WO2015008708A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2015008708A1
WO2015008708A1 PCT/JP2014/068607 JP2014068607W WO2015008708A1 WO 2015008708 A1 WO2015008708 A1 WO 2015008708A1 JP 2014068607 W JP2014068607 W JP 2014068607W WO 2015008708 A1 WO2015008708 A1 WO 2015008708A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
gas
gas barrier
oxygen
Prior art date
Application number
PCT/JP2014/068607
Other languages
French (fr)
Japanese (ja)
Inventor
昌ニ 西尾
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015527281A priority Critical patent/JPWO2015008708A1/en
Publication of WO2015008708A1 publication Critical patent/WO2015008708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to an electronic device.
  • film substrates such as transparent plastics have a problem that gas barrier properties are inferior to general glass substrates. For this reason, there exists a subject that water vapor
  • an inorganic film is formed on the base material by a vapor phase film forming method such as sputtering or plasma CVD (for example, see JP-A-HEI No. 8-165368).
  • a silicon oxide film or an aluminum oxide film is known, but these techniques only have a water vapor barrier property of about 1 g / m 2 / day at most.
  • the gas barrier performance for film substrates is about 0.1 g / m 2 / day for water vapor barriers, and further water vapor barrier performance is required for organic electroluminescence. It is the present situation.
  • US Pat. No. 5,260,095 discloses a polymer multilayer (PML) technique.
  • PML polymer multilayer
  • a coating consisting of a polymer layer and an aluminum oxide layer is applied to a flexible substrate and the substrate is sealed.
  • Both the polymer layer and the aluminum oxide layer can be operated at very high speeds in the deposition process using web processing equipment. It is disclosed that the resistance to water and oxygen permeability is improved by 3 to 4 orders of magnitude compared to uncoated PET membranes.
  • the polymer layer obscures any defects in the adjacent ceramic layer so as to reduce the diffusion rate of oxygen and / or water vapor through the channels that can be created by these defects in the barrier layer. Suggested to work.
  • the interface between the polymer layer and the aluminum oxide layer is generally weak due to the incompatibility of the adjacent materials. Therefore, these layers are easy to peel off and the gas barrier property deteriorates after long-term storage. It was.
  • the gas barrier film described above when applied to an electronic device, the gas barrier film is peeled off under a high temperature and high humidity condition, that is, there is a problem that the adhesion between the gas barrier film and the lower layer is lowered.
  • an object of the present invention is to provide an electronic device in which the adhesion of a gas barrier film is maintained even under high temperature and high humidity conditions, and high barrier properties are maintained.
  • Another object of the present invention is to provide an electronic device that maintains device performance even after long-term use.
  • the present invention provides a base material, a first layer having gas barrier performance, and a second layer obtained by modifying a coating film obtained by applying a coating liquid containing a polysilazane compound in this order.
  • FIG. 1 is a gas barrier film
  • 2 is a base material
  • 3 is a first layer
  • 31 is a manufacturing apparatus
  • 32 is a delivery roller
  • 33, 34, 35 and 36 are transport rollers
  • 39 and 40 are film forming rollers
  • 42 is a plasma generating power source
  • 43 and 44 are magnetic field generators
  • 45 is a winding roller
  • a and B are points where the maximum value of the carbon distribution curve is formed
  • C1, C2, C3 and C4 Indicates the point where the minimum value of the carbon distribution curve is formed.
  • the organic electroluminescent panel which is an electronic device using the gas barrier film which concerns on this invention as a sealing film.
  • 4 is a transparent electrode
  • 5 is an organic EL element
  • 6 is an adhesive layer
  • 7 is a counter film
  • 9 is an organic EL panel
  • 10 is a gas barrier film.
  • Gas barrier film No. which is an example. 4 is a diagram showing a film thickness composition of a second layer in FIG.
  • X to Y indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • the present invention provides a base material, a first layer having gas barrier performance, and a second layer obtained by modifying a coating film obtained by applying a coating liquid containing a polysilazane compound in this order.
  • Silicon oxygen in a region having an average oxygen content ratio of 35 nm or more from the outermost surface to the total of silicon, oxygen and nitrogen in the region of the outermost surface to 35 nm opposed to the base material of the second layer.
  • an electronic device greater than the average oxygen content relative to the sum of nitrogen.
  • International Publication No. 2011/007543 discloses that a polysilazane film formed on a substrate is irradiated with energy rays in an atmosphere substantially free of oxygen or water vapor, and at least a part of the polysilazane film. To form a high nitrogen concentration region. At the same time, oxidation behavior presumed to be caused by moisture from the substrate side occurs, the inside of the barrier layer changes to an oxide film (silicon oxide layer), and the silicon-containing film is composed of a high nitrogen concentration region and a silicon oxide region. (WO 2011/007543, paragraph “0075”).
  • Example 10 of International Publication No. 2011/007543 describes a form in which a silicon-containing film including a high nitrogen concentration region is formed on an alumina-deposited PET film. And when a vapor deposition film is formed between the base material and the silicon-containing film, the silicon-containing film can compensate for a defect site such as a pinhole in the vapor deposition film, and further than the silicon-containing film or the vapor deposition film carrier. It is also described that a high gas barrier property can be expressed (International Publication No. 2011/007543, paragraph “0146”).
  • the gas barrier performance of the gas barrier film is maintained even under high temperature and high humidity conditions, and deterioration due to water vapor or the like of the electronic device can be suppressed.
  • high gas barrier performance is maintained even after long-term use, device performance is maintained.
  • the gas barrier film used in the electronic device of the present invention has a first layer having gas barrier performance between the substrate and the second layer.
  • the water vapor permeability of the first layer is preferably 0.1 g / m 2 ⁇ day or less.
  • the base material, the first layer, and the second layer are in this order, but a preferred embodiment is a base material, In this embodiment, the first layer and the second layer formed (directly) on the first layer are arranged in this order.
  • the gas barrier unit having the first layer and the second layer may be formed on one surface of the base material, or may be formed on both surfaces of the base material.
  • the gas barrier unit may further include a layer that does not necessarily have a gas barrier property.
  • the gas barrier film used in the electronic device of the present invention preferably has a permeated water amount of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less as measured by the method described in Examples below. More preferably, it is 1 ⁇ 10 ⁇ 4 g / (m 2 ⁇ 24 h) or less.
  • the permeated water amount in the gas barrier film is preferably as low as possible, the lower limit is not specified, but it is usually about 1 ⁇ 10 ⁇ 7 g / (m 2 ⁇ 24 h) or more.
  • base material used for the gas barrier film examples include a metal substrate such as silicon, a glass substrate, a ceramic substrate, and a plastic film, and a plastic film is preferably used.
  • the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold a barrier layer, a hard coat layer, and the like, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification
  • thermoplastic resins such as polycarbonate resin, fluorene ring-modified polyester resin, and acryloyl compound.
  • the base material of the gas barrier film used in the electronic device of the present invention is preferably made of a material having heat resistance. Specifically, a resin base material having a linear expansion coefficient of 15 volume ppm / K or more and 100 volume ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used.
  • Tg glass transition temperature
  • the base material satisfies the requirements for use as a laminated film for electronic parts and displays. Specific examples include those described in paragraphs “0115” to “0116” of JP2013-226757A.
  • the plastic film is preferably transparent. Suitable ranges, measurement methods, and the like are as described in paragraphs “0120” and “0121” of JP2013-226757A.
  • the thickness of the plastic film used for the gas barrier film is appropriately selected depending on the application and is not particularly limited, but is typically 1 to 800 ⁇ m, preferably 10 to 200 ⁇ m.
  • These plastic films may have functional layers such as a transparent conductive layer and a primer layer.
  • As the functional layer in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • the base material used in the present invention can be produced by a conventionally known general method. A specific manufacturing method and the like are as described in paragraph “0125” of JP2013-226757A.
  • the treatment is performed in combination.
  • the first layer has gas barrier performance.
  • the gas barrier performance is not limited, but the water vapor permeability of the first layer is preferably 0.1 g / m 2 ⁇ day or less.
  • the second layer has an average oxygen content ratio in the region of the outermost surface to 35 nm facing the substrate of 35 nm from the outermost surface. It can satisfy the configuration that it is larger than the average oxygen content ratio in the above region.
  • the water vapor permeability of the first layer is more preferably 0.01 g / m 2 ⁇ day or less.
  • the water vapor transmission rate of the first layer was calculated with a laminate in which the first layer was formed on the base material, from the water vapor transmission rate measured by the method described in Examples below, It is assumed that the water vapor transmission rate of the base material measured by the method described in Examples below is subtracted.
  • the first layer satisfying the water vapor transmission rate can be obtained by appropriately selecting the constituent material, manufacturing method, manufacturing conditions, and the like.
  • the thickness per layer of the first layer is not particularly limited, but is usually in the range of 30 to 500 nm, preferably 50 to 300 nm, from the viewpoint of gas barrier performance and the likelihood of defects.
  • the first layer may have a stacked structure including a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 10 layers. Moreover, each sublayer may have the same composition or a different composition. Note that the preferable range of the film thickness is the total of the plurality of sublayers when the first layer is composed of the plurality of sublayers.
  • TEM transmission microscope
  • TEM transmission electron microscope
  • the first layer is made of silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride (SiON), silicon oxycarbide (SiOC), silicon carbide, silicon oxynitride carbide (SiONC), and aluminum silicate from the viewpoint of gas barrier performance.
  • the first layer preferably contains silicon oxycarbide because adhesion to the second layer under high temperature and high humidity conditions is improved and deterioration of gas barrier performance is suppressed. Since silicon oxycarbide has carbon atoms, an organic bond is formed between the elements of the second layer, so that it is considered that the adhesion with the second layer is improved.
  • the formation method of the first layer is not particularly limited, but is preferably formed by a vapor deposition method because high gas barrier performance is obtained.
  • a vapor deposition method there are a chemical vapor deposition method and a physical vapor deposition method.
  • Chemical vapor deposition is a method of depositing a film on a substrate by supplying a raw material gas containing a target thin film component and performing a chemical reaction on the substrate surface or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like.
  • Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
  • the gas barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or near atmospheric pressure selects conditions such as the raw material (also referred to as raw material) metal compound, decomposition gas, decomposition temperature, input power, etc. Therefore, the target compound can be produced, which is preferable.
  • silicon oxide is generated.
  • highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
  • silicon compound that can be used as the raw material compound conventionally known compounds such as those described in US Patent Application Publication No. 2013/236710 [0056] can be used.
  • a silicon compound which is a raw material compound used in forming a layer satisfying the requirements (i) to (ii), which are preferred forms described later, can be used.
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound there are gases described in US Patent Application Publication No. 2013/236710 [0063]. Further, the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
  • a desired barrier layer can be obtained by appropriately selecting a source gas containing a source compound and a decomposition gas.
  • FIG. 1 of JP 2012-131194 A As an apparatus used for the vacuum plasma CVD method, there is an apparatus as shown in FIG. 1 of JP 2012-131194 A.
  • the physical vapor deposition method is a method of depositing a thin film of a target substance on the surface of the substance by a physical method in a gas phase, and can be roughly classified into an evaporation system and a sputtering system. It is preferable to use a system. Film formation by sputtering can be performed using bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • Si When sputtering an Si oxide film, a nitride film, a nitrided oxide film, a carbonated film, or the like, Si can be used as the target.
  • the inert gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • Ar is preferably used.
  • oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a thin film of Si oxide, nitride, nitride oxide, carbonate or the like can be formed.
  • RF high frequency
  • Examples of film forming conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, and these can be appropriately selected according to the sputtering apparatus, the material of the film, the film thickness, and the like.
  • vacuum evaporation heating method: resistance heating, electron beam, high frequency induction, laser, etc.
  • MBE molecular beam evaporation
  • ion plating ion beam evaporation etc. It may be used.
  • Reactive sputtering is preferably used as the physical vapor deposition method.
  • the reactive sputtering method is a technique in which a reactive gas such as oxygen or nitrogen is allowed to flow in a chamber during sputtering to deposit a product of components and gases contained in a target constituent material as a thin film.
  • the reactive sputtering method is preferable because the film composition becomes uniform and the gas barrier property becomes high.
  • As the inert gas He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used.
  • oxygen, nitrogen, carbon dioxide, carbon monoxide, ammonia, H 2 O, and acetylene can be used as the reaction gas.
  • the first layer may be formed using a roll-to-roll film forming apparatus.
  • the film can be continuously produced by the roll-to-roll method. Therefore, when the first layer is formed by using a roll-to-roll film forming apparatus, productivity is improved. Improved and preferred.
  • the roll-to-roll plasma CVD apparatus include the apparatus shown in FIG. 1 described below, and a roll-to-roll sputtering apparatus is disclosed in Japanese Patent Application Laid-Open No. 2012-237047 (roll-two equipped with a magnetron sputtering cathode).
  • a known apparatus such as a roll-type sputtering apparatus or an apparatus described in FIG. 5 of JP-A-2006-334909 can be used.
  • FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first layer.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the 1 includes a feed roller 32, transport rollers 33, 34, 35, and 36, film forming rollers 39 and 40, a gas supply pipe 41, a plasma generating power source 42, and a film forming roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45.
  • a manufacturing apparatus at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • a pair of film-forming roller film-forming rollers 39 and 40
  • position a pair of film-forming roller film-forming rollers 39 and 40
  • the film forming rate can be doubled and a film having the same structure can be formed.
  • the first layer component can be deposited on the surface of the substrate 2 even on the film forming roller 40, so that the first layer is efficiently deposited on the surface of the substrate 2. Can be formed.
  • magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating device 43 provided on one film forming roller 39 and a magnetic field generating device provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity.
  • By providing such magnetic field generators 43 and 44 the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 43 and 44 are opposed.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 2 is excellent in that the first layer 3 that is a vapor deposition film can be efficiently formed.
  • the film formation roller 39 and the film formation roller 40 known rollers can be used as appropriate. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 39 and 40 is preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the base material 2 is disposed on a pair of film forming rollers (the film forming roller 39 and the film forming roller 40) so that the surfaces of the base material 2 face each other.
  • the base material 2 By disposing the base material 2 in this manner, when the plasma is generated by performing discharge in the facing space between the film formation roller 39 and the film formation roller 40, the base existing between the pair of film formation rollers is present.
  • Each surface of the material 2 can be formed simultaneously. That is, according to such a manufacturing apparatus, the first layer component is deposited on the surface of the base material 2 on the film forming roller 39 by the plasma CVD method, and the first layer component is further formed on the film forming roller 40. Since the layer component can be deposited, the first layer can be efficiently formed on the surface of the substrate 2.
  • the feed roller 32 and the transport rollers 33, 34, 35, and 36 used in such a manufacturing apparatus known rollers can be appropriately used.
  • the winding roller 45 is not particularly limited as long as it can wind the gas barrier film 1 having the first layer 3 formed on the substrate 2, and a known roller is appropriately used. be able to.
  • the gas supply pipe 41 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be used as appropriate.
  • the gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space.
  • the plasma generating power source 42 a known power source of a plasma generating apparatus can be used as appropriate.
  • a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used.
  • the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. It is preferable to do.
  • the magnetic field generators 43 and 44 known magnetic field generators can be used as appropriate.
  • an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used.
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the source gas containing the source compound, the reaction gas, the carrier gas, and the discharge gas may be used alone or in combination of two or more. it can.
  • the source gas in the film-forming gas used for forming the first layer 3 can be appropriately selected and used depending on the material of the first layer 3 to be formed.
  • organosilicon compound examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • phenyltrimethoxysilane methyltriethoxy
  • organosilicon compounds hexamethyldisiloxane and 1.1.3.3-tetramethyldisiloxane are preferable from the viewpoint of handling properties of the compound and gas barrier properties of the obtained first layer.
  • These organosilicon compounds can be used alone or in combination of two or more.
  • a reactive gas may be used in addition to the source gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary to completely react the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By making the ratio of the reaction gas not excessive, the first layer 3 to be formed is excellent in that excellent barrier properties and bending resistance can be obtained. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the film transport speed are adjusted as appropriate.
  • the first layer formed by the CVD method can be manufactured. That is, using the manufacturing apparatus 31 shown in FIG. 1, a discharge is generated between a pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber.
  • the film formation gas (raw material gas or the like) is decomposed by plasma, and the first layer 3 is formed on the surface of the substrate 2 on the film formation roller 39 and on the surface of the substrate 2 on the film formation roller 40. It is formed by the plasma CVD method.
  • the pressure in the vacuum chamber (degree of vacuum) can be adjusted as appropriate according to the type of raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • the conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, the range is from 5 to 20 m / min, and even more preferably from 0.5 to 1.2 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient thickness as a 1st layer, without impairing productivity.
  • At least a pair of film forming rollers and a plasma power source are provided, and plasma discharge is performed between the pair of film forming rollers. It is the form which forms the 1st layer containing silicon oxycarbide using the apparatus which can do.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material is a stoichiometric ratio of 12 times or less (more preferably 10 times or less).
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the first layer is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG.
  • This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in electronic devices.
  • a racetrack-like magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller shafts of the film forming rollers 39 and 40, and plasma is generated in the magnetic field.
  • the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the carbon atoms relative to the total amount of L, silicon atoms, oxygen atoms, and carbon atoms.
  • the carbon distribution curve showing the relationship with the quantity ratio (carbon atomic ratio), there will be extreme values. Specifically, when the substrate 2 passes through the point A of the film forming roller 39 and the point B of the film forming roller 40 in FIG.
  • the maximum value of the carbon distribution curve is formed.
  • the base material 2 passes the points C1 and C2 of the film forming roller 39 and the points C3 and C4 of the film forming roller 40 in FIG. 1, the carbon distribution curve is minimized in the first layer. A value is formed. Therefore, theoretically, five extreme values are generated for the two film forming rollers.
  • the number of opposite rolls is n (n is an integer of 1 or more)
  • the theoretical number of extreme values is about (5 + 4 ⁇ (n ⁇ 1)) It becomes a piece.
  • the actual number of extreme values is not always the theoretical number of extreme values depending on the conveyance speed of the substrate, and may increase or decrease.
  • the “extreme value” in the carbon distribution curve means the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the maximum or minimum value of carbon atoms in the carbon distribution curve. That means.
  • the maximum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms decreases from an increase. This is a change.
  • the minimum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms increases from a decrease. It refers to a changing point.
  • a more preferred embodiment of the first layer is a layer that satisfies the following requirement (i).
  • the carbon distribution curve preferably has at least three extreme values, more preferably at least four extreme values, but may have five or more extreme values.
  • the carbon distribution curve has at least two extreme values, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced. Since the number of extreme values is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
  • the absolute value of the difference in distance (L) from the surface is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm or less. It is particularly preferred. If it is such a distance between extreme values, since the site
  • the distance between the extreme values of the barrier layer (the absolute value of the difference between the one extreme value of the carbon distribution curve and the distance (L) from the surface of the barrier layer in the thickness direction of the barrier layer at the extreme value adjacent to the extreme value) ) Can be adjusted by the rotation speed of the film forming rollers 39 and 40 (base material transport speed).
  • the substrate 2 is conveyed by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the surface of the substrate 2 is formed by a roll-to-roll continuous film formation process.
  • the first layer 3 is formed.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is preferably 3 at% or more, more preferably 5 at% or more, and 7 at%. More preferably, it is the above.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more, the gas barrier performance during bending is enhanced.
  • the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values.
  • the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
  • the film thickness of the first layer in the region of 90% or more (upper limit: 100%) of the film thickness of the first layer, (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) increase in this order (atomic ratio) Is preferably O> Si> C).
  • at least 90% or more of the film thickness of the first layer does not have to be continuous in the barrier layer, and it is only necessary to satisfy the above-described relationship in a portion of 90% or more. By satisfying such conditions, the resulting gas barrier film has sufficient gas barrier properties and flexibility.
  • the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 25 to 45 at%, and preferably 30 to 40 at%. More preferably.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first layer is preferably 33 to 67 at%, and preferably 45 to 67 at%. More preferred.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
  • the oxygen distribution curve of the first layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values.
  • the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the thickness of the barrier layer, and it cannot be defined unconditionally.
  • the absolute value of the difference in distance is preferably 200 nm or less, and more preferably 100 nm or less. With such a distance between extreme values, the occurrence of cracks during bending of the gas barrier film can be more effectively suppressed / prevented.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the first layer (hereinafter also simply referred to as “O max ⁇ O min difference”) is 3 at% or more. Is preferably 5 at% or more, more preferably 6 at% or more, and even more preferably 7 at% or more. When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent is further improved.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the first layer (hereinafter, also simply referred to as “Si max ⁇ Si min difference”) is less than 5 at%. Preferably, it is less than 4 at%, more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property and mechanical strength of the obtained gas barrier film are further improved.
  • the lower limit of Si max -Si min difference, since Si max improvement of cracking suppressing / preventing flexion enough gas barrier film -Si min difference is small is high, not particularly limited.
  • the total amount of carbon and oxygen atoms in the film thickness direction of the first layer is substantially constant.
  • the 1st layer exhibits moderate flexibility, and the crack generation at the time of bending of a gas barrier film can be controlled and prevented more effectively.
  • the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen carbon distribution curve (hereinafter, (Also simply referred to as “OC max ⁇ OC min difference”) is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%.
  • OC max ⁇ OC min difference is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%.
  • the silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are obtained by using X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination.
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon in combination.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is the distance (L) from the surface of the first layer in the film thickness direction of the first layer in the film thickness direction. Since there is a general correlation, the “distance from the surface of the first layer in the film thickness direction of the first layer” is calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface of one layer can be employed.
  • the silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen carbon distribution curve were prepared under the following measurement conditions.
  • Etching ion species Argon (Ar + ); Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec; Etching interval (SiO 2 equivalent value): 10 nm;
  • X-ray photoelectron spectrometer Model name "VG Theta Probe", manufactured by Thermo Fisher Scientific; Irradiation X-ray: Single crystal spectroscopic AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m ellipse.
  • the first layer is substantially uniform in the film surface direction (direction parallel to the surface of the first layer). It is preferable that the fact that the first layer is substantially uniform in the film surface direction means that the oxygen distribution curve and the carbon distribution curve are measured at any two measurement points on the film surface of the first layer by XPS depth profile measurement.
  • the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum value of the atomic ratio of carbon in each carbon distribution curve And the absolute value of the difference between the minimum values is the same as each other or within 5 at%.
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time. The distance (x, unit: nm) from the surface of the first layer in the film thickness direction of at least one of the first layers to be used, and the atomic ratio of carbon (C, unit: at%) In the relationship, the condition expressed by the following formula (1) is satisfied.
  • the carbon atom ratio of the first layer is preferably in the range of 8 to 20 at%, more preferably in the range of 10 to 20 at%, as an average value of the entire layer. By setting it within this range, it is possible to form the gas first layer that sufficiently satisfies the gas barrier property and the flexibility.
  • the second layer is obtained by modifying a coating film obtained by applying a coating liquid containing a polysilazane compound.
  • the average oxygen content ratio of the region of the outermost surface to 35 nm (hereinafter also referred to as a surface region) facing the substrate of the second layer is 35 nm or more from the outermost surface (hereinafter also referred to as the substrate side region). It is larger than the average oxygen content ratio (that is, the average oxygen content ratio in the surface region / the average oxygen content ratio in the substrate side region exceeds 1).
  • the average oxygen content ratio of the surface region / average oxygen content ratio of the base material side region is preferably 1.10 or more, and more preferably 1.35 or more.
  • it is usually about 1.90 or less.
  • the oxygen content ratio is the oxygen content ratio relative to the total of silicon, oxygen, and nitrogen.
  • the oxygen content ratio in the film thickness direction is obtained by using both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon. Further, it can be measured by so-called XPS depth profile measurement in which the surface composition analysis is sequentially performed while exposing the inside of the sample. A distribution curve obtained by such XPS depth profile measurement can be created with the vertical axis representing the composition ratio (at%) of the oxygen element and the horizontal axis representing the etching time (sputtering time).
  • FIG. 3 shows a gas barrier film No. in Examples described later. 4 shows a distribution curve.
  • Etching ion species Argon (Ar + ) Etching rate: 0.05 nm / sec (SiO 2 thermal oxide equivalent value)
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation
  • X-ray Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the film thickness measurement method by transmission microscope (TEM) observation is as described in the first layer.
  • the average oxygen content ratio within 35 nm from the outermost surface is a value obtained by measuring the oxygen content ratio in the film thickness direction, integrating in the film thickness direction, and dividing the integrated value by the integrated film thickness. The same applies to a region of 35 nm or more.
  • the average oxygen content in the region of the outermost surface to 35 nm is preferably 25 to 55 at%, more preferably 30 to 45 at%.
  • the modification of the polysilazane compound on the surface layer side proceeds to some extent and the hardness is ensured to some extent, and the scratch resistance of the second layer can be improved, while the bending resistance and high temperature and high humidity are improved. It is preferable because gas barrier properties under conditions are also secured.
  • the average oxygen content ratio of the surface region / average oxygen content ratio of the base material side region is taken into account, and the average of the base material side region It is preferable to set the oxygen content ratio.
  • the average oxygen content ratio in the region of 35 nm or more from the outermost surface is preferably 10 at% or more, and 15 at% or more. It is more preferable. More specifically, the average oxygen content ratio in the region of 35 nm or more from the outermost surface is preferably 10 to 40 at%, and more preferably 15 to 30 at%.
  • the thickness of the second layer exceeds 35 nm. Since the high gas barrier performance can be maintained in the long term, the thickness of the second layer is preferably 40 nm or more, more preferably 50 nm or more, and more preferably 100 nm or more.
  • the upper limit of a 2nd layer is not specifically limited, From a viewpoint of the applicability
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • the polysilazane preferably has the following structure.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. .
  • R 1 , R 2 and R 3 may be the same or different.
  • examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms.
  • examples of the aryl group include aryl groups having 6 to 30 carbon atoms. More specifically, alkyl groups described in U.S. Patent Application Publication No. 2013/236710 [0117] and [0120] can be given.
  • the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
  • one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • polysilazane has a structure represented by the following general formula (II).
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group.
  • R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group;
  • R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group;
  • R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
  • polysilazane has a structure represented by the following general formula (III).
  • R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ′′ , R 2 ′′ , R 3 ′′ , R 4 ′′ , R 5 ′′ , R 6 ′′ , R 7 ′′ , R 8 ′′ and R 9 ′′ may be the same or different.
  • the substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
  • n, n ′, p, n ′′, p ′′ and q are integers, and the general formula (I), (II) or (III) It is preferable that the polysilazane having a structure represented by formula (1) is determined so as to have a number average molecular weight of 150 to 150,000 g / mol. Note that n ′ and p may be the same or different. Further, n ′′, p ′′ and q may be the same or different.
  • R 1 ′′ , R 3 ′′ and R 6 ′′ each represent a hydrogen atom
  • R 2 ′′ , R 4 ′′ , R 5 ′′ and R 8 ′′ each represent a methyl group.
  • R 9 ′′ represents a (triethoxysilyl) propyl group
  • R 7 ′′ represents an alkyl group or a hydrogen atom.
  • organopolysilazane in which a part of the hydrogen atom bonded to Si is substituted with an alkyl group or the like has an improved adhesion to the lower layer due to having an alkyl group such as a methyl group, and is hard and brittle polysilazane.
  • the ceramic film can be provided with toughness, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings.
  • the number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
  • Polysilazane is commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for forming a polysilazane layer.
  • Examples of commercially available polysilazane solutions include those described in paragraph “0051” of JP2013-226757A.
  • the content of polysilazane in the second layer can be 100% by weight when the total weight of the second layer is 100% by weight.
  • the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. More preferably, it is 70 to 95 weight%.
  • the method for forming the second layer is not particularly limited, and a known method can be applied.
  • a coating solution containing polysilazane and, if necessary, a catalyst in an organic solvent is applied by a known wet coating method.
  • a method of removing by evaporation and then performing a reforming treatment is preferable.
  • the solvent for preparing the coating liquid containing polysilazane is not particularly limited as long as it can dissolve polysilazane, but water and reactive groups that easily react with polysilazane (for example, hydroxyl group, amine group, etc.) ) And an inert organic solvent with respect to polysilazane is preferred, and an aprotic organic solvent is more preferred. Specific examples include those described in [0129] of US Patent Application Publication No. 2013/236710.
  • the solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of polysilazane in the coating solution is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 5 to 50% by weight, and particularly preferably 10 to 10%. 40% by weight.
  • the coating solution preferably contains a catalyst in order to promote reforming.
  • a basic catalyst is preferable, and in particular, a metal catalyst such as an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, or an Rh compound such as Rh acetylacetonate. , N-heterocyclic compounds.
  • the amine catalyst include those described in paragraph “0057” of JP2013-226757A.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10 mol%, more preferably 0.5 to 7 mol%, based on polysilazane. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
  • the following additives can be used in the polysilazane modified layer forming coating solution as necessary. Specifically, those described in paragraph “0058” of JP2013-226757A.
  • Method of applying a coating liquid containing polysilazane As a method for applying the coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating film After applying the coating solution, it is preferable to dry the coating film.
  • the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable gas barrier layer can be obtained. The remaining solvent can be removed later.
  • the oxygen concentration is preferably in the range of 20% by volume (200,000 ppm) or less, more preferably 2% by volume (20,000 ppm), and still more preferably 0.5% by volume (5,000 ppm) or less.
  • the water vapor concentration is preferably in the range of 0.1% by volume (1000 ppm) or less, more preferably 0.01% by volume (100 ppm) or less, and still more preferably 0.001% by volume (10 ppm) or less.
  • concentration is 0 ppm.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere is preferably performed under an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the second layer is formed by irradiating the coating film obtained by applying a coating liquid containing a polysilazane compound with energy rays in an atmosphere having an oxygen concentration of 1000 ppm by volume or less and a water vapor concentration of 150 ppm by volume or less. It is preferable. That is, the reforming treatment is preferably performed by irradiating energy rays in an atmosphere having an oxygen concentration of 1000 volume ppm or less and a water vapor concentration of 150 volume ppm or less.
  • silicon dioxide is mainly formed by the reforming treatment.
  • the mechanism by which silicon dioxide is formed is estimated as follows. When an appropriate amount of oxygen is present in the atmosphere, singlet oxygen having a very strong oxidizing power is formed. H or N in the perhydropolysilazane is replaced with O to form a Si—O—Si bond and harden. It is thought that recombination of the bond may occur due to cleavage of the polymer main chain.
  • Si—N bonds in polysilazane are cleaved by energy irradiation. Since the content is very small, conversion to silicon oxynitride or silicon nitride proceeds more efficiently than formation of silicon dioxide. The presence of silicon oxynitride or silicon nitride mainly in the film is considered to improve the gas barrier performance of the second layer.
  • the oxygen concentration in the surface region is lower than the oxygen concentration in the substrate side region, and the average oxygen content ratio on the surface side of the second layer is on the substrate side. It is difficult to obtain a composition having a larger average oxygen content ratio.
  • the content of oxygen and water vapor concentration is very low, or the energy beam irradiation is modified in an atmosphere in which oxygen and water vapor are not present. It becomes possible to set it as the composition that the average oxygen content ratio of the surface side of 2 layers is larger than the average oxygen content ratio of the base material side.
  • the modification treatment in the present invention refers to modification of polysilazane, specifically, a conversion reaction to silicon nitride or silicon oxynitride, and specifically, the gas barrier film as a whole has gas barrier properties (water vapor permeation).
  • This refers to a process for forming an inorganic thin film at a level that can contribute to the development of a rate of 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • the energy ray irradiation treatment include plasma treatment and ultraviolet irradiation treatment, and these may be performed in combination.
  • the energy ray irradiation treatment can be applied to a plastic substrate that can undergo a conversion reaction at a lower temperature than a heat treatment that requires a treatment at 450 ° C. or higher, and is difficult to treat at a high temperature. In addition to these treatments, heat treatment may be performed.
  • Heat treatment By subjecting the coating film containing polysilazane to heat treatment in combination with other modification treatment, preferably energy ray irradiation treatment, the modification treatment can be performed efficiently.
  • a method of heating a coating film by contacting a substrate with a heating element such as a heat block a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater, etc.
  • a method using light can be raised, but is not particularly limited. Moreover, you may select suitably the method which can maintain the smoothness of the coating film containing a silicon compound.
  • the temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 to 250 ° C, more preferably in the range of 50 to 120 ° C.
  • the heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
  • the oxygen concentration in the atmosphere during the reforming treatment is preferably 1000 ppm by volume or less, more preferably 500 ppm by volume or less, and even more preferably 100 ppm by volume or less.
  • the lower limit of the oxygen concentration is 0 ppm by volume, it is difficult to control the atmosphere to contain no oxygen at all, and practically, it is 8 ppm by volume or more.
  • the water vapor concentration in the atmosphere during the reforming treatment is preferably 150 ppm by volume or less, more preferably 100 ppm by volume or less, and still more preferably 75 ppm by volume or less.
  • the water vapor concentration refers to water vapor partial pressure / atmospheric pressure at a room temperature of 23 ° C.
  • Examples of a method for carrying out the reforming treatment in an atmosphere of such oxygen or water vapor concentration include a method for reducing the pressure in the apparatus during the reforming treatment, a method for performing a gas flow with an inert gas or the like under normal pressure, and the like. .
  • the pressure in the apparatus is reduced from atmospheric pressure to preferably 100 Pa or less, more preferably 20 Pa or less using a vacuum pump, and then a predetermined gas is introduced to obtain a predetermined pressure. Create an atmosphere.
  • Plasma treatment As the plasma treatment that can be used as the modification treatment, a known method can be used, and examples thereof include low-pressure plasma treatment and atmospheric pressure plasma treatment.
  • Examples of the discharge gas used in the plasma treatment include nitrogen gas and 18th group atoms of the periodic table, and specifically, those described in US Patent Application Publication No. 2013/236710 [0091] are used.
  • Low-pressure plasma treatment refers to treatment performed under a pressure condition of 100 Pa or less, preferably 10 Pa or less.
  • the pressure in the apparatus is reduced from atmospheric pressure (101325 Pa) to a pressure of 100 Pa or less, preferably 10 Pa or less using a vacuum pump, and then the gas described below is introduced to a pressure of 100 Pa or less.
  • the pressure of the low-pressure plasma treatment is preferably 1 Pa to 1000 Pa, more preferably 1 Pa to 500 Pa.
  • the oxygen concentration and water vapor concentration under low pressure are generally evaluated by oxygen partial pressure and water vapor partial pressure.
  • the low-pressure plasma treatment is performed under the above pressure, with an oxygen partial pressure of 10 Pa or less (oxygen concentration 0.001% (10 ppm)) or less, preferably an oxygen partial pressure of 2 Pa or less (oxygen concentration 0.0002% (2 ppm)) or less, a water vapor concentration It is carried out at 10 ppm or less, preferably 1 ppm or less.
  • a known electrode or waveguide is placed in a vacuum closed system, and power such as direct current, alternating current, radio wave, or microwave is applied via the electrode or waveguide.
  • Plasma can be generated.
  • gas is passed between two electrodes, this gas is turned into plasma and then irradiated onto the substrate, or a polysilazane film that is irradiated between the two electrodes is placed, and gas is passed through it.
  • the method to do In order to lower the oxygen / water vapor gas concentration in the processing atmosphere, the gas flow rate in the atmospheric pressure plasma treatment is preferably as high as possible, preferably 0.01 to 1000 L / min, more preferably 0.1 to 500 L / min. is there.
  • the applied power (W), the unit area of the electrode (cm 2) per preferably 0.0001W / cm 2 ⁇ 100W / cm 2, more preferably 0.001W / cm 2 ⁇ 50W / cm 2 .
  • UV irradiation treatment As one of the modification treatment methods, treatment by ultraviolet irradiation is also preferable. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and it is possible to form a film containing silicon oxynitride having high density and insulation at low temperature. .
  • any commonly used ultraviolet ray generator can be used.
  • the ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
  • the irradiation intensity and the irradiation time are set within a range in which the substrate carrying the second layer to be irradiated is not damaged.
  • a 2 kW (80 W / cm ⁇ 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm.
  • the distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
  • the substrate temperature at the time of ultraviolet irradiation there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction
  • Examples of such means for generating ultraviolet rays include those described in paragraph “0054” of JP2012-228859A, but are not particularly limited.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
  • the treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes.
  • a film is formed at a relatively low temperature (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action.
  • the radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), and has an emission line at about 185 nm.
  • Excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp)
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet rays in the coated surface of the coating film is subjected is 30 ⁇ 200mW / cm 2, and more preferably 50 ⁇ 160mW / cm 2. If it is less than 30 mW / cm 2, there is a concern that the reforming efficiency is greatly reduced, and if it exceeds 200 mW / cm 2 , there is a concern that the coating film may be ablated or the substrate may be damaged.
  • Irradiation energy amount of the VUV in the coated surface is preferably 10 ⁇ 1000J / cm 2, more preferably from 50 ⁇ 500J / cm 2, further preferably 80 ⁇ 500J / cm 2. If it is less than 10 J / cm 2 , the reforming does not proceed, and there is a possibility that the average oxygen content ratio in the surface region / the average oxygen content ratio on the substrate side becomes 1 or less. The performance of the system may be degraded. On the other hand, if it exceeds 1000 J / cm 2 , there are concerns about cracking due to excessive reforming and thermal deformation of the substrate.
  • the amount of irradiation energy is calculated as illuminance (mW / cm 2 ) ⁇ time (s) of excimer light.
  • the vacuum ultraviolet light used for reforming may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4.
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • An intermediate layer may be separately provided between the above-described base material, first layer, and second layer as long as the effects of the present invention are not impaired.
  • an anchor coat layer On the surface of the base material according to the present invention, an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion).
  • an anchor coat layer As the constituent material and formation method of the anchor coat layer, the materials and methods disclosed in paragraphs “0229” to “0232” of JP2013-52561A are appropriately employed.
  • the gas barrier film may have a smooth layer between the surface of the base material having the barrier layer, preferably between the base material and the base layer.
  • the smooth layer is provided for flattening the rough surface of the substrate on which protrusions and the like are present, or for filling the unevenness and pinholes generated in the barrier layer with the protrusions existing on the resin base material. .
  • the materials, methods, etc. disclosed in paragraphs “0233” to “0248” of JP2013-52561A are appropriately employed as the constituent material, forming method, surface roughness, film thickness, etc. of the smooth layer.
  • the gas barrier film may further have a bleed-out preventing layer.
  • the bleed-out prevention layer is used for the purpose of suppressing a phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the resin base material to the surface and contaminate the contact surface. It is provided on the opposite surface of the substrate.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • the constituent material, forming method, film thickness and the like of the bleed-out prevention layer the materials, methods and the like disclosed in paragraphs “0249” to “0262” of JP2013-52561A are appropriately employed.
  • the electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side.
  • a known electronic device body to which sealing with a gas barrier film can be applied can be used.
  • an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given.
  • the electronic element body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • FIG. 5 shows an example of an organic EL panel 9 which is an electronic device using the gas barrier film 10 according to the present invention as a sealing film.
  • the organic EL panel 9 includes a gas barrier film 10, a transparent electrode 4 such as ITO formed on the gas barrier film 10, and an organic EL formed on the gas barrier film 10 via the transparent electrode 4.
  • An element 5 and a counter film 7 disposed via an adhesive layer 6 so as to cover the organic EL element 5 are provided. It can be said that the transparent electrode 4 forms part of the organic EL element 5.
  • the transparent electrode 4 and the organic EL element 5 are formed on the surface of the gas barrier film 10 on which the gas barrier layer is formed.
  • the counter film 7 may be a gas barrier film according to the present invention in addition to a metal film such as an aluminum foil.
  • a gas barrier film is used as the counter film 7, the surface on which the gas barrier layer is formed may be attached to the organic EL element 5 with the adhesive layer 6.
  • Organic EL device (Organic EL device) The organic EL element 5 sealed with the gas barrier film 10 in the organic EL panel 9 will be described.
  • Organic EL device (Organic EL device) The organic EL element 5 sealed with the gas barrier film 10 in the organic EL panel 9 will be described.
  • Anode / light emitting layer / cathode (2) Anode / hole transport layer / light emitting layer / cathode (3) Anode / light emitting layer / electron transport layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / anode buffer layer (hole injection layer) / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode (anode)
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • ITO indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the formation method and film thickness of the anode are the same as those described in paragraph “0056” of JP2012-106421A.
  • cathode As the cathode in the organic EL element 5, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples and preferred examples of such electrode materials are the same as those described in paragraph “0058” of JP2012-106421A.
  • the formation method and film thickness of the cathode are the same as those described in paragraph “0058” of JP2012-106421A.
  • the injection layer includes an electron injection layer and a hole injection layer, and an electron injection layer and a hole injection layer are provided as necessary, between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport. Exist between the layers.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • Examples thereof include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • the cathode buffer layer (electron injection layer) is described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Examples thereof include those described in paragraph “0059” of Kai 2012-106421.
  • the buffer layer (injection layer) is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m.
  • the light emitting layer in the organic EL element 5 is a layer that emits light by recombination of electrons and holes injected from an electrode (cathode, anode) or an electron transport layer or a hole transport layer, and the light emitting portion is a light emitting layer.
  • the interface between the light emitting layer and the adjacent layer may be used.
  • the light emitting layer of the organic EL element 5 preferably contains the following dopant compound (light emitting dopant) and host compound (light emitting host). Thereby, the luminous efficiency can be further increased.
  • Luminescent dopant There are two types of luminescent dopants: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
  • fluorescent dopants examples include those described in paragraph “0060” of JP2012-106421A.
  • Examples of phosphorescent dopants include those described in paragraph “0060” of JP2012-106421A.
  • the light emitting host is not particularly limited in terms of structure, but includes those described in paragraph “0060” of JP2012-106421A.
  • the formation method and film thickness of the light emitting layer are the same as those described in paragraph “0060” of JP2012-106421A.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. Examples thereof include those described in paragraph “0061” of JP2012-106421A.
  • the formation method and film thickness of the hole transport layer are the same as those described in paragraph “0061” of JP2012-106421A.
  • the electron transport layer is made of an electron transport material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and the material can be selected and used from conventionally known compounds. Examples thereof include those described in paragraph “0062” of JP2012-106421A.
  • the formation method and film thickness of the electron transport layer are the same as those described in paragraph “0062” of JP2012-106421A.
  • a 300 nm first layer was formed on the underlayer under the following film formation conditions.
  • a xylene (dehydrated) solution (Aquamica NL110A: manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of a palladium-based catalyst (palladium propionate) and 20% by mass of perhydropolysilazane is further added with xylene to give a solid content of 2
  • a polysilazane coating solution was prepared by diluting to a weight percent.
  • the polysilazane coating solution prepared above was spin-coated (10 s, 3000 rpm) on the first layer and dried at 120 ° C. for 10 minutes in a nitrogen atmosphere to prepare a polysilazane film having a thickness of 100 nm. Drying was performed in an atmosphere having a water vapor concentration of about 500 ppm.
  • Vapor deposition device JEOL Ltd., vacuum vapor deposition device JEE-400 Constant temperature and humidity oven: Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation cell)
  • a vacuum deposition device manufactured by JEOL Ltd., vacuum deposition device JEE-400
  • the portion of the gas barrier film sample to be deposited before attaching the transparent conductive film (9 locations of 12 mm x 12 mm)
  • the metal calcium (granular form) was vapor-deposited (deposition film thickness 80 nm).
  • metal aluminum ( ⁇ 3 to 5 mm, granular), which is a water vapor impermeable metal, was deposited on the entire surface of one side of the sheet from another metal deposition source.
  • metal aluminum ⁇ 3 to 5 mm, granular
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • the obtained sample is stored under high temperature and high humidity of 60 ° C. and 90% RH, and the amount of moisture permeated into the cell is calculated from the corrosion amount of metallic calcium based on the method described in Japanese Patent Application Laid-Open No. 2005-283561. did.
  • a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was stored under the same high temperature and high humidity conditions of 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
  • the permeated water amount (g / m 2 ⁇ day; “WVTR” in the table) of each gas barrier film measured as described above was evaluated by the Ca method and ranked as follows. In addition, if it is rank 3 or more, there is no problem in actual use and it is a pass product.
  • ITO transparent electrode hole injection electrode
  • substrate with which the patterned hole injection electrode was formed was ultrasonically cleaned using neutral detergent, acetone, and ethanol, and it pulled up from boiling ethanol and dried. Thereafter, UV / O 3 cleaning was performed.
  • the substrate was moved to the film formation chamber, fixed to the substrate holder of the vacuum deposition apparatus, and the inside of the tank was depressurized to 1 ⁇ 10 ⁇ 4 Pa or less.
  • poly (thiophene-2,5-diyl) as a hole injection layer is formed to a thickness of 10 nm
  • TPD doped with 1% by mass of rubrene as a hole transport layer and a yellow light-emitting layer is co-evaporated to 5 nm.
  • the film was formed to a film thickness.
  • the concentration may be determined based on the color balance of the emission color, and depends on the light intensity and wavelength spectrum of the blue light emitting layer to be formed thereafter.
  • 4′-bis [(1,2,2-triphenyl) ethenyl] biphenyl was grown to 50 nm as the blue light emitting layer, and Alq 3 was grown to 10 nm as the electron transport layer.
  • AlLi Li: 7 at%) was deposited to a thickness of 1 nm, and an Al electrode layer was formed to a thickness of 200 nm to form an organic light emitting element.
  • a desiccant (CaH 2 ) mixed with silicon rubber and fixed was sealed, and finally sealed with a 100 ⁇ m thick PCTFE film coated with EVA. Thus, an organic light emitting device was obtained.
  • Deteriorating element has non-light emitting part due to barrier film peeling 1: Immediate evaluation element and deteriorating element has non-light emitting part due to barrier film peeling ⁇ Evaluation method of luminance half time and dark spot> A direct current voltage was applied to each organic light emitting device, and the device was continuously driven at a constant current density of 50 mA / cm 2 to evaluate the luminance half time. In addition, the dark spot was evaluated by continuously driving up to 1000 hours under the same conditions. The results are shown in Table 1.
  • the gas barrier films 6 to 11 are the same as the gas barrier film 5 except that the transport speed of the film when forming the first layer is changed as shown in Table 2. Was made. Further, organic light emitting devices 6 to 11 were produced in the same manner as in Example 1. Table 2 shows the oxygen element ratio of the film, WVTR, and organic element adhesion, luminance half-life, and dark spot results.
  • gas barrier film 26 was produced in the same manner as the gas barrier film 5 except that the first layer was formed as follows.
  • the first layer was formed on the base layer.
  • the high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm.
  • the source gas was introduced into the vacuum chamber at a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 100 sccm, and a nitrous oxide gas flow rate of 50 sccm.
  • the temperature of the film substrate was set to 100 ° C.
  • the gas pressure during film formation was set to 100 Pa
  • a silicon oxynitride layer (SiON layer) mainly composed of silicon nitride was formed as a first layer having a thickness of 300 nm. .
  • a gas barrier film 27 was produced in the same manner as the gas barrier film 5 except that the first layer was formed as follows.
  • the splice roll was loaded into a roll-to-roll sputter coater.
  • the pressure in the deposition chamber was reduced to 2 ⁇ 10 ⁇ 6 Torr with a pump.
  • gas barrier film 28 was produced in the same manner as the gas barrier film 5 except that the first layer was formed as follows.
  • a silicon oxide film was formed on the substrate using an atmospheric pressure plasma CVD apparatus (manufactured by Sekisui Chemical Co., Ltd.). Hexamethyldisilazane is used as the silicon source, and a carrier gas (nitrogen) is passed through the hexamethyldisilazane heated to 60 ° C. at a flow rate of 15 mL / min. , 50 mL / min) was introduced into the plasma.
  • the plasma generation conditions were a pulse voltage of 95 V and a pulse frequency of 20 KHz, and the electrode, gas piping, and substrate temperature were heated to 80 ° C.
  • the reaction was performed while introducing nitrogen gas as an atmospheric gas into the apparatus at a flow rate of 81 mL / min.
  • the thickness of the silicon oxide film was 300 nm.
  • gas barrier film 29 Using an alumina-deposited PET film (trade name: TL-PET H, manufactured by Mitsui Chemicals, Inc., thickness 12 ⁇ m) as in Example 10 of International Publication No. 2011/007543.
  • a gas barrier film 29 was produced in the same manner as the gas barrier film 5 except that the second layer was formed on the alumina deposition surface.
  • Organic light emitting devices 26 to 29 were produced in the same manner as in Example 1 except that the gas barrier films 26 to 29 were used.
  • Table 4 shows the oxygen element ratio of the film, WVTR, organic element adhesion, luminance half time, and dark spot.
  • the organic light emitting devices 3 to 5, 9 to 11, 14 to 18, 20 to 28, and 31 to 37 of the present invention have high adhesion, long luminance half-life, and generation of dark spots up to at least 350 hours. There was no.
  • the organic light emitting devices 13 to 17 having an average oxygen content ratio of 25 to 55 at% in the region of the outermost surface to 35 nm are dark spots. It was excellent.

Abstract

Provided is an electronic device in which the adhesiveness of a gas barrier film is maintained even under high-temperature, high-humidity conditions, and in which good barrier characteristics are maintained. This electronic device comprises a gas barrier film including, in the following order: a base material; a first layer having gas barrier performance; and a second layer obtained by applying a modification treatment to a coating film obtained by coating with a coating liquid including a polysilazane compound. The average oxygen content rate to the sum of silicon, oxygen, and nitrogen in a region from the outermost surface of the second layer opposing the base material to 35 nm from the outermost surface is greater than the average oxygen content rate to the sum of silicon, oxygen, and nitrogen in a region that is 35 nm or farther from the outermost surface.

Description

電子デバイスElectronic devices
 本発明は電子デバイスに関する。 The present invention relates to an electronic device.
 水蒸気ガスや酸素ガスの透過を遮断する性質を有するいわゆるガスバリア性フィルムが従来から検討されている。 So-called gas barrier films having the property of blocking the permeation of water vapor gas and oxygen gas have been studied.
 近年、軽量化、大型化という要求に加え、長期信頼性や形状の自由度が高いこと、曲面表示が可能であること等の要求が加わり、重くて割れやすく大面積化が困難なガラス基板に代わって透明プラスチック等のフィルム基材が採用され始めてきている。 In recent years, in addition to demands for weight reduction and size increase, long-term reliability, high degree of freedom in shape, and the ability to display curved surfaces have been added, resulting in a glass substrate that is heavy, easily broken, and difficult to increase in area. Instead, film substrates such as transparent plastics have begun to be adopted.
 しかしながら、透明プラスチック等のフィルム基材は一般的なガラス基材に対しガスバリア性が劣るという問題がある。このため、水蒸気や空気が浸透し、例えば電子デバイス内の機能を劣化させてしまうという課題がある。 However, film substrates such as transparent plastics have a problem that gas barrier properties are inferior to general glass substrates. For this reason, there exists a subject that water vapor | steam and air osmose | permeate and will degrade the function in an electronic device, for example.
 プラスチックフィルムを基材としたフィルムのガスバリア機能を高めるために、スパッタリングやプラズマCVD法等の気相成膜方法によって基材上に無機膜を成膜することが行われている(例えば、特開平8-165368号公報参照)。 In order to enhance the gas barrier function of a film made of a plastic film as a base material, an inorganic film is formed on the base material by a vapor phase film forming method such as sputtering or plasma CVD (for example, see JP-A-HEI No. 8-165368).
 かような無機膜としては、酸化ケイ素膜や酸化アルミニウム膜が知られているが、それらの技術ではせいぜい1g/m/day程度の水蒸気バリア性を有するに過ぎない。近年では、液晶ディスプレイの大型化、高精細ディスプレイ等の開発によりフィルム基板へのガスバリア性能について水蒸気バリアで0.1g/m/day程度、更に有機エレクトロルミネッセンスにおいてはさらなる水蒸気バリア性能が要望されていることが現状である。 As such an inorganic film, a silicon oxide film or an aluminum oxide film is known, but these techniques only have a water vapor barrier property of about 1 g / m 2 / day at most. In recent years, with the development of large-sized liquid crystal displays, high-definition displays, etc., the gas barrier performance for film substrates is about 0.1 g / m 2 / day for water vapor barriers, and further water vapor barrier performance is required for organic electroluminescence. It is the present situation.
 ガスバリア性能の向上を目的として、米国特許第5,260,095号明細書には、ポリマー多層(Polymer Multilayer、PML)技法が開示されている。この技法では、ポリマーの層と酸化アルミニウムの層とから成るコーティングをフレキシブル基板に施してその基板をシールする。ポリマーの層および酸化アルミニウムの層の双方とも堆積工程においては、ウエブ処理装置を使って極めて高速で操作することができる。水及び酸素の浸透性に対する耐性は、未コートのPET膜に比して3ないし4桁まで改善されることが開示されている。かかるポリマー多層技法では、ポリマー層が、隣接するセラミック層内のあらゆる欠陥を覆い隠して、バリア層内のこれらの欠陥によって作られ得るチャンネルを通る酸素及び/又は水蒸気の拡散速度を低下させるように働くことが示唆されている。 For the purpose of improving gas barrier performance, US Pat. No. 5,260,095 discloses a polymer multilayer (PML) technique. In this technique, a coating consisting of a polymer layer and an aluminum oxide layer is applied to a flexible substrate and the substrate is sealed. Both the polymer layer and the aluminum oxide layer can be operated at very high speeds in the deposition process using web processing equipment. It is disclosed that the resistance to water and oxygen permeability is improved by 3 to 4 orders of magnitude compared to uncoated PET membranes. In such a polymer multilayer technique, the polymer layer obscures any defects in the adjacent ceramic layer so as to reduce the diffusion rate of oxygen and / or water vapor through the channels that can be created by these defects in the barrier layer. Suggested to work.
 しかしながら、ポリマーの層と酸化アルミニウムの層との境界面は隣接する材料の不相溶性のために一般に弱く、従ってこれらの層は剥離し易く長期保存でガスバリア性が劣化してしまうという問題があった。 However, the interface between the polymer layer and the aluminum oxide layer is generally weak due to the incompatibility of the adjacent materials. Therefore, these layers are easy to peel off and the gas barrier property deteriorates after long-term storage. It was.
 一方、基材上の無機膜の形成に上記気相法ではなく、ポリシラザンを含む塗布液を用いたウェット法によりガスバリア層を形成する技術がある(例えば、特開2007-237588号公報、国際公開第2011/007543号(米国特許出願第2012/107607号明細書))。特開2007-237588号公報では、基材上にポリシラザン含有液を塗布した塗膜に酸素ガス存在下、プラズマ照射処理を施して二酸化ケイ素に転化している。国際公開第2011/007543号では、かようなポリシラザンのシリカ転化によって得られた二酸化ケイ素膜では、ガスバリア性能が不十分であるとして、ポリシラザン膜に酸素または水蒸気を実質的に含まない雰囲気下でエネルギー線照射を行い、窒素高濃度領域を有する二酸化ケイ素膜を形成している。 On the other hand, there is a technique for forming a gas barrier layer by a wet method using a coating liquid containing polysilazane instead of the above-described vapor phase method for forming an inorganic film on a substrate (for example, JP 2007-237588 A, International Publication). 2011/007543 (U.S. Patent Application No. 2012/107607). In Japanese Patent Application Laid-Open No. 2007-237588, a coating film obtained by applying a polysilazane-containing liquid on a substrate is subjected to plasma irradiation treatment in the presence of oxygen gas to be converted into silicon dioxide. In International Publication No. 2011/007543, the silicon dioxide film obtained by the silica conversion of polysilazane is considered to have insufficient gas barrier performance. Irradiation is performed to form a silicon dioxide film having a high nitrogen concentration region.
 しかしながら、上記記載のガスバリア性フィルムを電子デバイスに適用した場合、高温高湿条件下でガスバリア性フィルムの剥離が起きる、すなわち、ガスバリア性フィルムと下層との密着性の低下という問題があった。 However, when the gas barrier film described above is applied to an electronic device, the gas barrier film is peeled off under a high temperature and high humidity condition, that is, there is a problem that the adhesion between the gas barrier film and the lower layer is lowered.
 そこで本発明は、高温高湿条件下であってもガスバリア性フィルムの密着性が維持され、高いバリア性が維持される電子デバイスを提供することを目的とする。 Accordingly, an object of the present invention is to provide an electronic device in which the adhesion of a gas barrier film is maintained even under high temperature and high humidity conditions, and high barrier properties are maintained.
 また、本発明の他の目的は、長期間使用後であってもデバイス性能が維持される電子デバイスを提供することを目的とする。 Another object of the present invention is to provide an electronic device that maintains device performance even after long-term use.
 本発明は、基材と、ガスバリア性能を有する第1の層と、ポリシラザン化合物を含む塗布液を塗布して得られた塗膜を改質処理して得られる第2の層と、をこの順に含むガスバリア性フィルムを有し、前記第2の層の基材と相対する最表面~35nmの領域の平均酸素含有比率が最表面から35nm以上の領域(最表面~35nmの領域を除いた領域)の平均酸素含有比率より大きい、電子デバイスである。 The present invention provides a base material, a first layer having gas barrier performance, and a second layer obtained by modifying a coating film obtained by applying a coating liquid containing a polysilazane compound in this order. A region having an average oxygen content ratio of 35 nm or more from the outermost surface (region excluding the outermost surface to 35 nm region) having a gas barrier film containing and having an average oxygen content in the region of the outermost surface to 35 nm facing the substrate of the second layer It is an electronic device larger than the average oxygen content ratio.
本発明に係る第1の層の形成に用いられる製造装置の一例を示す模式図である。1はガスバリア性フィルム、2は基材、3は第1の層、31は製造装置、32は送り出しローラー、33、34、35、および36は搬送ローラー、39、および40は成膜ローラー、41はガス供給管、42はプラズマ発生用電源、43、および44は磁場発生装置、45は巻取りローラー、AおよびBは炭素分布曲線の極大値が形成される地点、C1、C2、C3およびC4は、炭素分布曲線の極小値が形成される地点を示す。It is a schematic diagram which shows an example of the manufacturing apparatus used for formation of the 1st layer concerning this invention. 1 is a gas barrier film, 2 is a base material, 3 is a first layer, 31 is a manufacturing apparatus, 32 is a delivery roller, 33, 34, 35 and 36 are transport rollers, 39 and 40 are film forming rollers, 41 Is a gas supply pipe, 42 is a plasma generating power source, 43 and 44 are magnetic field generators, 45 is a winding roller, A and B are points where the maximum value of the carbon distribution curve is formed, C1, C2, C3 and C4 Indicates the point where the minimum value of the carbon distribution curve is formed. 本発明に係るガスバリア性フィルムを封止フィルムとして用いた電子デバイスである有機ELパネルの一例である。4は透明電極、5は有機EL素子、6は接着剤層、7は対向フィルム、9は有機ELパネル、10はガスバリア性フィルムを示す。It is an example of the organic electroluminescent panel which is an electronic device using the gas barrier film which concerns on this invention as a sealing film. 4 is a transparent electrode, 5 is an organic EL element, 6 is an adhesive layer, 7 is a counter film, 9 is an organic EL panel, and 10 is a gas barrier film. 実施例であるガスバリア性フィルムNo.4における第2の層の膜厚組成を示す図である。Gas barrier film No. which is an example. 4 is a diagram showing a film thickness composition of a second layer in FIG.
 以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment.
 また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 本発明は、基材と、ガスバリア性能を有する第1の層と、ポリシラザン化合物を含む塗布液を塗布して得られた塗膜を改質処理して得られる第2の層と、をこの順に含むガスバリア性フィルムを有し、前記第2の層の基材と相対する最表面~35nmの領域のケイ素、酸素および窒素の合計に対する平均酸素含有比率が最表面から35nm以上の領域のケイ素、酸素および窒素の合計に対する平均酸素含有比率より大きい、電子デバイスである。 The present invention provides a base material, a first layer having gas barrier performance, and a second layer obtained by modifying a coating film obtained by applying a coating liquid containing a polysilazane compound in this order. Silicon, oxygen in a region having an average oxygen content ratio of 35 nm or more from the outermost surface to the total of silicon, oxygen and nitrogen in the region of the outermost surface to 35 nm opposed to the base material of the second layer. And an electronic device greater than the average oxygen content relative to the sum of nitrogen.
 上述したように、国際公開第2011/007543号には、基材上に形成されたポリシラザン膜に酸素または水蒸気を実質的に含まない雰囲気下でエネルギー線照射を行い、このポリシラザン膜の少なくとも一部を変性して、窒素高濃度領域を形成することが記載されている。同時に基材側からの水分持ち込みと推定される酸化挙動が起き、バリア層下の内部は酸化膜(酸化ケイ素層)に変化し、シリコン含有膜が窒素高濃度領域と酸化ケイ素領域とから構成されることが記載されている(国際公開第2011/007543号、段落「0075」)。 As described above, International Publication No. 2011/007543 discloses that a polysilazane film formed on a substrate is irradiated with energy rays in an atmosphere substantially free of oxygen or water vapor, and at least a part of the polysilazane film. To form a high nitrogen concentration region. At the same time, oxidation behavior presumed to be caused by moisture from the substrate side occurs, the inside of the barrier layer changes to an oxide film (silicon oxide layer), and the silicon-containing film is composed of a high nitrogen concentration region and a silicon oxide region. (WO 2011/007543, paragraph “0075”).
 また、国際公開第2011/007543号の実施例10には、アルミナ蒸着PETフィルム上に窒素高濃度領域を含むシリコン含有膜を形成させる形態が記載されている。そして、基材とシリコン含有膜との間に蒸着膜を形成させた場合、シリコン含有膜が蒸着膜のピンホールなどの欠陥部位を補填することができ、シリコン含有膜若しくは蒸着膜担体よりもさらに高いガスバリア性を発現することができるとも記載されている(国際公開第2011/007543号、段落「0146」)。 Also, Example 10 of International Publication No. 2011/007543 describes a form in which a silicon-containing film including a high nitrogen concentration region is formed on an alumina-deposited PET film. And when a vapor deposition film is formed between the base material and the silicon-containing film, the silicon-containing film can compensate for a defect site such as a pinhole in the vapor deposition film, and further than the silicon-containing film or the vapor deposition film carrier. It is also described that a high gas barrier property can be expressed (International Publication No. 2011/007543, paragraph “0146”).
 しかしながら、上記国際公開第2011/007543号に記載のガスバリア性フィルムを用いた電子デバイスでは、特に高温高湿条件下での保存によって、水蒸気等の侵入に起因する劣化が起こることを本発明者は見出した。 However, in the electronic device using the gas barrier film described in the above International Publication No. 2011/007543, the present inventor indicates that deterioration due to invasion of water vapor or the like occurs particularly during storage under high temperature and high humidity conditions. I found it.
 国際公開第2011/007543号に記載のガスバリア性フィルムでは、表面側の窒素高濃度領域の酸素元素含有量が少なく、深部になるにつれ酸素元素の含有量が多くなる(国際公開第2011/007543号、図4等参照)。高温高湿条件下での電子デバイスの劣化の原因は、このような膜組成によって、下層との密着性が劣化することが起因していると推定される。 In the gas barrier film described in International Publication No. 2011/007543, the oxygen element content in the high nitrogen concentration region on the surface side is small, and the oxygen element content increases as it becomes deeper (International Publication No. 2011/007543). , See FIG. It is estimated that the cause of the deterioration of the electronic device under the high temperature and high humidity condition is that the adhesion with the lower layer is deteriorated by such a film composition.
 本発明の構成によれば、高温高湿条件下であってもガスバリア性フィルムのガスバリア性能が維持され、電子デバイスの水蒸気等に起因する劣化を抑制することができる。また、長期間使用後であっても高いガスバリア性能が維持されることから、デバイス性能が維持される。 According to the configuration of the present invention, the gas barrier performance of the gas barrier film is maintained even under high temperature and high humidity conditions, and deterioration due to water vapor or the like of the electronic device can be suppressed. In addition, since high gas barrier performance is maintained even after long-term use, device performance is maintained.
 本発明がかような効果を奏するメカニズムは以下のように推定される。 The mechanism by which the present invention has such an effect is estimated as follows.
 本発明の電子デバイスに用いられるガスバリア性フィルムは、基材と第2の層との間にガスバリア性能を有する第1の層を有する。該第1の層の水蒸気透過率は、好適には0.1g/m・day以下である。このように水蒸気透過率の低い第1の層を第2の層の下層に設けることで、基材側から透過してきた水蒸気が第2の層に到達しないようにしている。これは、国際公開第2011/007543号段落「0075」に記載のように基材側からの水蒸気透過を許容する国際公開第2011/007543号とは相異なる技術的手段である。かような技術的手段は、本発明者が、上述のように基材側の領域の酸素含有量が増加するにつれ、高温高湿条件下での電子デバイスの劣化が増加するという課題を見出したことによる。 The gas barrier film used in the electronic device of the present invention has a first layer having gas barrier performance between the substrate and the second layer. The water vapor permeability of the first layer is preferably 0.1 g / m 2 · day or less. By providing the first layer having a low water vapor transmission rate in the lower layer of the second layer in this way, the water vapor transmitted from the substrate side does not reach the second layer. This is a technical means different from International Publication No. 2011/007543 that allows water vapor permeation from the substrate side as described in paragraph “0075” of International Publication No. 2011/007543. Such technical means has found that the inventor has increased the deterioration of electronic devices under high-temperature and high-humidity conditions as the oxygen content in the substrate-side region increases as described above. It depends.
 第2の層に水蒸気が到達しにくいことで、基材側の領域においてポリシラザンに酸素が結合して形成されるシラノールの形成が抑制され、第2の層と第1の層との密着性が向上すると推定される。このため、ガスバリア性フィルムの剥がれに起因する電子デバイスの劣化が抑制されると考えられる。 By making it difficult for water vapor to reach the second layer, the formation of silanol formed by bonding oxygen to polysilazane in the region on the substrate side is suppressed, and the adhesion between the second layer and the first layer is improved. Estimated to improve. For this reason, it is thought that deterioration of the electronic device resulting from peeling of a gas barrier film is suppressed.
 以下、本発明の電子デバイスを構成するガスバリア性フィルムについて説明する。 Hereinafter, the gas barrier film constituting the electronic device of the present invention will be described.
 本発明の電子デバイスに用いられるガスバリア性フィルムにおいては、基材と、第1の層と、第2の層と、をこの順に有する形態であるが、好適な一実施形態は、基材と、第1の層と、第1の層上に(直接)形成されてなる第2の層と、をこの順に有する形態である。 In the gas barrier film used in the electronic device of the present invention, the base material, the first layer, and the second layer are in this order, but a preferred embodiment is a base material, In this embodiment, the first layer and the second layer formed (directly) on the first layer are arranged in this order.
 また、第1の層、および第2の層を有するガスバリア性ユニットは、基材の一方の表面上に形成されていてもよく、基材の両方の表面上に形成されていてもよい。また、該ガスバリア性ユニットは、ガスバリア性を必ずしも有しない層をさらに含んでいてもよい。 In addition, the gas barrier unit having the first layer and the second layer may be formed on one surface of the base material, or may be formed on both surfaces of the base material. The gas barrier unit may further include a layer that does not necessarily have a gas barrier property.
 また、本発明の電子デバイスに用いられるガスバリア性フィルムは、後述の実施例に記載の方法により測定された透過水分量が1×10-3g/(m・24h)以下であることが好ましく、1×10-4g/(m・24h)以下であることがより好ましい。なお、ガスバリア性フィルムにおける透過水分量は低ければ低いほど好ましいため、その下限は規定されないが、通常は1×10-7g/(m・24h)以上程度となる。 In addition, the gas barrier film used in the electronic device of the present invention preferably has a permeated water amount of 1 × 10 −3 g / (m 2 · 24 h) or less as measured by the method described in Examples below. More preferably, it is 1 × 10 −4 g / (m 2 · 24 h) or less. In addition, since the permeated water amount in the gas barrier film is preferably as low as possible, the lower limit is not specified, but it is usually about 1 × 10 −7 g / (m 2 · 24 h) or more.
 [基材]
 ガスバリア性フィルムに用いられる基材としては、例えば、シリコン等の金属基板、ガラス基板、セラミックス基板、プラスチックフィルム等が挙げられるが、好ましくはプラスチックフィルムが用いられる。用いられるプラスチックフィルムは、バリア層、ハードコート層等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
[Base material]
Examples of the base material used for the gas barrier film include a metal substrate such as silicon, a glass substrate, a ceramic substrate, and a plastic film, and a plastic film is preferably used. The plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold a barrier layer, a hard coat layer, and the like, and can be appropriately selected according to the purpose of use. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification Examples thereof include thermoplastic resins such as polycarbonate resin, fluorene ring-modified polyester resin, and acryloyl compound.
 本発明の電子デバイスに用いるガスバリア性フィルムの基材としては耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15体積ppm/K以上100体積ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の樹脂基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。具体例としては、特開2013-226757号公報 段落「0115」~「0116」に記載があるものが挙げられる。 The base material of the gas barrier film used in the electronic device of the present invention is preferably made of a material having heat resistance. Specifically, a resin base material having a linear expansion coefficient of 15 volume ppm / K or more and 100 volume ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used. The base material satisfies the requirements for use as a laminated film for electronic parts and displays. Specific examples include those described in paragraphs “0115” to “0116” of JP2013-226757A.
 ガスバリア性フィルムは、有機EL素子等の電子デバイスとして利用されることから、プラスチックフィルムは透明であることが好ましい。好適な範囲および測定方法等は特開2013-226757号公報の段落「0120」および「0121」に記載のとおりである。 Since the gas barrier film is used as an electronic device such as an organic EL element, the plastic film is preferably transparent. Suitable ranges, measurement methods, and the like are as described in paragraphs “0120” and “0121” of JP2013-226757A.
 ガスバリア性フィルムに用いられるプラスチックフィルムの厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1~800μmであり、好ましくは10~200μmである。これらのプラスチックフィルムは、透明導電層、プライマー層等の機能層を有していてもよい。機能層については、上述したもののほか、特開2006-289627号公報の段落番号0036~0038に記載されているものを好ましく採用できる。 The thickness of the plastic film used for the gas barrier film is appropriately selected depending on the application and is not particularly limited, but is typically 1 to 800 μm, preferably 10 to 200 μm. These plastic films may have functional layers such as a transparent conductive layer and a primer layer. As the functional layer, in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともバリア層を設ける側を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
 また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the base material using the above-described resins or the like may be an unstretched film or a stretched film.
 本発明で用いられる基材は、従来公知の一般的な方法により製造することが可能である。具体的な製造方法等は、特開2013-226757号公報 段落「0125」に記載のとおりである。 The base material used in the present invention can be produced by a conventionally known general method. A specific manufacturing method and the like are as described in paragraph “0125” of JP2013-226757A.
 基材の少なくともバリア層を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行うことが好ましく、必要に応じて上記処理を組み合わせて行うことがより好ましい。 It is preferable to perform various known treatments for improving adhesion, for example, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, at least on the side on which the barrier layer is provided. More preferably, the treatment is performed in combination.
 [第1の層]
 第1の層はガスバリア性能を有する。ここで、ガスバリア性能は限定されるものではないが、第1の層の水蒸気透過率が0.1g/m・day以下であることが好ましい。第1の層の水蒸気透過率が0.1g/m・day以下であることで、第2の層が、基材と相対する最表面~35nmの領域の平均酸素含有比率が最表面から35nm以上の領域の平均酸素含有比率より大きいという構成を満たすことができる。また、第2層の欠陥補修の効果という観点からは、より好ましくは、第1の層の水蒸気透過率は、0.01g/m・day以下である。ここで、第1の層の水蒸気透過率は、基材上に第1の層を形成させた積層体で算出した際に、後述の実施例に記載の方法により測定された水蒸気透過率から、後述の実施例に記載の方法により測定された基材の水蒸気透過率を引いたものとする。なお、第1の層の水蒸気透過率は低ければ低いほど本発明の効果が発揮されるので好ましいが、通常0.00001g/m・day以上である。
[First layer]
The first layer has gas barrier performance. Here, the gas barrier performance is not limited, but the water vapor permeability of the first layer is preferably 0.1 g / m 2 · day or less. When the water vapor transmission rate of the first layer is 0.1 g / m 2 · day or less, the second layer has an average oxygen content ratio in the region of the outermost surface to 35 nm facing the substrate of 35 nm from the outermost surface. It can satisfy the configuration that it is larger than the average oxygen content ratio in the above region. Further, from the viewpoint of the effect of defect repair of the second layer, the water vapor permeability of the first layer is more preferably 0.01 g / m 2 · day or less. Here, when the water vapor transmission rate of the first layer was calculated with a laminate in which the first layer was formed on the base material, from the water vapor transmission rate measured by the method described in Examples below, It is assumed that the water vapor transmission rate of the base material measured by the method described in Examples below is subtracted. The lower the water vapor transmission rate of the first layer, the better the effect of the present invention. However, it is usually 0.00001 g / m 2 · day or more.
 上記水蒸気透過率を満たす第1の層は、構成する材料、製造方法、製造条件などを適宜選択することによって、得ることができる。 The first layer satisfying the water vapor transmission rate can be obtained by appropriately selecting the constituent material, manufacturing method, manufacturing conditions, and the like.
 第1の層の1層当たりの厚みは特に限定されないが、ガスバリア性能および欠陥の生じやすさという観点から、通常、30~500nmの範囲内であり、好ましくは50~300nmである。第1の層は、複数のサブレイヤーからなる積層構造であってもよい。この場合サブレイヤーの層数は、2~10層であることが好ましい。また、各サブレイヤーが同じ組成であっても異なる組成であってもよい。なお、上記好適な膜厚の範囲は、複数のサブレイヤーから第1の層が構成される場合、複数のサブレイヤーの合計である。ここで、第1の層の厚みは、製造時には製造膜厚、製造後には下記透過型顕微鏡(TEM)観察による膜厚測定法により測定された値を採用する。 The thickness per layer of the first layer is not particularly limited, but is usually in the range of 30 to 500 nm, preferably 50 to 300 nm, from the viewpoint of gas barrier performance and the likelihood of defects. The first layer may have a stacked structure including a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 10 layers. Moreover, each sublayer may have the same composition or a different composition. Note that the preferable range of the film thickness is the total of the plurality of sublayers when the first layer is composed of the plurality of sublayers. Here, as the thickness of the first layer, a value measured by a film thickness measurement method by observation with a transmission microscope (TEM) described below is adopted at the time of production and after the production.
 <透過型顕微鏡(TEM)観察による膜厚測定法>
 透過型電子顕微鏡(TEM)による断面観察により、各層の膜厚を10箇所測定し、平均した値を膜厚とした。
<Method of measuring film thickness by observation with transmission microscope (TEM)>
The film thickness of each layer was measured at 10 locations by cross-sectional observation with a transmission electron microscope (TEM), and the average value was taken as the film thickness.
 (膜厚方向の断面のTEM画像)
 断面TEM観察として、観察試料を以下のFIB加工装置により薄片作成後、TEM観察を行った。
(TEM image of cross section in film thickness direction)
As a cross-sectional TEM observation, the observation sample was made into a thin piece by the following FIB processing apparatus, and then subjected to TEM observation.
 (FIB加工)
 装置:SII製SMI2050
 加工イオン:(Ga 30kV)
 試料厚み:100nm~200nm(TEM観察)
 装置:日本電子製JEM2000FX(加速電圧:200kV)
 第1の層は、ガスバリア性能の観点から、酸化ケイ素(SiO)、窒化ケイ素、酸窒化ケイ素(SiON)、酸炭化ケイ素(SiOC)、炭化ケイ素、酸窒化炭化ケイ素(SiONC)、およびアルミニウムシリケート(SiAlO)からなる群から含まれる少なくとも1種を含むことが好ましく、酸窒化ケイ素(SiON)、酸炭化ケイ素(SiOC)およびアルミニウムシリケート(SiAlO)からなる群から含まれる少なくとも1種を含むことがより好ましい。中でも、高温高湿条件下での第2の層との密着性が向上し、ガスバリア性能の低下が抑制されることから、第1の層は酸炭化ケイ素を含むことが好ましい。酸炭化ケイ素は、炭素原子があるため第2層の元素の間で有機結合が形成されるため、第2の層との密着性が向上するものと考えられる。
(FIB processing)
Device: SII SMI2050
Processed ions: (Ga 30 kV)
Sample thickness: 100 nm to 200 nm (TEM observation)
Apparatus: JEOL JEM2000FX (acceleration voltage: 200 kV)
The first layer is made of silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride (SiON), silicon oxycarbide (SiOC), silicon carbide, silicon oxynitride carbide (SiONC), and aluminum silicate from the viewpoint of gas barrier performance. It is preferable to include at least one selected from the group consisting of (SiAlO), including at least one selected from the group consisting of silicon oxynitride (SiON), silicon oxycarbide (SiOC), and aluminum silicate (SiAlO). More preferred. Among them, the first layer preferably contains silicon oxycarbide because adhesion to the second layer under high temperature and high humidity conditions is improved and deterioration of gas barrier performance is suppressed. Since silicon oxycarbide has carbon atoms, an organic bond is formed between the elements of the second layer, so that it is considered that the adhesion with the second layer is improved.
 第1の層の形成方法は特に限定されないが、高いガスバリア性能が得られることから、蒸着法により形成することが好ましい。蒸着法としては、化学蒸着法および物理蒸着法がある。 The formation method of the first layer is not particularly limited, but is preferably formed by a vapor deposition method because high gas barrier performance is obtained. As the vapor deposition method, there are a chemical vapor deposition method and a physical vapor deposition method.
 化学蒸着法(化学気相成長法、Chemical Vapor Deposition)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面或いは気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。 Chemical vapor deposition (chemical vapor deposition, Chemical Vapor Deposition) is a method of depositing a film on a substrate by supplying a raw material gas containing a target thin film component and performing a chemical reaction on the substrate surface or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like. Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
 真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られるガスバリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。 The gas barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or near atmospheric pressure, selects conditions such as the raw material (also referred to as raw material) metal compound, decomposition gas, decomposition temperature, input power, etc. Therefore, the target compound can be produced, which is preferable.
 例えば、ケイ素化合物を原料化合物として用い、分解ガスに酸素を用いれば、ケイ素酸化物が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。 For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon oxide is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
 原料化合物として用いることができるケイ素化合物としては、米国特許出願公開第2013/236710号公報[0056]に記載の化合物など、従来公知の化合物を用いることができる。また、後述の好適な形態である(i)~(ii)の要件を満たす層の形成の際に用いられる原料化合物であるケイ素化合物が挙げられる。 As the silicon compound that can be used as the raw material compound, conventionally known compounds such as those described in US Patent Application Publication No. 2013/236710 [0056] can be used. In addition, a silicon compound which is a raw material compound used in forming a layer satisfying the requirements (i) to (ii), which are preferred forms described later, can be used.
 また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、米国特許出願公開第2013/236710号公報[0063]に記載のガスなどが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。 Also, as a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound, there are gases described in US Patent Application Publication No. 2013/236710 [0063]. Further, the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
 原料化合物を含む原料ガスと、分解ガスを適宜選択することで所望のバリア層を得ることができる。 A desired barrier layer can be obtained by appropriately selecting a source gas containing a source compound and a decomposition gas.
 真空プラズマCVD法に用いられる装置としては、特開2012-131194号公報の図1のような装置が挙げられる。 As an apparatus used for the vacuum plasma CVD method, there is an apparatus as shown in FIG. 1 of JP 2012-131194 A.
 物理蒸着法(Physical Vapor Deposition)は、気相中で物質の表面に物理的手法により目的とする物質の薄膜を堆積する方法であり、蒸発系およびスパッタ系に大別することができるが、スパッタ系を用いることが好ましい。スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタリング、イオンビームスパッタリング、ECRスパッタリングなどを用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、およびRF(高周波)スパッタリングのいずれを用いてもよい。Siの酸化膜、窒化膜、窒酸化膜または炭酸化膜等のスパッタリングを行なう際には、そのターゲットにSiを用いることができる。不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、Siの酸化物、窒化物、窒酸化物、炭酸化物等の薄膜を作ることができる。RF(高周波)スパッタ法で成膜する場合は、SiOやSiなどのセラミックターゲットを用いることもできる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択できる。その他、蒸発系の物理蒸着法である、真空蒸着法(加熱方法:抵抗加熱、電子ビーム、高周波誘導、レーザー等)、分子線蒸着法(MBE)、イオンプレーティング法、イオンビーム蒸着法などを用いてもよい。 The physical vapor deposition method is a method of depositing a thin film of a target substance on the surface of the substance by a physical method in a gas phase, and can be roughly classified into an evaporation system and a sputtering system. It is preferable to use a system. Film formation by sputtering can be performed using bipolar sputtering, magnetron sputtering, dual magnetron (DMS) sputtering using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like. The target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used. When sputtering an Si oxide film, a nitride film, a nitrided oxide film, a carbonated film, or the like, Si can be used as the target. As the inert gas, He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a thin film of Si oxide, nitride, nitride oxide, carbonate or the like can be formed. When the film is formed by RF (high frequency) sputtering, a ceramic target such as SiO 2 or Si 3 N 4 can also be used. Examples of film forming conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, and these can be appropriately selected according to the sputtering apparatus, the material of the film, the film thickness, and the like. In addition, vacuum evaporation (heating method: resistance heating, electron beam, high frequency induction, laser, etc.), molecular beam evaporation (MBE), ion plating, ion beam evaporation etc. It may be used.
 物理蒸着法としては反応性スパッタ法を用いることが好ましい。反応性スパッタ法は、スパッタする際に酸素や窒素などの反応ガスを、チャンバー内に流すことでターゲット構成物質に含まれる成分とガスとの生成物質を薄膜として堆積させる技術である。反応性スパッタ法によれば、膜組成が均一となるため、ガスバリア性が高くなるため好ましい。不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。さらに、反応ガスとしては、酸素、窒素、二酸化炭素、一酸化炭素、アンモニア、HO、アセチレンを用いることができる。 Reactive sputtering is preferably used as the physical vapor deposition method. The reactive sputtering method is a technique in which a reactive gas such as oxygen or nitrogen is allowed to flow in a chamber during sputtering to deposit a product of components and gases contained in a target constituent material as a thin film. The reactive sputtering method is preferable because the film composition becomes uniform and the gas barrier property becomes high. As the inert gas, He, Ne, Ar, Kr, Xe, or the like can be used, and Ar is preferably used. Further, oxygen, nitrogen, carbon dioxide, carbon monoxide, ammonia, H 2 O, and acetylene can be used as the reaction gas.
 第1の層は、ロールツーロール方式の成膜装置を用いて形成してもよい。第1の層をロールツーロール方式で生産する場合、継続してロールツーロール方式でフィルムを製造できるため、第1の層をロールツーロール方式の成膜装置を用いて形成させると生産性が向上し、好ましい。ロールツーロール方式のプラズマCVD装置としては下記で説明する図1に記載の装置が挙げられ、また、ロールツーロール方式のスパッタリング装置は、特開2012-237047号(マグネトロンスパッタリングカソードを備えたロールツーロール方式のスパッタリング装置)、特開2006-334909号図5に記載の装置等、公知の装置を用いることができる。 The first layer may be formed using a roll-to-roll film forming apparatus. When the first layer is produced by the roll-to-roll method, the film can be continuously produced by the roll-to-roll method. Therefore, when the first layer is formed by using a roll-to-roll film forming apparatus, productivity is improved. Improved and preferred. Examples of the roll-to-roll plasma CVD apparatus include the apparatus shown in FIG. 1 described below, and a roll-to-roll sputtering apparatus is disclosed in Japanese Patent Application Laid-Open No. 2012-237047 (roll-two equipped with a magnetron sputtering cathode). A known apparatus such as a roll-type sputtering apparatus or an apparatus described in FIG. 5 of JP-A-2006-334909 can be used.
 (第1の層の形成に好適な装置および好適な膜組成)
 以下、第1の層の形成に好適な装置である図1に記載の装置について説明する。図1に記載の装置は、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置である。なお、図1は、第1の層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。
(Appropriate apparatus and suitable film composition for forming the first layer)
Hereinafter, the apparatus shown in FIG. 1, which is an apparatus suitable for forming the first layer, will be described. The apparatus illustrated in FIG. 1 is an apparatus that includes at least a pair of film forming rollers and a plasma power source, and that can discharge between the pair of film forming rollers. FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first layer. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 1 includes a feed roller 32, transport rollers 33, 34, 35, and 36, film forming rollers 39 and 40, a gas supply pipe 41, a plasma generating power source 42, and a film forming roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45. In such a manufacturing apparatus, at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39および40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39および40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材2の表面上に第1の層3を形成することが可能であり、成膜ローラー39上において基材2の表面上に第1の層成分を堆積させつつ、さらに成膜ローラー40上においても基材2の表面上に第1の層成分を堆積させることもできるため、基材2の表面上に第1の層を効率よく形成することができる。 In such a manufacturing apparatus, each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes. Moreover, in such a manufacturing apparatus, it is preferable to arrange | position a pair of film-forming roller (film-forming rollers 39 and 40) so that the central axis may become substantially parallel on the same plane. Thus, by arranging a pair of film forming rollers (film forming rollers 39 and 40), the film forming rate can be doubled and a film having the same structure can be formed. Can be at least doubled. And according to such a manufacturing apparatus, it is possible to form the 1st layer 3 on the surface of the base material 2 by CVD method, and it is 1st on the surface of the base material 2 on the film-forming roller 39. In addition, the first layer component can be deposited on the surface of the substrate 2 even on the film forming roller 40, so that the first layer is efficiently deposited on the surface of the substrate 2. Can be formed.
 成膜ローラー39および成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43および44がそれぞれ設けられている。 In the film forming roller 39 and the film forming roller 40, magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
 成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating device 43 provided on one film forming roller 39 and a magnetic field generating device provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材2を用いて効率的に蒸着膜である第1の層3を形成することができる点で優れている。 The magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity. By providing such magnetic field generators 43 and 44, the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 43 and 44 are opposed. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 2 is excellent in that the first layer 3 that is a vapor deposition film can be efficiently formed.
 成膜ローラー39および成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39および40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39および40の直径としては、放電条件、チャンバのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材2にかかることを回避できることから、基材2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 As the film formation roller 39 and the film formation roller 40, known rollers can be used as appropriate. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 39 and 40 is preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
 このような製造装置31においては、基材2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材2が配置されている。このようにして基材2を配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材2のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材2の表面上に第1の層成分を堆積させ、さらに成膜ローラー40上にて第1の層成分を堆積させることができるため、基材2の表面上に第1の層を効率よく形成することが可能となる。 In such a manufacturing apparatus 31, the base material 2 is disposed on a pair of film forming rollers (the film forming roller 39 and the film forming roller 40) so that the surfaces of the base material 2 face each other. By disposing the base material 2 in this manner, when the plasma is generated by performing discharge in the facing space between the film formation roller 39 and the film formation roller 40, the base existing between the pair of film formation rollers is present. Each surface of the material 2 can be formed simultaneously. That is, according to such a manufacturing apparatus, the first layer component is deposited on the surface of the base material 2 on the film forming roller 39 by the plasma CVD method, and the first layer component is further formed on the film forming roller 40. Since the layer component can be deposited, the first layer can be efficiently formed on the surface of the substrate 2.
 このような製造装置に用いる送り出しローラー32および搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材2上に第1の層3を形成したガスバリア性フィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller 32 and the transport rollers 33, 34, 35, and 36 used in such a manufacturing apparatus, known rollers can be appropriately used. Further, the winding roller 45 is not particularly limited as long as it can wind the gas barrier film 1 having the first layer 3 formed on the substrate 2, and a known roller is appropriately used. be able to.
 ガス供給管41および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。 As the gas supply pipe 41 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be used as appropriate.
 また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. As described above, by providing the gas supply pipe 41 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 39 and the film formation roller 40. It is excellent in that the film formation efficiency can be improved.
 さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。 Furthermore, as the plasma generating power source 42, a known power source of a plasma generating apparatus can be used as appropriate. Such a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge. Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used. In addition, since the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. It is preferable to do. As the magnetic field generators 43 and 44, known magnetic field generators can be used as appropriate.
 また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39および40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 In such a plasma CVD method, in order to discharge between the film forming roller 39 and the film forming roller 40, an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used. The power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
 ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料化合物を含む原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。第1の層3の形成に用いる前記成膜ガス中の原料ガスとしては、形成する第1の層3の材質に応じて適宜選択して使用することができる。 As the film forming gas (source gas etc.) supplied from the gas supply pipe 41 to the facing space, the source gas containing the source compound, the reaction gas, the carrier gas, and the discharge gas may be used alone or in combination of two or more. it can. The source gas in the film-forming gas used for forming the first layer 3 can be appropriately selected and used depending on the material of the first layer 3 to be formed.
 原料ガスとしては、有機ケイ素化合物を用いることが好ましい。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られる第1の層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1.1.3.3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。 It is preferable to use an organosilicon compound as the source gas. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1.1.3.3-tetramethyldisiloxane are preferable from the viewpoint of handling properties of the compound and gas barrier properties of the obtained first layer. These organosilicon compounds can be used alone or in combination of two or more.
 また、成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the source gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
 成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成される第1の層3によって、優れたバリア性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film-forming gas contains a source gas and a reactive gas, the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary to completely react the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By making the ratio of the reaction gas not excessive, the first layer 3 to be formed is excellent in that excellent barrier properties and bending resistance can be obtained. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
 このような図1に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルムの搬送速度を適宜調整することにより、CVD法により形成される第1の層を製造することができる。すなわち、図1に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー39および40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材2の表面上および成膜ローラー40上の基材2の表面上に、第1の層3がプラズマCVD法により形成される。 Using the manufacturing apparatus 31 shown in FIG. 1, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the film transport speed are adjusted as appropriate. By doing so, the first layer formed by the CVD method can be manufactured. That is, using the manufacturing apparatus 31 shown in FIG. 1, a discharge is generated between a pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber. As a result, the film formation gas (raw material gas or the like) is decomposed by plasma, and the first layer 3 is formed on the surface of the substrate 2 on the film formation roller 39 and on the surface of the substrate 2 on the film formation roller 40. It is formed by the plasma CVD method.
 真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。 The pressure in the vacuum chamber (degree of vacuum) can be adjusted as appropriate according to the type of raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
 基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましく、0.5~1.2m/minとすることがさらに好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、第1の層として十分な厚みを確保することができる点で優れている。 The conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, the range is from 5 to 20 m / min, and even more preferably from 0.5 to 1.2 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient thickness as a 1st layer, without impairing productivity.
 ここで、本発明の好適な一実施形態は、図1に記載の装置のように、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間においてプラズマ放電することが可能な装置を用いて酸炭化ケイ素を含む第1の層を形成する形態である。 Here, in a preferred embodiment of the present invention, as in the apparatus shown in FIG. 1, at least a pair of film forming rollers and a plasma power source are provided, and plasma discharge is performed between the pair of film forming rollers. It is the form which forms the 1st layer containing silicon oxycarbide using the apparatus which can do.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサンおよび酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が第1の層中に取り込まれ、酸炭化ケイ素を含む第1の層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性および耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system When the thin film is prepared, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material is a stoichiometric ratio of 12 times or less (more preferably 10 times or less). It is preferable that By including hexamethyldisiloxane and oxygen in such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are incorporated into the first layer, and silicon oxycarbide containing silicon oxycarbide is contained. 1 layer can be formed, and excellent gas barrier properties and bending resistance can be exhibited in the obtained gas barrier film. From the viewpoint of use as a flexible substrate for devices that require transparency, such as organic EL elements and solar cells, the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas The lower limit of (flow rate) is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
 上記したように、本実施形態のより好ましい態様としては、第1の層を、図1に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜する。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、バリア性能とが両立する第1の層を効率よく製造することができるためである。このような製造装置は、電子デバイスに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of this embodiment, the first layer is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently manufacture the first layer in which the barrier performance is compatible. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in electronic devices.
 図1の装置においては、成膜ローラー39,40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。ここで、図1の装置により、第1の層の膜厚方向における第1の層表面からの距離(L)と、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、極値が存在することとなる。具体的には、基材2が、図1中の成膜ローラー39のA及び成膜ローラー40のB地点を通過する際に、炭素分布曲線の極大値が形成される。これに対して、基材2が、図1中の成膜ローラー39のC1およびC2地点、ならびに成膜ローラー40のC3およびC4地点を通過する際に、第1の層で炭素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、理論上、5つの極値が生成する。同様に、対向ロール数(TR数、対極する二つのロールセット数)がn個の場合には(nは1以上の整数)、理論上の極値の数は、約(5+4×(n-1))個となる。しかしながら、実際の極値数は基材の搬送速度などにより、理論上の極値数となるとは限らず、増減する場合がある。 In the apparatus of FIG. 1, a racetrack-like magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller shafts of the film forming rollers 39 and 40, and plasma is generated in the magnetic field. Converge. Here, with the apparatus of FIG. 1, the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the carbon atoms relative to the total amount of L, silicon atoms, oxygen atoms, and carbon atoms. In the carbon distribution curve showing the relationship with the quantity ratio (carbon atomic ratio), there will be extreme values. Specifically, when the substrate 2 passes through the point A of the film forming roller 39 and the point B of the film forming roller 40 in FIG. 1, the maximum value of the carbon distribution curve is formed. On the other hand, when the base material 2 passes the points C1 and C2 of the film forming roller 39 and the points C3 and C4 of the film forming roller 40 in FIG. 1, the carbon distribution curve is minimized in the first layer. A value is formed. Therefore, theoretically, five extreme values are generated for the two film forming rollers. Similarly, when the number of opposite rolls (TR number, number of two opposite roll sets) is n (n is an integer of 1 or more), the theoretical number of extreme values is about (5 + 4 × (n− 1)) It becomes a piece. However, the actual number of extreme values is not always the theoretical number of extreme values depending on the conveyance speed of the substrate, and may increase or decrease.
 ここで、炭素分布曲線における「極値」とは、第1の層の膜厚方向における第1の層の表面からの距離(L)と、炭素分布曲線における炭素原子の極大値又は極小値のことをいう。また、炭素分布曲線における極大値とは、第1の層の表面からの距離を変化させた場合に、ケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子比の値が増加から減少に変わる点でのことをいう。さらに、炭素分布曲線における極小値とは、第1の層の表面からの距離を変化させた場合に、ケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子比の値が減少から増加に変わる点のことをいう。 Here, the “extreme value” in the carbon distribution curve means the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the maximum or minimum value of carbon atoms in the carbon distribution curve. That means. In addition, the maximum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms decreases from an increase. This is a change. Furthermore, the minimum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms increases from a decrease. It refers to a changing point.
 したがって、第1の層の層のより好適な一実施形態としては、以下の(i)の要件を満たす層である。 Therefore, a more preferred embodiment of the first layer is a layer that satisfies the following requirement (i).
 (i)第1の層の膜厚方向における第1の層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、炭素分布曲線が少なくとも2つの極値を有する。 (I) The distance (L) from the surface of the first layer in the film thickness direction of the first layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (silicon atomic ratio) A distribution curve showing the relationship between L and the oxygen distribution curve showing the relationship between the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atomic ratio of oxygen); In the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon), the carbon distribution curve has at least two extreme values.
 さらに、前記炭素分布曲線が少なくとも3つの極値を有することが好ましく、少なくとも4つの極値を有することがより好ましいが、5つ以上有してもよい。炭素分布曲線が少なくとも2つの極値を有することで、炭素原子比率が濃度勾配を有して連続的に変化し、屈曲時のガスバリア性能が高まる。極値の数は、バリア層の膜厚にも起因するため、一概に規定することはできない。 Furthermore, the carbon distribution curve preferably has at least three extreme values, more preferably at least four extreme values, but may have five or more extreme values. When the carbon distribution curve has at least two extreme values, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced. Since the number of extreme values is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
 ここで、少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する1つの極値および該極値に隣接する極値における前記第1の層の膜厚方向における前記第1の層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、第1の層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、第1の層に適度な屈曲性を付与し、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。 Here, in the case of having at least three extreme values, one extreme value of the carbon distribution curve and an extreme value adjacent to the extreme value of the first layer in the film thickness direction of the first layer. The absolute value of the difference in distance (L) from the surface (hereinafter also simply referred to as “distance between extreme values”) is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm or less. It is particularly preferred. If it is such a distance between extreme values, since the site | part (maximum value) with many carbon atom ratios exists in a suitable period in a 1st layer, moderate flexibility is provided to a 1st layer, Generation of cracks during bending of the gas barrier film can be more effectively suppressed / prevented.
 バリア層の極値間の距離(炭素分布曲線の有する1つの極値および該極値に隣接する極値におけるバリア層の膜厚方向におけるバリア層の表面からの距離(L)の差の絶対値)は、成膜ローラ39,40の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材2が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材2の表面上に第1の層3が形成される。 The distance between the extreme values of the barrier layer (the absolute value of the difference between the one extreme value of the carbon distribution curve and the distance (L) from the surface of the barrier layer in the thickness direction of the barrier layer at the extreme value adjacent to the extreme value) ) Can be adjusted by the rotation speed of the film forming rollers 39 and 40 (base material transport speed). In such film formation, the substrate 2 is conveyed by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the surface of the substrate 2 is formed by a roll-to-roll continuous film formation process. The first layer 3 is formed.
 また、第1の層は、炭素分布曲線における炭素の原子比の最大値と最小値との差の絶対値が3at%以上であることが好ましく、5at%以上であることがより好ましく、7at%以上であることがさらに好ましい。炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が3at%以上であることで、屈曲時のガスバリア性能が高まる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。 In the first layer, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is preferably 3 at% or more, more preferably 5 at% or more, and 7 at%. More preferably, it is the above. When the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve is 3 at% or more, the gas barrier performance during bending is enhanced. In the present specification, the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values. Similarly, in this specification, the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
 また、第1の層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)ことが好ましい。ここで、第1の層の膜厚の少なくとも90%以上とは、バリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。かような条件となることで、得られるガスバリア性フィルムのガスバリア性や屈曲性が十分となる。前記ケイ素分布曲線、前記酸素分布曲線、および前記炭素分布曲線において、ケイ素の原子比、酸素の原子比、および炭素の原子比が、該第1の層の膜厚の90%以上の領域において、該条件を満たす場合には、前記層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。また、前記第1の層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の含有量の原子比率は、33~67at%であることが好ましく、45~67at%であることがより好ましい。さらに、前記層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の含有量の原子比率は、3~33at%であることが好ましく、3~25at%であることがより好ましい。 Further, in the region of 90% or more (upper limit: 100%) of the film thickness of the first layer, (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) increase in this order (atomic ratio) Is preferably O> Si> C). Here, at least 90% or more of the film thickness of the first layer does not have to be continuous in the barrier layer, and it is only necessary to satisfy the above-described relationship in a portion of 90% or more. By satisfying such conditions, the resulting gas barrier film has sufficient gas barrier properties and flexibility. In the silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve, in a region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 90% or more of the film thickness of the first layer, When this condition is satisfied, the atomic ratio of the silicon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 25 to 45 at%, and preferably 30 to 40 at%. More preferably. The atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first layer is preferably 33 to 67 at%, and preferably 45 to 67 at%. More preferred. Furthermore, the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
 第1の層の前記酸素分布曲線は、少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。前記酸素分布曲線が極値を少なくとも1つ有する場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性がより向上する。酸素分布曲線の極値の数においても、バリア層の膜厚に起因する部分があり一概に規定できない。また、少なくとも3つの極値を有する場合においては、前記酸素分布曲線の有する1つの極値および該極値に隣接する極値における前記第1の層の膜厚方向における第1の層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。このような極値間の距離の距離であれば、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。 The oxygen distribution curve of the first layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values. When the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the thickness of the barrier layer, and it cannot be defined unconditionally. In the case of having at least three extreme values, from the surface of the first layer in the film thickness direction of the first layer at one extreme value of the oxygen distribution curve and the extreme value adjacent to the extreme value. The absolute value of the difference in distance is preferably 200 nm or less, and more preferably 100 nm or less. With such a distance between extreme values, the occurrence of cracks during bending of the gas barrier film can be more effectively suppressed / prevented.
 加えて、第1の層の前記酸素分布曲線における酸素の原子比の最大値および最小値の差の絶対値(以下、単に「Omax-Omin差」とも称する)が3at%以上であることが好ましく、5at%以上であることがより好ましく、6at%以上であることがより好ましく、7at%以上であることがさらに好ましい。前記絶対値が3at%以上であれば、得られるガスバリア性フィルムのフィルムを屈曲させた場合におけるガスバリア性がより向上する。 In addition, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the first layer (hereinafter also simply referred to as “O max −O min difference”) is 3 at% or more. Is preferably 5 at% or more, more preferably 6 at% or more, and even more preferably 7 at% or more. When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent is further improved.
 さらに、第1の層の前記ケイ素分布曲線におけるケイ素の原子比の最大値および最小値の差の絶対値(以下、単に「Simax-Simin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満である場合、得られるガスバリア性フィルムのガスバリア性および機械的強度がより向上する。ここで、Simax-Simin差の下限は、Simax-Simin差が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されない。 Furthermore, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the first layer (hereinafter, also simply referred to as “Si max −Si min difference”) is less than 5 at%. Preferably, it is less than 4 at%, more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property and mechanical strength of the obtained gas barrier film are further improved. The lower limit of Si max -Si min difference, since Si max improvement of cracking suppressing / preventing flexion enough gas barrier film -Si min difference is small is high, not particularly limited.
 また、第1の層の膜厚方向に対する炭素及び酸素原子の合計量はほぼ一定であることが好ましい。これにより、第1の層は適度な屈曲性を発揮し、ガスバリア性フィルムの屈曲時のクラック発生をより有効に抑制・防止されうる。より具体的には、第1の層の膜厚方向における該第1の層の表面からの距離(L)とケイ素原子、酸素原子、および炭素原子の合計量に対する、酸素原子および炭素原子の合計量の比率(酸素および炭素の原子比)との関係を示す酸素炭素分布曲線において、前記酸素炭素分布曲線における酸素および炭素の原子比の合計の最大値および最小値の差の絶対値(以下、単に「OCmax-OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性がより向上する。 Moreover, it is preferable that the total amount of carbon and oxygen atoms in the film thickness direction of the first layer is substantially constant. Thereby, the 1st layer exhibits moderate flexibility, and the crack generation at the time of bending of a gas barrier film can be controlled and prevented more effectively. More specifically, the sum of oxygen atoms and carbon atoms with respect to the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the total amount of silicon atoms, oxygen atoms, and carbon atoms In the oxygen carbon distribution curve showing the relationship with the ratio of the amount (atomic ratio of oxygen and carbon), the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the oxygen carbon distribution curve (hereinafter, (Also simply referred to as “OC max −OC min difference”) is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved.
 前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、および前記酸素炭素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記第1の層の膜厚方向における前記第1の層の表面からの距離(L)に概ね相関することから、「第1の層の膜厚方向における第1の層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される第1の層の表面からの距離を採用することができる。なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線は、下記測定条件にて作成した。 The silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are obtained by using X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination. Thus, it can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In this way, in the element distribution curve with the horizontal axis as the etching time, the etching time is the distance (L) from the surface of the first layer in the film thickness direction of the first layer in the film thickness direction. Since there is a general correlation, the “distance from the surface of the first layer in the film thickness direction of the first layer” is calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface of one layer can be employed. The silicon distribution curve, oxygen distribution curve, carbon distribution curve and oxygen carbon distribution curve were prepared under the following measurement conditions.
 (測定条件)
 エッチングイオン種:アルゴン(Ar);
 エッチング速度(SiO熱酸化膜換算値):0.05nm/sec;
 エッチング間隔(SiO換算値):10nm;
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe";
 照射X線:単結晶分光AlKα X線のスポット及びそのサイズ:800×400μmの楕円形。
(Measurement condition)
Etching ion species: Argon (Ar + );
Etching rate (converted to SiO 2 thermal oxide film): 0.05 nm / sec;
Etching interval (SiO 2 equivalent value): 10 nm;
X-ray photoelectron spectrometer: Model name "VG Theta Probe", manufactured by Thermo Fisher Scientific;
Irradiation X-ray: Single crystal spectroscopic AlKα X-ray spot and size: 800 × 400 μm ellipse.
 膜面全体において均一でかつ優れたガスバリア性を有する第1の層を形成するという観点から、第1の層が膜面方向(第1の層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、第1の層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により第1の層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。 From the viewpoint of forming the first layer having a uniform and excellent gas barrier property over the entire film surface, the first layer is substantially uniform in the film surface direction (direction parallel to the surface of the first layer). It is preferable that Here, the fact that the first layer is substantially uniform in the film surface direction means that the oxygen distribution curve and the carbon distribution curve are measured at any two measurement points on the film surface of the first layer by XPS depth profile measurement. When the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum value of the atomic ratio of carbon in each carbon distribution curve And the absolute value of the difference between the minimum values is the same as each other or within 5 at%.
 さらに、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記第1の層のうちの少なくとも1層の膜厚方向における該第1の層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(1)で表される条件を満たすことをいう。 Furthermore, it is preferable that the carbon distribution curve is substantially continuous. Here, the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, the carbon distribution curve is calculated from the etching rate and the etching time. The distance (x, unit: nm) from the surface of the first layer in the film thickness direction of at least one of the first layers to be used, and the atomic ratio of carbon (C, unit: at%) In the relationship, the condition expressed by the following formula (1) is satisfied.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、炭素分布曲線において、当該第1の層の炭素原子比率が層全体の平均値として8~20at%の範囲内であることが好ましく、10~20at%の範囲であることがより好ましい。当該範囲内にすることにより、ガスバリア性と屈曲性を十分に満たすガス第1の層を形成することができる。 Also, in the carbon distribution curve, the carbon atom ratio of the first layer is preferably in the range of 8 to 20 at%, more preferably in the range of 10 to 20 at%, as an average value of the entire layer. By setting it within this range, it is possible to form the gas first layer that sufficiently satisfies the gas barrier property and the flexibility.
 [第2の層]
 第2の層は、ポリシラザン化合物を含む塗布液を塗布して得られた塗膜を改質処理して得られる。そして、第2の層の基材と相対する最表面~35nmの領域(以下、表面領域とも称する)の平均酸素含有比率が最表面から35nm以上の領域(以下、基材側領域とも称する)の平均酸素含有比率より大きい(すなわち表面領域の平均酸素含有比率/基材側領域の平均酸素含有比率が1を超える)。下層との密着性向上の観点からは、表面領域の平均酸素含有比率/基材側領域の平均酸素含有比率が1.10以上であることが好ましく、1.35以上であることがより好ましい。なお、表面領域の平均酸素含有比率/基材側の平均酸素含有比率は大きければ大きいほど好ましいが、製造の観点から、通常1.90以下程度である。
[Second layer]
The second layer is obtained by modifying a coating film obtained by applying a coating liquid containing a polysilazane compound. The average oxygen content ratio of the region of the outermost surface to 35 nm (hereinafter also referred to as a surface region) facing the substrate of the second layer is 35 nm or more from the outermost surface (hereinafter also referred to as the substrate side region). It is larger than the average oxygen content ratio (that is, the average oxygen content ratio in the surface region / the average oxygen content ratio in the substrate side region exceeds 1). From the viewpoint of improving the adhesion to the lower layer, the average oxygen content ratio of the surface region / average oxygen content ratio of the base material side region is preferably 1.10 or more, and more preferably 1.35 or more. The larger the average oxygen content ratio in the surface region / the average oxygen content ratio on the substrate side, the better. However, from the viewpoint of production, it is usually about 1.90 or less.
 なお、ここで酸素含有比率は、ケイ素、酸素および窒素の合計に対する酸素含有比率である。 Here, the oxygen content ratio is the oxygen content ratio relative to the total of silicon, oxygen, and nitrogen.
 なお、膜厚方向の酸素含有比率(酸素元素の組成率(at%))は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により測定することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、縦軸を酸素元素の組成率(at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。図3に後述の実施例のガスバリア性フィルムNo.4の分布曲線を示す。 Note that the oxygen content ratio in the film thickness direction (composition ratio of oxygen element (at%)) is obtained by using both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon. Further, it can be measured by so-called XPS depth profile measurement in which the surface composition analysis is sequentially performed while exposing the inside of the sample. A distribution curve obtained by such XPS depth profile measurement can be created with the vertical axis representing the composition ratio (at%) of the oxygen element and the horizontal axis representing the etching time (sputtering time). FIG. 3 shows a gas barrier film No. in Examples described later. 4 shows a distribution curve.
 なお、本発明では、下記測定条件にて作成した。 In the present invention, it was created under the following measurement conditions.
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート:0.05nm/sec(SiO熱酸化膜換算値)
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate: 0.05 nm / sec (SiO 2 thermal oxide equivalent value)
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
 XPSデプスプロファイルによる測定では、第1の層と第2の層との界面、または第2の層上に他の層が積層されている場合の第2の層と他の層との界面は、製造時膜厚または透過型顕微鏡(TEM)観察による膜厚測定法により求められた膜厚=SiO換算膜厚とする。すなわち、例えば、後述の図3において、第2の層の製造時膜厚およびTEM観察膜厚は100nmであるから、SiO換算膜厚=0nmの点を最表層とし、SiO換算膜厚=100nmまでを第2の層とする。透過型顕微鏡(TEM)観察による膜厚測定法は第1の層に記載のとおりである。 In the measurement by the XPS depth profile, the interface between the first layer and the second layer, or the interface between the second layer and the other layer when another layer is stacked on the second layer, The film thickness at the time of manufacture or the film thickness obtained by the film thickness measurement method by observation with a transmission microscope (TEM) = the SiO 2 equivalent film thickness. That is, for example, in FIG. 3 to be described later, the manufacturing thickness and the TEM observation film thickness of the second layer are 100 nm. Therefore, the point of SiO 2 equivalent film thickness = 0 nm is the outermost layer, and the SiO 2 equivalent film thickness = The second layer is up to 100 nm. The film thickness measurement method by transmission microscope (TEM) observation is as described in the first layer.
 また、最表面から35nm以内の平均酸素含有比率は膜厚方向の酸素含有比率を測定した後、膜厚方向で積分し、積分値を積分した範囲の膜厚で割った値である。また、35nm以上の領域についても同様である。 Further, the average oxygen content ratio within 35 nm from the outermost surface is a value obtained by measuring the oxygen content ratio in the film thickness direction, integrating in the film thickness direction, and dividing the integrated value by the integrated film thickness. The same applies to a region of 35 nm or more.
 最表面~35nmの領域の平均酸素含有比率は、25~55at%であることが好ましく、30~45at%であることがより好ましい。上記範囲内であれば、表層側のポリシラザン化合物の改質がある程度進行し、硬度がある程度確保されており、第2の層の耐傷性を向上させることができる一方、耐屈曲性および高温高湿条件下でのガスバリア性も確保されるため好ましい。そして、上記第2の層の表面領域の平均酸素含有比率の好適な範囲内で、表面領域の平均酸素含有比率/基材側領域の平均酸素含有比率を考慮して、基材側領域の平均酸素含有比率を設定することが好ましい。かような設定とすることで、基材側に表層側よりも硬度の低い軟らかい領域が第2の層内に存在することとなり、発生する応力を基材側の領域で水平方向に分散させることができるため、フィルムの耐屈曲性が向上するため好ましい。ただし、基材側の硬度を維持するためにある程度酸素を含有する必要があるため、最表面から35nm以上の領域の平均酸素含有比率は、10at%以上であることが好ましく、15at%以上であることがより好ましい。さらに、具体的には、最表面から35nm以上の領域の平均酸素含有比率は、10~40at%であることが好ましく、15~30at%であることがより好ましい。 The average oxygen content in the region of the outermost surface to 35 nm is preferably 25 to 55 at%, more preferably 30 to 45 at%. Within the above range, the modification of the polysilazane compound on the surface layer side proceeds to some extent and the hardness is ensured to some extent, and the scratch resistance of the second layer can be improved, while the bending resistance and high temperature and high humidity are improved. It is preferable because gas barrier properties under conditions are also secured. And within a suitable range of the average oxygen content ratio of the surface region of the second layer, the average oxygen content ratio of the surface region / average oxygen content ratio of the base material side region is taken into account, and the average of the base material side region It is preferable to set the oxygen content ratio. By setting as such, a soft region having a lower hardness than the surface layer side exists in the second layer on the base material side, and the generated stress is dispersed in the base material side region in the horizontal direction. Therefore, it is preferable because the bending resistance of the film is improved. However, since it is necessary to contain oxygen to some extent in order to maintain the hardness on the substrate side, the average oxygen content ratio in the region of 35 nm or more from the outermost surface is preferably 10 at% or more, and 15 at% or more. It is more preferable. More specifically, the average oxygen content ratio in the region of 35 nm or more from the outermost surface is preferably 10 to 40 at%, and more preferably 15 to 30 at%.
 本発明において、第2の層の厚さは、35nmを超える。長期的に高いガスバリア性能を維持できることから、第2の層の厚さは40nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることがより好ましい。第2の層の上限は特に限定されるものではないが、層形成時の塗布性や光線透過性の観点からは、500nm以下であることが好ましい。 In the present invention, the thickness of the second layer exceeds 35 nm. Since the high gas barrier performance can be maintained in the long term, the thickness of the second layer is preferably 40 nm or more, more preferably 50 nm or more, and more preferably 100 nm or more. Although the upper limit of a 2nd layer is not specifically limited, From a viewpoint of the applicability | paintability at the time of layer formation and light transmittance, it is preferable that it is 500 nm or less.
 (ポリシラザン)
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
(Polysilazane)
Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
 具体的には、ポリシラザンは、好ましくは下記の構造を有する。 Specifically, the polysilazane preferably has the following structure.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖または環状のアルキル基が挙げられる。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、米国特許出願公開第2013/236710号[0117]、[0120]に記載のアルキル基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R~Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシル基(-COOH)、ニトロ基(-NO)などがある。なお、場合によって存在する置換基は、置換するR~Rと同じとなることはない。例えば、R~Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、RおよびRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。 In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. Here, examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. Examples of the aryl group include aryl groups having 6 to 30 carbon atoms. More specifically, alkyl groups described in U.S. Patent Application Publication No. 2013/236710 [0117] and [0120] can be given. The (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group. The substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group. Of these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
 上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。 In the compound having the structure represented by the general formula (I), one of preferred embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
 または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。 In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
 上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。 Among the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group; R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group; R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.
 または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。 Alternatively, polysilazane has a structure represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。 In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.
 また、上記一般式(I)、(II)または(III)において、n、n’、p、n”、p”およびqは、整数であり、一般式(I)、(II)または(III)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。また、n”、p”およびqは、同じであってもあるいは異なるものであってもよい。 In the general formula (I), (II) or (III), n, n ′, p, n ″, p ″ and q are integers, and the general formula (I), (II) or (III) It is preferable that the polysilazane having a structure represented by formula (1) is determined so as to have a number average molecular weight of 150 to 150,000 g / mol. Note that n ′ and p may be the same or different. Further, n ″, p ″ and q may be the same or different.
 上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。 Of the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下層との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 On the other hand, organopolysilazane in which a part of the hydrogen atom bonded to Si is substituted with an alkyl group or the like has an improved adhesion to the lower layer due to having an alkyl group such as a methyl group, and is hard and brittle polysilazane. The ceramic film can be provided with toughness, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased. For this reason, perhydropolysilazane and organopolysilazane may be selected as appropriate according to the application, and may be used in combination.
 パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight.
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、特開2013-226757号 段落「0051」に記載のもの等が挙げられる。 Polysilazane is commercially available in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for forming a polysilazane layer. Examples of commercially available polysilazane solutions include those described in paragraph “0051” of JP2013-226757A.
 本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、米国特許出願公開第2013/236710号の[0128]に記載のものが挙げられる。 Other examples of polysilazanes that can be used in the present invention include, but are not limited to, those described in [0128] of US Patent Application Publication No. 2013/236710.
 第2の層中におけるポリシラザンの含有率としては、第2の層の全重量を100重量%としたとき、100重量%でありうる。また、第2の層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10重量%以上99重量%以下であることが好ましく、40重量%以上95重量%以下であることがより好ましく、特に好ましくは70重量%以上95重量%以下である。 The content of polysilazane in the second layer can be 100% by weight when the total weight of the second layer is 100% by weight. When the second layer contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. More preferably, it is 70 to 95 weight%.
 第2の層の形成方法は、特に制限されず、公知の方法が適用できるが、有機溶剤中にポリシラザンおよび必要に応じて触媒を含む塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。 The method for forming the second layer is not particularly limited, and a known method can be applied. A coating solution containing polysilazane and, if necessary, a catalyst in an organic solvent is applied by a known wet coating method. A method of removing by evaporation and then performing a reforming treatment is preferable.
 (ポリシラザンを含む塗布液)
 ポリシラザンを含む塗布液を調製するための溶剤としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、米国特許出願公開第2013/236710号の[0129]に記載のものが挙げられる。溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
(Coating liquid containing polysilazane)
The solvent for preparing the coating liquid containing polysilazane is not particularly limited as long as it can dissolve polysilazane, but water and reactive groups that easily react with polysilazane (for example, hydroxyl group, amine group, etc.) ) And an inert organic solvent with respect to polysilazane is preferred, and an aprotic organic solvent is more preferred. Specific examples include those described in [0129] of US Patent Application Publication No. 2013/236710. The solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80重量%、より好ましくは5~50重量%、特に好ましくは10~40重量%である。 The concentration of polysilazane in the coating solution is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 5 to 50% by weight, and particularly preferably 10 to 10%. 40% by weight.
 塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、アミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。アミン触媒の例としては、特開2013-226757号 段落「0057」に記載のものが挙げられる。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1~10モル%、より好ましくは0.5~7モル%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。 The coating solution preferably contains a catalyst in order to promote reforming. As the catalyst applicable to the present invention, a basic catalyst is preferable, and in particular, a metal catalyst such as an amine catalyst, a Pt compound such as Pt acetylacetonate, a Pd compound such as propionic acid Pd, or an Rh compound such as Rh acetylacetonate. , N-heterocyclic compounds. Examples of the amine catalyst include those described in paragraph “0057” of JP2013-226757A. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10 mol%, more preferably 0.5 to 7 mol%, based on polysilazane. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
 ポリシラザン改質層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。具体的には、特開2013-226757号 段落「0058」に記載のもの等である。 The following additives can be used in the polysilazane modified layer forming coating solution as necessary. Specifically, those described in paragraph “0058” of JP2013-226757A.
 (ポリシラザンを含む塗布液を塗布する方法)
 塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
(Method of applying a coating liquid containing polysilazane)
As a method for applying the coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
 塗布厚さは、目的に応じて適切に設定され得る。 The coating thickness can be appropriately set according to the purpose.
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適なガスバリア層が得られうる。なお、残存する溶媒は後に除去されうる。 After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable gas barrier layer can be obtained. The remaining solvent can be removed later.
 塗膜の乾燥は、低酸素・低水蒸気濃度雰囲気下で行うことが好ましい。具体的には、酸素濃度が好ましくは20体積%(200,000ppm)以下、より好ましくは2体積%(20,000ppm)、さらに好ましくは0.5体積%(5,000ppm)以下の範囲である。また、水蒸気濃度が好ましくは0.1体積%(1000ppm)以下、より好ましくは0.01体積%(100ppm)以下、さらに好ましくは0.001体積%(10ppm)以下の範囲である。なお、酸素濃度および水蒸気濃度の下限は0ppmである。このような低水蒸気濃度雰囲気下において乾燥処理を行うことにより、二酸化ケイ素の形成よりも酸窒化ケイ素の形成を優位に進行させることができ、第2の層のガスバリア性能を向上させることができる。 It is preferable to dry the coating film in a low oxygen / low water vapor concentration atmosphere. Specifically, the oxygen concentration is preferably in the range of 20% by volume (200,000 ppm) or less, more preferably 2% by volume (20,000 ppm), and still more preferably 0.5% by volume (5,000 ppm) or less. . Further, the water vapor concentration is preferably in the range of 0.1% by volume (1000 ppm) or less, more preferably 0.01% by volume (100 ppm) or less, and still more preferably 0.001% by volume (10 ppm) or less. In addition, the minimum of oxygen concentration and water vapor | steam density | concentration is 0 ppm. By performing the drying treatment in such a low water vapor concentration atmosphere, the formation of silicon oxynitride can proceed more favorably than the formation of silicon dioxide, and the gas barrier performance of the second layer can be improved.
 塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、窒素雰囲気下、アルゴン雰囲気下などの不活性雰囲気下で行うことが好ましい。 The drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere is preferably performed under an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere.
 (改質処理)
 第2の層は、ポリシラザン化合物を含む塗布液を塗布して得られた塗膜に1000体積ppm以下の酸素濃度および150体積ppm以下の水蒸気濃度の雰囲気下でエネルギー線を照射して形成されることが好ましい。すなわち、改質処理を、1000体積ppm以下の酸素濃度および150体積ppm以下の水蒸気濃度の雰囲気下でエネルギー線を照射することによって行うことが好ましい。
(Modification process)
The second layer is formed by irradiating the coating film obtained by applying a coating liquid containing a polysilazane compound with energy rays in an atmosphere having an oxygen concentration of 1000 ppm by volume or less and a water vapor concentration of 150 ppm by volume or less. It is preferable. That is, the reforming treatment is preferably performed by irradiating energy rays in an atmosphere having an oxygen concentration of 1000 volume ppm or less and a water vapor concentration of 150 volume ppm or less.
 酸素濃度および/または水蒸気濃度が高い領域(酸素濃度1000体積ppmを超える/水蒸気濃度が150体積ppmを超える領域)で行う改質処理では、改質処理によって主に二酸化ケイ素が形成される。二酸化ケイ素が形成されるメカニズムは、以下のように推定される。雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。また、真空紫外線のエネルギーはパーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。 In the reforming treatment performed in a region where the oxygen concentration and / or the water vapor concentration is high (region where the oxygen concentration exceeds 1000 volume ppm / the water vapor concentration exceeds 150 volume ppm), silicon dioxide is mainly formed by the reforming treatment. The mechanism by which silicon dioxide is formed is estimated as follows. When an appropriate amount of oxygen is present in the atmosphere, singlet oxygen having a very strong oxidizing power is formed. H or N in the perhydropolysilazane is replaced with O to form a Si—O—Si bond and harden. It is thought that recombination of the bond may occur due to cleavage of the polymer main chain. In addition, since the energy of vacuum ultraviolet rays is higher than the bond energy of Si—N in perhydropolysilazane, the Si—N bond is broken and oxidized when there are oxygen sources such as oxygen, ozone, water, etc. It is considered that O—Si bond and Si—O—N bond are generated. It is thought that recombination of the bond may occur due to cleavage of the polymer main chain.
 一方、酸素および水蒸気濃度が非常に低い雰囲気下(酸素濃度1000体積ppm以下/水蒸気濃度が150体積ppm以下の領域)では、エネルギー照射により、ポリシラザン中のSi-N結合が切断されるが、酸素含有量が微量であるため、二酸化ケイ素の形成よりも酸窒化ケイ素または窒化ケイ素への転化が効率的に進行する。酸窒化ケイ素または窒化ケイ素が主に膜中に存在することにより、第2の層のガスバリア性能が向上するものと考えられる。また、酸素および水蒸気濃度の含有量が高い雰囲気下では、表面領域の酸素濃度のほうが基材側領域の酸素濃度よりも低くなり、第2の層の表面側の平均酸素含有比率が基材側の平均酸素含有比率より大きいという組成とすることが困難である。一方、基材上に第1の層を形成した後、酸素および水蒸気濃度の含有量が非常に低い、または酸素および水蒸気が存在しない雰囲気下でエネルギー線照射の改質処理を行うことによって、第2の層の表面側の平均酸素含有比率が基材側の平均酸素含有比率より大きいという組成とすることが可能となる。 On the other hand, in an atmosphere with very low oxygen and water vapor concentrations (oxygen concentration of 1000 ppm by volume or less / water vapor concentration of 150 ppm by volume or less), Si—N bonds in polysilazane are cleaved by energy irradiation. Since the content is very small, conversion to silicon oxynitride or silicon nitride proceeds more efficiently than formation of silicon dioxide. The presence of silicon oxynitride or silicon nitride mainly in the film is considered to improve the gas barrier performance of the second layer. Also, in an atmosphere having a high oxygen and water vapor concentration, the oxygen concentration in the surface region is lower than the oxygen concentration in the substrate side region, and the average oxygen content ratio on the surface side of the second layer is on the substrate side. It is difficult to obtain a composition having a larger average oxygen content ratio. On the other hand, after the first layer is formed on the substrate, the content of oxygen and water vapor concentration is very low, or the energy beam irradiation is modified in an atmosphere in which oxygen and water vapor are not present. It becomes possible to set it as the composition that the average oxygen content ratio of the surface side of 2 layers is larger than the average oxygen content ratio of the base material side.
 なお、本発明における改質処理とは、ポリシラザンの変性を指し、具体的には、窒化ケイ素または酸窒化ケイ素への転化反応を指し、具体的にはガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10-3g/(m・24h)以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。 The modification treatment in the present invention refers to modification of polysilazane, specifically, a conversion reaction to silicon nitride or silicon oxynitride, and specifically, the gas barrier film as a whole has gas barrier properties (water vapor permeation). This refers to a process for forming an inorganic thin film at a level that can contribute to the development of a rate of 1 × 10 −3 g / (m 2 · 24 h) or less.
 エネルギー線の照射処理としては、具体的には、プラズマ処理、紫外線照射処理が挙げられ、これらを組み合わせて行ってもよい。エネルギー線の照射処理は、450℃以上の処理が必要な熱処理と比較して、より低温で転化反応が可能であり、高温での処理が困難であるプラスチック基板に適用可能となる。また、これらの処理に加えて、熱処理を行ってもよい。 Specific examples of the energy ray irradiation treatment include plasma treatment and ultraviolet irradiation treatment, and these may be performed in combination. The energy ray irradiation treatment can be applied to a plastic substrate that can undergo a conversion reaction at a lower temperature than a heat treatment that requires a treatment at 450 ° C. or higher, and is difficult to treat at a high temperature. In addition to these treatments, heat treatment may be performed.
 (熱処理)
 ポリシラザンを含有する塗膜を他の改質処理、好適にはエネルギー線照射処理等と組み合わせて、加熱処理することで、改質処理を効率よく行うことが出来る。
(Heat treatment)
By subjecting the coating film containing polysilazane to heat treatment in combination with other modification treatment, preferably energy ray irradiation treatment, the modification treatment can be performed efficiently.
 加熱処理としては、例えば、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより雰囲気を加熱する方法、IRヒーターの様な赤外領域の光を用いた方法等が上げられるが特に限定はされない。また、ケイ素化合物を含有する塗膜の平滑性を維持できる方法を適宜選択してよい。 As the heat treatment, for example, a method of heating a coating film by contacting a substrate with a heating element such as a heat block, a method of heating an atmosphere by an external heater such as a resistance wire, an infrared region such as an IR heater, etc. A method using light can be raised, but is not particularly limited. Moreover, you may select suitably the method which can maintain the smoothness of the coating film containing a silicon compound.
 加熱処理時の塗膜の温度としては、50~250℃の範囲に適宜調整することが好ましく、更に好ましくは50~120℃の範囲である。 The temperature of the coating film during the heat treatment is preferably adjusted appropriately in the range of 50 to 250 ° C, more preferably in the range of 50 to 120 ° C.
 また、加熱時間としては、1秒~10時間の範囲が好ましく、更に好ましくは、10秒~1時間の範囲が好ましい。 Further, the heating time is preferably in the range of 1 second to 10 hours, more preferably in the range of 10 seconds to 1 hour.
 (改質処理中の酸素濃度および水蒸気濃度)
 上述のとおり、改質処理中の雰囲気中の酸素濃度は1000体積ppm以下であることが好ましいが、より好ましくは500体積ppm以下であり、さらに好ましく100体積ppm以下である。なお、酸素濃度の下限は0体積ppmであるが、全く酸素を含まない雰囲気に制御することは困難であり、現実的には、8体積ppm以上となる。また、改質処理中の雰囲気中の水蒸気濃度150体積ppm以下であることが好ましいが、より好ましくは100体積ppm以下であり、さらに好ましくは75体積ppm以下である。なお、水蒸気濃度の下限は0体積ppmであるが、全く水蒸気を含まない雰囲気に制御することは困難であり、現実的には、10体積ppm以上となる。水蒸気濃度は、室温23℃における水蒸気分圧/大気圧指す。
(Oxygen concentration and water vapor concentration during reforming treatment)
As described above, the oxygen concentration in the atmosphere during the reforming treatment is preferably 1000 ppm by volume or less, more preferably 500 ppm by volume or less, and even more preferably 100 ppm by volume or less. Although the lower limit of the oxygen concentration is 0 ppm by volume, it is difficult to control the atmosphere to contain no oxygen at all, and practically, it is 8 ppm by volume or more. Further, the water vapor concentration in the atmosphere during the reforming treatment is preferably 150 ppm by volume or less, more preferably 100 ppm by volume or less, and still more preferably 75 ppm by volume or less. In addition, although the minimum of water vapor | steam density | concentration is 0 volume ppm, it is difficult to control to the atmosphere which does not contain water vapor | steam at all, and actually becomes 10 volume ppm or more. The water vapor concentration refers to water vapor partial pressure / atmospheric pressure at a room temperature of 23 ° C.
 このような酸素または水蒸気濃度の雰囲気で改質処理を実施する方法として、改質処理を行う際の装置内を減圧にする方法、常圧下で不活性ガスなどでガスフローする方法等が挙げられる。減圧にする方法では、装置内の圧力を、真空ポンプを用いて大気圧から好ましくは100Pa以下、より好ましくは20Pa以下まで減圧した後、所定のガスを導入し、所定の圧力にすることで、雰囲気をつくる。 Examples of a method for carrying out the reforming treatment in an atmosphere of such oxygen or water vapor concentration include a method for reducing the pressure in the apparatus during the reforming treatment, a method for performing a gas flow with an inert gas or the like under normal pressure, and the like. . In the method of reducing the pressure, the pressure in the apparatus is reduced from atmospheric pressure to preferably 100 Pa or less, more preferably 20 Pa or less using a vacuum pump, and then a predetermined gas is introduced to obtain a predetermined pressure. Create an atmosphere.
 (プラズマ処理)
 改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができ、低圧プラズマ処理、大気圧プラズマ処理等をあげることが出来る。
(Plasma treatment)
As the plasma treatment that can be used as the modification treatment, a known method can be used, and examples thereof include low-pressure plasma treatment and atmospheric pressure plasma treatment.
 プラズマ処理に用いる放電ガスとしては、窒素ガスまたは周期表の第18属原子が挙げられ、具体的には、米国特許出願公開第2013/236710号[0091]に記載のもの等が用いられる。 Examples of the discharge gas used in the plasma treatment include nitrogen gas and 18th group atoms of the periodic table, and specifically, those described in US Patent Application Publication No. 2013/236710 [0091] are used.
 低圧プラズマ処理は、100Pa以下の圧力、好ましくは、10Pa以下の圧力条件下で行う処理をいう。装置内の真空状態は、装置内の圧力を、真空ポンプを用いて大気圧(101325Pa)から圧力100Pa以下、好ましくは10Pa以下まで減圧した後、以下に記載のガスを100Pa以下の圧力まで導入することにより得られる。低圧プラズマ処理の圧力は、好ましくは1Pa~1000Pa、より好ましくは1Pa~500Paである。 Low-pressure plasma treatment refers to treatment performed under a pressure condition of 100 Pa or less, preferably 10 Pa or less. In the vacuum state in the apparatus, the pressure in the apparatus is reduced from atmospheric pressure (101325 Pa) to a pressure of 100 Pa or less, preferably 10 Pa or less using a vacuum pump, and then the gas described below is introduced to a pressure of 100 Pa or less. Can be obtained. The pressure of the low-pressure plasma treatment is preferably 1 Pa to 1000 Pa, more preferably 1 Pa to 500 Pa.
 低圧下における酸素濃度および水蒸気濃度は、一般的に、酸素分圧および水蒸気分圧で評価される。低圧プラズマ処理は、上記圧力下、酸素分圧10Pa以下(酸素濃度0.001%(10ppm))以下、好ましくは、酸素分圧2Pa以下(酸素濃度0.0002%(2ppm))以下、水蒸気濃度10ppm以下、好ましくは1ppm以下で行われる。 The oxygen concentration and water vapor concentration under low pressure are generally evaluated by oxygen partial pressure and water vapor partial pressure. The low-pressure plasma treatment is performed under the above pressure, with an oxygen partial pressure of 10 Pa or less (oxygen concentration 0.001% (10 ppm)) or less, preferably an oxygen partial pressure of 2 Pa or less (oxygen concentration 0.0002% (2 ppm)) or less, a water vapor concentration It is carried out at 10 ppm or less, preferably 1 ppm or less.
 低圧プラズマには、真空の密閉系内に公知の電極または導波管を配置し、直流、交流、ラジオ波あるいはマイクロ波等の電力を、電極または導波管を介して印加することにより任意のプラズマを発生させることができる。プラズマ処理時に印加する電力(W)は、電極の単位面積(cm)あたり、好ましくは0.0001W/cm~100W/cm、より好ましくは0.001W/cm~50W/cmである。 For low-pressure plasma, a known electrode or waveguide is placed in a vacuum closed system, and power such as direct current, alternating current, radio wave, or microwave is applied via the electrode or waveguide. Plasma can be generated. Power applied to the plasma treatment (W), the unit area of the electrode (cm 2) per preferably 0.0001W / cm 2 ~ 100W / cm 2, more preferably 0.001W / cm 2 ~ 50W / cm 2 is there.
 大気圧プラズマ処理としては、二つの電極間にガスを通し、このガスをプラズマ化してから基材に照射する方式や、二つの電極間に照射するポリシラザン膜を配置し、そこへガスを通してプラズマ化する方式などが挙げられる。大気圧プラズマ処理におけるガス流量は、処理雰囲気中の酸素・水蒸気ガス濃度を下げるために、流量が多いほど好ましく、好ましくは0.01~1000L/min、より好ましくは0.1~500L/minである。 For atmospheric pressure plasma treatment, gas is passed between two electrodes, this gas is turned into plasma and then irradiated onto the substrate, or a polysilazane film that is irradiated between the two electrodes is placed, and gas is passed through it. The method to do. In order to lower the oxygen / water vapor gas concentration in the processing atmosphere, the gas flow rate in the atmospheric pressure plasma treatment is preferably as high as possible, preferably 0.01 to 1000 L / min, more preferably 0.1 to 500 L / min. is there.
 大気圧プラズマ処理において、印加する電力(W)は、電極の単位面積(cm)あたり、好ましくは0.0001W/cm~100W/cm、より好ましくは0.001W/cm~50W/cmである。 In the atmospheric pressure plasma treatment, the applied power (W), the unit area of the electrode (cm 2) per preferably 0.0001W / cm 2 ~ 100W / cm 2, more preferably 0.001W / cm 2 ~ 50W / cm 2 .
 (紫外線照射処理)
 改質処理の方法の1つとして、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化窒化ケイ素を含む膜を形成することが可能である。
(UV irradiation treatment)
As one of the modification treatment methods, treatment by ultraviolet irradiation is also preferable. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and it is possible to form a film containing silicon oxynitride having high density and insulation at low temperature. .
 紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。 In the ultraviolet irradiation treatment, any commonly used ultraviolet ray generator can be used.
 なお、本発明でいう紫外線とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~375nmの紫外線を用いる。 The ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
 紫外線の照射は、照射される第2の層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 In the irradiation with ultraviolet rays, it is preferable to set the irradiation intensity and the irradiation time within a range in which the substrate carrying the second layer to be irradiated is not damaged.
 基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 Taking the case of using a plastic film as a base material, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm. The distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
 紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。 There is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.
 このような紫外線の発生手段としては、例えば、特開2012-228859号 段落「0054」に記載のもの等が挙げられるが、特に限定されない。 Examples of such means for generating ultraviolet rays include those described in paragraph “0054” of JP2012-228859A, but are not particularly limited.
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。 UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましく、その際の熱処理条件の詳細は上述したとおりである。
(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment). The treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes. In this method, a film is formed at a relatively low temperature (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together as mentioned above, and the detail of the heat processing conditions in that case is as having mentioned above.
 本発明においての放射線源は、100~180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 The radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), and has an emission line at about 185 nm. Low pressure mercury vapor lamps, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン層の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane layer can be modified in a short time.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 The gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射工程において、塗膜が受ける塗膜面での該真空紫外線の照度は30~200mW/cmであることが好ましく、50~160mW/cmであることがより好ましい。30mW/cm未満では、改質効率が大きく低下する懸念があり、200mW/cmを超えると、塗膜にアブレーションを生じたり、基材にダメージを与えたりする懸念が出てくる。 In vacuum ultraviolet irradiation step, it is preferable that the illuminance of the vacuum ultraviolet rays in the coated surface of the coating film is subjected is 30 ~ 200mW / cm 2, and more preferably 50 ~ 160mW / cm 2. If it is less than 30 mW / cm 2, there is a concern that the reforming efficiency is greatly reduced, and if it exceeds 200 mW / cm 2 , there is a concern that the coating film may be ablated or the substrate may be damaged.
 塗膜面における真空紫外線の照射エネルギー量は、10~1000J/cmであることが好ましく、50~500J/cmであることがより好ましく、80~500J/cmであることがさらに好ましい。10J/cm未満では、改質が進行せず、表面領域の平均酸素含有比率/基材側の平均酸素含有比率が1以下となる可能性があり、密着性および高温高湿保存下の素子の性能の低下をきたす場合がある。また、1000J/cmを超えると過剰改質によるクラック発生や、基材の熱変形の懸念が出てくる。なお、照射エネルギー量は、エキシマ光の照度(mW/cm)×時間(s)で算出される。 Irradiation energy amount of the VUV in the coated surface is preferably 10 ~ 1000J / cm 2, more preferably from 50 ~ 500J / cm 2, further preferably 80 ~ 500J / cm 2. If it is less than 10 J / cm 2 , the reforming does not proceed, and there is a possibility that the average oxygen content ratio in the surface region / the average oxygen content ratio on the substrate side becomes 1 or less. The performance of the system may be degraded. On the other hand, if it exceeds 1000 J / cm 2 , there are concerns about cracking due to excessive reforming and thermal deformation of the substrate. The amount of irradiation energy is calculated as illuminance (mW / cm 2 ) × time (s) of excimer light.
 また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 Further, the vacuum ultraviolet light used for reforming, CO, may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4. Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
 〔中間層〕
 上述の基材、第1の層、および第2の層の層間または表面には、本発明の効果を損なわない範囲で別途中間層を設けてもよい。
[Middle layer]
An intermediate layer may be separately provided between the above-described base material, first layer, and second layer as long as the effects of the present invention are not impaired.
 [アンカーコート層]
 本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。アンカーコート層の構成材料、形成方法等は、特開2013-52561号公報の段落「0229」~「0232」に開示される材料、方法等が適宜採用される。
[Anchor coat layer]
On the surface of the base material according to the present invention, an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion). As the constituent material and formation method of the anchor coat layer, the materials and methods disclosed in paragraphs “0229” to “0232” of JP2013-52561A are appropriately employed.
 [平滑層]
 ガスバリア性フィルムは、基材のバリア層を有する面、好ましくは基材と下地層との間に平滑層を有していてもよい。平滑層は突起等が存在する基材の粗面を平坦化するために、あるいは、樹脂基材に存在する突起により、バリア層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。平滑層の構成材料、形成方法、表面粗さ、膜厚等は、特開2013-52561号公報の段落「0233」~「0248」に開示される材料、方法等が適宜採用される。
[Smooth layer]
The gas barrier film may have a smooth layer between the surface of the base material having the barrier layer, preferably between the base material and the base layer. The smooth layer is provided for flattening the rough surface of the substrate on which protrusions and the like are present, or for filling the unevenness and pinholes generated in the barrier layer with the protrusions existing on the resin base material. . The materials, methods, etc. disclosed in paragraphs “0233” to “0248” of JP2013-52561A are appropriately employed as the constituent material, forming method, surface roughness, film thickness, etc. of the smooth layer.
 [ブリードアウト防止層]
 ガスバリア性フィルムは、ブリードアウト防止層をさらに有することができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、樹脂基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。ブリードアウト防止層の構成材料、形成方法、膜厚等は、特開2013-52561号公報の段落「0249」~「0262」に開示される材料、方法等が適宜採用される。
[Bleed-out prevention layer]
The gas barrier film may further have a bleed-out preventing layer. The bleed-out prevention layer is used for the purpose of suppressing a phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the resin base material to the surface and contaminate the contact surface. It is provided on the opposite surface of the substrate. The bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function. As the constituent material, forming method, film thickness and the like of the bleed-out prevention layer, the materials, methods and the like disclosed in paragraphs “0249” to “0262” of JP2013-52561A are appropriately employed.
 [電子デバイス]
 (電子素子本体)
 電子素子本体は電子デバイスの本体であり、上記ガスバリア性フィルム側に配置される。電子素子本体としては、ガスバリア性フィルムによる封止が適用されうる公知の電子デバイスの本体が使用できる。例えば、有機EL素子、太陽電池(PV)、液晶表示素子(LCD)、電子ペーパー、薄膜トランジスタ、タッチパネル等が挙げられる。本発明の効果がより効率的に得られるという観点から、該電子素子本体は、有機EL素子または太陽電池であることが好ましく、有機EL素子であることがより好ましい。これらの電子素子本体の構成についても、特に制限はなく、従来公知の構成を有しうる。
[Electronic device]
(Electronic element body)
The electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side. As the electronic element body, a known electronic device body to which sealing with a gas barrier film can be applied can be used. For example, an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic element body is preferably an organic EL element or a solar cell, and more preferably an organic EL element. There is no restriction | limiting in particular also about the structure of these electronic element main bodies, It can have a conventionally well-known structure.
 以下、具体的な電子素子本体の一例として有機EL素子およびこれを用いた有機ELパネルについて説明する。 Hereinafter, an organic EL element and an organic EL panel using the same will be described as an example of a specific electronic element body.
 本発明に係るガスバリア性フィルム10を封止フィルムとして用いた電子機器である有機ELパネル9の一例を図5に示す。有機ELパネル9は、図5に示すように、ガスバリアフィルム10と、ガスバリアフィルム10上に形成されたITOなどの透明電極4と、透明電極4を介してガスバリアフィルム10上に形成された有機EL素子5と、その有機EL素子5を覆うように接着剤層6を介して配設された対向フィルム7等を備えている。なお、透明電極4は、有機EL素子5の一部を成すともいえる。このガスバリア性フィルム10におけるガスバリア層が形成された面に、透明電極4と有機EL素子5が形成されるようになっている。また、対向フィルム7は、アルミ箔などの金属フィルムのほか、本発明に係るガスバリアフィルムを用いてもよい。対向フィルム7にガスバリア性フィルムを用いる場合、ガスバリア層が形成された面を有機EL素子5に向けて、接着剤層6によって貼付するようにすればよい。 FIG. 5 shows an example of an organic EL panel 9 which is an electronic device using the gas barrier film 10 according to the present invention as a sealing film. As shown in FIG. 5, the organic EL panel 9 includes a gas barrier film 10, a transparent electrode 4 such as ITO formed on the gas barrier film 10, and an organic EL formed on the gas barrier film 10 via the transparent electrode 4. An element 5 and a counter film 7 disposed via an adhesive layer 6 so as to cover the organic EL element 5 are provided. It can be said that the transparent electrode 4 forms part of the organic EL element 5. The transparent electrode 4 and the organic EL element 5 are formed on the surface of the gas barrier film 10 on which the gas barrier layer is formed. The counter film 7 may be a gas barrier film according to the present invention in addition to a metal film such as an aluminum foil. When a gas barrier film is used as the counter film 7, the surface on which the gas barrier layer is formed may be attached to the organic EL element 5 with the adhesive layer 6.
 (有機EL素子)
 有機ELパネル9において、ガスバリアフィルム10で封止される有機EL素子5について説明する。
(Organic EL device)
The organic EL element 5 sealed with the gas barrier film 10 in the organic EL panel 9 will be described.
 (有機EL素子)
 有機ELパネル9において、ガスバリア性フィルム10で封止される有機EL素子5について説明する。
(Organic EL device)
The organic EL element 5 sealed with the gas barrier film 10 in the organic EL panel 9 will be described.
 有機EL素子5の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。 Although the preferable specific example of the layer structure of the organic EL element 5 is shown below, this invention is not limited to these.
 (1)陽極/発光層/陰極
 (2)陽極/正孔輸送層/発光層/陰極
 (3)陽極/発光層/電子輸送層/陰極
 (4)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (5)陽極/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/電子輸送層/陰極バッファー層(電子注入層)/陰極
 (陽極)
 有機EL素子5における陽極(透明電極4)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
(1) Anode / light emitting layer / cathode (2) Anode / hole transport layer / light emitting layer / cathode (3) Anode / light emitting layer / electron transport layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / anode buffer layer (hole injection layer) / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode (anode)
As the anode (transparent electrode 4) in the organic EL element 5, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極の形成方法および膜厚は、特開2012-106421号の段落「0056」の記載と同様である。 The formation method and film thickness of the anode are the same as those described in paragraph “0056” of JP2012-106421A.
 (陰極)
 有機EL素子5における陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例および好適な例としては、特開2012-106421号の段落「0058」の記載と同様である。
(cathode)
As the cathode in the organic EL element 5, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples and preferred examples of such electrode materials are the same as those described in paragraph “0058” of JP2012-106421A.
 陰極の形成方法および膜厚は、特開2012-106421号の段落「0058」の記載と同様である。 The formation method and film thickness of the cathode are the same as those described in paragraph “0058” of JP2012-106421A.
 (注入層:電子注入層、正孔注入層)
 注入層には電子注入層と正孔注入層があり、電子注入層と正孔注入層を必要に応じて設け、陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させる。
(Injection layer: electron injection layer, hole injection layer)
The injection layer includes an electron injection layer and a hole injection layer, and an electron injection layer and a hole injection layer are provided as necessary, between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport. Exist between the layers.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、特開平9-260062号公報、特開平8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. Examples thereof include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、特開平9-17574号公報、特開平10-74586号公報等にもその詳細が記載されており、具体的には、特開2012-106421号の段落「0059」に記載のものが挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1nm~5μmの範囲が好ましい。 Details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Examples thereof include those described in paragraph “0059” of Kai 2012-106421. The buffer layer (injection layer) is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 μm.
 (発光層)
 有機EL素子5における発光層は、電極(陰極、陽極)または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
(Light emitting layer)
The light emitting layer in the organic EL element 5 is a layer that emits light by recombination of electrons and holes injected from an electrode (cathode, anode) or an electron transport layer or a hole transport layer, and the light emitting portion is a light emitting layer. The interface between the light emitting layer and the adjacent layer may be used.
 有機EL素子5の発光層には、以下に示すドーパント化合物(発光ドーパント)とホスト化合物(発光ホスト)が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。 The light emitting layer of the organic EL element 5 preferably contains the following dopant compound (light emitting dopant) and host compound (light emitting host). Thereby, the luminous efficiency can be further increased.
 (発光ドーパント)
 発光ドーパントは、大きく分けて蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
(Luminescent dopant)
There are two types of luminescent dopants: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
 蛍光性ドーパントの例としては、特開2012-106421号の段落「0060」に記載のものが挙げられる。 Examples of fluorescent dopants include those described in paragraph “0060” of JP2012-106421A.
 リン光性ドーパントの例としては、特開2012-106421号の段落「0060」に記載のものが挙げられる。 Examples of phosphorescent dopants include those described in paragraph “0060” of JP2012-106421A.
 (発光ホスト)
 発光ホスト(単にホストとも言う)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントとも言う)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
(Light emitting host)
A light-emitting host (also simply referred to as a host) means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more kinds of compounds. It is also simply called a dopant). For example, if the light emitting layer is composed of two types of compound A and compound B and the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Further, if the light emitting layer is composed of three types of compound A, compound B and compound C and the mixing ratio is A: B: C = 5: 10: 85, compound A and compound B are dopant compounds, and compound C is a host compound.
 発光ホストとしては構造的には特に制限はないが、特開2012-106421号の段落「0060」に記載のものが挙げられる。 The light emitting host is not particularly limited in terms of structure, but includes those described in paragraph “0060” of JP2012-106421A.
 そして、発光層の形成方法および膜厚は、特開2012-106421号の段落「0060」の記載と同様である。 The formation method and film thickness of the light emitting layer are the same as those described in paragraph “0060” of JP2012-106421A.
 (正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、特開2012-106421号の段落「0061」に記載のものが挙げられる。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. Examples thereof include those described in paragraph “0061” of JP2012-106421A.
 正孔輸送層の形成方法および膜厚は、特開2012-106421号の段落「0061」の記載と同様である。 The formation method and film thickness of the hole transport layer are the same as those described in paragraph “0061” of JP2012-106421A.
 (電子輸送層)
 電子輸送層とは電子を輸送する機能を有する電子輸送材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
(Electron transport layer)
The electron transport layer is made of an electron transport material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 電子輸送材料としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、特開2012-106421号の段落「0062」に記載のものが挙げられる。 The electron transport material only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and the material can be selected and used from conventionally known compounds. Examples thereof include those described in paragraph “0062” of JP2012-106421A.
 電子輸送層の形成方法および膜厚は、特開2012-106421号の段落「0062」の記載と同様である。 The formation method and film thickness of the electron transport layer are the same as those described in paragraph “0062” of JP2012-106421A.
 有機EL素子の作製方法としては従来公知の方法を用いることができ、具体的には特開2012-106421号の段落「0063」に記載の方法を用いることができる。 As a method for producing an organic EL element, a conventionally known method can be used, and specifically, a method described in paragraph “0063” of JP2012-106421A can be used.
 本発明の効果を、以下の実施例および比較例を用いて説明する。実施例において「部」あるいは「%」の表示を用いる場合があるが、特に断りがない限り、「重量部」あるいは「重量%」を表す。また、特記しない限り、各操作は、室温(25℃)で行われる。 The effect of the present invention will be described using the following examples and comparative examples. In the examples, “part” or “%” may be used, but “part by weight” or “% by weight” is expressed unless otherwise specified. Unless otherwise specified, each operation is performed at room temperature (25 ° C.).
 <ガスバリア性フィルム1~5の作製>
 1.下地層の作製
 基材として100μm厚の2軸延伸PENフィルム(帝人デュポンフィルム株式会社製、商品名「テオネックスQ65FA」)を用いた。
<Production of gas barrier films 1 to 5>
1. Preparation of Underlayer A biaxially stretched PEN film (manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) having a thickness of 100 μm was used as a base material.
 基材の易接着面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501を塗布し、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm硬化を行い、下地層を形成した。 After applying UV curable organic / inorganic hybrid hard coating material OPSTAR Z7501 manufactured by JSR Co., Ltd. on the easy-adhesive surface of the base material and applying it with a wire bar so that the film thickness after drying becomes 4 μm, drying conditions; 80 After drying at 3 ° C. for 3 minutes, a high pressure mercury lamp was used in an air atmosphere, curing conditions: 1.0 J / cm 2 curing was performed, and an underlayer was formed.
 2.第1の層の形成
 図1に示す真空プラズマCVD装置を用いて、下記成膜条件にて下地層上に第1の層を300nm形成した。
[プラズマ成膜条件]
〈製膜条件〉
・フィルムの搬送速度;0.5m/min
・原料ガス(HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
・酸素ガス(O)の供給量:500sccm
・真空チャンバー内の真空度:3Pa
・プラズマ発生用電源からの印加電力:0.8kW
・プラズマ発生用電源の周波数:80kHz。
2. Formation of First Layer Using the vacuum plasma CVD apparatus shown in FIG. 1, a 300 nm first layer was formed on the underlayer under the following film formation conditions.
[Plasma deposition conditions]
<Film forming conditions>
-Film transport speed: 0.5 m / min
・ Supply amount of source gas (HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 3Pa
・ Applied power from the power source for plasma generation: 0.8 kW
-Frequency of power source for plasma generation: 80 kHz.
 3.第2の層の形成
 (ポリシラザン塗布液の調製)
 20質量%のパラジウム系触媒(プロピオン酸パラジウム)および20質量%のパーヒドロポリシラザンを含むキシレン(脱水)溶液(アクアミカ NL110A:AZエレクトロニックマテリアルズ株式会社製)をさらにキシレンで塗布液の固形分が2重量%となるように希釈調製してポリシラザン塗布液を調製した。
3. Formation of second layer (Preparation of polysilazane coating solution)
A xylene (dehydrated) solution (Aquamica NL110A: manufactured by AZ Electronic Materials Co., Ltd.) containing 20% by mass of a palladium-based catalyst (palladium propionate) and 20% by mass of perhydropolysilazane is further added with xylene to give a solid content of 2 A polysilazane coating solution was prepared by diluting to a weight percent.
 (ポリシラザン塗布液の塗布、乾燥)
 上記で調製したポリシラザン塗布液を、第1の層上にスピンコート(10s、3000rpm)し、窒素雰囲気下、120℃で10分間乾燥して、厚さ100nmのポリシラザン膜を作製した。乾燥は、水蒸気濃度500ppm程度の雰囲気下で行った。
(Application of polysilazane coating solution, drying)
The polysilazane coating solution prepared above was spin-coated (10 s, 3000 rpm) on the first layer and dried at 120 ° C. for 10 minutes in a nitrogen atmosphere to prepare a polysilazane film having a thickness of 100 nm. Drying was performed in an atmosphere having a water vapor concentration of about 500 ppm.
 (改質処理)
 上記の膜において、窒素雰囲気下で、エキシマランプを用いて、表1に示した酸素、水蒸気環境条件下で真空紫外線(172nm)の照射時間を表1に記載の露光時間として、改質処理を行って、ガスバリア性フィルム1~5を得た。
(Modification process)
In the above film, using an excimer lamp in a nitrogen atmosphere, under the oxygen and water vapor environment conditions shown in Table 1, the irradiation time of vacuum ultraviolet rays (172 nm) is set as the exposure time shown in Table 1, and the modification treatment is performed. As a result, gas barrier films 1 to 5 were obtained.
 《改質処理装置》
 装置     :株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長     :172nm
 ランプ封入ガス:Xe
 《改質処理条件》
 エキシマ光強度   :130mW/cm(172nm)
 試料と光源の距離  :1mm
 ステージ加熱温度  :70℃
 フィルムの搬送速度 :0.6m/min
 Pass数     :1回
 ポリシラザン改質膜の表面から膜厚方向の酸素元素比率をXPSにて測定し、35nm以降の平均酸素含有比率に対する35nmまでの平均酸素含有比率の比を酸素元素比として表1に示した。また、図3にガスバリア性フィルムNo.4の第2の層の酸素分布曲線を示す。
《Reforming treatment equipment》
Apparatus: Ex D-irradiator MODEL manufactured by M.D. Com: MECL-M-1-200
Wavelength: 172 nm
Lamp filled gas: Xe
<Reforming treatment conditions>
Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Film transport speed: 0.6 m / min
Pass number: 1 time The ratio of oxygen element in the film thickness direction from the surface of the polysilazane modified film is measured by XPS, and the ratio of the average oxygen content ratio up to 35 nm to the average oxygen content ratio after 35 nm is shown in Table 1 as the oxygen element ratio. It was shown to. Further, in FIG. 4 shows the oxygen distribution curve of No. 4 second layer.
 <水蒸気透過率の評価方法>
 以下の測定方法に従って、各ガスバリア性フィルムの透過水分量を測定し、下記の基準に従って、水蒸気バリア性を評価した。
<Evaluation method of water vapor transmission rate>
In accordance with the following measurement method, the permeated moisture amount of each gas barrier film was measured, and the water vapor barrier property was evaluated according to the following criteria.
 (装置)
 蒸着装置:日本電子株式会社製、真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価用セルの作製)
 試料のバリア層面に、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウム(粒状)を蒸着させた(蒸着膜厚80nm)。その後、真空状態のままマスクを取り去り、シート片側全面に水蒸気不透過性の金属である金属アルミニウム(φ3~5mm、粒状)をもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。
(apparatus)
Vapor deposition device: JEOL Ltd., vacuum vapor deposition device JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation cell)
Using a vacuum deposition device (manufactured by JEOL Ltd., vacuum deposition device JEE-400) on the surface of the barrier layer of the sample, the portion of the gas barrier film sample to be deposited before attaching the transparent conductive film (9 locations of 12 mm x 12 mm) The metal calcium (granular form) was vapor-deposited (deposition film thickness 80 nm). Thereafter, the mask was removed in a vacuum state, and metal aluminum (φ3 to 5 mm, granular), which is a water vapor impermeable metal, was deposited on the entire surface of one side of the sheet from another metal deposition source. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
 得られた試料を、60℃、90%RHの高温高湿下で保存し、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。 The obtained sample is stored under high temperature and high humidity of 60 ° C. and 90% RH, and the amount of moisture permeated into the cell is calculated from the corrosion amount of metallic calcium based on the method described in Japanese Patent Application Laid-Open No. 2005-283561. did.
 なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under the same high temperature and high humidity conditions of 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 以上により測定された各ガスバリア性フィルムの透過水分量(g/m・day;表中の「WVTR」)をCa法によって評価し、以下のようにランク付けした。なお、ランク3以上であれば実使用上問題なく、合格品である。 The permeated water amount (g / m 2 · day; “WVTR” in the table) of each gas barrier film measured as described above was evaluated by the Ca method and ranked as follows. In addition, if it is rank 3 or more, there is no problem in actual use and it is a pass product.
 (ランク評価)
 5:1×10-4g/m/day未満
 4:1×10-4g/m/day以上、5×10-4g/m/day未満
 3:5×10-4g/m/day以上、1×10-3g/m/day未満
 2:1×10-3g/m/day以上、1×10-2g/m/day未満
 1:1×10-2g/m/day以上
 <有機発光素子(有機EL素子)1~5の作製>
 作製したガスバリア性フィルム1~5のガスバリア層上に、以下の方法により透明導電膜を作製した。なお、ガスバリア性フィルムは、酸素プラズマ(2kW出力、基板温度200℃)で10分間アッシングした。この処理により、ガスバリア性フィルムの表面は、さらに清浄化され、かつより平坦な層となる。
(Rank evaluation)
Less than 5: 1 × 10 −4 g / m 2 / day 4: 1 × 10 −4 g / m 2 / day or more and less than 5 × 10 −4 g / m 2 / day 3: 5 × 10 −4 g / day m 2 / day or more, less than 1 × 10 −3 g / m 2 / day 2: 1 × 10 −3 g / m 2 / day or more, less than 1 × 10 −2 g / m 2 / day 1: 1 × 10 -2 g / m 2 / day or more <Production of organic light-emitting elements (organic EL elements) 1 to 5>
A transparent conductive film was produced on the gas barrier layers of the produced gas barrier films 1 to 5 by the following method. The gas barrier film was ashed with oxygen plasma (2 kW output, substrate temperature 200 ° C.) for 10 minutes. By this treatment, the surface of the gas barrier film is further cleaned and becomes a flatter layer.
 ITO透明電極(ホール注入電極)を膜厚85nmで64ドット×7ラインの画素(一画素当たり100×100μm)を構成するよう成膜、パターニングした。そして、パターニングされたホール注入電極が形成された基板を、中性洗剤、アセトン、エタノールを用いて超音波洗浄し、煮沸エタノール中から引き上げて乾燥した。その後、UV/O洗浄を行った。 An ITO transparent electrode (hole injection electrode) was formed and patterned so as to constitute a pixel of 64 dots × 7 lines (100 × 100 μm per pixel) with a film thickness of 85 nm. And the board | substrate with which the patterned hole injection electrode was formed was ultrasonically cleaned using neutral detergent, acetone, and ethanol, and it pulled up from boiling ethanol and dried. Thereafter, UV / O 3 cleaning was performed.
 次いで、基板を成膜室に移動し、真空蒸着装置の基板ホルダーに固定して、槽内を1×10-4Pa以下まで減圧した。そして、ホール注入層としてポリ(チオフェン-2,5-ジイル)を10nmの厚さに、ホール輸送層兼黄色発光層としてTPDにルブレンを1質量%の割合でドープしたものを共蒸着で5nmの膜厚に成膜した。濃度は発光色の色バランスより決定すればよく、この後成膜する青色発光層の光強度と波長スペクトルにより左右される。さらに青色発光層としても4′-ビス[(1,2,2-トリフェニル)エテニル]ビフェニルを50nm、電子輸送層としてAlqを10nm成摸した。 Next, the substrate was moved to the film formation chamber, fixed to the substrate holder of the vacuum deposition apparatus, and the inside of the tank was depressurized to 1 × 10 −4 Pa or less. Then, poly (thiophene-2,5-diyl) as a hole injection layer is formed to a thickness of 10 nm, and TPD doped with 1% by mass of rubrene as a hole transport layer and a yellow light-emitting layer is co-evaporated to 5 nm. The film was formed to a film thickness. The concentration may be determined based on the color balance of the emission color, and depends on the light intensity and wavelength spectrum of the blue light emitting layer to be formed thereafter. Further, 4′-bis [(1,2,2-triphenyl) ethenyl] biphenyl was grown to 50 nm as the blue light emitting layer, and Alq 3 was grown to 10 nm as the electron transport layer.
 次いで、AlLi(Li:7at%)を1nmの厚さに蒸着し、Al電極層を200nmの厚さに成膜し、有機発光素体を形成した。有機発光素子として封止する前に乾燥剤(CaH)をシリコンゴムに混合して固定化したものを封入し、最後に厚さ100μmのPCTFEフィルムにEVAをコートした封止フィルムにて封止し、有機発光素子を得た。 Next, AlLi (Li: 7 at%) was deposited to a thickness of 1 nm, and an Al electrode layer was formed to a thickness of 200 nm to form an organic light emitting element. Before sealing as an organic light-emitting device, a desiccant (CaH 2 ) mixed with silicon rubber and fixed was sealed, and finally sealed with a 100 μm thick PCTFE film coated with EVA. Thus, an organic light emitting device was obtained.
 使用した化合物は以下の通り
 シランカップリング剤:(CHO)Si(CHNH
 TPD:N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミンルブレン:5,6,11,12-テトラフェニルナフタセン
 PCTFE:ポリクロロトリフルオロエチレン
 EVA:エチレン-ビニルアセテートコポリマー
 <密着性の評価方法>
 上記で作製した評価素子について、素子を発光させて目視にて密着性の観察を行った(即評価素子)。また、温度60℃、湿度90%RH環境で100時間保存した後、素子を発光させて目視にて密着性の観察を行った(劣化素子)。ランク3以上が合格品である。結果を表1に示す。
The compounds used were as follows: Silane coupling agent: (CH 3 O) Si (CH 2 ) 3 NH 2
TPD: N, N′-diphenyl-N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) -4,4′-diamine rubrene: 5,6,11,12-tetraphenylnaphtha Sen PCTFE: Polychlorotrifluoroethylene EVA: Ethylene-vinyl acetate copolymer <Adhesion evaluation method>
About the evaluation element produced above, the element was made to emit light and the adhesion was visually observed (immediate evaluation element). Further, after storing for 100 hours in a temperature of 60 ° C. and a humidity of 90% RH, the device was allowed to emit light and the adhesion was visually observed (deteriorated device). Rank 3 or higher is an acceptable product. The results are shown in Table 1.
 5:即評価素子及び劣化素子にバリアフィルム剥離起因の未発光部位なし
 4:即評価素子には未発光部なし。劣化素子に若干バリアフィルム剥離起因の未発光部位あり
 3:劣化素子にのみバリアフィルム剥離起因の未発光部位あり
 2:即評価素子に若干未発光部あり。劣化素子はバリアフィルム剥離起因の未発光部位あり
 1:即評価素子及び劣化素子にバリアフィルム剥離起因の未発光部位あり
 <輝度半減時間およびダークスポットの評価方法>
 各有機発光素子に直流電圧を印加し、50mA/cmの一定電流密度で連続駆動させ輝度半減時間を評価した。また、同様の条件で1000時間まで連続駆動させ、ダークスポットを評価した。結果を表1に示す。
5: There is no non-light emitting part due to barrier film peeling in the immediate evaluation element and the deteriorated element 4: There is no non-light emitting part in the immediate evaluation element. There is a non-light emitting part due to barrier film peeling in the deteriorated element. 3: There is a non-light emitting part due to barrier film peeling only in the deteriorated element. Deteriorating element has non-light emitting part due to barrier film peeling 1: Immediate evaluation element and deteriorating element has non-light emitting part due to barrier film peeling <Evaluation method of luminance half time and dark spot>
A direct current voltage was applied to each organic light emitting device, and the device was continuously driven at a constant current density of 50 mA / cm 2 to evaluate the luminance half time. In addition, the dark spot was evaluated by continuously driving up to 1000 hours under the same conditions. The results are shown in Table 1.
 <ガスバリア性フィルム6~11および有機発光素子6~11の作製>
 ガスバリア性フィルム5の作製において、第1の層を形成させる際のフィルムの搬送速度を表2に記載のように変化させたこと以外は、ガスバリア性フィルム5と同様にしてガスバリア性フィルム6~11を作製した。さらに、実施例1と同様にして有機発光素子6~11を作製した。フィルムの酸素元素比、WVTR、および有機素子の密着性、輝度半減時間、ダークスポットの結果を併せて表2に示す。
<Production of Gas Barrier Films 6 to 11 and Organic Light-Emitting Elements 6 to 11>
In the production of the gas barrier film 5, the gas barrier films 6 to 11 are the same as the gas barrier film 5 except that the transport speed of the film when forming the first layer is changed as shown in Table 2. Was made. Further, organic light emitting devices 6 to 11 were produced in the same manner as in Example 1. Table 2 shows the oxygen element ratio of the film, WVTR, and organic element adhesion, luminance half-life, and dark spot results.
 <ガスバリア性フィルム12~25、38、39および有機発光素子12~25、38、39の作製>
 ガスバリア性フィルム5の作製において、改質処理をする際の環境条件を表3に記載の雰囲気下で行ったこと以外は、ガスバリア性フィルム5と同様にしてガスバリア性フィルム12~25、38、39を作製した。さらに、実施例1と同様にして有機発光素子12~25、38、39を作製した。フィルムの酸素元素比、WVTR、および有機素子の密着性、輝度半減時間、ダークスポットの結果を併せて表3に示す。
<Production of Gas Barrier Films 12-25, 38, 39 and Organic Light-Emitting Elements 12-25, 38, 39>
In the production of the gas barrier film 5, the gas barrier films 12 to 25, 38, 39 are the same as the gas barrier film 5 except that the environmental conditions for the modification treatment are performed in the atmosphere shown in Table 3. Was made. Further, organic light emitting devices 12 to 25, 38 and 39 were produced in the same manner as in Example 1. Table 3 shows the oxygen element ratio of the film, WVTR, organic element adhesion, luminance half time, and dark spot.
 <ガスバリア性フィルム26~29および有機発光素子26~29の作製>
 (1)ガスバリア性フィルム26の作製
 下記のように第1の層を形成したこと以外は、ガスバリア性フィルム5と同様にしてガスバリア性フィルム26を作製した。
<Production of Gas Barrier Films 26-29 and Organic Light-Emitting Elements 26-29>
(1) Production of gas barrier film 26 A gas barrier film 26 was produced in the same manner as the gas barrier film 5 except that the first layer was formed as follows.
 特開2012-131194号公報の図1に示す真空プラズマCVD装置を用いて、下地層上へ第1の層の成膜を行った。 Using the vacuum plasma CVD apparatus shown in FIG. 1 of JP 2012-131194 A, the first layer was formed on the base layer.
 この時使用した高周波電源は、27.12MHzの高周波電源で、電極間距離は20mmとした。原料ガスとしては、シランガス流量を7.5sccm、アンモニアガス流量を100sccm、亜酸化窒素ガス流量を50sccmとして真空チャンバー内へ導入した。成膜開始時にフィルム基板温度を100℃、成膜時のガス圧を100Paに設定して窒化ケイ素を主成分とする酸窒化ケイ素層(SiON層)を膜厚300nmの第1の層として形成した。 The high frequency power source used at this time was a 27.12 MHz high frequency power source, and the distance between the electrodes was 20 mm. The source gas was introduced into the vacuum chamber at a silane gas flow rate of 7.5 sccm, an ammonia gas flow rate of 100 sccm, and a nitrous oxide gas flow rate of 50 sccm. At the start of film formation, the temperature of the film substrate was set to 100 ° C., the gas pressure during film formation was set to 100 Pa, and a silicon oxynitride layer (SiON layer) mainly composed of silicon nitride was formed as a first layer having a thickness of 300 nm. .
 (2)ガスバリア性フィルム27の作製
 下記のように第1の層を形成したこと以外は、ガスバリア性フィルム5と同様にしてガスバリア性フィルム27を作製した。
(2) Production of Gas Barrier Film 27 A gas barrier film 27 was produced in the same manner as the gas barrier film 5 except that the first layer was formed as follows.
 ロール-トゥ-ロール(roll-to-roll)スパッターコーター中にスプライスロールを装填した。成膜チャンバーの圧力を2×10-6トールまでポンプで低下させた。2kWおよび600V、1ミリトールの圧力で51sccmのアルゴン(不活性ガス)および30sccmの酸素(反応ガス)を含有する気体混合物を使用し、0.43メートル/分の基材搬送速度で、Si-Al(95/5(元素組成比))ターゲット(アカデミー プリシジョン マテリアルズ(Academy Precision Materials)から市販品として入手可能)を反応スパッタリングすることによって、厚さ300nmのSiAlO無機酸化物層を下地層上に堆積させた。 The splice roll was loaded into a roll-to-roll sputter coater. The pressure in the deposition chamber was reduced to 2 × 10 −6 Torr with a pump. Using a gas mixture containing 51 sccm argon (inert gas) and 30 sccm oxygen (reactive gas) at a pressure of 2 kW and 600 V, 1 millitorr, with a substrate transport speed of 0.43 meters / min, Si—Al (Research sputtering of 95/5 (element composition ratio)) target (available as a commercial product from Academy Precision Materials) deposits a 300-nm-thick SiAlO inorganic oxide layer on the underlying layer I let you.
 (3)ガスバリア性フィルム28の作製
 下記のように第1の層を形成したこと以外は、ガスバリア性フィルム5と同様にしてガスバリア性フィルム28を作製した。
(3) Production of gas barrier film 28 A gas barrier film 28 was produced in the same manner as the gas barrier film 5 except that the first layer was formed as follows.
 大気圧プラズマCVD装置(積水化学工業株式会社製)を使用して珪素酸化物膜を基材の上に形成した。珪素源としてはヘキサメチルジシラザンを使用し、60℃に加温したヘキサメチルジシラザン中にキャリアガス(窒素)を15mL/minの流速で通過(バブリング)させ、当該キャリアガスと反応ガス(酸素、50mL/min)とをプラズマ中に導入することにより反応させた。プラズマ生成の条件は、パルス電圧95V、パルス周波数20KHzとし、電極、ガス配管、及び基板温度は80℃に加温した。なお、雰囲気ガスとして窒素ガスを流速81mL/minで装置に導入しながら反応を行った。珪素酸化物膜の厚みは、300nmとした。 A silicon oxide film was formed on the substrate using an atmospheric pressure plasma CVD apparatus (manufactured by Sekisui Chemical Co., Ltd.). Hexamethyldisilazane is used as the silicon source, and a carrier gas (nitrogen) is passed through the hexamethyldisilazane heated to 60 ° C. at a flow rate of 15 mL / min. , 50 mL / min) was introduced into the plasma. The plasma generation conditions were a pulse voltage of 95 V and a pulse frequency of 20 KHz, and the electrode, gas piping, and substrate temperature were heated to 80 ° C. The reaction was performed while introducing nitrogen gas as an atmospheric gas into the apparatus at a flow rate of 81 mL / min. The thickness of the silicon oxide film was 300 nm.
 (4)ガスバリア性フィルム29の作製
 国際公開第2011/007543号の実施例10と同様にアルミナ蒸着PETフィルム(商品名:TL-PET H、三井化学東セロ株式会社製、厚さ12μm)を用いて、アルミナ蒸着面上に第2の層を形成させたこと以外は、ガスバリア性フィルム5と同様にしてガスバリア性フィルム29を作製した。
(4) Production of gas barrier film 29 Using an alumina-deposited PET film (trade name: TL-PET H, manufactured by Mitsui Chemicals, Inc., thickness 12 μm) as in Example 10 of International Publication No. 2011/007543. A gas barrier film 29 was produced in the same manner as the gas barrier film 5 except that the second layer was formed on the alumina deposition surface.
 上記ガスバリア性フィルム26~29を用いたこと以外は、実施例1と同様にして有機発光素子26~29を作製した。フィルムの酸素元素比、WVTR、および有機素子の密着性、輝度半減時間、ダークスポットの結果を併せて表4に示す。 Organic light emitting devices 26 to 29 were produced in the same manner as in Example 1 except that the gas barrier films 26 to 29 were used. Table 4 shows the oxygen element ratio of the film, WVTR, organic element adhesion, luminance half time, and dark spot.
 <ガスバリア性フィルム31~37および有機発光素子31~37の作製>
 ポリシラザン層の塗膜厚みが表5に記載のようになるように固形分濃度を調整して第2の層を形成したこと以外は、ガスバリア性フィルムNo.5と同様にしてガスバリア性フィルム31~37を作製した。さらに、実施例1と同様にして有機発光素子31~37を作製した。フィルムの酸素元素比、WVTR、および有機素子の密着性、輝度半減時間、ダークスポットの結果を併せて表5に示す。
<Production of Gas Barrier Films 31-37 and Organic Light-Emitting Elements 31-37>
Except that the second layer was formed by adjusting the solid concentration so that the coating thickness of the polysilazane layer was as shown in Table 5, the gas barrier film No. In the same manner as in Example 5, gas barrier films 31 to 37 were prepared. Further, organic light emitting devices 31 to 37 were produced in the same manner as in Example 1. Table 5 shows the oxygen element ratio of the film, WVTR, and organic element adhesion, luminance half-life, and dark spot results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記結果より、本発明の有機発光素子3~5、9~11、14~18、20~28、31~37は、密着性が高く、輝度半減時間が長く、少なくとも350時間までダークスポットの発生がなかった。 From the above results, the organic light emitting devices 3 to 5, 9 to 11, 14 to 18, 20 to 28, and 31 to 37 of the present invention have high adhesion, long luminance half-life, and generation of dark spots up to at least 350 hours. There was no.
 また、有機発光素子13~17と、有機発光素子38および39とを比較すると、最表面~35nmの領域の平均酸素含有比率が、25~55at%である有機発光素子13~17のほうがダークスポットに優れていた。 Further, when comparing the organic light emitting devices 13 to 17 with the organic light emitting devices 38 and 39, the organic light emitting devices 13 to 17 having an average oxygen content ratio of 25 to 55 at% in the region of the outermost surface to 35 nm are dark spots. It was excellent.
 本出願は、2013年7月17日に出願された日本特許出願番号2013-148566号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-148656 filed on July 17, 2013, the disclosure of which is referenced and incorporated as a whole.

Claims (6)

  1.  基材と、
     ガスバリア性能を有する第1の層と、
     ポリシラザン化合物を含む塗布液を塗布して得られた塗膜を改質処理して得られる第2の層と、をこの順に含むガスバリア性フィルムを有し、
     前記第2の層の基材と相対する最表面~35nmの領域のケイ素、酸素および窒素の合計に対する平均酸素含有比率が最表面から35nm以上の領域のケイ素、酸素および窒素の合計に対する平均酸素含有比率より大きい、電子デバイス。
    A substrate;
    A first layer having gas barrier performance;
    A second layer obtained by modifying a coating film obtained by applying a coating liquid containing a polysilazane compound, and a gas barrier film containing in this order,
    Average oxygen content relative to the sum of silicon, oxygen and nitrogen in the region of 35 nm or more from the outermost surface with respect to the sum of silicon, oxygen and nitrogen in the region of the outermost surface to 35 nm facing the substrate of the second layer An electronic device larger than the ratio.
  2.  前記第1の層の水蒸気透過率が0.1g/m・day以下である、請求項1に記載の電子デバイス。 2. The electronic device according to claim 1, wherein the water vapor permeability of the first layer is 0.1 g / m 2 · day or less.
  3.  前記第2の層が、ポリシラザン化合物を含む塗布液を塗布して得られた塗膜に1000体積ppm以下の酸素濃度および150体積ppm以下の水蒸気濃度の雰囲気下でエネルギー線を照射して形成される、請求項1または2に記載の電子デバイス。 The second layer is formed by irradiating a coating film obtained by applying a coating liquid containing a polysilazane compound with energy rays in an atmosphere having an oxygen concentration of 1000 ppm by volume or less and a water vapor concentration of 150 ppm by volume or less. The electronic device according to claim 1 or 2.
  4.  前記第1の層は、酸炭化ケイ素(SiOC)を含む、請求項1~3のいずれか1項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 3, wherein the first layer includes silicon oxycarbide (SiOC).
  5.  最表面~35nmの領域の平均酸素含有比率が、25~55at%である、請求項1~4のいずれか1項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 4, wherein an average oxygen content ratio in a region of the outermost surface to 35 nm is 25 to 55 at%.
  6.  有機EL素子である、請求項1~5のいずれか1項に記載の電子デバイス。 The electronic device according to any one of claims 1 to 5, which is an organic EL element.
PCT/JP2014/068607 2013-07-17 2014-07-11 Electronic device WO2015008708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015527281A JPWO2015008708A1 (en) 2013-07-17 2014-07-11 Electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013148566 2013-07-17
JP2013-148566 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015008708A1 true WO2015008708A1 (en) 2015-01-22

Family

ID=52346168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068607 WO2015008708A1 (en) 2013-07-17 2014-07-11 Electronic device

Country Status (2)

Country Link
JP (1) JPWO2015008708A1 (en)
WO (1) WO2015008708A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017004659A (en) * 2015-06-05 2017-01-05 Jnc株式会社 Surface observation structure, surface evaluation method, base material manufacturing method, manufacturing method for electronic element, and manufacturing method for touch panel
JP2017177640A (en) * 2016-03-31 2017-10-05 住友化学株式会社 Laminate film and method for manufacturing the same
US10585327B2 (en) 2015-05-21 2020-03-10 Nitto Denko Corporation Light modulation film and method for manufacturing same, and light modulation element
CN111936309A (en) * 2018-03-30 2020-11-13 东洋制罐集团控股株式会社 Barrier film for electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314599A (en) * 2003-02-10 2004-11-11 Dainippon Printing Co Ltd Barrier film
JP3859518B2 (en) * 2002-01-15 2006-12-20 住友ベークライト株式会社 Transparent water vapor barrier film
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
WO2012090644A1 (en) * 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 Gas-barrier film and electronic device
JP2012148416A (en) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc Laminate and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859518B2 (en) * 2002-01-15 2006-12-20 住友ベークライト株式会社 Transparent water vapor barrier film
JP2004314599A (en) * 2003-02-10 2004-11-11 Dainippon Printing Co Ltd Barrier film
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
WO2012090644A1 (en) * 2010-12-27 2012-07-05 コニカミノルタホールディングス株式会社 Gas-barrier film and electronic device
JP2012148416A (en) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc Laminate and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10585327B2 (en) 2015-05-21 2020-03-10 Nitto Denko Corporation Light modulation film and method for manufacturing same, and light modulation element
JP2017004659A (en) * 2015-06-05 2017-01-05 Jnc株式会社 Surface observation structure, surface evaluation method, base material manufacturing method, manufacturing method for electronic element, and manufacturing method for touch panel
JP2017177640A (en) * 2016-03-31 2017-10-05 住友化学株式会社 Laminate film and method for manufacturing the same
KR20170113359A (en) * 2016-03-31 2017-10-12 스미또모 가가꾸 가부시키가이샤 Laminated film and method for producing laminated film
CN107331784A (en) * 2016-03-31 2017-11-07 住友化学株式会社 Stacked film and its manufacture method
KR102324046B1 (en) * 2016-03-31 2021-11-08 스미또모 가가꾸 가부시키가이샤 Laminated film and method for producing laminated film
CN111936309A (en) * 2018-03-30 2020-11-13 东洋制罐集团控股株式会社 Barrier film for electronic device
EP3778215A4 (en) * 2018-03-30 2021-12-29 Toyo Seikan Group Holdings, Ltd. Electronic device barrier film
US11479018B2 (en) 2018-03-30 2022-10-25 Toyo Seikan Group Holdings, Ltd. Barrier film for electronic devices

Also Published As

Publication number Publication date
JPWO2015008708A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6504284B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
JP5929775B2 (en) Gas barrier film, method for producing the same, and electronic device including the gas barrier film
JP5862707B2 (en) Gas barrier film, element device and method for producing gas barrier film
JP6107819B2 (en) Gas barrier film and electronic device using the same
CN104736336B (en) The manufacture method of gas barrier film, gas barrier film and electronic equipment
WO2013172359A1 (en) Gas barrier film, manufacturing method for gas barrier film, and electronic device
EP2919557A1 (en) Electronic device and gas barrier film fabrication method
JP6398986B2 (en) Gas barrier film
JP2015003464A (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
TWI733786B (en) Laminated film and manufacturing method thereof
JP6319316B2 (en) Method for producing gas barrier film
WO2014163062A1 (en) Method for manufacturing gas barrier film, gas barrier film, and electronic device
WO2015002156A1 (en) Gas-barrier film and method for producing same, and electronic device using same
WO2015012404A1 (en) Electronic device and method for manufacturing same
JP5949432B2 (en) Gas barrier film and method for producing gas barrier film
WO2014178332A1 (en) Gas barrier film and method for producing same
WO2015008708A1 (en) Electronic device
JP6520932B2 (en) Gas barrier film
JP6319310B2 (en) Method for producing gas barrier film
JP5966937B2 (en) Gas barrier film and method for producing gas barrier film
JPWO2015029795A1 (en) Method for producing gas barrier film
WO2014188981A1 (en) Gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14827120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14827120

Country of ref document: EP

Kind code of ref document: A1