is usually 3x3. It can be seen that the size of the area 610 is basically determined by the filtering window size of the Gaussian filtering.
  • the pixels may be filled using, for example, but not limited to, a reverse symmetric fill method.
  • the reverse symmetric filling method will be briefly described below with reference to FIG.
  • Figure 7 is a schematic diagram of the process of the reverse symmetric filling method.
  • the boundary portion of the target image in which the target area is located is as shown in area 702 in FIG.
  • the upper boundary of the region 702 is the boundary 706, the lower boundary is the boundary 708, and the right boundary is the boundary 704.
  • the value of the column ⁇ can take the value of column 1, column 2
  • the value of column 2 can be taken as the value of column 2, that is, the two columns of pixels (ie, column 1, and column 2) in padding region 702, and the two columns of pixels in region 702 (ie, column 1 and column 2) are bounded by boundary 704. bilateral symmetry.
  • the value of the column can take the value of column 2
  • the value of column 2 can take the value of column 3, that is, the two columns of pixels (ie, column 1, and column 2) in padding region 702, and region 702
  • the two columns of pixels (ie, column 2 and column 3) are bilaterally symmetric with column 1 as the axis.
  • step 508 comparing the amplitude of the current pixel with the amplitude of all pixels in the third region, and determining the current when the comparison result shows that the amplitude of the current pixel is an extreme value
  • the pixel is the point of interest of the current image.
  • the extreme values described in steps 502, 506, and 508 may be the same as the maximum value, or the same as the minimum value.
  • the criterion in step 506 is that the amplitude of the current pixel is The amplitudes of all the pixels in the second region are also a maximum value when compared.
  • the criterion in step 508 is that the amplitude of the current pixel is still a large value when compared with the amplitude of all the pixels in the third region. value.
  • the criterion in the step 506 is that the amplitude of the current pixel is in the second region.
  • the amplitude of the pixel is also a small value when compared.
  • the criterion in step 508 is that the amplitude of the current pixel is still a small value when compared with the amplitude of all pixels in the third region.
  • the embodiment of the present invention When determining whether a pixel is a point of interest of an image of the pixel, the embodiment of the present invention does not need to simultaneously load the entire upper layer image and the entire lower layer image of the image in the memory, but only needs to temporarily calculate the local area where the pixel is located. Corresponding regions on the upper layer image and the lower layer image. It can be seen that the technical solution provided by the embodiment of the present invention can greatly reduce the memory occupied by the point of interest judging process. use.
  • the user can use the smart terminal to perform image recognition, thereby performing operations such as price comparison of commodities. For example, when the user wants to compare the price of a certain item in another mall or online store in the mall, the user can take a photo of the item, and then use the smart terminal to extract the feature data of the photo and transmit it to the background server via the Internet, the background server according to photos of feature data, stored in the database to match a large number of features of the product image feature data, the query to match the commodity, the price of goods re ⁇ 1 match returned to the user.
  • FIG. 8 is an exemplary schematic diagram of a point of interest determination process in accordance with an embodiment of the present invention. As shown in Fig. 8, there is shown a LoG filtered image 802 obtained by LoG filtering a target image.
  • the amplitude of the pixel 810 and the local area where the pixel 810 is located on the LoG filtered image 802. (In this embodiment, the local area is a 3x3 area) 804 compares the amplitudes of other pixels in the 804.
  • the amplitude of the comparison result display pixel 810 is an extreme value, determining the local area on the target image Corresponding area, as the target area.
  • the target region is subjected to filtering processing using a LoG filter parameter set constructing a layer image of the LoG filtered image 802 to obtain an upper region 806 of the local region 804.
  • the amplitude of the pixel 810 is compared with the amplitude of all pixels in the upper layer region 806.
  • the LoG filter parameter group constructing the lower layer image of the LoG filtered image 802 is used for the target.
  • the region is subjected to filtering processing to obtain a lower region 808 of the local region 804.
  • the amplitude of the pixel 810 is compared with the amplitude of all pixels in the lower layer region 808.
  • the pixel 810 is determined to be the point of interest of the LoG filtered image 802.
  • the upper layer area 806 of the partial area 804 is first generated, and the lower layer area 808 of the partial area 804 is generated.
  • the lower region 808 of the local region 804 may also be generated first, and the upper region 806 of the local region 804 may be generated.
  • the upper layer area 806 and the lower layer area 808 of the partial area 804 can also be generated at the same time. In this case, it is necessary to simultaneously compare the amplitude of the pixel 810 with the amplitudes of all the pixels in the upper layer region 806 and the lower layer region 808.
  • this suboptimal point of interest judgment scheme will add additional calculations in some cases.
  • the point of interest judging process shown in FIG. 8 if the amplitude of the pixel 810 is no longer an extreme value when compared with the amplitude of all pixels in the upper layer area 806, the point of interest determination process according to FIG. It is no longer necessary to compare the amplitude of the pixel 810 with the amplitude of all pixels in the lower layer region 808, so there is no need to generate the lower layer region 808.
  • the lower layer area 808 still needs to be generated. It can be seen that compared with the point of interest judging method shown in FIG. 5 and FIG. 8, the above suboptimal point of interest judging scheme adds extra calculation amount in some cases.
  • the method shown in Figure 5 is not only optimized for the LoG filtering scene.
  • the SURF (Speeded Up Robust Features) algorithm can be optimized based on the principle of the method shown in FIG. The optimized SURF algorithm is described below.
  • FIG. 9 is an exemplary flow diagram of a point of interest determination method 900 in accordance with an embodiment of the present invention.
  • the method 900 is configured to determine whether the current pixel is a point of interest of a current image where the current pixel is located, where the current image is filtered by using the first block filter parameter, and then calculating the sea by the filtered target image. According to the Hessian determinant response, the current pixel is a pixel whose positive response value is on the current image.
  • Step 902 Comparing the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and displaying the amplitude of the current pixel as a maximum value in the comparison result. And determining a corresponding area of the local area on the target image as a target area; Step 904, filtering the target area by using a second block filter parameter, and calculating Hessian on the filtered target area. Deterministic response, obtaining a second region;
  • Step 906 comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and filtering the target region by using a third-party frame filtering parameter when the comparison result shows that the amplitude of the current pixel is a maximum value. Processing, and calculating a Hessian determinant response to the filtered target region to obtain a third region;
  • Step 908 Comparing the amplitude of the current pixel with the amplitude of all the pixels in the third region, and determining that the current pixel is the interest point of the current image when the comparison result shows that the amplitude of the current pixel is a maximum value.
  • the first block filter parameter, the second block filter parameter, and the third-party frame filter parameter may correspond to different size filter matrices, and the second region is an upper region or a lower region of the local region, and the third region It is the lower area or the upper area of the target area.
  • FIG. 10 is an exemplary flowchart of a point of interest determination method 1000 in accordance with an embodiment of the present invention.
  • the method 1000 is used to determine whether the current pixel is a point of interest of a current image where the current pixel is located, where the current image is obtained by filtering the target image by using the first filter parameter group, and is described on the current image.
  • the amplitude of the current pixel is an extreme value compared to the amplitude of other pixels in the local area where the current pixel is located.
  • Step 1002 Determine a corresponding area of the local area on the target image as a target area.
  • Step 1004 Perform filtering processing on the target area by using a second filter parameter group to obtain a second area.
  • Step 1006 Comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and filtering the target region by using the third filter parameter group when the comparison result shows that the amplitude of the current pixel is an extreme value. , get the third area.
  • Step 1008 Comparing the amplitude of the current pixel with the amplitude of all the pixels in the third region, and determining that the current pixel is the current image when the comparison result shows that the amplitude of the current pixel is an extreme value. Points of interest.
  • each filter parameter set includes a first filter parameter and a second filter parameter
  • the filter process includes:
  • the second filtering operation is performed on the first filtered image using the second filtering parameter in the filtering parameter set used by the filtering process to obtain a second filtered image.
  • the first filtering parameter is a Gaussian filtering parameter
  • the second filtering parameter is a Laplacian filtering parameter
  • the first filtering operation is a Gaussian filtering operation
  • the second filtering operation is a Lapu filter. Lass filtering operation.
  • the first filter parameter in the first filter parameter set is ⁇ ( ⁇ ), and the first filter parameter in the second filter parameter set is ⁇ ( ⁇ + 1), the third filter The first filter parameter in the parameter set is ⁇ ( ⁇ -1) ; or
  • the first filter parameter in the first filter parameter set is ⁇ ( ⁇ ), and the first filter parameter in the second filter parameter set is ⁇ ( ⁇ -1), in the third filter parameter group
  • the first filter parameter is ⁇ ( ⁇ + 1).
  • the partial area includes at least a current pixel and 8 pixels adjacent to the current pixel.
  • the pixel with the amplitude of one extreme value compared with the amplitude of other pixels in the local area may be firstly filtered on the current image, and then the method shown in FIG. 10 is applied to each pixel selected. 1000.
  • the prior art can be combined with the method 1000 shown in FIG. 10 to determine a point of interest of the current image.
  • pixels on the current image having an amplitude equal to the amplitude of other pixels in the local region may be first screened. If the number of pixels filtered out If the amount exceeds the preset threshold (the threshold can be set as needed), referring to the prior art method, the entire upper image and the entire lower image of the current image are loaded in the memory, and then the selected pixels are judged one by one. Whether it is the point of interest of the current image. On the other hand, if the number of selected pixels does not exceed the preset threshold, then according to the method 1000 shown in FIG. 10, it is determined whether the selected pixels are the points of interest of the current image.
  • the current image when determining a point of interest of the current image, may also be decomposed into a plurality of image blocks, wherein vertically adjacent image blocks have at least two rows of overlapping pixels, and horizontally adjacent image blocks have at least two columns overlapping. Pixel.
  • the size of the image blocks may be the same or different.
  • each image block is an image, so that the points of interest of each image block can be determined in accordance with the present invention and various methods described in the prior art. For example, when determining the point of interest of each image block, pixels on the current image block with an amplitude equal to the amplitude of other pixels in the local area may be first screened.
  • the method 1000 shown in FIG. 10 is used to judge whether the selected pixels are the points of interest of the current image. After determining the points of interest of each image block, the points of interest of the entire current image can be determined according to the points of interest of each image block, for example, the points of interest of all the image blocks are regarded as the points of interest of the current image.
  • the image block may be represented by the coordinates of the pixel in the upper left corner of the image block and the width and height of the image block, for example, if the current image is 480 wide and 640 high.
  • the two image blocks can be represented in the following manner: The initial pixel coordinates of the first image block are (0,0), the width is 242, and the height is 640.
  • the second image block is initially.
  • the pixel coordinates are (238,0), the width is 242, and the height is 640.
  • the four image blocks can be represented in the following manner:
  • the initial image coordinates of the first image block are (0, 0) and the width is 242.
  • the height of the second image block is (238,0), the width is 242, and the height is 322.
  • the initial image coordinates of the third image block are (0,318), the width is 242, and the height is 322.
  • FIG. 11 is a diagram showing an exemplary hardware configuration of a point of interest judging device 1100 according to an embodiment of the present invention.
  • the point of interest judging means 1100 is configured to determine whether the current pixel is a point of interest of the current image in which the current pixel is located, wherein the current picture is obtained by filtering the target image by using the first filter parameter set.
  • the point of interest judging device 1100 includes a memory 1102 and a processor 1104.
  • the memory 1102 can employ, for example, but not limited to, a Random Access Memory (RAM) or the like.
  • RAM Random Access Memory
  • the memory 1102 is configured to store the current image.
  • the processor 1104 can employ, for example, but not limited to, a general purpose central processor (Central)
  • Central general purpose central processor
  • the processor 1104 is configured to perform the following operations:
  • the amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
  • each filter parameter group includes a first filter parameter and a second filter parameter
  • the filter process includes:
  • the first filtering parameter is a Gaussian filtering parameter
  • the second filtering parameter is a Laplacian filtering parameter
  • the first filtering operation is a Gaussian filtering operation, where the The second filtering operation is a Laplacian filtering operation.
  • the first filtering parameter in the first filtering parameter group is ⁇ ( ⁇ ), and the first filtering parameter in the second filtering parameter group is ⁇ ( ⁇ + 1)
  • the first filter parameter in the third filter parameter set is ⁇ ( ⁇ -1); or
  • the first filter parameter in the first filter parameter set is ⁇ ( ⁇ ), and the first filter parameter in the second filter parameter set is ⁇ ( ⁇ -1), in the third filter parameter group
  • the first filter parameter is ⁇ ( ⁇ + 1).
  • ⁇ ( ⁇ ) 1 ⁇ ⁇ ⁇ , where k and j are constants.
  • the local area includes at least a current pixel and eight pixels adjacent to the current pixel.
  • the point of interest judging device 1100 shown in Fig. 11 can be used to implement the point of interest judging method 500 shown in Fig. 5. However, it should be noted that the point of interest judging device 1100 shown in Fig. 11 can also be used to implement the point of interest judging method 900 shown in Fig. 9 and the point of interest judging method 1000 shown in Fig. 10.
  • the point of interest determination apparatus 1100 shown in FIG. 11 is configured to determine whether the current pixel is a point of interest of the current image where the current pixel is located, where the current The image is obtained by filtering the target image by using the first block filter parameter and calculating a Hessian determinant response to the filtered target image, where the current pixel is the response value on the current image. Positive pixel.
  • the memory 1102 is configured to store the Current image.
  • the processor 1104 is configured to perform the following operations:
  • the amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is a maximum value, it is determined that the current pixel is the point of interest of the current image.
  • the point of interest determination apparatus 1100 shown in FIG. 11 is configured to determine whether the current pixel is a point of interest of the current image in which the current pixel is located, wherein the current image is used.
  • the first filter parameter group is obtained by filtering the target image, and the amplitude of the current pixel is an extreme value compared with the amplitude of other pixels in the local region where the current pixel is located on the current image.
  • the memory 1102 is used to store the current image.
  • the processor 1104 is configured to perform the following operations:
  • a corresponding area of the local area on the target image is determined as a target area.
  • the target area is filtered by using a second filter parameter set to obtain a second area. Comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, filtering the target region by using the third filter parameter group to obtain the first Three areas.
  • the amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
  • point of interest judging device 1100 shown in FIG. 11 only shows the memory 1102 and the processor 1104, in the specific implementation process, those skilled in the art should understand that the point of interest judging device 1100 also includes the normal operation. Other devices necessary. At the same time, those skilled in the art will appreciate that the point of interest judging device 1100 may also include hardware devices that implement other additional functions, depending on the particular needs.
  • FIG. 12 is a diagram showing an exemplary hardware configuration of a point of interest judging device 1200 according to an embodiment of the present invention.
  • the point of interest judging device 1200 is configured to determine whether the current pixel is a point of interest of the current image in which the current pixel is located, wherein the current image is obtained by filtering the target image by using the first filter parameter set.
  • the point of interest judging device 1200 includes a memory 1202, a processor 1204, an input/output interface 1206, a communication interface 1208, and a bus 1210.
  • the functions and implementations of the memory 1202 and the processor 1204 are respectively the same as the memory 1102 and the processor 1104 in the point of interest judging device 1100 described in FIG.
  • the input/output interface 1206 is for receiving input data and information, and outputting operation results and the like.
  • Communication interface 1208 implements communication between point of interest determination device 1200 and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • Bus 1210 can include a path for communicating information between various components of point of interest determining device 1200 (e.g., processor 1202, memory 1204, input/output interface 1206, and communication interface 1208).
  • FIG. 13 is a schematic diagram showing an exemplary logical structure of a point of interest judging device 1300 according to an embodiment of the present invention.
  • the point of interest judging device 1300 is configured to determine whether the current pixel is located at the current pixel. a point of interest of the front image, wherein the current image is obtained by filtering the target image using the first set of filter parameters.
  • the point of interest judging device 1100 includes a main control module 1302, a comparison module 1304, and a filter processing module 1306.
  • the main control module 1302 is configured to call the comparison module 1304 to compare the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and the main control module
  • the 1302 is further configured to determine, as the target area, a corresponding area of the local area on the target image when the comparison result shows that the amplitude of the current pixel is an extreme value.
  • the main control module 1302 is further configured to invoke the filter processing module 1306 to perform filtering processing on the target area using the second filter parameter set to obtain a second area.
  • the main control module 1302 is further configured to call the comparison module 1304 to compare the amplitude of the current pixel with the amplitude of all the pixels in the second region, and the main control module 1302 is further configured to display the amplitude of the current pixel as an extreme value in the comparison result.
  • the call filter processing module 1306 performs filtering processing on the target area using the third filter parameter set to obtain a third area;
  • the main control module 1302 is further configured to call the comparison module 1304 to compare the amplitude of the current pixel with the amplitude of all the pixels in the third region, and the main control module 1302 is further configured to display, in the comparison result, that the amplitude of the current pixel is an extreme value. When it is determined, the current pixel is the point of interest of the current image.
  • each filter parameter group includes a first filter parameter and a second filter parameter
  • the filter process includes:
  • the second filtering operation is performed on the first filtered image using the second filtering parameter in the filtering parameter set used by the filtering process to obtain a second filtered image.
  • the first filtering parameter is a Gaussian filtering parameter
  • the second filtering parameter is a Laplacian filtering parameter
  • the first filtering operation is a Gaussian filtering operation, where the The second filtering operation is a Laplacian filtering operation.
  • the first filtering parameter in the first filtering parameter group The number is ⁇ ( ⁇ ), the first filter parameter in the second filter parameter set is ⁇ ( ⁇ + 1), and the first filter parameter in the third filter parameter set is ⁇ ( ⁇ -1); or
  • the first filter parameter in the first filter parameter set is ⁇ ( ⁇ ), and the first filter parameter in the second filter parameter set is ⁇ ( ⁇ -1), in the third filter parameter group
  • the first filter parameter is ⁇ ( ⁇ + 1).
  • ⁇ ( ⁇ ) 1 ⁇ ⁇ ⁇ , where k and j are constants.
  • the local area includes at least a current pixel and eight pixels adjacent to the current pixel.
  • the point of interest judging device 1300 shown in Fig. 13 can be used to implement the point of interest judging method 500 shown in Fig. 5. However, it should be noted that the point of interest judging device 1300 shown in Fig. 13 can also be used to implement the point of interest judging method 1000 shown in Fig. 10.
  • the point of interest determination apparatus 1300 shown in FIG. 13 is configured to determine whether the current pixel is a point of interest of the current image where the current pixel is located, where the current The image is obtained by filtering the target image using the first filter parameter set, and the amplitude of the current pixel is an extreme value compared with the amplitude of other pixels in the local region where the current pixel is located on the current image.
  • the main control module 1302 is configured to determine a corresponding area of the local area on the target image as a target area.
  • the main control module 1302 is further configured to invoke the filter processing module 1306 to perform filtering processing on the target area using the second filter parameter set to obtain a second area.
  • the main control module 1302 is further configured to compare the amplitude of the current pixel with the amplitude of all the pixels in the second area, and the main control module 1302 is further configured to: when the comparison result shows that the amplitude of the current pixel is an extreme value Calling the filter processing module 1306 to use the third filter parameter set Filtering the target area to obtain a third area.
  • the main control module 1302 is further configured to compare the amplitude of the current pixel with the amplitude of all the pixels in the third region, and the main control module 1302 is further configured to display, when the comparison result shows that the amplitude of the current pixel is an extreme value. , determining that the current pixel is a point of interest of the current image.
  • FIG. 14 is a diagram showing an exemplary logical structure of a point of interest judging device 1400 according to an embodiment of the present invention.
  • the point of interest judging device 1400 is configured to determine whether the current pixel is a point of interest of the current image where the current pixel is located, wherein the current image is a filter target processed by using the first block filter parameter and then filtered. The image is obtained by calculating a Hessian determinant response, and the current pixel is a pixel whose positive response value is on the current image.
  • the point of interest judging device 1400 includes a main control module 1402, a comparison module 1404, a filtering processing module 1406, and a calculation module 1408.
  • the main control module 1402 is configured to compare the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and the main control module 1402 is further configured to display the amplitude of the current pixel in the comparison result. When it is a maximum value, a corresponding area of the local area on the target image is determined as a target area.
  • the main control module 1402 is further configured to call the filter processing module 1406 to filter the target area by using the second block filter parameter, and then call the calculation module 1408 to calculate a Hessian determinant response to the filtered target region to obtain a second region. ;
  • the main control module 1402 is further configured to compare the amplitude of the current pixel with the amplitude of all the pixels in the second region, and the main control module 1402 is further configured to display the amplitude of the current pixel as a maximum value in the comparison result.
  • the call filter processing module 1406 performs filtering processing on the target area using the third-party frame filter parameter, and then calls the calculation module 1408 to calculate a Hessian determinant response to the filtered target region to obtain a third region;
  • the main control module 1402 is further configured to call the comparison module 1404 to compare the amplitude of the current pixel with the first
  • the main control module 1402 is further configured to determine that the current pixel is a point of interest of the current image when the comparison result shows that the amplitude of the current pixel is a maximum value.
  • the first block filter parameter, the second block filter parameter, and the third-party frame filter parameter may correspond to different size filter matrices, and the second region is an upper region or a lower region of the local region, and the third region It is the lower area or the upper area of the target area.
  • point of interest judging device 1400 shown in Fig. 14 can be used to implement the point of interest judging method 900 shown in Fig. 9.

Abstract

Provided is an interest point judgement method, which is used for judging whether a current pixel is an interest point of a current image or not. The method comprises: comparing the amplitude of a current pixel with the amplitude of other pixels in a local area where the current pixel is located, and when the amplitude of the current pixel is an extremum value, determining an area on a target image corresponding to the local area as a target area;using a second filtration parameter group to filter the target area, so as to obtain a second area;comparing the amplitude of the current pixel with the amplitude of all the pixels in the second area, and when the amplitude of the current pixel is an extremum value, using a third filtration parameter group to filter the target area, so as to obtain a third area;and comparing the amplitude of the current pixel with the amplitude of all the pixels in the third area, and when the amplitude of the current pixel is an extremum value, determining the current pixel as the interest point of the current image.Also provided is an interest point judgement device.The embodiments of the present invention can greatly reduce the occupation of a memory in an interest point judgement process.

Description

一种兴趣点判断方法和兴趣点判断装置 技术领域  Interest point judging method and interest point judging device
本发明涉及兴趣点检测技术,尤其涉及一种兴趣点判断方法和兴趣点判 断装置。 背景技术  The present invention relates to a point of interest detection technique, and more particularly to a point of interest determination method and a point of interest determination apparatus. Background technique
图像特征提取是图像识别领域的关键技术之一,该技术的核心在于兴趣 点 (Interest Point) 的检测。  Image feature extraction is one of the key technologies in the field of image recognition. The core of this technology lies in the detection of Interest Point.
图 1是现有兴趣点检测方法 100的示范性流程图。  1 is an exemplary flow chart of an existing point of interest detection method 100.
步骤 102, 建立原始图像的 LoG (Laplacian of Gaussian, 高斯拉普拉斯) 滤波图像金字塔 (Image Pyramid) 。  Step 102: Establish a LoG (Laplacian of Gaussian) filtered image pyramid (Image Pyramid) of the original image.
图 2是现有 LoG滤波图像金字塔生成方法 200的示范性流程图。  2 is an exemplary flow chart of a prior art LoG filtered image pyramid generation method 200.
步骤 202, 对原始图像进行连续的下采样 (Down Sample) , 得到多张 目标图像。  Step 202: Perform continuous down sampling (Down Sample) on the original image to obtain multiple target images.
具体来说, 首先, 对原始图像进行下采样, 生成目标图像 1。 其次, 对 目标图像 1进行下采样, 生成目标图像 2。再次, 对目标图像 2进行下采样, 生成目标图像 3。 上述过程持续进行, 直到生成目标图像 M。 其中, 原始图 像可以视为目标图像 0。  Specifically, first, the original image is downsampled to generate a target image 1. Next, the target image 1 is downsampled to generate a target image 2. Again, the target image 2 is downsampled to generate a target image 3. The above process continues until the target image M is generated. Among them, the original image can be regarded as the target image 0.
在具体实现过程中, 上述下采样, 是指对所针对的图像按照长宽比不变 进行缩小。 具体来说, 可以使用近邻采样法、 双线性插值法等常用的图像下 采样方法。 经过下采样, 目标图像 M的大小可以为目标图像 M-1的例如但 不限于 1/2。  In the specific implementation process, the above-mentioned downsampling refers to reducing the image to be targeted according to the aspect ratio. Specifically, a common image down sampling method such as a neighbor sampling method or a bilinear interpolation method can be used. After downsampling, the size of the target image M may be, for example but not limited to, 1/2 of the target image M-1.
步骤 204, 对每张目标图像进行多次 LoG滤波, 生成该目标图像的多张 LoG滤波图像。  Step 204: Perform multiple LoG filtering on each target image to generate multiple LoG filtered images of the target image.
具体来说, 在对目标图像进行 LoG滤波过程中, 首先对目标图像进行 高斯滤波,生成高斯滤波图像。其次,对该高斯滤波图像进行拉普拉斯滤波, 生成 LoG滤波图像。 Specifically, in the process of performing LoG filtering on the target image, the target image is first performed. Gaussian filtering to generate a Gaussian filtered image. Next, Laplace filtering is performed on the Gaussian filtered image to generate a LoG filtered image.
在每次 LoG 滤波过程中, 高斯滤波所使用的高斯滤波参数可表示为 σ(Ν)。 对于同一目标图像, 在使用 σ(Ν - 1)、 σ(Ν)和 σ(Ν + 1)作为高斯滤波参 数而分别获得的三张 L 0 G滤波图像中, 高斯滤波参数为 σ( Ν - 1)的 L 0 G滤波 图像为高斯滤波参数为 σ(Ν)的 LoG滤波图像的上层图像, 高斯滤波参数为 σ(Ν + 1)的 LoG 滤波图像为高斯滤波参数为 σ(Ν)的 LoG 滤波图像的下层图 像。 也就是说, 一 LoG滤波图像与其上层图像和下层图像, 均源自同一目 标图像, 生成该 LoG滤波图像及其上层图像和下层图像时所使用的高斯滤 波参数分别为 σ(Ν)、 σ(Ν - 1)和 σ(Ν + 1)。 此外, 生成不同 LoG滤波图像时所 使用的拉普拉斯滤波参数可以是不同的。 由此可见, 同一目标图像的多张 LoG滤波图像是按照一定的次序顺序生成的,这种次序可以通过高斯滤波参 数来体现, 即顺序生成的多张 LoG滤波图像, 其生成过程中所采用的高斯 滤波参数依次为 σ(1)、 σ(2)、 σ(3) ... σ(Ν - 1)、 σ(Ν), 这些 LoG滤波图像彼此 之间是连续的。 在对一目标图像生成的多张 LoG滤波图像中, 基于高斯滤 波参数 σ(Ν)生成的 LoG滤波图像为这些 LoG滤波图像中的第 N层 LoG滤 波图像。 The Gaussian filter parameters used by Gaussian filtering can be expressed as σ(Ν) during each LoG filtering process. For the same target image, in the three L 0 G filtered images obtained by using σ(Ν - 1), σ(Ν) and σ(Ν + 1) as Gaussian filter parameters, the Gaussian filter parameter is σ( Ν - 1) The L 0 G filtered image is the upper layer image of the LoG filtered image with Gaussian filter parameter σ (Ν), and the LoG filtered image with Gaussian filter parameter σ(Ν + 1) is the LoG with Gaussian filter parameter σ(Ν) Filter the underlying image of the image. That is to say, a LoG filtered image and its upper layer image and lower layer image are both derived from the same target image, and the Gaussian filtering parameters used to generate the LoG filtered image and its upper layer image and the lower layer image are σ(Ν), σ( Ν - 1) and σ(Ν + 1). Furthermore, the Laplacian filter parameters used to generate different LoG filtered images may be different. It can be seen that multiple LoG filtered images of the same target image are sequentially generated in a certain order, and the order can be expressed by Gaussian filtering parameters, that is, multiple LoG filtered images sequentially generated, which are used in the generation process. The Gaussian filtering parameters are σ(1), σ(2), σ(3) ... σ(Ν - 1), σ(Ν) in order, and these LoG filtered images are continuous with each other. In the multiple LoG filtered images generated for a target image, the LoG filtered image generated based on the Gaussian filter parameter σ(Ν) is the Nth layer LoG filtered image in these LoG filtered images.
经过上述步骤 202和 204, 便可生成 LoG滤波图像金字塔。 不难发现, LoG 滤波图像金字塔包括连续的多组图像, 每组图像包括连续的多张 LoG 滤波图像, 且每组图像为前组图像的下采样图像。 在具体实现过程中, 每组 图像中 LoG滤波图像的数量可根据具体需要进行设置。 通常情况下, 每组 图像至少包含三张 LoG滤波图像。 应注意, 在具体实现过程中, 上述步骤 202和 204也可交叉进行, 即每生成一张目标图像, 就对该目标图像进行多 次 Lo G滤波, 生成该目标图像的多张 L 0 G滤波图像。  After the above steps 202 and 204, a LoG filtered image pyramid can be generated. It is not difficult to find that the LoG filtered image pyramid includes a continuous plurality of sets of images, each set of images includes a plurality of consecutive LoG filtered images, and each set of images is a downsampled image of the previous set of images. In the specific implementation process, the number of LoG filtered images in each group of images can be set according to specific needs. Normally, each set of images contains at least three LoG filtered images. It should be noted that in the specific implementation process, the above steps 202 and 204 may also be performed by crossover, that is, each time a target image is generated, multiple Lo G filtering is performed on the target image to generate multiple L 0 G filters of the target image. image.
此外, 在具体实现过程中, 还可采用下面描述的另外一种方法来生成 LoG滤波图像金字塔。 首先对原始图像进行多次 LoG滤波, 从而为原始图 像生成一组 Lo G滤波图像(该组 Lo G滤波图像包含原始图像的多张 Lo G滤 波图像) 。 此后, 对原始图像的这一组 LoG滤波图像中的每张 LoG滤波图 像分别进行下采样, 从而生成另一组 LoG滤波图像。 此后, 对上述另一组 LoG滤波图像中的每张 LoG滤波图像分别进行下采样, 生成再一组 LoG滤 波图像。 上述过程持续进行, 直到生成 M组 LoG滤波图像。 上述顺序生成 的 M组 LoG滤波图像便可组成 LoG滤波图像金字塔。 In addition, in a specific implementation process, another method described below may also be used to generate a LoG filtered image pyramid. First, the original image is subjected to multiple LoG filtering, which is the original image. The image is generated as a set of Lo G filtered images (the set of Lo G filtered images contains multiple Lo G filtered images of the original image). Thereafter, each LoG filtered image in the set of LoG filtered images of the original image is separately downsampled to generate another set of LoG filtered images. Thereafter, each LoG filtered image in the other set of LoG filtered images is downsampled to generate a further set of LoG filtered images. The above process continues until M sets of LoG filtered images are generated. The M sets of LoG filtered images generated in the above sequence can form a LoG filtered image pyramid.
图 3是现有 LoG滤波图像金字塔生成过程的示范性示意图。 如图 3所 示, 原始图像经过下采样生成目标图像 1, 目标图像 1经过下采样生成目标 图像 2, 其中, 目标图像 1是原始图像的 1/2, 目标图像 2是目标图像 1的 1/2。  FIG. 3 is an exemplary schematic diagram of a conventional LoG filtered image pyramid generation process. As shown in FIG. 3, the original image is subjected to downsampling to generate a target image 1, and the target image 1 is subjected to downsampling to generate a target image 2, wherein the target image 1 is 1/2 of the original image, and the target image 2 is 1/ of the target image 1. 2.
每张目标图像 (包括原始图像) 经过三次 LoG滤波, 生成该目标图像 的三张 LoG滤波图像。 其中, 每次 LoG滤波过程包括, 首先对目标图像进 行高斯滤波,生成高斯滤波图像。然后再对高斯滤波图像进行拉普拉斯滤波, 生成 LoG滤波图像。 以目标图像 1为例, 经过三次 LoG滤波, 最终生成三 张 LoG滤波图像 302-306。 在针对同一目标图像 (即目标图像 1 ) 而获得的 这三张 LoG滤波图像 302-306中, 生成 LoG滤波图像 302所使用的高斯滤 波参数为 σ(1), 生成 LoG滤波图像 304所使用的高斯滤波参数为 σ(2), 生成 LoG滤波图像 306所使用的高斯滤波参数为 σ(3), 因此, LoG滤波图像 302 为 LoG滤波图像 304的上层图像, LoG滤波图像 306为 LoG滤波图像 304 的下层图像。  Each target image (including the original image) is subjected to three LoG filtering to generate three LoG filtered images of the target image. Wherein, each LoG filtering process includes first performing Gaussian filtering on the target image to generate a Gaussian filtered image. Then, the Gaussian filtered image is subjected to Laplacian filtering to generate a LoG filtered image. Taking the target image 1 as an example, after three LoG filtering, three LoG filtered images 302-306 are finally generated. In the three LoG filtered images 302-306 obtained for the same target image (ie, the target image 1), the Gaussian filter parameter used to generate the LoG filtered image 302 is σ(1), which is used to generate the LoG filtered image 304. The Gaussian filter parameter is σ(2), and the Gaussian filter parameter used to generate the LoG filtered image 306 is σ(3). Therefore, the LoG filtered image 302 is the upper layer image of the LoG filtered image 304, and the LoG filtered image 306 is the LoG filtered image 304. The underlying image.
经过上述处理, 将生成自下而上的三组图像, 第一组图像包括对原始图 像进行三次 LoG滤波而生成的三张 LoG滤波图像, 第二组图像包括对目标 图像 1进行三次 LoG滤波而生成的三张 LoG滤波图像, 第三组图像包括对 目标图像 2进行三次 LoG滤波而生成的三张 LoG滤波图像。 三组图像构成 LoG滤波图像金字塔 308。  After the above processing, three sets of images from bottom to top will be generated. The first set of images includes three LoG filtered images generated by performing three LoG filtering on the original image, and the second set of images includes three times on the target image 1. Three LoG filtered images generated by LoG filtering, and the third set of images includes three LoG filtered images generated by performing three LoG filtering on the target image 2. The three sets of images constitute a LoG filtered image pyramid 308.
在具体实现过程中, 下采样的次数及 LoG滤波图像的数量等参数可根 据具体需要进行设置。 In the specific implementation process, the number of times of downsampling and the number of LoG filtered images can be rooted. Set according to specific needs.
下面继续介绍方法 100中的其他步骤。  The other steps in method 100 continue below.
在执行完方法 100中的步骤 102之后, 在步骤 104, 确定每张 LoG滤波 图像的兴趣点。  After performing step 102 in method 100, at step 104, points of interest for each LoG filtered image are determined.
图 4是现有兴趣点判断过程的示范性示意图。如图 4所示, 其中展示了 三张 LoG滤波图像, 这三张 LoG滤波图像是通过对同一目标图像进行三次 LoG滤波而获得的。 为便于描述, 这三张 LoG滤波图像即为图 3 中的三张 LoG滤波图像 302-306。 如上文所述, LoG滤波图像 302-306是通过对图 3 中的目标图像 1 进行三次 LoG滤波最终生成的。 在这三张 LoG滤波图像 302-306中,生成 LoG滤波图像 302所使用的高斯滤波参数为 σ(1),生成 LoG 滤波图像 304所使用的高斯滤波参数为 σ(2),生成 LoG滤波图像 306所使用 的高斯滤波参数为 σ(3), 因此, LoG滤波图像 302为 LoG滤波图像 304的上 层图像, LoG滤波图像 306为 LoG滤波图像 304的下层图像。 下文以像素 314为例, 介绍 LoG滤波图像兴趣点的判断过程。  FIG. 4 is an exemplary schematic diagram of an existing point of interest judging process. As shown in Fig. 4, three LoG filtered images are shown, which are obtained by performing three LoG filtering on the same target image. For ease of description, the three LoG filtered images are the three LoG filtered images 302-306 in Figure 3. As described above, the LoG filtered images 302-306 are ultimately generated by performing three LoG filtering on the target image 1 in Fig. 3. In the three LoG filtered images 302-306, the Gaussian filter parameter used to generate the LoG filtered image 302 is σ(1), and the Gaussian filter parameter used to generate the LoG filtered image 304 is σ(2), and a LoG filtered image is generated. The Gaussian filter parameter used by 306 is σ(3). Therefore, the LoG filtered image 302 is the upper layer image of the LoG filtered image 304, and the LoG filtered image 306 is the lower layer image of the LoG filtered image 304. The following takes pixel 314 as an example to introduce the judgment process of interest points of LoG filtered images.
具体来说, 在判断像素 314是否为 LoG滤波图像 304的兴趣点时, 需 要将像素 314的振幅与至少 26个其他像素的振幅进行比较。 若比较结果显 示像素 314 的振幅为一极值 (Extremum, 例如极大值或者极小值) , 则判 定像素 314为 LoG滤波图像 304的兴趣点。 为描述上述 26个其他像素的具 体位置, 首先在 LoG滤波图像 304上定义一局部区域, 该局部区域至少包 括像素 314及像素 314周围的 8个像素, 如 LoG滤波图像 304上的局部区 域 310, 其中, 像素 314周围的 8个像素分别为像素 316-330。 即, 局部区 域 310是以像素 314为中心的 3x3 区域。 在具体实现过程中, 该局部区域 310还可采用以像素 314为中心的 NxN区域, 其中 N为大于 3的奇数。 其 次,确定该局部区域在 LoG滤波图像 304的上层图像(即 LoG滤波图像 302) 和下层图像 (即 LoG滤波图像 306) 上的对应区域, 即上层区域 308和下层 区域 312。具体来说, 首先确定局部区域 310在 LoG滤波图像 304上的位置 坐标, 然后确定 LoG滤波图像 302 (LoG滤波图像 304的上层图像) 和 306 (LoG滤波图像 304的下层图像)上由上述位置坐标指示的区域, 即上层区 域 308和下层区域 312。如图 4所示,上层区域 308在 LoG滤波图像 302(LoG 滤波图像 304的上层图像) 上的位置与局部区域 310在 LoG滤波图像 304 上的位置相同, 下层区域 312在 LoG滤波图像 306 (LoG滤波图像 304的下 层图像) 上的位置与局部区域 310在 LoG滤波图像 304上的位置相同。 如 此一来,上述 26个其他像素即为局部区域 310中像素 314之外的 8个像素、 上层区域 308中的 9个像素 332-348以及下层区域 312中的 9个像素 350-366。 由如上过程可知, 判断一个像素是否为该像素所在 LoG滤波图像的兴趣点 时, 需要同时用到该像素所在 LoG滤波图像的上层图像和下层图像。 如上 文所述, 该 LoG滤波图像及其上层图像和下层图像, 均源自同一目标图像, 且生成该 LoG滤波图像及其上层图像和下层图像时所使用的高斯滤波参数 分别为 σ(Ν)、 σ(Ν _ΐ;^。σ(Ν + 1)。 Specifically, when it is determined whether the pixel 314 is a point of interest of the LoG filtered image 304, the amplitude of the pixel 314 needs to be compared with the amplitude of at least 26 other pixels. If the comparison result shows that the amplitude of the pixel 314 is an extreme value (Extremum, such as a maximum value or a minimum value), the determination pixel 314 is a point of interest of the LoG filtered image 304. To describe the specific locations of the 26 other pixels, a local area is first defined on the LoG filtered image 304, the local area including at least pixels 314 and 8 pixels around the pixel 314, such as the local area 310 on the LoG filtered image 304. The eight pixels around the pixel 314 are respectively pixels 316-330. That is, the local area 310 is a 3x3 area centered on the pixel 314. In a specific implementation process, the local area 310 may also adopt an NxN area centered on the pixel 314, where N is an odd number greater than 3. Next, the corresponding area on the upper layer image (i.e., LoG filtered image 302) and the lower layer image (i.e., LoG filtered image 306) of the LoG filtered image 304, that is, the upper layer area 308 and the lower layer area 312 are determined. Specifically, the location of the local area 310 on the LoG filtered image 304 is first determined. The coordinates, and then the areas indicated by the above position coordinates on the LoG filtered image 302 (upper layer image of the LoG filtered image 304) and 306 (lower layer image of the LoG filtered image 304), that is, the upper layer area 308 and the lower layer area 312 are determined. As shown in FIG. 4, the position of the upper layer region 308 on the LoG filtered image 302 (the upper layer image of the LoG filtered image 304) is the same as the position of the local region 310 on the LoG filtered image 304, and the lower layer region 312 is at the LoG filtered image 306 (LoG). The position on the lower layer image of the filtered image 304 is the same as the position of the local area 310 on the LoG filtered image 304. In this way, the 26 other pixels are 8 pixels out of the pixel 314 in the local area 310, 9 pixels 332-348 in the upper layer area 308, and 9 pixels 350-366 in the lower layer area 312. As can be seen from the above process, when determining whether a pixel is a point of interest of a LoG filtered image in which the pixel is located, it is necessary to simultaneously use an upper layer image and a lower layer image of the LoG filtered image in which the pixel is located. As described above, the LoG filtered image and the upper layer image and the lower layer image are both derived from the same target image, and the Gaussian filtering parameters used when generating the LoG filtered image and the upper layer image and the lower layer image are respectively σ(Ν) , σ(Ν _ΐ;^.σ(Ν + 1).
不难理解, 在确定每张 LoG滤波图像的兴趣点时, 需要用到该 LoG滤 波图像的上层图像和下层图像。 由于 LoG滤波图像金字塔中的每组 LoG滤 波图像中的第一张 L 0 G滤波图像没有上层图像, 最后一张 L 0 G滤波图像没 有下层图像, 因此, 在具体实现过程中, 往往只需确定每组 LoG滤波图像 中第一张 LoG滤波图像和最后一张 LoG滤波图像之外的其他 LoG滤波图像 的兴趣点即可。 当然, 也可采用现有的一些方法确定第一张 LoG滤波图像 和最后一张 LoG滤波图像的兴趣点。 此外, 判断一个像素是否为像素所在 LoG滤波图像的兴趣点, 需要用到该像素周围的至少 8个像素。 当待判断像 素处于其所在图像的边缘时, 该像素周围的像素可能不足 8个。 在这种情况 下, 可不对这些处于图像边缘的像素进行兴趣点判断, 当然也可采用现有的 一些方法判断这些像素是否是其所在图像的兴趣点。  It is not difficult to understand that the upper and lower images of the LoG filtered image are used in determining the point of interest of each LoG filtered image. Since the first L 0 G filtered image in each set of LoG filtered images in the LoG filtered image pyramid has no upper layer image, the last L 0 G filtered image has no lower layer image. Therefore, in the specific implementation process, it is often only determined. The interest points of the first LoG filtered image and the other LoG filtered images other than the last LoG filtered image in each group of LoG filtered images may be used. Of course, some existing methods can also be used to determine the points of interest of the first LoG filtered image and the last LoG filtered image. In addition, determining whether a pixel is a point of interest of a LoG filtered image in which a pixel is located requires at least 8 pixels around the pixel. When the pixel to be judged is at the edge of the image it is in, there may be fewer than eight pixels around the pixel. In this case, the points of interest at the edges of the image may not be judged, and of course, some methods may be used to determine whether the pixels are points of interest of the image in which they are located.
下面继续介绍方法 100中的其他步骤。  The other steps in method 100 continue below.
在执行完方法 100中的步骤 104之后, 在步骤 106, 根据在步骤 104中 确定的每张 LoG滤波图像的兴趣点, 确定原始图像的兴趣点。 After performing step 104 in method 100, at step 106, according to step 104 Determine the points of interest of each LoG filtered image and determine the points of interest of the original image.
具体来说, 可以采用现有的各种方法, 来根据每张 LoG滤波图像的兴 趣点, 确定原始图像的兴趣点。  Specifically, various methods can be used to determine the points of interest of the original image based on the interest points of each LoG filtered image.
应注意, 在具体实现过程中, 如果对 LoG滤波图像金字塔中每组 LoG 滤波图像的第一张 LoG滤波图像和最后一张 LoG滤波图像, 没有确定其各 自的兴趣点, 则在确定原始图像的兴趣点的过程中, 不考虑这些没有确定兴 趣点的 LoG滤波图像。  It should be noted that, in the specific implementation process, if the first LoG filtered image and the last LoG filtered image of each set of LoG filtered images in the LoG filtered image pyramid are not determined by their respective points of interest, the original image is determined. In the process of interest points, these LoG filtered images without determining the points of interest are not considered.
本领域的技术人员不难发现, 在图 4所示的兴趣点判断过程中, 为确定 一张 LoG滤波图像的兴趣点, 需要在内存中同时加载三张 LoG图像, 即待 确定兴趣点的 LoG滤波图像以及该 LoG滤波图像的上层图像和下层图像。 这使得移动终端在执行上述操作时存在一定的难度。众所周知,移动终端(例 如各种智能电话) 的摄像头性能越来越强, 拍摄的图像越来越清晰, 由此导 致每张图片的占用空间越来越大。 在这种情况下, 为确定一张 LoG滤波图 像的兴趣点 (例如, 在使用移动终端来进行图像比对的过程中) , 需要同时 在移动终端的内存中加载三张图像, 这必然会占用大量宝贵的内存资源, 影 响移动终端的整体性能。 发明内容  It is not difficult to be found by those skilled in the art that in determining the point of interest of a LoG filtered image, in the process of determining the point of interest shown in FIG. 4, three LoG images need to be loaded in the memory simultaneously, that is, the LoG to be determined. The filtered image and the upper layer image and the lower layer image of the LoG filtered image. This makes the mobile terminal have some difficulty in performing the above operations. It is well known that the performance of cameras of mobile terminals (such as various smart phones) is getting stronger and stronger, and the images taken are becoming more and more clear, which leads to an increasing space for each picture. In this case, in order to determine a point of interest of a LoG filtered image (for example, in the process of using a mobile terminal for image comparison), it is necessary to simultaneously load three images in the memory of the mobile terminal, which inevitably takes up A large amount of valuable memory resources affect the overall performance of the mobile terminal. Summary of the invention
有鉴于此, 实有必要提供一种兴趣点判断方法, 以解决现有兴趣点判断 方法占用内存过大的问题。  In view of this, it is necessary to provide a method of judging the point of interest to solve the problem that the existing point of interest judging method takes up too much memory.
同时, 提供一种兴趣点判断装置, 以解决现有兴趣点判断方法占用内存 过大的问题。  At the same time, a point of interest judging device is provided to solve the problem that the existing point of interest judging method takes up too much memory.
根据本发明的一个方面, 提供一种兴趣点判断方法, 用于判断当前像素 是否为当前像素所在的当前图像的兴趣点, 其中, 所述当前图像是通过使用 第一滤波参数组对目标图像进行滤波处理而得到的, 所述方法包括:  According to an aspect of the present invention, a method for determining a point of interest is provided for determining whether a current pixel is a point of interest of a current image in which a current pixel is located, wherein the current image is performed on a target image by using a first filter parameter set Obtained by filtering, the method includes:
将当前像素的振幅与当前图像上所述当前像素所在的局部区域内其他 像素的振幅相比较, 在比较结果显示当前像素的振幅为一极值时, 确定所述 局部区域在所述目标图像上的对应区域, 作为目标区域; Comparing the amplitude of the current pixel with the amplitude of other pixels in the local region where the current pixel is located on the current image, and determining, when the comparison result shows that the amplitude of the current pixel is an extreme value, a corresponding area of the local area on the target image as a target area;
使用第二滤波参数组对所述目标区域进行滤波处理, 得到第二区域; 将当前像素的振幅与所述第二区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时,使用第三滤波参数组对所述目标区域进 行滤波处理, 得到第三区域;  And filtering the target area by using a second filter parameter set to obtain a second area; comparing an amplitude of the current pixel with an amplitude of all pixels in the second area, and comparing the result, the amplitude of the current pixel is one pole And a third filter parameter group is used to filter the target area to obtain a third area;
将当前像素的振幅与所述第三区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时, 判定当前像素为当前图像的兴趣点。  The amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
根据本发明的另一方面, 提供一种兴趣点判断装置, 用于判断当前像素 是否为当前像素所在的当前图像的兴趣点, 其中, 所述当前图像是通过使用 第一滤波参数组对目标图像进行滤波处理而得到的, 所述装置包括:  According to another aspect of the present invention, a point of interest judging device is provided for determining whether a current pixel is a point of interest of a current image in which a current pixel is located, wherein the current image is a target image by using a first filter parameter group The filtering process is performed, and the device includes:
存储器, 用于存储所述当前图像;  a memory, configured to store the current image;
处理器, 用于执行如下操作:  The processor is configured to perform the following operations:
将当前像素的振幅与当前图像上所述当前像素所在的局部区域内 其他像素的振幅相比较, 在比较结果显示当前像素的振幅为一极值时, 确定所述局部区域在所述目标图像上的对应区域, 作为目标区域; 使用第二滤波参数组对所述目标区域进行滤波处理, 得到第二区 域;  Comparing the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and determining that the local area is on the target image when the comparison result shows that the amplitude of the current pixel is an extreme value a corresponding area, as a target area; filtering the target area using a second filter parameter set to obtain a second area;
将当前像素的振幅与所述第二区域内所有像素的振幅相比较,在比 较结果显示当前像素的振幅为一极值时,使用第三滤波参数组对所述目 标区域进行滤波处理, 得到第三区域;  Comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, filtering the target region by using the third filter parameter group to obtain the first Three regions;
将当前像素的振幅与所述第三区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时, 判定当前像素为当前图像的兴趣点。  The amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
本发明实施例在判定一个像素是否为该像素所在图像的兴趣点时,无需 同时在内存中加载该图像的整张上层图像和整张下层图像, 而仅需临时计算 该像素所在的局部区域在上述上层图像和下层图像上的对应区域。 由此可 见, 本发明实施例提供的技术方案可大大降低兴趣点判断过程对内存的占 用。 附图说明 When determining whether a pixel is a point of interest of an image of the pixel, the embodiment of the present invention does not need to simultaneously load the entire upper layer image and the entire lower layer image of the image in the memory, but only needs to temporarily calculate the local area where the pixel is located. Corresponding regions on the upper layer image and the lower layer image. It can be seen that the technical solution provided by the embodiment of the present invention can greatly reduce the occupation of memory by the point of interest judging process. DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。  In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings to be used in the embodiments of the present invention will be briefly described below. It is obvious that the drawings described below are only some embodiments of the present invention, Those skilled in the art can also obtain other drawings based on these drawings without paying any creative work.
图 1是现有兴趣点检测方法的示范性流程图;  1 is an exemplary flowchart of a method for detecting a point of interest;
图 2是现有 Lo G滤波图像金字塔生成方法的示范性流程图;  2 is an exemplary flowchart of a conventional Lo G filtered image pyramid generation method;
图 3是现有 LoG滤波图像金字塔生成过程的示范性示意图;  3 is an exemplary schematic diagram of a conventional LoG filtered image pyramid generation process;
图 4是现有兴趣点判断过程的示范性示意图;  4 is an exemplary schematic diagram of a prior interest point determination process;
图 5是依据本发明一实施例的兴趣点判断方法的示范性流程图; 图 6是依据本发明一实施例的对一目标区域进行 LoG滤波操作的过程 示意图;  FIG. 5 is an exemplary flowchart of a method for judging a point of interest according to an embodiment of the present invention; FIG. 6 is a schematic diagram of a process of performing a LoG filtering operation on a target area according to an embodiment of the invention;
图 7是反向对称填充方法的过程示意图;  7 is a schematic diagram of a process of a reverse symmetric filling method;
图 8是依据本发明一实施例的兴趣点判断过程的示范性示意图; 图 9是依据本发明一实施例的兴趣点判断方法的示范性流程图; 图 10是依据本发明一实施例的兴趣点判断方法的示范性流程图; 图 11是依据本发明一实施例的兴趣点判断装置的示范性硬件结构示意 图;  8 is an exemplary schematic diagram of a point of interest judging process according to an embodiment of the present invention; FIG. 9 is an exemplary flowchart of a method for judging a point of interest according to an embodiment of the present invention; FIG. 10 is an illustration of an interest according to an embodiment of the present invention. FIG. 11 is a schematic diagram showing an exemplary hardware structure of a point of interest judging apparatus according to an embodiment of the present invention; FIG.
图 12是依据本发明一实施例的兴趣点判断装置的示范性硬件结构示意 图;  FIG. 12 is a schematic diagram showing an exemplary hardware configuration of a point of interest judging apparatus according to an embodiment of the present invention; FIG.
图 13是依据本发明一实施例的兴趣点判断装置的示范性逻辑结构示意 图;  FIG. 13 is a schematic diagram showing an exemplary logical structure of a point of interest judging apparatus according to an embodiment of the present invention; FIG.
图 14是依据本发明一实施例的兴趣点判断装置的示范性逻辑结构示意 图。 具体实施方式  Figure 14 is a diagram showing an exemplary logical structure of a point of interest judging device in accordance with an embodiment of the present invention. detailed description
图 5是依据本发明一实施例的兴趣点判断方法 500的示范性流程图。方 法 500用于判断当前像素是否为当前像素所在的当前图像的兴趣点, 其中, 所述当前图像是通过使用第一滤波参数组对目标图像进行滤波处理而得到 的。 FIG. 5 is an exemplary flow chart of a point of interest determination method 500 in accordance with an embodiment of the present invention. Square The method 500 is configured to determine whether the current pixel is a point of interest of a current image where the current pixel is located, wherein the current image is obtained by filtering the target image by using the first filter parameter group.
步骤 502, 将当前像素的振幅与当前图像上所述当前像素所在的局部区 域内其他像素的振幅相比较, 在比较结果显示当前像素的振幅为一极值时, 确定所述局部区域在所述目标图像上的对应区域, 作为目标区域。  Step 502: Comparing the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and determining, when the comparison result shows that the amplitude of the current pixel is an extreme value, determining the local area in the The corresponding area on the target image serves as the target area.
有关所述局部区域和极值等技术特征的内容已经在背景技术中进行了 详细的描述, 因此此处不再赘述。 此外, 在具体实现过程中, 在将当前像素 与局部区域内其他像素进行比较时, 还可比较振幅之外的其他像素属性, 例 如但不限于灰度值等。 概括的说, 在进行像素比较时, 比较的内容可统称为 像素值。  The contents of the technical features such as the local area and the extreme value have been described in detail in the background art, and therefore will not be described herein. In addition, in the specific implementation process, when comparing the current pixel with other pixels in the local area, other pixel attributes other than the amplitude may be compared, such as but not limited to gray values. In summary, when comparing pixels, the content of the comparison can be collectively referred to as the pixel value.
在确定上述目标区域时, 可首先确定局部区域在当前图像上的位置坐 标, 例如确定局部区域的边界在当前图像上的位置坐标。 然后确定目标图像 上由上述位置坐标指示的区域, 即目标图像上由上述边界坐标围成的区域, 即可获得上述局部区域在上述目标图像上的对应区域。  In determining the target area, the positional coordinates of the local area on the current image may be first determined, such as determining the positional coordinates of the boundary of the local area on the current image. Then, an area indicated by the position coordinates on the target image, that is, an area surrounded by the boundary coordinates on the target image is determined, and a corresponding area of the partial area on the target image can be obtained.
步骤 504, 使用第二滤波参数组对所述目标区域进行滤波处理, 得到第 二区域。  Step 504: Perform filtering processing on the target area by using a second filter parameter group to obtain a second area.
步骤 506,将当前像素的振幅与所述第二区域内所有像素的振幅相比较, 在比较结果显示当前像素的振幅为一极值时,使用第三滤波参数组对所述目 标区域进行滤波处理, 得到第三区域。  Step 506, comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, filtering the target region by using the third filtering parameter group. , get the third area.
具体来说, 每一滤波参数组 (例如第一滤波参数组、 第二滤波参数组以 及第三滤波参数组) 可包含一个或者多个滤波参数。 在下文的描述中, 本文 以每一滤波参数组包含两个滤波参数为例进行说明。  In particular, each filter parameter set (e.g., the first filter parameter set, the second filter parameter set, and the third filter parameter set) may include one or more filter parameters. In the following description, the description is made by taking two filtering parameters for each filtering parameter group as an example.
当每一滤波参数组包含两个滤波参数时,可将这两个滤波参数分别记为 第一滤波参数和第二滤波参数。 在这种情况下, 对于一待处理图像, 上述滤 波处理可包括,使用该滤波处理所使用的滤波参数组中的第一滤波参数对待 处理图像进行第一滤波操作, 得到第一滤波图像; 使用该滤波处理所使用的 滤波参数组中的第二滤波参数对第一滤波图像进行第二滤波操作,得到第二 滤波图像。 由于根据第一滤波参数组、 第二滤波参数组和第三滤波参数组进 行的滤波处理均是针对同一目标图像而进行的, 因此若将所述第一滤波参数 组中的第一滤波参数设置为 σ( N ),将所述第二滤波参数组中的第一滤波参数 设置为 σ(Ν - 1), 将所述第三滤波参数组中的第一滤波参数设置为 σ(Ν + 1), 则第二区域可视为上述局部区域的上层区域(即第二区域可视为上述局部区 域在当前图像的上层图像的对应区域) , 第三区域可视为上述局部区域的下 层区域 (即第三区域可视为上述局部区域在当前图像的下层图像的对应区 域) 。 又例如, 由于根据第一滤波参数组、 第二滤波参数组和第三滤波参数 组进行的滤波处理均是针对同一目标图像而进行的, 因此若将所述第一滤波 参数组中的第一滤波参数设置为 σ(Ν),将所述第二滤波参数组中的第一滤波 参数设置为 σ( Ν + 1), 将所述第三滤波参数组中的第一滤波参数设置为 σ(Ν - 1), 则第二区域可视为上述局部区域的下层区域(即第二区域可视为上 述局部区域在当前图像的下层图像的对应区域) , 第三区域可视为上述局部 区域的上层区域(即第三区域可视为上述局部区域在当前图像的上层图像的 对应区域) 。 然而, 应注意, 在具体实现过程中, 使用第一滤波参数组、 第 二滤波参数组和第三滤波参数组对同一目标图像分别进行滤波处理所获得 的滤波图像, 彼此之间也可以是不连续的, 只要第一滤波参数组、 第二滤波 参数组和第三滤波参数组中的第一滤波参数各不相同即可。 例如, 第一滤波 参数组中的第一滤波参数为 σ(Ν), 第二滤波参数组中的第一滤波参数为 σ(Ν -3), 第三滤波参数组中的第一滤波参数为 σ(Ν + 5)。 或者, 第一滤波参 数组中的第一滤波参数为 σ(Ν), 第二滤波参数组中的第一滤波参数为 σ(Ν + 2), 第三滤波参数组中的第一滤波参数为 σ(Ν - 4)。 或者, 第一滤波参 数组中的第一滤波参数为 σ(Ν), 第二滤波参数组中的第一滤波参数为 σ(Ν - 2), 第三滤波参数组中的第一滤波参数为 σ(Ν -5)。 或者, 第一滤波参 数组中的第一滤波参数为 σ(Ν), 第二滤波参数组中的第一滤波参数为 σ(Ν + 2), 第三滤波参数组中的第一滤波参数为 σ(Ν + 5)。 当然, 如果使用第 一滤波参数组、第二滤波参数组和第三滤波参数组对同一目标图像分别进行 滤波处理所获得的滤波图像,彼此之间是连续的,则确定的兴趣点更为准确。 When each filter parameter set includes two filter parameters, the two filter parameters may be respectively recorded as a first filter parameter and a second filter parameter. In this case, for an image to be processed, the filtering process may include: performing a first filtering operation on the image to be processed using the first filtering parameter in the filtering parameter group used in the filtering process to obtain a first filtered image; The filtering process used The second filtering parameter in the filtering parameter group performs a second filtering operation on the first filtered image to obtain a second filtered image. Since the filtering processing according to the first filtering parameter group, the second filtering parameter group, and the third filtering parameter group is performed for the same target image, if the first filtering parameter in the first filtering parameter group is set For σ ( N ), the first filter parameter in the second filter parameter set is set to σ(Ν - 1), and the first filter parameter in the third filter parameter set is set to σ(Ν + 1 The second area can be regarded as the upper layer area of the partial area (that is, the second area can be regarded as the corresponding area of the upper area image of the current image in the current image), and the third area can be regarded as the lower layer area of the partial area ( That is, the third area can be regarded as the corresponding area of the above-mentioned partial area in the lower layer image of the current image. For another example, since the filtering process according to the first filter parameter group, the second filter parameter group, and the third filter parameter group is performed for the same target image, if the first filter parameter group is the first one The filter parameter is set to σ(Ν), the first filter parameter in the second filter parameter set is set to σ( Ν + 1), and the first filter parameter in the third filter parameter set is set to σ ( Ν - 1), the second area can be regarded as the lower layer area of the local area (ie, the second area can be regarded as the corresponding area of the local image in the lower layer image of the current image), and the third area can be regarded as the partial area The upper region (ie, the third region can be regarded as the corresponding region of the upper region image of the current image in the current image). However, it should be noted that, in a specific implementation process, the filtered image obtained by separately filtering the same target image using the first filter parameter group, the second filter parameter group, and the third filter parameter group may also be mutually Continuously, as long as the first filter parameter in the first filter parameter group, the second filter parameter group, and the third filter parameter group are different. For example, the first filter parameter in the first filter parameter group is σ(Ν), the first filter parameter in the second filter parameter group is σ(Ν -3), and the first filter parameter in the third filter parameter group is σ(Ν + 5). Or the first filter parameter in the first filter parameter group is σ(Ν), the first filter parameter in the second filter parameter group is σ(Ν + 2), and the first filter parameter in the third filter parameter group is σ(Ν - 4). Or the first filter parameter in the first filter parameter group is σ(Ν), the first filter parameter in the second filter parameter group is σ(Ν - 2), and the first filter parameter in the third filter parameter group is σ(Ν -5). Or the first filter parameter in the first filter parameter group is σ(Ν), and the first filter parameter in the second filter parameter group is σ(Ν + 2), the first filter parameter in the third filter parameter set is σ(Ν + 5). Of course, if the filtered images obtained by separately filtering the same target image using the first filter parameter set, the second filter parameter set, and the third filter parameter set are continuous with each other, the determined interest points are more accurate. .
在具体实现过程中, 上述第一滤波参数可以为高斯滤波参数, 上述第二 滤波参数可以为拉普拉斯滤波参数, 上述第一滤波操作为高斯滤波操作, 上 述第二滤波操作为拉普拉斯滤波操作。如此一来, 上述第一滤波图像即为高 斯滤波图像, 第二滤波图像即为 LoG滤波图像。 当然, 上述第一滤波参数 也可以是高斯滤波操作之外的其他滤波操作所使用的滤波参数,上述第二滤 波参数也可以是拉普拉斯滤波操作之外的其他滤波操作所使用的滤波参数。 上述第一滤波操作也可以是高斯滤波操作之外的其他滤波操作, 第二滤波操 作也可以是拉普拉斯滤波操作之外的其他滤波操作。  In a specific implementation process, the first filtering parameter may be a Gaussian filtering parameter, the second filtering parameter may be a Laplacian filtering parameter, the first filtering operation is a Gaussian filtering operation, and the second filtering operation is a Laplacing operation. Filter operation. In this way, the first filtered image is a Gaussian filtered image, and the second filtered image is a LoG filtered image. Certainly, the foregoing first filtering parameter may also be a filtering parameter used by other filtering operations than the Gaussian filtering operation, and the second filtering parameter may also be a filtering parameter used by other filtering operations than the Laplacian filtering operation. . The first filtering operation may be other filtering operations than the Gaussian filtering operation, and the second filtering operation may be other filtering operations than the Laplacian filtering operation.
在具体实现过程中,可进一步进行如下设置,即 CT(N) = kN j,其中 k和 j为 常数。 由此可知, 上述第一滤波参数组中的第一滤波参数为 (N) = kNj, 第 二滤波参数组中的第一滤波参数为 -1 j或者 kN+1 j,第三滤波参数组中的第一 滤波参数为 kN+1j或者!^ 。 在具体实现过程中, k和 j的值可根据经验和具 体需要进行设置, 例如 k = , j = 1.6。 当上述第一滤波参数为高斯滤波参数 时, σ(Ν)通常称为高斯滤波核。 高斯滤波过程就是将高斯函数与待滤波图像 进行卷积 , 即 G(x, y) = g(x, y) * I(x, y) , 其 中 , g(x, y) 为 高斯 函数, g(x, y) = ^_e"2¾ , I(x, y)为待滤波图像的图像矩阵。 同时, 基于上述设置, 当第二滤波参数为拉普拉斯滤波参数时,尺度规范化的拉普拉斯滤波操作过 In the specific implementation process, the following setting may be further made, that is, CT (N) = k N j, where k and j are constants. Therefore, the first filtering parameter in the first filtering parameter group is (N) = k N j , and the first filtering parameter in the second filtering parameter group is -1 j or k N+1 j, and the third filtering The first filter parameter in the parameter group is k N+1 j or! ^. In the specific implementation process, the values of k and j can be set according to experience and specific needs, such as k = , j = 1.6. When the first filtering parameter is a Gaussian filtering parameter, σ(Ν) is generally referred to as a Gaussian filtering kernel. The Gaussian filtering process convolves the Gaussian function with the image to be filtered, ie G(x, y) = g(x, y) * I(x, y) , where g(x, y) is a Gaussian function, g (x, y) = ^_e" 2 3⁄4 , I(x, y) is the image matrix of the image to be filtered. Meanwhile, based on the above settings, when the second filter parameter is a Laplacian filter parameter, the scale normalization pull Plass filtering operation
0 1 0 程中使用的拉普拉斯滤波模板可以为例如但不限于 1 - 4 1 或者  0 1 0 The Laplacian filter template used in the process can be, for example but not limited to, 1 - 4 1 or
0 1 0  0 1 0
1 1 1 1 1 1
σ 1 - 8 1等, 此时, σ2称为尺度规范化因子。 在这种情况下, 生成当前图 1 1 1 像所使用的拉普拉斯滤波模板的尺度规范化因子为(kN j)2, 生成第二区域所 使用的拉普拉斯滤波模板的尺度规范化因子为(k^ j)2或者 (kN+1j)2, 生成第三 区域所使用的拉普拉斯滤波模板的尺度规范化因子为(kN" j )2或者(kN -1 j )2。此 时,在某种程度上,可以理解为高斯滤波参数和拉普拉斯滤波参数均为 σ(Ν)。 然而, 本领域的技术人员应当明白, 在具体实现过程中, 同一滤波参数组中 的高斯滤波参数和拉普拉斯滤波参数可分别单独设置,二者之间可不存在关 联。 σ 1 - 8 1 and so on, at this time, σ 2 is called a scale normalization factor. In this case, the scale normalization factor of the Laplacian filter template used to generate the current image 1 1 1 image is (k N j) 2 , and the second region is generated. The scale normalization factor of the Laplacian filter template used is (k^j) 2 or (k N+1 j) 2 , and the scale normalization factor of the Laplacian filter template used to generate the third region is (k N "j) 2 or (k N - 1 j ) 2. At this time, it can be understood that the Gaussian filter parameter and the Laplacian filter parameter are both σ(Ν). However, those skilled in the art It should be understood that in a specific implementation process, the Gaussian filter parameters and the Laplacian filter parameters in the same filter parameter group may be separately set, and there may be no association between the two.
图 6是依据本发明一实施例的对一目标区域进行 LoG滤波操作的过程 示意图。 在如图 6所示场景中, 目标图像 600包含一目标区域 602, 目标区 域 602的中心像素为像素 604, 该区域的尺寸为 3x3, 高斯滤波的滤波窗口 尺寸为 5x5, 拉普拉斯滤波的滤波窗口尺寸为 3x3。  FIG. 6 is a schematic diagram of a process of performing a LoG filtering operation on a target area according to an embodiment of the invention. In the scenario shown in FIG. 6, the target image 600 includes a target area 602, the central pixel of the target area 602 is the pixel 604, the size of the area is 3x3, and the filtering window size of the Gaussian filter is 5x5, Laplacian filtering The filter window size is 3x3.
依照高斯滤波原理, 对目标区域 602进行高斯滤波, 需要用到目标图像 600上以像素 604为中心、 尺寸为 7x7的区域 606。  Gaussian filtering of the target region 602 in accordance with the Gaussian filtering principle requires the use of a region 606 of the target image 600 centered on the pixel 604 and having a size of 7x7.
在对目标区域 602进行高斯滤波后, 如果对高斯滤波后的目标区域 602 再进行拉普拉斯滤波, 则需要用到一块尺寸为 5x5的区域, 该区域是通过对 目标图像 600上以像素 604为中心、尺寸为 5x5的区域 608进行高斯滤波后 得到的。 而依照高斯滤波原理, 对区域 608进行高斯滤波, 需要用到目标图 像 600上以像素 604为中心、 尺寸为 9x9的区域 610。  After performing Gaussian filtering on the target region 602, if Laplace filtering is performed on the Gaussian filtered target region 602, a region having a size of 5x5 is required, and the region is passed through the pixel 604 on the target image 600. It is obtained by Gaussian filtering of the center 608 of the size 5x5. According to the Gaussian filtering principle, Gaussian filtering of the region 608 requires the use of a region 610 of the target image 600 centered on the pixel 604 and having a size of 9x9.
由此可见, 若要获得目标区域 602的 LoG滤波区域, 需要用到目标图 像 600上以像素 604为中心的 9x9尺寸的区域 610, 区域 610大于目标区域 602。 在具体实现过程中, 高斯滤波的滤波窗口尺寸为 ΝχΝ, 其中 Ν为大于 等于 3的奇数, 其具体值可根据具体需要进行设置。 而依照拉普拉斯滤波的 原理, 拉普拉斯滤波的滤波窗口尺寸通常为 3x3, 由此可见, 区域 610的尺 寸基本由高斯滤波的滤波窗口尺寸决定。  It can be seen that to obtain the LoG filtering region of the target region 602, a 9x9 sized region 610 centered on the pixel 604 on the target image 600 is needed, and the region 610 is larger than the target region 602. In the specific implementation process, the filter window size of the Gaussian filter is ΝχΝ, where Ν is an odd number greater than or equal to 3, and the specific value can be set according to specific needs. According to the principle of Laplacian filtering, the filtering window size of Laplacian filtering is usually 3x3. It can be seen that the size of the area 610 is basically determined by the filtering window size of the Gaussian filtering.
如果区域 610的一部分超出了目标图像 600的边界,则可使用例如但不 限于反向对称填充方法来填充像素。下面就结合图 7对反向对称填充方法进 行简要描述。 图 7是反向对称填充方法的过程示意图。 目标区域所在的目标图像的边 界部分如图 7 中的区域 702所示。 如图 7所示, 区域 702的上边界为边界 706, 下边界为边界 708, 右侧边界为边界 704。 若需要使用反向对称填充方 法在区域 702右侧填充出一个包含两列像素 (即列 Γ和列 2,) 的填充区域 702,, 则列 Γ的值可以采用列 1的值, 列 2,的值可以采用列 2的值, 即填充 区域 702,中的两列像素 (即列 1,和列 2,) 与区域 702中的两列像素 (即列 1 和列 2) 以边界 704为轴左右对称。 又或者, 列 Γ的值可以采用列 2的值, 列 2,的值可以采用列 3的值,即填充区域 702,中的两列像素(即列 1,和列 2,) 与区域 702中的两列像素 (即列 2和列 3 ) 以列 1为轴左右对称。 If a portion of region 610 is beyond the boundary of target image 600, the pixels may be filled using, for example, but not limited to, a reverse symmetric fill method. The reverse symmetric filling method will be briefly described below with reference to FIG. Figure 7 is a schematic diagram of the process of the reverse symmetric filling method. The boundary portion of the target image in which the target area is located is as shown in area 702 in FIG. As shown in FIG. 7, the upper boundary of the region 702 is the boundary 706, the lower boundary is the boundary 708, and the right boundary is the boundary 704. If a padding region 702 containing two columns of pixels (ie, column 列 and column 2) is filled on the right side of the region 702 using the inverse symmetric filling method, the value of the column 可以 can take the value of column 1, column 2, The value of column 2 can be taken as the value of column 2, that is, the two columns of pixels (ie, column 1, and column 2) in padding region 702, and the two columns of pixels in region 702 (ie, column 1 and column 2) are bounded by boundary 704. bilateral symmetry. Alternatively, the value of the column can take the value of column 2, and the value of column 2 can take the value of column 3, that is, the two columns of pixels (ie, column 1, and column 2) in padding region 702, and region 702 The two columns of pixels (ie, column 2 and column 3) are bilaterally symmetric with column 1 as the axis.
下面继续介绍方法 500中的其他步骤。  The other steps in method 500 continue below.
在执行完方法 500中的步骤 506之后, 在步骤 508, 将当前像素的振幅 与所述第三区域内所有像素的振幅相比较,在比较结果显示当前像素的振幅 为一极值时, 判定当前像素为当前图像的兴趣点。  After performing step 506 in method 500, in step 508, comparing the amplitude of the current pixel with the amplitude of all pixels in the third region, and determining the current when the comparison result shows that the amplitude of the current pixel is an extreme value The pixel is the point of interest of the current image.
在具体实现过程中, 步骤 502、 506和 508中所述的极值, 可同为极大 值, 或者同为极小值。 具体来说, 在步骤 502中, 若当前像素的振幅在与上 述局部区域内其他像素的振幅相比较时为一极大值,则步骤 506中的判断标 准应为, 当前像素的振幅在与上述第二区域内所有像素的振幅相比较时也为 一极大值, 步骤 508中的判断标准应为, 当前像素的振幅在与上述第三区域 内所有像素的振幅相比较时仍为一极大值。 又或者, 若当前像素的振幅在与 上述局部区域内其他像素的振幅相比较时为一极小值,则在步骤 506中的判 断标准应为, 当前像素的振幅在与上述第二区域内所有像素的振幅相比较时 也为一极小值, 步骤 508中的判断标准应为, 当前像素的振幅在与上述第三 区域内所有像素的振幅相比较时仍为一极小值。  In a specific implementation process, the extreme values described in steps 502, 506, and 508 may be the same as the maximum value, or the same as the minimum value. Specifically, in step 502, if the amplitude of the current pixel is a maximum value when compared with the amplitudes of other pixels in the local area, the criterion in step 506 is that the amplitude of the current pixel is The amplitudes of all the pixels in the second region are also a maximum value when compared. The criterion in step 508 is that the amplitude of the current pixel is still a large value when compared with the amplitude of all the pixels in the third region. value. Or, if the amplitude of the current pixel is a minimum value when compared with the amplitudes of other pixels in the local area, the criterion in the step 506 is that the amplitude of the current pixel is in the second region. The amplitude of the pixel is also a small value when compared. The criterion in step 508 is that the amplitude of the current pixel is still a small value when compared with the amplitude of all pixels in the third region.
本发明实施例在判定一个像素是否为该像素所在图像的兴趣点时,无需 同时在内存中加载该图像的整张上层图像和整张下层图像, 而仅需临时计算 该像素所在的局部区域在上述上层图像和下层图像上的对应区域。 由此可 见, 本发明实施例提供的技术方案可大大降低兴趣点判断过程对内存的占 用。 When determining whether a pixel is a point of interest of an image of the pixel, the embodiment of the present invention does not need to simultaneously load the entire upper layer image and the entire lower layer image of the image in the memory, but only needs to temporarily calculate the local area where the pixel is located. Corresponding regions on the upper layer image and the lower layer image. It can be seen that the technical solution provided by the embodiment of the present invention can greatly reduce the memory occupied by the point of interest judging process. use.
借助本发明实施例提供的技术方案, 用户可以使用智能终端来进行图像 识别, 以此来进行商品的价格比较等操作。 例如, 当用户在商场想要比较某 一商品在其他商场或在线商店的价格时, 用户可以拍摄该商品的照片, 然后 使用智能终端提取照片的特征数据, 通过互联网传输至后台服务器, 后台服 务器根据照片的特征数据,在存储有大量商品图像特征数据的特征数据库中 进行匹配, 查询到匹配的商品, 再^1匹配的商品的价格返回给用户。 With the technical solution provided by the embodiment of the present invention, the user can use the smart terminal to perform image recognition, thereby performing operations such as price comparison of commodities. For example, when the user wants to compare the price of a certain item in another mall or online store in the mall, the user can take a photo of the item, and then use the smart terminal to extract the feature data of the photo and transmit it to the background server via the Internet, the background server according to photos of feature data, stored in the database to match a large number of features of the product image feature data, the query to match the commodity, the price of goods re ^ 1 match returned to the user.
图 8是依据本发明一实施例的兴趣点判断过程的示范性示意图。 如图 8 所示, 其中展示了一张 LoG滤波图像 802, 该 LoG滤波图像 802是通过对 一目标图像进行 LoG滤波而获得的。  FIG. 8 is an exemplary schematic diagram of a point of interest determination process in accordance with an embodiment of the present invention. As shown in Fig. 8, there is shown a LoG filtered image 802 obtained by LoG filtering a target image.
在判断 LoG滤波图像 802上的像素 810是否为 LoG滤波图像 802的兴 趣点时, 依照本发明实施例提供的技术方案, 首先, 将像素 810 的振幅与 LoG滤波图像 802上像素 810所在的局部区域(在本实施例中, 该局部区域 为一 3x3区域) 804内其他像素的振幅相比较, 在比较结果显示像素 810的 振幅为一极值时, 确定所述局部区域在所述目标图像上的对应区域, 作为目 标区域。  When determining whether the pixel 810 on the LoG filtered image 802 is a point of interest of the LoG filtered image 802, according to the technical solution provided by the embodiment of the present invention, first, the amplitude of the pixel 810 and the local area where the pixel 810 is located on the LoG filtered image 802. (In this embodiment, the local area is a 3x3 area) 804 compares the amplitudes of other pixels in the 804. When the amplitude of the comparison result display pixel 810 is an extreme value, determining the local area on the target image Corresponding area, as the target area.
随后, 使用构造 LoG滤波图像 802上层图像的 LoG滤波参数组对所述 目标区域进行滤波处理, 得到局部区域 804的上层区域 806。  Subsequently, the target region is subjected to filtering processing using a LoG filter parameter set constructing a layer image of the LoG filtered image 802 to obtain an upper region 806 of the local region 804.
随后, 将像素 810的振幅与上层区域 806内所有像素的振幅相比较, 在 比较结果显示像素 810的振幅为一极值时, 使用构造 LoG滤波图像 802下 层图像的 LoG滤波参数组对所述目标区域进行滤波处理,得到局部区域 804 的下层区域 808。  Subsequently, the amplitude of the pixel 810 is compared with the amplitude of all pixels in the upper layer region 806. When the amplitude of the comparison result display pixel 810 is an extreme value, the LoG filter parameter group constructing the lower layer image of the LoG filtered image 802 is used for the target. The region is subjected to filtering processing to obtain a lower region 808 of the local region 804.
最后, 将像素 810的振幅与下层区域 808内所有像素的振幅相比较, 在 比较结果显示像素 810的振幅为一极值时, 判定像素 810为 LoG滤波图像 802的兴趣点。  Finally, the amplitude of the pixel 810 is compared with the amplitude of all pixels in the lower layer region 808. When the comparison results show that the amplitude of the pixel 810 is an extreme value, the pixel 810 is determined to be the point of interest of the LoG filtered image 802.
由图 8可知, 在判定像素 810是否为 LoG滤波图像 802的兴趣点时, 只需在内存中加载 LoG滤波图像 802即可,无需同时加载 LoG滤波图像 802 的整张上层图像和整张下层图像, 而仅需临时计算该像素 810所在的局部区 域 804在上述上层图像和下层图像上的对应区域 806和 808。 由此可见, 本 发明实施例提供的技术方案可大大降低兴趣点判断过程对内存的占用。 As can be seen from FIG. 8, when it is determined whether the pixel 810 is a point of interest of the LoG filtered image 802, it is only necessary to load the LoG filtered image 802 in the memory, and it is not necessary to simultaneously load the LoG filtered image 802. The entire upper layer image and the entire lower layer image are only required to temporarily calculate the corresponding regions 806 and 808 of the partial region 804 where the pixel 810 is located on the upper layer image and the lower layer image. It can be seen that the technical solution provided by the embodiment of the present invention can greatly reduce the occupation of memory by the point of interest judging process.
在图 8所示的兴趣点判断过程中,是首先生成局部区域 804的上层区域 806, 再生成局部区域 804的下层区域 808。 然而, 在具体实现过程中, 也 可首先生成局部区域 804的下层区域 808, 再生成局部区域 804的上层区域 806。 此外, 作为一种次优的兴趣点判断方案, 还可同时生成局部区域 804 的上层区域 806和下层区域 808。 在这种情况下, 需要同时将像素 810的振 幅与上层区域 806和下层区域 808内所有像素的振幅进行比较。 不难理解, 这种次优的兴趣点判断方案在一些情况下会增加额外的计算量。 例如, 依照 图 8所示的兴趣点判断过程,若像素 810的振幅在与上层区域 806内所有像 素的振幅进行比较时已经不再是一个极值,则依照图 8所示的兴趣点判断过 程, 无需再将像素 810的振幅与下层区域 808内所有像素的振幅进行比较, 因此也就无需生成下层区域 808。 而依照上述次优的兴趣点判断方案, 仍然 需要生成下层区域 808。由此可见,相比图 5和图 8所示的兴趣点判断方法, 上述次优的兴趣点判断方案在一些情况下会增加额外的计算量。  In the point of interest judging process shown in Fig. 8, the upper layer area 806 of the partial area 804 is first generated, and the lower layer area 808 of the partial area 804 is generated. However, in a specific implementation process, the lower region 808 of the local region 804 may also be generated first, and the upper region 806 of the local region 804 may be generated. Further, as a suboptimal point of interest judging scheme, the upper layer area 806 and the lower layer area 808 of the partial area 804 can also be generated at the same time. In this case, it is necessary to simultaneously compare the amplitude of the pixel 810 with the amplitudes of all the pixels in the upper layer region 806 and the lower layer region 808. It is not difficult to understand that this suboptimal point of interest judgment scheme will add additional calculations in some cases. For example, according to the point of interest judging process shown in FIG. 8, if the amplitude of the pixel 810 is no longer an extreme value when compared with the amplitude of all pixels in the upper layer area 806, the point of interest determination process according to FIG. It is no longer necessary to compare the amplitude of the pixel 810 with the amplitude of all pixels in the lower layer region 808, so there is no need to generate the lower layer region 808. According to the above suboptimal point of interest judging scheme, the lower layer area 808 still needs to be generated. It can be seen that compared with the point of interest judging method shown in FIG. 5 and FIG. 8, the above suboptimal point of interest judging scheme adds extra calculation amount in some cases.
应注意, 在具体实现过程中, 图 5所示的方法并非只能对 LoG滤波场 景进行优化。 在具体实现过程中, 还可基于图 5所示方法的原理, 对 SURF (加速鲁棒特征, Speeded Up Robust Features ) 算法进行优化。 下面就对优 化后的 SURF算法进行描述。  It should be noted that in the specific implementation process, the method shown in Figure 5 is not only optimized for the LoG filtering scene. In the specific implementation process, the SURF (Speeded Up Robust Features) algorithm can be optimized based on the principle of the method shown in FIG. The optimized SURF algorithm is described below.
图 9是依据本发明一实施例的兴趣点判断方法 900的示范性流程图。方 法 900用于判断当前像素是否为当前像素所在的当前图像的兴趣点, 其中, 所述当前图像是通过使用第一方框滤波参数对目标图像进行滤波处理再对 滤波处理后的目标图像计算海森(Hessian)行列式响应而得到的, 所述当前 像素为所述当前图像上响应值为正的像素。  FIG. 9 is an exemplary flow diagram of a point of interest determination method 900 in accordance with an embodiment of the present invention. The method 900 is configured to determine whether the current pixel is a point of interest of a current image where the current pixel is located, where the current image is filtered by using the first block filter parameter, and then calculating the sea by the filtered target image. According to the Hessian determinant response, the current pixel is a pixel whose positive response value is on the current image.
步骤 902, 将当前像素的振幅与当前图像上所述当前像素所在的局部区 域内其他像素的振幅相比较, 在比较结果显示当前像素的振幅为一极大值 时, 确定所述局部区域在所述目标图像上的对应区域, 作为目标区域; 步骤 904, 使用第二方框滤波参数对所述目标区域进行滤波处理, 再对 滤波处理后的目标区域计算 Hessian行列式响应, 得到第二区域; Step 902: Comparing the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and displaying the amplitude of the current pixel as a maximum value in the comparison result. And determining a corresponding area of the local area on the target image as a target area; Step 904, filtering the target area by using a second block filter parameter, and calculating Hessian on the filtered target area. Deterministic response, obtaining a second region;
步骤 906,将当前像素的振幅与所述第二区域内所有像素的振幅相比较, 在比较结果显示当前像素的振幅为一极大值时,使用第三方框滤波参数对所 述目标区域进行滤波处理, 再对滤波处理后的目标区域计算 Hessian行列式 响应, 得到第三区域;  Step 906, comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and filtering the target region by using a third-party frame filtering parameter when the comparison result shows that the amplitude of the current pixel is a maximum value. Processing, and calculating a Hessian determinant response to the filtered target region to obtain a third region;
步骤 908,将当前像素的振幅与所述第三区域内所有像素的振幅相比较, 在比较结果显示当前像素的振幅为一极大值时,判定当前像素为当前图像的 兴趣点。  Step 908: Comparing the amplitude of the current pixel with the amplitude of all the pixels in the third region, and determining that the current pixel is the interest point of the current image when the comparison result shows that the amplitude of the current pixel is a maximum value.
在具体实现过程中, 第一方框滤波参数、 第二方框滤波参数和第三方框 滤波参数可对应不同大小的滤波矩阵,且第二区域为局部区域的上层区域或 者下层区域, 第三区域为目标区域的下层区域或者上层区域。  In a specific implementation process, the first block filter parameter, the second block filter parameter, and the third-party frame filter parameter may correspond to different size filter matrices, and the second region is an upper region or a lower region of the local region, and the third region It is the lower area or the upper area of the target area.
图 10是依据本发明一实施例的兴趣点判断方法 1000的示范性流程图。 方法 1000 用于判断当前像素是否为当前像素所在的当前图像的兴趣点, 其 中, 所述当前图像是通过使用第一滤波参数组对目标图像进行滤波处理而得 到的, 且与当前图像上所述当前像素所在的局部区域内其他像素的振幅相 比, 当前像素的振幅为一极值。  FIG. 10 is an exemplary flowchart of a point of interest determination method 1000 in accordance with an embodiment of the present invention. The method 1000 is used to determine whether the current pixel is a point of interest of a current image where the current pixel is located, where the current image is obtained by filtering the target image by using the first filter parameter group, and is described on the current image. The amplitude of the current pixel is an extreme value compared to the amplitude of other pixels in the local area where the current pixel is located.
步骤 1002, 确定所述局部区域在所述目标图像上的对应区域, 作为目 标区域。  Step 1002: Determine a corresponding area of the local area on the target image as a target area.
步骤 1004, 使用第二滤波参数组对所述目标区域进行滤波处理, 得到 第二区域。  Step 1004: Perform filtering processing on the target area by using a second filter parameter group to obtain a second area.
步骤 1006, 将当前像素的振幅与所述第二区域内所有像素的振幅相比 较, 在比较结果显示当前像素的振幅为一极值时, 使用第三滤波参数组对所 述目标区域进行滤波处理, 得到第三区域。  Step 1006: Comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and filtering the target region by using the third filter parameter group when the comparison result shows that the amplitude of the current pixel is an extreme value. , get the third area.
步骤 1008, 将当前像素的振幅与所述第三区域内所有像素的振幅相比 较, 在比较结果显示当前像素的振幅为一极值时, 判定当前像素为当前图像 的兴趣点。 Step 1008: Comparing the amplitude of the current pixel with the amplitude of all the pixels in the third region, and determining that the current pixel is the current image when the comparison result shows that the amplitude of the current pixel is an extreme value. Points of interest.
如上文所述, 每一滤波参数组包括第一滤波参数和第二滤波参数, 所述 滤波处理包括:  As described above, each filter parameter set includes a first filter parameter and a second filter parameter, and the filter process includes:
使用该滤波处理所使用的滤波参数组中的第一滤波参数对待处理图像 进行第一滤波操作, 得到第一滤波图像;  Performing a first filtering operation on the image to be processed using the first filtering parameter in the filtering parameter set used by the filtering process to obtain a first filtered image;
使用该滤波处理所使用的滤波参数组中的第二滤波参数对第一滤波图 像进行第二滤波操作, 得到第二滤波图像。  The second filtering operation is performed on the first filtered image using the second filtering parameter in the filtering parameter set used by the filtering process to obtain a second filtered image.
如上文所述, 所述第一滤波参数为高斯滤波参数, 所述第二滤波参数为 拉普拉斯滤波参数, 所述第一滤波操作为高斯滤波操作, 所述第二滤波操作 为拉普拉斯滤波操作。  As described above, the first filtering parameter is a Gaussian filtering parameter, the second filtering parameter is a Laplacian filtering parameter, the first filtering operation is a Gaussian filtering operation, and the second filtering operation is a Lapu filter. Lass filtering operation.
如上文所述, 所述第一滤波参数组中的第一滤波参数为 σ(Ν), 所述第二 滤波参数组中的第一滤波参数为 σ( Ν + 1),所述第三滤波参数组中的第一滤波 参数为 σ(Ν -1) ; 或者  As described above, the first filter parameter in the first filter parameter set is σ(Ν), and the first filter parameter in the second filter parameter set is σ( Ν + 1), the third filter The first filter parameter in the parameter set is σ(Ν -1) ; or
所述所述第一滤波参数组中的第一滤波参数为 σ(Ν),所述第二滤波参数 组中的第一滤波参数为 σ(Ν -1), 所述第三滤波参数组中的第一滤波参数为 σ(Ν + 1)。 The first filter parameter in the first filter parameter set is σ (Ν), and the first filter parameter in the second filter parameter set is σ(Ν -1), in the third filter parameter group The first filter parameter is σ(Ν + 1).
如上文所述, 可以进行如下设置, 即 CT(N) = kN CT, 其中 k和 j为常数。 如上文所述, 所述局部区域至少包括当前像素和与该当前像素相邻的 8 个像素。 As described above, the following settings can be made, namely CT (N) = k N CT , where k and j are constants. As described above, the partial area includes at least a current pixel and 8 pixels adjacent to the current pixel.
各技术特征的细节已经在前文进行了详细的描述, 因此此处不再赘述。 在具体实现过程中,可首先在当前图像上筛选出与所在局部区域内其他 像素的振幅相比, 振幅为一极值的像素, 然后对筛选出的每一像素, 应用图 10所示的方法 1000。  The details of each technical feature have been described in detail in the foregoing, and therefore will not be described again here. In the specific implementation process, the pixel with the amplitude of one extreme value compared with the amplitude of other pixels in the local area may be firstly filtered on the current image, and then the method shown in FIG. 10 is applied to each pixel selected. 1000.
在具体实现过程中, 可将现有技术与图 10所示的方法 1000相结合, 来 确定当前图像的兴趣点。 具体来说, 可首先在当前图像上筛选出与所在局部 区域内其他像素的振幅相比, 振幅为一极值的像素。如果筛选出的像素的数 量超过预先设置的阔值 (该阔值可根据需要进行设置) , 则参照现有技术的 方法, 在内存中加载当前图像的整张上层图像和整张下层图像, 然后逐一判 断筛选出的像素是否是当前图像的兴趣点。 另一方面, 如果筛选出的像素的 数量没有超过预先设置的阔值,则依照图 10所示的方法 1000来逐一判断筛 选出的像素是否是当前图像的兴趣点。 In a specific implementation process, the prior art can be combined with the method 1000 shown in FIG. 10 to determine a point of interest of the current image. Specifically, pixels on the current image having an amplitude equal to the amplitude of other pixels in the local region may be first screened. If the number of pixels filtered out If the amount exceeds the preset threshold (the threshold can be set as needed), referring to the prior art method, the entire upper image and the entire lower image of the current image are loaded in the memory, and then the selected pixels are judged one by one. Whether it is the point of interest of the current image. On the other hand, if the number of selected pixels does not exceed the preset threshold, then according to the method 1000 shown in FIG. 10, it is determined whether the selected pixels are the points of interest of the current image.
此外,在确定当前图像的兴趣点时,还可将当前图像分解为多个图像块, 其中垂直相邻的图像块存在至少两行重叠的像素,水平相邻的图像块存在至 少两列重叠的像素。 此外, 图像块的大小可以是相同的, 也可以是不同的。 事实上, 每个图像块都是一张图像, 因此便可依照本发明以及现有技术中介 绍的各种方法来确定每个图像块的兴趣点。 例如, 在确定每个图像块的兴趣 点时, 可首先在当前图像块上筛选出与所在局部区域内其他像素的振幅相 比, 振幅为一极值的像素。 如果筛选出的像素的数量超过预先设置的阔值, 则参照现有技术的方法,在内存中加载当前图像块的整张上层图像块和整张 下层图像块, 然后逐一判断筛选出的像素是否是当前图像的兴趣点。 另一方 面, 如果筛选出的像素的数量没有超过预先设置的阔值, 则依照图 10所示 的方法 1000来逐一判断筛选出的像素是否是当前图像的兴趣点。 在确定每 个图像块的兴趣点后, 便可根据每个图像块的兴趣点, 确定整张当前图像的 兴趣点, 例如将所有图像块的兴趣点都视为当前图像的兴趣点。  In addition, when determining a point of interest of the current image, the current image may also be decomposed into a plurality of image blocks, wherein vertically adjacent image blocks have at least two rows of overlapping pixels, and horizontally adjacent image blocks have at least two columns overlapping. Pixel. In addition, the size of the image blocks may be the same or different. In fact, each image block is an image, so that the points of interest of each image block can be determined in accordance with the present invention and various methods described in the prior art. For example, when determining the point of interest of each image block, pixels on the current image block with an amplitude equal to the amplitude of other pixels in the local area may be first screened. If the number of the selected pixels exceeds the preset threshold, refer to the prior art method, load the entire upper image block and the entire lower image block of the current image block in the memory, and then judge whether the selected pixels are determined one by one. Is the point of interest of the current image. On the other hand, if the number of selected pixels does not exceed the preset threshold, the method 1000 shown in FIG. 10 is used to judge whether the selected pixels are the points of interest of the current image. After determining the points of interest of each image block, the points of interest of the entire current image can be determined according to the points of interest of each image block, for example, the points of interest of all the image blocks are regarded as the points of interest of the current image.
在将当前图像分解为多个图像块时,可以以图像块左上角像素在当前图 像中的坐标和图像块的宽和高表示图像块, 比如, 若将宽为 480、 高为 640 的当前图像分成大小相等的两个图像块,则可以采用下列方式表示这两个图 像块: 第一个图像块初始像素坐标为 (0,0) , 宽为 242, 高为 640, 第二个 图像块初始像素坐标为 (238,0) , 宽为 242, 高为 640。 若将宽为 480、 高 为 640的图像分成大小相等的四个图像块,则可以采用下列方式表示这四个 图像块: 第一个图像块初始像素坐标为 (0,0) , 宽为 242, 高为 322 ; 第二 个图像块初始像素坐标为 (238,0) , 宽为 242, 高为 322 ; 第三个图像块初 始像素坐标为 (0,318 ) , 宽为 242, 高为 322 ; 第四个图像块初始像素坐标 为 (238,318) , 宽为 242, 高为 322。 When the current image is decomposed into a plurality of image blocks, the image block may be represented by the coordinates of the pixel in the upper left corner of the image block and the width and height of the image block, for example, if the current image is 480 wide and 640 high. Dividing into two image blocks of equal size, the two image blocks can be represented in the following manner: The initial pixel coordinates of the first image block are (0,0), the width is 242, and the height is 640. The second image block is initially. The pixel coordinates are (238,0), the width is 242, and the height is 640. If an image with a width of 480 and a height of 640 is divided into four image blocks of equal size, the four image blocks can be represented in the following manner: The initial image coordinates of the first image block are (0, 0) and the width is 242. The height of the second image block is (238,0), the width is 242, and the height is 322. The initial image coordinates of the third image block are (0,318), the width is 242, and the height is 322. Four image block initial pixel coordinates It is (238,318), width is 242, and height is 322.
图 11是依据本发明一实施例的兴趣点判断装置 1100的示范性硬件结构 示意图。 兴趣点判断装置 1100用于判断当前像素是否为当前像素所在的当 前图像的兴趣点, 其中, 所述当前图像是通过使用第一滤波参数组对目标图 像进行滤波处理而得到的。 如图 11所示, 兴趣点判断装置 1100包括存储器 1102和处理器 1104。  FIG. 11 is a diagram showing an exemplary hardware configuration of a point of interest judging device 1100 according to an embodiment of the present invention. The point of interest judging means 1100 is configured to determine whether the current pixel is a point of interest of the current image in which the current pixel is located, wherein the current picture is obtained by filtering the target image by using the first filter parameter set. As shown in FIG. 11, the point of interest judging device 1100 includes a memory 1102 and a processor 1104.
存储器 1102 可以采用例如但不限于随机存取存储器 (Random Access Memory, RAM) 等。 在本发明实施例提供的兴趣点判断装置 1100中, 存储 器 1102用于存储所述当前图像。  The memory 1102 can employ, for example, but not limited to, a Random Access Memory (RAM) or the like. In the point of interest judging device 1100 provided by the embodiment of the present invention, the memory 1102 is configured to store the current image.
处理器 1104 可以采用例如但不限于通用的中央处理器 (Central The processor 1104 can employ, for example, but not limited to, a general purpose central processor (Central)
Processing Unit, CPU) , 微处理器, 应用专用集成电路 (Application Specific Integrated Circuit, ASIC) 等。 在本发明实施例提供的兴趣点判断装置 1100 中, 处理器 1104用于执行如下操作: Processing Unit (CPU), microprocessor, Application Specific Integrated Circuit (ASIC), etc. In the point of interest judging device 1100 provided by the embodiment of the present invention, the processor 1104 is configured to perform the following operations:
将当前像素的振幅与当前图像上所述当前像素所在的局部区域内其他 像素的振幅相比较, 在比较结果显示当前像素的振幅为一极值时, 确定所述 局部区域在所述目标图像上的对应区域, 作为目标区域;  Comparing the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and determining that the local area is on the target image when the comparison result shows that the amplitude of the current pixel is an extreme value Corresponding area, as the target area;
使用第二滤波参数组对所述目标区域进行滤波处理, 得到第二区域; 将当前像素的振幅与所述第二区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时,使用第三滤波参数组对所述目标区域进 行滤波处理, 得到第三区域;  And filtering the target area by using a second filter parameter set to obtain a second area; comparing an amplitude of the current pixel with an amplitude of all pixels in the second area, and comparing the result, the amplitude of the current pixel is one pole And a third filter parameter group is used to filter the target area to obtain a third area;
将当前像素的振幅与所述第三区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时, 判定当前像素为当前图像的兴趣点。  The amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
如上文所述, 在具体实现过程中, 每一滤波参数组包括第一滤波参数和 第二滤波参数, 所述滤波处理包括:  As described above, in a specific implementation process, each filter parameter group includes a first filter parameter and a second filter parameter, and the filter process includes:
使用该滤波处理所使用的滤波参数组中的第一滤波参数对待处理图像 进行第一滤波操作, 得到第一滤波图像;  Performing a first filtering operation on the image to be processed using the first filtering parameter in the filtering parameter set used by the filtering process to obtain a first filtered image;
使用该滤波处理所使用的滤波参数组中的第二滤波参数对第一滤波图 像进行第二滤波操作, 得到第二滤波图像。 Using the second filter parameter in the filter parameter set used by the filtering process to the first filter map Like performing the second filtering operation, a second filtered image is obtained.
如上文所述, 在具体实现过程中, 所述第一滤波参数为高斯滤波参数, 所述第二滤波参数为拉普拉斯滤波参数, 所述第一滤波操作为高斯滤波操 作, 所述第二滤波操作为拉普拉斯滤波操作。  As described above, in a specific implementation process, the first filtering parameter is a Gaussian filtering parameter, the second filtering parameter is a Laplacian filtering parameter, and the first filtering operation is a Gaussian filtering operation, where the The second filtering operation is a Laplacian filtering operation.
如上文所述, 在具体实现过程中, 所述第一滤波参数组中的第一滤波参 数为 σ(Ν), 所述第二滤波参数组中的第一滤波参数为 σ(Ν + 1), 所述第三滤 波参数组中的第一滤波参数为 σ(Ν -1) ; 或者  As described above, in a specific implementation process, the first filtering parameter in the first filtering parameter group is σ(Ν), and the first filtering parameter in the second filtering parameter group is σ(Ν + 1) The first filter parameter in the third filter parameter set is σ(Ν -1); or
所述所述第一滤波参数组中的第一滤波参数为 σ(Ν),所述第二滤波参数 组中的第一滤波参数为 σ(Ν -1), 所述第三滤波参数组中的第一滤波参数为 σ(Ν + 1)。 The first filter parameter in the first filter parameter set is σ (Ν), and the first filter parameter in the second filter parameter set is σ (Ν -1), in the third filter parameter group The first filter parameter is σ(Ν + 1).
如上文所述, 在具体实现过程中, 可进行如下设置, σ(Ν) = 1ίΝσ, 其中 k 和 j为常数。 As mentioned above, in the specific implementation process, the following settings can be made, σ(Ν) = 1ί Ν σ, where k and j are constants.
如上文所述, 在具体实现过程中, 所述局部区域至少包括当前像素和与 该当前像素相邻的 8个像素。  As described above, in a specific implementation process, the local area includes at least a current pixel and eight pixels adjacent to the current pixel.
相关技术特征 (例如极值、 滤波参数组等) 的更多细节已经在上文进行 了详细的描述, 因此此处不再赘述。  Further details of related technical features (e.g., extreme values, filter parameter sets, etc.) have been described in detail above, and therefore will not be described again here.
不难理解, 图 11所示的兴趣点判断装置 1100可用于实现图 5所示的兴 趣点判断方法 500。 然而, 应注意, 在图 11所示的兴趣点判断装置 1100也 可用于实现图 9所示的兴趣点判断方法 900和图 10所示的兴趣点判断方法 1000。  It is not difficult to understand that the point of interest judging device 1100 shown in Fig. 11 can be used to implement the point of interest judging method 500 shown in Fig. 5. However, it should be noted that the point of interest judging device 1100 shown in Fig. 11 can also be used to implement the point of interest judging method 900 shown in Fig. 9 and the point of interest judging method 1000 shown in Fig. 10.
具体来说, 在实现图 9所示的兴趣点判断方法 900时, 图 11所示的兴 趣点判断装置 1100用于判断当前像素是否为当前像素所在的当前图像的兴 趣点, 其中, 所述当前图像是通过使用第一方框滤波参数对目标图像进行滤 波处理再对滤波处理后的目标图像计算海森(Hessian)行列式响应而得到的, 所述当前像素为所述当前图像上响应值为正的像素。  Specifically, when the point of interest determination method 900 shown in FIG. 9 is implemented, the point of interest determination apparatus 1100 shown in FIG. 11 is configured to determine whether the current pixel is a point of interest of the current image where the current pixel is located, where the current The image is obtained by filtering the target image by using the first block filter parameter and calculating a Hessian determinant response to the filtered target image, where the current pixel is the response value on the current image. Positive pixel.
在实现图 9所示的兴趣点判断方法 900时, 存储器 1102用于存储所述 当前图像。 When the point of interest determination method 900 shown in FIG. 9 is implemented, the memory 1102 is configured to store the Current image.
在实现图 9所示的兴趣点判断方法 900时, 处理器 1104用于执行如下 操作:  When the point of interest determination method 900 shown in FIG. 9 is implemented, the processor 1104 is configured to perform the following operations:
将当前像素的振幅与当前图像上所述当前像素所在的局部区域内其他 像素的振幅相比较, 在比较结果显示当前像素的振幅为一极大值时, 确定所 述局部区域在所述目标图像上的对应区域, 作为目标区域;  Comparing the amplitude of the current pixel with the amplitude of other pixels in the local region where the current pixel is located on the current image, and determining, when the comparison result shows that the amplitude of the current pixel is a maximum value, determining the local region in the target image The corresponding area on the top, as the target area;
使用第二方框滤波参数对所述目标区域进行滤波处理,再对滤波处理后 的目标区域计算 Hessian行列式响应, 得到第二区域;  Filtering the target area by using a second block filter parameter, and calculating a Hessian determinant response to the filtered target region to obtain a second region;
将当前像素的振幅与所述第二区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极大值时,使用第三方框滤波参数对所述目标区 域进行滤波处理, 再对滤波处理后的目标区域计算 Hessian行列式响应, 得 到第三区域;  Comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and when the comparison result shows that the amplitude of the current pixel is a maximum value, filtering the target region by using a third-party frame filtering parameter, and then Calculating a Hessian determinant response to the filtered target region to obtain a third region;
将当前像素的振幅与所述第三区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极大值时, 判定当前像素为当前图像的兴趣点。  The amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is a maximum value, it is determined that the current pixel is the point of interest of the current image.
相关技术特征 (例如极值、 方框滤波参数等) 的更多细节已经在上文进 行了详细的描述, 因此此处不再赘述。  Further details of the relevant technical features (e.g. extreme values, box filtering parameters, etc.) have been described in detail above and will not be described again here.
在实现图 10所示的兴趣点判断方法 1000时, 图 11所示的兴趣点判断 装置 1100用于判断当前像素是否为当前像素所在的当前图像的兴趣点, 其 中,所述当前图像是通过使用第一滤波参数组对目标图像进行滤波处理而得 到的, 且与当前图像上所述当前像素所在的局部区域内其他像素的振幅相 比, 当前像素的振幅为一极值。  When the point of interest determination method 1000 shown in FIG. 10 is implemented, the point of interest determination apparatus 1100 shown in FIG. 11 is configured to determine whether the current pixel is a point of interest of the current image in which the current pixel is located, wherein the current image is used. The first filter parameter group is obtained by filtering the target image, and the amplitude of the current pixel is an extreme value compared with the amplitude of other pixels in the local region where the current pixel is located on the current image.
在实现图 10所示的兴趣点判断方法 1000时, 存储器 1102用于存储所 述当前图像。  When the point of interest determination method 1000 shown in Fig. 10 is implemented, the memory 1102 is used to store the current image.
在实现图 10所示的兴趣点判断方法 1000时, 处理器 1104用于执行如 下操作:  When the point of interest determination method 1000 shown in FIG. 10 is implemented, the processor 1104 is configured to perform the following operations:
确定所述局部区域在所述目标图像上的对应区域, 作为目标区域。  A corresponding area of the local area on the target image is determined as a target area.
使用第二滤波参数组对所述目标区域进行滤波处理, 得到第二区域。 将当前像素的振幅与所述第二区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时,使用第三滤波参数组对所述目标区域进 行滤波处理, 得到第三区域。 The target area is filtered by using a second filter parameter set to obtain a second area. Comparing the amplitude of the current pixel with the amplitude of all the pixels in the second region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, filtering the target region by using the third filter parameter group to obtain the first Three areas.
将当前像素的振幅与所述第三区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时, 判定当前像素为当前图像的兴趣点。  The amplitude of the current pixel is compared with the amplitude of all the pixels in the third region, and when the comparison result shows that the amplitude of the current pixel is an extreme value, it is determined that the current pixel is the point of interest of the current image.
相关技术特征 (例如极值、 滤波参数组等) 的更多细节已经在上文进行 了详细的描述, 因此此处不再赘述。  Further details of related technical features (e.g., extreme values, filter parameter sets, etc.) have been described in detail above, and therefore will not be described again here.
应注意,尽管图 11所示的兴趣点判断装置 1100仅仅示出了存储器 1102 和处理器 1104, 但是在具体实现过程中, 本领域的技术人员应当明白, 兴 趣点判断装置 1100还包含实现正常运行所必须的其他器件。 同时, 根据具 体需要, 本领域的技术人员应当明白, 兴趣点判断装置 1100还可包含实现 其他附加功能的硬件器件。  It should be noted that although the point of interest judging device 1100 shown in FIG. 11 only shows the memory 1102 and the processor 1104, in the specific implementation process, those skilled in the art should understand that the point of interest judging device 1100 also includes the normal operation. Other devices necessary. At the same time, those skilled in the art will appreciate that the point of interest judging device 1100 may also include hardware devices that implement other additional functions, depending on the particular needs.
图 12是依据本发明一实施例的兴趣点判断装置 1200的示范性硬件结构 示意图。 兴趣点判断装置 1200用于判断当前像素是否为当前像素所在的当 前图像的兴趣点, 其中, 所述当前图像是通过使用第一滤波参数组对目标图 像进行滤波处理而得到的。 如图 12所示, 兴趣点判断装置 1200包括存储器 1202、 处理器 1204、 输入 /输出接口 1206、 通信接口 1208和总线 1210。  FIG. 12 is a diagram showing an exemplary hardware configuration of a point of interest judging device 1200 according to an embodiment of the present invention. The point of interest judging device 1200 is configured to determine whether the current pixel is a point of interest of the current image in which the current pixel is located, wherein the current image is obtained by filtering the target image by using the first filter parameter set. As shown in FIG. 12, the point of interest judging device 1200 includes a memory 1202, a processor 1204, an input/output interface 1206, a communication interface 1208, and a bus 1210.
存储器 1202和处理器 1204的功能和实现方式分别同图 11所描述的兴 趣点判断装置 1100中的存储器 1102和处理器 1104。  The functions and implementations of the memory 1202 and the processor 1204 are respectively the same as the memory 1102 and the processor 1104 in the point of interest judging device 1100 described in FIG.
输入 /输出接口 1206用于接收输入的数据和信息,输出操作结果等数据。 通信接口 1208使用例如但不限于收发器一类的收发装置, 来实现兴趣 点判断装置 1200与其他设备或通信网络之间的通信。  The input/output interface 1206 is for receiving input data and information, and outputting operation results and the like. Communication interface 1208 implements communication between point of interest determination device 1200 and other devices or communication networks using transceivers such as, but not limited to, transceivers.
总线 1210可包括一通路, 用于在兴趣点判断装置 1200各个部件(例如 处理器 1202、 存储器 1204、 输入 /输出接口 1206和通信接口 1208) 之间传 送信息。  Bus 1210 can include a path for communicating information between various components of point of interest determining device 1200 (e.g., processor 1202, memory 1204, input/output interface 1206, and communication interface 1208).
图 13是依据本发明一实施例的兴趣点判断装置 1300的示范性逻辑结构 示意图。 兴趣点判断装置 1300用于判断当前像素是否为当前像素所在的当 前图像的兴趣点, 其中, 所述当前图像是通过使用第一滤波参数组对目标图 像进行滤波处理而得到的。 如图 13所示, 兴趣点判断装置 1100包括主控制 模块 1302、 比较模块 1304和滤波处理模块 1306。 FIG. 13 is a schematic diagram showing an exemplary logical structure of a point of interest judging device 1300 according to an embodiment of the present invention. The point of interest judging device 1300 is configured to determine whether the current pixel is located at the current pixel. a point of interest of the front image, wherein the current image is obtained by filtering the target image using the first set of filter parameters. As shown in FIG. 13, the point of interest judging device 1100 includes a main control module 1302, a comparison module 1304, and a filter processing module 1306.
主控制模块 1302用于调用比较模块 1304将当前像素的振幅与当前图像 上所述当前像素所在的局部区域内其他像素的振幅相比较, 且主控制模块 The main control module 1302 is configured to call the comparison module 1304 to compare the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and the main control module
1302 还用于在比较结果显示当前像素的振幅为一极值时, 确定所述局部区 域在所述目标图像上的对应区域, 作为目标区域。 1302 is further configured to determine, as the target area, a corresponding area of the local area on the target image when the comparison result shows that the amplitude of the current pixel is an extreme value.
主控制模块 1302还用于调用滤波处理模块 1306使用第二滤波参数组对 所述目标区域进行滤波处理, 得到第二区域。  The main control module 1302 is further configured to invoke the filter processing module 1306 to perform filtering processing on the target area using the second filter parameter set to obtain a second area.
主控制模块 1302还用于调用比较模块 1304将当前像素的振幅与所述第 二区域内所有像素的振幅相比较, 且主控制模块 1302还用于在比较结果显 示当前像素的振幅为一极值时, 调用滤波处理模块 1306使用第三滤波参数 组对所述目标区域进行滤波处理, 得到第三区域;  The main control module 1302 is further configured to call the comparison module 1304 to compare the amplitude of the current pixel with the amplitude of all the pixels in the second region, and the main control module 1302 is further configured to display the amplitude of the current pixel as an extreme value in the comparison result. At the time, the call filter processing module 1306 performs filtering processing on the target area using the third filter parameter set to obtain a third area;
主控制模块 1302还用于调用比较模块 1304将当前像素的振幅与所述第 三区域内所有像素的振幅相比较, 且主控制模块 1302还用于在比较结果显 示当前像素的振幅为一极值时, 判定当前像素为当前图像的兴趣点。  The main control module 1302 is further configured to call the comparison module 1304 to compare the amplitude of the current pixel with the amplitude of all the pixels in the third region, and the main control module 1302 is further configured to display, in the comparison result, that the amplitude of the current pixel is an extreme value. When it is determined, the current pixel is the point of interest of the current image.
如上文所述, 在具体实现过程中, 每一滤波参数组包括第一滤波参数和 第二滤波参数, 所述滤波处理包括:  As described above, in a specific implementation process, each filter parameter group includes a first filter parameter and a second filter parameter, and the filter process includes:
使用该滤波处理所使用的滤波参数组中的第一滤波参数对待处理图像 进行第一滤波操作, 得到第一滤波图像;  Performing a first filtering operation on the image to be processed using the first filtering parameter in the filtering parameter set used by the filtering process to obtain a first filtered image;
使用该滤波处理所使用的滤波参数组中的第二滤波参数对第一滤波图 像进行第二滤波操作, 得到第二滤波图像。  The second filtering operation is performed on the first filtered image using the second filtering parameter in the filtering parameter set used by the filtering process to obtain a second filtered image.
如上文所述, 在具体实现过程中, 所述第一滤波参数为高斯滤波参数, 所述第二滤波参数为拉普拉斯滤波参数, 所述第一滤波操作为高斯滤波操 作, 所述第二滤波操作为拉普拉斯滤波操作。  As described above, in a specific implementation process, the first filtering parameter is a Gaussian filtering parameter, the second filtering parameter is a Laplacian filtering parameter, and the first filtering operation is a Gaussian filtering operation, where the The second filtering operation is a Laplacian filtering operation.
如上文所述, 在具体实现过程中, 所述第一滤波参数组中的第一滤波参 数为 σ(Ν), 所述第二滤波参数组中的第一滤波参数为 σ(Ν + 1), 所述第三滤 波参数组中的第一滤波参数为 σ(Ν -1) ; 或者 As described above, in a specific implementation process, the first filtering parameter in the first filtering parameter group The number is σ(Ν), the first filter parameter in the second filter parameter set is σ(Ν + 1), and the first filter parameter in the third filter parameter set is σ(Ν -1); or
所述所述第一滤波参数组中的第一滤波参数为 σ(Ν),所述第二滤波参数 组中的第一滤波参数为 σ(Ν -1), 所述第三滤波参数组中的第一滤波参数为 σ(Ν + 1)。 The first filter parameter in the first filter parameter set is σ (Ν), and the first filter parameter in the second filter parameter set is σ (Ν -1), in the third filter parameter group The first filter parameter is σ(Ν + 1).
如上文所述, 在具体实现过程中, 可进行如下设置, σ(Ν) = 1ίΝσ, 其中 k 和 j为常数。 As mentioned above, in the specific implementation process, the following settings can be made, σ(Ν) = 1ί Ν σ, where k and j are constants.
如上文所述, 在具体实现过程中, 所述局部区域至少包括当前像素和与 该当前像素相邻的 8个像素。  As described above, in a specific implementation process, the local area includes at least a current pixel and eight pixels adjacent to the current pixel.
相关技术特征 (例如极值、 滤波参数组等) 的更多细节已经在上文进行 了详细的描述, 因此此处不再赘述。  Further details of related technical features (e.g., extreme values, filter parameter sets, etc.) have been described in detail above, and therefore will not be described again here.
不难理解, 图 13所示的兴趣点判断装置 1300可用于实现图 5所示的兴 趣点判断方法 500。 然而, 应注意, 图 13所示的兴趣点判断装置 1300还可 用于实现图 10所示的兴趣点判断方法 1000。  It is not difficult to understand that the point of interest judging device 1300 shown in Fig. 13 can be used to implement the point of interest judging method 500 shown in Fig. 5. However, it should be noted that the point of interest judging device 1300 shown in Fig. 13 can also be used to implement the point of interest judging method 1000 shown in Fig. 10.
具体来说, 在实现图 10所示的兴趣点判断方法 1000时, 图 13所示的 兴趣点判断装置 1300用于判断当前像素是否为当前像素所在的当前图像的 兴趣点, 其中, 所述当前图像是通过使用第一滤波参数组对目标图像进行滤 波处理而得到的,且与当前图像上所述当前像素所在的局部区域内其他像素 的振幅相比, 当前像素的振幅为一极值。  Specifically, when the point of interest determination method 1000 shown in FIG. 10 is implemented, the point of interest determination apparatus 1300 shown in FIG. 13 is configured to determine whether the current pixel is a point of interest of the current image where the current pixel is located, where the current The image is obtained by filtering the target image using the first filter parameter set, and the amplitude of the current pixel is an extreme value compared with the amplitude of other pixels in the local region where the current pixel is located on the current image.
在实现图 10所示的兴趣点判断方法 1000时, 主控制模块 1302用于确 定所述局部区域在所述目标图像上的对应区域, 作为目标区域。  When the point of interest determination method 1000 shown in FIG. 10 is implemented, the main control module 1302 is configured to determine a corresponding area of the local area on the target image as a target area.
主控制模块 1302还用于调用滤波处理模块 1306使用第二滤波参数组对 所述目标区域进行滤波处理, 得到第二区域。  The main control module 1302 is further configured to invoke the filter processing module 1306 to perform filtering processing on the target area using the second filter parameter set to obtain a second area.
主控制模块 1302还用于调用比较模块 1304将当前像素的振幅与所述第 二区域内所有像素的振幅相比较, 主控制模块 1302还用于在比较结果显示 当前像素的振幅为一极值时, 调用滤波处理模块 1306使用第三滤波参数组 对所述目标区域进行滤波处理, 得到第三区域。 The main control module 1302 is further configured to compare the amplitude of the current pixel with the amplitude of all the pixels in the second area, and the main control module 1302 is further configured to: when the comparison result shows that the amplitude of the current pixel is an extreme value Calling the filter processing module 1306 to use the third filter parameter set Filtering the target area to obtain a third area.
主控制模块 1302还用于调用比较模块 1304将当前像素的振幅与所述第 三区域内所有像素的振幅相比较, 主控制模块 1302还用于在比较结果显示 当前像素的振幅为一极值时, 判定当前像素为当前图像的兴趣点。  The main control module 1302 is further configured to compare the amplitude of the current pixel with the amplitude of all the pixels in the third region, and the main control module 1302 is further configured to display, when the comparison result shows that the amplitude of the current pixel is an extreme value. , determining that the current pixel is a point of interest of the current image.
有关第一滤波参数组、 第二滤波参数组、 第三滤波参数组、 极值、 局部 区域、滤波处理、对应区域等技术特征的内容已经在前文进行了详细的描述, 因此此处不再赘述。  The contents of the first filter parameter group, the second filter parameter group, the third filter parameter group, the extreme value, the local region, the filter processing, the corresponding region, and the like have been described in detail in the foregoing, and therefore will not be described herein. .
图 14是依据本发明一实施例的兴趣点判断装置 1400的示范性逻辑结构 示意图。 兴趣点判断装置 1400用于判断当前像素是否为当前像素所在的当 前图像的兴趣点, 其中, 所述当前图像是通过使用第一方框滤波参数对目标 图像进行滤波处理再对滤波处理后的目标图像计算海森(Hessian)行列式响 应而得到的, 所述当前像素为所述当前图像上响应值为正的像素。 如图 14 所示, 兴趣点判断装置 1400包括主控制模块 1402、 比较模块 1404、 滤波处 理模块 1406和计算模块 1408。  FIG. 14 is a diagram showing an exemplary logical structure of a point of interest judging device 1400 according to an embodiment of the present invention. The point of interest judging device 1400 is configured to determine whether the current pixel is a point of interest of the current image where the current pixel is located, wherein the current image is a filter target processed by using the first block filter parameter and then filtered. The image is obtained by calculating a Hessian determinant response, and the current pixel is a pixel whose positive response value is on the current image. As shown in FIG. 14, the point of interest judging device 1400 includes a main control module 1402, a comparison module 1404, a filtering processing module 1406, and a calculation module 1408.
主控制模块 1402用于调用比较模块 1404将当前像素的振幅与当前图像 上所述当前像素所在的局部区域内其他像素的振幅相比较,主控制模块 1402 还用于在比较结果显示当前像素的振幅为一极大值时,确定所述局部区域在 所述目标图像上的对应区域, 作为目标区域。  The main control module 1402 is configured to compare the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image, and the main control module 1402 is further configured to display the amplitude of the current pixel in the comparison result. When it is a maximum value, a corresponding area of the local area on the target image is determined as a target area.
主控制模块 1402还用于调用滤波处理模块 1406使用第二方框滤波参数 对所述目标区域进行滤波处理, 再调用计算模块 1408对滤波处理后的目标 区域计算 Hessian行列式响应, 得到第二区域;  The main control module 1402 is further configured to call the filter processing module 1406 to filter the target area by using the second block filter parameter, and then call the calculation module 1408 to calculate a Hessian determinant response to the filtered target region to obtain a second region. ;
主控制模块 1402还用于调用比较模块 1404将当前像素的振幅与所述第 二区域内所有像素的振幅相比较, 主控制模块 1402还用于在比较结果显示 当前像素的振幅为一极大值时, 调用滤波处理模块 1406使用第三方框滤波 参数对所述目标区域进行滤波处理, 再调用计算模块 1408对滤波处理后的 目标区域计算 Hessian行列式响应, 得到第三区域;  The main control module 1402 is further configured to compare the amplitude of the current pixel with the amplitude of all the pixels in the second region, and the main control module 1402 is further configured to display the amplitude of the current pixel as a maximum value in the comparison result. The call filter processing module 1406 performs filtering processing on the target area using the third-party frame filter parameter, and then calls the calculation module 1408 to calculate a Hessian determinant response to the filtered target region to obtain a third region;
主控制模块 1402还用于调用比较模块 1404将当前像素的振幅与所述第 三区域内所有像素的振幅相比较, 主控制模块 1402还用于在比较结果显示 当前像素的振幅为一极大值时, 判定当前像素为当前图像的兴趣点。 The main control module 1402 is further configured to call the comparison module 1404 to compare the amplitude of the current pixel with the first The main control module 1402 is further configured to determine that the current pixel is a point of interest of the current image when the comparison result shows that the amplitude of the current pixel is a maximum value.
在具体实现过程中, 第一方框滤波参数、 第二方框滤波参数和第三方框 滤波参数可对应不同大小的滤波矩阵,且第二区域为局部区域的上层区域或 者下层区域, 第三区域为目标区域的下层区域或者上层区域。  In a specific implementation process, the first block filter parameter, the second block filter parameter, and the third-party frame filter parameter may correspond to different size filter matrices, and the second region is an upper region or a lower region of the local region, and the third region It is the lower area or the upper area of the target area.
不难理解, 图 14所示的兴趣点判断装置 1400可用于实现图 9所示的兴 趣点判断方法 900。  It is not difficult to understand that the point of interest judging device 1400 shown in Fig. 14 can be used to implement the point of interest judging method 900 shown in Fig. 9.
本领域普通技术人员可知,上述方法中的全部或部分步骤可以通过程序 指令相关的硬件完成, 该程序可以存储于一计算机可读存储介质中, 该计算 机可读存储介质如 ROM、 RAM和光盘等。  A person skilled in the art may know that all or part of the above steps may be completed by hardware related to program instructions, and the program may be stored in a computer readable storage medium such as a ROM, a RAM, an optical disc, or the like. .
综上所述, 以上仅为本发明的较佳实施例而已, 并非用于限定本发明的 保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改 进等, 均应包含在本发明的保护范围之内。  In conclusion, the above is only a preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions, improvements, etc., made within the spirit and scope of the invention are intended to be included within the scope of the invention.

Claims

权利要求书 claims
1、 一种兴趣点判断方法, 用于判断当前像素是否为当前像素所在的当 前图像的兴趣点, 其中, 所述当前图像是通过使用第一滤波参数组对目标图 像进行滤波处理而得到的, 其特征在于, 所述方法包括: 1. An interest point determination method, used to determine whether the current pixel is an interest point of the current image where the current pixel is located, wherein the current image is obtained by filtering the target image using a first filter parameter group, It is characterized in that the method includes:
将当前像素的振幅与当前图像上所述当前像素所在的局部区域内其他 像素的振幅相比较, 在比较结果显示当前像素的振幅为一极值时, 确定所述 局部区域在所述目标图像上的对应区域, 作为目标区域; Compare the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image. When the comparison result shows that the amplitude of the current pixel is an extreme value, determine that the local area is on the target image. The corresponding area of is used as the target area;
使用第二滤波参数组对所述目标区域进行滤波处理, 得到第二区域; 将当前像素的振幅与所述第二区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时,使用第三滤波参数组对所述目标区域进 行滤波处理, 得到第三区域; Use the second filter parameter group to filter the target area to obtain the second area; Compare the amplitude of the current pixel with the amplitude of all pixels in the second area, and the comparison result shows that the amplitude of the current pixel is one pole value, use the third filtering parameter group to perform filtering processing on the target area to obtain the third area;
将当前像素的振幅与所述第三区域内所有像素的振幅相比较,在比较结 果显示当前像素的振幅为一极值时, 判定当前像素为当前图像的兴趣点。 The amplitude of the current pixel is compared with the amplitudes of all pixels in the third area. When the comparison result shows that the amplitude of the current pixel is an extreme value, the current pixel is determined to be the interest point of the current image.
2、 如权利要求 1 所述的方法, 其特征在于, 每一滤波参数组包括第一 滤波参数和第二滤波参数, 所述滤波处理包括: 2. The method of claim 1, wherein each filtering parameter group includes a first filtering parameter and a second filtering parameter, and the filtering process includes:
使用该滤波处理所使用的滤波参数组中的第一滤波参数对待处理图像 进行第一滤波操作, 得到第一滤波图像; Perform a first filtering operation on the image to be processed using the first filtering parameter in the filtering parameter group used in the filtering process to obtain the first filtered image;
使用该滤波处理所使用的滤波参数组中的第二滤波参数对第一滤波图 像进行第二滤波操作, 得到第二滤波图像。 Perform a second filtering operation on the first filtered image using the second filtering parameter in the filtering parameter group used in the filtering process to obtain a second filtered image.
3、 如权利要求 2所述的方法, 其特征在于, 所述第一滤波参数为高斯 滤波参数, 所述第二滤波参数为拉普拉斯滤波参数, 所述第一滤波操作为高 斯滤波操作, 所述第二滤波操作为拉普拉斯滤波操作。 3. The method of claim 2, wherein the first filtering parameter is a Gaussian filtering parameter, the second filtering parameter is a Laplacian filtering parameter, and the first filtering operation is a Gaussian filtering operation. , the second filtering operation is a Laplacian filtering operation.
4、 如权利要求 2所述的方法, 其特征在于, 所述第一滤波参数组中的 第一滤波参数为 σ(Ν), 所述第二滤波参数组中的第一滤波参数为 σ(Ν + 1), 所述第三滤波参数组中的第一滤波参数为 σ(Ν -1) ; 或者 4. The method of claim 2, wherein the first filter parameter in the first filter parameter group is σ(N), and the first filter parameter in the second filter parameter group is σ(N) N + 1), the first filter parameter in the third filter parameter group is σ (N -1); or
所述所述第一滤波参数组中的第一滤波参数为 σ(Ν),所述第二滤波参数 组中的第一滤波参数为 σ(Ν -1), 所述第三滤波参数组中的第一滤波参数为 σ(Ν + 1)。 The first filter parameter in the first filter parameter group is σ (N), and the second filter parameter The first filter parameter in the group is σ (N -1), and the first filter parameter in the third filter parameter group is σ (N + 1).
5、 如权利要求 4 所述的方法, 其特征在于, CT(N) = kN CT, 其中 k和 j为 常数。 5. The method of claim 4, wherein CT (N) = k N CT , where k and j are constants.
6、 如权利要求 1所述的方法, 其特征在于, 所述局部区域至少包括当 前像素和与该当前像素相邻的 8个像素。 6. The method of claim 1, wherein the local area includes at least a current pixel and 8 pixels adjacent to the current pixel.
7、 一种兴趣点判断装置, 用于判断当前像素是否为当前像素所在的当 前图像的兴趣点, 其中, 所述当前图像是通过使用第一滤波参数组对目标图 像进行滤波处理而得到的, 其特征在于, 所述装置包括: 7. An interest point judgment device, used to judge whether the current pixel is an interest point of the current image where the current pixel is located, wherein the current image is obtained by filtering the target image using a first filter parameter group, It is characterized in that the device includes:
存储器, 用于存储所述当前图像; Memory, used to store the current image;
处理器, 用于执行如下操作: Processor, used to perform the following operations:
将当前像素的振幅与当前图像上所述当前像素所在的局部区域内 其他像素的振幅相比较, 在比较结果显示当前像素的振幅为一极值时, 确定所述局部区域在所述目标图像上的对应区域, 作为目标区域; 使用第二滤波参数组对所述目标区域进行滤波处理, 得到第二区 域; Compare the amplitude of the current pixel with the amplitude of other pixels in the local area where the current pixel is located on the current image. When the comparison result shows that the amplitude of the current pixel is an extreme value, determine that the local area is on the target image. The corresponding area of , as the target area; Use the second filtering parameter group to filter the target area to obtain the second area;
将当前像素的振幅与所述第二区域内所有像素的振幅相比较,在比 较结果显示当前像素的振幅为一极值时,使用第三滤波参数组对所述目 标区域进行滤波处理, 得到第三区域; Compare the amplitude of the current pixel with the amplitude of all pixels in the second area. When the comparison result shows that the amplitude of the current pixel is an extreme value, use the third filter parameter group to filter the target area to obtain the third Three areas;
将当前像素的振幅与所述第三区域内所有像素的振幅相比较,在比 较结果显示当前像素的振幅为一极值时,判定当前像素为当前图像的兴 趣点。 The amplitude of the current pixel is compared with the amplitudes of all pixels in the third area. When the comparison result shows that the amplitude of the current pixel is an extreme value, the current pixel is determined to be the point of interest of the current image.
8、 如权利要求 7所述的装置, 其特征在于, 每一滤波参数组包括第一 滤波参数和第二滤波参数, 所述滤波处理包括: 8. The device according to claim 7, wherein each filtering parameter group includes a first filtering parameter and a second filtering parameter, and the filtering process includes:
使用该滤波处理所使用的滤波参数组中的第一滤波参数对待处理图像 进行第一滤波操作, 得到第一滤波图像; 使用该滤波处理所使用的滤波参数组中的第二滤波参数对第一滤波图 像进行第二滤波操作, 得到第二滤波图像。 Perform a first filtering operation on the image to be processed using the first filtering parameter in the filtering parameter group used in the filtering process to obtain the first filtered image; Perform a second filtering operation on the first filtered image using the second filtering parameter in the filtering parameter group used in the filtering process to obtain a second filtered image.
9、 如权利要求 8所述的装置, 其特征在于, 所述第一滤波参数为高斯 滤波参数, 所述第二滤波参数为拉普拉斯滤波参数, 所述第一滤波操作为高 斯滤波操作, 所述第二滤波操作为拉普拉斯滤波操作。 9. The device of claim 8, wherein the first filtering parameter is a Gaussian filtering parameter, the second filtering parameter is a Laplacian filtering parameter, and the first filtering operation is a Gaussian filtering operation. , the second filtering operation is a Laplacian filtering operation.
10、 如权利要求 8所述的装置, 其特征在于, 所述第一滤波参数组中的 第一滤波参数为 σ(Ν), 所述第二滤波参数组中的第一滤波参数为 σ(Ν + 1), 所述第三滤波参数组中的第一滤波参数为 σ( Ν - 1); 或者 10. The device according to claim 8, wherein the first filter parameter in the first filter parameter group is σ(N), and the first filter parameter in the second filter parameter group is σ(N) N + 1), the first filter parameter in the third filter parameter group is σ ( N - 1); or
所述所述第一滤波参数组中的第一滤波参数为 σ(Ν),所述第二滤波参数 组中的第一滤波参数为 σ(Ν -1), 所述第三滤波参数组中的第一滤波参数为 σ(Ν + 1)。 The first filter parameter in the first filter parameter group is σ (N), the first filter parameter in the second filter parameter group is σ (N -1), and the third filter parameter group The first filtering parameter is σ(N + 1).
11、 如权利要求 10所述的装置, 其特征在于, CT(N) = kN CT, 其中 k和 j为 常数。 11. The device of claim 10, wherein CT (N) = k N CT , where k and j are constants.
12、 如权利要求 7所述的装置, 其特征在于, 所述局部区域至少包括当 前像素和与该当前像素相邻的 8个像素。 12. The device according to claim 7, wherein the local area includes at least a current pixel and 8 pixels adjacent to the current pixel.
PCT/CN2013/080007 2013-07-24 2013-07-24 Interest point judgement method and interest point judgement device WO2015010275A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/080007 WO2015010275A1 (en) 2013-07-24 2013-07-24 Interest point judgement method and interest point judgement device
CN201380000883.XA CN104541289B (en) 2013-07-24 2013-07-24 A kind of point of interest determination methods and point of interest judgment means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080007 WO2015010275A1 (en) 2013-07-24 2013-07-24 Interest point judgement method and interest point judgement device

Publications (1)

Publication Number Publication Date
WO2015010275A1 true WO2015010275A1 (en) 2015-01-29

Family

ID=52392591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080007 WO2015010275A1 (en) 2013-07-24 2013-07-24 Interest point judgement method and interest point judgement device

Country Status (2)

Country Link
CN (1) CN104541289B (en)
WO (1) WO2015010275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578374A (en) * 2017-07-28 2018-01-12 深圳市安健科技股份有限公司 The drawing process and computer-readable recording medium of x-ray image

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967462B (en) * 2020-04-26 2024-02-02 杭州依图医疗技术有限公司 Method and device for acquiring region of interest

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714254A (en) * 2009-11-16 2010-05-26 哈尔滨工业大学 Registering control point extracting method combining multi-scale SIFT and area invariant moment features
CN102096817A (en) * 2009-12-11 2011-06-15 北大方正集团有限公司 Image stable characteristic point extracting method and device
US20120014453A1 (en) * 2010-07-16 2012-01-19 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196845B2 (en) * 2003-03-31 2008-12-17 セイコーエプソン株式会社 Image processing device
JP2008109369A (en) * 2006-10-25 2008-05-08 Olympus Imaging Corp Imaging apparatus and image processing method
JP5220705B2 (en) * 2009-07-23 2013-06-26 オリンパス株式会社 Image processing apparatus, image processing program, and image processing method
CN103295014B (en) * 2013-05-21 2017-04-12 上海交通大学 Image local feature description method based on pixel location arrangement column diagrams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714254A (en) * 2009-11-16 2010-05-26 哈尔滨工业大学 Registering control point extracting method combining multi-scale SIFT and area invariant moment features
CN102096817A (en) * 2009-12-11 2011-06-15 北大方正集团有限公司 Image stable characteristic point extracting method and device
US20120014453A1 (en) * 2010-07-16 2012-01-19 Canon Kabushiki Kaisha Image processing apparatus and image processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578374A (en) * 2017-07-28 2018-01-12 深圳市安健科技股份有限公司 The drawing process and computer-readable recording medium of x-ray image
CN107578374B (en) * 2017-07-28 2021-10-08 深圳市安健科技股份有限公司 Stretching method of X-ray image and computer readable storage medium

Also Published As

Publication number Publication date
CN104541289A (en) 2015-04-22
CN104541289B (en) 2017-11-17

Similar Documents

Publication Publication Date Title
CN108446698B (en) Method, device, medium and electronic equipment for detecting text in image
CN109829506B (en) Image processing method, image processing device, electronic equipment and computer storage medium
US9076234B2 (en) Super-resolution method and apparatus for video image
CN111652818B (en) Pyramid-based image filtering method, pyramid-based image filtering device and storage medium
US10115180B2 (en) Image interpolation device and method thereof
WO2014166377A1 (en) Image interest point detection method and device
US9286653B2 (en) System and method for increasing the bit depth of images
WO2020186385A1 (en) Image processing method, electronic device, and computer-readable storage medium
CN111091572B (en) Image processing method and device, electronic equipment and storage medium
CN110503704B (en) Method and device for constructing three-dimensional graph and electronic equipment
CN110852334B (en) System and method for adaptive pixel filtering
CN114004754A (en) Scene depth completion system and method based on deep learning
CN109272526B (en) Image processing method and system and electronic equipment
CN112419342A (en) Image processing method, image processing device, electronic equipment and computer readable medium
CN112966639B (en) Vehicle detection method, device, electronic equipment and storage medium
WO2015010275A1 (en) Interest point judgement method and interest point judgement device
CN112927163A (en) Image data enhancement method and device, electronic equipment and storage medium
CN112883983A (en) Feature extraction method and device and electronic system
CN112560864A (en) Image semantic segmentation method and device and training method of image semantic segmentation model
CN113808021A (en) Image processing method and device, image processing model training method and device, and electronic equipment
WO2022033088A1 (en) Image processing method, apparatus, electronic device, and computer-readable medium
CN112052863B (en) Image detection method and device, computer storage medium and electronic equipment
CN110633595B (en) Target detection method and device by utilizing bilinear interpolation
CN112150532A (en) Image processing method and device, electronic equipment and computer readable medium
CN114119609B (en) Method, device and equipment for detecting image stain concentration and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890145

Country of ref document: EP

Kind code of ref document: A1