WO2015008486A1 - Washing machine - Google Patents

Washing machine Download PDF

Info

Publication number
WO2015008486A1
WO2015008486A1 PCT/JP2014/003764 JP2014003764W WO2015008486A1 WO 2015008486 A1 WO2015008486 A1 WO 2015008486A1 JP 2014003764 W JP2014003764 W JP 2014003764W WO 2015008486 A1 WO2015008486 A1 WO 2015008486A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
speed
unit
electric motor
drum
Prior art date
Application number
PCT/JP2014/003764
Other languages
French (fr)
Japanese (ja)
Inventor
麻田 和彦
光英 東
元 野嶋
亀田 晃史
陽子 堀
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013149262A external-priority patent/JP6295407B2/en
Priority claimed from JP2014032684A external-priority patent/JP6229162B2/en
Priority claimed from JP2014032680A external-priority patent/JP6361018B2/en
Priority claimed from JP2014032679A external-priority patent/JP6229160B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480040857.4A priority Critical patent/CN105378174B/en
Priority to DE112014003296.4T priority patent/DE112014003296T5/en
Publication of WO2015008486A1 publication Critical patent/WO2015008486A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/42Safety arrangements, e.g. for stopping rotation of the receptacle upon opening of the casing door
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/24Spin speed; Drum movements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/40Opening or locking status of doors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/44Current or voltage
    • D06F2103/46Current or voltage of the motor driving the drum
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/44Opening, closing or locking of doors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/46Drum speed; Actuation of motors, e.g. starting or interrupting
    • D06F2105/48Drum speed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/08Control circuits or arrangements thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/10Power supply arrangements, e.g. stand-by circuits

Definitions

  • the present invention relates to a washing machine for storing clothes, having a drum having a vertical or horizontal rotating shaft, and stopping while applying a brake.
  • an inverter device used in a washing machine detects rotor position detecting means such as a Hall IC of a motor and detects rotation of the motor by motor rotation detecting means or counter electromotive force detecting means.
  • rotor position detecting means such as a Hall IC of a motor
  • counter electromotive force detecting means When the rotation of the motor is detected by the rotor position detecting means or the counter electromotive force detecting means other than when the motor is driven, a short-circuit brake is performed.
  • FIG. 51 is a circuit diagram of a conventional washing machine (see, for example, Patent Document 1).
  • An inverter circuit 941 that supplies current to the windings of a motor 940 of a conventional washing machine has switching elements 942 to 947, and is turned on / off by a control unit 948.
  • a conventional washing machine has amplification / bias circuits 952 and 953 including shunt resistors 950 and 951 and operational amplifiers in order to detect a current flowing through the winding of the motor 940.
  • the output signals of the amplification / bias circuits 952 and 953 are input to the control unit 948, the current values of the U phase and the V phase are detected, and the W phase is also calculated from the currents of the U phase and the V phase. Current is detected.
  • an overcurrent detection signal from the overcurrent detection unit 956 is also input to the control unit 948 via the diodes 954 and 955 at the time of overcurrent.
  • FIG. 52 is a flowchart when starting the conventional washing machine. From the start-up (step S960) to the short circuit (step S961), the windings of the motor 940 are also short-circuited for all three phases.
  • step S962 it is determined by the current detection means whether or not the detected winding currents match three or more phases. If they match, it is determined that the motor 940 has stopped.
  • step S963 positioning
  • step S964 forced commutation
  • step S965 steady operation
  • FIG. 53 is a waveform diagram of the winding current during the short-circuit brake when the conventional washing machine is rotating.
  • the instantaneous value of the current for two phases of the current of three phases may match, but the value for three phases does not match, and stops when the current values for three phases match It is judged.
  • the current detection value of one phase is referred to twice or more at intervals shorter than one cycle of the current waveform, and when they match, it is determined to be stopped.
  • the current detection values for the three phases may coincide with each other even during rotation, and the current detection values for two times of one phase may coincide. There is.
  • a condition for stop determination is satisfied. If the drum lid is opened in this state, it becomes unsafe.
  • Patent Documents 2 to 5 disclose conventional washing machine technologies.
  • the present invention solves the conventional problems and provides a washing machine that can ensure safety without providing a position detector such as a Hall IC.
  • the washing machine of the present invention includes a drum for storing clothes, a permanent magnet and a three-phase winding, an electric motor for driving the drum, a lid for opening and closing the opening of the drum, and a lid lock portion for locking the lid.
  • a drum for storing clothes, a permanent magnet and a three-phase winding
  • an electric motor for driving the drum
  • a lid for opening and closing the opening of the drum
  • a lid lock portion for locking the lid.
  • the control unit includes a current detection unit that detects a current and a speed calculation unit that receives the output of the current detection unit and calculates the speed of the electric motor.
  • the control unit controls the switching element so as to keep the input voltage of the electric motor at substantially zero during the braking period of the drum, and allows the lid to be opened by the lid lock unit after the speed becomes a predetermined value or less. To do.
  • the washing machine of the present invention can ensure safety without providing a position detector such as a Hall IC.
  • FIG. 1 is a block diagram of an inverter device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a detailed configuration in central control unit 135 of the inverter device according to Embodiment 1 of the present invention.
  • FIG. 3 is an operation waveform diagram when the inverter device according to the first embodiment of the present invention becomes a short-circuit brake by an abnormality detection signal.
  • FIG. 4 is an operation waveform diagram before and after the drum of the inverter device according to Embodiment 1 of the present invention stops.
  • FIG. 5 is an operation waveform diagram when the short-circuit braking period is entered by the brake request signal from the sequence generator of the inverter device according to the first embodiment of the present invention.
  • FIG. 6 is an operation waveform diagram centering on the speed calculation unit before and after the drum stops after moving to the short-circuit braking period by the brake request signal of the inverter device according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing an internal configuration of the drum type washing machine provided with the inverter device according to the first embodiment of the present invention as viewed from the side.
  • FIG. 8 is a flowchart showing an operation immediately after the power of the inverter device according to the first embodiment of the present invention is turned on.
  • FIG. 9 is a block diagram of an inverter device according to Embodiment 2 of the present invention.
  • FIG. 10 is a block diagram of an inverter device according to Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram showing a detailed configuration of the central control unit of the inverter device according to Embodiment 3 of the present invention.
  • FIG. 12 is a block diagram of the short-circuit brake control unit of the inverter device according to Embodiment 3 of the present invention.
  • FIG. 13 is a graph showing input / output characteristics of the function generator of the inverter device according to Embodiment 3 of the present invention.
  • FIG. 14 is a diagram showing an internal configuration of an inverter device called a drum-type washing machine according to Embodiment 3 of the present invention as viewed from the side.
  • FIG. 15 is an operation waveform diagram in the case where a short circuit brake is caused by a brake request signal of the inverter device in the third embodiment of the present invention.
  • FIG. 16 is an operation waveform diagram of the inverter device according to the third embodiment of the present invention.
  • FIG. 17 is a flowchart in the third embodiment of the present invention when the dehydrating operation or the like is completed and the brake is applied halfway.
  • FIG. 18 is a block diagram of the central processing unit of the inverter device according to the fourth embodiment of the present invention.
  • FIG. 19 is an operation waveform diagram of the inverter device according to the fourth embodiment of the present invention.
  • FIG. 20 is a flowchart in the fourth embodiment of the present invention when the dehydrating operation or the like is completed and the brake is applied halfway.
  • FIG. 21 is a diagram showing operation waveforms of respective parts before and after the current supply period to the electric motor after the drum speed becomes substantially zero during braking in the fifth embodiment of the present invention.
  • FIG. 22 is a diagram showing the phases of the permanent magnets of the electric motor when the belt according to the fifth embodiment of the present invention is normal and when the belt is removed (or disconnected).
  • FIG. 23 is a diagram showing operation waveforms of respective parts before and after the current supply period to the electric motor after the drum speed becomes substantially zero during braking in the inverter device according to the sixth embodiment of the present invention.
  • FIG. 24 is a block diagram of an inverter device according to Embodiment 7 of the present invention.
  • FIG. 25 is a detailed configuration diagram of the central control unit of the inverter device according to the seventh embodiment of the present invention.
  • FIG. 26 is a block diagram of a short-circuit brake control unit of the inverter device according to Embodiment 7 of the present invention.
  • FIG. 27 is a graph showing the function generator of the inverter device according to Embodiment 7 of the present invention and the input / output characteristics of the function generator.
  • FIG. 28 is an operation waveform diagram when a short-circuit brake is established by a brake request signal of the inverter device according to the seventh embodiment of the present invention.
  • FIG. 29 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention.
  • FIG. 30 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention.
  • FIG. 31 is a block diagram of the short-circuit brake control unit of the inverter device according to the eighth embodiment of the present invention.
  • FIG. 32 is a graph showing characteristics of the short circuit time ratio expansion speed setting unit of the inverter device according to the eighth embodiment of the present invention.
  • FIG. 33 is a block diagram of the short-circuit brake control unit of the inverter device according to the ninth embodiment of the present invention.
  • FIG. 34 is a graph showing characteristics of the short circuit time ratio expansion speed setting unit of the inverter device according to the ninth embodiment of the present invention.
  • FIG. 35 is an operation waveform diagram of a portion of the inverter device that enters the short-circuit braking period according to Embodiment 9 of the present invention.
  • FIG. 36 is a block diagram of the short-circuit brake control unit of the inverter device according to Embodiment 10 of the present invention.
  • FIG. 37 is a graph illustrating characteristics of the short-circuiting time ratio expansion speed command unit of the inverter device according to the tenth embodiment of the present invention.
  • FIG. 38 is a diagram showing an internal configuration of an inverter device called a drum-type washing machine according to Embodiment 11 of the present invention viewed from the side.
  • FIG. 39 is a flowchart immediately after the power of the inverter device according to the eleventh embodiment of the present invention is turned on.
  • FIG. 40 is a block diagram of the inverter device according to the twelfth embodiment of the present invention.
  • FIG. 41 is a diagram showing a current vector during a short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention.
  • FIG. 42 is an operation waveform diagram for the short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention.
  • FIG. 43 is a block diagram of an inverter device according to Embodiment 13 of the present invention.
  • FIG. 44 is a flowchart of the microcomputer of the inverter device according to the thirteenth embodiment of the present invention.
  • FIG. 45 is an operation waveform diagram of the microcomputer of the inverter device according to the thirteenth embodiment of the present invention.
  • FIG. 46 is a diagram illustrating a case where the magnitude of the current vector is less than a predetermined value twice in FIG.
  • FIG. 47 is a flowchart of the inverter device according to the fourteenth embodiment of the present invention.
  • FIG. 48 is a graph showing characteristics of the load stop estimation unit of the inverter device according to the fourteenth embodiment of the present invention.
  • FIG. 49 is a diagram showing an internal configuration of the dehydrator according to the fifteenth embodiment of the present invention when viewed from the side.
  • FIG. 50 is an operation waveform diagram of the dehydrator according to the fifteenth embodiment of the present invention.
  • FIG. 51 is a circuit diagram of a conventional washing machine.
  • FIG. 52 is a flowchart when the conventional washing machine is activated.
  • FIG. 53 is a winding current waveform diagram during short-circuit braking when the conventional washing machine is rotating.
  • FIG. 1 is a block diagram of an inverter device according to Embodiment 1 of the present invention.
  • the drum 1 includes permanent magnets 100 and 101 and three-phase windings 102, 103, and 104. Moreover, it has the drum 106 which accommodates the clothing 105, the electric motor 109 which rotationally drives via the pulley 107 and the belt 108, and the 6 stone switching elements 111, 112, 113, 114, 115, 116.
  • an inverter circuit 117 that supplies alternating currents Iu, Iv, and Iw to the electric motor 109 and a control unit 118 that performs on / off control of the switching elements 111, 112, 113, 114, 115, and 116 are provided.
  • the control unit 118 also includes a current detection unit 119 that detects the alternating currents Iu, Iv, and Iw, and a speed calculation unit 120 that receives the output of the current detection unit 119 and calculates the speed of the electric motor 109.
  • the current detection unit 119 performs A / D conversion in the ON period of the shunt resistors 121, 122, 123 that convert the currents of the three phases into voltages and the switching elements 114, 115, 116 on the low potential side.
  • a D converter 124 is included.
  • the speed calculation unit 120 includes a phase error detection unit 126 and an amplifier 128 and an integrator 129 as the variable frequency oscillation unit 127.
  • three resistance shunt resistors 121, 122, and 123 corresponding to each of the three phases are used as the current detection unit 119. These are structures called three shunts. While the low-potential side switching elements 114, 115, and 116 are on, the voltage generated across each shunt resistor is detected.
  • the current values Iu, Iv, and Iw of the three phases may be detected from a single shunt resistor called one shunt at the detection timing.
  • two to three current sensors that can be detected from a direct current component called DCCT may be used.
  • the amplifier 128 has a P component (proportional component) and an I component (time integration component) with respect to the input.
  • the input to the amplifier 128, that is, the output of the phase error detector 126 is constantly zero. Works as.
  • the control unit 118 includes a low speed determination unit 130 that determines that the output signal ⁇ of the variable frequency oscillation unit 127 has become a sufficiently low speed.
  • the low speed determination unit 130 includes a threshold generator 131 and a comparison unit 132.
  • control unit 118 has a central control unit 135.
  • the control unit 118 generates a signal for controlling the inverter circuit 117, receives signals Iua, Iva, and Iwa from the current detection unit 119, receives signals ⁇ and ⁇ from the speed calculation unit 120, and receives a low-speed determination unit. 130 J signals are received.
  • the control unit 118 performs all these various signal processes in a digital manner.
  • the PWM circuit 136 receives the duty from the central control unit 135 and outputs a signal B obtained by performing pulse width modulation (PWM) with a triangular wave having a period of 64 microseconds on the duty.
  • the signals S1 to S6 of the central control unit 135 give gate signals to the switching elements 111, 112, 113, 114, 115, and 116 via the switching unit 137 and the drive circuit 138 provided between the central control unit 135 and the inverter circuit 117. .
  • the K signal of the central control unit 135 is high, the switching unit 137 is displayed as shown in FIG. 1, and S1 to S6 are employed.
  • the switches in the switching unit 137 in FIG. 1 are connected to the lower side.
  • the DC power supply 144 includes an AC power supply 141 of AC 230 V, 50 Hz, a full-wave rectifier 142, and a capacitor 143.
  • DC power supply 144 supplies DC voltage VDC to DC voltage detection circuit 148 in inverter circuit 117.
  • DC voltage detection circuit 148 includes resistors 146 and 147.
  • the output A of the DC voltage detection circuit 148 is output to the central control unit 135 as an analog voltage signal. In the central control unit 135, the output A is A / D converted and processed as a digital value.
  • FIG. 2 is a block diagram showing a detailed configuration of the central control unit 135 of the inverter device according to Embodiment 1 of the present invention.
  • the component constituting the central control unit 135 is often a one-chip microcomputer.
  • the configuration including the portion outside the central control unit 135 of FIG. 1 may be realized by software of one microcomputer.
  • the components constituting the central control unit 135 may be realized by some hardware.
  • signals Iua, Iva, Iwa corresponding to the three-phase currents Iu, Iv, Iw are input to the first coordinate converter 150 together with the calculated phase ⁇ signal.
  • the first coordinate conversion unit 150 using (Equation 1), conversion to Id and Iq, that is, conversion from stationary coordinates to rotation coordinates, is performed, and Id and Iq are output.
  • Subtraction units 151 and 152 are provided, and an error between the set values Idr and Id and an error between the set values Iqr and Iq are calculated, respectively.
  • the outputs of the subtracting units 151 and 152 are input to error amplifying units 153 and 154 that apply a gain of PI (proportional and integral), and the outputs are input to the switching unit 156 as Vd1 and Vq1.
  • the outputs Vd and Vq of the switching unit 156 are input to the second coordinate conversion unit 158 together with the phase ⁇ signal, and from the dq coordinates to the values of the three-phase voltage command values Vu, Vv, and Vw using (Equation 2). Conversion is performed.
  • the voltage command values Vu, Vv, and Vw are input to the PWM unit 159, and a triangular carrier wave having a period of 64 ⁇ s is applied at a ratio of the three-phase voltage command value to the A signal.
  • Voltage command values Vu, Vv, Vw are subjected to instantaneous value comparison with the carrier wave and added with dead time to generate upper and lower drive signals S1 to S6.
  • the current detection unit 119 is configured to detect all three phase currents. However, if the current of two phases in the three-phase windings 102, 103, 104 of the electric motor 109 is detected, the remaining one phase can be calculated by Kirchhoff's law. Therefore, only two-phase detection may be performed.
  • the subtraction unit 160 calculates the difference between the speed setting values ⁇ r and ⁇ .
  • a gain of PI proportional, integral
  • the Idr setting unit 162 determines the set value Idr from the calculated speed ⁇ .
  • the short circuit brake control unit 163 and the abnormality detection unit 165 detect an abnormality.
  • the delay unit 166 outputs the Z signal with a delay time of 0.3 seconds from the J signal.
  • the sequence generator 167 generates a set speed ⁇ r when the electric motor 109 is driven and a brake request signal B4RQ.
  • the voltage command throttle unit 168 receives the brake request signal B4RQ, inputs Vd1 and Vq1 at the start of the transition to the short-circuit brake, and outputs a value approaching zero.
  • the sequence generator 167 Since the inverter device operates as a washing machine, the sequence generator 167 has various signals (stop button signal Sstop, water supply valve signal Skb, drain valve signal Shb, lid lock signal Srk, lid closure signal Scl) with external components. Etc.), various signals relating to the operation of the electric motor 109 are transmitted and received.
  • the short-circuit current determination unit 170 sets the Cl signal to high when any of the instantaneous values of the signals Iua, Iva, and Iwa in the short-circuit state exceeds 1.7 A, and all the absolute values of the instantaneous values are When it is less than 0.6 A, the Cs signal is set to high.
  • the Idr setting unit 162 outputs 0A as the set value Idr when the ⁇ value is 400 r / min or less in terms of the speed of the drum 106.
  • the short-circuit brake control unit 163 controls the electric motor 109 in the brake state when some abnormality occurs in the washing machine and at the time of the break of operation.
  • the short circuit brake control unit 163 receives the abnormality detection signal B99RQ from the abnormality detection unit 165 and the brake request signal B4RQ from the sequence generation unit 167.
  • the short circuit brake control unit 163 gradually shorts the input of the electric motor 109, that is, the switching elements 111, 112, 113 in the inverter circuit 117 so that the voltage between the three-phase input terminals becomes almost zero. , 114, 115, and 116 are controlled.
  • the case where the abnormality detection signal B99RQ is received and the case where the brake request signal B4RQ is received are both short-circuit brakes, but the specific signal to the inverter circuit 117 is considerably different.
  • FIG. 3 is an operation waveform diagram in the case where the inverter device according to the first embodiment of the present invention becomes a short-circuit brake by the abnormality detection signal B99RQ.
  • 3A is a waveform diagram of the abnormality detection signal B99RQ
  • FIG. 3B is a waveform diagram of the K signal
  • FIG. 3C is a waveform diagram of Duty.
  • the brake request signal BRQ of the central control unit 135 becomes high at time T1.
  • the K signal goes from high to low.
  • all IGBT (Insulated Gate Bipolar Transistor) portions of the switching elements 111, 112, 113, 114, 115, and 116 are turned off. This is an all-off period of 5 ms.
  • the input voltage of the electric motor 109 repeats positive / negative as an instantaneous value of the induced electromotive force generated by rotation. However, it is forced to zero during the short circuit time, and the absolute value is suppressed.
  • the short circuit time ratio expansion period from T2 to T5 is a voltage reduction period in which the switching elements 114, 115, and 116 are controlled so that the absolute value of the voltage decreases as the short circuit time increases. .
  • the control unit 118 turns on the low potential side switching elements 114, 115, and 116 in the inverter circuit 117.
  • the process proceeds to the short-circuit braking period.
  • the short-circuit time ratio Duty is kept at the maximum, that is, 100%, and the kinetic energy of the load is absorbed.
  • the voltage drop of the IGBT and the diode in the low potential side switching elements 114, 115, 116 and the voltage drop due to the wiring from the inverter circuit 117 to the motor 109 are the input of the motor 109.
  • about 2 to 3 V remains as a voltage.
  • such voltages are in the category of approximately zero.
  • the design is made to increase the short circuit time ratio (Duty) expansion speed in T3 to T5, which is the latter half of the short circuit time ratio expansion period. Thereby, an overvoltage can be suppressed to the minimum.
  • the electric motor 109 does not have a position detection sensor and a speed detection sensor, and can be configured at a low cost. Such a configuration is called sensorless.
  • FIG. 4 is an operation waveform diagram before and after the drum 106 of the inverter device according to Embodiment 1 of the present invention is stopped.
  • FIG. 4 shows operation waveforms when a further time elapses from the period shown in FIG.
  • FIG. 4A shows the speed of the drum 106
  • FIG. 4B shows the current waveforms of Iu, Iv, and Iw
  • FIG. 4C shows the Cs signal output by the short-circuit current determination unit 170.
  • the speed of the electric motor 109 that has become a short-circuit brake gradually decreases.
  • the frequency of the line current decreases approximately in proportion to the speed of the electric motor 109, the amplitude finally decreases, and converges to zero when the speed of the electric motor 109 becomes zero.
  • the output of the current detection unit 119 in the case of zero current is about 2.5V, which is an almost intermediate value of the 5V power supply.
  • the switching elements 114, 115 and 116 before the start of operation store the values in the off state as offset values corresponding to zero current, and handle them as absolute values of the line currents of the respective phases.
  • the time from when the short-circuit brake is entered until it stops is the speed of the motor 109, the moment of inertia of the load, the inductance and resistance value of the motor 109, and the ON state of the switching elements 114, 115, and 116.
  • the current detection unit 119 detects a state in which the speed is sufficiently reduced by detecting a current value that is a physical phenomenon that appears due to a reduction in speed.
  • the Cs signal becomes high at the time Tja when all the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw are less than 0.6 A, and the drum 106 moves at a speed. It decreases to about 7r / min.
  • the short-circuit brake control unit 163 receives the Cs signal that has become high, and the drum 106 is stopped by continuing the short-circuit brake from 7 r / min. For example, when a delay time of 0.15 seconds has elapsed, it is determined that the stop has occurred. In accordance with an instruction from the sequence generator 167, the process proceeds to the next step necessary for the washing machine.
  • the short-circuit current determination unit 170 may be configured to output the Cs signal high after confirming that the line current has sufficiently decreased again after the time Tja.
  • the short-circuit current determination unit 170 when the state where all the absolute values of the instantaneous values of the line currents Iu, Iv, and Iw are less than 0.6 A continues for a predetermined time or longer, the Cs signal is output high. Also good.
  • the present embodiment uses a short-circuit brake and does not use a position sensor or a speed sensor, but uses a short-circuit brake and makes a safe stop determination based on current during that period. Sex can be ensured.
  • FIG. 5 is a waveform diagram of an operation waveform diagram when the short circuit braking period is entered by the brake request signal B4RQ from the sequence generation unit 167 of the inverter device according to the first embodiment of the present invention.
  • (a) is a brake request signal B4RQ
  • (b) is the values of the input values Vq (solid line) and Vd (broken line) of the second coordinate converter 158
  • (c) is a calculated speed ⁇ (solid line). )
  • the switching unit 156 contacts the lower contact. For this reason, the outputs Vd1 and Vq1 of the error amplifiers 153 and 154 are connected to Vd and Vq, respectively. That is, the subtractors 151 and 152 are in a state where the current control of Id and Iq functions.
  • the voltage command throttle unit 168 holds Vd1 and Vq1 inside.
  • the absolute values of Vd and Vq decrease at a constant voltage change rate (dV / dt) with respect to time.
  • the switching unit 156 contacts the upper contact, and the signals Vd and Vq from the voltage command restricting unit 168 are output.
  • Vq1 is a positive value at T1
  • Vd1 is a negative value.
  • the voltage command restrictor 168 brings Vq closer to zero by subtracting from Vq1
  • Vd approaches zero by increasing from Vd1. Therefore, a change occurs in the direction of decreasing the absolute value.
  • FIG. 5 shows a case where the absolute value of Vd1 is smaller than the absolute value of Vq1.
  • the absolute value is decreased at a constant time ratio.
  • the absolute value of the gradient after T1 is equal between Vd and Vq, Vd becomes zero at T2, and Vd and Vq become zero at T3.
  • the absolute value of the input voltage of the electric motor 109 decreases to almost zero, and the electric motor 109 enters a short-circuit braking period in which kinetic energy is absorbed.
  • the input voltage of the electric motor 109 is determined by voltage command values Vu, Vv, and Vw that are output from the second coordinate conversion unit 158.
  • the period from T1 to T3 is a voltage reduction period because the voltage is controlled by the switching elements 111, 112, 113, 114, 115, and 116 so that the voltage decreases even when viewed from the line voltage.
  • Vd and Vq do not become zero at the same time, but the voltage reduction periods T1 to T3 are performed within a relatively short time of about several tens of ms, so the difference between the curves of Vd and Vq.
  • the adverse effects of will not be noticeable. It does not cause a problem because it does not cause an overcurrent due to a transient jump of the line current or a DC voltage overvoltage due to regenerative power to the DC power supply 144.
  • the output ⁇ of the amplifier 128 is fixed to the calculated speed ⁇ 1 at the time T1 when the brake request signal B4RQ starts only during the voltage reduction period. This ensures the stability of the feedback.
  • the change in Vd and Vq during the voltage reduction period may be other, for example, the slope adjusted so that Vd and Vq are simultaneously zero.
  • the magnitude of the time change of Vd and Vq may be changed according to the speed of the electric motor 109 when entering the short-circuit braking period. Assuming that the slopes of Vd and Vq are small at low speed and large at high speed, at any speed, the transient current jump (overcurrent) during the voltage reduction period is suppressed, and the regeneration to the DC power supply at particularly high speed is performed. Generation of overvoltage due to current can be suppressed as much as possible.
  • the slope a of Vd and Vq during the voltage reduction period may be changed so that the initial slope is large and the slope is small, so that it corresponds to a wide range of speeds.
  • the input voltage of the electric motor 109 may not be completely zero.
  • the voltage drop due to the IGBT or the diode is 2 to 3 V or less, but may occur.
  • the carrier frequency is as high as about a few dozen kilohertz, so there may be a case where the input voltage of the electric motor 109 of about several volts remains, but the input voltage of about several volts. Is a category of almost zero.
  • FIG. 6 shows a speed calculation unit 120 before and after the electric motor 109 and the drum 106 serving as a load stop after the passage of the short-circuit braking period by the brake request signal B4RQ of the inverter device according to the first embodiment of the present invention.
  • FIG. In FIG. 6, (a) shows the line current Iu, (b) shows the angular velocity ⁇ , (c) shows the phase ⁇ of Iu, and (d) shows the waveform of the J signal.
  • the signal Iua corresponding to the U phase in the signal that has passed through the current detection unit 119 is taken into the phase error detection unit 126, the U phase current Iu waveform, and the output of the variable frequency oscillation unit 127.
  • a signal corresponding to the phase difference from ⁇ is generated.
  • phase difference comparison from the zero point timing or multiplication of two input signals is used.
  • a kind of phase-locked loop (PLL) is formed, the output of which is constituted by a control loop composed of an amplifier 128 and an integrator 129.
  • PLL phase-locked loop
  • the ⁇ output of the amplifier 128 can be used as the speed during the short-circuit braking period. For this reason, at time T1 when ⁇ falls below the value ⁇ th of the threshold generator 131, the J signal of the comparison unit 132 is output.
  • the time point T1 is the time point when the speed of the drum 106 is 35 r / min, and the J signal becomes high at ⁇ th.
  • the determination is made by interposing a physical quantity such as speed or a frequency corresponding one-to-one with the speed. Therefore, in particular, in the case of the drum type washing machine of the present embodiment, the point of speed fluctuation (acceleration) due to the fact that the moment of inertia of the drum 106 is about 0.3 kg square meters or more is effectively utilized, and the response of ⁇ A low-pass element can also be used as long as the characteristics can be sufficiently realized. Therefore, the influence of the noise of the output of the current detection unit 119 can be suppressed to be extremely low. Therefore, a highly reliable ⁇ signal can be obtained until just before the stop.
  • the delay unit 166 causes the Z signal to go high after a delay of 0.3 seconds. This 0.3 second corresponds to a required time for stopping the drum 106 by continuing the short-circuit brake from 35 r / min as the speed of the drum 106.
  • the speed calculation unit 120 is used when short-circuit braking is performed by the brake request signal B4RQ from the sequence generation unit 167.
  • the noise is not affected at all as long as the phase error detection unit 126 is in a normal working range.
  • the influence as the speed calculation unit 120 can be suppressed by the integral gain in the amplifier 128. . Therefore, safety can be ensured by determining a reliable stop.
  • control unit 118 switches the switching elements 111, 112, 113, so as to keep the input voltage of the electric motor 109 substantially zero during the short-circuit braking period in which the kinetic energy from the drum is absorbed.
  • 114, 115, and 116 are controlled, and after the calculated speed ⁇ becomes equal to or less than the predetermined value ⁇ th, stop is determined.
  • the stop of the electric motor 109 can be appropriately determined while having a simple configuration without a position detector such as a Hall IC. Therefore, safety can be ensured.
  • the Cs signal is not used for the stop determination at the time of the brake request signal B4RQ, but may be used together.
  • the stop state may be determined by confirming the state of the Cs signal again 0.3 seconds after the Z signal is generated.
  • the current becomes small and the Cl signal goes low until the judgment of 35 r / min is made, and the judgment of stop is not made forever and the inverter device is closed.
  • the stop may be determined after a sufficient time has elapsed. As a result, it is possible to proceed to the next sequence in a form that satisfies both safety and convenience of the inverter device.
  • the speed calculation unit 120 determines that the calculated speed is equal to or less than the predetermined value. It may be determined that the electric motor 109 has stopped.
  • FIG. 7 is a diagram showing an internal configuration of an inverter device generally called a drum type washing machine in the present embodiment as viewed from the side.
  • the inverter device includes a drum 106 that houses clothing 105, an electric motor 109 that rotationally drives the drum 106 via a pulley 182 and a belt 108, and an inverter circuit 117 that supplies a three-phase alternating current to the electric motor 109. have.
  • the inverter circuit 117 is operated by a control signal for 6 stones from the control unit 118.
  • the inverter device corresponds to the abnormality detection signal B99RQ and the brake request signal B4RQ described above, respectively, the voltage reduction period in the B99RQ signal shown in FIG. 3, and the voltage reduction in the brake request signal B4RQ shown in FIG. After a period of time, a short circuit braking period starts.
  • the drum 106 rotates inside the resin-made receiving cylinder 190.
  • the water supply valve 193 and the drainage valve 194 By opening and closing the water supply valve 193 and the drainage valve 194 by the water supply valve signal Skb and the drainage valve signal Shb from the control unit 118, water is supplied and drained into the receiving tube 190, and washing and dehydration are performed together with a separately supplied detergent. Made.
  • a lid 196 that can be opened and closed is provided in front of the drum 106, and a handle 197 for the user to open and close the lid 196 is provided.
  • the lid 196 is closed to ensure the safety of the user and prevent water from scattering.
  • the lid 196 is opened and closed with a hinge part connected to the main body as a center, but it may have a sliding door configuration, a folding configuration, a shutter configuration, or a removable configuration. .
  • the lid lock unit 200 holds the lid 196 closed, and includes a solenoid 201, a plunger 202, a spring 203, and a lock control circuit 204.
  • the lid 196 In the illustrated state where the solenoid 201 is not energized, the lid 196 is in a locked state. Therefore, the lid 196 cannot be opened even if the user pulls the handle 197 or performs any other operation.
  • the lock control circuit 204 energizes the solenoid 201 by the lid lock signal Srk from the control unit 118, and the lock is released. The user can then pull the handle 197 to open the lid 196.
  • the lid detection switch 206 detects the open / closed state of the lid 196 and transmits a lid closing signal Scl to the control unit 118.
  • the lid closing signal Scl is low, and from the viewpoint of ensuring safety, no signal is supplied to the inverter circuit 117, no AC current is supplied to the electric motor 109, and the drum 106 The operation which rotates is not made.
  • a direct current may be supplied to the electric motor 109, and sufficient safety can be ensured by ensuring that the drum 106 is fixed in the rotational direction more reliably.
  • the controller 118 sends a lid lock signal Srk after determining the stop.
  • the lid lock unit 200 energizes the solenoid 201, the locked state is released, and the user can open the lid 196.
  • the dehydration operation is stopped. Further, when an abnormality such as an overload occurs in the inverter circuit 117, an abnormality signal in the control unit 118 is generated and the electric motor 109 is braked. When the drum 106 is stopped, the control unit 118 determines the stop by the brake request signal B4RQ, and the lid lock unit 200 releases the locked state. When the user pulls the handle 197, the lid 196 can be opened. Therefore, safety is ensured.
  • the speed calculation unit 120 calculates the speed at the time Tja when all of the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw are below a predetermined value, for example, 0.6 A. It may be determined that the lock state is equal to or less than a predetermined value and the locked state is released by the lid lock 200.
  • FIG. 8 is a flowchart showing an operation immediately after the power of the inverter device according to the first embodiment of the present invention is turned on.
  • step S210 When the control unit 118 is operated, such as when the power switch of the inverter device is turned on, the microcomputer program constituting the control unit 118 starts (step S210). The operation shifts from the start to the short-circuit brake (abnormality detection signal B99RQ), and the operation when the abnormality detection signal B99RQ shown in FIG. 3 occurs is performed (step S211). Thus, the short circuit braking period starts after the voltage reduction period.
  • step S213 After entering the short-circuit braking period, when the Cs signal, which is the stop determination shown in FIG. 4, becomes high, the process proceeds to unlocking (step S213).
  • the solenoid 201 is energized, and the user can open the lid 196. Thus, safety is ensured.
  • a short-circuit braking period passes after the power is turned on.
  • the danger can be eliminated by releasing the lock after the Cs signal for ensuring safety based on the stop determination becomes high. Therefore, a highly safe washing machine can be realized.
  • the lid can be unlocked and the user can open the lid 196. Therefore, a highly safe washing machine can be realized.
  • abnormality detection signal B99RQ abnormality detection signal B99RQ
  • short-circuit brake abnormality detection signal B99RQ
  • the output value of the current detector 119 in the correct zero current state is handled as an offset value. Therefore, for example, when a failure occurs in the current detection unit 119 during the short-circuit braking, there is a high possibility that the output signal is fixed regardless of the actual current value such as 0V or 5V. In that case, the possibility that the Cs signal becomes high is extremely low, and high safety is ensured.
  • the rotation axis of the drum 106 is horizontal, but it may be vertical or oblique.
  • the pulley 182 and the belt 108 are used as the power transmission path for rotationally driving the drum 106, the present invention is not limited to this.
  • a gear using a gear (gear) or a motor having a motor directly on the shaft of the drum 106 and rotating at the same speed as called direct drive may be used.
  • the configuration of the lid lock unit 200 is not limited to the configuration described in the present embodiment.
  • a plurality of lid lock portions may be provided.
  • a first lid lock unit that can be unlocked at any time by a user's handle operation and a second lid lock unit that is unlocked by a signal from the control unit may be used in combination.
  • the steering wheel operation may be disabled by a signal from the control unit. In any case, it is sufficient that the user can change whether or not the user can open the lid by a signal from the control unit.
  • the washing machine includes the drum 106 that houses the clothing 105, the permanent magnets 100 and 101, and the three-phase windings 102, 103, and 104, and the electric motor 109 that drives the drum 106.
  • a lid 196 that opens and closes the opening of the drum 106 and a lid lock portion 200 that locks the lid 196 are provided.
  • the inverter circuit 117 is supplied with power from the DC power supply 144 and supplies current to the electric motor 109 using the plurality of switching elements 111, 112, 113, 114, 115, and 116.
  • it has the control part 118 which performs on-off control of switching element 111,112,113,114,115,116.
  • the control unit 118 includes a current detection unit 119 that detects current, and a speed calculation unit 120 that receives the output of the current detection unit 119 and calculates the speed of the electric motor 109.
  • the control unit 118 controls the switching elements 111, 112, 113, 114, 115, and 116 so that the input voltage of the electric motor 109 is kept substantially zero during the braking period of the drum 106, and after the speed becomes a predetermined value or less.
  • the lid 196 can be opened by the lid lock unit 200. Thereby, safety is ensured with a simple configuration.
  • the current detection unit 119 detects a current of two or more of the three phases
  • the speed calculation unit 120 detects two or more of the three phases. The speed is calculated based on the current value. Thereby, safety is ensured with a simple configuration.
  • control unit 118 outputs the phase of the permanent magnets 100 and 101 including the time integral value of the speed, the variable frequency oscillation unit 127, the phase error detection unit 126, and the coordinate conversion unit. 150.
  • coordinate conversion unit 150 converts the output of the current detection unit 119 from a stationary coordinate to a rotation coordinate using the phase, and outputs it.
  • the speed calculation unit 120 receives the current value signal at the rotation coordinate and calculates the speed. . Thereby, safety is ensured with a simple configuration.
  • the washing machine of the present embodiment has a voltage reduction period for controlling the switching elements 114, 115, and 116 so as to reduce the absolute value of the input voltage of the electric motor 109 before the braking period. Thereby, the overvoltage of the input of an electric motor can be avoided.
  • the washing machine of the present embodiment has a braking period before allowing the lid 196 to be opened by the lid lock unit 200. Thereby, safety is ensured with a simple configuration.
  • the washing machine of the present embodiment is a sensorless system in which the electric motor 109 does not have a position detector. Thereby, stop of the electric motor 109 can be determined appropriately, and a low-cost washing machine can be provided.
  • FIG. 9 is a block diagram of an inverter device according to Embodiment 2 of the present invention.
  • the configuration for calculating the speed and the phase is particularly different from that of the first embodiment. Since other parts are equivalent, only the parts different from the first embodiment will be described.
  • the speed calculation unit 221 includes a phase error detection unit 223 that receives Vd, Vq, Id, and Iq signals from the central control unit 135, and a variable frequency oscillation unit 127. Similar to the first embodiment, the variable frequency oscillator 127 has a P component and an I component, and an amplifier 128 that outputs the calculated speed ⁇ , and an integration that performs time integration of the calculated speed ⁇ and outputs the calculated phase ⁇ . A container 129.
  • the calculation speed ⁇ is also input to the phase error detection unit 223.
  • the phase error detection unit 223 stores parameters (resistance value, maximum inductance, minimum inductance) of the electric motor 109, and calculates the phase error ⁇ from the voltage command value and the detected current value.
  • the phase error ⁇
  • the calculated phase ⁇ is advanced with respect to the actual phase, ⁇ > 0, and when the calculated phase ⁇ is delayed with respect to the actual phase, ⁇ ⁇ 0.
  • the control loop of the amplifier 128 and the phase error detector 223 operates so that the input of the amplifier 128, that is, the output ⁇ of the phase error detector 223 becomes zero.
  • the speed calculation unit 221 receives the current value signals Id and Iq in the rotation coordinates and the voltage value signals Vd and Vq in the rotation coordinates, and calculates and outputs the speed ⁇ and the phase ⁇ .
  • calculation speed ⁇ is calculated using the previous ⁇ calculated for each carrier frequency of the inverter circuit 117 such as 64 ⁇ s, for example. As a result, a round tour of the control loop is avoided.
  • the absolute values of Vd and Vq are set to zero during the voltage reduction period, as in the first embodiment. Both Vd and Vq are set to zero during the short-circuit braking period.
  • the calculated phase ⁇ during the short-circuit braking period is kept equal to the actual phase, that is, the phases of the permanent magnets 100 and 101, and ⁇ during the short-circuit braking period can be obtained with extremely high accuracy.
  • phase error detection unit 223 As the configuration of the phase error detection unit 223, a somewhat complicated calculation is required, and a processor such as a microcomputer that realizes the calculation requires a high calculation power.
  • a processor such as a microcomputer that realizes the calculation requires a high calculation power.
  • the error of the calculated phase ⁇ with respect to the actual phase and the error between the actual speed and the calculated speed ⁇ can be suppressed very small.
  • the reliability for the calculated speed ⁇ is extremely high. Therefore, it is possible to realize an inverter device with high reliability in determining whether to stop. An inverter device with extremely high safety can be realized.
  • the inverter device has a high response with the calculated speed ⁇ and phase ⁇ in an operation called “sensorless” in which the electric motor 109 has no position sensor or speed sensor. Can operate as a performance washing machine. Therefore, the inverter device of the present embodiment can be shared with speed calculation and phase calculation during power running operation.
  • inverter device equipped with a position sensor such as a Hall IC. If a position sensor conventionally used for determining whether to stop has failed, multiple safety can be ensured.
  • the phase error ⁇ that is, the physical quantity that is the dimension of the angle in the phase error detector 223 is calculated.
  • sufficient characteristics are often obtained even using only the voltage component in the direction of the calculated magnetic flux. Thereby, the number of various calculations such as addition / subtraction / multiplication / division, trigonometric function, exponential function, and complex number calculation can be reduced. Therefore, a simpler calculation can be performed.
  • two orthogonal axes generally called vector control are often matched with the direction of magnetic flux generated by the permanent magnets 100 and 101.
  • the orthogonal two axes are not particularly limited to a configuration that perfectly matches the d-axis that is the magnetic flux axis.
  • a value different from the actual inductance value of the electric motor 109 may be used, and an axis slightly advanced in phase from the d axis may be used as a reference.
  • the electric motor 109 having the configuration in which the permanent magnets 100 and 101 are embedded deep inside the rotor has an advantage that current can be reduced rationally.
  • the error ⁇ is calculated by comparing with a voltage error, current error, speed error, inductance value error, resistance error, etc. May be. It is also possible to use a simplified mathematical expression in which the error ⁇ converges to zero and a term that has a small influence on the performance in actual operation is omitted. In any case, as the amount of calculation is reduced, the microcomputer to be used can be configured with a low capacity, low cost, and low power consumption.
  • FIG. 10 is a block diagram of an inverter device according to Embodiment 3 of the present invention.
  • the inverter device includes embedded neodymium permanent magnets 340 and 341 and three-phase windings 342, 343, and 344.
  • the drum 346 for storing the clothing 345 includes an electric motor 349 that serves as a prime mover that rotationally drives the pulley 347 via a pulley 347 and a belt 348, and six stone switching elements 351, 352, 353, 354, 355, and 356.
  • an inverter circuit 357 that performs reverse conversion from direct current to alternating current and supplies alternating currents Iu, Iv, and Iw to the electric motor 349, and a control unit 358 that controls on / off of the switching elements 351, 352, 353, 354, 355, and 356. And have.
  • control unit 358 includes a current detection unit 359 that detects the alternating currents Iu, Iv, and Iw.
  • the current detection unit 359 includes shunt resistors 361, 362, 363 and an amplifier 364 that convert the currents of the three phases into voltages.
  • the amplifier 364 receives voltages generated at both ends of the shunt resistors 361, 362, and 363 during the ON period of the switching elements 354, 355, and 356 on the low potential side, and with respect to the line currents Iu, Iv, and Iw of ⁇ 10 to + 10A. , Convert to analog voltage of 0-5V and output.
  • three shunt resistors 361, 362, 363 corresponding to each of the three phases are used as the current detection unit 359. These are structures called three shunts.
  • the current values Iu, Iv, and Iw of the three phases may be detected from a single shunt resistor called one shunt at the detection timing.
  • two to three current sensors that can be detected from a direct current component called DCCT may be used.
  • control unit 358 has a central control unit 366.
  • the control unit 358 performs signal generation for controlling the inverter circuit 357, signal reception of the output signals Iua, Iva, and Iwa from the current detection unit 359, etc., all in a digital manner.
  • the PWM circuit 367 receives the duty from the central control unit 366 and outputs a signal B that has been subjected to pulse width modulation (PWM) with a triangular wave having a period of 64 microseconds.
  • the signals S1 to S6 of the central control unit 366 give gate signals to the switching elements 351, 352, 353, 354, 355, 356, via the switching unit 369 and the drive circuit 370 provided between the central control unit 366 and the inverter circuit 357.
  • the K signal of the central control unit 366 is high, the switching unit 369 is in the state shown in FIG. 10, and S1 to S6 are adopted.
  • the switches in the switching unit 369 in FIG. 10 are connected to the lower side.
  • the DC power supply 374 is composed of an AC power supply 371 of AC 230 V 50 Hz, a full-wave rectifier 372, and a capacitor 373.
  • DC power supply 374 supplies DC voltage VDC to DC voltage detection circuit 378 in inverter circuit 357.
  • the DC voltage detection circuit 378 includes resistors 376 and 377.
  • the output A of the DC voltage detection circuit 378 is output to the central control unit 366 as an analog voltage signal. In the central control unit 366, the output A is A / D converted and processed as a digital value.
  • FIG. 11 is a block diagram showing a detailed configuration of the central control unit 366 of the inverter device according to Embodiment 3 of the present invention.
  • the component constituting the central control unit 366 is often a one-chip microcomputer.
  • the configuration including the outer portion of the central control unit 366 in FIG. 10 may be realized by software of one microcomputer.
  • signals Iua, Iva, and Iwa corresponding to the three-phase currents Iu, Iv, and Iw are input to the first coordinate conversion unit 380 together with the calculated phase ⁇ signal.
  • conversion to Id and Iq is performed using (Equation 3), that is, conversion from stationary coordinates to rotation coordinates is performed, and Id and Iq are output.
  • Subtraction units 381 and 382 are provided, and the error between the set values Idr and Id and the error between the set values Iqr and Iq are calculated, respectively.
  • the outputs of the subtracting units 381 and 382 are input to error amplifying units 383 and 384 for applying a gain of PI (proportional and integral).
  • the outputs Vd and Vq are input to the second coordinate conversion unit 388 together with the phase ⁇ signal, and are converted from the dq coordinates to the values of the three-phase voltage command values Vu, Vv, and Vw using (Equation 4). Done.
  • the voltage command values Vu, Vv, and Vw are input to the PWM unit 389, and a triangular carrier wave having a period of 64 ⁇ s is applied at a ratio of the three-phase voltage command value to the A signal.
  • the PWM unit 389 generates upper and lower drive signals S1 to S6 by adding an instantaneous value comparison with the carrier wave and a dead time to the voltage command values Vu, Vv, and Vw.
  • the current detector 359 is configured to detect all three phases of current. However, if the current of two phases in the three-phase windings 342, 343, and 344 of the electric motor 349 is detected, the remaining one phase can be calculated according to Kirchhoff's law. Therefore, only two-phase detection may be performed.
  • the speed estimation unit 390 stores parameters (resistance value, maximum inductance, minimum inductance) of the electric motor 349, and uses the voltage equation of the electric motor 349 to estimate the speed of the electric motor 349 without a speed sensor.
  • the speed estimation unit 390 receives the outputs Id and Iq of the first coordinate conversion unit 380 and the inputs Vd and Vq of the second coordinate conversion unit 388, and outputs estimated speeds ⁇ and ⁇ 2.
  • the speed estimation unit 390 calculates ⁇ corresponding to the phase error from the voltage value and current value of the electric motor 349. Error amplification having an integral or proportional integral element is performed and fed back so that ⁇ converges to zero.
  • the integrator 392 receives the output ⁇ 2 of the speed estimation unit 390, integrates ⁇ 2 over time, and outputs a phase ⁇ signal that is reset to zero when 2 ⁇ is reached.
  • the central control unit 366 further includes a subtraction unit 394, an error amplification unit 395, an Idr setting unit 396, a short circuit brake control unit 398, and a sequence generation unit 399.
  • the subtraction unit 394 calculates the difference between the speed setting values ⁇ r and ⁇ .
  • the error amplifying unit 395 applies a gain of PI (proportional, integral) to the output of the subtracting unit 394.
  • the Idr setting unit 396 determines a set value Idr from the calculated speed ⁇ .
  • the sequence generator 399 generates a speed set value ⁇ r and a brake request signal BRQ.
  • Sequence generator 399 transmits and receives various signals to and from external components in order for the inverter device to operate as a washing machine.
  • the various signals include a stop button signal Sstop, a water supply valve signal Skb, a drain valve signal Shb, a lid lock signal Srk, a lid closing signal Scl, and the like.
  • the sequence generator 399 transmits and receives various signals related to the operation of the electric motor 349.
  • the switching unit 400 receives the signal Ka from the sequence generation unit 399 after the speed of the drum 346 becomes substantially zero during braking, and switches each contact from a to b. Thereby, the switching unit 400 switches the set value Idr, the set value Iqr, and the phase ⁇ values to the outputs Idr0, Iqr0, and ⁇ 0 of the signal generator 401.
  • the short-circuit current determination unit 403 sets the Cs signal to high when all the absolute values of the instantaneous values of the current signals Iua, Iva, and Iwa for three phases in the short-circuit state are less than 0.6A.
  • FIG. 12 is a block diagram of the short-circuit brake control unit 398 of the inverter device according to Embodiment 3 of the present invention.
  • the short circuit brake control unit 398 includes a function generator 405, an integrator 406, and a delay unit 407.
  • the integrator 406 when the INTEG is low, the integral value Duty is zero, which is the initial value.
  • the time integration operation is started from the point when INTEG rises to high, whereby Duty is output.
  • the duty that is the output of the integrator 406 is used as the input of the function generator 405.
  • the integrator 406 has a built-in function to limit the duty by an upper limiter that is limited by 100%. By this limiting operation, the duty finally reaches a peak at 100% which is the upper limit value, and at that stage, the PWM shifts to the beta-on state.
  • the voltage drop of the IGBT and the diode in the low potential side switching elements 354, 355, and 356 and the voltage drop due to the wiring from the inverter circuit 357 to the motor 349 are the motor 349.
  • an input voltage for example, about 2 to 3 V remains.
  • Such a voltage is considered to be a category of approximately zero.
  • FIG. 13 is a graph showing input / output characteristics of the function generator 405 of the inverter device according to the third embodiment of the present invention.
  • the horizontal axis represents input and the vertical axis represents output. Since the output of the function generator 405 is an input of the integrator 406, it has the meaning of the short circuit time ratio expansion rate dDuty / dt.
  • a function of the increasing speed dDuty / dt with respect to the Duty is calculated instead of counting the time from the start.
  • a straight line or a stepped line may be used instead of the curve shown in FIG. Thereby, the burden of calculation in the microcomputer can be reduced.
  • the short-circuit brake control unit 398 stops the electric motor 349 in a brake state when some abnormality occurs in the washing machine and at the time of the break of operation.
  • the short-circuit brake controller 398 gradually sets the input of the electric motor 349 to a short-circuit state. That is, the gate voltages of the switching elements 351, 352, 353, 354, 355, and 356 in the inverter circuit 357 are controlled so that the voltage between the three-phase input terminals becomes substantially zero.
  • FIG. 14 is a diagram showing an internal configuration of an inverter device called a drum type washing machine according to Embodiment 3 of the present invention as viewed from the side.
  • the drum 346 for storing the clothing 345 is rotated by the power transmitted from the electric motor 349 to the pulley 410 via the belt 348.
  • An inverter circuit 357 that supplies a three-phase alternating current to the electric motor 349 is controlled by the control unit 358.
  • the drum 346 rotates inside the resin receiving tube 411. Opening and closing of the water supply valve 413 and the drainage valve 414 is controlled by a water supply valve signal Skb and a drainage valve signal Shb from the control unit 358. Thus, water is supplied and drained into the receiving tube 411, and washing and dehydration are performed together with a separately supplied detergent.
  • a lid 416 that can be opened and closed is provided in front of the drum 346.
  • the lid 416 is provided with a handle 417 for the user to open and close the lid 416.
  • the lid 416 is closed, and the safety of the user and the scattering of water are prevented.
  • the lid 416 is partially made of transparent glass, and the washing state in the drum 346 can be seen even during the washing operation.
  • the state where the lid 416 is opened by the operation of the handle 417 is indicated by a broken line.
  • the lid 416 opens and closes around a hinge portion connected to the main body.
  • a sliding door configuration, a folding configuration, a shutter configuration, or a configuration that can be detached from the main body may be used.
  • the lid lock unit 419 holds the lid 416 in a closed state.
  • the lid lock unit 419 includes a solenoid 420, a plunger 421, a spring 422, and a lock control circuit 423. In the illustrated state where the solenoid 420 is not energized, the lid 416 is in a locked state. Therefore, even if the user pulls the handle 417 or performs any other operation, the lid 416 cannot be opened.
  • the lock control circuit 423 energizes the solenoid 420 by the lid lock signal Srk from the control unit 358 to release the lock. Once unlocked, the user can pull handle 417 to open lid 416.
  • the lid detection switch 425 detects the open / closed state of the lid 416.
  • the lid closing signal Scl becomes low and is transmitted to the control unit 358. From the aspect of ensuring safety, AC current is not supplied from the inverter circuit 357 to the electric motor 349. Therefore, the drum 346 does not rotate.
  • the lid lock unit 419 releases the locked state by energizing the solenoid 420. As a result, the user can open the lid 416.
  • the stop button 426 As for the case where the dehydration operation is stopped, in addition to the case where the predetermined dehydration time has been reached, the user operates the stop button 426, the stop button 426 generates a stop button signal Sstop, and an abnormality such as an overload. This is the case. In any case, an abnormal signal in the control unit 358 is generated, the electric motor 349 is braked, and the drum 346 is stopped. When the drum 346 is stopped, a stop determination is made by the brake request signal BRQ of the control unit 358, and then the lid lock unit 419 releases the locked state. When the locked state is released, the user can open the lid 416 by pulling the handle 417.
  • FIG. 15 is an operation waveform diagram when the brake request signal BRQ of the inverter device according to the third embodiment of the present invention causes a short-circuit brake.
  • (a) shows the brake request signal BRQ
  • (b) shows the K signal
  • (c) shows the Duty.
  • the brake request signal BRQ of the central control unit 366 becomes high at time T1 from the power running period, and at the same time, the K signal changes from high to low. Since Duty is zero at this time, the IGBT portions of the switching elements 351, 352, 353, 354, 355, and 356 move to an all-off period Td1 of 5 ms in which all of them are turned off.
  • the ratio (Duty) of the ON time of the low potential side switching elements 354, 355, and 356 shown in (c) is a short circuit time ratio. Subsequent to the all-off period, T2 to T3 become a short circuit time ratio expansion period in which the duty increases. On the other hand, the high-potential side switching elements 351, 352, and 353 are kept off by the action of the switching unit 369.
  • the expansion speed of the short circuit time ratio (Duty) during the short circuit time ratio expansion period decreases with time, and decreases as the short circuit time ratio approaches 100%.
  • the input voltage of the motor 349 is positive / negative as the induced electromotive force generated by the rotation repeats as an instantaneous value, but it is forced to zero during the short circuit time, and the absolute value is suppressed.
  • the short-circuiting time ratio expansion period from T2 to T3 is a voltage reduction period in which the switching elements 354, 355, and 356 are controlled so that the absolute value of the voltage decreases as the short-circuiting time increases.
  • the short circuit time ratio Duty becomes maximum, that is, 100%, and the short circuit braking period in which the kinetic energy of the load is absorbed is entered.
  • the voltage drop of the IGBT and the diode in the low potential side switching elements 354, 355, and 356 remains as an input voltage of the electric motor 349, for example, about 2 to 3V.
  • the voltage drop due to the wiring from the inverter circuit 357 to the electric motor 349 is also equivalent. However, such a voltage is considered to be a substantially zero category, that is, a short circuit.
  • the expansion rate dDuty / dt of the short circuit time ratio is gradually decreased.
  • the speed condition of the electric motor 349 at the time of entering the short-circuit braking period is varied over a wide range, a transient current jump can be prevented.
  • the duty enlargement speed near T2 Under the condition where the speed is high, the duty enlargement speed near T2 can be designed, and under the condition where the speed is low, the duty enlargement speed near T3 can be designed.
  • the short circuit time ratio expansion rate dDuty / dt in the vicinity of T3, which is the latter half of the short circuit time ratio expansion period can be minimized. This can be achieved by designing the transient current jump under medium to low speed conditions within an acceptable range.
  • FIG. 16 is an operation waveform diagram of the inverter device according to the third embodiment of the present invention.
  • FIG. 16 shows operation waveforms before and after the electric motor 349 and the drum 346 as a load are stopped after a further time has elapsed from the period shown in FIG.
  • (a) is the speed of the drum 346
  • (b) is the current waveform of Iu, Iv, and Iw
  • (c) is an operation waveform diagram showing the Cs signal output from the short-circuit current determination unit 403.
  • (D) is an operation waveform diagram showing a K signal which is an input signal to the switching unit 369
  • (e) is a lid lock signal Srk inputted to the lid lock unit 419.
  • the electric motor 349 in the short-circuit braking state gradually decreases in speed, and at the same time, the frequency of the line current decreases approximately in proportion to the speed.
  • the amplitude of the line current also eventually decreases and converges to zero when the speed becomes zero.
  • the output of the current detection unit 359 in the case of zero current is about 2.5 V, which is almost in the middle of the 5 V power supply.
  • the values when the switching elements 354, 355, and 356 before the start of operation are turned off are stored as offset values corresponding to zero current, used, and handled by the absolute values of the line current of each phase. .
  • the time from when the short-circuit brake is entered to when it is stopped depends on the speed of the electric motor 349 and the moment of inertia of the load when the short-circuit brake is entered. It also depends on the inductance and resistance value of the electric motor 349, the voltage (VCE (SAT)) when the switching elements 354, 355, and 356 are turned on. Since the time from when the short-circuit brake is entered to when it stops is not a fixed time, the current value, which is a physical phenomenon that appears due to the decrease in speed, is used in this embodiment to reduce the speed to a sufficiently low speed. Detects the state that has occurred.
  • the Cs signal is set to high at time T1 when the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw all fall below 0.6A.
  • the speed of the drum 346 is reduced to about 7 r / min.
  • the short-circuit brake control unit 398 sets the K and Ka signals to high at time T2 when a delay time of 0.15 seconds has elapsed after receiving the Cs signal that has become high at T1.
  • the states of the switching unit 369 and the switching unit 400 are changed to enable the on / off control of the six stone switching elements 351, 352, 353, 354, 355, and 356.
  • controlled currents are supplied from the DC power supply 374 to the windings 342, 343, and 344 of the electric motor 349 in a form in which Idr0, Iqr0, and ⁇ 0 from the signal generator 401 are effectively operated.
  • control unit 358 controls the switching elements 351, 352, 353, 354, 355, and 356 so as to supply current from the DC power supply 374 to the windings 342, 343, and 344.
  • the outputs Idr0, Iqr0, and ⁇ 0 of the signal generator 401 are all 0 at the time T2, but only Idr0 becomes 3A at T3 when 20 ms elapses, and this continues for 300 ms.
  • the lid lock signal Srk is sent high from the control unit 358 to the lid lock unit 419.
  • the lid lock unit 419 is energized to the solenoid 420, and the user can open the lid 416.
  • an instruction from the sequence generation unit 399 may move to the next process necessary as a washing machine.
  • FIG. 17 is a flowchart when the brake is applied when the dehydrating operation or the like is completed and in the middle according to the third embodiment of the present invention.
  • step S430 when the brake operation start is started (step S430), the process proceeds to the short circuit brake (BRQ) (step S431), and as described in FIG. 15, the short circuit braking period starts after the voltage reduction period.
  • BRQ short circuit brake
  • step S434 when it is determined that the deceleration has progressed to a speed close to the stop, the process proceeds to current supply (step S434).
  • the absolute values of the line currents of all phases of U, V, and W all exceed 0.6A.
  • step S435 When the current control is valid, it is determined whether or not the absolute value of the line current exceeds 0.6 A (step S435). If YES, the process proceeds to unlocking (step S437), where the solenoid 420 is energized and the user can open the lid 416.
  • the operation shown in FIG. 17 is performed once even when the power of the inverter device is turned on. For example, even when braking of the previous operation is not completed, if there is still rotation in the drum 346, in order to avoid the danger of the user as much as possible, the user cannot open the lid 416. The state of the lid lock part 419 is maintained.
  • the control unit 358 can be realized with a simple program configuration. Also for the current at the final stage of the short-circuit braking period, the absolute current value is handled using the output value of the current detection unit 359 in the correct zero current state as an offset value. Therefore, for example, when a failure occurs in the current detection unit 59 during the short-circuit braking, there is a high possibility that the output signal is fixed regardless of the actual current value such as 0V or 5V. In that case, the possibility that the Cs signal becomes high is extremely low, and high safety is ensured.
  • the switching elements 351, 352, 353, 354, 355, and 356 are controlled so as to supply current from the DC power supply 374 to the windings 342, 343, and 344.
  • the disconnection of the wiring is determined depending on whether or not the current supply is made effective. For this reason, even if a disconnection occurs during the short-circuit braking period, the user cannot open the lid 417 of the lid lock portion 419. Therefore, safety is ensured.
  • the current value to the electric motor 349 in the current supply period exceeds 0.6 A in all the windings 342, 343, and 344, but may be less than that. If the current is equal to or higher than the minimum resolution of the current detector 359, the current control is effectively established. When there is no disconnection or the like of the wiring, the current detection unit 359 has a reaction, so that a difference between when the disconnection occurs and when it is normal can be detected. Thereby, judgment from the applied voltage during current control can also be used together.
  • the period should be further increased or the current value should be further increased. Is required.
  • the positioning operation it is not essential that the positioning operation be performed, and it is sufficient if it is possible to determine whether or not a disconnection failure has occurred simply by whether or not current control works effectively. Even in the case where the positioning operation is performed reliably, the energization of the DC current for 1 second or more leads to a prolonged operation time and a waste of resources due to electric energy consumption.
  • the length and current value of the current supply period used in the present embodiment are relatively small values exceeding 300 ms and 0.6 A, respectively. Therefore, the rotation of the drum 346 by the torque generated immediately after the start of the current supply period. Is suppressed to 1 rotation or less per minute.
  • the current in the state where the input of the electric motor 349 is short-circuited is sufficiently small, and it is confirmed whether or not there is a disconnection when it is almost stopped.
  • the positioning operation that is, the operation for setting the phase difference between the generated DC magnetic field and the d axis to a sufficiently small value is not necessarily required. Therefore, by setting the current supply period to a minimum period of 500 ms or less, no new movement of the drum 346 occurs during that period. Therefore, it is possible to determine a stop in a short time, and it is possible to realize a high-quality inverter device that does not waste or move.
  • the torque for positioning increases as the current value increases.
  • the torque product product of generated torque and time
  • the movement (angular acceleration) of the new drum 346 due to the torque product is suppressed to a negligible level.
  • the kinetic energy generated in the current supply period due to friction of the bearing of the drum 346 and the like is absorbed in a very short time, and the drum 346 is stopped. Therefore, it is possible to more reliably determine the presence / absence of disconnection based on the current value that greatly exceeds the minimum resolution of the current detection unit 359. Therefore, a high-quality inverter device can be realized in a short time without wasteful movement.
  • the inverter device of the present embodiment is effective from the viewpoint of ensuring the safety of the user and the quality.
  • the rotation axis of the drum 346 is horizontal, but it may be vertical or oblique.
  • the power transmission path for rotationally driving the drum 346 is also shown using the pulley 410 and the belt 348.
  • gears may be used, or a motor provided directly on the shaft of the drum 346 and rotated at the same speed as called direct drive may be used.
  • the configuration of the lid lock portion 419 is not limited to the configuration described in this embodiment.
  • a plurality of lid lock portions may be provided.
  • a first lid lock unit that can be unlocked at any time by a user's handle operation and a second lid lock unit that is unlocked by a signal from the control unit may be used in combination.
  • the steering wheel operation may be disabled by a signal from the control unit. In any case, it is sufficient that the user can change whether or not the user can open the lid by a signal from the control unit.
  • the control unit 358 supplies current to the windings 342, 343, and 344 from the DC power source 374 after the speed of the drum 346 becomes substantially zero during braking of the electric motor 349.
  • the switching elements 354, 355, and 356 are controlled so as to be supplied.
  • the lid 417 can be opened by the lid lock portion 419. Thereby, safety can be ensured with a simple configuration.
  • control unit 358 switches the switching elements 354, 355, and the like so that the output of the current detection unit 359 becomes a predetermined value after the speed of the drum 346 becomes substantially zero during braking. 356 is controlled. Then, the lid 417 can be opened by the lid lock portion 419. Thereby, safety can be ensured with a simple configuration.
  • the lid lock unit 419 causes the lid to be closed. The state where 417 cannot be opened is continued. Thereby, safety can be ensured with a simple configuration.
  • FIG. 18 is a block diagram of central processing unit 440 of the inverter device according to Embodiment 4 of the present invention.
  • the control unit 440 includes a short circuit brake control unit 441, a sequence generation unit 442, a switching unit 443, and a signal generator 444.
  • the input signals Vd, Vq, and ⁇ of the second coordinate converter 388 are switched to Vd0, Vq0, ⁇ 0 from the signal generator 444.
  • the input signal ⁇ of the first coordinate conversion unit 380 is switched to ⁇ 0 from the signal generator 444.
  • a predetermined voltage is applied to the electric motor 349.
  • FIG. 19 is an operation waveform diagram of the inverter device according to the fourth embodiment of the present invention.
  • FIG. 19A shows the speed of the drum 346
  • FIG. 19B shows the current waveforms of Iu, Iv, and Iw
  • FIG. 19C shows the Cs signal output from the short-circuit current determination unit 403.
  • (d) shows a K signal as an input signal to the switching unit 369
  • (e) shows a lid lock signal Srk inputted to the lid lock unit 419.
  • This embodiment is different from the first embodiment in the operation after time T3.
  • the length of the current supply period is as short as 20 ms.
  • the current value is set to a value slightly exceeding 0.6 A, which is close to the lower limit that can be detected without causing a noise problem in the current detection unit 359.
  • FIG. 20 is a flowchart in the case where the brake is applied when the dehydrating operation or the like is completed and in the middle in the fourth embodiment of the present invention.
  • step S450 when the brake operation starts (step S450), the process proceeds to the short circuit brake (BRQ) (step S451), and as described in FIG. 15, the short circuit braking period starts following the voltage reduction period.
  • BRQ short circuit brake
  • step S454 when it is determined that the deceleration has progressed to a speed close to the stop (step S452), the process proceeds to voltage supply (step S454).
  • the Kb signal becomes high, and for a period of 20 ms, a positive voltage is applied to the U terminal and a negative voltage common to both the V and W terminals is applied from the DC power supply 374 through the switching elements 351, 352, 353, 354, 355, and 356.
  • step S455 in the current value determination, whether or not the minimum value of each phase of the peak of the absolute value of the line current for 20 ms is compared with the threshold value of 0.6 A (step S455). Judgment is made. In the case of reaching, the process moves to unlocking (step S457), where the solenoid 420 is energized and the user can open the cover 416.
  • step S458 the user is informed that an error has occurred while maintaining the state where the user cannot open the lid 416, and the user's safety. Is secured.
  • settings may be made with U, V, and W phase voltage values. Although it is a simple structure, when it is disconnected, it can be reliably determined that no current flows.
  • the torque product (product of torque and time) generated during the current supply period becomes small.
  • the angular velocity 1 rad is very small, one revolution or less per minute. Thereby, it stops in about 100 ms due to friction of a bearing or the like.
  • the inverter device can eliminate such a sensation and can realize an excellent inverter device in terms of quality.
  • the speed of the drum 346 is less than one revolution per minute after the speed of the drum 346 becomes substantially zero during braking. Thereby, high safety of the user can be realized.
  • FIG. 21 is a diagram showing operation waveforms of respective parts before and after the current supply period to the electric motor 349 after the speed of the drum 346 becomes substantially zero during braking in the fifth embodiment of the present invention.
  • (a) shows currents Iu, Iv, Iw supplied to the windings 342, 343, and 344 of the electric motor 349
  • (b) shows the Cs signal
  • (c) shows the K signal.
  • the waveform of the current supplied from the inverter circuit 359 to the electric motor 349 is different, but the other parts are the same as those in the third and fourth embodiments.
  • a belt 348 is used as a power transmission path between the electric motor 349 and the drum 346.
  • T3 to T4 are set to 500 ms in the current supply period, and the supply current is increased. Thus, even when the clothes 345 are in the drum 346, the positioning operation at the time T4 is reliably completed. The operation after T4 will be described below.
  • FIG. 22 is a diagram showing the phases of the permanent magnets 340 and 341 of the electric motor 349 when the belt 348 according to the fifth embodiment of the present invention is normal and when the belt 348 is disconnected (or disconnected).
  • (a) is a phase at time T4
  • (b) and (c) are phases at time T6
  • (d) and (e) are phases at time T8.
  • the number of permanent magnets 340 and 341 is the number of poles, in FIG. 22, a two-pole machine is used, and the mechanical angle and the electrical angle are equally easy to understand. Actually, it may be 4 poles, 6 poles, 8 poles, or the like.
  • the equivalent moment of inertia of the drum as viewed from the motor 349 axis is a value obtained by dividing the moment of inertia Jd at the axis of the drum 346 by the square of the pulley reduction ratio.
  • the value is considerably larger than Jm. That is, the difference due to the presence or absence of the belt 348 is very large.
  • the positioning operation in which the drum 346 is rotated by the belt 348 is effectively performed even if the belt 348 is normal.
  • the current supply time and the current value are set to values that do not allow positioning when the belt 348 is present.
  • the current is supplied again for a very short period of 2 ms with the same phase as the T3 to T4 period.
  • the inductance value L is obtained from (Equation 5) from the relationship between the current rising speed dI / dt and the voltage V during this period.
  • T7 to T8 is a final current supply period before the lid lock unit 419 is released (a state in which the user can open the lid 417).
  • the belt 348 is normal and the wiring to the electric motor 349 is not broken. Further, it can be detected that all paths from the inverter circuit 359 to the drum 346 are normal and in a stopped state. If they are not satisfied, it is determined that a failure in the power transmission path, that is, a belt 348 breakage is detected. As a result, the lid lock unit 419 continues to be in a state where the user cannot open the lid 417. Therefore, an inverter device with higher safety can be realized.
  • the current supply for obtaining the inductance L is a current source that is current controlled.
  • the present invention is not limited to the current source.
  • a calculation may be performed by applying a predetermined voltage V and calculating from the magnitude of current or the rate of increase in current (dI / dt).
  • a short-time current is intermittently supplied or a weak current is continuously supplied while changing the phase and current value with time. You may do it. If the current or voltage is supplied so that the drum 346 and the electric motor 349 hardly rotate at least when the belt 348 is in a normal state, it is effective to investigate the direction of the d-axis and the q-axis.
  • the rotor position using the mutual inductance is determined from the voltage and current values of components that are electrically shifted by 90 degrees with respect to the supplied voltage and current phase. It does not matter.
  • the belt 348 since the belt 348 is used as a power transmission path, it is slightly disadvantageous in terms of reliability such as belt detachment and belt breakage as compared with other types of power transmission paths.
  • the configuration of the present embodiment that appropriately detects belt detachment is highly effective.
  • the washing machine has the power transmission path 348 between the electric motor 349 and the drum 346, and the control unit 358 causes the electric motor after the speed of the drum 346 becomes substantially zero during braking.
  • the control unit 358 causes the electric motor after the speed of the drum 346 becomes substantially zero during braking.
  • FIG. 23 is a diagram illustrating operation waveforms of respective parts before and after a current supply period to the electric motor 349 after the speed of the drum 346 becomes substantially zero during braking in the inverter device according to the sixth embodiment of the present invention.
  • the mechanism anti-resonance frequency in the electric motor 349 shaft is calculated as follows. That is, mainly due to the torsion spring constant K [Nm / rad] at the shaft of the electric motor 349 due to the elasticity of the belt 348 in the longitudinal direction and the moment of inertia Jm [kg square meter] of the electric motor 349.
  • the mechanism anti-resonance frequency in the electric motor 349 axis that is, the resonance frequency f at which the angular velocity and the angular acceleration with respect to the torque are maximized is calculated by (Equation 6) of simple vibration.
  • the angular velocity (speed) and torque (force) of the mechanical system are replaced with the voltage and current of the electric system, respectively, so that the impedance becomes a maximum frequency, so the expression of the mechanical anti-resonance frequency is also correct.
  • resonance and anti-resonance are combined and described as resonance.
  • the mechanism anti-resonance frequency is included in the mechanism resonance frequency.
  • this vibration mode is different from that generated when a belt used for measuring the tension of the belt 348 is played as a string.
  • This vibration mode is determined by the rigidity (reciprocal of elasticity) due to the belt 348 extending and contracting in the length direction, the length of the belt tension, the radius of the pulley portion on the motor 349 side, and the pulley portion. In this embodiment, it is 55 Hz.
  • the anti-resonance frequency f is substantially constant under the condition that the moment of inertia Jd of the drum 346 is large to some extent.
  • the moment of inertia Jd of the drum 346 alone with respect to the anti-resonance frequency f is 0.3 [kg square meter], the influence of the clothing 345 and water as contents is relatively small.
  • the frequency of the supplied current is changed to 30 to 80 Hz in the current supply period T10 to T11.
  • the current supplied to the electric motor 349 does not generate a unidirectional torque, but generates a positive and negative alternating torque.
  • the frequency includes a component of 55 Hz which is a mechanism resonance frequency by the electric motor 349, the belt 348, and the drum 346. Therefore, the electric motor 349 serving as the prime mover of the drum 346 generates an alternating torque in the frequency range including the mechanical resonance frequency and before and after that.
  • the alternating torque generated in the electric motor 349 due to the alternating current supplied between the VWs is a solid line when there is a maximum point R of the voltage absolute value
  • the maximum point R is different from the broken line when the belt 348 is detached. Therefore, it is determined that the belt 348 is in a normal state by detecting the presence of the R point.
  • an alternating torque of the resonance frequency component of the mechanical element including the prime mover is generated in the electric motor 349 serving as a prime mover for rotationally driving the drum 346 serving as a load via the belt 348.
  • induced electromotive force of the permanent magnets 340 and 341 that is substantially proportional to the magnitude of vibration (speed amplitude) is generated in the windings. Therefore, the presence / absence of the belt 348 is determined from the presence / absence of the mechanism resonance frequency by detecting the amplitude of vibration of the motor 349 serving as the prime mover based on the amplitude of the input voltage of the motor 349.
  • the drum 346 since the current frequency is particularly set to 30 to 80 Hz, the drum 346 does not generate a new motion for detection as the movement of the drum 346 during the current supply period. Therefore, even in the vicinity of the drum 346, it can be suppressed to a very small vibration of 0.1 mm or less. Further, even if the user looks at the drum 346 through the cover 417 having transparent glass, the user does not feel distrust or anxiety, and the quality is extremely high. Even when the belt 348 is detached or cut, the abnormality can be detected with high accuracy. Therefore, it can be firmly confirmed that the drum 346 is completely stopped, and an extremely safe inverter device can be secured.
  • the present embodiment is convenient because the drum 346 does not start to move to determine whether the belt 348 is normal.
  • the user can open the cover 417 when the drum lock 346 is completely stopped in the state of the cover lock unit 419. Therefore, safety can be ensured.
  • a position sensor such as a Hall IC is not provided, and a configuration called “sensorless” is adopted. Therefore, it is possible to obtain various effects such as low cost and elimination of influence due to position variation of the position sensor. After that, the disconnection of the wiring to the electric motor 349 is detected, and an abnormality such as detachment of the power transmission path (belt) 348 is also detected. Thereby, a highly safe inverter device is realized in which the user opens the lid 417 in a state where the drum 346 is reliably stopped.
  • the anti-resonance frequency at which the mechanical impedance (angular velocity / torque) is maximized is used.
  • a resonant frequency at which the mechanical impedance (angular velocity / torque) is minimized can also be used.
  • the change in the moment of inertia of the drum 346 can be covered by changing the frequency (sweep etc.) slightly wider. Subsequently, the mass of the clothing 345 in the drum 346 may be detected, for example, the degree of dehydration may be detected.
  • the belt 348 can be removed from an inverter device having a position sensor. Therefore, it is possible to determine whether the belt 348 is detached or not with higher accuracy than a position sensor that changes a signal every 60 degrees of electrical angle that is normally used.
  • the short-circuit braking is used in the third to sixth embodiments, but electrical braking may be applied to the motor 349 by other configurations. It suffices if it is possible to detect that there is no disconnection in the path from the inverter circuit 359 to the drum 346 when the electric motor 349 stops, that there is no disconnection, and that there is no abnormality in the power transmission path. Accordingly, it is only necessary that the user can open the lid 417 in a state where the drum 346 is in a true stop state.
  • the power transmission path 348 is a belt, and the frequency of the current supplied to the electric motor during the current supply period is a mechanical resonance frequency component by the electric motor 349, the belt, and the drum 346. Is provided. Accordingly, the presence or absence of the belt can be detected with very high accuracy without applying new motion to the drum 346, and high safety can be realized.
  • FIG. 24 is a block diagram of an inverter device according to Embodiment 7 of the present invention.
  • the inverter device includes permanent magnets 500 and 501, and three-phase windings 502, 503, and 504.
  • a load (drum) 506 for housing the clothing 505 includes an electric motor 509 that is rotationally driven via a pulley 507 and a belt 508, and six stone switching elements 511, 512, 513, 514, 515, and 516.
  • an inverter circuit 517 that supplies AC currents Iu, Iv, and Iw to the electric motor 509 and a control unit 518 that controls on / off of the switching elements 511, 512, 513, 514, 515, and 516 are provided.
  • the control unit 518 includes a current detection unit 519 that detects the alternating currents Iu, Iv, and Iw.
  • the current detection unit 519 includes shunt resistors 521, 522, and 523 that convert the currents of the three phases into voltages, and an A / D converter 524.
  • the A / D converter 524 performs A / D conversion while the switching elements 514, 515, and 516 on the low potential side are on.
  • control unit 518 has a central control unit 535, and performs signal generation for controlling the inverter circuit 517 and reception of output signals Iua, Iva, and Iwa signals from the current detection unit 519 in a digital manner.
  • the PWM circuit 536 receives the duty from the central control unit 535, and outputs a signal B obtained by performing pulse width modulation (PWM) with a triangular wave having a period of 64 microseconds on the duty.
  • Signals S1 to S6 of the central control unit 535 provide gate signals of the switching elements 511, 512, 513, 514, 515, and 516 via the switching unit 537 and the drive circuit 538 provided between the central control unit 535 and the inverter circuit 517.
  • the K signal of the central control unit 535 is high, the switching unit 537 is in the state shown in FIG. 24 and S1 to S6 are adopted.
  • each switch in the switching unit 537 is connected to the lower side.
  • the inverter circuit 517 is supplied with a DC voltage VDC from a DC power supply 544 constituted by an AC power supply 541 of AC 230 V 50 Hz, a full-wave rectifier 542 and a capacitor 543.
  • An output A of the DC voltage detection circuit 548 configured by the resistors 546 and 547 is input to the central control unit 535 as an analog voltage signal. Inside the central control unit 535, this is also processed as an A / D converted digital value.
  • FIG. 25 is a block diagram showing a detailed configuration of the central control unit 535 of the inverter device according to the seventh embodiment of the present invention.
  • the component constituting the central control unit 535 is often a one-chip microcomputer.
  • the configuration including the portion outside the central control unit 535 in FIG. 24 may be realized by software of one microcomputer.
  • signals Iua, Iva, Iwa corresponding to the three-phase currents Iu, Iv, Iw are input to the first coordinate conversion unit 550 together with the estimated phase ⁇ signal.
  • conversion to Id and Iq is performed using (Equation 7), that is, conversion from stationary coordinates to rotation coordinates is performed, and Id and Iq are output.
  • Subtraction units 551 and 552 are provided, which calculate the error between the set values Idr and Id and the error between the set values Iqr and Iq, respectively.
  • the outputs of the subtracting units 551 and 552 are input to error amplifying units 553 and 554 that apply a PI (proportional and integral) gain.
  • the outputs Vd and Vq are input to the second coordinate converter 558 together with the phase ⁇ signal that is the output of the integrator 555, and the three-phase voltage command values Vu, Vv, Conversion to the value of Vw is performed.
  • the voltage command values Vu, Vv, and Vw are input to the PWM unit 559, and a triangular carrier wave having a period of 64 ⁇ s is applied at a ratio of the three-phase voltage command value to the A signal.
  • Voltage command values Vu, Vv, Vw are subjected to instantaneous value comparison with the carrier wave and added with dead time to generate upper and lower drive signals S1 to S6.
  • the current detector 519 is configured to detect all three phases of current. However, if the current of two phases in the three-phase windings 502, 503, and 504 of the electric motor 509 is detected, the remaining one phase can be calculated according to Kirchhoff's law. Therefore, only two-phase detection may be performed.
  • the central control unit 535 of the present embodiment further includes a subtraction unit 560 that calculates the difference between the speed setting values ⁇ r and ⁇ , and an error that causes the gain of PI (proportional, integration) to act on the output of the subtraction unit 560. And an amplifying unit 561.
  • an Idr setting unit 562 that determines a set value Idr from the estimated speed ⁇ and a short-circuit brake control unit 563 are provided. Further, it includes an abnormality detection unit 565 and a sequence generation unit 567 that generates a set speed ⁇ r when the electric motor 509 is driven.
  • the abnormality detection unit 565 outputs an abnormality detection signal B99RQ when there is some abnormality in the inverter device, for example, overcurrent or overvoltage of each unit or excessive vibration.
  • the sequence generation unit 567 generates a brake request signal B4RQ when stopping the electric motor 509 in a braking state at the time of the break of operation as a washing machine such as washing and dehydration.
  • the switching elements 511, 512, 513, 514, 515, and 516 in the inverter circuit 517 are set so that the input of the electric motor 509 is gradually short-circuited, that is, the voltage between the three-phase input terminals becomes substantially zero.
  • Control That is, the gate control is performed on the low potential side switching elements 514, 515, and 516 in the inverter circuit 517 with a duty common to three stones, and the high potential side switching elements 511, 512, and 513 are kept off.
  • the short-circuit current determination unit 570 sets the Cs signal to high when all the absolute values of the instantaneous values of the three-phase current signals Iua, Iva, and Iwa in the short-circuit state are less than 0.6A.
  • the Idr setting unit 562 outputs 0A as the set value Idr when the ⁇ value is 400 r / min or less in terms of speed of the load (drum) 506, and exceeds 400 r / min in terms of speed of the load (drum).
  • the weak magnetic field control is applied.
  • the speed estimation unit 556 stores the parameters (resistance value, maximum inductance, minimum inductance) of the electric motor 509, and estimates the speed of the electric motor 509 without the speed sensor. At this time, the voltage equation of the electric motor 509 is used.
  • the speed estimation unit 556 receives the outputs Id and Iq of the first coordinate conversion unit 550 and the inputs Vd and Vq of the second coordinate conversion unit 558, receives the estimated speed ⁇ , and the estimated speed ⁇ 2 that is input to the integrator 555. Is output.
  • Speed estimation section 556 calculates ⁇ corresponding to the phase error from the voltage value and current value of electric motor 509.
  • the speed estimator 556 is configured by a feedback system in which error amplification having an integral or proportional integral element is performed so that ⁇ corresponding to the phase error converges to zero.
  • FIG. 26 is a block diagram of the short-circuit brake control unit 563 of the inverter device according to Embodiment 7 of the present invention.
  • the short-circuit brake control unit 563 includes an OR circuit 574 that obtains a logical sum of the brake request signal B4RQ and the abnormality detection signal B99RQ, and a comparator 575 that receives the A signal.
  • a voltage increase generation unit 576, an adder 577, and a holder 578 are included.
  • a value obtained by adding a voltage increase equivalent to 50V to the DC voltage VDC when the brake request signal B4RQ or the abnormality detection signal B99RQ becomes high is used as a threshold value from the holder 578, and the comparator 575. Is supplied to the negative input.
  • the short circuit time ratio expansion speed command unit 580 includes a function generator 581, a function generator 582, a switching unit 583, and a holder 585.
  • the short circuit time ratio expansion speed signal that is the output of the short circuit time ratio expansion speed command unit 580 is input to the integrator 586.
  • the output (brake request signal) BRQ of the OR circuit 574 is input to the delay unit 587.
  • the integral value Duty is zero, which is the initial value. Time integration is started from the point when INTEG rises to high, and Duty is output.
  • the duty that is the output of the integrator 586 is used as the input of the short circuit time ratio expansion speed command unit 580.
  • the function generators 581 and 582 function to increase the short-circuit time ratio according to the time from the start of the short-circuit time ratio expansion period, with a simple configuration in which the time count from the start of integration is omitted. The speed can be changed.
  • the condition that the output of the comparator 575 becomes high is when the threshold is exceeded due to the rise of the signal A.
  • the holder 585 holds the duty and fixes the input of the function generator 582.
  • the switching unit 583 is switched from a to b, thereafter, a constant output value from the function generator 582 becomes the short circuit time ratio expansion speed.
  • the duty in that case rises at a constant speed with time.
  • the integrator 586 has a built-in function to limit the duty by an upper limiter that is limited at 100%. Due to this limitation, the duty finally reaches a peak at 100% which is the upper limit value, and at that stage, the state shifts from PWM to a beta-on state.
  • FIG. 27 is a graph showing input / output characteristics of the function generator 581 and the function generator 582 of the inverter device according to the seventh embodiment of the present invention.
  • the horizontal axis represents input and the vertical axis represents output.
  • a solid line A indicates input / output characteristics of the function generator 581
  • a broken line B indicates input / output characteristics of the function generator 582.
  • the duty is connected as it is to the input of the function generator 581 on the horizontal axis.
  • the function generator 582 is connected to the input terminal with a holder 585 interposed therebetween.
  • the output on the vertical axis in FIG. 27 has the meaning of the short-circuit time ratio expansion rate dDuty / dt because it will be input to the integrator 586 later.
  • a function of the increasing speed dDuty / dt with respect to the Duty is provided instead of counting the time from the start.
  • a straight line or a stepped value may be used instead of the curve shown in FIG. 27, and the calculation burden on the microcomputer is reduced. You can also.
  • FIG. 28 is an operation waveform diagram when the brake request signal BRQ of the inverter device according to Embodiment 7 of the present invention causes a short-circuit brake.
  • (a) shows the brake request signal BRQ
  • (b) shows the K signal
  • (c) shows the Duty.
  • the brake request signal BRQ of the central control unit 535 becomes high at the time T1 from the power running period, and at the same time the K signal becomes low from high. Since Duty is zero at this time, all IGBT portions of switching elements 511, 512, 513, 514, 515, and 516 are off, and an all-off period of 5 ms is generated by the action of delay unit 587.
  • the on-time ratio (Duty) of the low potential side switching elements 514, 515, and 516 shown in (c) is the short-circuit time ratio. Subsequent to the all-off period, T2 to T5 become a short circuit time ratio expansion period in which the duty increases. On the other hand, the high-potential side switching elements 511, 512, and 513 are kept off by the action of the switching unit 537.
  • the time change of the short circuit time ratio Duty has a smooth curve characteristic as shown by the solid line A in FIG. Accordingly, as shown by the solid curve in FIG. 28 (c), the temporal gradient (short-circuiting time ratio expansion rate) continuously decreases with time.
  • the broken line in FIG. 28C is an example when the characteristic of the function generator 581 is stepped, and is a broken line passing through (T3, D3) and (T4, D4).
  • the expansion rate of the short circuit time ratio (Duty) decreases with time and decreases as the short circuit time ratio approaches 100%.
  • the input voltage of the electric motor 509 repeats positive / negative as an instantaneous value of the induced electromotive force generated by rotation. However, it is forced to zero during the short circuit time, and the absolute value is suppressed.
  • the switching element 514, 515, 516 is controlled so that the absolute value of the voltage is reduced by increasing the short circuit time in the short circuit time ratio expansion period from T2 to T5. It becomes a period.
  • the duty reaches 100%.
  • the electric motor 509 is in a beta-on state by the control unit 518 performing on / off control of the low-potential side switching elements 514, 515, and 516 in the inverter circuit 517.
  • the short-circuit time ratio Duty is kept at the maximum, that is, 100%, This is a short-circuit braking period that absorbs kinetic energy.
  • the motor 509 can be reduced in size and cost compared to a configuration in which the motor is directly connected to a load, which is called direct drive.
  • direct drive since the inductance tends to be small, the transient current jump increases.
  • the maximum current during operation of the inverter device may be exceeded, the need to suppress the jump of current increases.
  • the design is such that the short circuit time ratio (Duty) expansion speed in T3 to T5, which is the latter half of the short circuit time ratio expansion period, is increased within a range that allows a transient current jump under medium to low speed conditions. Thereby, an overvoltage can be suppressed to the minimum.
  • Duty short circuit time ratio
  • the output HV of the comparator 575 never goes high.
  • the operation shown in FIG. 28 is performed during short-circuit braking under any speed condition, and the switching unit 583 is always connected only to the terminal a. Therefore, the switching unit 583, the function generator 582, the holder 585, the comparator 575, the voltage increase generation unit 576, the adder 577, and the holder 578 are also unnecessary. That is, it can be omitted from the components.
  • FIG. 29 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention.
  • the operation waveform diagram of FIG. 29 shows a case where the capacitance of the capacitor 543 is small and the short circuit brake is caused by the brake request signal BRQ from a relatively high speed operation and the increase of the DC voltage VDC is large.
  • 29A is a brake request signal BRQ
  • FIG. 29B is a duty
  • FIG. 29C is a DC voltage VDC output from the DC power supply 544
  • FIG. 29D is an output HV signal of the comparator 575.
  • the brake request signal RRQ becomes high, and during the 5 ms all-off period up to t1, when the speed of the motor 509 is high, the DC voltage VDC increases due to regeneration to the DC power supply 544 by induced electromotive force. Begins. From t1 onward, the DC voltage VDC increases further as the duty increases.
  • the value obtained by adding the output of the voltage increase generation unit 576 by the adder 577 to the VDC0 at the time t0 is held in the holder 578.
  • the output HV of the comparator 575 changes to high and enters a high voltage region.
  • the function generator 582 outputs an output corresponding to the duty 83% at that time by the action of the holder 585.
  • the contact b of the switching unit 583 is connected and input to the integrator 586. For this reason, it functions as the short circuit time ratio expansion rate dDuty / dt and is held by the holder 585. Therefore, at t3, the duty increases linearly at a constant short-circuiting time ratio expansion rate until the duty reaches 100%.
  • the configuration of the present embodiment enables a design that satisfies both overvoltage and overcurrent at any motor 509 speed.
  • the output of the HV signal as a threshold value obtained by adding 50 V to VDC0, the occurrence of overcurrent can be easily suppressed against the change in the voltage of the AC power supply 541.
  • a constant value may always be used as Vth, or an upper limit and a lower limit for Vth may be provided. As a result, there is no malfunction in the voltage change range of the AC power supply 541 used, and a design that reliably prevents overcurrent and overvoltage can be achieved.
  • the electric motor 509 called sensorless can be configured to have a low cost configuration without a position detection sensor and a speed detection sensor.
  • the short circuit brake (short circuit braking) period does not matter regardless of the phase order. Control to transition.
  • FIG. 30 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention.
  • the operation waveform diagram of FIG. 30 shows that the inverter device becomes a short-circuit brake in response to the brake request signal B99RQ, and more time elapses from the period shown in FIGS. 28 and 29 before and after the motor 509 and the load (drum) 506 stop. Operation waveforms are shown.
  • FIG. 30A shows the load (drum) speed
  • FIG. 30B shows the current waveforms of Iu, Iv, and Iw
  • FIG. 30C shows the Cs signal output from the short-circuit current determination unit 570.
  • the speed of the electric motor 509 in the short-circuit brake state gradually decreases.
  • the frequency decreases approximately in proportion to the speed.
  • the amplitude of the line current also finally decreases and converges to become zero when the speed becomes zero.
  • the time from when the short-circuit brake is applied until it stops depends on the following parameters. That is, the speed of the electric motor 509 at the time when the short-circuit brake is entered, the moment of inertia of the load, the inductance and resistance value of the electric motor 509, the voltage (VCE (SAT)) when the switching elements 514, 515, and 516 are on. . Since the time to stop is not a fixed time, a current value that is a physical phenomenon that appears due to a decrease in speed is used in this embodiment. As a result, it is detected whether the speed has sufficiently decreased.
  • the Cs signal is set to high at a time Tja when all of the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw are less than 0.6 A. That is, the load (drum) speed is reduced to about 7 r / min.
  • the sequence generation unit 567 receives the Cs signal that has become high, the sequence generation unit 567 proceeds to the next step as a washing machine when a delay time of 0.3 seconds has elapsed.
  • the position sensor and speed sensor are not used, and a low-cost and simple sensorless configuration is used. Can be done appropriately.
  • the control unit 518 short-circuits the input terminals of the three-phase windings 502, 503, and 504 by the on / off control of the switching elements 514, 515, and 516 of the inverter circuit 517.
  • FIG. 31 is a block diagram of short circuit brake control unit 590 of the inverter device according to the eighth embodiment of the present invention.
  • configurations other than the short-circuit brake control unit 590 are the same as those in the seventh embodiment shown in FIG.
  • the OR circuit 574, the integrator 586, and the delay unit 587 are the same as those in the seventh embodiment.
  • FIG. 32 is a graph showing the characteristics of the short circuit time ratio expansion speed setting unit 592 of the inverter device according to the eighth embodiment of the present invention.
  • the horizontal axis is Duty
  • the vertical axis is the short-circuiting time ratio expansion rate dDuty / dt.
  • dDuty / dt is switched in four stages depending on the ⁇ A value input from the holder 596.
  • the operation when the short circuit brake of the inverter device of the present embodiment is entered is as follows.
  • the value of A corresponding to the DC voltage VDC at the time when the output of the OR circuit 574 becomes high is held by the holder 595.
  • INTEG becomes high, and the integrator 586 starts time integration from the initial value zero. From the condition at the left end of FIG. 32, the duty increases gradually.
  • the short circuit time ratio Duty reaches a predetermined value of 70%, the output of the comparator 600 switches from low to high.
  • the short-circuit time ratio expansion speed setting unit 592 selects the four-stage characteristics shown in FIG.
  • the characteristic that ⁇ A is large at high speed and the characteristic that ⁇ A is small at low speed is selected.
  • the inverter device of this embodiment operates reasonably. Therefore, in the inverter device of the present embodiment, although it has a relatively simple configuration, it is possible to suppress the occurrence of overvoltage and overcurrent when entering the short-circuit braking period under conditions in a wide speed range.
  • FIG. 33 is a block diagram of the short circuit brake control unit 605 of the inverter device according to the ninth embodiment of the present invention.
  • components other than the short-circuit brake control unit 605 have the same configuration as that of the seventh embodiment shown in FIG.
  • the inverter device of the present embodiment has the following configuration.
  • a delay unit 606 that outputs a signal obtained by delaying the brake request signal BRQ by 3 ms.
  • a line current detection unit 607 that calculates and outputs the maximum value among the three phases of the absolute values of the instantaneous values using the output signals Iua, Iva, Iwa of the current detection unit 519.
  • a holder 608 that holds the brake request signal BRQ at a high timing.
  • Short circuit time ratio expansion speed setting unit 610 Short circuit time ratio expansion speed setting unit 610.
  • FIG. 34 is a graph showing the characteristics of the short circuit time ratio expansion speed setting unit 610 of the inverter device according to the ninth embodiment of the present invention.
  • the horizontal axis is Duty
  • the vertical axis is the short-circuiting time ratio expansion rate dDuty / dt.
  • dDuty / dt is switched to a curve of several stages. When the output signal of the holder 608 is high, the output is large.
  • FIG. 35 is an operation waveform diagram of a portion that enters the short-circuit braking period of the inverter device according to the ninth embodiment of the present invention.
  • (a) is the short-circuit time ratio Duty
  • (b) is the load (drum) 506, and the line currents Iu, Iv, Iw, and (c) when the load 506 is relatively low at 300 revolutions per minute are the load (drum). Shows the waveforms of the line currents Iu, Iv, and Iw at a relatively high speed of 1000 revolutions per minute.
  • the induced electromotive force by the permanent magnets 500 and 501 in the electric motor 509 is low at the low speed shown in (b). For this reason, no regenerative current is generated to the DC power supply 544 during the free-run period.
  • the induced electromotive force by the permanent magnets 500 and 501 in the electric motor 509 is high at the high speed shown in FIG. For this reason, a regenerative current is generated to the DC power supply 544 during the free-run period. Therefore, there is a clear difference between low speed and high speed.
  • the design can be made such that no problem due to overcurrent and overvoltage occurs at any speed.
  • a curve is used for the characteristics shown in FIG. 34, but a step function may be used instead of the curve. Moreover, it is good also as what switches only by an electric current value irrespective of Duty.
  • the short circuit time ratio expansion rate is changed according to the magnitude of the line current at t1 within the free run period.
  • the current detection timing is not particularly limited during the free run period. After the free run period ends, it may be a point in time after the duty rise starts. A plurality of timings may be combined.
  • the line current detection unit 607 that receives the output of the current detection unit 519 detects the magnitude of the current.
  • frequency elements can also be detected. At high speed, frequency detection can be used effectively from the free run period. Even at low speeds, it is possible to detect the frequency during the short circuit time ratio expansion period.
  • FIG. 36 is a block diagram of short-circuit brake control unit 612 of the inverter device according to Embodiment 10 of the present invention.
  • parts other than the short-circuit brake control unit 612 are the same as those in the seventh embodiment.
  • the short circuit time ratio expansion speed command unit 613 receives a speed signal ⁇ from the speed detection unit 615 that detects the speed of the electric motor 509.
  • the speed detector 615 is provided in the electric motor 509, and has a Hall IC 617 that outputs high and low according to the polarity of the magnetic poles of the opposing permanent magnets 500 and 501, and a speed calculator 618 that calculates the speed from the output. is doing.
  • FIG. 37 is a graph showing the characteristics of the short circuit time ratio expansion speed command unit 613 of the inverter device according to the tenth embodiment of the present invention.
  • the horizontal axis represents a speed signal input from the speed detection unit 615
  • the vertical axis represents the short-circuiting time ratio expansion speed dDuty / dt serving as an output.
  • the output increases as the speed increases regardless of the duty.
  • the short-circuiting time ratio increases linearly up to 100% with the passage of time. Therefore, the inclination changes depending on the speed.
  • the short-circuiting time ratio expansion period is as short as about 100 ms, for example, and the speed change that occurs during that period is small, the difference from the case where a holder or the like is provided is small, and any configuration is possible. is there.
  • the speed detection unit 615 using the Hall IC 617 is used.
  • the Hall IC is not used in an electric motor drive system generally called sensorless. Instead, estimation from the input voltage and input current of the electric motor 509 is performed. Therefore, for example, by using a speed estimation signal immediately before the free-run period, a configuration in which position detection and speed detection of the Hall IC or the like are not used can be achieved.
  • the washing machine of this embodiment includes at least one of the voltage detection unit 548 that detects the voltage of the DC power supply 544, the current detection unit 519 that detects current, and the speed detection unit 615 that detects the speed of the electric motor 509. Select the detector.
  • the control unit 518 changes the expansion rate of the short circuit time ratio in the short circuit time ratio expansion period. Thereby, even if the speed condition of the electric motor 509 at the time of entering the short-circuit braking period is changed over a wide range, it is possible to prevent a transient current jump.
  • control unit 518 changes the expansion speed of the short circuit time ratio according to the time from the start of the short circuit time ratio expansion period. Therefore, even if the speed condition of the electric motor 509 at the time of entering the short-circuit braking period is changed over a wide range, it is possible to prevent a transient current jump.
  • FIG. 38 is a diagram showing an internal configuration of an inverter device called a drum-type washing machine according to Embodiment 11 of the present invention viewed from the side.
  • the inverter device has an electric motor 624 that is rotationally driven via a load (drum) 621 that houses clothing 620, a pulley 622, and a belt 623.
  • an inverter circuit 626 that supplies a three-phase alternating current to the electric motor 624 is provided.
  • the inverter circuit 626 is operated by a control signal Sd for 6 stones from the control unit 628.
  • the control signal Sd corresponds to the brake request signal B99RQ and the brake request signal B4RQ described in the seventh embodiment. After passing through the voltage reduction period, it shifts to a short circuit braking period. Further, as described in the seventh embodiment, the control signal Sd performs stop determination during the short circuit braking period.
  • the load rotates inside the resin receiving cylinder 630. Opening and closing of the water supply valve 633 and the drain valve 634 is controlled by the water valve signal Skb and the drain valve signal Shb from the control unit 628. As a result, water is supplied and drained into the receiving tube 630, and washing and dehydration are performed together with a separately supplied detergent.
  • a lid 636 that can be opened and closed is provided in front of the load (drum) 621.
  • the lid 636 is provided with a handle 637 for the user to open and close the lid 636.
  • the lid 636 is closed, and the safety of the user and the scattering of water are prevented.
  • the state in which the lid 636 is opened by operating the handle 637 is indicated by a broken line.
  • the lid lock unit 640 holds the lid 636 in a closed state.
  • the lid lock unit 640 includes a solenoid 641, a plunger 642, a spring 643, and a lock control circuit 644. In the illustrated state where the solenoid 641 is not energized, the lid 636 is in a locked state. Therefore, even if the user pulls the handle 637 or performs any other operation, the lid 636 cannot be firmly opened by the lid lock portion 640.
  • the lock control circuit 644 energizes the solenoid 641 by the lid lock signal Srk from the control unit 628. The user can open the lid 636 by releasing the lock.
  • the lid detection switch 646 detects the open / closed state of the lid 636.
  • the lid closing signal Scl becomes low and is transmitted to the control unit 628. From the aspect of ensuring safety, AC current is not supplied from the inverter circuit 626 to the electric motor 624. Therefore, the load (drum) 621 is not rotated.
  • a direct current may be supplied to the electric motor 624, and the load (drum) 621 is more reliably fixed in the rotating direction, so that sufficient safety can be ensured.
  • the lid lock signal Srk is sent to the lock control circuit 644, and the lid lock unit 640 energizes the solenoid 641.
  • the dehydration operation is stopped when the user operates the stop button 648 and the stop button signal Sstop is generated by the stop button 648 or when the inverter circuit 626 is overrun in addition to when the predetermined dehydration time is reached.
  • This is a case where an abnormality such as a load occurs and an abnormal signal Sab is generated. Any signal is input to the control unit 628, the electric motor 626 is braked, and the load (drum) 621 is stopped.
  • the controller 628 makes a stop determination, and then the lid lock unit 640 releases the locked state.
  • the lid 636 can be opened if the user pulls the handle 637.
  • FIG. 39 is a flowchart immediately after the power of the inverter device according to the eleventh embodiment of the present invention is turned on.
  • step S650 when the control unit 628 is activated, such as when the power switch of the inverter device is turned on, the microcomputer program that is configured starts (step S650).
  • step S651 The operation shifts from the start to the short-circuit brake (step S651), and the operation when the brake request signal B99RQ or the brake request signal B4RQ shown in FIG. 26 in the description of the seventh embodiment is generated is performed. to go into.
  • step S653 the solenoid 641 is energized, and the user can open the lid 636.
  • the lid 636 When the power is turned on, for example, when braking of the previous operation is not completed, if the lid 636 can be unlocked by the lid lock unit 640, the remaining rotation may cause danger to the user. May occur.
  • the lid lock unit 640 is controlled so that the user cannot open the lid 636 during operation.
  • the unlocked state that is, the user can open the lid 636 and put the hand into the drum 621. Even when the power is turned off, the lid 636 can be freely opened and closed by the user.
  • the user may not be able to open the lid 636 (locked state) when the power is turned off. Although the lid 636 is closed, it is possible that the rotation of the drum 621 remains.
  • the lid lock unit 640 In this state, when the power is turned on next time, the lid lock unit 640 immediately allows the user to open the lid 636. If the rotation of the drum 621 remains, use the lid lock unit 640. Can be at risk. In the present embodiment, there is a short-circuit braking period following the voltage reduction period after the power is turned on, and when the braking of the drum 636 is completed, the lid lock unit 640 is in a state in which the user can open the lid 636. Be controlled. Thereby, high safety is maintained.
  • a voltage reduction period and a short-circuit braking period are provided immediately after the power is turned on regardless of whether the lid lock unit 640 at the time when the power is turned on is in a locked state or an unlocked state. It is effective in terms of ensuring safety to provide a short-circuit braking period at least in the locked state. However, there is no difference in ensuring safety even when there is no voltage reduction period or short-circuit braking period when the power is turned on and the lid 636 is open when it is unlocked. . For this reason, the voltage reduction period and the short-circuit braking period immediately after power-on can be omitted.
  • the lid lock unit 640 allows the user to open the lid 636. To do. Thereby, danger can be eliminated. Therefore, a highly safe inverter device can be realized.
  • step S653 After appropriately determining the stop of the electric motor, the lock is released (step S653) so that the user can open the lid 636. Therefore, a highly safe inverter device can be realized.
  • step S651 braking by the brake request signal B99RQ or the brake request signal B4RQ is performed by the short-circuit brake (step S651).
  • the configuration is called sensorless without using a speed sensor or a position sensor, even if the rotation of the load (drum) 621 remains immediately after the power is turned on, the overcurrent and overvoltage of the inverter circuit 626 can be reduced. Can be suppressed. Therefore, the inverter device of the present embodiment is extremely effective regardless of the speed and position (phase) of the load (drum) 621.
  • the rotation axis of the load (drum) 621 is horizontal, but it may be vertical or oblique.
  • the power transmission path for rotating the load (drum) 621 is also shown using the pulley 622 and the belt 623.
  • a gear may be used, or a motor (direct drum) 621 may be provided with a motor directly on the shaft of the load (drum) 621 so as to rotate at the same speed.
  • the configuration of the lid lock unit 640 is not limited to the configuration described in the present embodiment.
  • a plurality of lid lock portions may be provided.
  • a configuration in which a lid lock portion that can be unlocked at any time by a user's handle operation and a device that is unlocked by a signal from the control portion may be used in combination.
  • the steering wheel operation may be disabled by a signal from the control unit. In any case, it is sufficient that the user can change whether or not the user can open the lid by a signal from the control unit.
  • FIG. 40 is a block diagram of an inverter device according to Embodiment 12 of the present invention.
  • Equation 9 is an equation used by the three-phase / two-phase converter of the inverter device.
  • the inverter device includes a belt 746 serving as a power transmission path, a pulley 747, a load 748, a motor 750, a DC power source 751 that outputs a voltage VDC, an inverter circuit 758 that supplies an AC current to the motor 750, and a control circuit. 760.
  • the electric motor 750 includes permanent magnets 741 and 742 and three-phase windings 743, 744, and 745.
  • the inverter circuit 758 includes six switching elements 752, 753, 754, 755, 756, and 757.
  • the control circuit 760 controls on / off of the switching elements 752, 753, 754, 755, 756, and 757.
  • the DC power supply 751 outputs a DC voltage from itself, such as a battery, or rectifies a single-phase or three-phase 100V or 200V AC power supply having a frequency such as 50 Hz or 60 Hz with a rectifier, an electrolytic capacitor, etc. The one smoothed with is used.
  • the DC power supply 751 functions as a power source during power running.
  • the number of permanent magnets 741 and 742 is two in order to simplify the explanation, but in reality, it has a four-pole configuration. In a state where the permanent magnets 741 and 742 rotate once at a mechanical angle, the permanent magnets 741 and 742 rotate twice electrically (rotates twice at an electrical angle).
  • the control circuit 760 includes a gate drive circuit 761, a current detection unit 766, a frequency detection unit 768 that receives the output of the current detection unit 766, and periodically detects the frequency, and a stop determination unit 770 that determines stop of the electric motor 750.
  • the current detection unit 766 detects an alternating current input to the electric motor 750 using the resistors 762, 763, 764 and the amplifier circuit 765.
  • the frequency detection unit 768 includes a three-phase / two-phase conversion unit 772, a polar coordinate conversion unit 773, and a differentiation unit 774.
  • the three-phase / two-phase conversion unit 772 uses (Equation 9) to calculate the ⁇ component of the stationary coordinates ( ⁇ ) (the component in the same direction as the magnetomotive force of the U-phase current Iu) and the ⁇ component (from ⁇ to ⁇ / 2). (Advanced orthogonal component) is calculated.
  • Equation 9 is an example, and a cosine function (cos) and a sine function (sin) may be mixed and used.
  • a cosine function or a sine function may not be used.
  • the value used as the coefficient or constant may be a value that is appropriately multiplied by a real number as long as it is only used for the stop determination of the present embodiment.
  • a number with a square root may be substituted with an approximate fraction (rational number).
  • the control circuit 760 controls the switching elements 755, 756, and 757 to be turned on and the switching elements 752, 753, and 754 to be turned off during the short circuit braking period. Thereby, the input voltage of the electric motor 750 becomes substantially zero during the braking period of the load 748.
  • the frequency detection unit 768 calculates the angular velocity ⁇ from the magnitude of temporal change by differentiating the phase ⁇ of the current vector at the stationary coordinates ( ⁇ ) by the differentiating unit 774 within the short circuit braking period.
  • the stationary coordinates ( ⁇ ) are output from the three-phase / two-phase converter 772.
  • the frequency detection unit 768 outputs ⁇ that is a value corresponding to the frequency.
  • the output ⁇ of the frequency detector 768 is compared with the reference angular velocity ⁇ th in the comparator 777. If ⁇ > ⁇ th, the angular velocity is determined to be greater than a predetermined value, and the comparator 777 outputs a High signal.
  • of the polar coordinate conversion unit 773 is also led to the comparator 778 and compared with the reference current value Ith.
  • > Ith the magnitude of the current vector is determined to be larger than a predetermined value, and the comparator 778 outputs a high signal.
  • the AND circuit 779 outputs a logical product of the outputs of the comparators 777 and 778, and when
  • the stop determination unit 770 includes a 100 Hz clock oscillator 781, a counter 782, and a comparator 783.
  • the counter 782 When the signal from the AND circuit 779 input to the E terminal is High, the counter 782 is cleared to zero.
  • the clock oscillator 781 When the signal from the AND circuit 779 input to the E terminal is Low, the clock oscillator 781 outputs a value CNT obtained by counting up 100 Hz pulses to the comparator 783.
  • FIG. 41 is a diagram showing a current vector during a short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention.
  • the current vector of the current flowing into the electric motor 750 with respect to the stationary coordinate ⁇ is represented by Ia, and I ⁇ and I ⁇ are components of each axis, which corresponds to the output of the three-phase / two-phase converter 772.
  • the polar coordinate conversion unit 773 converts the current vector into polar coordinates, that is, an angle (phase) ⁇ from the ⁇ axis and an expression of an absolute value
  • FIG. 42 is an operation waveform diagram for the short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention.
  • 42A shows the U-phase current Iu waveform of the electric motor 750
  • FIG. 42B shows the output
  • FIG. 42C shows the output phase ⁇ waveform of the polar converter 773.
  • (d) shows the output ⁇ waveform of the differentiating unit 774
  • the current flowing into the three-phase motor 750 includes Iv and Iw (not shown) other than Iu shown in (a), and the phases are delayed by 120 degrees and 240 degrees with respect to Iu, respectively.
  • in (b) and ⁇ in (d) are very similar in that they finally become zero when the velocity finally becomes zero.
  • the time t1 when ⁇ ⁇ th is slightly earlier than the time t2 when
  • the stop determination is performed after the first predetermined time has elapsed after the angular velocity ⁇ has become equal to or less than the predetermined value.
  • the first predetermined time of 0.3 seconds is as follows with the motor 750 short-circuited.
  • the kinetic energy of the load 748 having a moment of inertia at a speed corresponding to the electrical angular speed ⁇ th is completely consumed, and the rotation speed is zero, that is, longer than the time until a complete stop state is reached. Value.
  • the stop determination signal S1 High is always output in a state where the load 748 is stopped.
  • the determination is not based on the current value (magnitude) in the short-circuit state but on the angular velocity ⁇ of the current vector at the stationary coordinates by the frequency detection unit 768.
  • it can be made insensitive about the dispersion
  • it can be made insensitive to variations in the magnitude of the short-circuit current generated by variations in the on-voltage (or on-resistance) of the switching elements 752, 753, 754, 755, 756, and 757. Therefore, stable stop determination can be performed.
  • braking is performed to cause the electric motor 750 to absorb the kinetic energy from the load 748. For this reason, only the short-circuit braking period in which the switching elements 755, 756, and 757 on the low potential side are kept on so that the input voltage of the electric motor 750 becomes substantially zero is assumed. However, there may be a period of braking other than the short-circuit braking period. For example, Iq is set to be negative using vector control, and short-circuit braking is performed in a period in which regenerative power is consumed as appropriate by effective use of a resistor or other electric load as long as the DC voltage VDC of the DC power supply 751 is not excessive. It may be included before the period.
  • the switching elements 755, 756, and 757 are not suddenly turned on all at once, but are sequentially turned on according to the phases of the permanent magnets 41 and 42, or the input voltage of the electric motor 750 is gradually changed within a predetermined period. You may control so that it may become zero. Thus, a period for preventing a transient overcurrent may be provided before the short circuit braking period.
  • At least one of the three-phase low-potential side switching elements performs pulse width modulation less than 100%.
  • a braking period in which the generated torque is negative may be provided.
  • the operation of the frequency detection unit 768 is set to the current angular velocity detection period in which the angular velocity ⁇ is calculated from the temporal change of the phase ⁇ of the current vector in the stationary coordinates in the short circuit braking period.
  • I is determined to be sufficiently high based on a threshold value such as Ith2, and forcibly stopped without particularly operating the frequency detection unit 768
  • the determination signal S1 may be Low.
  • a configuration that forcibly keeps the input of the stop determination unit 770 high may be added by using an OR circuit.
  • the upper limit of the speed range ( ⁇ range) in which the frequency detection unit 768 needs to detect ⁇ normally is lowered, and the electrical angular speed detection period becomes a part of the short-circuit braking period.
  • a low-cost or low-consumption energy consumption or a microcomputer using a low processing speed may be used.
  • the configuration of the frequency detection unit 768, the comparators 777 and 778, the AND circuit 779, the stop determination unit 770, etc. has been described with the notation of the hardware circuit diagram. However, in reality, it is also possible to perform software processing by preparing a program in the microcomputer.
  • the control unit 760 receives the output of the current detection unit 766 and periodically determines the frequency detection unit 768 that detects the frequency, and the stop determination that determines whether the electric motor 750 is stopped. And a short-circuit braking period for controlling the switching elements 755, 756, and 757 so that the input voltage of the electric motor 750 becomes substantially zero during the braking period of the load (drum) 748, and the stop determination unit 770
  • the electric motor 750 is determined to be stopped after the first predetermined time has elapsed since the output of the frequency detection unit 768 is no longer equal to or greater than the predetermined value. Thereby, it is possible to appropriately determine the stop of the electric motor 750 with a simple configuration.
  • the washing machine includes a current angular velocity detection period in which the frequency detection unit 768 calculates an angular velocity from a temporal change in the phase of the current vector at a stationary coordinate within the short-circuit braking period, and the angular velocity is predetermined. After falling below the value, stop determination is performed. Thereby, it is possible to appropriately determine the stop of the electric motor 750 with a simple configuration.
  • FIG. 43 is a block diagram of an inverter device according to Embodiment 13 of the present invention.
  • the control circuit 788 uses a microcomputer 789 and a ceramic oscillator 790.
  • Other components are the same as those in the twelfth embodiment.
  • Analog outputs Iu, Iv, and Iw from the current detection unit 766 are connected to input terminals of AD1, AD2, and AD3 of the microcomputer 789, respectively. It is converted into a digital value by an analog / digital converter configured internally by hardware. From the ceramic oscillator 790, a high-frequency clock signal is input to the Clock terminal, and calculation processing is performed with a signal of several tens of MHz.
  • the gate drive circuit 761 outputs a total of six signals of switching elements 752, 753, 754, 755, 756, and 757 as pulse width modulated PWM signals, and performs on / off control of each switching element. From the OUT terminal, a digital stop determination signal S1 is output as a result of running the program.
  • FIG. 44 is a flowchart of the program of microcomputer 789 of the inverter device according to the thirteenth embodiment of the present invention.
  • the microcomputer 789 has a built-in flash memory.
  • a flash writer In addition to rewriting with a special instrument called a flash writer, rewriting by a user can also be performed through various wired / wireless communication lines.
  • interrupt signals with a period of 128 ⁇ s are constantly generated.
  • a “128 ⁇ s interrupt” process is executed every 128 ⁇ s (step S795).
  • T1 ⁇ T1 + ⁇ T, T2 ⁇ T2 + ⁇ T an addition of ⁇ T of 128 ⁇ s is performed on the variables of T1 and T2 (step S796).
  • a “current calculation routine” step S797) for processing the signal of the current detection unit 766 is entered, and the values converted into digital values from the input values of AD1 to AD3 are captured by “Iu, Iv, Iw” (step S798). ), This is changing in amperes.
  • the current value here is represented by a signed variable with the direction from the inverter circuit 758 toward the electric motor 750 being positive, and the reverse current being negative.
  • step S799 the coordinates are converted into orthogonal coordinates ⁇ in the stationary coordinates (step S799).
  • the square of the magnitude (absolute value) of the current vector Ia is calculated by “Ia 2 ⁇ I ⁇ 2 + I ⁇ 2 ” (step S800).
  • Ia 2 > Ith 2 ?” It is determined whether or not the output level Ia of the current detection unit is greater than a predetermined value Ith (step S801).
  • the squared values are compared for both the output level Ia and the predetermined value Ith, but both square roots may be compared. As in this embodiment, when the squared values are compared with each other, the internal processing of the microcomputer 789 is performed at high speed.
  • step S801 If “Ia 2 > Ith 2 ?” Is No (step S801), that is, if the output level of the current detection unit 766 is less than a predetermined value, the process goes straight to the “stop determination unit” configured by the routine ( Step S810). In this case, the part for updating the detection frequency described below is skipped.
  • step S801 the process proceeds to the “frequency detection unit” configured in the routine (step S812).
  • the phase ⁇ of the current vector is calculated by “ ⁇ new ⁇ tan ⁇ 1 (I ⁇ / I ⁇ )” (step S813).
  • T1 ⁇ 375 ⁇ s?” Determines whether or not the elapsed time T1 from the time when the previous phase ⁇ is obtained is shorter than the first predetermined time (step S814). In the case of No, that is, when the elapsed time T1 is long, it is determined that it is too long to be used as the calculation interval of the angular velocity ⁇ described below, and the ⁇ calculation is not performed.
  • step S814 the change [radian] of the phase ⁇ from the time when the previous phase ⁇ was calculated is calculated as ⁇ in “ ⁇ ⁇ ⁇ new ⁇ old” (Ste S815).
  • step S816 the electrical angular frequency ⁇ is calculated (step S818), that is, the operation as the frequency detector is performed (step S812).
  • step S820 It is determined whether or not the output ⁇ of the frequency detection unit is equal to or greater than a predetermined value ⁇ th (step S820). If it is large, the process of “T2 ⁇ 0” is performed (step S821), and if it is small, the process is skipped. Therefore, the T2 value indicates the elapsed time from when the output ⁇ (step S812) of the frequency detection unit is no longer equal to or greater than the predetermined value ⁇ th. After “ ⁇ old ⁇ ⁇ new” and “T1 ⁇ 0”, the update of ⁇ and the elapsed time from the previous update are cleared (steps S823 and S825), and then the routine proceeds to the “stop determining unit”. (Step S810).
  • Tb 0.3 [seconds] is set (step S828).
  • “stop determination flag setting” is performed because the state has exceeded 0.3 seconds since the output ⁇ of the frequency detection unit is no longer equal to or greater than the predetermined value ⁇ th (step S829).
  • the “initial setting routine” by setting a value larger than 375 ⁇ s, such as “T1 ⁇ 1000 ⁇ s”, and setting “T2 ⁇ 0”, appropriate processing in the current angular velocity detection period can be started.
  • the stop determination flag is confirmed.
  • the processing necessary for the inverter device in the state where the stop determination is made is performed. Start. Incidentally, at the time of power running, the process for controlling the speed of the electric motor 750 can also be performed by the “3.3 ms cycle interrupt service routine”.
  • FIG. 45 is an operation waveform diagram of microcomputer 789 of the inverter device according to the thirteenth embodiment of the present invention. 45, (a) shows the magnitude (absolute value)
  • of the current vector, (b) shows the output of the electrical angle ⁇ , and (c) shows the output of the electrical angular velocity ⁇ . 45, the interrupt routine shown in FIG. 44 operates every ⁇ t 128 ⁇ s, and processing is performed at t1, t2, t3.
  • is because the mass of the load 48 is biased or the noise component is included in the current signals of Iu, Iv, and Iw.
  • the state is lower than the predetermined value Ith, that is, the output level of the current detection unit 766 is lower than the predetermined value Ith, and at other timings, it is higher than Ith.
  • the electrical angle ⁇ shown in (b) the rate of change (inclination) may actually fluctuate with the progress of braking (braking), but for the sake of simplicity, the rate of change of the electrical angle ⁇ is It is shown as almost constant.
  • the phase ⁇ of the current vector is calculated by “ ⁇ new ⁇ tan ⁇ 1 (I ⁇ / I ⁇ )” (step S813).
  • the electrical angular velocity ⁇ is also calculated when “ ⁇ ⁇ ⁇ / T1” is passed (step S818), and ⁇ is updated after the time td required for the calculation.
  • the phase ⁇ is not updated and ⁇ is not updated, and conversely, when the frequency detection unit has the output level
  • the elapsed time T1 from the previous phase ⁇ detection is 256 ⁇ s corresponding to 2 ⁇ T. Since “T1 ⁇ 375 ⁇ s?” Is Yes (step S814), ⁇ 5 is calculated and updated from the phase ⁇ change between 256 ⁇ s.
  • FIG. 46 is a diagram showing a case where the magnitude
  • has fallen below the predetermined value Ith twice at t2 and t3, at t4, the elapsed time T2 from the time t1 when the previous phase ⁇ was detected has reached 384 ⁇ s. In this case, “T1 ⁇ 375 ⁇ s?” Is No (step S814), and ⁇ is not calculated (updated).
  • the current angular velocity detection period may be entered even if the speed of the electric motor 750 is 50,000 revolutions per minute at the maximum.
  • One period (2 ⁇ [radian]) of the angular velocity (electrical angle) at that velocity is 600 ⁇ s.
  • the threshold value of 375 ⁇ s provided in the present embodiment directly indicates time, but the interrupt cycle is 128 ⁇ s. Therefore, it may be judged by the number of periodic interrupts, such as “when it is less than 2 times” and “when it is more than 3 times” of the interrupt cycle. Become. Since
  • the frequency detection unit stores the phase ⁇ of the current vector Ia at the stationary coordinate ⁇ when the output level
  • the detection frequency ⁇ is not updated.
  • the detection frequency ⁇ is calculated by division from the previous phase difference ⁇ and the elapsed time T2, and updated (step S812). Therefore, it is possible to realize stop determination with extremely high reliability and stability without worrying about erroneous detection due to a delay in circulation.
  • the magnitude of the current vector at the stationary coordinates ⁇ is used. This makes it possible to make a stable determination with a
  • the frequency detection unit 768 updates the detection frequency when the output level of the current detection unit 766 is equal to or higher than a predetermined value. Thereby, reliable stop determination can be performed.
  • the frequency detection unit 768 has a time interval for calculating the angular velocity within the current angular velocity detection period shorter than one cycle of the angular velocity at the maximum speed within the current angular velocity detection period. Let it be a period. Thereby, stop determination with high reliability and stability can be performed.
  • the frequency detection unit 768 when the frequency detection unit 768 has the output level of the current detection unit 766 equal to or higher than a predetermined value, the phase of the current vector at the stationary coordinate is stored, and the phase from the previously stored phase is stored.
  • the detection frequency is not updated.
  • the detection frequency is calculated and updated from the phase difference from the previous time and the elapsed time. I do. Thereby, reliable stop determination can be performed.
  • FIG. 47 is a flowchart of the inverter device according to the fourteenth embodiment of the present invention.
  • the hardware configuration is the same as that of the thirteenth embodiment. Only the algorithm of the control program written in the flash memory portion in the microcomputer 789 is different.
  • FIG. 47 particularly shows a flowchart of the “interrupt service routine with a period of 3.3 ms”.
  • the load stop estimation unit of the present embodiment realized by a routine starts processing from “3.3 ms interrupt” (step S841).
  • the “stop determination flag” it is determined whether or not the “stop determination flag set” (step S829) in FIG. 44 of the interrupt operation with a period of 128 ⁇ s has been performed (step S844). If the flag is set (High), the process proceeds to the transmission mechanism breakage detector (step S845).
  • the transmission mechanism breakage detector first determines a “breakage flag” (step S846). Here, in the case of Low, the process proceeds to the determination of “T3 ⁇ Tc?” (Step S847). In the present embodiment, the value of Tc is 10 seconds.
  • step S848 If “Yes” here, the “damage flag set” is executed, and the damage flag ⁇ High is executed (step S848). If “T3 ⁇ Tc?” Is No (step S847), the process proceeds to “Tu ⁇ 0” (step S849). Thereafter, the process proceeds to the determination of “T3> Tu?” (Step S850), and in the case of Yes, “load stop estimation flag set” is performed (step S851). At “END”, the “3.3 ms cycle interrupt service routine” ends (step S852).
  • T3 is a variable indicating an elapsed time after entering the short circuit braking period. If the stop flag becomes High at the time of T3 ⁇ Tc, the destruction determination is made with “destruction flag set” (step S848).
  • T3> Tc, the delay for load stop estimation is canceled by “Tu ⁇ 0” (step S849).
  • Step S850 a load stop is estimated using the “load stop estimation flag set” (step S851).
  • FIG. 48 is a graph showing characteristics of the load stop estimation unit (step S840) of the inverter device according to the fourteenth embodiment of the present invention.
  • the horizontal axis of (a) indicates the time Tmstop from the start of the short-circuit braking period until the motor 750 stops.
  • the vertical axis of (a) indicates the time Tlstop from the start of the short-circuit braking period until the load stop estimation unit sets the load stop estimation flag and outputs the load stop estimation signal (step S840).
  • (b) shows the value of the damage flag for the horizontal axis equivalent to (a), that is, the damage signal Sj.
  • the belt 746 in the power transmission path between the electric motor 750 and the load 748 is cut before the short circuit braking period, during the short circuit braking period, or when the belt 746 is detached from the pulley 747, the following occurs.
  • the braking action that is, the action of the motor 750 absorbing the kinetic energy of the load 748 is not performed. Even if the electric motor 750 is stopped, the load 748 may continue to rotate for a while due to inertia. In that case, the rotation of the electric motor 750 tends to stop in a short time after absorbing only the kinetic energy of only the electric motor 750 from the start of the short-circuit braking.
  • the transmission mechanism breakage detection unit detects abnormality of the transmission mechanism with a relatively simple configuration (step S845).
  • the delay time tex does not become a fixed time as a result.
  • the load stop estimation signal is output after at least the load 748 is stopped. Therefore, when there is a possibility that the person may touch the load 748, the safety problem can be prevented by setting the timing when the person is allowed to touch after the stop of the load 748.
  • the transmission mechanism breakage detection unit in the present embodiment outputs a breakage signal when the short-circuit braking period is shorter than the second predetermined time Tc (step S845).
  • the configuration is not limited to this.
  • the temporal change of the angular velocity ⁇ during the short-circuit braking period that is, the determination may be made when the angular acceleration is decelerated greater than a predetermined value. Conceivable.
  • the washing machine includes the transmission mechanism breakage detection unit that detects an abnormality in the power transmission path 746 between the electric motor 750 and the drum 748, and the drum stop estimation unit.
  • a breakage signal is received from the transmission mechanism breakage detection unit, a drum stop estimation signal delayed from the stop determination is output.
  • the transmission mechanism breakage detection unit outputs a breakage signal when the time from the start of the short-circuit braking period to the stop of the electric motor 750 is shorter than the second predetermined time. .
  • FIG. 49 is a diagram showing an internal configuration of the dehydrator according to the fifteenth embodiment of the present invention when viewed from the side.
  • a load 855 is a drum 857 having a large number of holes in which a material to be dehydrated 856 is accommodated, and a shaft 858 of the drum 857 is rotatably held by ball bearings 860 and 861.
  • the electric motor 863 has substantially the same configuration as the electric motor 750 of the twelfth embodiment.
  • the pulley 864 and the pulley 865 are each connected by a belt 866.
  • the drum 857 is driven to rotate, a centrifugal force is applied to the object to be dehydrated 856, dehydration is performed from the hole of the drum 857, water is received by the receiving cylinder 867 surrounding the periphery, and then guided to the drain hose 868 for dehydration operation. I do.
  • the inverter device 870 is provided with an inverter circuit 871 and a control circuit 872 having the same configurations as those described in Embodiments 12 to 14.
  • inverter device 870 includes solenoid drive circuit 875 that receives stop determination signal S ⁇ b> 1 from control circuit 872.
  • a door 877 that can be opened and closed, and the open state is indicated by a one-dot chain line.
  • a locking portion 880 for keeping the closed state is provided by a solenoid 881, an iron lock bar 882 that moves up and down by the solenoid 881, and a claw 883 that engages with the lock bar 882 in the closed state. It is configured. When the claw 883 and the lock bar 882 are engaged, the door 877 is not opened even if it is pulled. Therefore, the user is prevented from putting his hand into the drum 857.
  • the lock bar 882 When the current is supplied from the solenoid drive circuit 875 to the solenoid 881, the lock bar 882 is pulled up against the gravity by the magnetic field generated by the solenoid 881. For this reason, the lock is released.
  • the user can open the door 877 and touch a material to be dehydrated 856 with a hand or the like in the drum 857.
  • the door sensor 885 has a contact, detects the open / closed state of the door 877, and outputs it as an S2 signal. When the door 877 is closed, a High signal is transmitted to the control circuit 872.
  • FIG. 50 is an operation waveform diagram of the dehydrator according to the fifteenth embodiment of the present invention.
  • (a) shows the electric angular velocity ⁇
  • (b) shows the stop determination signal S1
  • (c) shows the waveform of the U-phase low-potential-side gate signal Sg of the inverter circuit 871.
  • (d) shows the current Ik supplied to the solenoid 881
  • (e) shows the waveform of the door opening / closing signal S2 until the user opens the door after stopping after entering the braking (brake) from dehydration. Show.
  • a gate signal with PWM applied for driving the electric motor 863 is supplied. Note that gate signals other than the low-potential side of the U phase are omitted. However, in the power running period, both are gate signals to which PWM is applied.
  • the gate signals on the low potential side all rise for the three phases U, V, and W, and are in a state called beta-on.
  • the input voltage of the electric motor 863 is in a short-circuit braking state that is substantially zero, and thereafter ⁇ gradually decreases.
  • the time measurement of 0.3 seconds that is the first predetermined time is started from the time when ⁇ reaches ⁇ th.
  • the drum 857 is stopped. S1 rises to high at t4, which is 0.3 seconds after the first predetermined time from t2, and the supply current Ik from the solenoid drive circuit 875 to the solenoid 881 rises.
  • Sg is in a low (off) state, and the short circuit braking is released.
  • Sg may continue to be high after t4, and the safety to the user against unexpected rotation of the drum 857 can be enhanced.
  • a configuration in which short-circuit braking is performed only during a period in which S2 is High is also possible.
  • the action of suppressing the movement of the drum 857 can also be obtained by passing a direct current of a predetermined magnitude through the electric motor 863. Therefore, a period for supplying a direct current from the inverter circuit 871 may be provided after t4.
  • the door 877 can be freely opened and closed, and since the user opened the door 877 at t5, S2 shown in (e) is Low.
  • the role of the S2 signal is used when driving the electric motor 863 with the door 877 closed from the viewpoint of preventing danger at the start of the dehydrating operation.
  • the logic prohibits activation. That is, the period from the start of the dehydration operation to t4 is a lock period for keeping the door 877 closed, and there is a lock period in the stop determination t4.
  • the first predetermined time from when ⁇ falls below ⁇ th until the stop determination is output is set to a short time of 0.3 seconds.
  • the delay time of the stop determination timing from the actual stop t3 of the drum 857 is limited to 0.17 seconds at the maximum. Therefore, the user does not waste time, can take out the dehydrated material 856 that has been dehydrated, and can use the time effectively.
  • a configuration like the transmission mechanism breakage detection unit described in the fourteenth embodiment may be used. That is, a configuration in which the door 877 is unlocked after the load stop estimation signal is also effective.
  • the belt 866 is cut, in the case of the dehydrator, there is a value of about 0.3 kg square meter even if the moment of inertia of the drum 857 is empty.
  • the reduction ratio (speed ratio) based on the diameter ratio of the pulleys 864 and 865 is 10: 1
  • the moment of inertia converted to the shaft of the electric motor 163 is 0.003 kg square meter.
  • a configuration is also conceivable in which the transmission mechanism breakage is detected from the magnitude of the angular acceleration with respect to the q-axis current while calculating the current vector in dq coordinates during braking.
  • the belt 866 is lost and there is a rapid deceleration as described above, the dq coordinate detection error tends to increase, and a complicated configuration is required.
  • the configuration of the present invention using the stationary coordinates in the short-circuit braking period is simple, and a highly reliable transmission mechanism breakage detection can be obtained, which is very effective.
  • the current is once supplied from the inverter circuit 871 to the electric motor 863, and it is detected from the relationship between the electric current and the voltage that the load torque connected to the electric motor 863 is not extremely small.
  • a transmission mechanism breakage detection period may be provided. As a result, it is possible to realize a safer dehydrator that takes into consideration.
  • the housework equipment is clothing that is to be dehydrated.
  • some commonly called washing machines, washing dryers, etc. have a function as a dehydrator. Such a thing may be used.
  • a fully automatic washing machine that automatically performs washing and rinsing in order
  • dehydration operations such as dehydration of water containing detergent and dewatering of rinsed water.
  • the process proceeds to the next step (sequence) after dehydration is completed.
  • the stop determination of the inverter device of the present invention Even in the case of an apparatus having such a sequence after dewatering, it is possible to make a stop determination with very little delay with respect to the actual stop of the drum by using the stop determination of the inverter device of the present invention. . For this reason, the dead time until moving to the next sequence is shortened as much as possible. As a result, the time required for a fully automatic washing course (washing-dehydration-rinsing-dehydration) can be shortened, and the effect of shortening the time can be obtained.
  • the rotation axis of the drum 857 is horizontal, it may be vertical or oblique.
  • the power transmission path for rotationally driving the drum 857 the one using the pulleys 864 and 865 and the belt 866 is shown.
  • a gear may be used, or a motor may be provided directly on the shaft 858 of the drum 857 and rotated at the same speed as called direct drive.
  • the washing machine according to the present invention can be applied to a washing machine capable of ensuring safety without providing a position detector such as a Hall IC.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Provided is a washing machine comprising: a drum (106) for storing clothes (105); and a motor (109) equipped with permanent magnets (100, 101), and three-phase windings (102, 103, 104) for driving the drum (106). The washing machine further includes a cover for covering and uncovering the opening of the drum (106), and a cover lock for locking the cover. The washing machine further includes an inverter circuit (117) which receives power from a DC power source (144) and supplies the motor (109) with current using a plurality of switching elements (111, 112, 113, 114, 115, 116). The washing machine further includes a control unit (118) for turning the switching elements (111, 112, 113, 114, 115, 116) on and off.

Description

洗濯機Washing machine
 本発明は、衣類を収納し、垂直または水平の回転軸を有するドラムを持ち、ブレーキを作用させながら停止させる洗濯機に関する。 The present invention relates to a washing machine for storing clothes, having a drum having a vertical or horizontal rotating shaft, and stopping while applying a brake.
 従来、洗濯機に用いられるインバータ装置は、モータのホールICなどのロータ位置検出手段により検出するとともに、モータの回転をモータ回転検出手段または逆起電力検出手段により検出する。モータの駆動時以外にロータ位置検出手段または逆起電力検出手段により、モータの回転を検知した場合、短絡ブレーキを行う。 Conventionally, an inverter device used in a washing machine detects rotor position detecting means such as a Hall IC of a motor and detects rotation of the motor by motor rotation detecting means or counter electromotive force detecting means. When the rotation of the motor is detected by the rotor position detecting means or the counter electromotive force detecting means other than when the motor is driven, a short-circuit brake is performed.
 図51は、従来の洗濯機の回路図である(例えば、特許文献1を参照)。 FIG. 51 is a circuit diagram of a conventional washing machine (see, for example, Patent Document 1).
 従来の洗濯機のモータ940の巻線に電流を供給するインバータ回路941は、スイッチング素子942~947を有しており、制御部948によってオンオフが制御される。 An inverter circuit 941 that supplies current to the windings of a motor 940 of a conventional washing machine has switching elements 942 to 947, and is turned on / off by a control unit 948.
 従来の洗濯機は、モータ940の巻線に流れる電流を検知するため、シャント抵抗950、951、およびオペアンプなどを含む増幅・バイアス回路952、953を有する。増幅・バイアス回路952、953の出力信号が、制御部948に入力され、U相とV相の電流値が検知され、W相についてもU相とV相の電流から計算され、三相すべての電流が検知される。 A conventional washing machine has amplification / bias circuits 952 and 953 including shunt resistors 950 and 951 and operational amplifiers in order to detect a current flowing through the winding of the motor 940. The output signals of the amplification / bias circuits 952 and 953 are input to the control unit 948, the current values of the U phase and the V phase are detected, and the W phase is also calculated from the currents of the U phase and the V phase. Current is detected.
 また、過電流時に、ダイオード954、955を介して、過電流検知部956からの過電流検出信号も、制御部948に入力される。 Further, an overcurrent detection signal from the overcurrent detection unit 956 is also input to the control unit 948 via the diodes 954 and 955 at the time of overcurrent.
 図52は、従来の洗濯機の起動時のフローチャートである。起動スタート(ステップS960)から短絡(ステップS961)に移り、モータ940の巻線を三相とも短絡させる。 FIG. 52 is a flowchart when starting the conventional washing machine. From the start-up (step S960) to the short circuit (step S961), the windings of the motor 940 are also short-circuited for all three phases.
 続く回転子停止(ステップS962)では、電流検知手段によって、検知される巻線電流が三相以上一致したかどうかの判断がなされ、一致した場合にはモータ940が停止したと判定される。 In the subsequent rotor stop (step S962), it is determined by the current detection means whether or not the detected winding currents match three or more phases. If they match, it is determined that the motor 940 has stopped.
 その後は、位置決め(ステップS963)、強制転流(ステップS964)、定常運転(ステップS965)へと進み、起動から定常運転に移る。 After that, the process proceeds to positioning (step S963), forced commutation (step S964), and steady operation (step S965), and shifts from startup to steady operation.
 図53は、従来の洗濯機の回転中である場合の短絡ブレーキ中の巻線電流波形図である。 FIG. 53 is a waveform diagram of the winding current during the short-circuit brake when the conventional washing machine is rotating.
 回転中においては、3相の電流の内の2相分の電流の瞬時値が一致することはあるが、3相分が一致することはなく、3相分の電流値が一致した時点で停止と判断される。 During rotation, the instantaneous value of the current for two phases of the current of three phases may match, but the value for three phases does not match, and stops when the current values for three phases match It is judged.
 また、図示されていないが、一相の電流検出値を、電流波形の1周期より短い間隔で、2回以上参照し、それが一致した場合に、停止と判断する。 Although not shown, the current detection value of one phase is referred to twice or more at intervals shorter than one cycle of the current waveform, and when they match, it is determined to be stopped.
 しかしながら、従来の構成では、電流検出値にノイズが入った場合、回転中にも関わらず3相分の電流検出値が一致することがあり、1相の2回分の電流検出値が一致することがある。また、増幅・バイアス回路の故障により、制御部に例えば0Vや5Vなどの固定された信号電圧が入力された場合には、停止判定となる条件が成立することになる。その状態でドラムの蓋を開くと、不安全となる。 However, in the conventional configuration, when noise is detected in the current detection value, the current detection values for the three phases may coincide with each other even during rotation, and the current detection values for two times of one phase may coincide. There is. In addition, when a fixed signal voltage such as 0 V or 5 V is input to the control unit due to a failure of the amplifier / bias circuit, a condition for stop determination is satisfied. If the drum lid is opened in this state, it becomes unsafe.
 また、特許文献2~5には、従来の洗濯機の技術が開示されている。 In addition, Patent Documents 2 to 5 disclose conventional washing machine technologies.
特開2005-6453号公報Japanese Patent Laid-Open No. 2005-6453 特開2011-5588号公報JP 2011-5588 A 特開2000-175485号公報JP 2000-175485 A 特開2012-130111号公報JP2012-130111A 特開2003-275494号公報JP 2003-275494 A
 本発明は、従来の課題を解決するもので、ホールICなどの位置検知器を設けることなく、安全性を確保できる洗濯機を提供する。 The present invention solves the conventional problems and provides a washing machine that can ensure safety without providing a position detector such as a Hall IC.
 本発明の洗濯機は、衣類を収納するドラムと、永久磁石と3相の巻線を備え、ドラムを駆動する電動機と、ドラムの開口部を開閉する蓋と、蓋をロックする蓋ロック部とを有する。また、直流電源から電力が供給され、複数のスイッチング素子を用いて、電動機に電流を供給するインバータ回路と、スイッチング素子をオンオフ制御する制御部とを有する。制御部は、電流を検知する電流検知部と、電流検知部の出力を受けて電動機の速度を算出する速度算出部とを備える。また、制御部は、ドラムの制動期間に、電動機の入力電圧を略零に保つようにスイッチング素子を制御し、速度が所定値以下となった後、蓋ロック部によって蓋を開くことを可能にする。 The washing machine of the present invention includes a drum for storing clothes, a permanent magnet and a three-phase winding, an electric motor for driving the drum, a lid for opening and closing the opening of the drum, and a lid lock portion for locking the lid. Have Moreover, it has an inverter circuit that is supplied with electric power from a DC power source and supplies a current to the electric motor using a plurality of switching elements, and a controller that controls on / off of the switching elements. The control unit includes a current detection unit that detects a current and a speed calculation unit that receives the output of the current detection unit and calculates the speed of the electric motor. In addition, the control unit controls the switching element so as to keep the input voltage of the electric motor at substantially zero during the braking period of the drum, and allows the lid to be opened by the lid lock unit after the speed becomes a predetermined value or less. To do.
 これによって、例えばホールICなどの位置検知器を持たない簡単で低コストの構成でありながら、安全性が十分に高い状態で、使用者による蓋を開く動作を許す。速度という物理量を算出することから、慣性モーメントによる速度の連続性の存在を有効に利用した応答性の調整も可能となる。従って、電流検知部出力のノイズの影響を極力排除し、かつ、電流検知部の故障により、実際の電流値と無関係に一定値に固定された場合においても、誤った停止判定が行われない。 This allows the user to open the lid with a sufficiently high safety while having a simple and low-cost configuration that does not have a position detector such as a Hall IC. Since the physical quantity of speed is calculated, it is possible to adjust the responsiveness by effectively utilizing the existence of speed continuity due to the moment of inertia. Therefore, even when the influence of the noise of the current detection unit output is eliminated as much as possible and the current detection unit is fixed to a constant value regardless of the actual current value due to a failure of the current detection unit, an erroneous stop determination is not performed.
 本発明の洗濯機は、ホールICなどの位置検知器を設けることなく、安全性を確保できる。 The washing machine of the present invention can ensure safety without providing a position detector such as a Hall IC.
図1は、本発明の実施の形態1におけるインバータ装置のブロック図である。FIG. 1 is a block diagram of an inverter device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1におけるインバータ装置の中央制御部135内の詳細構成を示すブロック図である。FIG. 2 is a block diagram showing a detailed configuration in central control unit 135 of the inverter device according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1におけるインバータ装置が、異常検出信号によって短絡ブレーキとなる場合の動作波形図である。FIG. 3 is an operation waveform diagram when the inverter device according to the first embodiment of the present invention becomes a short-circuit brake by an abnormality detection signal. 図4は、本発明の実施の形態1におけるインバータ装置のドラムが停止する前後の動作波形図である。FIG. 4 is an operation waveform diagram before and after the drum of the inverter device according to Embodiment 1 of the present invention stops. 図5は、本発明の実施の形態1におけるインバータ装置のシーケンス発生部からのブレーキ要求信号によって短絡制動期間に入る場合の動作波形図である。FIG. 5 is an operation waveform diagram when the short-circuit braking period is entered by the brake request signal from the sequence generator of the inverter device according to the first embodiment of the present invention. 図6は、本発明の実施の形態1におけるインバータ装置のブレーキ要求信号によって短絡制動期間に移った後、ドラムが停止する前後の速度算出部を中心とした動作波形図である。FIG. 6 is an operation waveform diagram centering on the speed calculation unit before and after the drum stops after moving to the short-circuit braking period by the brake request signal of the inverter device according to the first embodiment of the present invention. 図7は、本発明の実施の形態1におけるインバータ装置を備えたドラム式洗濯機を側方から見た内部構成を示す図である。FIG. 7 is a diagram showing an internal configuration of the drum type washing machine provided with the inverter device according to the first embodiment of the present invention as viewed from the side. 図8は、本発明の実施の形態1におけるインバータ装置の電源が投入された直後の動作を示すフローチャートである。FIG. 8 is a flowchart showing an operation immediately after the power of the inverter device according to the first embodiment of the present invention is turned on. 図9は、本発明の実施の形態2におけるインバータ装置のブロック図である。FIG. 9 is a block diagram of an inverter device according to Embodiment 2 of the present invention. 図10は、本発明の実施の形態3におけるインバータ装置のブロック図である。FIG. 10 is a block diagram of an inverter device according to Embodiment 3 of the present invention. 図11は、本発明の実施の形態3におけるインバータ装置の中央制御部の詳細構成を示すブロック図である。FIG. 11 is a block diagram showing a detailed configuration of the central control unit of the inverter device according to Embodiment 3 of the present invention. 図12は、本発明の実施の形態3におけるインバータ装置の短絡ブレーキ制御部のブロック図である。FIG. 12 is a block diagram of the short-circuit brake control unit of the inverter device according to Embodiment 3 of the present invention. 図13は、本発明の実施の形態3におけるインバータ装置の関数発生器の入出力特性を示すグラフである。FIG. 13 is a graph showing input / output characteristics of the function generator of the inverter device according to Embodiment 3 of the present invention. 図14は、本発明の実施の形態3におけるドラム式洗濯機と呼ばれるインバータ装置を側方から見た内部構成を示す図である。FIG. 14 is a diagram showing an internal configuration of an inverter device called a drum-type washing machine according to Embodiment 3 of the present invention as viewed from the side. 図15は、本発明の実施の形態3におけるインバータ装置のブレーキ要求信号によって短絡ブレーキとなる場合の動作波形図である。FIG. 15 is an operation waveform diagram in the case where a short circuit brake is caused by a brake request signal of the inverter device in the third embodiment of the present invention. 図16は、本発明の実施の形態3におけるインバータ装置の動作波形図である。FIG. 16 is an operation waveform diagram of the inverter device according to the third embodiment of the present invention. 図17は、本発明の実施の形態3における、脱水動作などの完了時および途中でのブレーキに入る場合のフローチャートである。FIG. 17 is a flowchart in the third embodiment of the present invention when the dehydrating operation or the like is completed and the brake is applied halfway. 図18は、本発明の実施の形態4におけるインバータ装置の中央処理部のブロック図である。FIG. 18 is a block diagram of the central processing unit of the inverter device according to the fourth embodiment of the present invention. 図19は、本発明の実施の形態4におけるインバータ装置の動作波形図である。FIG. 19 is an operation waveform diagram of the inverter device according to the fourth embodiment of the present invention. 図20は、本発明の実施の形態4において、脱水動作などの完了時および途中でのブレーキに入る場合のフローチャートである。FIG. 20 is a flowchart in the fourth embodiment of the present invention when the dehydrating operation or the like is completed and the brake is applied halfway. 図21は、本発明の実施の形態5における、制動時にドラムの速度が略零となった後の、電動機への電流供給期間の前後の各部動作波形を示す図である。FIG. 21 is a diagram showing operation waveforms of respective parts before and after the current supply period to the electric motor after the drum speed becomes substantially zero during braking in the fifth embodiment of the present invention. 図22は、本発明の実施の形態5におけるベルトが正常な場合と、外れた場合(または切れた場合)について、電動機の永久磁石の位相を示す図である。FIG. 22 is a diagram showing the phases of the permanent magnets of the electric motor when the belt according to the fifth embodiment of the present invention is normal and when the belt is removed (or disconnected). 図23は、本発明の実施の形態6のインバータ装置における、制動時にドラムの速度が略零となった後の、電動機への電流供給期間前後の各部の動作波形を示す図である。FIG. 23 is a diagram showing operation waveforms of respective parts before and after the current supply period to the electric motor after the drum speed becomes substantially zero during braking in the inverter device according to the sixth embodiment of the present invention. 図24は、本発明の実施の形態7におけるインバータ装置のブロック図である。FIG. 24 is a block diagram of an inverter device according to Embodiment 7 of the present invention. 図25は、本発明の実施の形態7におけるインバータ装置の中央制御部の詳細構成図である。FIG. 25 is a detailed configuration diagram of the central control unit of the inverter device according to the seventh embodiment of the present invention. 図26は、本発明の実施の形態7におけるインバータ装置の短絡ブレーキ制御部のブロック図である。FIG. 26 is a block diagram of a short-circuit brake control unit of the inverter device according to Embodiment 7 of the present invention. 図27は、本発明の実施の形態7におけるインバータ装置の関数発生器と関数発生器の入出力特性を示すグラフである。FIG. 27 is a graph showing the function generator of the inverter device according to Embodiment 7 of the present invention and the input / output characteristics of the function generator. 図28は、本発明の実施の形態7におけるインバータ装置のブレーキ要求信号によって短絡ブレーキとなる場合の動作波形図である。FIG. 28 is an operation waveform diagram when a short-circuit brake is established by a brake request signal of the inverter device according to the seventh embodiment of the present invention. 図29は、本発明の実施の形態7におけるインバータ装置の動作波形図である。FIG. 29 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention. 図30は、本発明の実施の形態7におけるインバータ装置の動作波形図である。FIG. 30 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention. 図31は、本発明の実施の形態8におけるインバータ装置の短絡ブレーキ制御部のブロック図である。FIG. 31 is a block diagram of the short-circuit brake control unit of the inverter device according to the eighth embodiment of the present invention. 図32は、本発明の実施の形態8におけるインバータ装置の短絡時間比率拡大速度設定部の特性を示すグラフである。FIG. 32 is a graph showing characteristics of the short circuit time ratio expansion speed setting unit of the inverter device according to the eighth embodiment of the present invention. 図33は、本発明の実施の形態9におけるインバータ装置の短絡ブレーキ制御部のブロック図である。FIG. 33 is a block diagram of the short-circuit brake control unit of the inverter device according to the ninth embodiment of the present invention. 図34は、本発明の実施の形態9におけるインバータ装置の短絡時間比率拡大速度設定部の特性を示すグラフである。FIG. 34 is a graph showing characteristics of the short circuit time ratio expansion speed setting unit of the inverter device according to the ninth embodiment of the present invention. 図35は、本発明の実施の形態9におけるインバータ装置の短絡制動期間に入る部分の動作波形図である。FIG. 35 is an operation waveform diagram of a portion of the inverter device that enters the short-circuit braking period according to Embodiment 9 of the present invention. 図36は、本発明の実施の形態10におけるにおけるインバータ装置の短絡ブレーキ制御部のブロック図である。FIG. 36 is a block diagram of the short-circuit brake control unit of the inverter device according to Embodiment 10 of the present invention. 図37は、本発明の実施の形態10におけるインバータ装置の短絡時間比率拡大速度指令部の特性を示すグラフである。FIG. 37 is a graph illustrating characteristics of the short-circuiting time ratio expansion speed command unit of the inverter device according to the tenth embodiment of the present invention. 図38は、本発明の実施の形態11におけるドラム式洗濯機と呼ばれるインバータ装置を側方から見た内部構成を示す図である。FIG. 38 is a diagram showing an internal configuration of an inverter device called a drum-type washing machine according to Embodiment 11 of the present invention viewed from the side. 図39は、本発明の実施の形態11におけるインバータ装置の電源が投入された直後のフローチャートである。FIG. 39 is a flowchart immediately after the power of the inverter device according to the eleventh embodiment of the present invention is turned on. 図40は、本発明の実施の形態12のインバータ装置のブロック図である。FIG. 40 is a block diagram of the inverter device according to the twelfth embodiment of the present invention. 図41は、本発明の実施の形態12におけるインバータ装置の短絡制動期間の電流ベクトル示す図である。FIG. 41 is a diagram showing a current vector during a short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention. 図42は、本発明の実施の形態12におけるインバータ装置の短絡制動期間の動作波形図である。FIG. 42 is an operation waveform diagram for the short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention. 図43は、本発明の実施の形態13におけるインバータ装置のブロック図である。FIG. 43 is a block diagram of an inverter device according to Embodiment 13 of the present invention. 図44は、本発明の実施の形態13におけるインバータ装置のマイクロコンピュータのフローチャートである。FIG. 44 is a flowchart of the microcomputer of the inverter device according to the thirteenth embodiment of the present invention. 図45は、本発明の実施の形態13におけるインバータ装置のマイクロコンピュータの動作波形図である。FIG. 45 is an operation waveform diagram of the microcomputer of the inverter device according to the thirteenth embodiment of the present invention. 図46は、図45において、2回続けて電流ベクトルの大きさが、所定値を下回った場合を示す図である。FIG. 46 is a diagram illustrating a case where the magnitude of the current vector is less than a predetermined value twice in FIG. 図47は、本発明の実施の形態14におけるインバータ装置のフローチャートである。FIG. 47 is a flowchart of the inverter device according to the fourteenth embodiment of the present invention. 図48は、本発明の実施の形態14におけるインバータ装置の負荷停止推定部の特性を示すグラフである。FIG. 48 is a graph showing characteristics of the load stop estimation unit of the inverter device according to the fourteenth embodiment of the present invention. 図49は、本発明の実施の形態15における脱水機を側方から見た内部構成を示す図である。FIG. 49 is a diagram showing an internal configuration of the dehydrator according to the fifteenth embodiment of the present invention when viewed from the side. 図50は、本発明の実施の形態15における脱水機の動作波形図である。FIG. 50 is an operation waveform diagram of the dehydrator according to the fifteenth embodiment of the present invention. 図51は、従来の洗濯機の回路図である。FIG. 51 is a circuit diagram of a conventional washing machine. 図52は、従来の洗濯機の起動時のフローチャートである。FIG. 52 is a flowchart when the conventional washing machine is activated. 図53は、従来の洗濯機の回転中である場合の短絡ブレーキ中の巻線電流波形図である。FIG. 53 is a winding current waveform diagram during short-circuit braking when the conventional washing machine is rotating.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は、本発明の実施の形態1におけるインバータ装置のブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram of an inverter device according to Embodiment 1 of the present invention.
 図1のインバータ装置は、永久磁石100、101と3相の巻線102、103、104を有する。また、衣類105を収納するドラム106と、プーリ107およびベルト108を介して回転駆動する電動機109と、6石のスイッチング素子111、112、113、114、115、116を有する。また、電動機109に交流電流Iu、Iv、Iwを供給するインバータ回路117と、スイッチング素子111、112、113、114、115、116をオンオフ制御する制御部118を有する。また、制御部118は、交流電流Iu、Iv、Iwを検知する電流検知部119と、電流検知部119の出力を受けて電動機109の速度を算出する速度算出部120を有する。電流検知部119は、3相それぞれの電流を電圧に変換するシャント抵抗121、122、123、および、低電位側のスイッチング素子114、115、116のオン期間に、A/D変換を行うA/D変換器124を有する。速度算出部120は、位相誤差検知部126と、可変周波数発振部127としての、増幅器128と積分器129を有する。 1 includes permanent magnets 100 and 101 and three- phase windings 102, 103, and 104. Moreover, it has the drum 106 which accommodates the clothing 105, the electric motor 109 which rotationally drives via the pulley 107 and the belt 108, and the 6 stone switching elements 111, 112, 113, 114, 115, 116. In addition, an inverter circuit 117 that supplies alternating currents Iu, Iv, and Iw to the electric motor 109 and a control unit 118 that performs on / off control of the switching elements 111, 112, 113, 114, 115, and 116 are provided. The control unit 118 also includes a current detection unit 119 that detects the alternating currents Iu, Iv, and Iw, and a speed calculation unit 120 that receives the output of the current detection unit 119 and calculates the speed of the electric motor 109. The current detection unit 119 performs A / D conversion in the ON period of the shunt resistors 121, 122, 123 that convert the currents of the three phases into voltages and the switching elements 114, 115, 116 on the low potential side. A D converter 124 is included. The speed calculation unit 120 includes a phase error detection unit 126 and an amplifier 128 and an integrator 129 as the variable frequency oscillation unit 127.
 本実施の形態においては、電流検知部119として、3相の各相に対応する3個の抵抗シャント抵抗121、122、123が用いられている。これらは3シャントと呼ばれる構成である。低電位側のスイッチング素子114、115、116がオンしている期間、各シャント抵抗両端に発生する電圧が検出されている。しかし、1シャントと呼ばれる1個のシャント抵抗から、検知タイミングにおいて、3相の各電流値Iu、Iv、Iwを検出しても構わない。あるいは、DCCTと呼ばれるような直流電流成分から検出可能な、電流センサを2個~3個使用しても構わない。 In the present embodiment, three resistance shunt resistors 121, 122, and 123 corresponding to each of the three phases are used as the current detection unit 119. These are structures called three shunts. While the low-potential side switching elements 114, 115, and 116 are on, the voltage generated across each shunt resistor is detected. However, the current values Iu, Iv, and Iw of the three phases may be detected from a single shunt resistor called one shunt at the detection timing. Alternatively, two to three current sensors that can be detected from a direct current component called DCCT may be used.
 ここで増幅器128は、入力に対してP成分(比例成分)とI成分(時間積分成分を有している。増幅器128への入力、すなわち、位相誤差検知部126の出力が、定常的に零として動作する。 Here, the amplifier 128 has a P component (proportional component) and an I component (time integration component) with respect to the input. The input to the amplifier 128, that is, the output of the phase error detector 126 is constantly zero. Works as.
 制御部118は、可変周波数発振部127の出力信号ωが十分な低速となったことを判定する低速判定部130を有する。低速判定部130は、閾値発生器131、比較部132によりなる。 The control unit 118 includes a low speed determination unit 130 that determines that the output signal ω of the variable frequency oscillation unit 127 has become a sufficiently low speed. The low speed determination unit 130 includes a threshold generator 131 and a comparison unit 132.
 さらに、制御部118は、中央制御部135を有する。制御部118は、インバータ回路117の制御のための信号生成、電流検知部119からの出力信号Iua、Iva、Iwaの信号受付、速度算出部120からの信号ω、θの信号受付、低速判定部130のJ信号受付などを行う。制御部118は、これらの各種信号処理を、すべてデジタル方式にて行う。 Furthermore, the control unit 118 has a central control unit 135. The control unit 118 generates a signal for controlling the inverter circuit 117, receives signals Iua, Iva, and Iwa from the current detection unit 119, receives signals ω and θ from the speed calculation unit 120, and receives a low-speed determination unit. 130 J signals are received. The control unit 118 performs all these various signal processes in a digital manner.
 PWM回路136は、中央制御部135からDutyを受けて、Dutyに対して64マイクロ秒周期の三角波でのパルス幅変調(PWM)を行った信号Bを出力する。中央制御部135の信号S1~S6は、インバータ回路117との間に設けられた、切り替え部137、駆動回路138を経て、スイッチング素子111、112、113、114、115、116にゲート信号を与える。中央制御部135のK信号がハイである場合には、切り替え部137が図1に表示されている状態となって、S1~S6が採用される。一方、K信号がローである場合には、図1の切り替え部137内の各スイッチが下側に接続された状態となる。 The PWM circuit 136 receives the duty from the central control unit 135 and outputs a signal B obtained by performing pulse width modulation (PWM) with a triangular wave having a period of 64 microseconds on the duty. The signals S1 to S6 of the central control unit 135 give gate signals to the switching elements 111, 112, 113, 114, 115, and 116 via the switching unit 137 and the drive circuit 138 provided between the central control unit 135 and the inverter circuit 117. . When the K signal of the central control unit 135 is high, the switching unit 137 is displayed as shown in FIG. 1, and S1 to S6 are employed. On the other hand, when the K signal is low, the switches in the switching unit 137 in FIG. 1 are connected to the lower side.
 直流電源144は、AC230V50Hzの交流電源141、全波整流器142、およびコンデンサ143から構成される。直流電源144は、インバータ回路117内の直流電圧検知回路148に、直流電圧VDCを供給する。直流電圧検知回路148は、抵抗146および147から構成される。直流電圧検知回路148の出力Aが、中央制御部135にアナログ電圧信号として出力される。中央制御部135の内部において、出力AはA/D変換され、デジタル値として処理される。 The DC power supply 144 includes an AC power supply 141 of AC 230 V, 50 Hz, a full-wave rectifier 142, and a capacitor 143. DC power supply 144 supplies DC voltage VDC to DC voltage detection circuit 148 in inverter circuit 117. DC voltage detection circuit 148 includes resistors 146 and 147. The output A of the DC voltage detection circuit 148 is output to the central control unit 135 as an analog voltage signal. In the central control unit 135, the output A is A / D converted and processed as a digital value.
 図2は、本発明の実施の形態1におけるインバータ装置の中央制御部135の詳細構成を示すブロック図である。 FIG. 2 is a block diagram showing a detailed configuration of the central control unit 135 of the inverter device according to Embodiment 1 of the present invention.
 なお、中央制御部135を構成する部品は、1チップのマイクロコンピュータであることが多い。しかし、図1の中央制御部135の外側の部分も含めた構成を、1台のマイクロコンピュータのソフトウェアで実現しても良い。また、中央制御部135を構成する部品を、いくつかのハードウェアで実現しても良い。また、DSPなどの各種プロセッサで実現しても良い。つまり、1チップで実現しても良いし、多チップで実現しても良く、また、ハードウェアで実現しても良いし、ソフトウェアで実現しても良い。 It should be noted that the component constituting the central control unit 135 is often a one-chip microcomputer. However, the configuration including the portion outside the central control unit 135 of FIG. 1 may be realized by software of one microcomputer. Further, the components constituting the central control unit 135 may be realized by some hardware. Moreover, you may implement | achieve with various processors, such as DSP. That is, it may be realized with one chip, may be realized with multiple chips, may be realized with hardware, or may be realized with software.
 図2において、3相電流Iu、Iv、Iwに対応した信号Iua、Iva、Iwaは、算出された位相θ信号とともに、第1の座標変換部150に入力される。第1の座標変換部150においては、(数1)を用いて、IdとIqへの変換、すなわち、静止座標から回転座標への変換が行われ、IdとIqが出力される。減算部151、152が設けられており、それぞれ、設定値IdrとIdの誤差、および、設定値IqrとIqの誤差が計算される。減算部151、152の出力は、PI(比例、積分)のゲインを作用させる誤差増幅部153、154に入力され、その出力がVd1とVq1として、切り替え部156に入力される。切り替え部156の出力VdとVqは、位相θ信号と共に第2の座標変換部158に入力され、(数2)を用いてdq座標から、3相の電圧指令値Vu、Vv、Vwの値への変換が行われる。電圧指令値Vu、Vv、Vwは、PWM部159に入力され、A信号に対する3相の電圧指令値の比率で、64μs周期の三角波のキャリア波を作用させる。電圧指令値Vu、Vv、Vwは、そのキャリア波との瞬時値比較、およびデッドタイムを付して、上下の駆動信号S1~S6を生成する。 In FIG. 2, signals Iua, Iva, Iwa corresponding to the three-phase currents Iu, Iv, Iw are input to the first coordinate converter 150 together with the calculated phase θ signal. In the first coordinate conversion unit 150, using (Equation 1), conversion to Id and Iq, that is, conversion from stationary coordinates to rotation coordinates, is performed, and Id and Iq are output. Subtraction units 151 and 152 are provided, and an error between the set values Idr and Id and an error between the set values Iqr and Iq are calculated, respectively. The outputs of the subtracting units 151 and 152 are input to error amplifying units 153 and 154 that apply a gain of PI (proportional and integral), and the outputs are input to the switching unit 156 as Vd1 and Vq1. The outputs Vd and Vq of the switching unit 156 are input to the second coordinate conversion unit 158 together with the phase θ signal, and from the dq coordinates to the values of the three-phase voltage command values Vu, Vv, and Vw using (Equation 2). Conversion is performed. The voltage command values Vu, Vv, and Vw are input to the PWM unit 159, and a triangular carrier wave having a period of 64 μs is applied at a ratio of the three-phase voltage command value to the A signal. Voltage command values Vu, Vv, Vw are subjected to instantaneous value comparison with the carrier wave and added with dead time to generate upper and lower drive signals S1 to S6.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、本実施の形態においては、電流検知部119は、3相すべての電流を検知する構成としている。しかし、電動機109の三相の巻線102、103、104の内の2相の電流を検知すれば、残りの1相はキルヒホッフの法則によって計算できる。従って、2相のみの検知としても構わない。 In the present embodiment, the current detection unit 119 is configured to detect all three phase currents. However, if the current of two phases in the three- phase windings 102, 103, 104 of the electric motor 109 is detected, the remaining one phase can be calculated by Kirchhoff's law. Therefore, only two-phase detection may be performed.
 本実施の形態においては、減算部160において、速度設定値ωrとωとの差を計算する。誤差増幅部161において、減算部160の出力に対して、PI(比例、積分)のゲインを作用させる。Idr設定部162において、算出速度ωから設定値Idrを決める。短絡ブレーキ制御部163、異常検出部165において、異常を検出する。遅延部166において、J信号から0.3秒の遅延時間でZ信号を出力する。シーケンス発生部167において、電動機109の駆動時の設定速度ωrと、ブレーキ要求信号B4RQを発生させる。電圧指令絞り部168において、ブレーキ要求信号B4RQを受けて、短絡ブレーキへの移行開始時のVd1とVq1を入力し、零に近づける値を出力する。 In the present embodiment, the subtraction unit 160 calculates the difference between the speed setting values ωr and ω. In the error amplifying unit 161, a gain of PI (proportional, integral) is applied to the output of the subtracting unit 160. The Idr setting unit 162 determines the set value Idr from the calculated speed ω. The short circuit brake control unit 163 and the abnormality detection unit 165 detect an abnormality. The delay unit 166 outputs the Z signal with a delay time of 0.3 seconds from the J signal. The sequence generator 167 generates a set speed ωr when the electric motor 109 is driven and a brake request signal B4RQ. The voltage command throttle unit 168 receives the brake request signal B4RQ, inputs Vd1 and Vq1 at the start of the transition to the short-circuit brake, and outputs a value approaching zero.
 シーケンス発生部167は、インバータ装置が洗濯機として動作を行うため、外部の構成要素との各種信号(停止ボタン信号Sstop、給水弁信号Skb、排水弁信号Shb、蓋ロック信号Srk、蓋閉信号Sclなど)を送受信しながら、電動機109の運転に関わる各種信号を送受信する。 Since the inverter device operates as a washing machine, the sequence generator 167 has various signals (stop button signal Sstop, water supply valve signal Skb, drain valve signal Shb, lid lock signal Srk, lid closure signal Scl) with external components. Etc.), various signals relating to the operation of the electric motor 109 are transmitted and received.
 短絡電流判定部170は、短絡状態での信号Iua、Iva、Iwaの瞬時値の絶対値のいずれかが1.7Aを超えている場合にCl信号をハイとし、瞬時値の絶対値のすべてが0.6Aを下回った場合にCs信号をハイとする。 The short-circuit current determination unit 170 sets the Cl signal to high when any of the instantaneous values of the signals Iua, Iva, and Iwa in the short-circuit state exceeds 1.7 A, and all the absolute values of the instantaneous values are When it is less than 0.6 A, the Cs signal is set to high.
 Idr設定部162は、ω値がドラム106の速度換算で400r/min以下の場合には、設定値Idrとして0Aを出力する。Idr設定部162は、ω値がドラム106の速度換算で400r/minを超える場合には、Idr<0Aとし、絶対値としてはωの増大に伴い徐々に増加させる。これに伴い、ドラム106の速度換算で1200r/minでは、Idr=-5Aとする。これは、高速で、弱メ界磁制御がかかるためである。 The Idr setting unit 162 outputs 0A as the set value Idr when the ω value is 400 r / min or less in terms of the speed of the drum 106. When the ω value exceeds 400 r / min in terms of the speed of the drum 106, the Idr setting unit 162 sets Idr <0A, and gradually increases the absolute value as ω increases. Accordingly, Idr = −5 A at 1200 r / min in terms of the speed of the drum 106. This is because the weak magnetic field control is applied at high speed.
 短絡ブレーキ制御部163は、洗濯機に何らかの異常が発生した場合、および動作の区切りの時点で、電動機109をブレーキ状態で、制御を行う。各部の過電流や過電圧、また、過剰な振動などがあった場合、短絡ブレーキ制御部163は、異常検出部165から異常検出信号B99RQ、および、シーケンス発生部167からブレーキ要求信号B4RQを受ける。これらの場合、短絡ブレーキ制御部163は、電動機109の入力を徐々に短絡状態、すなわち3相の入力端子間の電圧がほぼ零となるように、インバータ回路117内のスイッチング素子111、112、113、114、115、116に対するゲート制御を行う。本実施の形態においては、異常検出信号B99RQを受けた場合と、ブレーキ要求信号B4RQを受けた場合では、どちらも短絡ブレーキではあるが、具体的なインバータ回路117への信号はかなり異なる。 The short-circuit brake control unit 163 controls the electric motor 109 in the brake state when some abnormality occurs in the washing machine and at the time of the break of operation. When there is an overcurrent or overvoltage of each part or excessive vibration, the short circuit brake control unit 163 receives the abnormality detection signal B99RQ from the abnormality detection unit 165 and the brake request signal B4RQ from the sequence generation unit 167. In these cases, the short circuit brake control unit 163 gradually shorts the input of the electric motor 109, that is, the switching elements 111, 112, 113 in the inverter circuit 117 so that the voltage between the three-phase input terminals becomes almost zero. , 114, 115, and 116 are controlled. In the present embodiment, the case where the abnormality detection signal B99RQ is received and the case where the brake request signal B4RQ is received are both short-circuit brakes, but the specific signal to the inverter circuit 117 is considerably different.
 図3は、本発明の実施の形態1におけるインバータ装置が、異常検出信号B99RQによって短絡ブレーキとなる場合の動作波形図である。図3において、(a)は異常検出信号B99RQの波形図、(b)はK信号の波形図、(c)はDutyの波形図である。 FIG. 3 is an operation waveform diagram in the case where the inverter device according to the first embodiment of the present invention becomes a short-circuit brake by the abnormality detection signal B99RQ. 3A is a waveform diagram of the abnormality detection signal B99RQ, FIG. 3B is a waveform diagram of the K signal, and FIG. 3C is a waveform diagram of Duty.
 力行期間から、中央制御部135のブレーキ要求信号BRQは時刻T1でハイとなる。同時にK信号がハイからローになる。この時点では、Dutyは零であるため、スイッチング素子111、112、113、114、115、116のIGBT(Insulated Gate Bipolar Transistor)部分は、すべてオフとなる。これが5msのオールオフ期間である。 From the power running period, the brake request signal BRQ of the central control unit 135 becomes high at time T1. At the same time, the K signal goes from high to low. At this time, since Duty is zero, all IGBT (Insulated Gate Bipolar Transistor) portions of the switching elements 111, 112, 113, 114, 115, and 116 are turned off. This is an all-off period of 5 ms.
 なお、オールオフ期間中には、電動機109が低速である場合には、ほとんど電流が零の状態となるが、高速である場合(誘導起電力が高い状態)では、スイッチング素子111、112、113、114、115、116のダイオード部分を通じて、直流電源への回生電流が流れる。 During the all-off period, when the electric motor 109 is at a low speed, the current is almost zero. However, when the electric motor 109 is at a high speed (the induced electromotive force is high), the switching elements 111, 112, 113 are used. , 114, 115, and 116, a regenerative current to the DC power source flows through the diode portion.
 (c)に示される低電位側スイッチング素子114、115、116のオン時間の比率(Duty)は、短絡時間比率となる。オールオフ期間に続いて、T2からT5はDutyが増加する短絡時間比率拡大期間となる。一方、高電位側スイッチング素子111、112、113については、切り替え部137の作用によりオフ状態が保たれる。 (C) The on-time ratio (Duty) of the low-potential side switching elements 114, 115, and 116 shown in FIG. Subsequent to the all-off period, T2 to T5 become a short circuit time ratio expansion period in which the duty increases. On the other hand, the high potential side switching elements 111, 112, and 113 are kept off by the action of the switching unit 137.
 その後、T3、T4を経る毎に、時間に対する傾き、すなわち短絡時間比率(Duty)の拡大速度は、時間経過と共に低下する。また、短絡時間比率(Duty)の拡大速度は、短絡時間比率が100%に近づくほど、低下する。 After that, every time T3 and T4 are passed, the inclination with respect to time, that is, the expansion rate of the short-circuiting time ratio (Duty) decreases with time. Moreover, the expansion rate of the short circuit time ratio (Duty) decreases as the short circuit time ratio approaches 100%.
 電動機109の入力電圧は、回転により発生する誘導起電力が瞬時値として正/負を繰り返す。しかし、それが短絡時間中には強制的に零となり、絶対値が抑えられる。 The input voltage of the electric motor 109 repeats positive / negative as an instantaneous value of the induced electromotive force generated by rotation. However, it is forced to zero during the short circuit time, and the absolute value is suppressed.
 よって、本実施の形態において、T2~T5の短絡時間比率拡大期間は、短絡時間の増加により、電圧の絶対値が低下するようにスイッチング素子114、115、116が制御される電圧低減期間となる。 Therefore, in the present embodiment, the short circuit time ratio expansion period from T2 to T5 is a voltage reduction period in which the switching elements 114, 115, and 116 are controlled so that the absolute value of the voltage decreases as the short circuit time increases. .
 T5において、Dutyが100%に達した時点で、制御部118が、インバータ回路117内の低電位側スイッチング素子114、115、116をオン状態にする。3相巻線の入力端子U、V、Wを短絡する短絡時間比率(Duty)を拡大する短絡時間比率拡大期間の後、短絡制動期間に移行する。短絡制動期間においては、短絡時間比率Dutyを最大限、すなわち100%に保ち、負荷の運動エネルギーを吸収する。 At T5, when the duty reaches 100%, the control unit 118 turns on the low potential side switching elements 114, 115, and 116 in the inverter circuit 117. After the short-circuit time ratio expansion period in which the short-circuit time ratio (Duty) for short-circuiting the input terminals U, V, and W of the three-phase winding is expanded, the process proceeds to the short-circuit braking period. In the short-circuit braking period, the short-circuit time ratio Duty is kept at the maximum, that is, 100%, and the kinetic energy of the load is absorbed.
 Dutyが100%となった時点では、低電位側スイッチング素子114、115、116内のIGBTやダイオードの電圧降下分、およびインバータ回路117から電動機109までの配線による電圧降下分は、電動機109の入力電圧として例えば2~3V程度残る。しかし、このような電圧は略零の範疇である。 When the duty becomes 100%, the voltage drop of the IGBT and the diode in the low potential side switching elements 114, 115, 116 and the voltage drop due to the wiring from the inverter circuit 117 to the motor 109 are the input of the motor 109. For example, about 2 to 3 V remains as a voltage. However, such voltages are in the category of approximately zero.
 このように、短絡時間比率となるDutyを徐々に増大させることにより、短絡制動期間に移る過程での過渡的な電流の跳ね上がりを防ぐことができ、過電流を防止できる。これにより、インバータ回路117の各構成要素の破壊、および電動機109の過電流による故障を防ぐことができる。 Thus, by gradually increasing the duty that is the short-circuit time ratio, it is possible to prevent a transient current jump in the process of moving to the short-circuit braking period, and it is possible to prevent overcurrent. Thereby, destruction of each component of the inverter circuit 117 and failure due to overcurrent of the electric motor 109 can be prevented.
 特に、本実施の形態においては、短絡時間比率の拡大速度を徐々に低下させることにより、短絡制動期間に入る時点での電動機109の速度条件が広範囲に振られても、過渡的な電流の跳ね上がりを防ぐことができる。従って、速度が高い条件下ではT2~T3付近のDutyの拡大速度の設計、また速度が低い条件下ではT4~T5付近のDutyの拡大速度の設計で対応可能となる。 In particular, in the present embodiment, by gradually reducing the expansion speed of the short circuit time ratio, even if the speed condition of the electric motor 109 at the time of entering the short circuit braking period is swung over a wide range, a transient current jump Can be prevented. Accordingly, it is possible to cope with the design of the duty enlargement speed near T2 to T3 under the high speed condition, and the design of the duty enlargement speed near T4 to T5 under the low speed condition.
 なお、特に、高速における直流電源144への回生による過電圧を抑えるためには、短絡時間比率拡大期間の後半となるT3~T5における短絡時間比率(Duty)拡大速度を、高める設計とする。これにより、過電圧を最小限に抑えることができる。 In particular, in order to suppress overvoltage due to regeneration to the DC power supply 144 at high speed, the design is made to increase the short circuit time ratio (Duty) expansion speed in T3 to T5, which is the latter half of the short circuit time ratio expansion period. Thereby, an overvoltage can be suppressed to the minimum.
 従って、電動機109が広範囲の速度条件にて、短絡制動期間に入る場合の、線電流の過電流を防止することができる。直流電源144の回生による過電圧を抑えることができる。また、速度情報が不要であるので、電動機109に位置検知用のセンサ、および速度検知用のセンサを持たず、低コストの構成にすることができる。このような構成は、センサレスと呼ばれる。 Therefore, overcurrent of the line current can be prevented when the electric motor 109 enters the short-circuit braking period under a wide range of speed conditions. Overvoltage due to regeneration of the DC power supply 144 can be suppressed. Further, since speed information is unnecessary, the electric motor 109 does not have a position detection sensor and a speed detection sensor, and can be configured at a low cost. Such a configuration is called sensorless.
 さらに、洗濯機のように、電動機109の回転方向が、一方向ではなく、右に回ったり左に回ったりする、インバータ装置であっても、相順に関係なく、短絡制動期間に移行する制御が可能である。 Furthermore, even in the case of an inverter device in which the rotation direction of the electric motor 109 is not one direction, but is rotated to the right or to the left as in a washing machine, the control for shifting to the short-circuit braking period is possible regardless of the phase order. Is possible.
 図4は、本発明の実施の形態1におけるインバータ装置のドラム106が停止する前後の動作波形図である。図4は、図3に示した期間から、さらに時間が経過したときの、動作波形を示している。 FIG. 4 is an operation waveform diagram before and after the drum 106 of the inverter device according to Embodiment 1 of the present invention is stopped. FIG. 4 shows operation waveforms when a further time elapses from the period shown in FIG.
 図4において、(a)はドラム106の速度、(b)はIu、Iv、Iwの電流波形、(c)は短絡電流判定部170の出力するCs信号を示している。 4A shows the speed of the drum 106, FIG. 4B shows the current waveforms of Iu, Iv, and Iw, and FIG. 4C shows the Cs signal output by the short-circuit current determination unit 170.
 短絡ブレーキとなった電動機109は、次第に速度が低下する。同時に線電流については、周波数がほぼ電動機109の速度に比例して低下し、振幅も最終的には低下し、電動機109の速度が零となる時点で零に収束する。 The speed of the electric motor 109 that has become a short-circuit brake gradually decreases. At the same time, the frequency of the line current decreases approximately in proportion to the speed of the electric motor 109, the amplitude finally decreases, and converges to zero when the speed of the electric motor 109 becomes zero.
 本実施の形態においては、零電流である場合の電流検知部119の出力は、5V電源のほぼ中間値となる2.5V程度である。運転開始前のスイッチング素子114、115、116が、オフの状態での値を零電流に相当するオフセット値として記憶しておき、各相の線電流の絶対的な値で扱う。 In the present embodiment, the output of the current detection unit 119 in the case of zero current is about 2.5V, which is an almost intermediate value of the 5V power supply. The switching elements 114, 115 and 116 before the start of operation store the values in the off state as offset values corresponding to zero current, and handle them as absolute values of the line currents of the respective phases.
 短絡ブレーキに入った時点から停止に至るまで時間は、短絡ブレーキに入った時点での電動機109の速度、負荷の慣性モーメント、電動機109のインダクタンスや抵抗値、スイッチング素子114、115、116のオン状態での電圧(VCE(SAT))などによって左右される。本実施の形態では、電流検知部119は、速度の低下によって現れる物理現象である電流値を検知することにより、十分に速度が低下した状態を検知する。 The time from when the short-circuit brake is entered until it stops is the speed of the motor 109, the moment of inertia of the load, the inductance and resistance value of the motor 109, and the ON state of the switching elements 114, 115, and 116. Depends on the voltage at VCE (SAT (SAT)). In the present embodiment, the current detection unit 119 detects a state in which the speed is sufficiently reduced by detecting a current value that is a physical phenomenon that appears due to a reduction in speed.
 具体的には、本実施の形態においては、3つの線電流Iu、Iv、Iwの瞬時値の絶対値のすべてが0.6Aを下回った時点Tjaで、Cs信号がハイとなり、ドラム106が速度として7r/min程度に低下する。 Specifically, in the present embodiment, the Cs signal becomes high at the time Tja when all the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw are less than 0.6 A, and the drum 106 moves at a speed. It decreases to about 7r / min.
 短絡ブレーキ制御部163はハイとなったCs信号を受け、上記7r/minから短絡ブレーキの継続により、ドラム106が停止する。例えば0.15秒間の遅延時間を経過した時点で、停止と判断される。シーケンス発生部167からの指示などにより、洗濯機として必要な次の工程に移される。 The short-circuit brake control unit 163 receives the Cs signal that has become high, and the drum 106 is stopped by continuing the short-circuit brake from 7 r / min. For example, when a delay time of 0.15 seconds has elapsed, it is determined that the stop has occurred. In accordance with an instruction from the sequence generator 167, the process proceeds to the next step necessary for the washing machine.
 なお、万全を期すために、短絡電流判定部170において、時点Tja以降にも再度線電流が十分に低下していることを確認した後にCs信号がハイ出力される構成としても良い。あるいは、短絡電流判定部170において、線電流Iu、Iv、Iwの瞬時値の絶対値のすべてが0.6Aを下回った状態が所定時間以上継続した場合に、Cs信号がハイ出力される構成としても良い。 For completeness, the short-circuit current determination unit 170 may be configured to output the Cs signal high after confirming that the line current has sufficiently decreased again after the time Tja. Alternatively, in the short-circuit current determination unit 170, when the state where all the absolute values of the instantaneous values of the line currents Iu, Iv, and Iw are less than 0.6 A continues for a predetermined time or longer, the Cs signal is output high. Also good.
 以上のように、本実施の形態は、位置センサや速度センサを用いない、低コストで簡単な構成でありながら、短絡ブレーキを用い、かつその期間の電流からの適切な停止の判定により、安全性の確保を行うことができる。 As described above, the present embodiment uses a short-circuit brake and does not use a position sensor or a speed sensor, but uses a short-circuit brake and makes a safe stop determination based on current during that period. Sex can be ensured.
 図5は、本発明の実施の形態1におけるインバータ装置のシーケンス発生部167からのブレーキ要求信号B4RQによって短絡制動期間に入る場合の動作波形図の波形図である。図5において、(a)はブレーキ要求信号B4RQ、(b)は第2の座標変換部158の入力値Vq(実線)とVd(破線)の値、(c)は算出された速度ω(実線)と実角速度(破線)を示している。 FIG. 5 is a waveform diagram of an operation waveform diagram when the short circuit braking period is entered by the brake request signal B4RQ from the sequence generation unit 167 of the inverter device according to the first embodiment of the present invention. In FIG. 5, (a) is a brake request signal B4RQ, (b) is the values of the input values Vq (solid line) and Vd (broken line) of the second coordinate converter 158, and (c) is a calculated speed ω (solid line). ) And the actual angular velocity (broken line).
 ブレーキ要求信号B4RQが立ち上がるT1時点以前の力行期間においては、切り替え部156は下側の接点に接触する。このため、誤差増幅部153、154の出力Vd1とVq1がそれぞれ、VdとVqに接続される。つまり、減算部151、152によって、IdとIqの電流制御が機能した状態となっている。 During the powering period before time T1 when the brake request signal B4RQ rises, the switching unit 156 contacts the lower contact. For this reason, the outputs Vd1 and Vq1 of the error amplifiers 153 and 154 are connected to Vd and Vq, respectively. That is, the subtractors 151 and 152 are in a state where the current control of Id and Iq functions.
 T1において、ブレーキ要求信号B4RQがハイになった時点で、電圧指令絞り部168はVd1とVq1を内部にホールドする。T1以降は、時間に対して一定の電圧変化速度(dV/dt)で、VdとVqの絶対値が低下する。切り替え部156は上側の接点に接触し、電圧指令絞り部168からの信号VdおよびVqが出力される。 At T1, when the brake request signal B4RQ becomes high, the voltage command throttle unit 168 holds Vd1 and Vq1 inside. After T1, the absolute values of Vd and Vq decrease at a constant voltage change rate (dV / dt) with respect to time. The switching unit 156 contacts the upper contact, and the signals Vd and Vq from the voltage command restricting unit 168 are output.
 図5に示されている例では、T1において、Vq1は正の値であるのに対し、Vd1は負の値である。このため、電圧指令絞り部168は、VqについてはVq1から減じることによって零に近づけ、VdについてはVd1から増すことによって零に近づける。従って、絶対値を小とする方向に変化を起こす。 In the example shown in FIG. 5, Vq1 is a positive value at T1, whereas Vd1 is a negative value. For this reason, the voltage command restrictor 168 brings Vq closer to zero by subtracting from Vq1, and Vd approaches zero by increasing from Vd1. Therefore, a change occurs in the direction of decreasing the absolute value.
 図5では、Vd1の絶対値がVq1の絶対値よりも小である場合を示している。T1以降の電圧指令絞り部168による絞り動作では、絶対値を一定の時間的割合で低下させていく。(b)ではT1以降の傾きの絶対値がVdとVqで等しく、T2にてVdが零となり、さらにT3にてVdもVqも零となる。電動機109の入力電圧の絶対値はほぼ零にまで低下し、電動機109は運動エネルギーを吸収する短絡制動期間に入る。 FIG. 5 shows a case where the absolute value of Vd1 is smaller than the absolute value of Vq1. In the throttling operation by the voltage command throttling unit 168 after T1, the absolute value is decreased at a constant time ratio. In (b), the absolute value of the gradient after T1 is equal between Vd and Vq, Vd becomes zero at T2, and Vd and Vq become zero at T3. The absolute value of the input voltage of the electric motor 109 decreases to almost zero, and the electric motor 109 enters a short-circuit braking period in which kinetic energy is absorbed.
 電動機109の入力電圧は、第2の座標変換部158の出力となる電圧指令値Vu、Vv、Vwで決定される。T1からT3の期間には、線間電圧で見ても、電圧は減少するようにスイッチング素子111、112、113、114、115、116によって制御されるため、電圧低減期間となる。 The input voltage of the electric motor 109 is determined by voltage command values Vu, Vv, and Vw that are output from the second coordinate conversion unit 158. The period from T1 to T3 is a voltage reduction period because the voltage is controlled by the switching elements 111, 112, 113, 114, 115, and 116 so that the voltage decreases even when viewed from the line voltage.
 なお、本実施の形態においては、VdとVqは同時には零とならないが、電圧低減期間T1~T3は、数十ms程度の比較的短い時間内に行われるため、VdとVqのカーブの違いによる悪影響は顕著に表れることはない。過渡的な線電流の跳ね上がりによる過電流の発生や、直流電源144への回生電力による直流電圧の過電圧の発生には至らず、問題とはならない。 In this embodiment, Vd and Vq do not become zero at the same time, but the voltage reduction periods T1 to T3 are performed within a relatively short time of about several tens of ms, so the difference between the curves of Vd and Vq. The adverse effects of will not be noticeable. It does not cause a problem because it does not cause an overcurrent due to a transient jump of the line current or a DC voltage overvoltage due to regenerative power to the DC power supply 144.
 また、本実施の形態では、(c)に示すωに関して、電圧低減期間においてのみ増幅器128の出力ωを、ブレーキ要求信号B4RQが開始となるT1時点での算出速度ω1に固定する。これにより、フィードバックの安定性を確保する。 Further, in the present embodiment, with respect to ω shown in (c), the output ω of the amplifier 128 is fixed to the calculated speed ω1 at the time T1 when the brake request signal B4RQ starts only during the voltage reduction period. This ensures the stability of the feedback.
 電圧低減期間におけるVdとVqの変化は、他のものであっても良く、例えばVdとVqが同時に零となるように傾きを調整したものなどであっても良い。 The change in Vd and Vq during the voltage reduction period may be other, for example, the slope adjusted so that Vd and Vq are simultaneously zero.
 また、VdとVqの時間変化の大きさ(傾きの絶対値)を、短絡制動期間に入る時の電動機109の速度に応じて変化させてもよい。VdとVqの傾きを、低速では小、高速では大とすると、いずれの速度でも、電圧低減期間中の過渡的な電流の跳ね上がり(過電流)を抑えつつ、特に高速での直流電源への回生電流による過電圧発生を極力抑えることもできる。 Further, the magnitude of the time change of Vd and Vq (the absolute value of the slope) may be changed according to the speed of the electric motor 109 when entering the short-circuit braking period. Assuming that the slopes of Vd and Vq are small at low speed and large at high speed, at any speed, the transient current jump (overcurrent) during the voltage reduction period is suppressed, and the regeneration to the DC power supply at particularly high speed is performed. Generation of overvoltage due to current can be suppressed as much as possible.
 また、電圧低減期間中のVdとVqの傾きaを変化させ、初期は傾き大で後に傾き小として、広範囲の速度に対応させたものであっても良い。 Also, the slope a of Vd and Vq during the voltage reduction period may be changed so that the initial slope is large and the slope is small, so that it corresponds to a wide range of speeds.
 いずれにしても、ブレーキ要求信号B4RQがハイとなった場合には、電圧指令値VdとVqが時間とともに零に絞られていく。このため、電圧低減期間において、電動機109の入力は、徐々に短絡状態、すなわち3相の入力端子間の電圧がほぼ零となる方向に、インバータ回路117内のスイッチング素子111、112、113、114、115、116が制御される。その後、電圧指令値VdとVqが零で、電動機109の入力電圧が略零となる短絡制動期間に入る。 In any case, when the brake request signal B4RQ becomes high, the voltage command values Vd and Vq are reduced to zero with time. For this reason, in the voltage reduction period, the input of the electric motor 109 is gradually short-circuited, that is, in the direction in which the voltage between the three-phase input terminals becomes almost zero, the switching elements 111, 112, 113, 114 in the inverter circuit 117. , 115 and 116 are controlled. Thereafter, a short-circuit braking period in which the voltage command values Vd and Vq are zero and the input voltage of the electric motor 109 is substantially zero is entered.
 ただし、電圧指令値VdとVqが共に零となった状態であっても、電動機109の入力電圧は完全な零とはならない場合がある。特に3相変調を行った場合には、直流電圧VDCの半分の電位を中心として、瞬時の各相の線電流Iu、Iv、Iwの極性に応じてデッドタイム時間内の電位の上下が発生する。また、IGBTやダイオードによる電圧降下が、2~3V以下ではあるが、発生する場合もある。 However, even when the voltage command values Vd and Vq are both zero, the input voltage of the electric motor 109 may not be completely zero. In particular, when three-phase modulation is performed, the potential rises and falls within the dead time according to the instantaneous polarities of the line currents Iu, Iv, and Iw of each phase centering on the half potential of the DC voltage VDC. . Further, the voltage drop due to the IGBT or the diode is 2 to 3 V or less, but may occur.
 これらの電圧は、デッドタイム補償と呼ばれる構成を用いて、軽減される場合もある。特に、洗濯機に応用する場合には、騒音防止の面から、キャリア周波数は10数キロヘルツ程度とかなり高いため、数V程度の電動機109入力電圧が残る場合もあるが、数V程度の入力電圧は略零の範疇である。 These voltages may be reduced using a configuration called dead time compensation. In particular, when applied to a washing machine, from the standpoint of noise prevention, the carrier frequency is as high as about a few dozen kilohertz, so there may be a case where the input voltage of the electric motor 109 of about several volts remains, but the input voltage of about several volts. Is a category of almost zero.
 図6は、本発明の実施の形態1におけるインバータ装置のブレーキ要求信号B4RQによって短絡制動期間に移った後、時間が経過し、電動機109および負荷であるドラム106が停止する前後の速度算出部120を中心とした動作波形図である。図6において、(a)は線電流Iu、(b)は角速度ω、(c)はIuの位相θ、(d)はJ信号の波形を示している。 FIG. 6 shows a speed calculation unit 120 before and after the electric motor 109 and the drum 106 serving as a load stop after the passage of the short-circuit braking period by the brake request signal B4RQ of the inverter device according to the first embodiment of the present invention. FIG. In FIG. 6, (a) shows the line current Iu, (b) shows the angular velocity ω, (c) shows the phase θ of Iu, and (d) shows the waveform of the J signal.
 短絡制動期間には、電動機の電流Iu、Iv、Iwがかなり流れる。このため、本実施の形態においては、電流検知部119を経た信号の内のU相分となる信号Iuaを位相誤差検知部126に取り込み、U相電流Iu波形と、可変周波数発振部127の出力θとの位相差に応じた信号を発生する。 During the short-circuit braking period, the motor currents Iu, Iv, and Iw flow considerably. Therefore, in the present embodiment, the signal Iua corresponding to the U phase in the signal that has passed through the current detection unit 119 is taken into the phase error detection unit 126, the U phase current Iu waveform, and the output of the variable frequency oscillation unit 127. A signal corresponding to the phase difference from θ is generated.
 具体的には零点のタイミングからの位相差の比較、あるいは2つの入力信号の乗算などが用いられる。その出力が増幅器128と積分器129による制御ループで構成された、一種の位相同期ループ(PLL)が形成される。これにより、短絡制動期間中においては、Iuの位相に同期した位相θが生じ、角速度ωは、電動機109の速度に応じた値、すなわち算出速度(または角速度の算出値)が得られる。 Specifically, phase difference comparison from the zero point timing or multiplication of two input signals is used. A kind of phase-locked loop (PLL) is formed, the output of which is constituted by a control loop composed of an amplifier 128 and an integrator 129. Thus, during the short-circuit braking period, a phase θ synchronized with the phase of Iu is generated, and the angular velocity ω is a value corresponding to the speed of the electric motor 109, that is, a calculated speed (or a calculated value of the angular speed).
 このように増幅器128のω出力は、短絡制動期間中の速度として使用することができる。このため、ωが閾値発生器131の値ωthを下回った時点T1において、比較部132のJ信号が出力される。本実施の形態においては、時点T1をドラム106の速度として35r/minとなった時点としており、J信号はωthにてハイとなる。 Thus, the ω output of the amplifier 128 can be used as the speed during the short-circuit braking period. For this reason, at time T1 when ω falls below the value ωth of the threshold generator 131, the J signal of the comparison unit 132 is output. In the present embodiment, the time point T1 is the time point when the speed of the drum 106 is 35 r / min, and the J signal becomes high at ωth.
 電動機109の各線電流の瞬時値のみから、停止に近い低速の状態に達したかどうかを判定する場合には、突発的なノイズによる影響を受けやすい。、例えばかなり高速で回転している場合でも、3相分の電流検知部119の出力値が偶然一致することも多々ある。また、1つの相の電流検出値を、電気角1周期よりも短い間隔で2回以上検知した場合でも、ノイズによって一致する可能性は時間が長くなる程高まり、十分な低速であると誤って判定されることがある。 When it is determined from only the instantaneous value of each line current of the electric motor 109 whether or not a low-speed state close to a stop has been reached, it is susceptible to sudden noise. For example, even when rotating at a considerably high speed, the output values of the current detectors 119 for three phases often coincide by chance. Even if the current detection value of one phase is detected twice or more at intervals shorter than one cycle of electrical angle, the possibility of matching due to noise increases as time goes on, and it is mistakenly that it is sufficiently slow May be judged.
 また、ノイズの影響を防ぐために、検知する回数を増しても、ノイズの影響を効果的に低減することができない場合も多い。逆に、停止状態であっても、ノイズの影響で、十分低速となっている状態の判定に非常に長い時間がかかる場合もある。 Also, in order to prevent the influence of noise, there are many cases where the influence of noise cannot be effectively reduced even if the number of detections is increased. On the contrary, even in the stopped state, it may take a very long time to determine a sufficiently low speed due to the influence of noise.
 それに対し、本実施の形態においては、速度、あるいは、それに一対一で対応する周波数という物理量を介在させた判定である。従って、特に、本実施の形態のドラム式洗濯機の場合、ドラム106の慣性モーメントが0.3kg平米程度以上あることによる速度変動(加速度)の限界が生じる点を有効に活用し、ωの応答性を十分に実現できる範囲で、ローパス要素を用いることもできる。従って、電流検知部119の出力のノイズによる影響を格段に低いものに抑えることができる。従って、停止直前まで、信頼性の高いω信号が得られる。 On the other hand, in the present embodiment, the determination is made by interposing a physical quantity such as speed or a frequency corresponding one-to-one with the speed. Therefore, in particular, in the case of the drum type washing machine of the present embodiment, the point of speed fluctuation (acceleration) due to the fact that the moment of inertia of the drum 106 is about 0.3 kg square meters or more is effectively utilized, and the response of ω A low-pass element can also be used as long as the characteristics can be sufficiently realized. Therefore, the influence of the noise of the output of the current detection unit 119 can be suppressed to be extremely low. Therefore, a highly reliable ω signal can be obtained until just before the stop.
 J信号が、中央制御部135に入った後、遅延部166にて、0.3秒の遅延の後、Z信号がハイとなる。この0.3秒は、ドラム106の速度として、35r/minから短絡ブレーキの継続により停止となる所要時間に相当する。 After the J signal enters the central control unit 135, the delay unit 166 causes the Z signal to go high after a delay of 0.3 seconds. This 0.3 second corresponds to a required time for stopping the drum 106 by continuing the short-circuit brake from 35 r / min as the speed of the drum 106.
 なお、Cl信号に関しては、絶対値のいずれかが1.7Aを超えており、電流から周波数を検知するのに十分な振幅がある場合に、Z信号がハイとなる。従って、J信号にCl信号を掛け合わせることにより、速度の検知に十分な信頼性が加わる。 Regarding the Cl signal, if any of the absolute values exceeds 1.7 A and there is sufficient amplitude to detect the frequency from the current, the Z signal becomes high. Therefore, by multiplying the J signal by the Cl signal, sufficient reliability is added to the speed detection.
 以上のように、本実施の形態においては、シーケンス発生部167からのブレーキ要求信号B4RQにより短絡制動となる場合においては、速度算出部120を用いる。これにより、電流Iuなどに一時的なノイズが乗った場合であっても、位相誤差検知部126が正常に働く範囲であれば、ノイズの影響を全く受けることがない。また、位相同期ループとしての動作に影響がない範囲であれば、瞬間的な位相誤差検知部126の誤動作があっても、増幅器128内の積分ゲインにより、速度算出部120としての影響が抑えられる。従って、信頼性の高い停止の判定による安全性の確保がなされるものとなる。 As described above, in the present embodiment, the speed calculation unit 120 is used when short-circuit braking is performed by the brake request signal B4RQ from the sequence generation unit 167. As a result, even if temporary noise is applied to the current Iu or the like, the noise is not affected at all as long as the phase error detection unit 126 is in a normal working range. Further, as long as the operation as a phase locked loop is not affected, even if there is an instantaneous malfunction of the phase error detection unit 126, the influence as the speed calculation unit 120 can be suppressed by the integral gain in the amplifier 128. . Therefore, safety can be ensured by determining a reliable stop.
 なお上述したデッドタイムの影響で、電動機109の入力電圧が零からずれると、場合によっては、直流電源144への回生電流が発生する。これにより、コンデンサ143の充電によって直流電圧VDCの上昇が問題となることがある。しかし、デッドタイム補償によって抑えられる場合もある。 Note that if the input voltage of the electric motor 109 deviates from zero due to the influence of the dead time described above, a regenerative current to the DC power supply 144 is generated in some cases. As a result, charging of the capacitor 143 may cause a problem of an increase in the direct voltage VDC. However, it may be suppressed by dead time compensation.
 したがって、直流電圧VDCの過電圧を防止する面、および、電動機109の速度の算出を極力低速まで精度良く行う面から、適切なデッドタイム補償は有効に作用する。 Therefore, appropriate dead time compensation works effectively from the viewpoint of preventing overvoltage of the DC voltage VDC and calculating the speed of the electric motor 109 with accuracy as low as possible.
 以上のように、本実施の形態においては、制御部118は、ドラムからの運動エネルギーを吸収する短絡制動期間に、電動機109の入力電圧を略零に保つようにスイッチング素子111、112、113、114、115、116の制御を行い、算出速度ωが所定値ωth以下となった後、停止の判定を行う。 As described above, in the present embodiment, the control unit 118 switches the switching elements 111, 112, 113, so as to keep the input voltage of the electric motor 109 substantially zero during the short-circuit braking period in which the kinetic energy from the drum is absorbed. 114, 115, and 116 are controlled, and after the calculated speed ω becomes equal to or less than the predetermined value ωth, stop is determined.
 これにより、例えばホールICなどの位置検知器を持たない簡単な構成でありながら、電動機109の停止を適切に判定できる。従って、安全性の確保が可能となる。 Thereby, for example, the stop of the electric motor 109 can be appropriately determined while having a simple configuration without a position detector such as a Hall IC. Therefore, safety can be ensured.
 なお、本実施の形態においては、ブレーキ要求信号B4RQ時には、Cs信号は停止の判定には使用しないものとしたが、併用してもよい。例えばZ信号が発生してから0.3秒後に再度Cs信号の状態を確認して、停止の判定を行っても良い。 In the present embodiment, the Cs signal is not used for the stop determination at the time of the brake request signal B4RQ, but may be used together. For example, the stop state may be determined by confirming the state of the Cs signal again 0.3 seconds after the Z signal is generated.
 また、万一非常に急な減速がかかった場合など、35r/minの判断がなされるまでに、電流が小となり、Cl信号がローとなり、いつまでも停止の判定がなされず、インバータ装置が閉じこもってしまうこともある。しかし、Cs信号との併用や、適宜タイマーを併用するなどして、停止していることの判定を行い、十分な時間経過の後に、停止の判定することもある。これにより、安全性やインバータ装置の利便性を両立させた形で、次のシーケンスに進むことができる。 In addition, in the unlikely event of a very rapid deceleration, the current becomes small and the Cl signal goes low until the judgment of 35 r / min is made, and the judgment of stop is not made forever and the inverter device is closed. Sometimes it ends up. However, it may be determined that the vehicle is stopped by using it together with the Cs signal or using an appropriate timer, and the stop may be determined after a sufficient time has elapsed. As a result, it is possible to proceed to the next sequence in a form that satisfies both safety and convenience of the inverter device.
 なお、3つの線電流Iu、Iv、Iwの瞬時値の絶対値のすべてが所定の値、例えば0.6Aを下回った時点Tjaで、速度算出部120は算出速度が所定値以下と判定して電動機109が停止したと判定をしてもよい。 Note that at the time Tja when all of the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw are below a predetermined value, for example, 0.6 A, the speed calculation unit 120 determines that the calculated speed is equal to or less than the predetermined value. It may be determined that the electric motor 109 has stopped.
 図7は、本実施の形態における一般にドラム式洗濯機と呼ばれるインバータ装置を側方から見た内部構成を示す図である。 FIG. 7 is a diagram showing an internal configuration of an inverter device generally called a drum type washing machine in the present embodiment as viewed from the side.
 図7において、インバータ装置は、衣類105を収納するドラム106と、プーリ182およびベルト108を介してドラム106を回転駆動する電動機109と、電動機109に3相の交流電流を供給するインバータ回路117とを有している。 In FIG. 7, the inverter device includes a drum 106 that houses clothing 105, an electric motor 109 that rotationally drives the drum 106 via a pulley 182 and a belt 108, and an inverter circuit 117 that supplies a three-phase alternating current to the electric motor 109. have.
 インバータ回路117は、制御部118からの6石分の制御信号により、運転がなされる。インバータ装置は、上記で説明した、異常検出信号B99RQとブレーキ要求信号B4RQに対応し、それぞれ図3に示したB99RQ信号での電圧低減期間と、図5に示したブレーキ要求信号B4RQでの電圧低減期間を経た後、短絡制動期間に移る。 The inverter circuit 117 is operated by a control signal for 6 stones from the control unit 118. The inverter device corresponds to the abnormality detection signal B99RQ and the brake request signal B4RQ described above, respectively, the voltage reduction period in the B99RQ signal shown in FIG. 3, and the voltage reduction in the brake request signal B4RQ shown in FIG. After a period of time, a short circuit braking period starts.
 停止の判定に関しても、上記で説明した、異常検出信号B99RQとブレーキ要求信号B4RQのそれぞれの構成でいずれも短絡制動期間中の停止の判定によって、安全性の確保が行われる。 Regarding the determination of the stop, safety is ensured by determining the stop during the short-circuit braking period in each of the configurations of the abnormality detection signal B99RQ and the brake request signal B4RQ described above.
 本実施の形態においては、ドラム106は樹脂製の受け筒190の内部で回転する。制御部118からの給水弁信号Skb、排水弁信号Shbにより、給水弁193、排水弁194を開閉することによって、受け筒190内に水が給排水され、別に投入される洗剤と共に、洗濯と脱水がなされる。 In the present embodiment, the drum 106 rotates inside the resin-made receiving cylinder 190. By opening and closing the water supply valve 193 and the drainage valve 194 by the water supply valve signal Skb and the drainage valve signal Shb from the control unit 118, water is supplied and drained into the receiving tube 190, and washing and dehydration are performed together with a separately supplied detergent. Made.
 ドラム106の前方には、開閉可能な蓋196が設けられており、使用者が蓋196を開閉するためのハンドル197が設けられている。洗濯および脱水中に、ドラム106が回転する際には、蓋196が閉じられ、使用者の安全が確保され、水の飛散が防止される。 A lid 196 that can be opened and closed is provided in front of the drum 106, and a handle 197 for the user to open and close the lid 196 is provided. When the drum 106 rotates during washing and dehydration, the lid 196 is closed to ensure the safety of the user and prevent water from scattering.
 蓋196が、ハンドル197の操作によって開かれた状態は、破線で示されている。 The state in which the lid 196 is opened by operating the handle 197 is indicated by a broken line.
 蓋196は、本体に繋がる蝶番部分を中心として開閉するものとしているが、引き戸構成のものや、折りたたみする構成のもの、シャッタ構成のもの、また取り外しができる構成のものなどであっても構わない。 The lid 196 is opened and closed with a hinge part connected to the main body as a center, but it may have a sliding door configuration, a folding configuration, a shutter configuration, or a removable configuration. .
 蓋ロック部200は、蓋196が閉じられた状態を保持するものであり、ソレノイド201、プランジャ202、バネ203およびロック制御回路204からなっている。ソレノイド201に通電がなされていない、図示されている状態では、蓋196はロック状態である。このため、使用者がハンドル197を引いても、その他いかなる操作を行っても、蓋196を開くことはできない。 The lid lock unit 200 holds the lid 196 closed, and includes a solenoid 201, a plunger 202, a spring 203, and a lock control circuit 204. In the illustrated state where the solenoid 201 is not energized, the lid 196 is in a locked state. Therefore, the lid 196 cannot be opened even if the user pulls the handle 197 or performs any other operation.
 ロック制御回路204は、制御部118からの蓋ロック信号Srkにより、ソレノイド201への通電を行い、ロックの解除が行われる。すると、使用者はハンドル197を引いて、蓋196を開くことができる。 The lock control circuit 204 energizes the solenoid 201 by the lid lock signal Srk from the control unit 118, and the lock is released. The user can then pull the handle 197 to open the lid 196.
 なお、蓋検知スイッチ206は、蓋196の開閉状態を検知するものであり、蓋閉信号Sclを制御部118に伝える。蓋196が開かれている場合には、蓋閉信号Sclはローとなり、安全確保の面から、インバータ回路117への信号は供給されず、電動機109への交流電流の供給は行われず、ドラム106を回転する運転はなされない。 The lid detection switch 206 detects the open / closed state of the lid 196 and transmits a lid closing signal Scl to the control unit 118. When the lid 196 is opened, the lid closing signal Scl is low, and from the viewpoint of ensuring safety, no signal is supplied to the inverter circuit 117, no AC current is supplied to the electric motor 109, and the drum 106 The operation which rotates is not made.
 なお、この状態で直流電流を電動機109に供給しても良く、ドラム106はより確実に回転方向に固定された状態とすることで、十分な安全性を確保することができる。 In this state, a direct current may be supplied to the electric motor 109, and sufficient safety can be ensured by ensuring that the drum 106 is fixed in the rotational direction more reliably.
 そして、脱水運転などが終了した場合には、制御部118が停止の判定を行った後に、蓋ロック信号Srkを送る。蓋ロック部200が、ソレノイド201への通電を行うことによって、ロック状態が解除され、使用者が蓋196を開くことができる。 Then, when the dehydration operation or the like is finished, the controller 118 sends a lid lock signal Srk after determining the stop. When the lid lock unit 200 energizes the solenoid 201, the locked state is released, and the user can open the lid 196.
 所定の脱水時間に達した場合の他、使用者が停止ボタン208を操作し、停止ボタン信号Sstopが発生した場合、脱水運転が停止する。また、インバータ回路117において、過負荷などの異常が発生した際にも、制御部118内の異常信号が発生し、電動機109の制動がかかる。ドラム106が停止された時点で、制御部118において、ブレーキ要求信号B4RQによって停止の判定がなされ、蓋ロック部200によってロック状態が解除される。使用者がハンドル197を引くことによって、蓋196を開けることができる。よって、安全性が確保される。 In addition to the case where the predetermined dehydration time has been reached, when the user operates the stop button 208 and the stop button signal Sstop is generated, the dehydration operation is stopped. Further, when an abnormality such as an overload occurs in the inverter circuit 117, an abnormality signal in the control unit 118 is generated and the electric motor 109 is braked. When the drum 106 is stopped, the control unit 118 determines the stop by the brake request signal B4RQ, and the lid lock unit 200 releases the locked state. When the user pulls the handle 197, the lid 196 can be opened. Therefore, safety is ensured.
 なお、本実施の形態においては、3つの線電流Iu、Iv、Iwの瞬時値の絶対値のすべてが所定の値、例えば0.6Aを下回った時点Tjaで、速度算出部120は算出速度が所定値以下と判定して蓋ロック200によってロック状態が解除されるようにしてもよい。 In the present embodiment, the speed calculation unit 120 calculates the speed at the time Tja when all of the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw are below a predetermined value, for example, 0.6 A. It may be determined that the lock state is equal to or less than a predetermined value and the locked state is released by the lid lock 200.
 図8は、本発明の実施の形態1におけるインバータ装置の電源が投入された直後の動作を示すフローチャートである。 FIG. 8 is a flowchart showing an operation immediately after the power of the inverter device according to the first embodiment of the present invention is turned on.
 インバータ装置の電源スイッチが入れられた場合など、制御部118が動作した段階で、制御部118を構成しているマイクロコンピュータのプログラムがスタートする(ステップS210)。スタートから短絡ブレーキ(異常検出信号B99RQ)に移り、図3に示した異常検出信号B99RQが発生した場合の動作が行われる(ステップS211)。こうして、電圧低減期間に続いて短絡制動期間に入る。 When the control unit 118 is operated, such as when the power switch of the inverter device is turned on, the microcomputer program constituting the control unit 118 starts (step S210). The operation shifts from the start to the short-circuit brake (abnormality detection signal B99RQ), and the operation when the abnormality detection signal B99RQ shown in FIG. 3 occurs is performed (step S211). Thus, the short circuit braking period starts after the voltage reduction period.
 短絡制動期間に入った後、図4に示す停止の判定となるCs信号がハイとなった時点で、ロック解除に移る(ステップS213)。ここでソレノイド201の通電が行われ、使用者は蓋196を開くことができる。こうして、安全性が確保される。 After entering the short-circuit braking period, when the Cs signal, which is the stop determination shown in FIG. 4, becomes high, the process proceeds to unlocking (step S213). Here, the solenoid 201 is energized, and the user can open the lid 196. Thus, safety is ensured.
 電源が投入された段階で、例えば前回の運転の制動が完了していない状態で、蓋196を使用者が開くことができる場合には、残っている回転力により、使用者に危険が発生する可能性がある。 When the user can open the lid 196 at the stage when the power is turned on, for example, in a state where the braking of the previous operation has not been completed, a danger occurs to the user due to the remaining rotational force. there is a possibility.
 本実施の形態においては、電源投入後に、短絡制動期間を経る。かつ、停止の判定による安全性の確保のCs信号がハイになった後に、ロックを解除することにより、危険を無くすることができる。従って、安全性の高い洗濯機を実現することができる。 In this embodiment, a short-circuit braking period passes after the power is turned on. In addition, the danger can be eliminated by releasing the lock after the Cs signal for ensuring safety based on the stop determination becomes high. Therefore, a highly safe washing machine can be realized.
 このように、本実施の形態においては、電動機の停止を適切に判定した後に、蓋のロック解除を行い、使用者は蓋196を開くことができる。従って、安全性の高い洗濯機を実現することができる。 Thus, in the present embodiment, after appropriately determining the stop of the motor, the lid can be unlocked and the user can open the lid 196. Therefore, a highly safe washing machine can be realized.
 特に、短絡ブレーキ(異常検出信号B99RQ)にて、異常検出信号B99RQによる制動を行うため(ステップS211)、速度センサや位置センサを用いないセンサレスと呼ばれる構成であっても、極めて有効である。その理由は、電源投入直後にドラム106の回転が残っていた場合であっても、その速度、および位置(位相)に関係なく、インバータ回路117の過電流や過電圧の発生を抑えることができるためである。 Particularly, since braking is performed with the abnormality detection signal B99RQ with the short-circuit brake (abnormality detection signal B99RQ) (step S211), even a sensorless configuration that does not use a speed sensor or a position sensor is extremely effective. The reason is that even if the rotation of the drum 106 remains immediately after the power is turned on, the occurrence of overcurrent and overvoltage in the inverter circuit 117 can be suppressed regardless of the speed and position (phase). It is.
 また、本実施の形態においては、正しい零電流状態における電流検知部119の出力値を、オフセット値として扱っている。従って、例えば短絡ブレーキ中に電流検知部119に故障が発生した場合、0Vや5Vなどの実際の電流値とは無関係に出力信号が固定される可能性が高い。その場合にはCs信号はハイとなる可能性は極めて低くなり、高い安全性が確保される。 In the present embodiment, the output value of the current detector 119 in the correct zero current state is handled as an offset value. Therefore, for example, when a failure occurs in the current detection unit 119 during the short-circuit braking, there is a high possibility that the output signal is fixed regardless of the actual current value such as 0V or 5V. In that case, the possibility that the Cs signal becomes high is extremely low, and high safety is ensured.
 なお、本実施の形態においては、ドラム106の回転軸は、水平としたが、垂直、あるいは、斜めであっても良い。 In this embodiment, the rotation axis of the drum 106 is horizontal, but it may be vertical or oblique.
 ドラム106の回転駆動のための動力伝達経路は、プーリ182、ベルト108を用いたが、これに限定されるものではない。ギア(歯車)を用いたものや、ダイレクト駆動と呼ばれるように、ドラム106の軸に直接に電動機を備えて、同一の速度で回転するものなどであっても構わない。 Although the pulley 182 and the belt 108 are used as the power transmission path for rotationally driving the drum 106, the present invention is not limited to this. A gear using a gear (gear) or a motor having a motor directly on the shaft of the drum 106 and rotating at the same speed as called direct drive may be used.
 また、蓋ロック部200の構成に関しても、本実施の形態で述べた構成に限定されるものではない。複数の蓋ロック部を設けても良い。例えば、使用者のハンドル操作によっていつでもロック解除が可能な第1の蓋ロック部と、制御部からの信号によってロック状態が解除される第2の蓋ロック部とを併用する構成としても良い。あるいは、蓋を閉じた状態で常にロック状態となるが、ロック解除は制御部からの信号によって行われる構成としても良い。また、制御部からの信号によってハンドル操作ができなくなるものでも良い。いずれの場合でも使用者が蓋を開くことができるかどうかを、制御部からの信号によって変化させることができるものであれば良い。 Also, the configuration of the lid lock unit 200 is not limited to the configuration described in the present embodiment. A plurality of lid lock portions may be provided. For example, a first lid lock unit that can be unlocked at any time by a user's handle operation and a second lid lock unit that is unlocked by a signal from the control unit may be used in combination. Or although it will always be in a locked state in the state which closed the lid | cover, it is good also as a structure performed by the signal from a control part. In addition, the steering wheel operation may be disabled by a signal from the control unit. In any case, it is sufficient that the user can change whether or not the user can open the lid by a signal from the control unit.
 以上のように、本実施の形態の洗濯機は、衣類105を収納するドラム106と、永久磁石100、101と3相の巻線102、103、104を備え、ドラム106を駆動する電動機109とを有する。また、ドラム106の開口部を開閉する蓋196と、蓋196をロックする蓋ロック部200とを有する。また、直流電源144から電力が供給され、複数のスイッチング素子111、112、113、114、115、116を用いて、電動機109に電流を供給するインバータ回路117を有する。また、スイッチング素子111、112、113、114、115、116をオンオフ制御する制御部118を有する。制御部118は、電流を検知する電流検知部119と、電流検知部119の出力を受けて電動機109の速度を算出する速度算出部120とを備える。制御部118は、ドラム106の制動期間に、電動機109の入力電圧を略零に保つようにスイッチング素子111、112、113、114、115、116を制御し、速度が所定値以下となった後、蓋ロック部200によって蓋196を開くことを可能にする。これにより、簡単な構成でありながら、安全性が確保される。 As described above, the washing machine according to the present embodiment includes the drum 106 that houses the clothing 105, the permanent magnets 100 and 101, and the three- phase windings 102, 103, and 104, and the electric motor 109 that drives the drum 106. Have Further, a lid 196 that opens and closes the opening of the drum 106 and a lid lock portion 200 that locks the lid 196 are provided. In addition, the inverter circuit 117 is supplied with power from the DC power supply 144 and supplies current to the electric motor 109 using the plurality of switching elements 111, 112, 113, 114, 115, and 116. Moreover, it has the control part 118 which performs on-off control of switching element 111,112,113,114,115,116. The control unit 118 includes a current detection unit 119 that detects current, and a speed calculation unit 120 that receives the output of the current detection unit 119 and calculates the speed of the electric motor 109. The control unit 118 controls the switching elements 111, 112, 113, 114, 115, and 116 so that the input voltage of the electric motor 109 is kept substantially zero during the braking period of the drum 106, and after the speed becomes a predetermined value or less. The lid 196 can be opened by the lid lock unit 200. Thereby, safety is ensured with a simple configuration.
 また、本実施の形態の洗濯機の制御部118は、電流検知部119が、3相の内の2相以上の電流を検知し、速度算出部120が、この3相の内の2相以上の電流の値に基づいて速度を算出する。これにより、簡単な構成でありながら、安全性が確保される。 In addition, in the control unit 118 of the washing machine according to the present embodiment, the current detection unit 119 detects a current of two or more of the three phases, and the speed calculation unit 120 detects two or more of the three phases. The speed is calculated based on the current value. Thereby, safety is ensured with a simple configuration.
 また、本実施の形態の洗濯機は、制御部118が、速度の時間積分値を含む永久磁石100、101の位相を出力する可変周波数発振部127と、位相誤差検知部126と、座標変換部150とを備える。また、座標変換部150は、位相を用いて電流検知部119の出力を静止座標から回転座標へ変換して出力し、速度算出部120は回転座標での電流値信号を受けて速度を算出する。これにより、簡単な構成でありながら、安全性が確保される。 Moreover, in the washing machine of the present embodiment, the control unit 118 outputs the phase of the permanent magnets 100 and 101 including the time integral value of the speed, the variable frequency oscillation unit 127, the phase error detection unit 126, and the coordinate conversion unit. 150. In addition, the coordinate conversion unit 150 converts the output of the current detection unit 119 from a stationary coordinate to a rotation coordinate using the phase, and outputs it. The speed calculation unit 120 receives the current value signal at the rotation coordinate and calculates the speed. . Thereby, safety is ensured with a simple configuration.
 また、本実施の形態の洗濯機は、制動期間の前に、電動機109の入力電圧の絶対値を低下させるように、スイッチング素子114、115、116を制御する電圧低減期間を有する。これにより、電動機の入力の過電圧を避けることができる。 In addition, the washing machine of the present embodiment has a voltage reduction period for controlling the switching elements 114, 115, and 116 so as to reduce the absolute value of the input voltage of the electric motor 109 before the braking period. Thereby, the overvoltage of the input of an electric motor can be avoided.
 また、本実施の形態の洗濯機は、蓋ロック部200によって蓋196を開くことを可能にする前に、制動期間を有する。これにより、簡単な構成でありながら、安全性が確保される。 Also, the washing machine of the present embodiment has a braking period before allowing the lid 196 to be opened by the lid lock unit 200. Thereby, safety is ensured with a simple configuration.
 また、本実施の形態の洗濯機は、電動機109が位置検知器を持たないセンサレス方式とした。これにより、電動機109の停止を適切に判定することができるうえ、低コストの洗濯機を提供できる。 Moreover, the washing machine of the present embodiment is a sensorless system in which the electric motor 109 does not have a position detector. Thereby, stop of the electric motor 109 can be determined appropriately, and a low-cost washing machine can be provided.
 (実施の形態2)
 図9は、本発明の実施の形態2におけるインバータ装置のブロック図である。
(Embodiment 2)
FIG. 9 is a block diagram of an inverter device according to Embodiment 2 of the present invention.
 本実施の形態においては、特に速度と位相を算出する構成が、第1の実施の形態と異なる。その他は同等であるため、特に実施の形態1と異なる部分のみを説明する。 In the present embodiment, the configuration for calculating the speed and the phase is particularly different from that of the first embodiment. Since other parts are equivalent, only the parts different from the first embodiment will be described.
 図9において、速度算出部221は、中央制御部135からのVd、Vq、Id、Iq信号を受ける位相誤差検知部223と、可変周波数発振部127とを有している。可変周波数発振部127は、実施の形態1と同様に、P成分とI成分を有し、算出速度ωを出力する増幅器128と、算出速度ωの時間積分を行って算出位相θを出力する積分器129を有している。 9, the speed calculation unit 221 includes a phase error detection unit 223 that receives Vd, Vq, Id, and Iq signals from the central control unit 135, and a variable frequency oscillation unit 127. Similar to the first embodiment, the variable frequency oscillator 127 has a P component and an I component, and an amplifier 128 that outputs the calculated speed ω, and an integration that performs time integration of the calculated speed ω and outputs the calculated phase θ. A container 129.
 本実施の形態においては、算出速度ωは、位相誤差検知部223にも入力される。位相誤差検知部223は、電動機109のパラメータ(抵抗値、最大インダクタンス、最小インダクタンス)を記憶しており、電圧指令値および検出した電流値から、位相誤差εを算出する。算出位相θが実位相に対して進んでいる場合にはε>0、算出位相θが実位相に対して遅れている場合には、ε<0となる。 In the present embodiment, the calculation speed ω is also input to the phase error detection unit 223. The phase error detection unit 223 stores parameters (resistance value, maximum inductance, minimum inductance) of the electric motor 109, and calculates the phase error ε from the voltage command value and the detected current value. When the calculated phase θ is advanced with respect to the actual phase, ε> 0, and when the calculated phase θ is delayed with respect to the actual phase, ε <0.
 定常状態においては、増幅器128の入力、すなわち位相誤差検知部223の出力εが零となるように、増幅器128と位相誤差検知部223の制御ループが動作する。速度算出部221としては、回転座標での電流値信号IdとIq、および回転座標での電圧値信号VdとVqを受けて、速度ω、および位相θを算出して出力する。 In the steady state, the control loop of the amplifier 128 and the phase error detector 223 operates so that the input of the amplifier 128, that is, the output ε of the phase error detector 223 becomes zero. The speed calculation unit 221 receives the current value signals Id and Iq in the rotation coordinates and the voltage value signals Vd and Vq in the rotation coordinates, and calculates and outputs the speed ω and the phase θ.
 なお、算出速度ωは、例えば64μs等のインバータ回路117のキャリア周波数毎に計算された、前回のωを使用して計算される。これにより、上記制御ループについての堂々巡りは、回避される。 Note that the calculation speed ω is calculated using the previous ω calculated for each carrier frequency of the inverter circuit 117 such as 64 μs, for example. As a result, a round tour of the control loop is avoided.
 その他の部分の構成に関しては、実施の形態1と同等であり、ブレーキ要求信号B4RQが発生した場合の動作についても、実施の形態1と同等である。 Other configurations are the same as those in the first embodiment, and the operation when the brake request signal B4RQ is generated is also the same as that in the first embodiment.
 以上の構成により、本実施の形態のインバータ装置では、ブレーキ要求信号B4RQが発生した場合には、実施の形態1と同等に、VdとVqを電圧低減期間中に絶対値を零とした後、短絡制動期間中にVdとVqが共に零とする。 With the above configuration, in the inverter device of the present embodiment, when the brake request signal B4RQ is generated, the absolute values of Vd and Vq are set to zero during the voltage reduction period, as in the first embodiment. Both Vd and Vq are set to zero during the short-circuit braking period.
 この段階で、IdとIqはかなりの大きさのものが存在するため、これらが位相誤差検知部223で計算要素に加わる。このため、短絡制動期間中の算出位相θが、実位相、すなわち、永久磁石100、101の位相と等しく保たれ、短絡制動期間中のωも極めて精度の高いものが得られる。 At this stage, since Id and Iq are considerably large, they are added to the calculation element by the phase error detector 223. For this reason, the calculated phase θ during the short-circuit braking period is kept equal to the actual phase, that is, the phases of the permanent magnets 100 and 101, and ω during the short-circuit braking period can be obtained with extremely high accuracy.
 ドラム106の速度が35r/min相当の速度となった時点で、算出速度ω<ωthとなり、J信号がハイに立ち上がるなど、その後の停止の判定に至る期間の動作に関しては、実施の形態1と同様である。 When the speed of the drum 106 reaches a speed equivalent to 35 r / min, the calculated speed ω <ωth and the operation during the period until the determination of the subsequent stop, such as the J signal rising high, is as in the first embodiment. It is the same.
 本実施の形態においては、位相誤差検知部223の構成として、やや複雑な計算が必要となる分、それを実現するマイクロコンピュータなどのプロセッサについては、計算力が高いものが必要となる。しかし、実位相に対する算出位相θの誤差、および実速度と算出速度ωとの誤差を非常に小さく抑えることができる。さらに、算出された速度ωに対する信頼性が極めて高いものとなる。従って、停止の判定としても信頼性が高いインバータ装置を実現することができる。安全性が極めて高いインバータ装置を実現することができる。 In the present embodiment, as the configuration of the phase error detection unit 223, a somewhat complicated calculation is required, and a processor such as a microcomputer that realizes the calculation requires a high calculation power. However, the error of the calculated phase θ with respect to the actual phase and the error between the actual speed and the calculated speed ω can be suppressed very small. Furthermore, the reliability for the calculated speed ω is extremely high. Therefore, it is possible to realize an inverter device with high reliability in determining whether to stop. An inverter device with extremely high safety can be realized.
 また、短絡制動期間以外の力行期間においても、電動機109に位置センサや速度センサを持たない「センサレス」と呼ばれる動作中において、インバータ装置は、算出した速度ωと位相θの応答性が優れた高性能の洗濯機として動作することができる。従って、本実施の形態のインバータ装置は、力行動作中の速度計算、位相計算と共用することもできる。 In addition, even during a power running period other than the short-circuit braking period, the inverter device has a high response with the calculated speed ω and phase θ in an operation called “sensorless” in which the electric motor 109 has no position sensor or speed sensor. Can operate as a performance washing machine. Therefore, the inverter device of the present embodiment can be shared with speed calculation and phase calculation during power running operation.
 なお、短絡制動期間には電動機109の入力電圧はほぼ零となり、Vd、Vqは共に零に固定された条件である。このため、力行時とは若干制御構成が異なる。従って、より低速まで速度の計算を対応させるなどの目的で、位相の誤差をフィードバックするための誤差増幅器に用いる利得(比例成分用、積分成分用など)は、力行時とは異なる値に切り替えられても良い。 In the short-circuit braking period, the input voltage of the electric motor 109 is almost zero, and both Vd and Vq are fixed to zero. For this reason, the control configuration is slightly different from that during power running. Therefore, the gain (for proportional component, integral component, etc.) used for the error amplifier for feeding back the phase error can be switched to a value different from that during power running for the purpose of corresponding speed calculation to a lower speed. May be.
 もちろん、ホールICなどの位置センサを備えるインバータ装置を使用することも可能である。従来から停止の判定に用いられる位置センサが万一故障した場合、多重の安全性を確保することができる。 Of course, it is also possible to use an inverter device equipped with a position sensor such as a Hall IC. If a position sensor conventionally used for determining whether to stop has failed, multiple safety can be ensured.
 なお、本実施の形態においては、位相誤差検知部223での、位相誤差ε、すなわち角度の次元となる物理量を算出する。しかし、算出した磁束の方向の電圧成分のみを用いても、十分な特性が得られることが多い。これにより、加減乗除、三角関数、指数関数、複素数演算などの各種計算の回数を削減できる。従って、より簡単な計算で済ませることができる。 In the present embodiment, the phase error ε, that is, the physical quantity that is the dimension of the angle in the phase error detector 223 is calculated. However, sufficient characteristics are often obtained even using only the voltage component in the direction of the calculated magnetic flux. Thereby, the number of various calculations such as addition / subtraction / multiplication / division, trigonometric function, exponential function, and complex number calculation can be reduced. Therefore, a simpler calculation can be performed.
 また、一般にベクトル制御と呼ばれる直交2軸は、一方が永久磁石100、101によって生じる磁束の向きに合致されることが多い。しかし、直交2軸は、特に磁束軸であるd軸にピッタリと合わせる構成に限定されるものでもない。直交2軸は、例えば電動機109が有している実際のインダクタンス値とは異なった値を用いて、d軸より幾分位相が進んだ軸を基準としても良い。これにより、永久磁石100、101が回転子内の奥深くに埋め込まれた構成の電動機109においては、電流の削減が合理的に行えるなどの利点もある。 In addition, two orthogonal axes generally called vector control are often matched with the direction of magnetic flux generated by the permanent magnets 100 and 101. However, the orthogonal two axes are not particularly limited to a configuration that perfectly matches the d-axis that is the magnetic flux axis. For the two orthogonal axes, for example, a value different from the actual inductance value of the electric motor 109 may be used, and an axis slightly advanced in phase from the d axis may be used as a reference. As a result, the electric motor 109 having the configuration in which the permanent magnets 100 and 101 are embedded deep inside the rotor has an advantage that current can be reduced rationally.
 本実施の形態においては、一般的な永久磁石電動機の電圧方程式をベースとし、誤差εを電圧の誤差、電流の誤差、速度の誤差、インダクタンス値の誤差、抵抗の誤差などに照らし合わせて計算しても良い。誤差εが零に収束するようにした上で、実働時の性能に影響が小さい項を省くなどした簡略化した数式を用いても良い。いずれにしても、計算量が減る分、使用するマイクロコンピュータとして、能力が低く、低コスト、電力消費を抑えたものでも構成できる。 In this embodiment, based on a voltage equation of a general permanent magnet motor, the error ε is calculated by comparing with a voltage error, current error, speed error, inductance value error, resistance error, etc. May be. It is also possible to use a simplified mathematical expression in which the error ε converges to zero and a term that has a small influence on the performance in actual operation is omitted. In any case, as the amount of calculation is reduced, the microcomputer to be used can be configured with a low capacity, low cost, and low power consumption.
 (実施の形態3)
 図10は、本発明の実施の形態3におけるインバータ装置のブロック図である。
(Embodiment 3)
FIG. 10 is a block diagram of an inverter device according to Embodiment 3 of the present invention.
 図10において、実施の形態3におけるインバータ装置は、埋め込み構造としたネオジムの永久磁石340、341と3相の巻線342、343、344とを有する。また、衣類345を収納するドラム346を、プーリ347およびベルト348を介して回転駆動する原動機となる電動機349と、6石のスイッチング素子351、352、353、354、355、356とを有する。また、直流から交流への逆変換を行い、電動機349に交流電流Iu、Iv、Iwを供給するインバータ回路357と、スイッチング素子351、352、353、354、355、356をオンオフ制御する制御部358とを有する。また、制御部358は、交流電流Iu、Iv、Iwを検知する電流検知部359を有する。電流検知部359は、3相それぞれの電流を電圧に変換するシャント抵抗361、362、363、および増幅器364を有する。増幅器364は、低電位側のスイッチング素子354、355、356のオン期間にシャント抵抗361、362、363の両端に発生する電圧を受け、-10~+10Aの線電流Iu、Iv、Iwに対して、0~5Vのアナログ電圧に変換して出力する。 10, the inverter device according to the third embodiment includes embedded neodymium permanent magnets 340 and 341 and three- phase windings 342, 343, and 344. The drum 346 for storing the clothing 345 includes an electric motor 349 that serves as a prime mover that rotationally drives the pulley 347 via a pulley 347 and a belt 348, and six stone switching elements 351, 352, 353, 354, 355, and 356. Further, an inverter circuit 357 that performs reverse conversion from direct current to alternating current and supplies alternating currents Iu, Iv, and Iw to the electric motor 349, and a control unit 358 that controls on / off of the switching elements 351, 352, 353, 354, 355, and 356. And have. In addition, the control unit 358 includes a current detection unit 359 that detects the alternating currents Iu, Iv, and Iw. The current detection unit 359 includes shunt resistors 361, 362, 363 and an amplifier 364 that convert the currents of the three phases into voltages. The amplifier 364 receives voltages generated at both ends of the shunt resistors 361, 362, and 363 during the ON period of the switching elements 354, 355, and 356 on the low potential side, and with respect to the line currents Iu, Iv, and Iw of −10 to + 10A. , Convert to analog voltage of 0-5V and output.
 本実施の形態においては、電流検知部359として3相の各相に対応する3個のシャント抵抗361、362、363が用いられている。これらは3シャントと呼ばれる構成である。しかし、1シャントと呼ばれる1個のシャント抵抗から、検知タイミングにおいて、3相の各電流値Iu、Iv、Iwを検出しても構わない。あるいは、DCCTと呼ばれるような直流電流成分から検出可能な、電流センサを2個~3個使用しても構わない。 In the present embodiment, three shunt resistors 361, 362, 363 corresponding to each of the three phases are used as the current detection unit 359. These are structures called three shunts. However, the current values Iu, Iv, and Iw of the three phases may be detected from a single shunt resistor called one shunt at the detection timing. Alternatively, two to three current sensors that can be detected from a direct current component called DCCT may be used.
 さらに制御部358は、中央制御部366を有する。制御部358は、インバータ回路357の制御のための信号生成、電流検知部359からの出力信号Iua、Iva、Iwaの信号受付などを、すべてデジタル方式にて行う。 Further, the control unit 358 has a central control unit 366. The control unit 358 performs signal generation for controlling the inverter circuit 357, signal reception of the output signals Iua, Iva, and Iwa from the current detection unit 359, etc., all in a digital manner.
 PWM回路367は、中央制御部366からDutyを受けて、64マイクロ秒周期の三角波でのパルス幅変調(PWM)を行った信号Bを出力する。中央制御部366の信号S1~S6は、インバータ回路357との間に設けた、切り替え部369、駆動回路370を経て、スイッチング素子351、352、353、354、355、356にゲート信号を与える。切り替え部369が、中央制御部366のK信号がハイである場合には、図10に表示されている状態となって、S1~S6が採用される。一方、K信号がローである場合には、図10の切り替え部369内の各スイッチが下側に接続された状態となる。 The PWM circuit 367 receives the duty from the central control unit 366 and outputs a signal B that has been subjected to pulse width modulation (PWM) with a triangular wave having a period of 64 microseconds. The signals S1 to S6 of the central control unit 366 give gate signals to the switching elements 351, 352, 353, 354, 355, 356, via the switching unit 369 and the drive circuit 370 provided between the central control unit 366 and the inverter circuit 357. When the K signal of the central control unit 366 is high, the switching unit 369 is in the state shown in FIG. 10, and S1 to S6 are adopted. On the other hand, when the K signal is low, the switches in the switching unit 369 in FIG. 10 are connected to the lower side.
 直流電源374は、AC230V50Hzの交流電源371、全波整流器372、およびコンデンサ373から構成される。直流電源374は、インバータ回路357内の直流電圧検知回路378に、直流電圧VDCを供給する。直流電圧検知回路378は、抵抗376、および377から構成される。直流電圧検知回路378の出力Aが、中央制御部366にアナログ電圧信号として出力される。中央制御部366の内部において、出力AはA/D変換され、デジタル値として処理される。 The DC power supply 374 is composed of an AC power supply 371 of AC 230 V 50 Hz, a full-wave rectifier 372, and a capacitor 373. DC power supply 374 supplies DC voltage VDC to DC voltage detection circuit 378 in inverter circuit 357. The DC voltage detection circuit 378 includes resistors 376 and 377. The output A of the DC voltage detection circuit 378 is output to the central control unit 366 as an analog voltage signal. In the central control unit 366, the output A is A / D converted and processed as a digital value.
 図11は、本発明の実施の形態3におけるインバータ装置の中央制御部366の詳細構成を示すブロック図である。 FIG. 11 is a block diagram showing a detailed configuration of the central control unit 366 of the inverter device according to Embodiment 3 of the present invention.
 なお、中央制御部366を構成する部品は、1チップのマイクロコンピュータであることが多い。しかし、図10の中央制御部366の外側の部分も含めた構成を、1台のマイクロコンピュータのソフトウェアで実現しても良い。また、中央制御部366を構成する部品を、いくつかのハードウェアで実現しても良い。また、DSPなどの各種プロセッサで実現しても良い。つまり、1チップで実現しても良いし、多チップで実現しても良く、また、ハードウェアで実現しても良いし、ソフトウェアで実現しても良い。 It should be noted that the component constituting the central control unit 366 is often a one-chip microcomputer. However, the configuration including the outer portion of the central control unit 366 in FIG. 10 may be realized by software of one microcomputer. Moreover, you may implement | achieve the components which comprise the central control part 366 with some hardware. Moreover, you may implement | achieve with various processors, such as DSP. That is, it may be realized with one chip, may be realized with multiple chips, may be realized with hardware, or may be realized with software.
 図11において、3相電流Iu、Iv、Iwに対応した信号Iua、Iva、Iwaは、算出された位相θ信号とともに、第1の座標変換部380に入力される。第1の座標変換部380においては、(数3)を用いてIdとIqへの変換、すなわち、静止座標から回転座標への変換が行われ、IdとIqが出力される。減算部381、382が設けられており、それぞれ、設定値IdrとIdの誤差、および、設定値IqrとIqの誤差が計算される。減算部381、382の出力は、PI(比例、積分)のゲインを作用させる誤差増幅部383、384に入力される。その出力VdとVqは、位相θ信号と共に第2の座標変換部388に入力され、(数4)を用いてdq座標から、3相の電圧指令値Vu、Vv、Vwの値への変換が行われる。電圧指令値Vu、Vv、Vwは、PWM部389に入力され、A信号に対する3相の電圧指令値の比率で、64μs周期の三角波のキャリア波を作用させる。PWM部389は、電圧指令値Vu、Vv、Vwに、そのキャリア波との瞬時値比較、およびデッドタイムを付して、上下の駆動信号S1~S6を生成する。 In FIG. 11, signals Iua, Iva, and Iwa corresponding to the three-phase currents Iu, Iv, and Iw are input to the first coordinate conversion unit 380 together with the calculated phase θ signal. In the first coordinate conversion unit 380, conversion to Id and Iq is performed using (Equation 3), that is, conversion from stationary coordinates to rotation coordinates is performed, and Id and Iq are output. Subtraction units 381 and 382 are provided, and the error between the set values Idr and Id and the error between the set values Iqr and Iq are calculated, respectively. The outputs of the subtracting units 381 and 382 are input to error amplifying units 383 and 384 for applying a gain of PI (proportional and integral). The outputs Vd and Vq are input to the second coordinate conversion unit 388 together with the phase θ signal, and are converted from the dq coordinates to the values of the three-phase voltage command values Vu, Vv, and Vw using (Equation 4). Done. The voltage command values Vu, Vv, and Vw are input to the PWM unit 389, and a triangular carrier wave having a period of 64 μs is applied at a ratio of the three-phase voltage command value to the A signal. The PWM unit 389 generates upper and lower drive signals S1 to S6 by adding an instantaneous value comparison with the carrier wave and a dead time to the voltage command values Vu, Vv, and Vw.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、本実施の形態においては、電流検知部359は、3相すべての電流を検知する構成としている。しかし、電動機349の三相の巻線342、343、344の内の2相の電流を検知すれば、残りの1相はキルヒホッフの法則によって計算できる。従って、2相のみの検知としても構わない。 In the present embodiment, the current detector 359 is configured to detect all three phases of current. However, if the current of two phases in the three- phase windings 342, 343, and 344 of the electric motor 349 is detected, the remaining one phase can be calculated according to Kirchhoff's law. Therefore, only two-phase detection may be performed.
 速度推定部390は、電動機349のパラメータ(抵抗値、最大インダクタンス、最小インダクタンス)を記憶しており、電動機349の電圧方程式を用いて、速度センサなしでありながら、電動機349の速度推定を行う。速度推定部390は、第1の座標変換部380の出力Id、Iqと、第2の座標変換部388の入力Vd、Vqを受け、推定速度ω、ω2を出力する。 The speed estimation unit 390 stores parameters (resistance value, maximum inductance, minimum inductance) of the electric motor 349, and uses the voltage equation of the electric motor 349 to estimate the speed of the electric motor 349 without a speed sensor. The speed estimation unit 390 receives the outputs Id and Iq of the first coordinate conversion unit 380 and the inputs Vd and Vq of the second coordinate conversion unit 388, and outputs estimated speeds ω and ω2.
 なお、速度推定部390において、電動機349の電圧値および電流値から、位相誤差に対応するεが算出される。εが零に収束するように、積分もしくは比例積分要素などを持つ誤差増幅がなされ、フィードバックされる。 Note that the speed estimation unit 390 calculates ε corresponding to the phase error from the voltage value and current value of the electric motor 349. Error amplification having an integral or proportional integral element is performed and fed back so that ε converges to zero.
 積分器392は、速度推定部390の出力ω2を受け、ω2を時間積分し、2πとなった時点で、零にリセットされる位相θ信号を出力する。 The integrator 392 receives the output ω2 of the speed estimation unit 390, integrates ω2 over time, and outputs a phase θ signal that is reset to zero when 2π is reached.
 中央制御部366は、さらに減算部394、誤差増幅部395、Idr設定部396、短絡ブレーキ制御部398、およびシーケンス発生部399を有する。減算部394は、速度設定値ωrとωとの差を計算する。誤差増幅部395は、減算部394の出力に対して、PI(比例、積分)のゲインを作用させる。Idr設定部396は、算出速度ωから設定値Idrを決める。シーケンス発生部399は、速度設定値ωr、ブレーキ要求信号BRQの信号発生を行う。 The central control unit 366 further includes a subtraction unit 394, an error amplification unit 395, an Idr setting unit 396, a short circuit brake control unit 398, and a sequence generation unit 399. The subtraction unit 394 calculates the difference between the speed setting values ωr and ω. The error amplifying unit 395 applies a gain of PI (proportional, integral) to the output of the subtracting unit 394. The Idr setting unit 396 determines a set value Idr from the calculated speed ω. The sequence generator 399 generates a speed set value ωr and a brake request signal BRQ.
 Idr設定部396は、ω値がドラム346の速度換算で400r/min以下の場合には、設定値Idrとして0Aを出力する。Idr設定部396は、ドラム346の速度換算で400r/minを超える場合には、Idr<0Aとしつつ、絶対値としてはωの増大に伴い徐々に増加させる。Idr設定部396は、ドラム346の速度換算で1200r/minでは、Idr=-5Aを出力する。従って、高速での弱メ界磁制御がかかる。 The Idr setting unit 396 outputs 0A as the set value Idr when the ω value is 400 r / min or less in terms of the speed of the drum 346. When the speed of the drum 346 exceeds 400 r / min, the Idr setting unit 396 gradually increases with increasing ω while setting Idr <0A. The Idr setting unit 396 outputs Idr = −5A at 1200 r / min in terms of the speed of the drum 346. Therefore, the weak magnetic field control at high speed is applied.
 シーケンス発生部399は、インバータ装置が洗濯機として動作を行うため、外部の構成要素との各種信号を送受信する。各種信号とは、停止ボタン信号Sstop、給水弁信号Skb、排水弁信号Shb、蓋ロック信号Srk、蓋閉信号Sclなどである。シーケンス発生部399は同時に、電動機349の運転に関わる各種の信号も送受信する。 Sequence generator 399 transmits and receives various signals to and from external components in order for the inverter device to operate as a washing machine. The various signals include a stop button signal Sstop, a water supply valve signal Skb, a drain valve signal Shb, a lid lock signal Srk, a lid closing signal Scl, and the like. At the same time, the sequence generator 399 transmits and receives various signals related to the operation of the electric motor 349.
 切り替え部400は、制動時にドラム346の速度が略零となった後、シーケンス発生部399からの信号Kaを受けて、各接点をaからbに切り替える。これにより、切り替え部400は、設定値Idr、設定値Iqr、位相θの値を、信号発生器401の出力Idr0、Iqr0、θ0に切り替える。 The switching unit 400 receives the signal Ka from the sequence generation unit 399 after the speed of the drum 346 becomes substantially zero during braking, and switches each contact from a to b. Thereby, the switching unit 400 switches the set value Idr, the set value Iqr, and the phase θ values to the outputs Idr0, Iqr0, and θ0 of the signal generator 401.
 短絡電流判定部403は、短絡状態での3相分の電流信号Iua、Iva、Iwaの瞬時値の絶対値のすべてが0.6Aを下回った場合に、Cs信号をハイとする。 The short-circuit current determination unit 403 sets the Cs signal to high when all the absolute values of the instantaneous values of the current signals Iua, Iva, and Iwa for three phases in the short-circuit state are less than 0.6A.
 図12は、本発明の実施の形態3におけるインバータ装置の短絡ブレーキ制御部398のブロック図である。 FIG. 12 is a block diagram of the short-circuit brake control unit 398 of the inverter device according to Embodiment 3 of the present invention.
 図12において、短絡ブレーキ制御部398は、関数発生器405、積分器406、遅延部407を有している。遅延部407はブレーキ要求信号BRQに対して、遅延時間Td1=5msの時間遅れで、積分器406のINTEGを発生させる。 12, the short circuit brake control unit 398 includes a function generator 405, an integrator 406, and a delay unit 407. The delay unit 407 generates INTEG of the integrator 406 with a delay of the delay time Td1 = 5 ms with respect to the brake request signal BRQ.
 積分器406において、INTEGがローの状態では、積分値Dutyが初期値となる零である。INTEGがハイに上がった時点から、時間積分の動作が開始されることにより、Dutyが出力される。 In the integrator 406, when the INTEG is low, the integral value Duty is zero, which is the initial value. The time integration operation is started from the point when INTEG rises to high, whereby Duty is output.
 本実施の形態においては、積分器406の出力となるDutyを関数発生器405の入力として用いる。これにより、積分の開始からの時間のカウントを省略した簡単な構成でありながら、短絡時間比率拡大期間の開始からの時間に応じた、短絡時間比率の拡大速度を変化させることができる。 In this embodiment, the duty that is the output of the integrator 406 is used as the input of the function generator 405. Thereby, although it is the simple structure which abbreviate | omitted the count of the time from the start of integration, the expansion speed of the short circuit time ratio according to the time from the start of the short circuit time ratio expansion period can be changed.
 ここで、積分器406は、100%で制限がかかる上限リミッタにより、Dutyの制限を行う機能を内蔵している。この制限動作により、Dutyは最終的に上限値である100%にて頭打ちとなり、その段階で、PWMからベタオン状態に移る。 Here, the integrator 406 has a built-in function to limit the duty by an upper limiter that is limited by 100%. By this limiting operation, the duty finally reaches a peak at 100% which is the upper limit value, and at that stage, the PWM shifts to the beta-on state.
 なお、Dutyが100%となった時点では、低電位側スイッチング素子354、355、356内のIGBTやダイオードの電圧降下分、およびインバータ回路357から電動機349までの配線による電圧降下分は、電動機349の入力電圧として例えば2~3V程度残る。このような電圧は略零の範疇と考える。 When the duty becomes 100%, the voltage drop of the IGBT and the diode in the low potential side switching elements 354, 355, and 356 and the voltage drop due to the wiring from the inverter circuit 357 to the motor 349 are the motor 349. As an input voltage, for example, about 2 to 3 V remains. Such a voltage is considered to be a category of approximately zero.
 図13は、本発明の実施の形態3におけるインバータ装置の関数発生器405の入出力特性を示すグラフである。横軸に入力、縦軸に出力をとっている。関数発生器405の出力は、積分器406の入力となるので、短絡時間比率拡大速度dDuty/dtの意味合いを持つ。 FIG. 13 is a graph showing input / output characteristics of the function generator 405 of the inverter device according to the third embodiment of the present invention. The horizontal axis represents input and the vertical axis represents output. Since the output of the function generator 405 is an input of the integrator 406, it has the meaning of the short circuit time ratio expansion rate dDuty / dt.
 本実施の形態においては、短絡時間比率Dutyの拡大期間において、その開始からの時間をカウントする代わりに、Dutyに対する増加速度dDuty/dtの関数を計算している。 In the present embodiment, in the expansion period of the short circuit time ratio Duty, a function of the increasing speed dDuty / dt with respect to the Duty is calculated instead of counting the time from the start.
 これによって、計算に使用する変数の数が削減できる。従って、安価で小型のマイクロコンピュータでも計算できる。 This can reduce the number of variables used in the calculation. Therefore, it can be calculated even with an inexpensive and small microcomputer.
 しかしながら、特にこのような構成にする必要があるというものではなく、開始からの時間をカウントし、その時間を関数として出力したものを用いても良い。 However, it is not particularly necessary to have such a configuration, and it is also possible to use the one that counts the time from the start and outputs the time as a function.
 また、十分な特性が得られるのであれば、図13に示した曲線(カーブ)の代わりに、直線や、階段状の線を用いてもよい。これにより、マイクロコンピュータでの計算の負担を軽くすることができる。 If sufficient characteristics can be obtained, a straight line or a stepped line may be used instead of the curve shown in FIG. Thereby, the burden of calculation in the microcomputer can be reduced.
 短絡ブレーキ制御部398は、洗濯機に何らかの異常が発生した場合、および動作の区切りの時点で、電動機349をブレーキ状態として停止させる。短絡ブレーキ制御部398は、シーケンス発生部399からのブレーキ要求信号BRQを受けた場合には、電動機349の入力を徐々に短絡状態にする。すなわち3相の入力端子間の電圧がほぼ零となるように、インバータ回路357内のスイッチング素子351、352、353、354、355、356のゲート電圧を制御する。 The short-circuit brake control unit 398 stops the electric motor 349 in a brake state when some abnormality occurs in the washing machine and at the time of the break of operation. When receiving the brake request signal BRQ from the sequence generator 399, the short-circuit brake controller 398 gradually sets the input of the electric motor 349 to a short-circuit state. That is, the gate voltages of the switching elements 351, 352, 353, 354, 355, and 356 in the inverter circuit 357 are controlled so that the voltage between the three-phase input terminals becomes substantially zero.
 図14は、本発明の実施の形態3におけるドラム式洗濯機と呼ばれるインバータ装置を側方から見た内部構成を示す図である。 FIG. 14 is a diagram showing an internal configuration of an inverter device called a drum type washing machine according to Embodiment 3 of the present invention as viewed from the side.
 図14において、衣類345を収納するドラム346は、電動機349からベルト348を介して、プーリ410に動力が伝えられて、回転駆動される。電動機349に3相の交流電流を供給するインバータ回路357は、制御部358によって制御される。 In FIG. 14, the drum 346 for storing the clothing 345 is rotated by the power transmitted from the electric motor 349 to the pulley 410 via the belt 348. An inverter circuit 357 that supplies a three-phase alternating current to the electric motor 349 is controlled by the control unit 358.
 ドラム346は、樹脂製の受け筒411の内部で回転する。給水弁413、排水弁414の開閉が制御部358からの給水弁信号Skb、排水弁信号Shbにより制御される。これによって、受け筒411内に水が給排水され、別に投入される洗剤と共に、洗濯と脱水がなされる。 The drum 346 rotates inside the resin receiving tube 411. Opening and closing of the water supply valve 413 and the drainage valve 414 is controlled by a water supply valve signal Skb and a drainage valve signal Shb from the control unit 358. Thus, water is supplied and drained into the receiving tube 411, and washing and dehydration are performed together with a separately supplied detergent.
 ここで、ドラム346の前方には開閉可能な蓋416が設けられている。蓋416には、使用者が蓋416を開閉するためのハンドル417が設けられている。洗濯および脱水中にドラム346が回転する際には、蓋416が閉じられ、使用者の安全確保や、水の飛散が防止される。 Here, a lid 416 that can be opened and closed is provided in front of the drum 346. The lid 416 is provided with a handle 417 for the user to open and close the lid 416. When the drum 346 rotates during washing and dehydration, the lid 416 is closed, and the safety of the user and the scattering of water are prevented.
 なお、蓋416は、一部が透明のガラスでできており、洗濯動作中にもドラム346内の洗濯の状態が見える。 The lid 416 is partially made of transparent glass, and the washing state in the drum 346 can be seen even during the washing operation.
 蓋416がハンドル417の操作で開かれた状態は、破線で示されている。 The state where the lid 416 is opened by the operation of the handle 417 is indicated by a broken line.
 本実施の形態においては、蓋416は本体に繋がる蝶番部分を中心として開閉する。しかし、引き戸構成のものや、折りたたみ構成のもの、シャッタ構成のもの、また、本体から取り外しができるものなどであっても構わない。 In this embodiment, the lid 416 opens and closes around a hinge portion connected to the main body. However, a sliding door configuration, a folding configuration, a shutter configuration, or a configuration that can be detached from the main body may be used.
 蓋ロック部419は、蓋416が閉じられた状態に保持する。蓋ロック部419は、ソレノイド420、プランジャ421、バネ422およびロック制御回路423からなる。ソレノイド420に通電がなされていない、図示されている状態では、蓋416はロック状態である。従って、使用者がハンドル417を引いても、その他いかなる操作を行っても、蓋416を開くことはできない。 The lid lock unit 419 holds the lid 416 in a closed state. The lid lock unit 419 includes a solenoid 420, a plunger 421, a spring 422, and a lock control circuit 423. In the illustrated state where the solenoid 420 is not energized, the lid 416 is in a locked state. Therefore, even if the user pulls the handle 417 or performs any other operation, the lid 416 cannot be opened.
 ロック制御回路423は、制御部358からの蓋ロック信号Srkにより、ソレノイド420への通電を行い、ロックの解除をする。ロックの解除が行われると、使用者はハンドル417を引いて、蓋416を開くことができる。 The lock control circuit 423 energizes the solenoid 420 by the lid lock signal Srk from the control unit 358 to release the lock. Once unlocked, the user can pull handle 417 to open lid 416.
 蓋検知スイッチ425は、蓋416の開閉状態を検知する。蓋416が開かれている場合には、蓋閉信号Sclはローとなり、制御部358に伝えられる。安全確保の面から、インバータ回路357から、電動機349への交流電流の供給は行われない。従って、ドラム346は回転しない。 The lid detection switch 425 detects the open / closed state of the lid 416. When the lid 416 is opened, the lid closing signal Scl becomes low and is transmitted to the control unit 358. From the aspect of ensuring safety, AC current is not supplied from the inverter circuit 357 to the electric motor 349. Therefore, the drum 346 does not rotate.
 脱水運転の終了後など、制御部358から蓋ロック信号Srkがロック制御回路423へ送られると、蓋ロック部419は、ソレノイド420へ通電を行うことによって、ロック状態を解除する。これによって、使用者は蓋416を開くことができる。 When the lid lock signal Srk is sent from the control unit 358 to the lock control circuit 423, for example, after the dehydration operation is completed, the lid lock unit 419 releases the locked state by energizing the solenoid 420. As a result, the user can open the lid 416.
 脱水運転が停止する場合としては、所定の脱水時間に達した場合の他、使用者が停止ボタン426を操作し、停止ボタン426によって停止ボタン信号Sstopが発生した場合、および、過負荷などの異常が発生した場合である。いずれの場合にも、制御部358内の異常信号が発生し、電動機349の制動がかかり、ドラム346が停止される。ドラム346が停止された時点で、制御部358のブレーキ要求信号BRQによって、停止の判定がなされた後、蓋ロック部419によってロック状態が解除される。ロック状態が解除されると、使用者はハンドル417を引くことによって、蓋416を開けることができる。 As for the case where the dehydration operation is stopped, in addition to the case where the predetermined dehydration time has been reached, the user operates the stop button 426, the stop button 426 generates a stop button signal Sstop, and an abnormality such as an overload. This is the case. In any case, an abnormal signal in the control unit 358 is generated, the electric motor 349 is braked, and the drum 346 is stopped. When the drum 346 is stopped, a stop determination is made by the brake request signal BRQ of the control unit 358, and then the lid lock unit 419 releases the locked state. When the locked state is released, the user can open the lid 416 by pulling the handle 417.
 図15は、本発明の実施の形態3におけるインバータ装置のブレーキ要求信号BRQによって短絡ブレーキとなる場合の動作波形図である。図15において、(a)はブレーキ要求信号BRQを、(b)はK信号を、(c)はDutyをそれぞれ示している。 FIG. 15 is an operation waveform diagram when the brake request signal BRQ of the inverter device according to the third embodiment of the present invention causes a short-circuit brake. In FIG. 15, (a) shows the brake request signal BRQ, (b) shows the K signal, and (c) shows the Duty.
 中央制御部366のブレーキ要求信号BRQは、力行期間から、時刻T1でハイとなり、同時にK信号がハイからローになる。この時点ではDutyは零であるため、スイッチング素子351、352、353、354、355、356のIGBT部分は、すべてオフとなる5msのオールオフ期間Td1に移る。 The brake request signal BRQ of the central control unit 366 becomes high at time T1 from the power running period, and at the same time, the K signal changes from high to low. Since Duty is zero at this time, the IGBT portions of the switching elements 351, 352, 353, 354, 355, and 356 move to an all-off period Td1 of 5 ms in which all of them are turned off.
 なお、オールオフ期間Td1中には、電動機349が低速である場合には、ほとんど電流が零となる。電動機349が高速である場合(誘導起電力が高い状態)には、スイッチング素子351、352、353、354、355、356のダイオード部分を通じて、直流電源374への回生電流が流れる。 Note that during the all-off period Td1, when the motor 349 is at a low speed, the current is almost zero. When the motor 349 is at high speed (high induced electromotive force), a regenerative current flows to the DC power supply 374 through the diode portions of the switching elements 351, 352, 353, 354, 355, and 356.
 (c)に示される低電位側スイッチング素子354、355、356のオン時間の比率(Duty)は、短絡時間比率となる。オールオフ期間に続いて、T2からT3はDutyが増加する短絡時間比率拡大期間となる。一方、高電位側スイッチング素子351、352、353については、切り替え部369の作用によりオフ状態が保たれる。 The ratio (Duty) of the ON time of the low potential side switching elements 354, 355, and 356 shown in (c) is a short circuit time ratio. Subsequent to the all-off period, T2 to T3 become a short circuit time ratio expansion period in which the duty increases. On the other hand, the high-potential side switching elements 351, 352, and 353 are kept off by the action of the switching unit 369.
 短絡時間比率拡大期間中の短絡時間比率(Duty)の拡大速度は、時間経過と共に低下、また短絡時間比率が100%に近づくほど、低下する。 The expansion speed of the short circuit time ratio (Duty) during the short circuit time ratio expansion period decreases with time, and decreases as the short circuit time ratio approaches 100%.
 電動機349の入力電圧は、回転により発生する誘導起電力が瞬時値として正/負を繰り返すが、それが短絡時間中には強制的に零となり、絶対値が抑えられる。 The input voltage of the motor 349 is positive / negative as the induced electromotive force generated by the rotation repeats as an instantaneous value, but it is forced to zero during the short circuit time, and the absolute value is suppressed.
 よって、T2~T3の短絡時間比率拡大期間は、短絡時間の増加により、電圧の絶対値が低下するように、スイッチング素子354、355、356が制御される、電圧低減期間となる。 Therefore, the short-circuiting time ratio expansion period from T2 to T3 is a voltage reduction period in which the switching elements 354, 355, and 356 are controlled so that the absolute value of the voltage decreases as the short-circuiting time increases.
 T3において、短絡時間比率Dutyが最大限、すなわち100%になり、負荷の運動エネルギーを吸収する短絡制動期間に入る。 At T3, the short circuit time ratio Duty becomes maximum, that is, 100%, and the short circuit braking period in which the kinetic energy of the load is absorbed is entered.
 Duty100%となった時点では、低電位側スイッチング素子354、355、356内のIGBTやダイオードの電圧降下分は、電動機349の入力電圧として例えば2~3V程度残る。また、インバータ回路357から電動機349までの配線による電圧降下分も、同等である。しかし、このような電圧は略零の範疇、すなわち短絡と考えられる。 When the duty becomes 100%, the voltage drop of the IGBT and the diode in the low potential side switching elements 354, 355, and 356 remains as an input voltage of the electric motor 349, for example, about 2 to 3V. The voltage drop due to the wiring from the inverter circuit 357 to the electric motor 349 is also equivalent. However, such a voltage is considered to be a substantially zero category, that is, a short circuit.
 このように、短絡時間比率Dutyを徐々に増大させることにより、短絡制動期間に移る過程での過渡的な電流の跳ね上がりを防ぐことができる。また、過電流を防止できる。従って、インバータ回路357の各構成要素の破壊、および、電動機349の過電流による故障を防ぐことができる。 Thus, by gradually increasing the short circuit time ratio Duty, it is possible to prevent a transient current jump in the process of moving to the short circuit braking period. Moreover, overcurrent can be prevented. Therefore, destruction of each component of the inverter circuit 357 and failure due to overcurrent of the electric motor 349 can be prevented.
 特に、本実施の形態においては、短絡時間比率の拡大速度dDuty/dtを徐々に低下させている。これにより、短絡制動期間に入る時点での、電動機349の速度条件が広範囲に振られても、過渡的な電流の跳ね上がりを防ぐことができる。速度が高い条件下では、T2付近のDutyの拡大速度の設計、また、速度が低い条件下では、T3付近のDutyの拡大速度の設計で、対応可能となる。 In particular, in the present embodiment, the expansion rate dDuty / dt of the short circuit time ratio is gradually decreased. As a result, even if the speed condition of the electric motor 349 at the time of entering the short-circuit braking period is varied over a wide range, a transient current jump can be prevented. Under the condition where the speed is high, the duty enlargement speed near T2 can be designed, and under the condition where the speed is low, the duty enlargement speed near T3 can be designed.
 なお、高速における直流電源374への回生による過電圧を抑える面からは、短絡時間比率拡大期間の後半となるT3付近での短絡時間比率拡大速度dDuty/dtを、最小限に抑えることができる。これは、中速~低速条件下での過渡的な電流の跳ね上がりを、許容できる範囲で高める設計とすることにより、可能となる。 In addition, from the aspect of suppressing overvoltage due to regeneration to the DC power source 374 at high speed, the short circuit time ratio expansion rate dDuty / dt in the vicinity of T3, which is the latter half of the short circuit time ratio expansion period, can be minimized. This can be achieved by designing the transient current jump under medium to low speed conditions within an acceptable range.
 電動機349が広範囲の速度条件にて、短絡制動期間に入る場合の、線電流の過電流を防止することができる。また、直流電源374の回生による、過電圧発生も抑えることができる。速度情報が不要であることから、位置検知用のセンサ、および、速度検知用のセンサを持たず、センサレスと呼ばれるような電動機349を用いることができるので、低コストの構成にすることができる。 When the electric motor 349 enters the short-circuit braking period under a wide range of speed conditions, it is possible to prevent overcurrent of the line current. In addition, generation of overvoltage due to regeneration of the DC power supply 374 can be suppressed. Since speed information is unnecessary, a motor for detecting position and a motor 349 called sensorless without using a sensor for speed detection can be used, so that a low-cost configuration can be achieved.
 洗濯機のように、電動機349の回転方向が、一方向ではなく、右に回ったり左に回ったりするインバータ装置であっても、相順に関係なく短絡ブレーキ(短絡制動)期間に移行することができる。 Like a washing machine, even if the rotation direction of the electric motor 349 is not a single direction but an inverter device that rotates clockwise or counterclockwise, it can shift to a short-circuit braking (short-circuit braking) period regardless of the phase order. it can.
 図16は、本発明の実施の形態3におけるインバータ装置の動作波形図である。図16は、図15に示した期間から、さらに時間が経過し、電動機349および負荷であるドラム346が停止する前後の動作波形を示している。 FIG. 16 is an operation waveform diagram of the inverter device according to the third embodiment of the present invention. FIG. 16 shows operation waveforms before and after the electric motor 349 and the drum 346 as a load are stopped after a further time has elapsed from the period shown in FIG.
 図16において、(a)はドラム346の速度、(b)はIu、Iv、Iwの電流波形、(c)は短絡電流判定部403の出力するCs信号を示す動作波形図である。(d)は切り替え部369への入力信号となるK信号、(e)は蓋ロック部419に入力される蓋ロック信号Srkを示す動作波形図である。 16, (a) is the speed of the drum 346, (b) is the current waveform of Iu, Iv, and Iw, and (c) is an operation waveform diagram showing the Cs signal output from the short-circuit current determination unit 403. (D) is an operation waveform diagram showing a K signal which is an input signal to the switching unit 369, and (e) is a lid lock signal Srk inputted to the lid lock unit 419.
 短絡ブレーキ状態となった電動機349は、次第に速度が低下し、同時に線電流については周波数がほぼ速度に比例して低下する。線電流の振幅も最終的には低下し、速度が零となる時点で零に収束していく。 The electric motor 349 in the short-circuit braking state gradually decreases in speed, and at the same time, the frequency of the line current decreases approximately in proportion to the speed. The amplitude of the line current also eventually decreases and converges to zero when the speed becomes zero.
 本実施の形態においては、零電流である場合の電流検知部359の出力は、5V電源のほぼ中間となる2.5V程度となる。運転開始前のスイッチング素子354、355、356が、オフの状態での値を、零電流に相当するオフセット値として記憶しておいて、使用し、各相の線電流の絶対的な値で扱う。 In the present embodiment, the output of the current detection unit 359 in the case of zero current is about 2.5 V, which is almost in the middle of the 5 V power supply. The values when the switching elements 354, 355, and 356 before the start of operation are turned off are stored as offset values corresponding to zero current, used, and handled by the absolute values of the line current of each phase. .
 短絡ブレーキに入った時点から停止に至るまでの時間については、短絡ブレーキに入った時点での電動機349の速度、負荷の慣性モーメントによって左右される。また、電動機349のインダクタンスや抵抗値、スイッチング素子354、355、356のオン状態での電圧(VCE(SAT))などによっても左右される。短絡ブレーキに入った時点から停止に至るまでの時間が一定時間ではないため、速度の低下によって現れる物理現象である電流値を、本実施の形態で用いることにより、十分な低速にまで速度が低下した状態を検知する。 The time from when the short-circuit brake is entered to when it is stopped depends on the speed of the electric motor 349 and the moment of inertia of the load when the short-circuit brake is entered. It also depends on the inductance and resistance value of the electric motor 349, the voltage (VCE (SAT)) when the switching elements 354, 355, and 356 are turned on. Since the time from when the short-circuit brake is entered to when it stops is not a fixed time, the current value, which is a physical phenomenon that appears due to the decrease in speed, is used in this embodiment to reduce the speed to a sufficiently low speed. Detects the state that has occurred.
 具体的には、本実施の形態においては、3つの線電流Iu、Iv、Iwの瞬時値の絶対値のすべてが0.6Aを下回った時点T1でCs信号をハイとする。ドラム346の速度として7r/min程度に低下したものとなる。 Specifically, in this embodiment, the Cs signal is set to high at time T1 when the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw all fall below 0.6A. The speed of the drum 346 is reduced to about 7 r / min.
 短絡ブレーキ制御部398はT1にて、ハイとなったCs信号を受けた後、0.15秒間の遅延時間を経過したT2時点で、KおよびKa信号をハイとする。切り替え部369、切り替え部400の状態を変化させ、6石のスイッチング素子351、352、353、354、355、356のオンオフ制御を有効とする。かつ、信号発生器401からのIdr0、Iqr0、θ0が有効に作用した形で、直流電源374から電動機349の巻線342、343、344に制御された電流が供給される。 The short-circuit brake control unit 398 sets the K and Ka signals to high at time T2 when a delay time of 0.15 seconds has elapsed after receiving the Cs signal that has become high at T1. The states of the switching unit 369 and the switching unit 400 are changed to enable the on / off control of the six stone switching elements 351, 352, 353, 354, 355, and 356. In addition, controlled currents are supplied from the DC power supply 374 to the windings 342, 343, and 344 of the electric motor 349 in a form in which Idr0, Iqr0, and θ0 from the signal generator 401 are effectively operated.
 すなわち、制動時にドラム346の速度が略零となる。その後、制御部358は、直流電源374から巻線342、343、344に電流を供給するようにスイッチング素子351、352、353、354、355、356を制御する。 That is, the speed of the drum 346 becomes substantially zero during braking. Thereafter, the control unit 358 controls the switching elements 351, 352, 353, 354, 355, and 356 so as to supply current from the DC power supply 374 to the windings 342, 343, and 344.
 信号発生器401の出力Idr0、Iqr0、θ0については、T2時点ではいずれも0であるが、20ms経過したT3において、Idr0のみ3Aとなり、これが300ms継続する。 The outputs Idr0, Iqr0, and θ0 of the signal generator 401 are all 0 at the time T2, but only Idr0 becomes 3A at T3 when 20 ms elapses, and this continues for 300 ms.
 この間に、電動機349内には巻線342、343、344の電流によって、回転が無く、大きさも固定された静止の起磁力が発生する。そして、位置決めと言われるような状態で、速度が零となり、完全に静止した状態に落ち着く。 During this time, a stationary magnetomotive force with no rotation and a fixed size is generated in the electric motor 349 by the current of the windings 342, 343, and 344. Then, in a state called positioning, the speed becomes zero and settles into a completely stationary state.
 その後、(e)に示されるように、制御部358から蓋ロック部419に、蓋ロック信号Srkがハイとして送られる。蓋ロック部419は、ソレノイド420に通電された状態となって、使用者は蓋416を開くことが可能となる。 Thereafter, as shown in (e), the lid lock signal Srk is sent high from the control unit 358 to the lid lock unit 419. The lid lock unit 419 is energized to the solenoid 420, and the user can open the lid 416.
 また、停止したことが判定された後、シーケンス発生部399からの指示により、洗濯機として必要な次の工程に移る場合もある。 In addition, after it is determined that the operation has been stopped, an instruction from the sequence generation unit 399 may move to the next process necessary as a washing machine.
 以上のように、位置センサや速度センサを用いない、低コストと簡単な構成でありながら、短絡ブレーキを用い、かつ、その期間の電流からの適切な停止の判定により、安全性を確保することができる。 As described above, safety is ensured by using a short-circuit brake and determining an appropriate stop based on the current during that period, with a low-cost and simple configuration that does not use a position sensor or speed sensor. Can do.
 図17は、本発明の実施の形態3における、脱水動作などの完了時および途中でのブレーキに入る場合のフローチャートである。 FIG. 17 is a flowchart when the brake is applied when the dehydrating operation or the like is completed and in the middle according to the third embodiment of the present invention.
 図17において、ブレーキ動作スタートに入ると(ステップS430)、短絡ブレーキ(BRQ)に移り(ステップS431)、図15に説明したように、電圧低減期間に続いて短絡制動期間に入る。 In FIG. 17, when the brake operation start is started (step S430), the process proceeds to the short circuit brake (BRQ) (step S431), and as described in FIG. 15, the short circuit braking period starts after the voltage reduction period.
 Csにて(ステップS432)、停止に近い速度に減速が進んだことを判定した時点で、電流供給に移る(ステップS434)。本実施の形態においては、Ka信号がハイとなって、力行時にも使用される電流制御機能が活用された形で、300ms(=0.3秒間)の期間、U端子から、V端子とW端子に向かっての直流の電流が供給される。この時点でインバータ回路357の動作、および電動機349に至る配線が正常である場合には、U、V、Wの全相の線電流の絶対値は、いずれも0.6Aを超える。 At Cs (step S432), when it is determined that the deceleration has progressed to a speed close to the stop, the process proceeds to current supply (step S434). In the present embodiment, the Ka signal becomes high, and the current control function used also during powering is utilized, and from the U terminal to the V terminal and the W terminal for a period of 300 ms (= 0.3 seconds). A direct current toward the terminal is supplied. At this time, when the operation of the inverter circuit 357 and the wiring leading to the electric motor 349 are normal, the absolute values of the line currents of all phases of U, V, and W all exceed 0.6A.
 電流制御有効において、線電流の絶対値が0.6Aを超えているかどうかの判断がなされる(ステップS435)。YESの場合にはロック解除に移り(ステップS437)、ここで、ソレノイド420に通電され、使用者は蓋416を開くことができる。 When the current control is valid, it is determined whether or not the absolute value of the line current exceeds 0.6 A (step S435). If YES, the process proceeds to unlocking (step S437), where the solenoid 420 is energized and the user can open the lid 416.
 一方、NOの場合には、全相の線電流の絶対値が0.6Aを超えるまで待機する。ロック解除に移らないため、使用者の安全性が確保される。 On the other hand, in the case of NO, it waits until the absolute value of the line current of all phases exceeds 0.6A. Since it does not shift to unlocking, the safety of the user is ensured.
 なお、本実施の形態においては、インバータ装置の電源が投入された段階でも、図17に示す動作が1回行われる。例えば、前回の運転の制動が完了していない場合にも、ドラム346に残っている回転がある場合、使用者の危険を極力回避するため、使用者が蓋416を開くことができないように、蓋ロック部419の状態を保つ。 In the present embodiment, the operation shown in FIG. 17 is performed once even when the power of the inverter device is turned on. For example, even when braking of the previous operation is not completed, if there is still rotation in the drum 346, in order to avoid the danger of the user as much as possible, the user cannot open the lid 416. The state of the lid lock part 419 is maintained.
 特に、本実施の形態においては、短絡制動期間を設けているため、簡単なプログラム構成で制御部358を実現できる。かつ、短絡制動期間の最終段階での電流についても、正しい零電流状態における電流検知部359の出力値をオフセット値として、絶対的な電流値を扱う。よって、例えば、短絡ブレーキ中に電流検知部59に故障が発生した場合、0Vや5Vなどの実際の電流値とは無関係に、出力信号が固定される可能性が高い。その場合にはCs信号がハイとなる可能性は極めて低くなり、高い安全性が確保される。 In particular, in the present embodiment, since the short-circuit braking period is provided, the control unit 358 can be realized with a simple program configuration. Also for the current at the final stage of the short-circuit braking period, the absolute current value is handled using the output value of the current detection unit 359 in the correct zero current state as an offset value. Therefore, for example, when a failure occurs in the current detection unit 59 during the short-circuit braking, there is a high possibility that the output signal is fixed regardless of the actual current value such as 0V or 5V. In that case, the possibility that the Cs signal becomes high is extremely low, and high safety is ensured.
 電流供給期間に、直流電源374から巻線342、343、344に電流を供給するように、スイッチング素子351、352、353、354、355、356が制御される。その電流の供給が有効になされるかどうかで、配線の断線などが判断される。このため、短絡制動期間中に断線が生じた場合でも、蓋ロック部419は、使用者が蓋417を開くことができない。従って、安全性が確保される。 In the current supply period, the switching elements 351, 352, 353, 354, 355, and 356 are controlled so as to supply current from the DC power supply 374 to the windings 342, 343, and 344. The disconnection of the wiring is determined depending on whether or not the current supply is made effective. For this reason, even if a disconnection occurs during the short-circuit braking period, the user cannot open the lid 417 of the lid lock portion 419. Therefore, safety is ensured.
 本実施の形態においては、電流供給期間における電動機349への電流値としては、各巻線342、343、344のすべてにおいて、0.6Aを超える値としているが、それ以下であっても良い。電流検知部359の最小分解能以上の電流であれば、電流制御として有効に成り立つ。配線の断線等が無い場合には、その電流検知部359の反応があるため、断線等が発生した場合と正常な場合の違いを検知できる。これにより、電流制御中の印加電圧からの判断を併用することもできる。 In the present embodiment, the current value to the electric motor 349 in the current supply period exceeds 0.6 A in all the windings 342, 343, and 344, but may be less than that. If the current is equal to or higher than the minimum resolution of the current detector 359, the current control is effectively established. When there is no disconnection or the like of the wiring, the current detection unit 359 has a reaction, so that a difference between when the disconnection occurs and when it is normal can be detected. Thereby, judgment from the applied voltage during current control can also be used together.
 また、電流供給期間と電流の大きさについては、ドラム346に衣類345が入った状態での位置決め動作を確実に行う場合には、さらに期間を長くするか、または電流値をさらに大とすることが必要となる。 Further, regarding the current supply period and the magnitude of the current, if the positioning operation is performed with the clothes 345 in the drum 346, the period should be further increased or the current value should be further increased. Is required.
 ただ、位置決め動作を行わせることが必須というものではなく、単に電流制御が有効に働くものかどうかで、断線故障が起こったかどうかが判定できれば十分に有効である。位置決め動作を確実に行わせる場合であっても、1秒以上の直流電流の通電は、運転時間の長期化と、電気エネルギー消費による資源の浪費に繋がる。 However, it is not essential that the positioning operation be performed, and it is sufficient if it is possible to determine whether or not a disconnection failure has occurred simply by whether or not current control works effectively. Even in the case where the positioning operation is performed reliably, the energization of the DC current for 1 second or more leads to a prolonged operation time and a waste of resources due to electric energy consumption.
 本実施の形態で用いられる電流供給期間の長さと電流値は、それぞれ300msと0.6Aを超える程度という比較的小さい値である従って、電流供給期間の開始直後に発生するトルクによるドラム346の回転は、毎分1回転以下に抑えられる。 The length and current value of the current supply period used in the present embodiment are relatively small values exceeding 300 ms and 0.6 A, respectively. Therefore, the rotation of the drum 346 by the torque generated immediately after the start of the current supply period. Is suppressed to 1 rotation or less per minute.
 特に、本実施の形態では、電動機349の入力を短絡した状態での電流が十分小であって、ほぼ停止している段階での断線の有無の確認を行っている。こうすれば、必ずしも位置決め動作、すなわち発生させた直流磁界とd軸の位相差を十分小さい値とする動作は、必要なものではない。よって、電流供給期間として500ms以下の最小限の期間とすることにより、その期間の新たなドラム346の運動は発生しない。従って、短時間での停止の判定が可能となり、かつ無駄や動きのない品位の高いインバータ装置を実現できる。 In particular, in this embodiment, the current in the state where the input of the electric motor 349 is short-circuited is sufficiently small, and it is confirmed whether or not there is a disconnection when it is almost stopped. In this case, the positioning operation, that is, the operation for setting the phase difference between the generated DC magnetic field and the d axis to a sufficiently small value is not necessarily required. Therefore, by setting the current supply period to a minimum period of 500 ms or less, no new movement of the drum 346 occurs during that period. Therefore, it is possible to determine a stop in a short time, and it is possible to realize a high-quality inverter device that does not waste or move.
 電流供給期間の電流値に関しても、増せば増すほど、位置決めさせるトルクが大となる。しかし、電流供給期間を例えば1msなどのように短くした場合には、やはりドラム346に加わるトルク積(発生トルクと時間の積)は小となる。そのトルク積による新たなドラム346の運動(角加速度)は無視しうる程度に抑えられる。これにより、ドラム346の軸受けなどの摩擦などにより、電流供給期間に発生する運動エネルギーは、ごく短時間で吸収されて、ドラム346は静止する。よって、電流検知部359の最小の分解能を大きく上回る電流値による、より確実な断線有/無の判定がなされる。従って、短時間で、無駄な動きがなく、高品位なインバータ装置を実現できる。 As for the current value during the current supply period, the torque for positioning increases as the current value increases. However, when the current supply period is shortened to 1 ms, for example, the torque product (product of generated torque and time) applied to the drum 346 is also small. The movement (angular acceleration) of the new drum 346 due to the torque product is suppressed to a negligible level. Thereby, the kinetic energy generated in the current supply period due to friction of the bearing of the drum 346 and the like is absorbed in a very short time, and the drum 346 is stopped. Therefore, it is possible to more reliably determine the presence / absence of disconnection based on the current value that greatly exceeds the minimum resolution of the current detection unit 359. Therefore, a high-quality inverter device can be realized in a short time without wasteful movement.
 発明者の検討により、電流供給期間に電流を供給する場合、500ms以内で、各線電流の電流値の絶対値が1.5A以下であれば、10秒以内に毎分1回転以下に抑えられる。特に、300ms以内、1Aであれば、2秒以内に毎分1回転以下に抑えられる。従って、本実施の形態のインバータ装置は、使用者の安全確保、および品位の面から、有効である。 According to the inventor's study, when supplying a current during the current supply period, if the absolute value of the current value of each line current is 1.5 A or less within 500 ms, it can be suppressed to one rotation or less within 10 seconds. In particular, if it is 1 ms within 300 ms, it can be suppressed to 1 rotation or less per minute within 2 seconds. Therefore, the inverter device of the present embodiment is effective from the viewpoint of ensuring the safety of the user and the quality.
 このように、電流供給期間があるが故に、逆に、トルク発生で、ドラム346が回転してしまうという不具合も、十分に抑えることができる。従って、少なくとも蓋ロック部419の解除の直後に、使用者が蓋117を開いた状態でも、電流供給期間に発生したトルクによるドラム346の回転によって、危険が発生することは無い。 As described above, since there is a current supply period, it is possible to sufficiently suppress the problem that the drum 346 rotates due to torque generation. Accordingly, even when the user opens the lid 117 at least immediately after the lid lock portion 419 is released, there is no danger due to the rotation of the drum 346 due to the torque generated during the current supply period.
 なお、本実施の形態においては、ドラム346の回転軸は、水平としたが、垂直、あるいは斜めであっても良い。 In this embodiment, the rotation axis of the drum 346 is horizontal, but it may be vertical or oblique.
 ドラム346の回転駆動のための動力伝達経路についても、プーリ410、ベルト348を用いたものを示した。これについても、ギア(歯車)を用いたものや、ダイレクト駆動と呼ばれるように、ドラム346の軸に直接に電動機を備えて同一の速度で回転するものなどであっても構わない。 The power transmission path for rotationally driving the drum 346 is also shown using the pulley 410 and the belt 348. In this case, gears (gears) may be used, or a motor provided directly on the shaft of the drum 346 and rotated at the same speed as called direct drive may be used.
 また、蓋ロック部419の構成に関しても、本実施の形態で述べた構成に限定されるものではない。複数の蓋ロック部を設けても良い。例えば、使用者のハンドル操作によっていつでもロック解除が可能な第1の蓋ロック部と、制御部からの信号によってロック状態が解除される第2の蓋ロック部とを併用する構成としても良い。あるいは、蓋を閉じた状態で常にロック状態となるが、ロック解除は制御部からの信号によって行われる構成としても良い。また、制御部からの信号によってハンドル操作ができなくなるものでも良い。いずれの場合でも使用者が蓋を開くことができるかどうかを、制御部からの信号によって変化させることができるものであれば良い。 Also, the configuration of the lid lock portion 419 is not limited to the configuration described in this embodiment. A plurality of lid lock portions may be provided. For example, a first lid lock unit that can be unlocked at any time by a user's handle operation and a second lid lock unit that is unlocked by a signal from the control unit may be used in combination. Or although it will always be in a locked state in the state which closed the lid | cover, it is good also as a structure performed by the signal from a control part. In addition, the steering wheel operation may be disabled by a signal from the control unit. In any case, it is sufficient that the user can change whether or not the user can open the lid by a signal from the control unit.
 以上のように、本実施の形態の洗濯機は、制御部358が、電動機349の制動時にドラム346の速度が略零となった後、直流電源374から巻線342、343、344に電流を供給するようにスイッチング素子354、355、356を制御する。それから、蓋ロック部419によって蓋417を開くことを可能にする。これにより、簡単な構成でありながら、安全性を確保することができる。 As described above, in the washing machine according to the present embodiment, the control unit 358 supplies current to the windings 342, 343, and 344 from the DC power source 374 after the speed of the drum 346 becomes substantially zero during braking of the electric motor 349. The switching elements 354, 355, and 356 are controlled so as to be supplied. Then, the lid 417 can be opened by the lid lock portion 419. Thereby, safety can be ensured with a simple configuration.
 また、本実施の形態の洗濯機は、制御部358が、制動時にドラム346の速度が略零となった後、電流検知部359の出力が所定値となるように、スイッチング素子354、355、356を制御する。それから、蓋ロック部419によって蓋417を開くことを可能にする。これにより、簡単な構成でありながら、安全性を確保することができる。 Further, in the washing machine of the present embodiment, the control unit 358 switches the switching elements 354, 355, and the like so that the output of the current detection unit 359 becomes a predetermined value after the speed of the drum 346 becomes substantially zero during braking. 356 is controlled. Then, the lid 417 can be opened by the lid lock portion 419. Thereby, safety can be ensured with a simple configuration.
 また、本実施の形態の洗濯機は、制御部358が、制動時にドラム346の速度が略零となった後、電流検知部359の出力が所定値に満たない場合、蓋ロック部419によって蓋417を開くことが不可能な状態を継続する。これにより、簡単な構成でありながら、安全性を確保することができる。 Further, in the washing machine of the present embodiment, when the control unit 358 makes the output of the current detection unit 359 less than a predetermined value after the speed of the drum 346 becomes substantially zero during braking, the lid lock unit 419 causes the lid to be closed. The state where 417 cannot be opened is continued. Thereby, safety can be ensured with a simple configuration.
 (実施の形態4)
 図18は、本発明の実施の形態4におけるインバータ装置の中央処理部440のブロック図である。
(Embodiment 4)
FIG. 18 is a block diagram of central processing unit 440 of the inverter device according to Embodiment 4 of the present invention.
 本実施の形態においては、中央処理部440の構成の一部が、実施の形態3と異なる。その他は同等である。実施の形態3と異なる構成要素のみを説明する。 In this embodiment, a part of the configuration of the central processing unit 440 is different from that of the third embodiment. Others are equivalent. Only components different from the third embodiment will be described.
 図18において、制御部440は、短絡ブレーキ制御部441、シーケンス発生部442、切り替え部443、信号発生器444を有する。シーケンス発生部442からのKb信号によってb側端子に接続されると、第2の座標変換部388の入力信号Vd、Vq、およびθを、信号発生器444からのVd0、Vq0、θ0に切り替える。また、第1の座標変換部380の入力信号θを、信号発生器444からのθ0に切り替える。これらにより、電動機349に所定の電圧を印加する。 18, the control unit 440 includes a short circuit brake control unit 441, a sequence generation unit 442, a switching unit 443, and a signal generator 444. When connected to the b-side terminal by the Kb signal from the sequence generator 442, the input signals Vd, Vq, and θ of the second coordinate converter 388 are switched to Vd0, Vq0, θ0 from the signal generator 444. Further, the input signal θ of the first coordinate conversion unit 380 is switched to θ0 from the signal generator 444. As a result, a predetermined voltage is applied to the electric motor 349.
 その他の部分の構成に関しては、実施の形態3と同等である。 Other configurations are the same as those in the third embodiment.
 図19は、本発明の実施の形態4におけるインバータ装置の動作波形図である。 FIG. 19 is an operation waveform diagram of the inverter device according to the fourth embodiment of the present invention.
 図19において、(a)はドラム346の速度、(b)はIu、Iv、Iwの電流波形、(c)は短絡電流判定部403の出力するCs信号を示している。また、(d)は切り替え部369への入力信号となるK信号、(e)は蓋ロック部419に入力される蓋ロック信号Srkを示している。 19A shows the speed of the drum 346, FIG. 19B shows the current waveforms of Iu, Iv, and Iw, and FIG. 19C shows the Cs signal output from the short-circuit current determination unit 403. Further, (d) shows a K signal as an input signal to the switching unit 369, and (e) shows a lid lock signal Srk inputted to the lid lock unit 419.
 本実施の形態は、T3時点以降の動作が、第1の実施の形態とは異なる。電流供給期間の長さとして、20msという短いものとなっている。電流値としては、電流検知部359でノイズの問題がなく、検知が可能な下限に近い、0.6Aをやや超える値としている。 This embodiment is different from the first embodiment in the operation after time T3. The length of the current supply period is as short as 20 ms. The current value is set to a value slightly exceeding 0.6 A, which is close to the lower limit that can be detected without causing a noise problem in the current detection unit 359.
 図20は、本発明の実施の形態4において、脱水動作などの完了時および途中でのブレーキに入る場合のフローチャートである。 FIG. 20 is a flowchart in the case where the brake is applied when the dehydrating operation or the like is completed and in the middle in the fourth embodiment of the present invention.
 図20において、ブレーキ動作スタートに入ると(ステップS450)、短絡ブレーキ(BRQ)に移り(ステップS451)、図15で説明したように、電圧低減期間に続いて短絡制動期間に入る。 In FIG. 20, when the brake operation starts (step S450), the process proceeds to the short circuit brake (BRQ) (step S451), and as described in FIG. 15, the short circuit braking period starts following the voltage reduction period.
 Csにて、停止に近い速度に減速が進んだことが判定した時点(ステップS452)で、電圧供給に移る(ステップS454)。Kb信号がハイとなり、20msの期間、直流電源374からスイッチング素子351、352、353、354、355、356を通じて、U端子がプラス、VとW両端子が共通のマイナスの電圧が印加される。 At Cs, when it is determined that the deceleration has progressed to a speed close to the stop (step S452), the process proceeds to voltage supply (step S454). The Kb signal becomes high, and for a period of 20 ms, a positive voltage is applied to the U terminal and a negative voltage common to both the V and W terminals is applied from the DC power supply 374 through the switching elements 351, 352, 353, 354, 355, and 356.
 この時点で、インバータ回路357の動作、および電動機349に至る配線が正常である場合には、U、V、Wの全相の線電流の絶対値は、いずれも0.6Aを超える。 At this time, when the operation of the inverter circuit 357 and the wiring leading to the electric motor 349 are normal, the absolute values of the line currents of all phases of U, V, and W all exceed 0.6A.
 本実施の形態では、電流値判断にて、20ms間の、線電流の絶対値のピークの各相の最小値を、閾値である0.6Aと比較して(ステップS455)、超えているかどうかの判断がなされる。達の場合にはロック解除に移り(ステップS457)、ここでソレノイド420の通電が行われ、使用者は蓋416を開くことができる。 In the present embodiment, in the current value determination, whether or not the minimum value of each phase of the peak of the absolute value of the line current for 20 ms is compared with the threshold value of 0.6 A (step S455). Judgment is made. In the case of reaching, the process moves to unlocking (step S457), where the solenoid 420 is energized and the user can open the cover 416.
 一方、未達の場合には、エラー表示となり(ステップS458)、使用者が蓋416を開くことができない状態を保ちながら、エラーが発生していることを使用者に知らせ、使用者の安全性が確保される。 On the other hand, if it has not been reached, an error is displayed (step S458), the user is informed that an error has occurred while maintaining the state where the user cannot open the lid 416, and the user's safety. Is secured.
 なお、ベクトル制御を用いないインバータ装置においては、U、V、W相の電圧値での設定を行えばよい。簡単な構成でありながら、断線した場合には、電流が流れないことを確実に判定することができる。 In an inverter device that does not use vector control, settings may be made with U, V, and W phase voltage values. Although it is a simple structure, when it is disconnected, it can be reliably determined that no current flows.
 また、電流供給期間が20msと短いことから、電流供給期間中に発生するトルク積(トルクと時間の積)は小なるものとなる。このため、ドラム46が空である場合の慣性モーメント0.3kg平米において、角速度1radは、毎分1回転以下の非常に小さいものとなる。これにより、軸受け等の摩擦などにより、100ms程度で静止する。 Also, since the current supply period is as short as 20 ms, the torque product (product of torque and time) generated during the current supply period becomes small. For this reason, when the drum 46 is empty and the inertia moment is 0.3 kg square meter, the angular velocity 1 rad is very small, one revolution or less per minute. Thereby, it stops in about 100 ms due to friction of a bearing or the like.
 特に蓋417の一部が透明であって、使用者がドラム346の回転を見ることができる構成においては、一旦ドラム346が停止した後、新たなドラム346の動きがあると、使用者に不安感、不信感を抱かせる。従って、本実施の形態のインバータ装置は、そのような感覚を無くし、品位の上でも優れたインバータ装置を実現することができる。 In particular, in a configuration in which a part of the lid 417 is transparent so that the user can see the rotation of the drum 346, if the drum 346 stops once and then there is a new movement of the drum 346, the user is anxious. Gives a sense of distrust. Therefore, the inverter device according to the present embodiment can eliminate such a sensation and can realize an excellent inverter device in terms of quality.
 以上のように、本実施の形態の洗濯機は、制動時に、ドラム346の速度が略零となった後、ドラム346の速度は、毎分1回転以下である。これにより、使用者の高い安全性を実現することができる。 As described above, in the washing machine of the present embodiment, the speed of the drum 346 is less than one revolution per minute after the speed of the drum 346 becomes substantially zero during braking. Thereby, high safety of the user can be realized.
 (実施の形態5)
 図21は、本発明の実施の形態5における、制動時にドラム346の速度が略零となった後の、電動機349への電流供給期間の前後の各部動作波形を示す図である。図21において、(a)は電動機349の各巻線342、343、344に供給される電流Iu、Iv、Iw、(b)はCs信号、(c)はK信号を示している。
(Embodiment 5)
FIG. 21 is a diagram showing operation waveforms of respective parts before and after the current supply period to the electric motor 349 after the speed of the drum 346 becomes substantially zero during braking in the fifth embodiment of the present invention. In FIG. 21, (a) shows currents Iu, Iv, Iw supplied to the windings 342, 343, and 344 of the electric motor 349, (b) shows the Cs signal, and (c) shows the K signal.
 本実施の形態においては、インバータ回路359から電動機349に供給される電流の波形が異なるが、その他の部分は、実施の形態3および4と同等である。電動機349とドラム346の間の動力伝達経路として、ベルト348が用いられている。本実施の形態においては、電流供給期間の内、T3~T4を500msとした上で、供給電流も大とする。これにより、ドラム346内に衣類345が入った状態であっても、T4時点での位置決め動作が確実に完了する。T4以降の動作についての説明を以下に行う。 In this embodiment, the waveform of the current supplied from the inverter circuit 359 to the electric motor 349 is different, but the other parts are the same as those in the third and fourth embodiments. A belt 348 is used as a power transmission path between the electric motor 349 and the drum 346. In the present embodiment, T3 to T4 are set to 500 ms in the current supply period, and the supply current is increased. Thus, even when the clothes 345 are in the drum 346, the positioning operation at the time T4 is reliably completed. The operation after T4 will be described below.
 T5~T6の80ms期間には、V端子からW端子に向かって電流が供給される。T3~T4での位置決め動作によるT5時点での永久磁石340、341の磁極に対して、電気角が90度進んだ位相の弱めの起磁力が、T5~T6には発生する。 In the 80 ms period from T5 to T6, current is supplied from the V terminal toward the W terminal. A weak magnetomotive force having a phase advanced by 90 degrees in electrical angle is generated in T5 to T6 with respect to the magnetic poles of the permanent magnets 340 and 341 at the time T5 by the positioning operation in T3 to T4.
 図22は、本発明の実施の形態5におけるベルト348が正常な場合と、外れた場合(または切れた場合)について、電動機349の永久磁石340、341の位相を示す図である。図22において、(a)はT4時点、(b)と(c)はT6時点、(d)と(e)はT8時点における位相である。 FIG. 22 is a diagram showing the phases of the permanent magnets 340 and 341 of the electric motor 349 when the belt 348 according to the fifth embodiment of the present invention is normal and when the belt 348 is disconnected (or disconnected). In FIG. 22, (a) is a phase at time T4, (b) and (c) are phases at time T6, and (d) and (e) are phases at time T8.
 なお、永久磁石340、341の数は極数となるが、図22においては、2極機としており、機械角と電気角が等しくわかりやすくしている。現実的には、4極、6極、8極などであってもよい。 Although the number of permanent magnets 340 and 341 is the number of poles, in FIG. 22, a two-pole machine is used, and the mechanical angle and the electrical angle are equally easy to understand. Actually, it may be 4 poles, 6 poles, 8 poles, or the like.
 (a)においては、T3~T4の期間に、大きな電流が十分長い期間供給される。このため、ベルト348が正常な場合も、外れている場合も、N極を示す永久磁石340の向き、すなわち、d軸の向きは、電流ベクトルIaにほぼ等しい向きとなり、位置決めがなされた状態となっている。 (A) In the period from T3 to T4, a large current is supplied for a sufficiently long period. Therefore, regardless of whether the belt 348 is normal or disconnected, the direction of the permanent magnet 340 indicating the N pole, that is, the direction of the d-axis is substantially equal to the current vector Ia and is positioned. It has become.
 なお、位置決め動作については、一度の直流磁界の発生での死点回避が困難な場合を想定し、電気角を90度等ずらした複数回の電流供給を行う、回転磁界を与える方法なども有効な場合もある。 As for positioning operation, assuming that it is difficult to avoid dead center due to the generation of a single DC magnetic field, a method of applying a rotating magnetic field that supplies current multiple times with the electrical angle shifted by 90 degrees, etc. is also effective. In some cases.
 次に、T5~T6の80ms間の位置決め力は、弱めのものとなっている。従って、T6時点に関しては、ベルト348が正常に繋がっている状態では、ドラム346が有する大きな慣性モーメントJdとドラム346の軸受けでの摩擦要素も加わる。よって、(b)に示されるように、d軸の向きは、(a)からほとんど変化しない。 Next, the positioning force for 80 ms from T5 to T6 is weak. Therefore, at the time T6, when the belt 348 is normally connected, a large moment of inertia Jd of the drum 346 and a friction element at the bearing of the drum 346 are also added. Therefore, as shown in (b), the orientation of the d-axis hardly changes from (a).
 これに対して、(c)に示すベルト348が、T5以前に外れた場合には、電動機349のみの慣性モーメントJm、および電動機349内の軸受けのみの、ごく小さい摩擦しかない。従って、T5~T6の位置決めが有効に作用する状況となり、(a)から、電気角がほぼ90度異なった位相となる。 On the other hand, when the belt 348 shown in (c) comes off before T5, there is only a small friction of only the moment of inertia Jm of the electric motor 349 and only the bearing in the electric motor 349. Accordingly, the positioning of T5 to T6 is effective, and from (a), the electrical angle has a phase that differs by approximately 90 degrees.
 なお、電動機349軸からみた場合の等価的なドラムの慣性モーメントとしては、ドラム346の軸での慣性モーメントJdを、プーリ減速比の二乗で除した値となる。しかし、通常のドラム式洗濯機においては、ドラム346が空の状態であっても、Jmと比較するとかなり大きな値となる。つまり、ベルト348の有無による差は非常に大きい。 Note that the equivalent moment of inertia of the drum as viewed from the motor 349 axis is a value obtained by dividing the moment of inertia Jd at the axis of the drum 346 by the square of the pulley reduction ratio. However, in a normal drum-type washing machine, even if the drum 346 is empty, the value is considerably larger than Jm. That is, the difference due to the presence or absence of the belt 348 is very large.
 もし仮に、T5~T6において、大きな電流を長時間供給すると、ベルト348が正常であっても、ドラム346が、ベルト348によって回転される位置決め動作が、有効に行われる。本実施の形態では、電流供給時間、および、電流値を、ベルト348が有る状態では、位置決めが行われない程度の値に定めた状態にある。 If a large current is supplied from T5 to T6 for a long time, the positioning operation in which the drum 346 is rotated by the belt 348 is effectively performed even if the belt 348 is normal. In the present embodiment, the current supply time and the current value are set to values that do not allow positioning when the belt 348 is present.
 T7~T8においては、再度T3~T4期間と同様の位相で、2msという極めて短い期間、電流供給が行われる。本実施の形態においては、この期間の電流立ち上がり速度dI/dtと電圧Vの関係から、(数5)によって、インダクタンス値Lを求める。 From T7 to T8, the current is supplied again for a very short period of 2 ms with the same phase as the T3 to T4 period. In the present embodiment, the inductance value L is obtained from (Equation 5) from the relationship between the current rising speed dI / dt and the voltage V during this period.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 永久磁石341、342は埋め込み構造としているため、Lq>Ldの関係がある。 Since the permanent magnets 341 and 342 have an embedded structure, there is a relationship of Lq> Ld.
 図22において、ベルト348が正常な(d)では、供給される電流Iaの位相に対して、LはほぼLdとなる。これに対し、(e)はほぼLqとなり、T8時点での位相(T6、T7もほぼ同等)が把握できる。従って、T5~T6の位置決め動作が有効に行われたかどうかから、ベルト348が正常かどうかを判断できる。 22, when the belt 348 is normal (d), L is substantially Ld with respect to the phase of the supplied current Ia. On the other hand, (e) is substantially Lq, and the phase at time T8 (T6 and T7 are substantially equivalent) can be grasped. Therefore, whether the belt 348 is normal can be determined from whether the positioning operation from T5 to T6 has been performed effectively.
 T7~T8は、蓋ロック部419を解除状態(使用者が蓋417を開くことができる状態)とする前の、最終的な電流供給期間となる。これを2msというごく短時間とすることにより、ベルト348が正常に存在する場合の、ドラム346の新たな運動は発生しない。従って、本実施の形態のインバータ装置は、安全面で優れており、かつ、無駄な動きも発生しないため、品位が高いものとすることができる。 T7 to T8 is a final current supply period before the lid lock unit 419 is released (a state in which the user can open the lid 417). By making this a very short time of 2 ms, a new movement of the drum 346 does not occur when the belt 348 exists normally. Therefore, the inverter device of the present embodiment is excellent in safety and does not generate useless movement, so that it can be of high quality.
 従って、単に電動機349が停止していることを確認することができるだけでなく、その段階で、動力伝達経路を構成するベルト348が外れたり、切れたりしていないことも確認することができる。 Therefore, it is possible not only to confirm that the electric motor 349 is stopped, but also to confirm that the belt 348 constituting the power transmission path is not detached or disconnected at that stage.
 特に、ブレーキの最終段階に近い状態で、ベルト348が外れたり、切れたりした場合には、ドラム346が慣性(惰性)で回転し続けることになる。従って、電動機349の停止の正確な判定のみでは、安全上の問題が残る。 In particular, when the belt 348 comes off or breaks in a state close to the final stage of the brake, the drum 346 continues to rotate with inertia (inertia). Therefore, a safety problem remains only with accurate determination of the stop of the electric motor 349.
 この点において、本実施の形態では、ベルト348が正常であり、かつ、電動機349までの配線にも断線がないことを検知できる。また、インバータ回路359からドラム346に至る経路すべてが正常であり、かつ停止状態であることを検知できる。もしそれらが満足されない場合には、動力伝達経路の故障、すなわち、ベルト348の切れ等を検知した判定とする。これにより、蓋ロック部419を、使用者が蓋417を開くことが不可能な、状態を継続する。従って、より安全性の高いインバータ装置を実現できる。 In this respect, in the present embodiment, it can be detected that the belt 348 is normal and the wiring to the electric motor 349 is not broken. Further, it can be detected that all paths from the inverter circuit 359 to the drum 346 are normal and in a stopped state. If they are not satisfied, it is determined that a failure in the power transmission path, that is, a belt 348 breakage is detected. As a result, the lid lock unit 419 continues to be in a state where the user cannot open the lid 417. Therefore, an inverter device with higher safety can be realized.
 なお、本実施の形態においては、インダクタンスLを求めるための電流供給は、電流制御された電流源としている。しかし、特に電流源に限定するものではない。所定の電圧Vを印加して、電流の大きさ、もしくは電流の増加速度(dI/dt)から計算を行うものであってもよい。また、一定の位相で電流または電圧を供給する代わりに、位相や電流値の大きさを時間とともに変化させながら、短時間の電流を断続的に供給する、または、微弱な電流を連続的に供給するなどしても良い。少なくともベルト348が正常な状態において、ドラム346および電動機349がほとんど回転しない程度の、電流または電圧を供給するのであれば、d軸やq軸の向きを探るには有効である。また、自己インダクタンスLの検知の他に、供給した電圧や電流位相に対して、電気的に90度ずれた成分の電圧や電流の値から、相互インダクタンスを用いた回転子位置を行う、構成などであっても構わない。 In the present embodiment, the current supply for obtaining the inductance L is a current source that is current controlled. However, the present invention is not limited to the current source. A calculation may be performed by applying a predetermined voltage V and calculating from the magnitude of current or the rate of increase in current (dI / dt). Also, instead of supplying current or voltage at a constant phase, a short-time current is intermittently supplied or a weak current is continuously supplied while changing the phase and current value with time. You may do it. If the current or voltage is supplied so that the drum 346 and the electric motor 349 hardly rotate at least when the belt 348 is in a normal state, it is effective to investigate the direction of the d-axis and the q-axis. In addition to detecting the self-inductance L, the rotor position using the mutual inductance is determined from the voltage and current values of components that are electrically shifted by 90 degrees with respect to the supplied voltage and current phase. It does not matter.
 本実施の形態においては、ベルト348を動力伝達経路としているため、他の形の動力伝達経路に比較すると、ベルト外れやベルト切れなどの信頼性面でやや不利である。しかし、ベルト外れを適切に検知する本実施の形態の構成は、有効性が高い。 In the present embodiment, since the belt 348 is used as a power transmission path, it is slightly disadvantageous in terms of reliability such as belt detachment and belt breakage as compared with other types of power transmission paths. However, the configuration of the present embodiment that appropriately detects belt detachment is highly effective.
 ただし、動力伝達経路としては、ベルト348以外にも歯車を用いたものなどもあり、本実施の形態の構成を、それらに用いた場合でも、故障によって発生する安全上の問題を解決する効果がある。 However, there are some power transmission paths that use gears in addition to the belt 348, and even when the configuration of the present embodiment is used for them, there is an effect of solving a safety problem caused by a failure. is there.
 以上のように、本実施の形態の洗濯機は、電動機349とドラム346の間に動力伝達経路348を有し、制御部358は、制動時にドラム346の速度が略零となった後、電動機349への電流供給期間中に動力伝達経路348の故障を検知した場合、電動機349とドラム346の間に動力伝達経路348を有し、制御部358によって使用者が蓋417を開くことが不可能な状態を継続する。これにより、動力伝達経路348での故障が発生した場合に発生しうるドラム回転に対しても、高い安全性を実現することができる。 As described above, the washing machine according to the present embodiment has the power transmission path 348 between the electric motor 349 and the drum 346, and the control unit 358 causes the electric motor after the speed of the drum 346 becomes substantially zero during braking. When a failure in the power transmission path 348 is detected during the current supply period to the power transmission line 349, the power transmission path 348 is provided between the electric motor 349 and the drum 346, and the user cannot open the lid 417 by the control unit 358. To continue the state. Thereby, it is possible to realize high safety against drum rotation that may occur when a failure occurs in the power transmission path 348.
 (実施の形態6)
 図23は、本発明の実施の形態6のインバータ装置における、制動時にドラム346の速度が略零となった後の、電動機349への電流供給期間前後の各部の動作波形を示す図である。
(Embodiment 6)
FIG. 23 is a diagram illustrating operation waveforms of respective parts before and after a current supply period to the electric motor 349 after the speed of the drum 346 becomes substantially zero during braking in the inverter device according to the sixth embodiment of the present invention.
 図23において、(a)はVからWに供給される電流波形、(b)はその周波数の変化、(c)はVとW間に発生する電圧の振幅(絶対値)を示している。ここで、リプル分は除去した値としている。 23, (a) shows the current waveform supplied from V to W, (b) shows the change in frequency, and (c) shows the amplitude (absolute value) of the voltage generated between V and W. Here, the ripple is the removed value.
 ベルト348が電動機349とドラム346側のプーリ410の間に正常にかかっている場合は、電動機349軸における機構反共振周波数は、以下により、計算される。すなわち、主にベルト348の長さ方向の弾性による電動機349軸での捻りバネ定数K[Nm/rad]と、電動機349の慣性モーメントJm[kg平米]により、である。電動機349軸における機構反共振周波数、すなわち、トルクに対する角速度および角加速度が最大となる共振周波数fは、単振動の(数6)で計算される。 When the belt 348 is normally applied between the electric motor 349 and the pulley 410 on the drum 346 side, the mechanism anti-resonance frequency in the electric motor 349 shaft is calculated as follows. That is, mainly due to the torsion spring constant K [Nm / rad] at the shaft of the electric motor 349 due to the elasticity of the belt 348 in the longitudinal direction and the moment of inertia Jm [kg square meter] of the electric motor 349. The mechanism anti-resonance frequency in the electric motor 349 axis, that is, the resonance frequency f at which the angular velocity and the angular acceleration with respect to the torque are maximized is calculated by (Equation 6) of simple vibration.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、ここでは機構系の角速度(速度)とトルク(力)を、それぞれ電気系の電圧と電流に置き換えて、インピーダンスが極大となる周波数であるため、機構反共振周波数と言う表現も正しい。本明細書では、共振と反共振を合わせて、共振として記述されている。機構反共振周波数は機構共振周波数に含まれる。 In this case, the angular velocity (speed) and torque (force) of the mechanical system are replaced with the voltage and current of the electric system, respectively, so that the impedance becomes a maximum frequency, so the expression of the mechanical anti-resonance frequency is also correct. In this specification, resonance and anti-resonance are combined and described as resonance. The mechanism anti-resonance frequency is included in the mechanism resonance frequency.
 また、この振動モードは、ベルト348の張力を測定する際などに用いられるベルトを、弦として弾いた際に生じるものとは異なる。この振動モードは、ベルト348が長さ方向に伸び縮みすることによる剛性(弾性の逆数)、および、ベルトの張りの長さ、電動機349側のベルト掛けされるプーリ部分の半径などによって決まる。本実施の形態では、55Hzとなる。 Also, this vibration mode is different from that generated when a belt used for measuring the tension of the belt 348 is played as a string. This vibration mode is determined by the rigidity (reciprocal of elasticity) due to the belt 348 extending and contracting in the length direction, the length of the belt tension, the radius of the pulley portion on the motor 349 side, and the pulley portion. In this embodiment, it is 55 Hz.
 反共振周波数fは、ドラム346の慣性モーメントJdがある程度大きい条件においては、ほぼ一定となる。反共振周波数fは、ドラム346のみのドラム346軸での慣性モーメントJdが0.3[kg平米]である場合には、内容物となる衣類345や水が加わった影響は、比較的小さい。 The anti-resonance frequency f is substantially constant under the condition that the moment of inertia Jd of the drum 346 is large to some extent. When the moment of inertia Jd of the drum 346 alone with respect to the anti-resonance frequency f is 0.3 [kg square meter], the influence of the clothing 345 and water as contents is relatively small.
 ただ、ドラム346の慣性モーメントJdの影響や、ベルトの温度特性、経時変化などよる変化、またバラツキなどによって、fが変動する要因がある。従って、本実施の形態においては、電流供給期間T10~T11において、供給される電流の周波数を30~80Hzに変化させている。 However, there are factors that f fluctuate due to the influence of the moment of inertia Jd of the drum 346, the temperature characteristics of the belt, changes due to changes over time, and variations. Therefore, in the present embodiment, the frequency of the supplied current is changed to 30 to 80 Hz in the current supply period T10 to T11.
 よって、電流供給期間T10~T11中に、電動機349に供給される電流は、一方向のトルクを発生させるものではなく、正負交互のトルクを発生させるものである。その周波数は、電動機349とベルト348およびドラム346による機構共振周波数である55Hzの成分を含む。従って、ドラム346の原動機となる電動機349は、機構共振周波数を含み、その前後の周波数範囲の交番トルクを発生させる。 Therefore, during the current supply period T10 to T11, the current supplied to the electric motor 349 does not generate a unidirectional torque, but generates a positive and negative alternating torque. The frequency includes a component of 55 Hz which is a mechanism resonance frequency by the electric motor 349, the belt 348, and the drum 346. Therefore, the electric motor 349 serving as the prime mover of the drum 346 generates an alternating torque in the frequency range including the mechanical resonance frequency and before and after that.
 VW間に供給される交番電流によって、電動機349に発生した交番トルクは、機構共振周波数fである55Hz付近での、電圧絶対値|Vv-Vw|の極大点Rが存在する場合には、実線となる。極大点Rは、ベルト348が外れた場合の破線との差がある。従って、R点の存在を検知することにより、ベルト348は正常な状態であることが判断される。 The alternating torque generated in the electric motor 349 due to the alternating current supplied between the VWs is a solid line when there is a maximum point R of the voltage absolute value | Vv−Vw | near the mechanism resonance frequency f of 55 Hz. It becomes. The maximum point R is different from the broken line when the belt 348 is detached. Therefore, it is determined that the belt 348 is in a normal state by detecting the presence of the R point.
 すなわち、ベルト348を介して、負荷となるドラム346を回転駆動するための原動機となる電動機349に、原動機を含む機構要素の共振周波数成分の交番トルクを発生させる。それによる振動の大きさ(速度の振幅)にほぼ比例した永久磁石340、341の誘導起電力が、巻線に発生する。よって、電動機349の入力電圧の振幅によって、原動機となる電動機349の振動の振幅を検知することで、機構共振周波数の有無からベルト348の有無を判定する。 That is, an alternating torque of the resonance frequency component of the mechanical element including the prime mover is generated in the electric motor 349 serving as a prime mover for rotationally driving the drum 346 serving as a load via the belt 348. As a result, induced electromotive force of the permanent magnets 340 and 341 that is substantially proportional to the magnitude of vibration (speed amplitude) is generated in the windings. Therefore, the presence / absence of the belt 348 is determined from the presence / absence of the mechanism resonance frequency by detecting the amplitude of vibration of the motor 349 serving as the prime mover based on the amplitude of the input voltage of the motor 349.
 なお、永久磁石340、341の位相によっては、VW間の電流供給ではトルクが発生しないことがある。このため、VW以外の相UWなどでも電流供給を行えば、ベルト348が正常である場合には、いずれかの相の間の交番電流の供給時に、(c)に図示した特性での検知が可能となる。合わせて3相すべての配線に断線等がないことも検知できる。 In addition, depending on the phase of the permanent magnets 340 and 341, torque may not be generated by supplying current between VW. For this reason, if current is supplied even in a phase UW other than VW, when the belt 348 is normal, the detection with the characteristics shown in FIG. It becomes possible. In addition, it can also be detected that there is no disconnection or the like in all three-phase wirings.
 本実施の形態においては、特に電流の周波数を30~80Hzにしたことにより、電流供給期間中のドラム346の動きとしては、検知のための新たな運動をドラム346に発生させることはない。従って、ドラム346の周辺でも、0.1mm以下という、ごく微小な振動に抑えることができる。また、使用者が、透明ガラスを有する蓋417を通して、ドラム346を見ても、不信感、不安感などを感じることがなく、極めて品位が高い。かつ、ベルト348の外れや切れがある場合でも、その異常を高精度で検出できる。従って、ドラム346が完全に停止状態であることの裏付けがしっかりととれ、安全性の極めて高いインバータ装置が確保できる。 In the present embodiment, since the current frequency is particularly set to 30 to 80 Hz, the drum 346 does not generate a new motion for detection as the movement of the drum 346 during the current supply period. Therefore, even in the vicinity of the drum 346, it can be suppressed to a very small vibration of 0.1 mm or less. Further, even if the user looks at the drum 346 through the cover 417 having transparent glass, the user does not feel distrust or anxiety, and the quality is extremely high. Even when the belt 348 is detached or cut, the abnormality can be detected with high accuracy. Therefore, it can be firmly confirmed that the drum 346 is completely stopped, and an extremely safe inverter device can be secured.
 ベルト348が正常か否かを判定する手段としては、トルクを発生させて、角加速度との関係から慣性モーメントを算出するなどの構成も可能である。しかし、T10時点で電動機349の停止の判定は完了している状態にあり、再度のトルク発生でドラム346に運動を与えてしまうと、せっかく停止の判定を行った意味が薄れることもある。従って、本実施の形態であれば、ベルト348が正常かどうかの判定のために、ドラム346が動き出してしまうこともなく、好都合である。 As means for determining whether or not the belt 348 is normal, it is possible to generate torque and calculate the moment of inertia from the relationship with the angular acceleration. However, the determination of the stop of the electric motor 349 has been completed at the time T10, and if the movement of the drum 346 is caused by the generation of the torque again, the meaning of performing the determination of the stop may be diminished. Therefore, the present embodiment is convenient because the drum 346 does not start to move to determine whether the belt 348 is normal.
 以上説明したように、本実施の形態3~6のインバータ装置では、蓋ロック部419の状態を、ドラム346が完全に停止した段階で、使用者が蓋417を開くことができる。従って、安全性を確保するができる。 As described above, in the inverter devices according to the third to sixth embodiments, the user can open the cover 417 when the drum lock 346 is completely stopped in the state of the cover lock unit 419. Therefore, safety can be ensured.
 なお、各実施の形態においては、ホールICなどの位置センサは特に設けない「センサレス」と呼ばれる構成としている。従って、低コストであり、かつ、位置センサの取付けの位置バラツキなどによる影響をなくせるなど、様々な効果を得ることができる。その上で、電動機349への配線の断線を検出し、また、動力伝達経路(ベルト)348の外れなどの異常も検知する。これにより、ドラム346が確実に停止した状態で、使用者が蓋417を開けるという、安全性が高いインバータ装置を実現する。 In each of the embodiments, a position sensor such as a Hall IC is not provided, and a configuration called “sensorless” is adopted. Therefore, it is possible to obtain various effects such as low cost and elimination of influence due to position variation of the position sensor. After that, the disconnection of the wiring to the electric motor 349 is detected, and an abnormality such as detachment of the power transmission path (belt) 348 is also detected. Thereby, a highly safe inverter device is realized in which the user opens the lid 417 in a state where the drum 346 is reliably stopped.
 なお、本実施の形態においては、機構インピーダンス(角速度/トルク)が極大となる、反共振周波数を用いたが、機構インピーダンス(角速度/トルク)が極小となる共振周波数を用いることもできる。このとき、13Hz程度でドラム346とベルト348の共振により発生するため、この周波数成分を用いて、トルクに対する角速度、すなわち電動機349入力電流に対して電圧が小さくなる。このことから、やはりベルト348の有無を判定することができる。 In the present embodiment, the anti-resonance frequency at which the mechanical impedance (angular velocity / torque) is maximized is used. However, a resonant frequency at which the mechanical impedance (angular velocity / torque) is minimized can also be used. At this time, since the resonance occurs between the drum 346 and the belt 348 at about 13 Hz, the voltage becomes small with respect to the angular velocity with respect to the torque, that is, the input current of the motor 349, using this frequency component. From this, the presence or absence of the belt 348 can also be determined.
 ドラム346の慣性モーメントの変動に関しては、やや広めに周波数を変化(スイープ等)することにより、カバーすることができる。ついでにドラム346内の衣類345の質量を検知するようにして、例えば、脱水の程度を検知するようにしてもよい。特に、ベルト348の外れに関しては、位置センサがあるインバータ装置にも用いることができる。従って、通常用いられる電気角60度毎に信号が変化する位置センサなどよりも、精度の高いベルト348の外れ有/無を判定できる。 The change in the moment of inertia of the drum 346 can be covered by changing the frequency (sweep etc.) slightly wider. Subsequently, the mass of the clothing 345 in the drum 346 may be detected, for example, the degree of dehydration may be detected. In particular, the belt 348 can be removed from an inverter device having a position sensor. Therefore, it is possible to determine whether the belt 348 is detached or not with higher accuracy than a position sensor that changes a signal every 60 degrees of electrical angle that is normally used.
 もちろん、位置センサを用いるインバータ装置における、万一の位置センサ故障にも対応することができ、多重の安全性確保も行うことができる。 Of course, in the event of an inverter device using a position sensor, it is possible to cope with a possible position sensor failure, and to ensure multiple safety.
 また、制動を行う場合の制御の構成として、実施の形態3~6では短絡制動を用いたものとしているが、他の構成により電気的な制動を電動機349に加えるものでも良い。電動機349が停止した時点でのインバータ回路359からドラム346に至る経路の故障である、断線が無いこと、また動力伝達経路の異常がないことの検知ができれば良い。これにより、ドラム346が真の停止状態にある状態で、使用者が蓋417を開くことができれば良い。 Further, as a control configuration in the case where braking is performed, the short-circuit braking is used in the third to sixth embodiments, but electrical braking may be applied to the motor 349 by other configurations. It suffices if it is possible to detect that there is no disconnection in the path from the inverter circuit 359 to the drum 346 when the electric motor 349 stops, that there is no disconnection, and that there is no abnormality in the power transmission path. Accordingly, it is only necessary that the user can open the lid 417 in a state where the drum 346 is in a true stop state.
 以上のように、本実施の形態の洗濯機は、動力伝達経路348がベルトであり、電流供給期間中に電動機に供給される電流の周波数が、電動機349とベルトおよびドラム346による機構共振周波数成分を備える。これにより、ドラム346に新たな運動を加えることなく、ベルトの有無を非常に高い精度で検知することができ、高い安全性を実現することができる。 As described above, in the washing machine of the present embodiment, the power transmission path 348 is a belt, and the frequency of the current supplied to the electric motor during the current supply period is a mechanical resonance frequency component by the electric motor 349, the belt, and the drum 346. Is provided. Accordingly, the presence or absence of the belt can be detected with very high accuracy without applying new motion to the drum 346, and high safety can be realized.
 (実施の形態7)
 図24は、本発明の実施の形態7におけるインバータ装置のブロック図である。
(Embodiment 7)
FIG. 24 is a block diagram of an inverter device according to Embodiment 7 of the present invention.
 図24において、インバータ装置は、永久磁石500、501と3相の巻線502、503、504とを有する。また、衣類505を収納する負荷(ドラム)506を、プーリ507およびベルト508を介して回転駆動する電動機509と、6石のスイッチング素子511、512、513、514、515、516とを有する。また、電動機509に交流電流Iu、Iv、Iwを供給するインバータ回路517と、スイッチング素子511、512、513、514、515、516をオンオフ制御する制御部518とを有する。制御部518は、交流電流Iu、Iv、Iwを検知する電流検知部519を有する。本実施の形態においては、電流検知部519は、3相それぞれの電流を電圧に変換するシャント抵抗521、522、523、およびA/D変換器524により構成される。A/D変換器524は、低電位側のスイッチング素子514、515、516のオン期間に、A/D変換を行う。 24, the inverter device includes permanent magnets 500 and 501, and three- phase windings 502, 503, and 504. In addition, a load (drum) 506 for housing the clothing 505 includes an electric motor 509 that is rotationally driven via a pulley 507 and a belt 508, and six stone switching elements 511, 512, 513, 514, 515, and 516. In addition, an inverter circuit 517 that supplies AC currents Iu, Iv, and Iw to the electric motor 509 and a control unit 518 that controls on / off of the switching elements 511, 512, 513, 514, 515, and 516 are provided. The control unit 518 includes a current detection unit 519 that detects the alternating currents Iu, Iv, and Iw. In the present embodiment, the current detection unit 519 includes shunt resistors 521, 522, and 523 that convert the currents of the three phases into voltages, and an A / D converter 524. The A / D converter 524 performs A / D conversion while the switching elements 514, 515, and 516 on the low potential side are on.
 さらに、制御部518は、中央制御部535を有し、インバータ回路517の制御のための信号生成や、電流検知部519からの出力信号Iua、Iva、Iwa信号受付を、デジタル方式にて行う。 Furthermore, the control unit 518 has a central control unit 535, and performs signal generation for controlling the inverter circuit 517 and reception of output signals Iua, Iva, and Iwa signals from the current detection unit 519 in a digital manner.
 PWM回路536は、中央制御部535から、Dutyを受けて、Dutyに対して、64マイクロ秒周期の三角波でのパルス幅変調(PWM)を行った信号Bを出力する。中央制御部535の信号S1~S6は、インバータ回路517との間に設けた、切り替え部537、駆動回路538を経て、スイッチング素子511、512、513、514、515、516のゲート信号を与える。切り替え部537が、中央制御部535のK信号がハイである場合には、図24に表示されている状態となって、S1~S6が採用される。これに対し、K信号がローとなっている場合には、切り替え部537内の各スイッチが、下側に接続された状態となる。 The PWM circuit 536 receives the duty from the central control unit 535, and outputs a signal B obtained by performing pulse width modulation (PWM) with a triangular wave having a period of 64 microseconds on the duty. Signals S1 to S6 of the central control unit 535 provide gate signals of the switching elements 511, 512, 513, 514, 515, and 516 via the switching unit 537 and the drive circuit 538 provided between the central control unit 535 and the inverter circuit 517. When the K signal of the central control unit 535 is high, the switching unit 537 is in the state shown in FIG. 24 and S1 to S6 are adopted. On the other hand, when the K signal is low, each switch in the switching unit 537 is connected to the lower side.
 インバータ回路517は、AC230V50Hzの交流電源541、全波整流器542、コンデンサ543により構成された直流電源544から、直流電圧VDCが供給される。抵抗546、547によって構成された直流電圧検知回路548の出力Aが、中央制御部535にアナログ電圧信号として入力される。中央制御部535の内部では、これもA/D変換されたデジタル値として処理される。 The inverter circuit 517 is supplied with a DC voltage VDC from a DC power supply 544 constituted by an AC power supply 541 of AC 230 V 50 Hz, a full-wave rectifier 542 and a capacitor 543. An output A of the DC voltage detection circuit 548 configured by the resistors 546 and 547 is input to the central control unit 535 as an analog voltage signal. Inside the central control unit 535, this is also processed as an A / D converted digital value.
 図25は、本発明の実施の形態7におけるインバータ装置の中央制御部535の詳細構成を示すブロック図である。 FIG. 25 is a block diagram showing a detailed configuration of the central control unit 535 of the inverter device according to the seventh embodiment of the present invention.
 なお、中央制御部535を構成する部品は、1チップのマイクロコンピュータであることが多い。しかし、図24の中央制御部535の外側の部分も含めた構成を、1台のマイクロコンピュータのソフトウェアで実現しても良い。また、中央制御部535を構成する部品を、いくつかのハードウェアで実現しても良い。また、DSPなどの各種プロセッサで実現しても良い。つまり、1チップで実現しても良いし、多チップで実現しても良く、また、ハードウェアで実現しても良いし、ソフトウェアで実現して良い。 It should be noted that the component constituting the central control unit 535 is often a one-chip microcomputer. However, the configuration including the portion outside the central control unit 535 in FIG. 24 may be realized by software of one microcomputer. Moreover, you may implement | achieve the components which comprise the central control part 535 with some hardware. Moreover, you may implement | achieve with various processors, such as DSP. That is, it may be realized by one chip, may be realized by multiple chips, may be realized by hardware, or may be realized by software.
 図25において、3相電流Iu、Iv、Iwに対応した信号Iua、Iva、Iwaは、推定位相θ信号とともに、第1の座標変換部550に入力される。第1の座標変換部550においては、(数7)を用いてIdとIqへの変換、すなわち、静止座標から回転座標への変換が行われ、IdとIqが出力される。減算部551、552が設けられており、それぞれ、設定値IdrとIdの誤差、および、設定値IqrとIqの誤差が計算される。減算部551、552の出力は、PI(比例、積分)のゲインを作用させる誤差増幅部553、554に入力される。その出力VdとVqは、積分器555の出力である位相θ信号と共に第2の座標変換部558に入力され、(数8)を用いてdq座標から、3相の電圧指令値Vu、Vv、Vwの値への変換が行われる。電圧指令値Vu、Vv、Vwは、PWM部559に入力され、A信号に対する3相の電圧指令値の比率で、64μs周期の三角波のキャリア波を作用させる。電圧指令値Vu、Vv、Vwは、そのキャリア波との瞬時値比較、およびデッドタイムを付して、上下の駆動信号S1~S6を生成する。 25, signals Iua, Iva, Iwa corresponding to the three-phase currents Iu, Iv, Iw are input to the first coordinate conversion unit 550 together with the estimated phase θ signal. In the first coordinate conversion unit 550, conversion to Id and Iq is performed using (Equation 7), that is, conversion from stationary coordinates to rotation coordinates is performed, and Id and Iq are output. Subtraction units 551 and 552 are provided, which calculate the error between the set values Idr and Id and the error between the set values Iqr and Iq, respectively. The outputs of the subtracting units 551 and 552 are input to error amplifying units 553 and 554 that apply a PI (proportional and integral) gain. The outputs Vd and Vq are input to the second coordinate converter 558 together with the phase θ signal that is the output of the integrator 555, and the three-phase voltage command values Vu, Vv, Conversion to the value of Vw is performed. The voltage command values Vu, Vv, and Vw are input to the PWM unit 559, and a triangular carrier wave having a period of 64 μs is applied at a ratio of the three-phase voltage command value to the A signal. Voltage command values Vu, Vv, Vw are subjected to instantaneous value comparison with the carrier wave and added with dead time to generate upper and lower drive signals S1 to S6.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 なお、本実施の形態においては、電流検知部519は、3相すべての電流を検知する構成としている。しかし、電動機509の三相の巻線502、503、504の内の2相の電流を検知すれば、残りの1相はキルヒホッフの法則によって計算できる。従って、2相のみの検知としても構わない。 In the present embodiment, the current detector 519 is configured to detect all three phases of current. However, if the current of two phases in the three- phase windings 502, 503, and 504 of the electric motor 509 is detected, the remaining one phase can be calculated according to Kirchhoff's law. Therefore, only two-phase detection may be performed.
 本実施の形態の中央制御部535は、さらに速度設定値ωrとωとの差を計算する減算部560と、減算部560の出力に対して、PI(比例、積分)のゲインを作用させる誤差増幅部561とを有する。また、推定速度ωから設定値Idrを決めるIdr設定部562と、短絡ブレーキ制御部563とを有する。また、異常検出部565と、電動機509の駆動時の設定速度ωrを発生するシーケンス発生部567とを有する。 The central control unit 535 of the present embodiment further includes a subtraction unit 560 that calculates the difference between the speed setting values ωr and ω, and an error that causes the gain of PI (proportional, integration) to act on the output of the subtraction unit 560. And an amplifying unit 561. In addition, an Idr setting unit 562 that determines a set value Idr from the estimated speed ω and a short-circuit brake control unit 563 are provided. Further, it includes an abnormality detection unit 565 and a sequence generation unit 567 that generates a set speed ωr when the electric motor 509 is driven.
 異常検出部565は、インバータ装置に何らかの異常、例えば各部の過電流や過電圧、また過剰な振動などがあった場合に、異常検出信号B99RQを出力する。シーケンス発生部567は、洗濯、脱水などの洗濯機としての動作の区切りの時点で、電動機509をブレーキ状態として停止させる場合に、ブレーキ要求信号B4RQを発生する。 The abnormality detection unit 565 outputs an abnormality detection signal B99RQ when there is some abnormality in the inverter device, for example, overcurrent or overvoltage of each unit or excessive vibration. The sequence generation unit 567 generates a brake request signal B4RQ when stopping the electric motor 509 in a braking state at the time of the break of operation as a washing machine such as washing and dehydration.
 本実施の形態においては、異常検出信号B99RQを受けた場合、およびブレーキ要求信号B4RQを受けた場合は、どちらも同様の短絡ブレーキ状態に入る。いずれの場合でも電動機509の入力を徐々に短絡状態、すなわち3相の入力端子間の電圧が略零となるように、インバータ回路517内のスイッチング素子511、512、513、514、515、516を制御する。つまり、インバータ回路517内の低電位側のスイッチング素子514、515、516に対して3石共通のDutyでゲート制御を行い、高電位側のスイッチング素子511、512、513についてはオフ状態を保つ。 In the present embodiment, when the abnormality detection signal B99RQ is received and when the brake request signal B4RQ is received, the same short-circuit braking state is entered. In any case, the switching elements 511, 512, 513, 514, 515, and 516 in the inverter circuit 517 are set so that the input of the electric motor 509 is gradually short-circuited, that is, the voltage between the three-phase input terminals becomes substantially zero. Control. That is, the gate control is performed on the low potential side switching elements 514, 515, and 516 in the inverter circuit 517 with a duty common to three stones, and the high potential side switching elements 511, 512, and 513 are kept off.
 短絡電流判定部570は、短絡状態での3相の電流信号Iua、Iva、Iwaの瞬時値の絶対値のすべてが、0.6Aを下回った場合に、Cs信号をハイとする。 The short-circuit current determination unit 570 sets the Cs signal to high when all the absolute values of the instantaneous values of the three-phase current signals Iua, Iva, and Iwa in the short-circuit state are less than 0.6A.
 Idr設定部562は、ω値が負荷(ドラム)506の速度換算で400r/min以下の場合には、設定値Idrとして0Aを出力し、負荷(ドラム)の速度換算で400r/minを超える場合には、Idr<0Aとしつつ、絶対値としてはωの増大に伴い徐々に増加させることにより、負荷(ドラム)の速度換算で1200r/minではIdr=-5Aとするものとなっており、高速での弱メ界磁制御がかかるものとなっている。 The Idr setting unit 562 outputs 0A as the set value Idr when the ω value is 400 r / min or less in terms of speed of the load (drum) 506, and exceeds 400 r / min in terms of speed of the load (drum). In the case of Idr <0A, the absolute value is gradually increased as ω increases, so that Idr = −5A at 1200 r / min in terms of load (drum) speed conversion. The weak magnetic field control is applied.
 速度推定部556は、電動機509のパラメータ(抵抗値、最大インダクタンス、最小インダクタンス)を記憶しており、速度センサなしでありながら電動機509の速度推定を行う。この際、電動機509の電圧方程式が用いられる。速度推定部556は、第1の座標変換部550の出力Id、Iqと、第2の座標変換部558の入力Vd、Vqを受け、推定速度ω、および積分器555の入力となる推定速度ω2を出力する。 The speed estimation unit 556 stores the parameters (resistance value, maximum inductance, minimum inductance) of the electric motor 509, and estimates the speed of the electric motor 509 without the speed sensor. At this time, the voltage equation of the electric motor 509 is used. The speed estimation unit 556 receives the outputs Id and Iq of the first coordinate conversion unit 550 and the inputs Vd and Vq of the second coordinate conversion unit 558, receives the estimated speed ω, and the estimated speed ω2 that is input to the integrator 555. Is output.
 速度推定部556では、電動機509の電圧値および電流値から、位相誤差に対応するεが算出される。速度推定部556は、位相誤差に対応するεが零に収束するように、積分もしくは比例積分要素などを持つ誤差増幅がなされる、フィードバック系で構成されている。 Speed estimation section 556 calculates ε corresponding to the phase error from the voltage value and current value of electric motor 509. The speed estimator 556 is configured by a feedback system in which error amplification having an integral or proportional integral element is performed so that ε corresponding to the phase error converges to zero.
 図26は、本発明の実施の形態7におけるインバータ装置の短絡ブレーキ制御部563のブロック図である。 FIG. 26 is a block diagram of the short-circuit brake control unit 563 of the inverter device according to Embodiment 7 of the present invention.
 図26において、短絡ブレーキ制御部563は、ブレーキ要求信号B4RQと異常検出信号B99RQの論理和を求めるOR回路574と、A信号を受ける比較器575とを有する。また、電圧上昇分発生部576と、加算器577と、ホルダ578とを有する。短絡ブレーキ制御部563では、ブレーキ要求信号B4RQまたは異常検出信号B99RQがハイになった時点での直流電圧VDCに、50V相当の電圧上昇分を加算した値が、ホルダ578から閾値として、比較器575のマイナス入力に供給される。 26, the short-circuit brake control unit 563 includes an OR circuit 574 that obtains a logical sum of the brake request signal B4RQ and the abnormality detection signal B99RQ, and a comparator 575 that receives the A signal. In addition, a voltage increase generation unit 576, an adder 577, and a holder 578 are included. In the short-circuit brake control unit 563, a value obtained by adding a voltage increase equivalent to 50V to the DC voltage VDC when the brake request signal B4RQ or the abnormality detection signal B99RQ becomes high is used as a threshold value from the holder 578, and the comparator 575. Is supplied to the negative input.
 短絡時間比率拡大速度指令部580は、関数発生器581、関数発生器582、切り替え部583、ホルダ585を有する。短絡時間比率拡大速度指令部580の出力となる短絡時間比率拡大速度信号は、積分器586に入力される。OR回路574の出力(ブレーキ要求信号)BRQは、遅延部587に入力される。遅延部587は、遅延時間Td1=5msの時間遅れで信号を発し、その信号は、積分器586へのINTEGとなる。 The short circuit time ratio expansion speed command unit 580 includes a function generator 581, a function generator 582, a switching unit 583, and a holder 585. The short circuit time ratio expansion speed signal that is the output of the short circuit time ratio expansion speed command unit 580 is input to the integrator 586. The output (brake request signal) BRQ of the OR circuit 574 is input to the delay unit 587. The delay unit 587 emits a signal with a time delay of delay time Td1 = 5 ms, and the signal becomes an INTEG to the integrator 586.
 積分器586においては、INTEGがローの状態では、積分値Dutyは初期値となる零である。INTEGがハイに上がった時点から時間積分が開始され、Dutyが出力される。 In the integrator 586, when the INTEG is low, the integral value Duty is zero, which is the initial value. Time integration is started from the point when INTEG rises to high, and Duty is output.
 特に本実施の形態においては、積分器586の出力となるDutyを短絡時間比率拡大速度指令部580の入力として用いる。これにより、関数発生器581、582が機能することによって、積分開始からの時間のカウントを省略した簡単な構成でありながら、短絡時間比率拡大期間の開始からの時間に応じた短絡時間比率の拡大速度を変化させることができる。 In particular, in the present embodiment, the duty that is the output of the integrator 586 is used as the input of the short circuit time ratio expansion speed command unit 580. As a result, the function generators 581 and 582 function to increase the short-circuit time ratio according to the time from the start of the short-circuit time ratio expansion period, with a simple configuration in which the time count from the start of integration is omitted. The speed can be changed.
 なお、比較器575の出力がハイとなる条件としては、信号Aの上昇により、閾値を超えた場合である。直流電圧VDCが50V以上上昇した時点で、ホルダ585がDutyを保持して、関数発生器582の入力を固定する。また、切り替え部583がaからbに切り替わるため、以降は関数発生器582からの一定の出力値が、短絡時間比率拡大速度となる。 It should be noted that the condition that the output of the comparator 575 becomes high is when the threshold is exceeded due to the rise of the signal A. When the DC voltage VDC rises by 50 V or more, the holder 585 holds the duty and fixes the input of the function generator 582. In addition, since the switching unit 583 is switched from a to b, thereafter, a constant output value from the function generator 582 becomes the short circuit time ratio expansion speed.
 よって、その場合のDutyは、時間とともに一定の速度で上昇していく。 Therefore, the duty in that case rises at a constant speed with time.
 ここで、積分器586は、100%で制限がかかる上限リミッタにより、Dutyの制限を行う機能を内蔵している。この制限により、Dutyは最終的に上限値である100%にて頭打ちとなり、その段階でPWMからベタオン状態に移る。 Here, the integrator 586 has a built-in function to limit the duty by an upper limiter that is limited at 100%. Due to this limitation, the duty finally reaches a peak at 100% which is the upper limit value, and at that stage, the state shifts from PWM to a beta-on state.
 なお、Dutyが100%となった時点では、電動機509の入力電圧として、例えば2~3V程度残る。この電圧は、低電位側スイッチング素子514、515、516内のIGBTやダイオードの電圧降下分、およびインバータ回路517から電動機509までの配線による電圧降下分である。しかし、この電圧は、略零の範疇である。 Note that when the duty becomes 100%, for example, about 2 to 3 V remains as the input voltage of the electric motor 509. This voltage is a voltage drop of IGBTs and diodes in the low potential side switching elements 514, 515, and 516, and a voltage drop due to wiring from the inverter circuit 517 to the electric motor 509. However, this voltage is in the range of approximately zero.
 図27は、本発明の実施の形態7におけるインバータ装置の関数発生器581と関数発生器582の入出力特性を示すグラフである。図27において、横軸は入力を、縦軸は出力を取っている。図27において、実線Aは関数発生器581の入出力特性を、破線Bは関数発生器582の入出力特性を示す。 FIG. 27 is a graph showing input / output characteristics of the function generator 581 and the function generator 582 of the inverter device according to the seventh embodiment of the present invention. In FIG. 27, the horizontal axis represents input and the vertical axis represents output. In FIG. 27, a solid line A indicates input / output characteristics of the function generator 581, and a broken line B indicates input / output characteristics of the function generator 582.
 横軸となる関数発生器581の入力には、Dutyがそのまま接続される。一方、関数発生器582に関しては、途中にホルダ585が介在した形での、入力端子への接続となっている。関数発生器581と関数発生器582のいずれの入出力特性についても、右肩下がりであり、かつ、Duty<90%の範囲では、実線Aに対して破線Bが上に位置し、Duty>=90%では同等の値である。 The duty is connected as it is to the input of the function generator 581 on the horizontal axis. On the other hand, the function generator 582 is connected to the input terminal with a holder 585 interposed therebetween. For both the input / output characteristics of the function generator 581 and the function generator 582, in the range of decreasing right and Duty <90%, the broken line B is located above the solid line A, and Duty> = 90% is equivalent.
 図27の縦軸としている出力に関しては、後で積分器586の入力となることから、短絡時間比率拡大速度dDuty/dtの意味合いを持つ。 27. The output on the vertical axis in FIG. 27 has the meaning of the short-circuit time ratio expansion rate dDuty / dt because it will be input to the integrator 586 later.
 特に本実施の形態においては、短絡時間比率Dutyの拡大期間において、その開始からの時間をカウントする代わりに、Dutyに対する増加速度dDuty/dtの関数を備える。 Particularly, in the present embodiment, in the expansion period of the short-circuiting time ratio Duty, a function of the increasing speed dDuty / dt with respect to the Duty is provided instead of counting the time from the start.
 これによって、計算に使用する変数の数が削減され、安価で小型のマイクロコンピュータでも使用できる。 This reduces the number of variables used in the calculation, and it can be used with cheap and small microcomputers.
 しかしながら、特にこのような構成にする必要があるというものではなく、開始からの時間をカウントし、その時間の関数として出力を行うものを用いても構わない。 However, it is not particularly necessary to have such a configuration, and it is possible to use a device that counts the time from the start and outputs as a function of the time.
 また、十分な特性が得られるのであれば、図27に示した曲線(カーブ)の代わりに、直線や、階段状の値を用いてもよく、マイクロコンピュータでの計算の負担を軽いものとすることもできる。 If sufficient characteristics can be obtained, a straight line or a stepped value may be used instead of the curve shown in FIG. 27, and the calculation burden on the microcomputer is reduced. You can also.
 図28は、本発明の実施の形態7におけるインバータ装置のブレーキ要求信号BRQによって短絡ブレーキとなる場合の動作波形図である。図28において、(a)はブレーキ要求信号BRQを、(b)はK信号を、(c)はDutyをそれぞれ示している。 FIG. 28 is an operation waveform diagram when the brake request signal BRQ of the inverter device according to Embodiment 7 of the present invention causes a short-circuit brake. In FIG. 28, (a) shows the brake request signal BRQ, (b) shows the K signal, and (c) shows the Duty.
 中央制御部535のブレーキ要求信号BRQは、力行期間から、時刻T1でハイとなり、同時にK信号がハイからローになる。この時点ではDutyは零であるため、スイッチング素子511、512、513、514、515、516のIGBT部分は、すべてオフで、遅延部587の作用による5msのオールオフ期間となる。 The brake request signal BRQ of the central control unit 535 becomes high at the time T1 from the power running period, and at the same time the K signal becomes low from high. Since Duty is zero at this time, all IGBT portions of switching elements 511, 512, 513, 514, 515, and 516 are off, and an all-off period of 5 ms is generated by the action of delay unit 587.
 なお、オールオフ期間中には、電動機509が低速である場合には、ほとんど電流が零の状態となる。 During the all-off period, when the motor 509 is at a low speed, the current is almost zero.
 (c)に示される低電位側スイッチング素子514、515、516のオン時間の比率(Duty)は、短絡時間比率となる。オールオフ期間に続いて、T2からT5はDutyが増加する短絡時間比率拡大期間となる。一方、高電位側スイッチング素子511、512、513については、切り替え部537の作用によりオフ状態が保たれる。 The on-time ratio (Duty) of the low potential side switching elements 514, 515, and 516 shown in (c) is the short-circuit time ratio. Subsequent to the all-off period, T2 to T5 become a short circuit time ratio expansion period in which the duty increases. On the other hand, the high-potential side switching elements 511, 512, and 513 are kept off by the action of the switching unit 537.
 短絡時間比率Dutyの時間変化は、本実施の形態においては、図27の実線Aに示したように滑らかなカーブの特性を持つ。従って、図28(c)の実線カーブのように連続的に時間的な傾き(短絡時間比率拡大速度)が時間の経過と共に、次第に減少していく。 In the present embodiment, the time change of the short circuit time ratio Duty has a smooth curve characteristic as shown by the solid line A in FIG. Accordingly, as shown by the solid curve in FIG. 28 (c), the temporal gradient (short-circuiting time ratio expansion rate) continuously decreases with time.
 また、図28(c)の破線は、関数発生器581の特性を階段状とした場合の一例であり、(T3、D3)、(T4、D4)を経由していく折れ線である。いずれにおいても、短絡時間比率(Duty)の拡大速度は、時間経過と共に低下、また短絡時間比率が100%に近づくほど、低下する。 The broken line in FIG. 28C is an example when the characteristic of the function generator 581 is stepped, and is a broken line passing through (T3, D3) and (T4, D4). In any case, the expansion rate of the short circuit time ratio (Duty) decreases with time and decreases as the short circuit time ratio approaches 100%.
 電動機509の入力電圧は、回転により発生する誘導起電力が瞬時値として正/負を繰り返す。しかし、それが短絡時間中には強制的に零となり、絶対値が抑えられる。 The input voltage of the electric motor 509 repeats positive / negative as an instantaneous value of the induced electromotive force generated by rotation. However, it is forced to zero during the short circuit time, and the absolute value is suppressed.
 よって、本実施の形態においては、T2~T5の短絡時間比率拡大期間は、短絡時間の増加により、電圧の絶対値が低下させるように、スイッチング素子514、515、516が制御される、電圧低減期間となる。 Therefore, in the present embodiment, the switching element 514, 515, 516 is controlled so that the absolute value of the voltage is reduced by increasing the short circuit time in the short circuit time ratio expansion period from T2 to T5. It becomes a period.
 T5において、Dutyが100%に達する。この時点で、電動機509は、制御部518が、インバータ回路517内の低電位側スイッチング素子514、515、516のオンオフ制御により、ベタオン状態となる。 At T5, the duty reaches 100%. At this time, the electric motor 509 is in a beta-on state by the control unit 518 performing on / off control of the low-potential side switching elements 514, 515, and 516 in the inverter circuit 517.
 したがって、3相巻線の入力端子U、V、Wを短絡する短絡時間比率(Duty)を拡大する短絡時間比率拡大期間の後、短絡時間比率Dutyを最大限、すなわち100%に保ち、負荷の運動エネルギーを吸収する短絡制動期間となる。 Therefore, after the short-circuit time ratio expansion period for expanding the short-circuit time ratio (Duty) for short-circuiting the input terminals U, V, and W of the three-phase winding, the short-circuit time ratio Duty is kept at the maximum, that is, 100%, This is a short-circuit braking period that absorbs kinetic energy.
 このように、短絡時間比率となるDutyを徐々に増大させることにより、短絡制動期間に移る過程での過渡的な電流の跳ね上がりを防ぐことができ、過電流を防止できる。従って、インバータ回路517の各構成要素の破壊、および電動機509の過電流による故障を防ぐことができる。 Thus, by gradually increasing the duty that is the short-circuit time ratio, it is possible to prevent a transient current jump in the process of moving to the short-circuit braking period, and it is possible to prevent overcurrent. Therefore, destruction of each component of the inverter circuit 517 and failure due to overcurrent of the electric motor 509 can be prevented.
 ベルトなどを用いた減速機構を設ける構成においては、ダイレクト駆動と呼ばれるような、負荷に直接電動機を接続する構成に比べると、電動機509は、小型化、低コスト化が可能となる。しかし、インダクタンスは小となる傾向があるため、上記の過渡的な電流の跳ね上がりが大きくなる。また、インバータ装置の運転中の最大電流を超えることもあり得るため、電流の跳ね上がりを抑える必要性が高まるものとなる。 In a configuration in which a speed reduction mechanism using a belt or the like is provided, the motor 509 can be reduced in size and cost compared to a configuration in which the motor is directly connected to a load, which is called direct drive. However, since the inductance tends to be small, the transient current jump increases. In addition, since the maximum current during operation of the inverter device may be exceeded, the need to suppress the jump of current increases.
 特に、本実施の形態においては、短絡時間比率の拡大速度を徐々に低下させたことにより、短絡制動期間に入る時点での電動機509の速度条件が広範囲に振られても、過渡的な電流の跳ね上がりを防ぐことができる。速度が高い条件下では、T2~T3付近のDutyの拡大速度の設計、また、速度が低い条件下では、T4~T5付近のDutyの拡大速度の設計で、対応可能である。 In particular, in the present embodiment, by gradually reducing the expansion speed of the short circuit time ratio, even if the speed condition of the electric motor 509 at the time of entering the short circuit braking period is varied over a wide range, Bounce can be prevented. Under conditions where the speed is high, it is possible to design the duty enlargement speed in the vicinity of T2 to T3, and under conditions where the speed is low, it is possible to cope with the design of the duty enlargement speed in the vicinity of T4 to T5.
 なお、電圧面に関しては、T2~T5の期間内には、電動機509と負荷(ドラム)506が有する運動エネルギーの一部から、直流電源544への回生が発生し、コンデンサ543の充電がなされる。直流電源544の直流電圧VDCが上昇する。しかし、コンデンサ543の静電容量が大きい場合には、T1時点からの直流電圧VDCの上昇が50Vを超えることはない。また、信号Aが比較器575の出力HVをハイにするには至らない。従って、直流電圧VDCの最大値は、各構成部品の耐圧面などから問題無い範囲で収まる。従って、電動機509の運転速度が高い条件まで含めても、過電圧が発生することがない。 In terms of voltage, regeneration from the kinetic energy of the electric motor 509 and the load (drum) 506 to the DC power source 544 occurs and the capacitor 543 is charged during the period from T2 to T5. . The DC voltage VDC of the DC power supply 544 increases. However, when the capacitance of the capacitor 543 is large, the increase of the DC voltage VDC from the time T1 does not exceed 50V. Also, the signal A does not cause the output HV of the comparator 575 to go high. Therefore, the maximum value of the direct-current voltage VDC falls within a range where there is no problem in terms of the breakdown voltage of each component. Therefore, overvoltage does not occur even when the condition of high operating speed of the electric motor 509 is included.
 その際、特に高速における直流電源544への回生による過電圧を抑える面からは、次の設計とする。すなわち、短絡時間比率拡大期間の後半となるT3~T5における短絡時間比率(Duty)拡大速度を、中速~低速条件下での過渡的な電流の跳ね上がりが許容できる範囲で高める設計とする。これにより、過電圧を最小限に抑えることができる。 At that time, the following design is adopted from the viewpoint of suppressing overvoltage due to regeneration to the DC power supply 544 particularly at high speed. That is, the design is such that the short circuit time ratio (Duty) expansion speed in T3 to T5, which is the latter half of the short circuit time ratio expansion period, is increased within a range that allows a transient current jump under medium to low speed conditions. Thereby, an overvoltage can be suppressed to the minimum.
 その場合には、比較器575の出力HVがハイとなることはない。いずれの速度条件での短絡制動時にも、図28に示した動作となり、切り替え部583は、常にa端子のみに接続された状態である。従って、切り替え部583、関数発生器582、ホルダ585、比較器575、電圧上昇分発生部576、加算器577、ホルダ578も不要である。つまり、構成要素から省くこともできる。 In that case, the output HV of the comparator 575 never goes high. The operation shown in FIG. 28 is performed during short-circuit braking under any speed condition, and the switching unit 583 is always connected only to the terminal a. Therefore, the switching unit 583, the function generator 582, the holder 585, the comparator 575, the voltage increase generation unit 576, the adder 577, and the holder 578 are also unnecessary. That is, it can be omitted from the components.
 図29は、本発明の実施の形態7におけるインバータ装置の動作波形図である。図29の動作波形図は、コンデンサ543の静電容量が小であり、かつ比較的高速の運転からブレーキ要求信号BRQによって短絡ブレーキとなり直流電圧VDCの上昇が大きくなる場合を示している。図29において、(a)はブレーキ要求信号BRQ、(b)はDuty、(c)は直流電源544の出力する直流電圧VDC、(d)は比較器575の出力HV信号である。 FIG. 29 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention. The operation waveform diagram of FIG. 29 shows a case where the capacitance of the capacitor 543 is small and the short circuit brake is caused by the brake request signal BRQ from a relatively high speed operation and the increase of the DC voltage VDC is large. 29A is a brake request signal BRQ, FIG. 29B is a duty, FIG. 29C is a DC voltage VDC output from the DC power supply 544, and FIG. 29D is an output HV signal of the comparator 575.
 t0において、ブレーキ要求信号RRQがハイとなり、t1までの5msのオールオフ期間においては、電動機509の速度が高い場合には、誘導起電力による直流電源544への回生による、直流電圧VDCの上昇が始まる。t1以降はDutyの増大に伴って、直流電圧VDCの上昇はさらに進む。 At t0, the brake request signal RRQ becomes high, and during the 5 ms all-off period up to t1, when the speed of the motor 509 is high, the DC voltage VDC increases due to regeneration to the DC power supply 544 by induced electromotive force. Begins. From t1 onward, the DC voltage VDC increases further as the duty increases.
 t0時点でのVDC0に対して、加算器577によって、電圧上昇分発生部576の出力が加算された値が、ホルダ578に保持されている。コンデンサ543の充電によって、直流電圧VDCが、VDC0+50Vに達した段階t2において、比較器575の出力HVがハイに変わり、高電圧領域となる。 The value obtained by adding the output of the voltage increase generation unit 576 by the adder 577 to the VDC0 at the time t0 is held in the holder 578. At the stage t2 when the DC voltage VDC reaches VDC0 + 50V due to the charging of the capacitor 543, the output HV of the comparator 575 changes to high and enters a high voltage region.
 t2においては、ホルダ585の作用により、その時点でのDuty83%に対応した出力が、関数発生器582から出力される。切り替え部583のb接点が接続されて、積分器586に入力される。このため、短絡時間比率拡大速度dDuty/dtとして機能し、かつ、ホルダ585による保持がなされる。従って、その後t3にて、Dutyが100%に達するまで、一定の短絡時間比率拡大速度で、Dutyは直線的に増加する。 At t2, the function generator 582 outputs an output corresponding to the duty 83% at that time by the action of the holder 585. The contact b of the switching unit 583 is connected and input to the integrator 586. For this reason, it functions as the short circuit time ratio expansion rate dDuty / dt and is held by the holder 585. Therefore, at t3, the duty increases linearly at a constant short-circuiting time ratio expansion rate until the duty reaches 100%.
 ここで、関数発生器582は、関数発生器581よりも、入力Dutyに対する出力が大である。このため、破線で示した関数発生器581が継続して機能する場合(t4にてDuty=100%に達する)よりも、早期であるt3時点で100%に到達する。 Here, the function generator 582 has a larger output for the input duty than the function generator 581. For this reason, it reaches 100% at time t3, which is earlier than when the function generator 581 indicated by the broken line continues to function (duty = 100% is reached at t4).
 このような動作により、本実施の形態においては、コンデンサ543の静電容量が小であり、かつ、電動機509の速度が大である条件の場合には、Dutyが100%に到達するまでの時間が短くなる。(c)に示す直流電圧VDCのピークとしては、Vthに対して、10V程度の上昇に収まるため、回生によるコンデンサ543への過剰な充電電荷を抑えることができる。従って、各構成要素に対して信頼低下を引き起こすような、過電圧の発生を防ぐことができる。 With this operation, in the present embodiment, when the capacitance of the capacitor 543 is small and the speed of the electric motor 509 is large, the time until the duty reaches 100%. Becomes shorter. The peak of the DC voltage VDC shown in (c) falls within about 10 V with respect to Vth, so that excessive charge on the capacitor 543 due to regeneration can be suppressed. Therefore, it is possible to prevent the occurrence of overvoltage that causes a decrease in reliability for each component.
 ここで、電動機509の各線電流値について、発生しうる3相の間の過渡的なアンバランスによる跳ね上がりに関しては、短絡時間比率拡大期間の内、Duty<50%程度の段階で発生が抑えられる。従って、その後の期間に相当するt2~t3での急速なDutyの増加には影響しない。結果的には、本実施の形態の構成によって、いかなる電動機509の速度でも、過電圧と過電流の両面が満足される設計が可能となる。 Here, with respect to each line current value of the electric motor 509, the jump due to the transient imbalance between the three phases that can occur can be suppressed at a stage where the duty is about <50% in the short-circuit time ratio expansion period. Therefore, it does not affect the rapid increase in Duty from t2 to t3 corresponding to the subsequent period. As a result, the configuration of the present embodiment enables a design that satisfies both overvoltage and overcurrent at any motor 509 speed.
 なお、本実施の形態においては、HV信号の出力を、VDC0に50Vを加えた閾値としたことにより、交流電源541の電圧の変化に対して、過電流の発生が容易に抑えられる。しかし、特にこの構成に限定されるものではない。Vthとして常に一定の値を用いるものや、Vthに対する上限、下限などを設けたものであってもよい。これにより、使用される交流電源541の電圧変化範囲で誤動作などがなく、かつ、過電流と過電圧を確実に防止する設計ができる。 In the present embodiment, by setting the output of the HV signal as a threshold value obtained by adding 50 V to VDC0, the occurrence of overcurrent can be easily suppressed against the change in the voltage of the AC power supply 541. However, it is not particularly limited to this configuration. A constant value may always be used as Vth, or an upper limit and a lower limit for Vth may be provided. As a result, there is no malfunction in the voltage change range of the AC power supply 541 used, and a design that reliably prevents overcurrent and overvoltage can be achieved.
 よって、コンデンサ543の静電容量が小である小型、低コストの構成であっても、電動機509が広範囲の速度条件にて、短絡制動期間に入る場合の、線電流の過電流を防止することができる。また、直流電源544の回生による過電圧発生も、抑えることができる。また、速度情報が不要であることから、センサレスと呼ばれる電動機509として、位置検知用のセンサ、および速度検知用のセンサを持たない、低コストの構成にすることができる。 Therefore, even when the capacitor 543 has a small capacitance and a low-cost configuration, overcurrent of the line current is prevented when the electric motor 509 enters the short-circuit braking period under a wide range of speed conditions. Can do. Further, the occurrence of overvoltage due to regeneration of the DC power supply 544 can be suppressed. Further, since speed information is unnecessary, the electric motor 509 called sensorless can be configured to have a low cost configuration without a position detection sensor and a speed detection sensor.
 さらに、洗濯機のように、電動機509の回転方向が、一方向ではなく、右に回ったり、左に回ったりするインバータ装置であっても、相順に関係なく、短絡ブレーキ(短絡制動)期間に移行する制御ができる。 Furthermore, even in an inverter device in which the rotation direction of the electric motor 509 is not a single direction but is rotated to the right or to the left as in a washing machine, the short circuit brake (short circuit braking) period does not matter regardless of the phase order. Control to transition.
 図30は、本発明の実施の形態7におけるインバータ装置の動作波形図である。図30の動作波形図は、ブレーキ要求信号B99RQによってインバータ装置が短絡ブレーキとなり、図28や図29に示した期間から、さらに時間が経過し、電動機509および負荷(ドラム)506が停止する前後の動作波形を示している。 FIG. 30 is an operation waveform diagram of the inverter device according to the seventh embodiment of the present invention. The operation waveform diagram of FIG. 30 shows that the inverter device becomes a short-circuit brake in response to the brake request signal B99RQ, and more time elapses from the period shown in FIGS. 28 and 29 before and after the motor 509 and the load (drum) 506 stop. Operation waveforms are shown.
 図30において、(a)は負荷(ドラム)の速度、(b)はIu、Iv、Iwの電流波形、(c)は短絡電流判定部570の出力するCs信号を示している。 30A shows the load (drum) speed, FIG. 30B shows the current waveforms of Iu, Iv, and Iw, and FIG. 30C shows the Cs signal output from the short-circuit current determination unit 570.
 短絡ブレーキ状態となった電動機509は、次第に速度が低下する。同時に線電流については、周波数がほぼ速度に比例して低下する。線電流の振幅も最終的には低下し、速度が零となる時点で零になるように収束していく。 The speed of the electric motor 509 in the short-circuit brake state gradually decreases. At the same time, for the line current, the frequency decreases approximately in proportion to the speed. The amplitude of the line current also finally decreases and converges to become zero when the speed becomes zero.
 短絡ブレーキに入った時点から、停止に至るまで時間は、以下のパラメータに左右される。すなわち、短絡ブレーキに入った時点での電動機509の速度、負荷の慣性モーメント、電動機509のインダクタンスや抵抗値、スイッチング素子514、515、516のオン状態での電圧(VCE(SAT))などである。停止に至るまで時間は、一定時間ではないため、速度の低下によって現れる物理現象である電流値を、本実施の形態では用いる。これにより、十分に速度が低下したかを検知する。 The time from when the short-circuit brake is applied until it stops depends on the following parameters. That is, the speed of the electric motor 509 at the time when the short-circuit brake is entered, the moment of inertia of the load, the inductance and resistance value of the electric motor 509, the voltage (VCE (SAT)) when the switching elements 514, 515, and 516 are on. . Since the time to stop is not a fixed time, a current value that is a physical phenomenon that appears due to a decrease in speed is used in this embodiment. As a result, it is detected whether the speed has sufficiently decreased.
 具体的には、本実施の形態においては、3つの線電流Iu、Iv、Iwの瞬時値の絶対値のすべてが、0.6Aを下回った時点Tjaで、Cs信号をハイとする。すなわち、負荷(ドラム)の速度として7r/min程度に低下した段階となる。シーケンス発生部567は、ハイとなったCs信号を受けた場合、0.3秒間の遅延時間を経過した時点で、洗濯機としての次の工程に移る。 Specifically, in the present embodiment, the Cs signal is set to high at a time Tja when all of the absolute values of the instantaneous values of the three line currents Iu, Iv, and Iw are less than 0.6 A. That is, the load (drum) speed is reduced to about 7 r / min. When the sequence generation unit 567 receives the Cs signal that has become high, the sequence generation unit 567 proceeds to the next step as a washing machine when a delay time of 0.3 seconds has elapsed.
 上記7r/minから短絡ブレーキの状態が、さらに0.3秒間継続されることになるため、負荷(ドラム)の完全停止後、ほとんど無駄な時間なしに、次の工程へと進むことができる。 Since the state of the short-circuit brake is continued for another 0.3 seconds from 7 r / min, it is possible to proceed to the next step with almost no wasted time after the load (drum) is completely stopped.
 以上のように、負荷(ドラム)のブレーキ時に、位置センサや速度センサを用いない、低コストと簡単なセンサレス方式の構成でありながら、短絡ブレーキを用い、かつその期間の電流から停止の判定を適切に行うことができる。 As described above, at the time of braking the load (drum), the position sensor and speed sensor are not used, and a low-cost and simple sensorless configuration is used. Can be done appropriately.
 以上のように、本実施の形態の洗濯機は、制御部518が、インバータ回路517のスイッチング素子514、515、516のオンオフ制御により、3相の巻線502、503、504の入力端子を短絡する短絡時間比率を拡大する短絡時間比率拡大期間の後、短絡時間比率を最大限に保つ短絡制動期間を備える。これにより、各構成要素に対して信頼低下を引き起こすような、過電圧の発生を防ぐことができる。 As described above, in the washing machine of the present embodiment, the control unit 518 short-circuits the input terminals of the three- phase windings 502, 503, and 504 by the on / off control of the switching elements 514, 515, and 516 of the inverter circuit 517. A short-circuit braking period for maximizing the short-circuit time ratio after the short-circuit time ratio expansion period for expanding the short-circuit time ratio. Thereby, generation | occurrence | production of the overvoltage which causes the reliability fall with respect to each component can be prevented.
 (実施の形態8)
 図31は、本発明の実施の形態8におけるインバータ装置の短絡ブレーキ制御部590のブロック図である。
(Embodiment 8)
FIG. 31 is a block diagram of short circuit brake control unit 590 of the inverter device according to the eighth embodiment of the present invention.
 本実施の形態においても、短絡ブレーキ制御部590以外の構成については、図25に示した実施の形態7と同等の構成を用いている。 Also in the present embodiment, configurations other than the short-circuit brake control unit 590 are the same as those in the seventh embodiment shown in FIG.
 図31においては、OR回路574、積分器586、遅延部587については、実施の形態7と同等のものを用いている。また、本実施の形態のインバータ装置は、短絡時間比率拡大速度設定部592、直流電圧VDCに対応したA信号を受けるホルダ595、596、減算器597を有している。さらに、Duty=70%に相当する値を出力する定数発生器599、および、比較器600を有している。 In FIG. 31, the OR circuit 574, the integrator 586, and the delay unit 587 are the same as those in the seventh embodiment. Further, the inverter device of the present embodiment includes a short-circuiting time ratio expansion speed setting unit 592, holders 595 and 596 that receive an A signal corresponding to the DC voltage VDC, and a subtracter 597. Furthermore, a constant generator 599 for outputting a value corresponding to Duty = 70% and a comparator 600 are provided.
 図32は、本発明の実施の形態8におけるインバータ装置の短絡時間比率拡大速度設定部592の特性を示すグラフである。図32において、横軸はDutyであり、縦軸は短絡時間比率拡大速度dDuty/dtである。Duty<=70%においては、右肩下がりの単一の直線であるが、Duty>70%においては、ホルダ596から入力されたΔA値によって、dDuty/dtが4段階に切り替わる。 FIG. 32 is a graph showing the characteristics of the short circuit time ratio expansion speed setting unit 592 of the inverter device according to the eighth embodiment of the present invention. In FIG. 32, the horizontal axis is Duty, and the vertical axis is the short-circuiting time ratio expansion rate dDuty / dt. When Duty <= 70%, the line is a single straight line descending to the right. However, when Duty> 70%, dDuty / dt is switched in four stages depending on the ΔA value input from the holder 596.
 以上の構成において、本実施の形態のインバータ装置の短絡ブレーキに入った場合の動作としては、以下の通りである。OR回路574の出力がハイとなった時点での、直流電圧VDCに対応したAの値が、ホルダ595で保持される。遅延部587による5msのオールオフ時間の後に、INTEGがハイとなって、積分器586が初期値零から時間積分を開始する。図32の左端の条件から、段々とDutyが上昇していく。短絡時間比率Dutyが所定値70%となった時点で、比較器600の出力がローからハイに切り替わる。その時点での直流電圧VDCと初期VDC値となるホルダ595との差、すなわち直流電圧VDCの上昇分に相当するΔA値が、ホルダ596で保持される。その大きさに応じて、短絡時間比率拡大速度設定部592で、図32に示した、4段階の特性の選択が行われる。 In the above configuration, the operation when the short circuit brake of the inverter device of the present embodiment is entered is as follows. The value of A corresponding to the DC voltage VDC at the time when the output of the OR circuit 574 becomes high is held by the holder 595. After the 5 ms all-off time by the delay unit 587, INTEG becomes high, and the integrator 586 starts time integration from the initial value zero. From the condition at the left end of FIG. 32, the duty increases gradually. When the short circuit time ratio Duty reaches a predetermined value of 70%, the output of the comparator 600 switches from low to high. The difference between the DC voltage VDC at that time and the holder 595 that is the initial VDC value, that is, the ΔA value corresponding to the increase in the DC voltage VDC is held by the holder 596. In accordance with the size, the short-circuit time ratio expansion speed setting unit 592 selects the four-stage characteristics shown in FIG.
 これにより、高速の場合には、ΔAが大となる特性、低速の場合には、ΔAが小となる特性が選択される。 Thus, the characteristic that ΔA is large at high speed and the characteristic that ΔA is small at low speed is selected.
 高速の場合には、Duty>70%での短絡時間比率拡大速度を大としても、過電流の発生する可能性はない。回生によるコンデンサ543の充電による、直流電圧VDCの過剰な上昇を抑えるには、速やかにDuty=100%まで引き上げることが有効となる。 In the case of high speed, there is no possibility of overcurrent even if the short-circuiting time ratio enlargement speed with Duty> 70% is increased. In order to suppress an excessive increase in the DC voltage VDC due to charging of the capacitor 543 due to regeneration, it is effective to quickly increase to Duty = 100%.
 逆に、低速の場合には、過渡的な過電流の発生は、Duty>70%で生じる。このため、Duty>70%での短絡時間比率拡大速度は、小に抑える必要がある。一方、直流電圧VDCの過剰な上昇に関しての問題は発生しない。 Conversely, in the case of low speed, transient overcurrent occurs at a duty> 70%. For this reason, it is necessary to suppress the short-circuiting time ratio expansion rate when Duty> 70%. On the other hand, there is no problem with excessive increase of the DC voltage VDC.
 従って、本実施の形態のインバータ装置は、合理的に動作する。従って、本実施の形態のインバータ装置においては、比較的簡単な構成でありながら、広い速度範囲の条件で、短絡制動期間に入る際の、過電圧と過電流の発生を抑えることができる。 Therefore, the inverter device of this embodiment operates reasonably. Therefore, in the inverter device of the present embodiment, although it has a relatively simple configuration, it is possible to suppress the occurrence of overvoltage and overcurrent when entering the short-circuit braking period under conditions in a wide speed range.
 (実施の形態9)
 図33は、本発明の実施の形態9におけるインバータ装置の短絡ブレーキ制御部605のブロック図である。
(Embodiment 9)
FIG. 33 is a block diagram of the short circuit brake control unit 605 of the inverter device according to the ninth embodiment of the present invention.
 本実施の形態においても、短絡ブレーキ制御部605以外の部分については、図25に示した実施の形態7と同等の構成を用いている。 Also in the present embodiment, components other than the short-circuit brake control unit 605 have the same configuration as that of the seventh embodiment shown in FIG.
 図33においては、実施の形態7、8と異なる要素のみ説明する。 33, only elements different from those in the seventh and eighth embodiments will be described.
 また、本実施の形態のインバータ装置は、以下の構成を有する。ブレーキ要求信号BRQを3ms遅延した信号を出力する遅延部606。電流検知部519の出力信号Iua、Iva、Iwaを用い、その瞬時値の絶対値の3相の内の最大値を計算して、出力する線電流検知部607。ブレーキ要求信号BRQがハイとなるタイミングで保持するホルダ608。短絡時間比率拡大速度設定部610。 Further, the inverter device of the present embodiment has the following configuration. A delay unit 606 that outputs a signal obtained by delaying the brake request signal BRQ by 3 ms. A line current detection unit 607 that calculates and outputs the maximum value among the three phases of the absolute values of the instantaneous values using the output signals Iua, Iva, Iwa of the current detection unit 519. A holder 608 that holds the brake request signal BRQ at a high timing. Short circuit time ratio expansion speed setting unit 610.
 図34は、本発明の実施の形態9におけるインバータ装置の短絡時間比率拡大速度設定部610の特性を示すグラフである。図34において、横軸はDutyであり、縦軸は短絡時間比率拡大速度dDuty/dtである。ホルダ608の出力であるフリーラン期間の電流の大きさによって、dDuty/dtが数段階のカーブに切り替わる。ホルダ608の出力信号が高い場合、大出力となる。 FIG. 34 is a graph showing the characteristics of the short circuit time ratio expansion speed setting unit 610 of the inverter device according to the ninth embodiment of the present invention. In FIG. 34, the horizontal axis is Duty, and the vertical axis is the short-circuiting time ratio expansion rate dDuty / dt. Depending on the magnitude of the current during the free run period, which is the output of the holder 608, dDuty / dt is switched to a curve of several stages. When the output signal of the holder 608 is high, the output is large.
 図35は、本発明の実施の形態9におけるインバータ装置の短絡制動期間に入る部分の動作波形図である。図35において、(a)は短絡時間比率Duty、(b)は負荷(ドラム)506が毎分300回転という比較的低速の場合の線電流Iu、Iv、Iw、(c)は負荷(ドラム)が毎分1000回転という比較的高速の場合の線電流Iu、Iv、Iwの波形を示す。 FIG. 35 is an operation waveform diagram of a portion that enters the short-circuit braking period of the inverter device according to the ninth embodiment of the present invention. In FIG. 35, (a) is the short-circuit time ratio Duty, (b) is the load (drum) 506, and the line currents Iu, Iv, Iw, and (c) when the load 506 is relatively low at 300 revolutions per minute are the load (drum). Shows the waveforms of the line currents Iu, Iv, and Iw at a relatively high speed of 1000 revolutions per minute.
 5msのフリーラン期間となるt0~t2において、(b)に示す低速時では、電動機509内の永久磁石500、501による誘導起電力が低い。このため、フリーラン期間中の直流電源544への回生電流は発生しない。これに対し、(c)に示す高速時では、電動機509内の永久磁石500、501による誘導起電力が高い。このため、フリーラン期間中の直流電源544への回生電流が発生する。従って、低速時と高速時とでは、明らかな差がある。 From t0 to t2, which is a free-run period of 5 ms, the induced electromotive force by the permanent magnets 500 and 501 in the electric motor 509 is low at the low speed shown in (b). For this reason, no regenerative current is generated to the DC power supply 544 during the free-run period. On the other hand, the induced electromotive force by the permanent magnets 500 and 501 in the electric motor 509 is high at the high speed shown in FIG. For this reason, a regenerative current is generated to the DC power supply 544 during the free-run period. Therefore, there is a clear difference between low speed and high speed.
 本実施の形態においては、フリーラン期間内に相当するt1=3msの時点において、3つの線電流の検出値信号Iua、Iva、Iwaに対して、すべて絶対値をとり、3つの内の最大のものを出力する。これにより、(b)と(c)の差を認識し、それぞれに適した短絡時間比率Dutyの拡大速度のパターンを選択していく。 In the present embodiment, at the time of t1 = 3 ms corresponding to the free-run period, all the absolute values are taken for the three line current detection value signals Iua, Iva, Iwa, and the maximum of the three is detected. Output things. Thereby, the difference between (b) and (c) is recognized, and the pattern of the enlargement speed of the short circuit time ratio Duty suitable for each is selected.
 これにより、短絡制動期間に入る時点での速度が広範囲となっても、それぞれに対応した、短絡時間比率Dutyの拡大速度となる。従って、いずれの速度についても過電流と過電圧による問題が発生しない設計とすることができる。 Thereby, even if the speed at the time of entering the short-circuit braking period becomes a wide range, the expansion speed of the short-circuit time ratio Duty corresponding to each becomes the same. Therefore, the design can be made such that no problem due to overcurrent and overvoltage occurs at any speed.
 なお、本実施の形態においては、図34に示した特性にカーブを用いているが、カーブの代わりに階段的な関数を用いるものでもよい。また、Dutyとは無関係に電流値のみによって切り替えるものとしても良い。 In this embodiment, a curve is used for the characteristics shown in FIG. 34, but a step function may be used instead of the curve. Moreover, it is good also as what switches only by an electric current value irrespective of Duty.
 また、本実施の形態においては、フリーラン期間内となるt1での線電流の大きさによって短絡時間比率拡大速度を変化させる。しかし、電流を検知するタイミングとして、特にフリーラン期間中に限定するものではない。フリーラン期間が終了した後、Duty上昇が開始してからの時点としても良い。また、複数のタイミングを組み合わせても良い。 Further, in the present embodiment, the short circuit time ratio expansion rate is changed according to the magnitude of the line current at t1 within the free run period. However, the current detection timing is not particularly limited during the free run period. After the free run period ends, it may be a point in time after the duty rise starts. A plurality of timings may be combined.
 それにより、より広範囲の速度に対して、それぞれの速度に最適な短絡時間比率拡大速度が得られる。結果として、過電流と過電圧をより効果的に抑えることができる。 Therefore, for a wider range of speeds, an optimum short-circuit time ratio expansion speed can be obtained for each speed. As a result, overcurrent and overvoltage can be more effectively suppressed.
 また、本実施の形態では、電流検知部519の出力を受ける線電流検知部607は、電流の大きさを検知するものとしている。しかし、大きさ以外にも、周波数要素も、検知対象となり得る。高速時には、フリーラン期間中から、周波数の検出が、有効に利用できる。低速時についても、短絡時間比率拡大期間中には、周波数の検出が可能とである。 Further, in the present embodiment, the line current detection unit 607 that receives the output of the current detection unit 519 detects the magnitude of the current. However, in addition to the size, frequency elements can also be detected. At high speed, frequency detection can be used effectively from the free run period. Even at low speeds, it is possible to detect the frequency during the short circuit time ratio expansion period.
 低速時における過渡的な過電流の発生は、比較的高Dutyとなった段階で発生する。これにより、50%程度までのDutyの上昇速度としては、高速時並としておき、周波数検出が可能となった段階で、それらの周波数検出値に対応した短絡時間比率の拡大を行う。従って、やはり過電流や過電圧を抑えながらの短絡制動期間への移行は可能となる。 • Transient overcurrent at low speed occurs at a relatively high duty stage. As a result, the increasing speed of the Duty up to about 50% is set to the same level as that at high speed, and when the frequency can be detected, the short-circuiting time ratio corresponding to these frequency detection values is expanded. Accordingly, it is possible to shift to the short-circuit braking period while suppressing overcurrent and overvoltage.
 (実施の形態10)
 図36は、本発明の実施の形態10におけるインバータ装置の短絡ブレーキ制御部612のブロック図である。
(Embodiment 10)
FIG. 36 is a block diagram of short-circuit brake control unit 612 of the inverter device according to Embodiment 10 of the present invention.
 本実施の形態においても、短絡ブレーキ制御部612以外の部分については、実施の形態7と同等のものである。 Also in the present embodiment, parts other than the short-circuit brake control unit 612 are the same as those in the seventh embodiment.
 図36においても、実施の形態7と異なる部分のみの説明を行う。 36, only the parts different from the seventh embodiment will be described.
 短絡時間比率拡大速度指令部613は、電動機509の速度を検知する速度検知部615からの速度信号ωを受ける。速度検知部615は、電動機509内に設け、対抗する永久磁石500、501の磁極の極性に応じてハイ、ローが出力されるホールIC617と、その出力から速度を演算する速度計算器618を有している。 The short circuit time ratio expansion speed command unit 613 receives a speed signal ω from the speed detection unit 615 that detects the speed of the electric motor 509. The speed detector 615 is provided in the electric motor 509, and has a Hall IC 617 that outputs high and low according to the polarity of the magnetic poles of the opposing permanent magnets 500 and 501, and a speed calculator 618 that calculates the speed from the output. is doing.
 図37は、本発明の実施の形態10におけるインバータ装置の短絡時間比率拡大速度指令部613の特性を示すグラフである。図37において、横軸は速度検知部615から入力される速度信号であり、縦軸には出力となる短絡時間比率拡大速度dDuty/dtである。 FIG. 37 is a graph showing the characteristics of the short circuit time ratio expansion speed command unit 613 of the inverter device according to the tenth embodiment of the present invention. In FIG. 37, the horizontal axis represents a speed signal input from the speed detection unit 615, and the vertical axis represents the short-circuiting time ratio expansion speed dDuty / dt serving as an output.
 本実施の形態においては、Dutyとは無関係に、高速となるほど、出力が増加する特性である。これにより、時間の経過と共に短絡時間比率は、100%まで直線的に増加していく。従って、傾きが速度によって変化する。 In the present embodiment, the output increases as the speed increases regardless of the duty. Thereby, the short-circuiting time ratio increases linearly up to 100% with the passage of time. Therefore, the inclination changes depending on the speed.
 なお、本実施の形態においては、速度検知部615の出力にホルダ等を設けていない。このため、短絡時間比率拡大期間中にも、短絡時間比率拡大速度の指令値が低下していく。これにより、制動の係り方によっては、短絡時間比率拡大期間中に発生する速度変化にも対応する。従って、負荷(ドラム)506の慣性モーメントが小さい場合に急激な速度減少となっても、過渡的な過電流を防止することができる。 In the present embodiment, no holder or the like is provided at the output of the speed detection unit 615. For this reason, the command value of the short circuit time ratio enlargement speed decreases even during the short circuit time ratio enlargement period. Thereby, depending on the manner of engagement of the brake, a change in speed that occurs during the short-circuiting time ratio expansion period can be handled. Accordingly, even when the load (drum) 506 has a small moment of inertia, a transient overcurrent can be prevented even if the speed is rapidly reduced.
 しかし、短絡時間比率拡大期間が例えば100ms程度と短時間であって、その期間中に発生する速度変化が小さい場合には、ホルダ等を設けた場合との差は小さく、いずれの構成も可能である。 However, if the short-circuiting time ratio expansion period is as short as about 100 ms, for example, and the speed change that occurs during that period is small, the difference from the case where a holder or the like is provided is small, and any configuration is possible. is there.
 また、本実施の形態においては、速度検知部615にホールIC617を用いたものを使用している。しかし、一般的にセンサレスと呼ばれる電動機駆動システムでは、ホールICは用られない。代わりに電動機509の入力電圧、入力電流からの推定がなされる。従って、例えばフリーラン期間の直前の速度の推定信号を用いることにより、ホールICなどの位置検知、速度検知を全く用いない構成とすることができる。 In the present embodiment, the speed detection unit 615 using the Hall IC 617 is used. However, the Hall IC is not used in an electric motor drive system generally called sensorless. Instead, estimation from the input voltage and input current of the electric motor 509 is performed. Therefore, for example, by using a speed estimation signal immediately before the free-run period, a configuration in which position detection and speed detection of the Hall IC or the like are not used can be achieved.
 以上のように、本実施の形態の洗濯機は、直流電源544の電圧を検知する電圧検知部548、電流を検知する電流検知部519、電動機509の速度を検知する速度検知部615の少なくともいずれかの検知部を選択する。選択された検知部の出力によって、制御部518が、短絡時間比率拡大期間の短絡時間比率の拡大速度を変化させる。これにより、短絡制動期間に入る時点での電動機509の速度条件が広範囲に振られても、過渡的な電流の跳ね上がりを防ぐことができる。 As described above, the washing machine of this embodiment includes at least one of the voltage detection unit 548 that detects the voltage of the DC power supply 544, the current detection unit 519 that detects current, and the speed detection unit 615 that detects the speed of the electric motor 509. Select the detector. In accordance with the output of the selected detection unit, the control unit 518 changes the expansion rate of the short circuit time ratio in the short circuit time ratio expansion period. Thereby, even if the speed condition of the electric motor 509 at the time of entering the short-circuit braking period is changed over a wide range, it is possible to prevent a transient current jump.
 また、本実施の形態の洗濯機は、制御部518が、短絡時間比率拡大期間の開始からの時間に応じて、短絡時間比率の拡大速度を変化させる。これにより、短絡制動期間に入る時点での電動機509の速度条件が広範囲に振られても、過渡的な電流の跳ね上がりを防ぐことができる。 Also, in the washing machine of the present embodiment, the control unit 518 changes the expansion speed of the short circuit time ratio according to the time from the start of the short circuit time ratio expansion period. Thereby, even if the speed condition of the electric motor 509 at the time of entering the short-circuit braking period is changed over a wide range, it is possible to prevent a transient current jump.
 (実施の形態11)
 図38は、本発明の実施の形態11におけるドラム式洗濯機と呼ばれるインバータ装置を側方から見た内部構成を示す図である。
(Embodiment 11)
FIG. 38 is a diagram showing an internal configuration of an inverter device called a drum-type washing machine according to Embodiment 11 of the present invention viewed from the side.
 図38において、インバータ装置は、衣類620を収納する負荷(ドラム)621、プーリ622およびベルト623を介して回転駆動する電動機624有する。また、電動機624に3相の交流電流を供給するインバータ回路626を有する。 38, the inverter device has an electric motor 624 that is rotationally driven via a load (drum) 621 that houses clothing 620, a pulley 622, and a belt 623. In addition, an inverter circuit 626 that supplies a three-phase alternating current to the electric motor 624 is provided.
 インバータ回路626は、制御部628からの6石分の制御信号Sdにより、運転がなされる。制御信号Sdは、実施の形態7で説明した、ブレーキ要求信号B99RQとブレーキ要求信号B4RQに対応する。電圧低減期間を経た後、短絡制動期間に移る。また、実施の形態7で説明したように、制御信号Sdは、短絡制動期間中の停止判定を行う。 The inverter circuit 626 is operated by a control signal Sd for 6 stones from the control unit 628. The control signal Sd corresponds to the brake request signal B99RQ and the brake request signal B4RQ described in the seventh embodiment. After passing through the voltage reduction period, it shifts to a short circuit braking period. Further, as described in the seventh embodiment, the control signal Sd performs stop determination during the short circuit braking period.
 本実施の形態においては、負荷(ドラム)は樹脂製の受け筒630の内部で回転する。給水弁633、排水弁634の開閉を制御部628からの給水弁信号Skb、排水弁信号Shbにより制御される。これによって、受け筒630内に水が給排水され、別に投入される洗剤と共に、洗濯と脱水がなされる。 In the present embodiment, the load (drum) rotates inside the resin receiving cylinder 630. Opening and closing of the water supply valve 633 and the drain valve 634 is controlled by the water valve signal Skb and the drain valve signal Shb from the control unit 628. As a result, water is supplied and drained into the receiving tube 630, and washing and dehydration are performed together with a separately supplied detergent.
 ここで、負荷(ドラム)621の前方には開閉可能な蓋636が設けられている。蓋636には、使用者が蓋636を開閉するためのハンドル637が設けられている。洗濯および脱水中に負荷(ドラム)621が回転する際には、蓋636が閉じられ、使用者の安全確保や、水の飛散が防止される。 Here, a lid 636 that can be opened and closed is provided in front of the load (drum) 621. The lid 636 is provided with a handle 637 for the user to open and close the lid 636. When the load (drum) 621 rotates during washing and dehydration, the lid 636 is closed, and the safety of the user and the scattering of water are prevented.
 蓋636がハンドル637の操作で開かれた状態は、破線で示されている。 The state in which the lid 636 is opened by operating the handle 637 is indicated by a broken line.
 蓋ロック部640は、蓋636が閉じられた状態に保持する。蓋ロック部640は、ソレノイド641、プランジャ642、バネ643およびロック制御回路644からなる。ソレノイド641に通電がなされていない、図示されている状態では、蓋636はロック状態である。従って、使用者がハンドル637を引いても、また他のいかなる操作を行っても、蓋636は、蓋ロック部640により、頑として開くことができない。 The lid lock unit 640 holds the lid 636 in a closed state. The lid lock unit 640 includes a solenoid 641, a plunger 642, a spring 643, and a lock control circuit 644. In the illustrated state where the solenoid 641 is not energized, the lid 636 is in a locked state. Therefore, even if the user pulls the handle 637 or performs any other operation, the lid 636 cannot be firmly opened by the lid lock portion 640.
 ロック制御回路644は、制御部628からの蓋ロック信号Srkにより、ソレノイド641への通電を行う。使用者は、ロックの解除により、蓋636を開くことができる。 The lock control circuit 644 energizes the solenoid 641 by the lid lock signal Srk from the control unit 628. The user can open the lid 636 by releasing the lock.
 蓋検知スイッチ646は、蓋636の開閉状態を検知する。蓋636が開かれている場合には、蓋閉信号Sclはローとなり、制御部628に伝えられる。安全確保の面から、インバータ回路626から、電動機624への交流電流の供給は行われない。従って、負荷(ドラム)621を回転しない。 The lid detection switch 646 detects the open / closed state of the lid 636. When the lid 636 is opened, the lid closing signal Scl becomes low and is transmitted to the control unit 628. From the aspect of ensuring safety, AC current is not supplied from the inverter circuit 626 to the electric motor 624. Therefore, the load (drum) 621 is not rotated.
 なお、この状態で直流電流を電動機624に供給しても良く、負荷(ドラム)621はより確実に回転方向に固定された状態となるので、十分な安全性を確保することができる。 In this state, a direct current may be supplied to the electric motor 624, and the load (drum) 621 is more reliably fixed in the rotating direction, so that sufficient safety can be ensured.
 脱水運転などが終了した場合には、制御部628が停止判定を行った後に、蓋ロック信号Srkがロック制御回路644へ送られ、蓋ロック部640は、ソレノイド641への通電を行う。 When the dehydration operation or the like is finished, after the control unit 628 determines stop, the lid lock signal Srk is sent to the lock control circuit 644, and the lid lock unit 640 energizes the solenoid 641.
 脱水運転を停止する場合としては、所定の脱水時間に達した場合の他、使用者が停止ボタン648を操作し、停止ボタン648によって停止ボタン信号Sstopが発生した場合、および、インバータ回路626において過負荷などの異常が発生して異常信号Sabが発生した場合である。いずれの信号も制御部628に入力され、電動機626の制動がかかり、負荷(ドラム)621が停止される。負荷(ドラム)621が停止された時点で、制御部628で停止判定が行われた後、蓋ロック部640によって、ロック状態が解除される。ロック状態が解除されると、使用者がハンドル637を引けば、蓋636を開くことができる。 The dehydration operation is stopped when the user operates the stop button 648 and the stop button signal Sstop is generated by the stop button 648 or when the inverter circuit 626 is overrun in addition to when the predetermined dehydration time is reached. This is a case where an abnormality such as a load occurs and an abnormal signal Sab is generated. Any signal is input to the control unit 628, the electric motor 626 is braked, and the load (drum) 621 is stopped. When the load (drum) 621 is stopped, the controller 628 makes a stop determination, and then the lid lock unit 640 releases the locked state. When the locked state is released, the lid 636 can be opened if the user pulls the handle 637.
 図39は、本発明の実施の形態11におけるインバータ装置の電源が投入された直後のフローチャートである。 FIG. 39 is a flowchart immediately after the power of the inverter device according to the eleventh embodiment of the present invention is turned on.
 図39において、インバータ装置の電源スイッチが入った場合など、制御部628が活性化した段階で、構成しているマイクロコンピュータのプログラムがスタートする(ステップS650)。スタートから短絡ブレーキに移り(ステップS651)、実施の形態7の説明で図26に示したブレーキ要求信号B99RQまたはブレーキ要求信号B4RQが発生した場合の動作を行い、電圧低減期間に続いて短絡制動期間に入る。 In FIG. 39, when the control unit 628 is activated, such as when the power switch of the inverter device is turned on, the microcomputer program that is configured starts (step S650). The operation shifts from the start to the short-circuit brake (step S651), and the operation when the brake request signal B99RQ or the brake request signal B4RQ shown in FIG. 26 in the description of the seventh embodiment is generated is performed. to go into.
 そして図27に示す停止判定のCs信号がハイとなった時点で、ロック解除に移り(ステップS653)、ここでソレノイド641の通電が行われ、使用者は、蓋636を開くことができる。 Then, when the Cs signal for stop determination shown in FIG. 27 becomes high, the process proceeds to unlocking (step S653), where the solenoid 641 is energized, and the user can open the lid 636.
 電源が投入された段階で、例えば前回の運転の制動が完了していない場合などは、蓋636は蓋ロック部640によるロック状態の解除ができると、残っている回転により、使用者に危険が発生する可能性がある。 When the power is turned on, for example, when braking of the previous operation is not completed, if the lid 636 can be unlocked by the lid lock unit 640, the remaining rotation may cause danger to the user. May occur.
 蓋ロック部640の制御としては、運転中には使用者が蓋636を開くことができないように制御されている。洗濯、脱水などの動作が終了した時点で、解除状態、すなわち使用者が蓋636を開き、ドラム621内に手を入れることができる状態となる。また、電源が切れた状態でも、蓋636は使用者が自由に開閉できる。 The lid lock unit 640 is controlled so that the user cannot open the lid 636 during operation. When the operations such as washing and dehydration are completed, the unlocked state, that is, the user can open the lid 636 and put the hand into the drum 621. Even when the power is turned off, the lid 636 can be freely opened and closed by the user.
 しかしながら、運転中に停電が発生した場合などには、電源が切れた状態で、使用者が蓋636を開くことができない状態(ロック状態)となることもある。蓋636は閉じられているが、ドラム621の回転が残っている場合もあり得る。 However, when a power failure occurs during operation, the user may not be able to open the lid 636 (locked state) when the power is turned off. Although the lid 636 is closed, it is possible that the rotation of the drum 621 remains.
 この状態で、次回の電源が投入された場合、蓋ロック部640によって、即使用者が蓋636を開くことができる状態としてしまうことは、もしも万一ドラム621の回転が残っていれば、使用者が危険にさらされる可能性がある。本実施の形態においては、電源投入後、電圧低減期間に続く短絡制動期間があり、ドラム636の制動が完了した段階で、蓋636を使用者が開くことができる状態に、蓋ロック部640が制御される。これにより、高い安全性が保たれる。 In this state, when the power is turned on next time, the lid lock unit 640 immediately allows the user to open the lid 636. If the rotation of the drum 621 remains, use the lid lock unit 640. Can be at risk. In the present embodiment, there is a short-circuit braking period following the voltage reduction period after the power is turned on, and when the braking of the drum 636 is completed, the lid lock unit 640 is in a state in which the user can open the lid 636. Be controlled. Thereby, high safety is maintained.
 なお、本実施の形態においては、電源投入された時点での蓋ロック部640が、ロック状態かアンロック状態かに関わらず、電源投入直後に、電圧低減期間および短絡制動期間が設けられる。少なくともロック状態において、短絡制動期間を設けることは、安全性の確保の点で有効である。しかし、電源投入された時点で、アンロック状態にある場合、もしくは蓋636が開いている場合には、電圧低減期間や短絡制動期間が無くても、安全性の確保の上で差は生じない。このため、電源投入直後の電圧低減期間および短絡制動期間は省くこともできる。 In the present embodiment, a voltage reduction period and a short-circuit braking period are provided immediately after the power is turned on regardless of whether the lid lock unit 640 at the time when the power is turned on is in a locked state or an unlocked state. It is effective in terms of ensuring safety to provide a short-circuit braking period at least in the locked state. However, there is no difference in ensuring safety even when there is no voltage reduction period or short-circuit braking period when the power is turned on and the lid 636 is open when it is unlocked. . For this reason, the voltage reduction period and the short-circuit braking period immediately after power-on can be omitted.
 本実施の形態においては、電源投入後に、短絡制動期間を経るものとし、かつ停止判定のCs信号がハイになった後に、蓋ロック部640によって、使用者が蓋636を開くことができる状態とする。これにより、危険を無くすることができる。従って、安全性の高いインバータ装置を実現することができる。 In the present embodiment, after the power is turned on, a short-circuit braking period is passed, and after the Cs signal for stop determination becomes high, the lid lock unit 640 allows the user to open the lid 636. To do. Thereby, danger can be eliminated. Therefore, a highly safe inverter device can be realized.
 このように、本実施の形態においては、電動機の停止を適切に判定した後に、ロック解除を行って(ステップS653)、使用者が蓋636を開くことができる状態にする。従って、安全性の高いインバータ装置を実現することができる。 As described above, in the present embodiment, after appropriately determining the stop of the electric motor, the lock is released (step S653) so that the user can open the lid 636. Therefore, a highly safe inverter device can be realized.
 特に、短絡ブレーキにて、ブレーキ要求信号B99RQまたはブレーキ要求信号B4RQによる制動を行う(ステップS651)。これにより、速度センサや位置センサを用いないセンサレスと呼ばれる構成であっても、電源投入直後に負荷(ドラム)621の回転が残っていた場合であっても、インバータ回路626の過電流や過電圧を抑えることができる。従って、負荷(ドラム)621の速度、および位置(位相)に関係なく、本実施の形態のインバータ装置は極めて有効である。 Particularly, braking by the brake request signal B99RQ or the brake request signal B4RQ is performed by the short-circuit brake (step S651). As a result, even if the configuration is called sensorless without using a speed sensor or a position sensor, even if the rotation of the load (drum) 621 remains immediately after the power is turned on, the overcurrent and overvoltage of the inverter circuit 626 can be reduced. Can be suppressed. Therefore, the inverter device of the present embodiment is extremely effective regardless of the speed and position (phase) of the load (drum) 621.
 なお、本実施の形態においては、負荷(ドラム)621の回転軸は、水平としたが、垂直、あるいは斜めであっても良い。 In the present embodiment, the rotation axis of the load (drum) 621 is horizontal, but it may be vertical or oblique.
 負荷(ドラム)621の回転駆動のための動力伝達経路についても、プーリ622、ベルト623を用いたものを示した。これについても、ギア(歯車)を用いたものや、ダイレクト駆動と呼ばれるように、負荷(ドラム)621の軸に直接に電動機を備えて同一の速度で回転するものなどであっても構わない。 The power transmission path for rotating the load (drum) 621 is also shown using the pulley 622 and the belt 623. In this case, a gear (gear) may be used, or a motor (direct drum) 621 may be provided with a motor directly on the shaft of the load (drum) 621 so as to rotate at the same speed.
 また、蓋ロック部640の構成に関しても、本実施の形態で述べた構成に限定されるものではない。複数の蓋ロック部を設けても良い。例えば、使用者のハンドル操作によっていつでもロック解除が可能な蓋ロック部と、制御部からの信号によってロック状態が解除されるものとを併用する構成としても良い。あるいは、蓋を閉じた状態で常にロック状態となるが、ロック解除は制御部からの信号によって行われる構成としても良い。また、制御部からの信号によってハンドル操作ができなくなるものでも良い。いずれの場合でも使用者が蓋を開くことができるかどうかを、制御部からの信号によって変化させることができるものであれば良い。 Further, the configuration of the lid lock unit 640 is not limited to the configuration described in the present embodiment. A plurality of lid lock portions may be provided. For example, a configuration in which a lid lock portion that can be unlocked at any time by a user's handle operation and a device that is unlocked by a signal from the control portion may be used in combination. Or although it will always be in a locked state in the state which closed the lid | cover, it is good also as a structure performed by the signal from a control part. In addition, the steering wheel operation may be disabled by a signal from the control unit. In any case, it is sufficient that the user can change whether or not the user can open the lid by a signal from the control unit.
 (実施の形態12)
 図40は、本発明の実施の形態12におけるインバータ装置のブロック図である。(数9)は、同インバータ装置の3相/2相変換部が用いる式である。
(Embodiment 12)
FIG. 40 is a block diagram of an inverter device according to Embodiment 12 of the present invention. (Equation 9) is an equation used by the three-phase / two-phase converter of the inverter device.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図40において、インバータ装置は、動力伝達経路となるベルト746、プーリ747、負荷748、電動機750、電圧VDCを出力する直流電源751、電動機750に交流電流を供給するインバータ回路758、および、制御回路760を有する。電動機750は、永久磁石741、742と3相の巻線743、744、745を有する。インバータ回路758は、6個のスイッチング素子752、753、754、755、756、757を有する。制御回路760は、スイッチング素子752、753、754、755、756、757をオンオフ制御する。 40, the inverter device includes a belt 746 serving as a power transmission path, a pulley 747, a load 748, a motor 750, a DC power source 751 that outputs a voltage VDC, an inverter circuit 758 that supplies an AC current to the motor 750, and a control circuit. 760. The electric motor 750 includes permanent magnets 741 and 742 and three- phase windings 743, 744, and 745. The inverter circuit 758 includes six switching elements 752, 753, 754, 755, 756, and 757. The control circuit 760 controls on / off of the switching elements 752, 753, 754, 755, 756, and 757.
 直流電源751は、バッテリのようにそれ自体から直流電圧を出力するものや、50Hzや60Hzなどの周波数を有する単相や3相の100V、200Vなどの交流電源を整流器で整流し、電解コンデンサなどで平滑化したものなどが用いられる。直流電源751は、力行時にはパワーの源として作用する。 The DC power supply 751 outputs a DC voltage from itself, such as a battery, or rectifies a single-phase or three-phase 100V or 200V AC power supply having a frequency such as 50 Hz or 60 Hz with a rectifier, an electrolytic capacitor, etc. The one smoothed with is used. The DC power supply 751 functions as a power source during power running.
 なお、永久磁石741、742は、図40では、説明を簡単にするため、2個としているが、実際には4極の構成である。永久磁石741、742は、機械角で1回転する状態では、電気的に2回転する(電気角で2回転する)。 In FIG. 40, the number of permanent magnets 741 and 742 is two in order to simplify the explanation, but in reality, it has a four-pole configuration. In a state where the permanent magnets 741 and 742 rotate once at a mechanical angle, the permanent magnets 741 and 742 rotate twice electrically (rotates twice at an electrical angle).
 制御回路760は、ゲート駆動回路761、電流検知部766と、電流検知部766の出力を受け、周期的に周波数を検知する周波数検知部768、電動機750の停止を判定する停止判定部770を有する。電流検知部766は、抵抗762、763、764と増幅回路765を用いて電動機750に入力される交流電流を検知する。周波数検知部768は、3相/2相変換部772、極座標変換部773、微分部774を有する。3相/2相変換部772は、(数9)を用いて、静止座標(αβ)のα成分(U相電流Iuの起磁力と同じ向きの成分)と、β成分(αからπ/2進んだ直交成分)を算出する。 The control circuit 760 includes a gate drive circuit 761, a current detection unit 766, a frequency detection unit 768 that receives the output of the current detection unit 766, and periodically detects the frequency, and a stop determination unit 770 that determines stop of the electric motor 750. . The current detection unit 766 detects an alternating current input to the electric motor 750 using the resistors 762, 763, 764 and the amplifier circuit 765. The frequency detection unit 768 includes a three-phase / two-phase conversion unit 772, a polar coordinate conversion unit 773, and a differentiation unit 774. The three-phase / two-phase conversion unit 772 uses (Equation 9) to calculate the α component of the stationary coordinates (αβ) (the component in the same direction as the magnetomotive force of the U-phase current Iu) and the β component (from α to π / 2). (Advanced orthogonal component) is calculated.
 ただし、(数9)は、一例であり、余弦関数(cos)と正弦関数(sin)とを、混合して用いるものでも良い。また、定数となるため、余弦関数や正弦関数を使用しないものでも良い。また、係数または定数として用いている値も、本実施の形態の停止判定に用いるという点のみであれば、適宜実数倍した値でも良い。また、平方根がついた数(無理数)を、近似値となる分数(有理数)で代用しても良い。 However, (Equation 9) is an example, and a cosine function (cos) and a sine function (sin) may be mixed and used. In addition, since it is a constant, a cosine function or a sine function may not be used. Also, the value used as the coefficient or constant may be a value that is appropriately multiplied by a real number as long as it is only used for the stop determination of the present embodiment. In addition, a number with a square root (irrational number) may be substituted with an approximate fraction (rational number).
 制御回路760は、短絡制動期間に、スイッチング素子755、756、757をオンとし、スイッチング素子752、753、754をオフとするよう制御する。これにより、負荷748の制動期間に、電動機750の入力電圧が略零となる。周波数検知部768は、短絡制動期間内に、静止座標(αβ)での電流ベクトルの位相θを、微分部774によって微分することで、時間的変化の大きさから角速度ωを演算する。静止座標(αβ)は、3相/2相変換部772から出力される。 The control circuit 760 controls the switching elements 755, 756, and 757 to be turned on and the switching elements 752, 753, and 754 to be turned off during the short circuit braking period. Thereby, the input voltage of the electric motor 750 becomes substantially zero during the braking period of the load 748. The frequency detection unit 768 calculates the angular velocity ω from the magnitude of temporal change by differentiating the phase θ of the current vector at the stationary coordinates (αβ) by the differentiating unit 774 within the short circuit braking period. The stationary coordinates (αβ) are output from the three-phase / two-phase converter 772.
 なお、周波数fと角速度ωとの関係はω=2πfである。周波数検知部768は、周波数に応じた値であるωを出力する。周波数検知部768の出力ωは、比較器777において、基準角速度ωthと比較され、ω>ωthの場合には、角速度が所定値より大と判断され、比較器777からHigh信号が出力される。 Note that the relationship between the frequency f and the angular velocity ω is ω = 2πf. The frequency detection unit 768 outputs ω that is a value corresponding to the frequency. The output ω of the frequency detector 768 is compared with the reference angular velocity ωth in the comparator 777. If ω> ωth, the angular velocity is determined to be greater than a predetermined value, and the comparator 777 outputs a High signal.
 また、本実施の形態においては、極座標変換部773の出力|I|もまた比較器778へと導かれ、基準電流値Ithと比較される。|I|>Ithの場合には、電流ベクトルの大きさが所定値より大と判断され、比較器778からHigh信号が出力される。AND回路779が、比較器777、778の出力の論理積を出力し、|I|>Ithでかつω>ωthの場合には、High信号が停止判定部770に出力される。 Further, in the present embodiment, the output | I | of the polar coordinate conversion unit 773 is also led to the comparator 778 and compared with the reference current value Ith. When | I |> Ith, the magnitude of the current vector is determined to be larger than a predetermined value, and the comparator 778 outputs a high signal. The AND circuit 779 outputs a logical product of the outputs of the comparators 777 and 778, and when | I |> Ith and ω> ωth, a High signal is output to the stop determination unit 770.
 停止判定部770は、100Hzのクロック発振器781、カウンタ782、比較器783によって構成されている。カウンタ782は、E端子に入力されるAND回路779からの信号がHighの場合には、クリアして零の状態とする。E端子に入力されるAND回路779からの信号がLowの場合には、クロック発振器781から100Hzのパルスをカウントアップした値CNTを比較器783へと出力する。比較器783は、マイナス入力となっているTth=30カウントをプラス入力CNTが超えた時点で、出力S1がHighとして停止判定信号を出力する。 The stop determination unit 770 includes a 100 Hz clock oscillator 781, a counter 782, and a comparator 783. When the signal from the AND circuit 779 input to the E terminal is High, the counter 782 is cleared to zero. When the signal from the AND circuit 779 input to the E terminal is Low, the clock oscillator 781 outputs a value CNT obtained by counting up 100 Hz pulses to the comparator 783. The comparator 783 outputs a stop determination signal with the output S1 being High when the positive input CNT exceeds Tth = 30 count, which is a negative input.
 図41は、本発明の実施の形態12におけるインバータ装置の短絡制動期間の電流ベクトルを示す図である。図41において、静止座標αβに対して、電動機750に流れ込む電流の電流ベクトルはIaで表され、IαとIβが各軸の成分となり、これが3相/2相変換部772の出力に相当する。 FIG. 41 is a diagram showing a current vector during a short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention. In FIG. 41, the current vector of the current flowing into the electric motor 750 with respect to the stationary coordinate αβ is represented by Ia, and Iα and Iβ are components of each axis, which corresponds to the output of the three-phase / two-phase converter 772.
 極座標変換部773においては、電流ベクトルを極座標、すなわちα軸からの角度(位相)θと、絶対値|I|という表現に変換する。後に続く微分部774では、位相θの方に対して時間での微分がなされ、ω=Δθ/Δtとして角速度の計算がなされる。 The polar coordinate conversion unit 773 converts the current vector into polar coordinates, that is, an angle (phase) θ from the α axis and an expression of an absolute value | I |. In the subsequent differentiation unit 774, the phase θ is differentiated with respect to time, and the angular velocity is calculated as ω = Δθ / Δt.
 図42は、本発明の実施の形態12におけるインバータ装置の短絡制動期間の動作波形図である。図42において、(a)は電動機750のU相電流Iu波形、(b)は極座標変換部773の出力|I|波形、(c)は極座標変換部773の出力位相θ波形を示す。また、(d)は微分部774の出力ω波形、(e)はカウンタ782のカウント値CNT、(f)は停止判定部770の出力S1を示す。 FIG. 42 is an operation waveform diagram for the short-circuit braking period of the inverter device according to the twelfth embodiment of the present invention. 42A shows the U-phase current Iu waveform of the electric motor 750, FIG. 42B shows the output | I | waveform of the polar coordinate converter 773, and FIG. 42C shows the output phase θ waveform of the polar converter 773. Further, (d) shows the output ω waveform of the differentiating unit 774, (e) shows the count value CNT of the counter 782, and (f) shows the output S1 of the stop determining unit 770.
 3相である電動機750に流れ込む電流については、(a)に示すIu以外に、図示していないがIv、Iwがあり、位相がIuに対してはそれぞれ120度、240度遅れとなる。(b)の|I|と(d)のωは、最終的に速度が零となった時点で零となる点では良く似たものとなる。ω<ωthとなる時刻t1が、|I|<Ithとなる時刻t2よりも若干早いタイミングとなり、そのため(e)に示すCNTの上昇開始時刻はt1となり、(f)に示すS1がHighとなる。 The current flowing into the three-phase motor 750 includes Iv and Iw (not shown) other than Iu shown in (a), and the phases are delayed by 120 degrees and 240 degrees with respect to Iu, respectively. | I | in (b) and ω in (d) are very similar in that they finally become zero when the velocity finally becomes zero. The time t1 when ω <ωth is slightly earlier than the time t2 when | I | <Ith, and therefore, the CNT rising start time shown in (e) becomes t1, and S1 shown in (f) becomes High. .
 したがって、周波数検知部768の出力ωが所定値ωth以上ではなくなった時点t1から、第1の所定時間0.3秒が経過し、電動機750が停止したと判定する。よって、本実施の形態においては、角速度ωが所定値以下となった後、さらに第1の所定時間経過後に、停止判定を行う。ここで、第1の所定時間としている0.3秒については、電動機750が短絡の状態で、次の通りである。すなわち、電気角速度ωthに相当する速度での、慣性モーメントを持った負荷748が有する運動エネルギーをすべて消費しつくして、回転の速度が零、すなわち完全な停止の状態に至るまでの時間よりも長い値である。 Therefore, it is determined that the electric motor 750 has stopped after the first predetermined time of 0.3 seconds has elapsed from the time t1 when the output ω of the frequency detector 768 is no longer equal to or greater than the predetermined value ωth. Therefore, in the present embodiment, the stop determination is performed after the first predetermined time has elapsed after the angular velocity ω has become equal to or less than the predetermined value. Here, the first predetermined time of 0.3 seconds is as follows with the motor 750 short-circuited. That is, the kinetic energy of the load 748 having a moment of inertia at a speed corresponding to the electrical angular speed ωth is completely consumed, and the rotation speed is zero, that is, longer than the time until a complete stop state is reached. Value.
 短絡状態である電動機750が負荷748の運動エネルギーを吸収する時間的割合、すなわちブレーキのパワーとしては、電動機750内の巻線743、744、745にて銅損として消費される分と、機械的な摩擦によるものがある。巻線743、744、745の抵抗値のバラツキ、永久磁石741、742の磁束のバラツキ、スイッチング素子752、753、754、755、756、757のオン電圧(あるいはオン抵抗)のバラツキ、軸受けの摩擦のバラツキなどがある。また、負荷748については被脱水物の質量の値の他、偏り方の状態のバラツキなど、様々な要因が存在するため、電気角速度ωthの時点から負荷748が停止状態に至る時間は変動する。本実施の形態においては、第1の所定時間を0.3秒とすることにより、上記の様々な変動要因によって発生するバラツキに対して必ず長目となるように設定した。従って、必ず負荷748が停止した状態での、停止判定信号S1=Highの出力がなされる。 The time ratio at which the motor 750 in the short-circuit state absorbs the kinetic energy of the load 748, that is, the brake power, is consumed as copper loss in the windings 743, 744, 745 in the motor 750, and mechanical There is a thing due to the friction. Variation in resistance values of windings 743, 744, and 745, variation in magnetic flux of permanent magnets 741 and 742, variation in on-voltage (or on-resistance) of switching elements 752, 753, 754, 755, 756, and 757, friction of bearings There are variations. In addition to the value of the mass of the material to be dehydrated, there are various factors such as variations in the biased state, so the time from when the electrical angular velocity ωth reaches the load 748 varies. In the present embodiment, by setting the first predetermined time to 0.3 seconds, the first predetermined time is always set to be long with respect to the variation caused by the above various fluctuation factors. Therefore, the stop determination signal S1 = High is always output in a state where the load 748 is stopped.
 特に、短絡状態での電流値(大きさ)からの判断ではなく、周波数検知部768による静止座標での電流ベクトルの角速度ωでの判断とする。これにより、巻線743、744、745の抵抗値のバラツキ、永久磁石741、742の磁束のバラツキに関して、無感とすることができる。また、スイッチング素子752、753、754、755、756、757のオン電圧(あるいはオン抵抗)のバラツキによって発生する短絡電流の大きさのバラツキに関して、無感とすることができる。従って、安定した停止判定が可能となる。 In particular, the determination is not based on the current value (magnitude) in the short-circuit state but on the angular velocity ω of the current vector at the stationary coordinates by the frequency detection unit 768. Thereby, it can be made insensitive about the dispersion | variation in the resistance value of winding 743,744,745, and the dispersion | variation in the magnetic flux of the permanent magnets 741,742. Further, it can be made insensitive to variations in the magnitude of the short-circuit current generated by variations in the on-voltage (or on-resistance) of the switching elements 752, 753, 754, 755, 756, and 757. Therefore, stable stop determination can be performed.
 なお、ωthから停止に至る過程においては、電流ベクトルの大きさ|I|の低下も当然起こる。このため、周波数検知部768がωを正しく検出することが困難となる。しかし、本実施の形態においては、基準電流値Ithと比較され|I|<Ithとなった場合に、比較器778からLow信号を出力して、それをAND回路779に入力する。これによって、|I|が極小さい状態での、周波数検知部768の誤動作による不具合は生じることはなく、安定した停止判定が行われる。 In the process from ωth to stop, the current vector magnitude | I | For this reason, it becomes difficult for the frequency detector 768 to correctly detect ω. However, in this embodiment, when | I | <Ith is compared with the reference current value Ith, the Low signal is output from the comparator 778 and input to the AND circuit 779. As a result, there is no problem due to malfunction of the frequency detection unit 768 when | I | is extremely small, and stable stop determination is performed.
 なお、本実施の形態においては、負荷748からの運動エネルギーを電動機750に吸収させる制動を行う。このために、電動機750の入力電圧を略零となるように、低電位側のスイッチング素子755、756、757をオン状態に保つ、短絡制動期間のみを有するものとしている。しかし、短絡制動期間以外の制動を行う期間があってもよい。例えば、ベクトル制御を用いてIqを負として設定し、直流電源751の直流電圧VDCが過剰とならない範囲で、回生電力を適宜抵抗または他の電気負荷への有効活用等で消費させる期間を短絡制動期間の前に有するものとしてもよい。また、スイッチング素子755、756、757を急に一斉オンさせず、永久磁石41、42の位相に応じて、順々にオン状態に移行させたり、電動機750の入力電圧を所定期間内に徐々に零となるように制御するなどしてもよい。このように、過渡的な過電流を防止するための期間を短絡制動期間の前に設ける、などしても構わない。 In the present embodiment, braking is performed to cause the electric motor 750 to absorb the kinetic energy from the load 748. For this reason, only the short-circuit braking period in which the switching elements 755, 756, and 757 on the low potential side are kept on so that the input voltage of the electric motor 750 becomes substantially zero is assumed. However, there may be a period of braking other than the short-circuit braking period. For example, Iq is set to be negative using vector control, and short-circuit braking is performed in a period in which regenerative power is consumed as appropriate by effective use of a resistor or other electric load as long as the DC voltage VDC of the DC power supply 751 is not excessive. It may be included before the period. Further, the switching elements 755, 756, and 757 are not suddenly turned on all at once, but are sequentially turned on according to the phases of the permanent magnets 41 and 42, or the input voltage of the electric motor 750 is gradually changed within a predetermined period. You may control so that it may become zero. Thus, a period for preventing a transient overcurrent may be provided before the short circuit braking period.
 すなわち、3つのスイッチング素子755、756、757のオン時間の比率が100%である短絡制動期間に入る前に、3相の低電位側のスイッチング素子の少なくとも1つが100%未満のパルス幅変調を行い発生トルクが負となる制動期間を有してもよい。 That is, before entering the short-circuit braking period in which the ratio of the on-time of the three switching elements 755, 756, and 757 is 100%, at least one of the three-phase low-potential side switching elements performs pulse width modulation less than 100%. A braking period in which the generated torque is negative may be provided.
 また、本実施の形態においては、周波数検知部768の動作は、短絡制動期間内のすべてを静止座標での電流ベクトルの位相θの時間的変化から角速度ωを演算する電流角速度検知期間としている。しかし、短絡制動期間であっても、例えば、ωが十分高い期間は|I|が十分高いことをIth2のような閾値で判定し、特に周波数検知部768を動作させなくとも、強制的に停止判定信号S1をLowとしても良い。またはOR回路を用いるなどして、停止判定部770の入力を強制的にHighに保つというような構成を付加しても良い。その場合には周波数検知部768については、正常にωを検知する必要がある速度範囲(ωの範囲)の上限が低められ、電気角速度検知期間は短絡制動期間の一部となる。その場合には、安価、または動作にかかる消費エナジーが低い、処理速度の低いマイクロコンピュータを用いたものなどであっても良い。 Further, in the present embodiment, the operation of the frequency detection unit 768 is set to the current angular velocity detection period in which the angular velocity ω is calculated from the temporal change of the phase θ of the current vector in the stationary coordinates in the short circuit braking period. However, even during the short-circuit braking period, for example, during a period in which ω is sufficiently high, | I | is determined to be sufficiently high based on a threshold value such as Ith2, and forcibly stopped without particularly operating the frequency detection unit 768 The determination signal S1 may be Low. Alternatively, a configuration that forcibly keeps the input of the stop determination unit 770 high may be added by using an OR circuit. In that case, the upper limit of the speed range (ω range) in which the frequency detection unit 768 needs to detect ω normally is lowered, and the electrical angular speed detection period becomes a part of the short-circuit braking period. In that case, a low-cost or low-consumption energy consumption or a microcomputer using a low processing speed may be used.
 いずれにしても、最終的には電動機750の入力電圧を略零とする短絡制動期間となり、本実施の形態と同等の結果が得られ、安定した停止判定が可能となる。 In any case, finally, a short-circuit braking period in which the input voltage of the electric motor 750 is substantially zero is obtained, and a result equivalent to that of the present embodiment is obtained, so that stable stop determination is possible.
 なお、本実施の形態においては、周波数検知部768、比較器777、778、AND回路779、停止判定部770などは、ハード回路図の表記で構成を述べた。しかし、現実的にはマイクロコンピュータ内のプログラムを用意することで、ソフト的に処理することもできる。 In the present embodiment, the configuration of the frequency detection unit 768, the comparators 777 and 778, the AND circuit 779, the stop determination unit 770, etc. has been described with the notation of the hardware circuit diagram. However, in reality, it is also possible to perform software processing by preparing a program in the microcomputer.
 以上のように、本実施の形態の洗濯機は、制御部760が、電流検知部766の出力を受け、周期的に周波数を検知する周波数検知部768と、電動機750の停止を判定する停止判定部770と、負荷(ドラム)748の制動期間に、電動機750の入力電圧が略零となるように、スイッチング素子755、756、757を制御する短絡制動期間とをさらに備え、停止判定部770は、周波数検知部768の出力が所定値以上ではなくなった時から第1の所定時間経過した後に、電動機750を停止と判定する。これにより、簡単な構成でありながら、電動機750の停止を適切に判定することができる。 As described above, in the washing machine according to the present embodiment, the control unit 760 receives the output of the current detection unit 766 and periodically determines the frequency detection unit 768 that detects the frequency, and the stop determination that determines whether the electric motor 750 is stopped. And a short-circuit braking period for controlling the switching elements 755, 756, and 757 so that the input voltage of the electric motor 750 becomes substantially zero during the braking period of the load (drum) 748, and the stop determination unit 770 The electric motor 750 is determined to be stopped after the first predetermined time has elapsed since the output of the frequency detection unit 768 is no longer equal to or greater than the predetermined value. Thereby, it is possible to appropriately determine the stop of the electric motor 750 with a simple configuration.
 また、本実施の形態の洗濯機は、周波数検知部768が、短絡制動期間内に、静止座標での電流ベクトルの位相の時間的変化から角速度を演算する電流角速度検知期間を備え、角速度が所定値以下となった後、停止判定を行う。これにより、簡単な構成でありながら、電動機750の停止を適切に判定することができる。 In addition, the washing machine according to the present embodiment includes a current angular velocity detection period in which the frequency detection unit 768 calculates an angular velocity from a temporal change in the phase of the current vector at a stationary coordinate within the short-circuit braking period, and the angular velocity is predetermined. After falling below the value, stop determination is performed. Thereby, it is possible to appropriately determine the stop of the electric motor 750 with a simple configuration.
 (実施の形態13)
 図43は、本発明の実施の形態13におけるインバータ装置のブロック図である。図43においては、制御回路788が、マイクロコンピュータ789、セラミック発振子790を用いている。その他の構成要素については、実施の形態12と同等である。
(Embodiment 13)
FIG. 43 is a block diagram of an inverter device according to Embodiment 13 of the present invention. In FIG. 43, the control circuit 788 uses a microcomputer 789 and a ceramic oscillator 790. Other components are the same as those in the twelfth embodiment.
 電流検知部766からのアナログ出力Iu、Iv、Iwは、それぞれマイクロコンピュータ789のAD1、AD2、AD3の入力端子に接続される。内部にハードで構成したアナログデジタル変換器によって、デジタル値に変換される。セラミック発振子790からは、高周波のクロック信号がClock端子へと入力され、数十MHzの信号で計算の処理がなされる。ゲート駆動回路761へは、パルス幅変調されたPWM信号が、スイッチング素子752、753、754、755、756、757の合計6信号出力され、各スイッチング素子のオンオフ制御を行う。OUT端子からは、プログラムが走った結果として、デジタルの停止判定信号S1が出力される。 Analog outputs Iu, Iv, and Iw from the current detection unit 766 are connected to input terminals of AD1, AD2, and AD3 of the microcomputer 789, respectively. It is converted into a digital value by an analog / digital converter configured internally by hardware. From the ceramic oscillator 790, a high-frequency clock signal is input to the Clock terminal, and calculation processing is performed with a signal of several tens of MHz. The gate drive circuit 761 outputs a total of six signals of switching elements 752, 753, 754, 755, 756, and 757 as pulse width modulated PWM signals, and performs on / off control of each switching element. From the OUT terminal, a digital stop determination signal S1 is output as a result of running the program.
 図44は、本発明の実施の形態13におけるインバータ装置のマイクロコンピュータ789のプログラムのフローチャートである。なお、本実施の形態においては、マイクロコンピュータ789は、フラッシュメモリを内蔵している。また、フラッシュライタと呼ばれる特殊な器具による書き換えが可能である他、有線/無線の各種通信回線を通じて、使用者による書き換えをすることもできる。 FIG. 44 is a flowchart of the program of microcomputer 789 of the inverter device according to the thirteenth embodiment of the present invention. In the present embodiment, the microcomputer 789 has a built-in flash memory. In addition to rewriting with a special instrument called a flash writer, rewriting by a user can also be performed through various wired / wireless communication lines.
 マイクロコンピュータ789内部では、128μs周期での割り込み信号が絶えず発生している。図44に示すフローチャートは、128μs毎に「128μs割り込み」の処理が実行される(ステップS795)。「T1←T1+ΔT、T2←T2+ΔT」にて、128μsであるΔT分の加算が、T1とT2の変数に対して行われる(ステップS796)。その後、電流検知部766の信号を処理する「電流演算ルーチン」(ステップS797)に入り、「Iu、Iv、Iw」にて、AD1~AD3の入力値からデジタルに変換した値を取り込み(ステップS798)、これをアンペア単位に変化している。なお、ここでの電流値はインバータ回路758から電動機750に向かう向きを正とし、逆向きの電流は負として符号付(サインド)の変数で表現する。 In the microcomputer 789, interrupt signals with a period of 128 μs are constantly generated. In the flowchart shown in FIG. 44, a “128 μs interrupt” process is executed every 128 μs (step S795). In “T1 ← T1 + ΔT, T2 ← T2 + ΔT”, an addition of ΔT of 128 μs is performed on the variables of T1 and T2 (step S796). After that, a “current calculation routine” (step S797) for processing the signal of the current detection unit 766 is entered, and the values converted into digital values from the input values of AD1 to AD3 are captured by “Iu, Iv, Iw” (step S798). ), This is changing in amperes. The current value here is represented by a signed variable with the direction from the inverter circuit 758 toward the electric motor 750 being positive, and the reverse current being negative.
 「αβ変換」では、静止座標における直交座標αβに変換する(ステップS799)。「Ia←Iα+Iβ」にて、電流ベクトルIaの大きさ(絶対値)の自乗を算出している(ステップS800)。「Ia>Ith?」にて、電流検知部の出力レベルIaが所定値Ithより大きいかどうかの判断を行う(ステップS801)。なお、ここでは出力レベルIaと所定値Ithの双方に関して、自乗した値同士の比較を行っているが、共に平方根(スクエア・ルート)を取ったもの同士で比較しても良い。本実施の形態にように、自乗した値同士の比較とした場合には、マイクロコンピュータ789内部の処理が高速に行われる。 In “αβ conversion”, the coordinates are converted into orthogonal coordinates αβ in the stationary coordinates (step S799). The square of the magnitude (absolute value) of the current vector Ia is calculated by “Ia 2 ← Iα 2 + Iβ 2 ” (step S800). In “Ia 2 > Ith 2 ?”, It is determined whether or not the output level Ia of the current detection unit is greater than a predetermined value Ith (step S801). Here, the squared values are compared for both the output level Ia and the predetermined value Ith, but both square roots may be compared. As in this embodiment, when the squared values are compared with each other, the internal processing of the microcomputer 789 is performed at high speed.
 「Ia>Ith?」において、Noであった場合(ステップS801)、すなわち電流検知部766の出力レベルが所定値に満たない場合は、ルーチンで構成した「停止判定部」に直行する(ステップS810)。この場合には、以下に述べる検知周波数の更新を行う部分をとばす。 If “Ia 2 > Ith 2 ?” Is No (step S801), that is, if the output level of the current detection unit 766 is less than a predetermined value, the process goes straight to the “stop determination unit” configured by the routine ( Step S810). In this case, the part for updating the detection frequency described below is skipped.
 「Ia>Ith?」において、Yesであった場合には(ステップS801)、ルーチンで構成した「周波数検知部」へと進む(ステップS812)。まず「θnew←tan-1(Iβ/Iα)」にて電流ベクトルの位相θの計算を行う(ステップS813)。ここでのtan-1関数は、αβ座標の4象限に対応して、θ=0~2π[ラジアン]の範囲を出力するものであり、極座標変換の位相θを得る。 If “Ia 2 > Ith 2 ?” Is Yes (step S801), the process proceeds to the “frequency detection unit” configured in the routine (step S812). First, the phase θ of the current vector is calculated by “θnew ← tan −1 (Iβ / Iα)” (step S813). The tan −1 function here outputs a range of θ = 0 to 2π [radians] corresponding to the four quadrants of αβ coordinates, and obtains the phase θ of polar coordinate conversion.
 「T1<375μs?」は、前回位相θが得られた時点からの経過時間T1が、第1の所定時間より小であるかどうかの判断をする(ステップS814)。Noの場合、すなわち経過時間T1が長い場合には、以降述べる角速度ωの演算間隔として用いるには長すぎると判断され、ω演算を行わないものとなる。 “T1 <375 μs?” Determines whether or not the elapsed time T1 from the time when the previous phase θ is obtained is shorter than the first predetermined time (step S814). In the case of No, that is, when the elapsed time T1 is long, it is determined that it is too long to be used as the calculation interval of the angular velocity ω described below, and the ω calculation is not performed.
 「T1<375μs?」がYesの場合には(ステップS814)、「Δθ←θnew-θold」にて、前回位相θを計算した時点からの位相θの変化[ラジアン]がΔθとして算出される(ステップS815)。次いで、「Δθ<0?」、および「Δθ←Δθ+2π」にて、前回の位相θ検知の時点から、θ=0(=2πと同等)を跨いだ場合の補正がなされる(ステップS816、S817)。その上で、「ω←Δθ/T1」にて、電気角周波数ωの算出(ステップS818)、すなわち周波数検知部としての動作が行われる(ステップS812)。 If “T1 <375 μs?” Is Yes (step S814), the change [radian] of the phase θ from the time when the previous phase θ was calculated is calculated as Δθ in “Δθ ← θnew−θold” ( Step S815). Next, in “Δθ <0?” And “Δθ ← Δθ + 2π”, correction is performed when θ = 0 (equal to 2π) is crossed from the previous phase θ detection time (steps S816 and S817). ). After that, at “ω ← Δθ / T1”, the electrical angular frequency ω is calculated (step S818), that is, the operation as the frequency detector is performed (step S812).
 「ω>=ωth?」では、周波数検知部の出力ωが所定値ωth以上かどうかの判断が行われる(ステップS820)。大である場合には、「T2←0」の処理がなされ(ステップS821)、小であれば、その処理が飛ばされる。よってT2値は周波数検知部の出力ω(ステップS812)が所定値ωth以上ではなくなった時からの経過時間を示す。「θold←θnew」、「T1←0」にて、θの更新および前回の更新からの経過時間のクリアがなされた上で(ステップS823、S825)、ルーチンで構成された「停止判定部」へと入る(ステップS810)。 In “ω> = ωth?”, It is determined whether or not the output ω of the frequency detection unit is equal to or greater than a predetermined value ωth (step S820). If it is large, the process of “T2 ← 0” is performed (step S821), and if it is small, the process is skipped. Therefore, the T2 value indicates the elapsed time from when the output ω (step S812) of the frequency detection unit is no longer equal to or greater than the predetermined value ωth. After “θold ← θnew” and “T1 ← 0”, the update of θ and the elapsed time from the previous update are cleared (steps S823 and S825), and then the routine proceeds to the “stop determining unit”. (Step S810).
 「T2>Tb?」において、Tb=0.3[秒]としている(ステップS828)。Yesの場合には、周波数検知部の出力ωが所定値ωth以上ではなくなった時から0.3秒を超えている状態となったことから「停止判定フラグセット」を行う(ステップS829)。Noの場合には、それは行われないまま、ENDに至り、割り込み処理が終了する(ステップS830)。 In “T2> Tb?”, Tb = 0.3 [seconds] is set (step S828). In the case of Yes, “stop determination flag setting” is performed because the state has exceeded 0.3 seconds since the output ω of the frequency detection unit is no longer equal to or greater than the predetermined value ωth (step S829). In the case of No, it is not performed and END is reached, and the interrupt process is ended (step S830).
 本実施の形態においては、図44に示した128μs毎の割込処理ルーチンの他、図示していないが、「初期設定ルーチン」、「3.3ms周期の割込サービスルーチン」も存在している。「初期設定ルーチン」においては、「T1←1000μs」等のように375μsより大なる値を設定し、かつ「T2←0」などとしておくことにより、電流角速度検知期間における適切な処理が開始できる。「3.3ms周期の割込処理サービスルーチン」では、停止判定フラグの確認を行う。「停止判定フラグセット」にてフラグが立てられた場合には(ステップS829)、「3.3ms周期の割込処理サービスルーチン」において、停止判定がなされた状態でインバータ装置として必要となる処理を開始する。ちなみに、力行時においては、電動機750の速度の制御を行うための処理も、「3.3ms周期の割込サービスルーチン」で行うことができる。 In this embodiment, in addition to the interrupt processing routine for every 128 μs shown in FIG. 44, there are also an “initial setting routine” and an “interrupt service routine with a period of 3.3 ms”. . In the “initial setting routine”, by setting a value larger than 375 μs, such as “T1 ← 1000 μs”, and setting “T2 ← 0”, appropriate processing in the current angular velocity detection period can be started. In the “3.3 ms cycle interrupt processing service routine”, the stop determination flag is confirmed. When the flag is set in the “stop determination flag set” (step S829), in the “3.3 ms cycle interrupt processing service routine”, the processing necessary for the inverter device in the state where the stop determination is made is performed. Start. Incidentally, at the time of power running, the process for controlling the speed of the electric motor 750 can also be performed by the “3.3 ms cycle interrupt service routine”.
 以上の構成において、以下に本実施の形態での動作を説明する。図45は、本発明の実施の形態13におけるインバータ装置のマイクロコンピュータ789の動作波形図である。図45において、(a)は電流ベクトルの大きさ(絶対値)|I|、(b)は電気角θ、(c)は電気角速度ωの出力をそれぞれ示している。図45においては、Δt=128μs毎に、図44に示した割込ルーチンが動作し、t1、t2、t3…にて、処理が行われる。 In the above configuration, the operation in this embodiment will be described below. FIG. 45 is an operation waveform diagram of microcomputer 789 of the inverter device according to the thirteenth embodiment of the present invention. 45, (a) shows the magnitude (absolute value) | I | of the current vector, (b) shows the output of the electrical angle θ, and (c) shows the output of the electrical angular velocity ω. 45, the interrupt routine shown in FIG. 44 operates every Δt = 128 μs, and processing is performed at t1, t2, t3.
 電流ベクトルの大きさ|I|は、(a)に示すように、負荷48の質量の偏りがあったり、またノイズ成分がIu、Iv、Iwの電流信号に含まれていることなどもあるため、変動する要素がある。特にt4においては、所定値Ithを下回った状態、すなわち電流検知部766の出力レベルが所定値Ith以下の状態となっており、その他のタイミングではIthを上回った状態にある。(b)に示す電気角θについては、実際にはブレーキ(制動)の進捗とともに、変化速度(傾き)が変動を伴うことも当然あるが、ここでは簡単のため、電気角θの変化速度はほぼ一定として図示している。 As shown in (a), the magnitude of the current vector | I | is because the mass of the load 48 is biased or the noise component is included in the current signals of Iu, Iv, and Iw. , There are fluctuating factors. In particular, at t4, the state is lower than the predetermined value Ith, that is, the output level of the current detection unit 766 is lower than the predetermined value Ith, and at other timings, it is higher than Ith. As for the electrical angle θ shown in (b), the rate of change (inclination) may actually fluctuate with the progress of braking (braking), but for the sake of simplicity, the rate of change of the electrical angle θ is It is shown as almost constant.
 電流ベクトルの大きさがIthよりも小さいt4を除いては、「θnew←tan-1(Iβ/Iα)」にて電流ベクトルの位相θの計算が行われる(ステップS813)。電気角速度ωの計算も「ω←Δθ/T1」を通過した際になされ(ステップS818)、計算にかかる時間tdの後にωが更新される。これに対して、t4では位相θの更新がなされず、ωの更新もなされず、逆に周波数検知部が、電流検知部766の出力レベル|I|が所定値Ith以上の場合(ステップS812)に、検知周波数ωの更新を行う。これによって、|I|が小さすぎることにより発生する位相θの計算誤差による誤動作を防ぐことができる。 Except for t4 where the magnitude of the current vector is smaller than Ith, the phase θ of the current vector is calculated by “θnew ← tan −1 (Iβ / Iα)” (step S813). The electrical angular velocity ω is also calculated when “ω ← Δθ / T1” is passed (step S818), and ω is updated after the time td required for the calculation. On the other hand, at t4, the phase θ is not updated and ω is not updated, and conversely, when the frequency detection unit has the output level | I | In addition, the detection frequency ω is updated. As a result, it is possible to prevent malfunction due to a calculation error of the phase θ caused by | I | being too small.
 t5においては、前回の位相θ検知からの経過時間T1は2ΔTに相当する256μsとなる。「T1<375μs?」でYes判断となるため(ステップS814)、256μs間の位相θ変化から、ω5が算出され、更新される。 At t5, the elapsed time T1 from the previous phase θ detection is 256 μs corresponding to 2ΔT. Since “T1 <375 μs?” Is Yes (step S814), ω5 is calculated and updated from the phase θ change between 256 μs.
 なお、θ=0(=2πと同等)を跨ぐ区間での計算が行われるt1、t5、t6においては、「Δθ<0?」、および「Δθ←Δθ+2π」による補正がなされる(ステップS816、S817)。従って、正常なω値が算出される。 Note that at t1, t5, and t6 in which calculation is performed in a section over θ = 0 (equivalent to 2π), correction by “Δθ <0?” And “Δθ ← Δθ + 2π” is performed (step S816, S817). Accordingly, a normal ω value is calculated.
 図46は、図45において、2回続けて電流ベクトルの大きさ|I|が、所定値Ithを下回った場合を示す図である。図45と同様に、図46において、(a)は電流ベクトルの大きさ(絶対値)|I|、(b)は電気角θ、(c)は電気角速度ωの出力をそれぞれ示している。図46においては、t2とt3の2回続けて、|I|が所定値Ithを下回ったため、t4においては、前回の位相θ検知した時点t1からの経過時間T2が、384μsに達している。この場合、「T1<375μs?」はNo判断となり(ステップS814)、ωの計算(更新)はなされないものとなる。 FIG. 46 is a diagram showing a case where the magnitude | I | of the current vector is less than a predetermined value Ith twice in FIG. 45, (a) shows the magnitude (absolute value) | I | of the current vector, (b) shows the electrical angle θ, and (c) shows the output of the electrical angular velocity ω, respectively. In FIG. 46, since | I | has fallen below the predetermined value Ith twice at t2 and t3, at t4, the elapsed time T2 from the time t1 when the previous phase θ was detected has reached 384 μs. In this case, “T1 <375 μs?” Is No (step S814), and ω is not calculated (updated).
 本実施の形態において、電動機750の速度が毎分最大5万回転でも電流角速度検知期間に入れることがある。その速度での角速度(電気角)の1周期(2π[ラジアン])は、600μsである。それよりも短い375μsを角速度ωの演算の時間間隔の上限とおいたことにより、周回遅れのωの誤検知を防ぐことができる。 In this embodiment, the current angular velocity detection period may be entered even if the speed of the electric motor 750 is 50,000 revolutions per minute at the maximum. One period (2π [radian]) of the angular velocity (electrical angle) at that velocity is 600 μs. By setting 375 μs, which is shorter than that, as the upper limit of the time interval for calculating the angular velocity ω, it is possible to prevent erroneous detection of ω that is delayed in circulation.
 なお、本実施の形態で設けた375μsという閾値は、時間を直接示すが、割込の周期が128μsである。従って、その割込周期の「2倍以下の場合」と「3倍以上の場合」というように周期的な割込の回数での判断としても良く、時間の長短に関しての基準を設けたことになる。そして、375μsを超えた段階t4では|I|>Ithなる故、有効に検知できた位相θは、次回t5でのω計算に用いる。 Note that the threshold value of 375 μs provided in the present embodiment directly indicates time, but the interrupt cycle is 128 μs. Therefore, it may be judged by the number of periodic interrupts, such as “when it is less than 2 times” and “when it is more than 3 times” of the interrupt cycle. Become. Since | I |> Ith at stage t4 exceeding 375 μs, phase θ that can be detected effectively is used for ω calculation at the next t5.
 よって、本実施の形態のインバータ装置においては、周波数検知部は、電流検知部766の出力レベル|I|が所定値Ith以上の場合に、静止座標αβでの電流ベクトルIaの位相θを記憶する。前回記憶した位相θからの経過時間T1が所定値375μsよりも長い場合に検知周波数ωの更新を行わない。前回記憶した位相θからの経過時間T1が所定値375μs以下の場合に、前回との位相差Δθと経過時間T2から、除算して検知周波数ωを計算して更新を行う(ステップS812)。従って、周回遅れによる誤検知の心配のない極めて信頼性と安定性が高い停止判定を実現する。 Therefore, in the inverter device of the present embodiment, the frequency detection unit stores the phase θ of the current vector Ia at the stationary coordinate αβ when the output level | I | of the current detection unit 766 is equal to or greater than the predetermined value Ith. . When the elapsed time T1 from the previously stored phase θ is longer than the predetermined value 375 μs, the detection frequency ω is not updated. When the elapsed time T1 from the previously stored phase θ is equal to or less than the predetermined value 375 μs, the detection frequency ω is calculated by division from the previous phase difference Δθ and the elapsed time T2, and updated (step S812). Therefore, it is possible to realize stop determination with extremely high reliability and stability without worrying about erroneous detection due to a delay in circulation.
 電流レベルの判断においては、静止座標αβでの電流ベクトルの大きさを用いる。これにより、3相の各線電流で見られる正弦波状の瞬時値の変動などの影響を受けず、ほぼ直流値に近い|I|値での安定した判断が可能となり、停止判定においての信頼性も高いものが得られる。 In determining the current level, the magnitude of the current vector at the stationary coordinates αβ is used. This makes it possible to make a stable determination with a | I | value that is almost close to a direct current value without being affected by fluctuations in the instantaneous value of a sine wave seen in each of the three-phase line currents, and reliability in stop determination is also improved. A high one is obtained.
 その点に関しては、dq座標での電流ベクトルの大きさを求めて行う構成と同等である。しかし、短絡制動での停止を判定するだけであれば、d軸を正しく推定する必要もなく、計算が簡単なもので済む分、信頼性も高まり、低コストで省エネのマイクロコンピュータが使用できるという効果も得られる。 This point is the same as the configuration in which the magnitude of the current vector in the dq coordinate is obtained. However, if it is only necessary to determine stoppage due to short-circuit braking, it is not necessary to correctly estimate the d-axis, and since the calculation is simple, reliability is improved and a low-cost and energy-saving microcomputer can be used. An effect is also obtained.
 以上のように、本実施の形態の洗濯機は、周波数検知部768が、電流検知部766の出力レベルが所定値以上の場合に、検知周波数の更新を行う。これにより、信頼性のある停止判定を行うことができる。 As described above, in the washing machine of the present embodiment, the frequency detection unit 768 updates the detection frequency when the output level of the current detection unit 766 is equal to or higher than a predetermined value. Thereby, reliable stop determination can be performed.
 また、本実施の形態の洗濯機は、周波数検知部768が、電流角速度検知期間内の角速度の演算の時間間隔を、電流角速度検知期間内のからの最高速度での角速度の1周期よりも短い周期とする。これにより、信頼性と安定性の高い停止判定を行うことができる。 Further, in the washing machine of the present embodiment, the frequency detection unit 768 has a time interval for calculating the angular velocity within the current angular velocity detection period shorter than one cycle of the angular velocity at the maximum speed within the current angular velocity detection period. Let it be a period. Thereby, stop determination with high reliability and stability can be performed.
 また、本実施の形態の洗濯機は、周波数検知部768が、電流検知部766の出力レベルが所定値以上の場合に、静止座標での電流ベクトルの位相を記憶し、前回記憶した位相からの経過時間が所定値よりも長い場合に検知周波数の更新を行わず、前回記憶した位相からの経過時間が所定値以下の場合に、前回との位相差と経過時間から検知周波数を計算して更新を行う。これにより、信頼性のある停止判定を行うことができる。 Further, in the washing machine of the present embodiment, when the frequency detection unit 768 has the output level of the current detection unit 766 equal to or higher than a predetermined value, the phase of the current vector at the stationary coordinate is stored, and the phase from the previously stored phase is stored. When the elapsed time is longer than the predetermined value, the detection frequency is not updated. When the elapsed time from the previously stored phase is less than the predetermined value, the detection frequency is calculated and updated from the phase difference from the previous time and the elapsed time. I do. Thereby, reliable stop determination can be performed.
 (実施の形態14)
 図47は、本発明の実施の形態14におけるインバータ装置のフローチャートである。本実施の形態においては、ハード構成については、実施の形態13と同等である。マイクロコンピュータ789内のフラッシュメモリ部分に、書き込まれている制御用プログラムのアルゴリズムのみが、異なる。図47は、特に「3.3ms周期の割込サービスルーチン」のフローチャートを示している。
(Embodiment 14)
FIG. 47 is a flowchart of the inverter device according to the fourteenth embodiment of the present invention. In the present embodiment, the hardware configuration is the same as that of the thirteenth embodiment. Only the algorithm of the control program written in the flash memory portion in the microcomputer 789 is different. FIG. 47 particularly shows a flowchart of the “interrupt service routine with a period of 3.3 ms”.
 本実施の形態においては、実施の形態13で説明した128μs周期の割込動作も同様に行われている。さらに、3.3ms毎に発生する割込信号によって、このフローチャートで示すプログラムが実行される。なお、短絡制動期間が開始された時点での初期設定値として、T3←0、およびTu←Tj(=200秒)、また破損フラグ←Lowが設定されている。 In the present embodiment, the interrupt operation with a period of 128 μs described in the thirteenth embodiment is performed in the same manner. Further, the program shown in this flowchart is executed by an interrupt signal generated every 3.3 ms. Note that T3 ← 0 and Tu ← Tj (= 200 seconds) and a breakage flag ← Low are set as initial setting values when the short-circuit braking period starts.
 ルーチンで実現される本実施の形態の負荷停止推定部は、「3.3ms割込」から処理が開始される(ステップS841)。「T3←T3+ΔT」において、ΔT(=3.3ms)が加算される(ステップS842)。「停止判定フラグ」では、128μs周期の割込動作の図44の「停止判定フラグセット」(ステップS829)が行われたかどうかが判断される(ステップS844)。フラグが立っている(Highの)場合は、伝達機構破損検出部に移る(ステップS845)。伝達機構破損検出部では、まず「破損フラグ」の判断がなされる(ステップS846)。ここで、Lowの場合には「T3<Tc?」の判断に移り(ステップS847)、本実施の形態においては、Tcの値は10秒としている。 The load stop estimation unit of the present embodiment realized by a routine starts processing from “3.3 ms interrupt” (step S841). In “T3 ← T3 + ΔT”, ΔT (= 3.3 ms) is added (step S842). In the “stop determination flag”, it is determined whether or not the “stop determination flag set” (step S829) in FIG. 44 of the interrupt operation with a period of 128 μs has been performed (step S844). If the flag is set (High), the process proceeds to the transmission mechanism breakage detector (step S845). The transmission mechanism breakage detector first determines a “breakage flag” (step S846). Here, in the case of Low, the process proceeds to the determination of “T3 <Tc?” (Step S847). In the present embodiment, the value of Tc is 10 seconds.
 ここでYesならば「破損フラグセット」で、破損フラグ←Highが実行される(ステップS848)。「T3<Tc?」がNoの場合には(ステップS847)、「Tu←0」に移る(ステップS849)。その後、「T3>Tu?」の判断に移り(ステップS850)、Yesの場合には「負荷停止推定フラグセット」がなされる(ステップS851)。「END」で「3.3ms周期の割込サービスルーチン」は終了する(ステップS852)。 If “Yes” here, the “damage flag set” is executed, and the damage flag ← High is executed (step S848). If “T3 <Tc?” Is No (step S847), the process proceeds to “Tu ← 0” (step S849). Thereafter, the process proceeds to the determination of “T3> Tu?” (Step S850), and in the case of Yes, “load stop estimation flag set” is performed (step S851). At “END”, the “3.3 ms cycle interrupt service routine” ends (step S852).
 以上の構成において、動作を説明する。初期設定でのTu←Tjにより、負荷停止推定が、停止判定に対して遅延された状態からスタートする。T3は、短絡制動期間に入ってからの経過時間を示す変数である。T3<Tcの時点で、停止フラグがHighとなった場合には、「破壊フラグセット」にて破壊判定となる(ステップS848)。T3>=Tcである場合は、「Tu←0」によって(ステップS849)、負荷停止推定のための遅延はキャンセルされた状態となる。「T3>Tu?」にて、経過時間が達したかどうかの判断がされた(ステップS850)結果、「負荷停止推定フラグセット」で負荷停止が推定される(ステップS851)。 The operation of the above configuration will be described. Due to Tu ← Tj in the initial setting, the load stop estimation starts from a state delayed with respect to the stop determination. T3 is a variable indicating an elapsed time after entering the short circuit braking period. If the stop flag becomes High at the time of T3 <Tc, the destruction determination is made with “destruction flag set” (step S848). When T3> = Tc, the delay for load stop estimation is canceled by “Tu ← 0” (step S849). As a result of determining whether or not the elapsed time has been reached in “T3> Tu?” (Step S850), a load stop is estimated using the “load stop estimation flag set” (step S851).
 図48は、本発明の実施の形態14におけるインバータ装置の負荷停止推定部(ステップS840)の特性を示すグラフである。図48において、(a)の横軸は、短絡制動期間の開始から電動機750が停止するまでの時間Tmstopを示している。(a)の縦軸は、短絡制動期間の開始から負荷停止推定部が、負荷停止推定フラグを立て、負荷停止推定信号を出力するまで(ステップS840)の時間Tlstopを示している。また(b)は、(a)と同等の横軸に対する破損フラグの値、すなわち破損信号Sjを示している。 FIG. 48 is a graph showing characteristics of the load stop estimation unit (step S840) of the inverter device according to the fourteenth embodiment of the present invention. In FIG. 48, the horizontal axis of (a) indicates the time Tmstop from the start of the short-circuit braking period until the motor 750 stops. The vertical axis of (a) indicates the time Tlstop from the start of the short-circuit braking period until the load stop estimation unit sets the load stop estimation flag and outputs the load stop estimation signal (step S840). Further, (b) shows the value of the damage flag for the horizontal axis equivalent to (a), that is, the damage signal Sj.
 電動機750と負荷748間の動力伝達経路にあるベルト746が、短絡制動期間に入る前、あるいは短絡制動期間中に切れた場合や、プーリ747から外れた場合には、次のようになる。制動作用すなわち負荷748が有する運動エネルギーを電動機750が吸収する作用がなされなくなる。電動機750が停止しても、負荷748は慣性によってしばらく回り続ける可能性がある。その場合には、短絡制動開始から、電動機750のみが有する運動エネルギーのみを吸収した短時間で、電動機750の回転が停止する傾向がある。 When the belt 746 in the power transmission path between the electric motor 750 and the load 748 is cut before the short circuit braking period, during the short circuit braking period, or when the belt 746 is detached from the pulley 747, the following occurs. The braking action, that is, the action of the motor 750 absorbing the kinetic energy of the load 748 is not performed. Even if the electric motor 750 is stopped, the load 748 may continue to rotate for a while due to inertia. In that case, the rotation of the electric motor 750 tends to stop in a short time after absorbing only the kinetic energy of only the electric motor 750 from the start of the short-circuit braking.
 本実施の形態においては、短絡制動期間の開始から、電動機750が停止するまでの時間が、第2の所定時間Tcより小である場合に、破損信号Sjを出力する。これにより、伝達機構破損検出部は、比較的簡単な構成で、伝達機構の異常の検知を行う(ステップS845)。 In the present embodiment, when the time from the start of the short-circuit braking period to the stop of the electric motor 750 is shorter than the second predetermined time Tc, the breakage signal Sj is output. Thereby, the transmission mechanism breakage detection unit detects abnormality of the transmission mechanism with a relatively simple configuration (step S845).
 電動機750が停止しても、負荷748は、機構的に切り離された状態となる。このため、軸受や空気との摩擦抵抗によって、自然に停止するには、それ相当の時間がかかる。負荷748の慣性モーメントが変化する場合、また当初の速度(回転数、角速度等の表現ができる)の状態や、軸受となるベアリングなどの状態、温度等によってさまざまに変化する。しかし、時間が最大となった場合でも、少なくとも200秒間以内で負荷748が停止するものとして、Tj=200秒が設定されている。負荷停止推定部は、伝達機構破損検出部からの破損信号Sjを受けた場合(ステップS845)には、停止判定フラグより必ず遅延した負荷停止推定信号を出力する(ステップS840)。 Even if the electric motor 750 is stopped, the load 748 is mechanically disconnected. For this reason, it takes considerable time to stop naturally due to the frictional resistance with the bearing and air. When the moment of inertia of the load 748 changes, the load 748 changes variously depending on the state of the initial speed (representation of rotation speed, angular speed, etc.), the state of the bearing serving as a bearing, temperature, and the like. However, even when the time reaches the maximum, Tj = 200 seconds is set assuming that the load 748 stops within at least 200 seconds. When the load stop estimation unit receives the damage signal Sj from the transmission mechanism damage detection unit (step S845), the load stop estimation unit always outputs a load stop estimation signal delayed from the stop determination flag (step S840).
 本実施の形態においては、遅延時間texは結果として一定時間にはならない。しかし、少なくとも負荷748が停止した後で負荷停止推定信号が出力される。従って、負荷748に人が触れる可能性のある場合など、人が触れることを許すタイミングを、負荷748の停止以降とすることにより、安全上の問題を防止することができる。 In the present embodiment, the delay time tex does not become a fixed time as a result. However, the load stop estimation signal is output after at least the load 748 is stopped. Therefore, when there is a possibility that the person may touch the load 748, the safety problem can be prevented by setting the timing when the person is allowed to touch after the stop of the load 748.
 なお、本実施の形態における伝達機構破損検出部は、短絡制動期間の時間が第2の所定時間Tcよりも短い場合に破損信号を出力する(ステップS845)。しかし、この構成に限るものではない。例えば、短絡制動期間中の角速度ωの時間的変化、すなわち、角加速度の大きさが、所定値よりも大きい減速となった場合に判定する、などというものであってもよく、さまざまな構成が考えられる。 It should be noted that the transmission mechanism breakage detection unit in the present embodiment outputs a breakage signal when the short-circuit braking period is shorter than the second predetermined time Tc (step S845). However, the configuration is not limited to this. For example, the temporal change of the angular velocity ω during the short-circuit braking period, that is, the determination may be made when the angular acceleration is decelerated greater than a predetermined value. Conceivable.
 以上のように、本実施の形態の洗濯機は、電動機750とドラム748間の動力伝達経路746の異常を検知する伝達機構破損検出部と、ドラム停止推定部を有し、ドラム停止推定部が、伝達機構破損検出部からの破損信号を受けた場合に、停止判定より遅延したドラム停止推定信号を出力する。これにより、動力伝達経路746に異常があった場合の安全性を高めることができる。 As described above, the washing machine according to the present embodiment includes the transmission mechanism breakage detection unit that detects an abnormality in the power transmission path 746 between the electric motor 750 and the drum 748, and the drum stop estimation unit. When a breakage signal is received from the transmission mechanism breakage detection unit, a drum stop estimation signal delayed from the stop determination is output. Thereby, the safety | security when there is abnormality in the power transmission path 746 can be improved.
 また、本実施の形態の洗濯機は、伝達機構破損検出部は、短絡制動期間の開始から電動機750が停止するまでの時間が第2の所定時間より小である場合に、破損信号を出力する。これにより、比較的簡単な構成で、高い安全性を確保することができる。 Further, in the washing machine of the present embodiment, the transmission mechanism breakage detection unit outputs a breakage signal when the time from the start of the short-circuit braking period to the stop of the electric motor 750 is shorter than the second predetermined time. . Thereby, high safety | security can be ensured with a comparatively simple structure.
 (実施の形態15)
 図49は、本発明の実施の形態15における脱水機を側方から見た内部構成を示す図である。図49において、負荷855は、被脱水物856を収納した多数の穴を有するドラム857であり、ドラム857の軸858は、ボールベアリング860、861にて、回転自在に保持されている。
(Embodiment 15)
FIG. 49 is a diagram showing an internal configuration of the dehydrator according to the fifteenth embodiment of the present invention when viewed from the side. In FIG. 49, a load 855 is a drum 857 having a large number of holes in which a material to be dehydrated 856 is accommodated, and a shaft 858 of the drum 857 is rotatably held by ball bearings 860 and 861.
 電動機863は、実施の形態12の電動機750とほぼ同等の構成である。動力伝達経路として、プーリ864とプーリ865については、それぞれをベルト866で結んでいる。ドラム857を回転駆動し、被脱水物856に遠心力を作用させて、ドラム857の穴から脱水を行い、周囲を囲う受け筒867で水を受けた上で、排水ホース868に導き、脱水運転を行う。インバータ装置870は、実施の形態12~14に述べたものと同等の構成のインバータ回路871、制御回路872が設けられている。加えて、インバータ装置870は、制御回路872からの停止判定信号S1を受けるソレノイド駆動回路875を有する。 The electric motor 863 has substantially the same configuration as the electric motor 750 of the twelfth embodiment. As a power transmission path, the pulley 864 and the pulley 865 are each connected by a belt 866. The drum 857 is driven to rotate, a centrifugal force is applied to the object to be dehydrated 856, dehydration is performed from the hole of the drum 857, water is received by the receiving cylinder 867 surrounding the periphery, and then guided to the drain hose 868 for dehydration operation. I do. The inverter device 870 is provided with an inverter circuit 871 and a control circuit 872 having the same configurations as those described in Embodiments 12 to 14. In addition, inverter device 870 includes solenoid drive circuit 875 that receives stop determination signal S <b> 1 from control circuit 872.
 さらに、開閉可能な扉877を有しており、開いた状態を一点鎖線で示している。扉877に関しては、閉状態に保つための施錠部880が、ソレノイド881、ソレノイド881で上下動する鉄製のロックバー882、扉877側に設けられ、閉状態でロックバー882に噛み込む爪883によって構成されている。爪883とロックバー882が噛んだ状態では、扉877を引こうとも開くことはない。よって、使用者が、ドラム857内に手を入れることを阻止する。 Furthermore, it has a door 877 that can be opened and closed, and the open state is indicated by a one-dot chain line. With respect to the door 877, a locking portion 880 for keeping the closed state is provided by a solenoid 881, an iron lock bar 882 that moves up and down by the solenoid 881, and a claw 883 that engages with the lock bar 882 in the closed state. It is configured. When the claw 883 and the lock bar 882 are engaged, the door 877 is not opened even if it is pulled. Therefore, the user is prevented from putting his hand into the drum 857.
 そしてソレノイド駆動回路875からソレノイド881に電流が供給された状態においては、ロックバー882はソレノイド881が発生する磁界によって、重力に逆らって上に引き上げられる。このため、ロックは解除された状態となる。使用者は扉877を開き、ドラム857内に手などを入れての被脱水物856などを触れることができる。扉センサ885は、接点を有し、扉877の開/閉の状態を検知してS2信号として出力する。扉877が閉の場合には、High信号が制御回路872に伝える。 When the current is supplied from the solenoid drive circuit 875 to the solenoid 881, the lock bar 882 is pulled up against the gravity by the magnetic field generated by the solenoid 881. For this reason, the lock is released. The user can open the door 877 and touch a material to be dehydrated 856 with a hand or the like in the drum 857. The door sensor 885 has a contact, detects the open / closed state of the door 877, and outputs it as an S2 signal. When the door 877 is closed, a High signal is transmitted to the control circuit 872.
 以上の構成において、本実施の形態での動作を説明する。図50は、本発明の実施の形態15における脱水機の動作波形図である。図50において、(a)は電気角速度ω、(b)は停止判定信号S1、(c)はインバータ回路871のU相低電位側ゲート信号Sgの波形を示している。また、(d)はソレノイド881への供給電流Ik、(e)は扉の開閉信号S2について、脱水からの制動(ブレーキ)に入ってから停止し、使用者が扉を開く時点までの波形を示している。 With the above configuration, the operation in this embodiment will be described. FIG. 50 is an operation waveform diagram of the dehydrator according to the fifteenth embodiment of the present invention. In FIG. 50, (a) shows the electric angular velocity ω, (b) shows the stop determination signal S1, and (c) shows the waveform of the U-phase low-potential-side gate signal Sg of the inverter circuit 871. Further, (d) shows the current Ik supplied to the solenoid 881, and (e) shows the waveform of the door opening / closing signal S2 until the user opens the door after stopping after entering the braking (brake) from dehydration. Show.
 t1までの力行期間においては、(c)のSgに見られるように、電動機863を駆動するための、PWMがかかったゲート信号が供給されている。なお、U相の低電位側以外のゲート信号については省略している。しかし、力行期間においては、いずれもPWMがかかったゲート信号となる。 In the power running period up to t1, as shown in Sg of (c), a gate signal with PWM applied for driving the electric motor 863 is supplied. Note that gate signals other than the low-potential side of the U phase are omitted. However, in the power running period, both are gate signals to which PWM is applied.
 t1において、脱水運転が終了して短絡制動期間に入ると、U、V、Wの3相に関しては、低電位側のゲート信号がすべて立ち上がり、ベタオンと呼ばれる状態となる。これにより電動機863の入力電圧は略零の短絡制動の状態となり、以降ωは次第に低下してくる。t2において、ωがωthに達した時点から、第1の所定時間となる0.3秒の時間計測が開始される。その間となるt3において、ドラム857は停止した状態となる。S1は、t2から第1の所定時間0.3秒後となるt4にHighに立ち上がり、ソレノイド駆動回路875からソレノイド881への供給電流Ikが立ち上がる。 At t1, when the dehydration operation ends and the short circuit braking period starts, the gate signals on the low potential side all rise for the three phases U, V, and W, and are in a state called beta-on. As a result, the input voltage of the electric motor 863 is in a short-circuit braking state that is substantially zero, and thereafter ω gradually decreases. At t2, the time measurement of 0.3 seconds that is the first predetermined time is started from the time when ω reaches ωth. At t3 in the meantime, the drum 857 is stopped. S1 rises to high at t4, which is 0.3 seconds after the first predetermined time from t2, and the supply current Ik from the solenoid drive circuit 875 to the solenoid 881 rises.
 t4では、SgはLow(オフ)状態となり、短絡制動が解除された状態となる。しかし、Sgをt4以降も引き続きHighとしても良く、予期しないドラム857の回転に対して、使用者への安全を、より高いものとすることができる。また、S2がHighとなる期間のみ短絡制動とする構成も可能である。加えて、電動機863に所定の大きさの直流電流を通ずることによっても、ドラム857の動きを抑える作用が得られる。従って、インバータ回路871から直流電流を供給する期間を、t4以降に設けても良い。ここで、扉877は開閉自在となり、使用者は、t5にて扉877を開いたため、(e)に示すS2がLowとなっている。 At t4, Sg is in a low (off) state, and the short circuit braking is released. However, Sg may continue to be high after t4, and the safety to the user against unexpected rotation of the drum 857 can be enhanced. Further, a configuration in which short-circuit braking is performed only during a period in which S2 is High is also possible. In addition, the action of suppressing the movement of the drum 857 can also be obtained by passing a direct current of a predetermined magnitude through the electric motor 863. Therefore, a period for supplying a direct current from the inverter circuit 871 may be provided after t4. Here, the door 877 can be freely opened and closed, and since the user opened the door 877 at t5, S2 shown in (e) is Low.
 なお、S2信号の役割としては、脱水動作の起動時において、危険防止の観点から、扉877が閉じられた状態で、電動機863を駆動する際に用いられる。Lowの状態では、起動を禁ずる論理としている。すなわち、脱水動作の起動から、t4までの期間が、扉877を閉状態に保つロック期間となり、停止判定t4にロック期間が存在する。 It should be noted that the role of the S2 signal is used when driving the electric motor 863 with the door 877 closed from the viewpoint of preventing danger at the start of the dehydrating operation. In the Low state, the logic prohibits activation. That is, the period from the start of the dehydration operation to t4 is a lock period for keeping the door 877 closed, and there is a lock period in the stop determination t4.
 このように、回転中のドラム857内に、使用者が手を入れることを、確実に防止できる。従って、ホールICなどによる位置検知器が無いながらも、安全性の高い脱水機を実現することができる。扉877のロック解除は、ソレノイド881への通電によってなされる。よって、万一停電が発生し、直流電源751の出力が落ちた場合でも、ソレノイド881への通電が無い限り扉877のロック期間は継続される。従って、使用者の高い安全性が保たれる。 Thus, it is possible to reliably prevent the user from putting his / her hand in the rotating drum 857. Therefore, it is possible to realize a highly safe dehydrator without a position detector such as a Hall IC. The lock of the door 877 is released by energizing the solenoid 881. Therefore, even if a power failure occurs and the output of the DC power supply 751 drops, the lock period of the door 877 is continued as long as the solenoid 881 is not energized. Therefore, the high safety of the user is maintained.
 なお、ωがωthを下回ってから、停止判定を出力するまでの第1の所定時間を、0.3秒という短時間としている。これにより、種々の条件バラツキを考慮しても、実際のドラム857の停止t3からの停止判定のタイミングの遅れ時間は、最大でも0.17秒に収まる。従って、使用者は、時間の無駄がなく、脱水された被脱水物856を取り出すことができ、時間の有効利用が可能となる。 Note that the first predetermined time from when ω falls below ωth until the stop determination is output is set to a short time of 0.3 seconds. As a result, even when various condition variations are taken into consideration, the delay time of the stop determination timing from the actual stop t3 of the drum 857 is limited to 0.17 seconds at the maximum. Therefore, the user does not waste time, can take out the dehydrated material 856 that has been dehydrated, and can use the time effectively.
 また、さらに安全性を高めるために、次の構成がある。脱水機の電源が投入された直後に、マイクロコンピュータ789の動作が開始した時点で、ドラム857の回転中である可能性を考慮して、短絡制動期間を設け、その後に扉877のロック解除を行っても良い。 In addition, there are the following configurations to further increase safety. Immediately after the dehydrator is turned on, when the operation of the microcomputer 789 starts, a short-circuit braking period is provided in consideration of the possibility that the drum 857 is rotating, and then the door 877 is unlocked. You can go.
 また、ベルト866が切れたり、プーリ864、865から外れた伝達機構破損の可能性を考慮し、実施の形態14で説明した伝達機構破損検出部のような構成を用いても良い。すなわち、負荷停止推定信号の後に、扉877のロック解除を行う構成も有効となる。ベルト866が切れた場合などに関しては、脱水機の場合にはドラム857の慣性モーメントが空の状態であっても0.3kg平米程度という値がある。プーリ864、865の直径比による減速比(速度の比)を10:1とした場合、電動機163の軸に換算した慣性モーメントは、0.003kg平米となる。それでも通常の電動機863の慣性モーメントに対しては10倍程度の値となり、ベルト866が無くなった場合には、角運動量、運動エネルギーともに1/10程度にまで減少する。このため、短絡制動期間における減速は急激なものとなり、角加速度、電動機863が停止するまでの時間のいずれを用いても、ベルト866の存否を明確に区別することができる。 Further, in consideration of the possibility that the belt 866 is cut or the transmission mechanism is broken from the pulleys 864 and 865, a configuration like the transmission mechanism breakage detection unit described in the fourteenth embodiment may be used. That is, a configuration in which the door 877 is unlocked after the load stop estimation signal is also effective. As for the case where the belt 866 is cut, in the case of the dehydrator, there is a value of about 0.3 kg square meter even if the moment of inertia of the drum 857 is empty. When the reduction ratio (speed ratio) based on the diameter ratio of the pulleys 864 and 865 is 10: 1, the moment of inertia converted to the shaft of the electric motor 163 is 0.003 kg square meter. Still, it becomes a value about 10 times the moment of inertia of the normal electric motor 863, and when the belt 866 is lost, both the angular momentum and the kinetic energy are reduced to about 1/10. For this reason, the deceleration during the short-circuit braking period becomes abrupt, and the presence or absence of the belt 866 can be clearly distinguished by using either the angular acceleration or the time until the electric motor 863 stops.
 制動中にdq座標での電流ベクトルを計算しながら、特にq軸電流に対する角加速度の大小から伝達機構破損検出を行う構成も考えられる。ベルト866が無くなった場合に上記のような急激な減速がある場合には、dq座標の検出の誤差が大きくなる傾向があり、複雑な構成が必要となる。しかし、短絡制動期間での静止座標を用いる本発明の構成は、簡単であり、かつ伝達機構破損検出として信頼性の高いものが得られ、効果が非常に大きい。 A configuration is also conceivable in which the transmission mechanism breakage is detected from the magnitude of the angular acceleration with respect to the q-axis current while calculating the current vector in dq coordinates during braking. When the belt 866 is lost and there is a rapid deceleration as described above, the dq coordinate detection error tends to increase, and a complicated configuration is required. However, the configuration of the present invention using the stationary coordinates in the short-circuit braking period is simple, and a highly reliable transmission mechanism breakage detection can be obtained, which is very effective.
 また、扉877のロック解除の前に、一旦インバータ回路871から電動機863に電流を供給し、電流と電圧の関係から、電動機863に接続された負荷トルクが極端に小さい状態でない、ことを検知する伝達機構破損検出期間を設けても良い。これにより、念には念を入れた、さらに安全性の高い脱水機を実現することができる。 Further, before unlocking the door 877, the current is once supplied from the inverter circuit 871 to the electric motor 863, and it is detected from the relationship between the electric current and the voltage that the load torque connected to the electric motor 863 is not extremely small. A transmission mechanism breakage detection period may be provided. As a result, it is possible to realize a safer dehydrator that takes into consideration.
 なお、本実施の形態においては、被脱水物として衣類とした家事機器としている。しかし、一般に洗濯機、洗濯乾燥機などと称されるものの中には、脱水機としての機能を有するものもある。そのようなものであっても構わない。 Note that in this embodiment, the housework equipment is clothing that is to be dehydrated. However, some commonly called washing machines, washing dryers, etc. have a function as a dehydrator. Such a thing may be used.
 洗いや濯ぎなどを、自動で順序よく行っていく全自動洗濯機と呼ばれる装置においては、途中で洗剤を含んだ水の脱水、濯ぎを行った水の脱水など、複数回の脱水動作がある。また、脱水に続いて乾燥を行う装置においても、脱水の終了後に、次の工程(シーケンス)に移る。そのような脱水後のシーケンスが存在する装置の場合にあっても、本発明のインバータ装置の停止判定を用いることにより、実際のドラムの停止に対し、非常に遅延の少ない停止判定が可能となる。このため、次のシーケンスに移るまでの無駄時間が極力短縮される。結果として、全自動の洗濯コース(洗い~脱水~濯ぎ~脱水)などの所要時間を短くすませることができ、時間短縮という効果が得られる。 In an apparatus called a fully automatic washing machine that automatically performs washing and rinsing in order, there are multiple dehydration operations such as dehydration of water containing detergent and dewatering of rinsed water. Also in the apparatus that performs drying following dehydration, the process proceeds to the next step (sequence) after dehydration is completed. Even in the case of an apparatus having such a sequence after dewatering, it is possible to make a stop determination with very little delay with respect to the actual stop of the drum by using the stop determination of the inverter device of the present invention. . For this reason, the dead time until moving to the next sequence is shortened as much as possible. As a result, the time required for a fully automatic washing course (washing-dehydration-rinsing-dehydration) can be shortened, and the effect of shortening the time can be obtained.
 また、ドラム857の回転軸は、水平としたが、垂直、あるいは斜めであっても良い。ドラム857の回転駆動のための動力伝達経路としては、プーリ864、865、ベルト866を用いたものを示した。これについてもギア(歯車)を用いたものや、ダイレクト駆動と呼ばれるように、ドラム857の軸858に直接に電動機を備えて、同一の速度で回転するものなどであっても構わない。 Further, although the rotation axis of the drum 857 is horizontal, it may be vertical or oblique. As the power transmission path for rotationally driving the drum 857, the one using the pulleys 864 and 865 and the belt 866 is shown. In this case, a gear (gear) may be used, or a motor may be provided directly on the shaft 858 of the drum 857 and rotated at the same speed as called direct drive.
 以上のように、本発明にかかる洗濯機は、ホールICなどの位置検知器を設けることなく、安全性を確保できる洗濯機に適用できる。 As described above, the washing machine according to the present invention can be applied to a washing machine capable of ensuring safety without providing a position detector such as a Hall IC.
 100,101  永久磁石
 102,103,104  巻線
 105  衣類
 106  ドラム
 107  プーリ
 109  電動機
 111,112,113,114,115,116  スイッチング素子
 117  インバータ回路
 118  制御部
 119  電流検知部
 120  速度算出部
 121,122,123  シャント抵抗
 124  A/D変換器
 126  位相誤差検知部
 127  可変周波数発振部
 128  増幅器
 129  積分器
 130  低速判定部
 131  閾値発生器
 132  比較部
 135  中央制御部
 136  PWM回路
 137,156  切り替え部
 138  駆動回路
 141  交流電源
 142  全波整流器
 143  コンデンサ
 144  直流電源
 146,147  抵抗
 148  直流電圧検知回路
 150,158  座標変換部
 151,152  減算部
 153,154,161  誤差増幅部
 159  PWM部
 160  減算部
 162  Idr設定部
 163  短絡ブレーキ制御部
 165  異常検出部
 166  遅延部
 167  シーケンス発生部
 168  電圧指令絞り部
 170  短絡電流判定部
 182  プーリ
 190  受け筒
 193  給水弁
 194  排水弁
 196  蓋
 197  ハンドル
 200  蓋ロック部
 201  ソレノイド
 202  プランジャ
 203  バネ
 204  ロック制御回路
 206  蓋検知スイッチ
 208  停止ボタン
 221  速度算出部
 223  位相誤差検知部
 340,341  永久磁石
 342,343,344  巻線
 345  衣類
 346  ドラム
 347  プーリ
 349  電動機
 351,352,353,354,355,356  スイッチング素子
 357  インバータ回路
 358  制御部
 359  電流検知部
 361,362,363  シャント抵抗
 364  増幅器
 366,440  中央制御部
 367  PWM回路
 369,400,443  切り替え部
 370  駆動回路
 371  交流電源
 372  全波整流器
 373  コンデンサ
 374  直流電源
 376,377  抵抗
 378  直流電圧検知回路
 380  第1の座標変換部
 381,382,394  減算部
 383,384,395  誤差増幅部
 388  第2の座標変換部
 389  PWM部
 390  速度推定部
 392,406  積分器
 396  Idr設定部
 398,441  短絡ブレーキ制御部
 399,442  シーケンス発生部
 401,444  信号発生器
 403  短絡電流判定部
 405  関数発生器
 407  遅延部
 410  プーリ
 411  受け筒
 413  給水弁
 414  排水弁
 416  蓋
 417  ハンドル
 419  蓋ロック部
 420  ソレノイド
 421  プランジャ
 422  バネ
 423  ロック制御回路
 425  蓋検知スイッチ
 426  停止ボタン
 500,501  永久磁石
 502,503,504  巻線
 505,620  衣類
 506,621  負荷(ドラム)
 507  プーリ
 509,624  電動機
 511,512,513,514,515,516  スイッチング素子
 517,626  インバータ回路
 518  制御部
 519  電流検知部
 521,522,523  シャント抵抗
 524  A/D変換器
 535  中央制御部
 536  PWM回路
 537,583  切り替え部
 538  駆動回路
 541  交流電源
 542  全波整流器
 543  コンデンサ
 544  直流電源
 546,547  抵抗
 548  直流電圧検知回路
 550  第1の座標変換部
 551,552,560  減算部
 553,554,561  誤差増幅部
 555,586  積分器
 556  速度推定部
 558  第2の座標変換部
 562  Idr設定部
 563  短絡ブレーキ制御部
 565  異常検出部
 567  シーケンス発生部
 570  短絡電流判定部
 574  OR回路
 575  比較器
 576  電圧上昇分発生部
 577  加算器
 578,585,595,596,608  ホルダ
 580  短絡時間比率拡大速度指令部
 581,582  関数発生器
 587,606  遅延部
 590,605,612  短絡ブレーキ制御部
 592,610,  短絡時間比率拡大速度設定部
 597  減算器
 599  定数発生器
 600  比較器
 607  線電流検知部
 613  短絡時間比率拡大速度指令部
 615  速度検知部
 617  ホールIC
 618  速度計算器
 622  プーリ
 623  ベルト
 628  制御部
 630  受け筒
 633  給水弁
 634  排水弁
 636  蓋
 637  ハンドル
 641  ソレノイド
 642  プランジャ
 643  バネ
 644  ロック制御回路
 646  蓋検知スイッチ
 648  停止ボタン
 741,742  永久磁石
 743,744,745  巻線
 746,866  ベルト
 747,864,865  プーリ
 748  負荷
 750,863  電動機
 751  直流電源
 752,753,754,755,756,757  スイッチング素子
 758,871  インバータ回路
 760,788,872  制御回路
 761  ゲート駆動回路
 762,763,764  抵抗
 765  増幅回路
 766  電流検知部
 768  周波数検知部
 770  停止判定部
 772  3相/2相変換部
 773  極座標変換部
 774  微分部
 777,778  比較器
 779  AND回路
 781  クロック発振器
 782  カウンタ
 783  比較器
 789  マイクロコンピュータ
 790  セラミック発振子
 855  負荷
 856  被脱水物
 857  ドラム
 858  軸
 860,861  ボールベアリング
 867  受け筒
 868  排水ホース
 870  インバータ装置
 875  ソレノイド駆動回路
 877  扉
 880  施錠部
 881  ソレノイド
 882  ロックバー
 883  爪
 885  扉センサ
DESCRIPTION OF SYMBOLS 100,101 Permanent magnet 102,103,104 Winding 105 Clothing 106 Drum 107 Pulley 109 Electric motor 111,112,113,114,115,116 Switching element 117 Inverter circuit 118 Control part 119 Current detection part 120 Speed calculation part 121,122 , 123 Shunt resistor 124 A / D converter 126 Phase error detection unit 127 Variable frequency oscillation unit 128 Amplifier 129 Integrator 130 Low speed determination unit 131 Threshold generator 132 Comparison unit 135 Central control unit 136 PWM circuit 137, 156 Switching unit 138 Drive Circuit 141 AC power source 142 Full wave rectifier 143 Capacitor 144 DC power source 146, 147 Resistance 148 DC voltage detection circuit 150, 158 Coordinate conversion unit 151, 152 Subtraction unit 153 154, 161 Error amplification section 159 PWM section 160 Subtraction section 162 Idr setting section 163 Short circuit brake control section 165 Abnormality detection section 166 Delay section 167 Sequence generation section 168 Voltage command throttle section 170 Short circuit current determination section 182 Pulley 190 Receptacle 193 Water supply valve 194 Drain valve 196 Lid 197 Handle 200 Lid lock part 201 Solenoid 202 Plunger 203 Spring 204 Lock control circuit 206 Lid detection switch 208 Stop button 221 Speed calculation part 223 Phase error detection part 340, 341 Permanent magnet 342, 343, 344 Winding 345 Clothing 346 Drum 347 Pulley 349 Electric motor 351, 352, 353, 354, 355, 356 Switching element 357 Inverter circuit 358 Control unit 359 Current detection unit 361, 362, 363 Shunt resistor 364 Amplifier 366, 440 Central control unit 367 PWM circuit 369, 400, 443 Switching unit 370 Drive circuit 371 AC power supply 372 Full wave rectifier 373 Capacitor 374 DC power supply 376, 377 Resistance 378 DC voltage Detection circuit 380 First coordinate conversion unit 381, 382, 394 Subtraction unit 383, 384, 395 Error amplification unit 388 Second coordinate conversion unit 389 PWM unit 390 Speed estimation unit 392, 406 Integrator 396 Idr setting unit 398, 441 Short circuit brake control unit 399, 442 Sequence generation unit 401, 444 Signal generator 403 Short circuit current determination unit 405 Function generator 407 Delay unit 410 Pulley 411 Receiving cylinder 413 Water supply valve 414 Drain valve 416 Lid 417 Handle 419 Lid lock unit 420 Solenoid 421 Plunger 422 Spring 423 Lock control circuit 425 Lid detection switch 426 Stop button 500, 501 Permanent magnet 502, 503, 504 Winding 505, 620 Clothes 506, 621 Load (drum)
507 Pulley 509,624 Motor 511,512,513,514,515,516 Switching element 517,626 Inverter circuit 518 Control unit 519 Current detection unit 521,522,523 Shunt resistance 524 A / D converter 535 Central control unit 536 PWM Circuit 537, 583 Switching unit 538 Drive circuit 541 AC power supply 542 Full-wave rectifier 543 Capacitor 544 DC power supply 546, 547 Resistance 548 DC voltage detection circuit 550 First coordinate conversion unit 551, 552, 560 Subtraction unit 553, 554, 561 Error Amplifier 555, 586 Integrator 556 Speed estimation unit 558 Second coordinate conversion unit 562 Idr setting unit 563 Short circuit brake control unit 565 Abnormality detection unit 567 Sequence generation unit 570 Short circuit current determination Unit 574 OR circuit 575 Comparator 576 Voltage rise generation unit 577 Adder 578, 585, 595, 596, 608 Holder 580 Short-circuit time ratio expansion speed command unit 581, 582 Function generator 587, 606 Delay unit 590, 605, 612 Short circuit brake control unit 592, 610, Short circuit time ratio expansion speed setting unit 597 Subtractor 599 Constant generator 600 Comparator 607 Line current detection unit 613 Short circuit time ratio expansion speed command unit 615 Speed detection unit 617 Hall IC
618 Speed calculator 622 Pulley 623 Belt 628 Control unit 630 Receptacle 633 Water supply valve 634 Drain valve 636 Lid 637 Handle 641 Solenoid 642 Plunger 643 Spring 644 Lock control circuit 646 Lid detection switch 648 Stop button 741, 742 Permanent magnet 743 745 Winding 746, 866 Belt 747, 864, 865 Pulley 748 Load 750, 863 Motor 751 DC power supply 752, 753, 754, 755, 756, 757 Switching element 758, 871 Inverter circuit 760, 788, 872 Control circuit 761 Gate drive Circuit 762, 763, 764 Resistance 765 Amplifier circuit 766 Current detection unit 768 Frequency detection unit 770 Stop determination unit 772 3 phase / 2 phase conversion unit 7 3 Polar coordinate conversion unit 774 Differentiation unit 777,778 Comparator 779 AND circuit 781 Clock oscillator 782 Counter 783 Comparator 789 Microcomputer 790 Ceramic oscillator 855 Load 856 Dehydrated object 857 Drum 858 Shaft 860, 861 Ball bearing 867 Drain 868 Drain Hose 870 Inverter device 875 Solenoid drive circuit 877 Door 880 Locking portion 881 Solenoid 882 Lock bar 883 Claw 885 Door sensor

Claims (22)

  1. 衣類を収納するドラムと、
    永久磁石と3相の巻線を備え、前記ドラムを駆動する電動機と、
    前記ドラムの開口部を開閉する蓋と、
    前記蓋をロックする蓋ロック部と、
    直流電源から電力が供給され、複数のスイッチング素子を用いて、前記電動機に電流を供給するインバータ回路と、
    前記スイッチング素子をオンオフ制御する制御部とを有し、
    前記制御部は、前記電流を検知する電流検知部と、前記電流検知部の出力を受けて前記電動機の速度を算出する速度算出部とを備え、
    前記制御部は、前記ドラムの制動期間に、前記電動機の入力電圧を略零に保つように前記スイッチング素子を制御し、前記速度が所定値以下となった後、前記蓋ロック部によって前記蓋を開くことを可能にする洗濯機。
    A drum for storing clothing,
    An electric motor comprising a permanent magnet and three-phase windings and driving the drum;
    A lid for opening and closing the opening of the drum;
    A lid lock portion for locking the lid;
    An inverter circuit that is supplied with electric power from a DC power source and supplies a current to the electric motor using a plurality of switching elements;
    A control unit for controlling on / off of the switching element,
    The control unit includes a current detection unit that detects the current, and a speed calculation unit that receives the output of the current detection unit and calculates the speed of the electric motor,
    The control unit controls the switching element so that the input voltage of the electric motor is maintained at substantially zero during the braking period of the drum, and after the speed becomes a predetermined value or less, the lid is locked by the lid lock unit. Washing machine that allows you to open.
  2. 前記制御部は、前記電流検知部が、3相の内の2相以上の電流を検知し、前記速度算出部が、この3相の内の2相以上の電流の値に基づいて速度を算出する請求項1に記載の洗濯機。 In the control unit, the current detection unit detects a current of two or more phases out of three phases, and the speed calculation unit calculates a speed based on a current value of two or more phases in the three phases. The washing machine according to claim 1.
  3. 前記制御部は、速度の時間積分値を含む前記永久磁石の位相を出力する可変周波数発振部と、位相誤差検知部と、座標変換部とを備え、
    前記座標変換部は、前記位相を用いて前記電流検知部の出力を静止座標から回転座標へ変換して出力し、
    前記速度算出部は前記回転座標での電流値信号を受けて速度を算出する請求項2に記載の洗濯機。
    The control unit includes a variable frequency oscillation unit that outputs a phase of the permanent magnet including a time integral value of speed, a phase error detection unit, and a coordinate conversion unit,
    The coordinate conversion unit converts the output of the current detection unit from a stationary coordinate to a rotating coordinate using the phase, and outputs it,
    The washing machine according to claim 2, wherein the speed calculation unit calculates a speed by receiving a current value signal at the rotation coordinate.
  4. 前記制動期間の前に、前記電動機の入力電圧の絶対値を低下させるように、前記スイッチング素子を制御する電圧低減期間を有する請求項1~3のいずれか1項に記載の洗濯機。 The washing machine according to any one of claims 1 to 3, further comprising a voltage reduction period for controlling the switching element so as to reduce an absolute value of an input voltage of the electric motor before the braking period.
  5. 前記蓋ロック部によって前記蓋を開くことを可能にする前に、前記制動期間を有する請求項1~4のいずれか1項に記載の洗濯機。 The washing machine according to any one of claims 1 to 4, wherein the washing period is provided before the lid can be opened by the lid lock portion.
  6. 前記制御部は、前記電動機の制動時に前記ドラムの速度が略零となった後、前記直流電源から前記巻線に電流を供給するように前記スイッチング素子を制御してから、前記蓋ロック部によって前記蓋を開くことを可能にする請求項1に記載の洗濯機。 The controller controls the switching element to supply a current from the DC power source to the winding after the drum speed becomes substantially zero during braking of the electric motor, and then the lid lock unit controls the switching element. The washing machine according to claim 1, wherein the lid can be opened.
  7. 前記制御部は、前記制動時に前記ドラムの速度が略零となった後、前記電流検知部の出力が所定値となるように、前記スイッチング素子を制御してから、前記蓋ロック部によって前記蓋を開くことを可能にする請求項6に記載の洗濯機。 The control unit controls the switching element so that the output of the current detection unit becomes a predetermined value after the speed of the drum becomes substantially zero at the time of braking, and then the lid lock unit performs the lid operation. The washing machine according to claim 6, wherein the washing machine can be opened.
  8. 前記制御部は、前記制動時に前記ドラムの速度が略零となった後、前記電流検知部の出力が所定値に満たない場合、前記蓋ロック部によって前記蓋を開くことが不可能な状態を継続する請求項6に記載の洗濯機。 When the output of the current detection unit is less than a predetermined value after the drum speed becomes substantially zero during the braking, the control unit is in a state in which the lid cannot be opened by the lid lock unit. The washing machine according to claim 6, which is continued.
  9. 前記制御部は、前記インバータ回路のスイッチング素子のオンオフ制御により、前記3相の巻線の入力端子を短絡する短絡時間比率を拡大する短絡時間比率拡大期間の後、前記短絡時間比率を最大限に保つ短絡制動期間を備える請求項1に記載の洗濯機。 The control unit maximizes the short-circuit time ratio after a short-circuit time ratio expansion period for expanding a short-circuit time ratio for short-circuiting the input terminals of the three-phase windings by on / off control of the switching elements of the inverter circuit. The washing machine according to claim 1, further comprising a short-circuit braking period for maintaining.
  10. 前記直流電源の電圧を検知する電圧検知部、前記電流を検知する電流検知部、前記電動機の速度を検知する速度検知部の少なくともいずれかの検知部の出力によって、前記制御部は、前記短絡時間比率拡大期間の短絡時間比率の拡大速度を変化させる請求項9に記載の洗濯機。 According to the output of at least one of the voltage detection unit that detects the voltage of the DC power supply, the current detection unit that detects the current, and the speed detection unit that detects the speed of the electric motor, the control unit is configured to output the short circuit time. The washing machine according to claim 9, wherein an expansion speed of the short circuit time ratio in the ratio expansion period is changed.
  11. 前記制御部は、前記短絡時間比率拡大期間の開始からの時間に応じて、短絡時間比率の拡大速度を変化させる請求項9に記載の洗濯機。 The washing machine according to claim 9, wherein the control unit changes an expansion speed of the short circuit time ratio according to a time from the start of the short circuit time ratio expansion period.
  12. 前記制御部は、前記電流検知部の出力を受け、周期的に周波数を検知する周波数検知部と、
    前記電動機の停止を判定する停止判定部と、
    前記ドラムの制動期間に、前記電動機の入力電圧が略零となるように、前記スイッチング素子を制御する短絡制動期間とをさらに備え、
    前記停止判定部は、前記周波数検知部の出力が所定値以上ではなくなった時から第1の所定時間経過した後に、前記電動機を停止と判定する請求項1に記載の洗濯機。
    The control unit receives an output of the current detection unit and periodically detects a frequency;
    A stop determination unit for determining stop of the electric motor;
    A short-circuit braking period for controlling the switching element so that the input voltage of the electric motor becomes substantially zero during the braking period of the drum;
    The washing machine according to claim 1, wherein the stop determination unit determines that the electric motor is stopped after a first predetermined time has elapsed since the output of the frequency detection unit is no longer equal to or greater than a predetermined value.
  13. 前記周波数検知部は、前記短絡制動期間内に、静止座標での電流ベクトルの位相の時間的変化から角速度を演算する電流角速度検知期間を備え、前記角速度が所定値以下となった後、停止判定を行う請求項12に記載の洗濯機。 The frequency detection unit includes a current angular velocity detection period for calculating an angular velocity from a temporal change in the phase of a current vector at a stationary coordinate within the short-circuit braking period, and determines whether to stop after the angular velocity is equal to or less than a predetermined value. The washing machine according to claim 12, wherein
  14. 前記周波数検知部は、前記電流検知部の出力レベルが所定値以上の場合に、検知周波数の更新を行う請求項12又は13に記載の洗濯機。 The washing machine according to claim 12 or 13, wherein the frequency detection unit updates a detection frequency when an output level of the current detection unit is a predetermined value or more.
  15. 前記周波数検知部は、前記電流角速度検知期間内の角速度の演算の時間間隔を、前記電流角速度検知期間内の前記電動機の最高速度での角速度の1周期よりも短い周期とした請求項13に記載の洗濯機。 14. The frequency detection unit according to claim 13, wherein the time interval for calculating the angular velocity in the current angular velocity detection period is shorter than one cycle of the angular velocity at the maximum speed of the electric motor in the current angular velocity detection period. Washing machine.
  16. 前記周波数検知部は、前記電流検知部の出力レベルが所定値以上の場合に、静止座標での電流ベクトルの位相を記憶し、前回記憶した位相からの経過時間が所定値よりも長い場合に検知周波数の更新を行わず、前回記憶した位相からの経過時間が所定値以下の場合に、前回との位相差と経過時間から検知周波数を計算して更新を行う請求項12~15のいずれか1項に記載の洗濯機。 The frequency detector stores the phase of the current vector at a stationary coordinate when the output level of the current detector is equal to or greater than a predetermined value, and detects when the elapsed time from the previously stored phase is longer than the predetermined value. The frequency is not updated, and when the elapsed time from the previously stored phase is equal to or less than a predetermined value, the detection frequency is updated from the phase difference from the previous time and the elapsed time, and updated. The washing machine according to item.
  17. 前記電動機と前記ドラムの間に動力伝達経路を有し、前記制御部は、前記制動時に前記ドラムの速度が略零となった後、前記電動機への電流供給期間中に前記動力伝達経路の故障を検知した場合、前記蓋ロック部によって使用者が前記蓋を開くことが不可能な状態を継続する請求項6~8のいずれか1項に記載の洗濯機。 There is a power transmission path between the electric motor and the drum, and the control unit fails in the power transmission path during the current supply period to the electric motor after the speed of the drum becomes substantially zero during the braking. The washing machine according to any one of claims 6 to 8, wherein the lid lock unit continues a state in which the user cannot open the lid when the lid is detected.
  18. 前記動力伝達経路はベルトであり、前記電流供給期間中に前記電動機に供給される電流の周波数は、前記電動機と前記ベルトおよび前記ドラムによる機構共振周波数成分を備える請求項17に記載の洗濯機。 The washing machine according to claim 17, wherein the power transmission path is a belt, and a frequency of a current supplied to the electric motor during the current supply period includes a mechanism resonance frequency component by the electric motor, the belt, and the drum.
  19. 前記制動時に、前記ドラムの速度が略零となった後、前記ドラムの速度は、毎分1回転以下である請求項6~8、17、18のいずれか1項に記載の洗濯機。 The washing machine according to any one of claims 6 to 8, 17, and 18, wherein the speed of the drum is equal to or less than one revolution per minute after the speed of the drum becomes substantially zero during the braking.
  20. 前記電動機と前記ドラム間の動力伝達経路の異常を検知する伝達機構破損検出部と、ドラム停止推定部を有し、
    前記ドラム停止推定部は、前記伝達機構破損検出部からの破損信号を受けた場合に、前記停止判定より遅延したドラム停止推定信号を出力する請求項12~16のいずれか1項に記載の洗濯機。
    A transmission mechanism breakage detection unit that detects an abnormality in a power transmission path between the electric motor and the drum, and a drum stop estimation unit;
    The washing according to any one of claims 12 to 16, wherein the drum stop estimation unit outputs a drum stop estimation signal delayed from the stop determination when receiving a damage signal from the transmission mechanism damage detection unit. Machine.
  21. 前記伝達機構破損検出部は、前記短絡制動期間の開始から前記電動機が停止するまでの時間が第2の所定時間より小である場合に、前記破損信号を出力する請求項20に記載の洗濯機。 21. The washing machine according to claim 20, wherein the transmission mechanism breakage detection unit outputs the breakage signal when a time from the start of the short-circuit braking period to the stop of the electric motor is shorter than a second predetermined time. .
  22. 前記電動機は位置検知器を持たないセンサレス方式とした請求項1~21のいずれか1項に記載の洗濯機。 The washing machine according to any one of claims 1 to 21, wherein the electric motor is a sensorless system having no position detector.
PCT/JP2014/003764 2013-07-18 2014-07-16 Washing machine WO2015008486A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480040857.4A CN105378174B (en) 2013-07-18 2014-07-16 Washing machine
DE112014003296.4T DE112014003296T5 (en) 2013-07-18 2014-07-16 Washing machine

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013149262A JP6295407B2 (en) 2013-07-18 2013-07-18 Inverter device and dehydrator using the same
JP2013-149262 2013-07-18
JP2014-032679 2014-02-24
JP2014-032680 2014-02-24
JP2014-032684 2014-02-24
JP2014032684A JP6229162B2 (en) 2014-02-24 2014-02-24 Washing machine
JP2014032680A JP6361018B2 (en) 2014-02-24 2014-02-24 Inverter device and washing machine equipped with the same
JP2014032679A JP6229160B2 (en) 2014-02-24 2014-02-24 Washing machine

Publications (1)

Publication Number Publication Date
WO2015008486A1 true WO2015008486A1 (en) 2015-01-22

Family

ID=52345962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003764 WO2015008486A1 (en) 2013-07-18 2014-07-16 Washing machine

Country Status (3)

Country Link
CN (1) CN105378174B (en)
DE (1) DE112014003296T5 (en)
WO (1) WO2015008486A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220910A1 (en) * 2015-10-27 2017-06-01 BSH Hausgeräte GmbH Voltage monitoring for a motor drive circuit of a brushless washing machine motor
JP2018068324A (en) * 2016-10-24 2018-05-10 パナソニックIpマネジメント株式会社 Washing machine
CN109150031A (en) * 2017-06-15 2019-01-04 株式会社牧田 Electric working machine
WO2019163320A1 (en) * 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 Control circuit for electric tool
US11136705B2 (en) 2019-05-15 2021-10-05 Haier Us Appliance Solutions, Inc. Detecting mechanical decoupling in a laundry appliance
US20220068535A1 (en) * 2020-08-28 2022-03-03 Hubbell Incorported Magnet control units

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190063252A (en) * 2017-11-29 2019-06-07 엘지전자 주식회사 Laundry treating appratus and controlling method thereof
DE102018200513A1 (en) * 2018-01-15 2019-07-18 Robert Bosch Gmbh braking device
JP7028676B2 (en) * 2018-02-28 2022-03-02 ミネベアミツミ株式会社 Motor drive control device and motor drive control method
CN111118822A (en) * 2018-10-15 2020-05-08 无锡飞翎电子有限公司 Control device and washing machine
KR102636050B1 (en) * 2019-01-03 2024-02-14 현대자동차주식회사 Correcting method for signal delay of hole sensor of air compressor motor
CN109905068A (en) 2019-03-13 2019-06-18 阳光电源股份有限公司 Electric machine controller and its active short circuit current and method
CN111049463B (en) * 2019-12-26 2021-12-21 深圳市蓝海华腾技术股份有限公司 Method for motor to exit three-phase active short-circuit mode and control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272280A (en) * 1997-03-31 1998-10-13 Matsushita Electric Ind Co Ltd Washing machine
JPH1155977A (en) * 1997-07-31 1999-02-26 Sanyo Electric Co Ltd Control circuit for capacitor motor and dewatering device provided with the control circuit
JPH1190088A (en) * 1997-09-22 1999-04-06 Matsushita Electric Ind Co Ltd Electric washing machine using induction motor
JPH11206179A (en) * 1998-01-05 1999-07-30 Matsushita Electric Ind Co Ltd Controller of motor and electric washing machine
JP2001104687A (en) * 1999-10-12 2001-04-17 Lg Electronics Inc Braking method for washing machine
JP2002374689A (en) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp Motor drive gear and washing machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100194153B1 (en) * 1997-01-31 1999-06-15 김광호 Washing machine and control device of washing machine
US6163912A (en) * 1997-09-22 2000-12-26 Matsushita Electric Industrial Co., Ltd. Washing machine
JP5183594B2 (en) * 2009-07-31 2013-04-17 日立オートモティブシステムズ株式会社 Motor control device and motor system including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272280A (en) * 1997-03-31 1998-10-13 Matsushita Electric Ind Co Ltd Washing machine
JPH1155977A (en) * 1997-07-31 1999-02-26 Sanyo Electric Co Ltd Control circuit for capacitor motor and dewatering device provided with the control circuit
JPH1190088A (en) * 1997-09-22 1999-04-06 Matsushita Electric Ind Co Ltd Electric washing machine using induction motor
JPH11206179A (en) * 1998-01-05 1999-07-30 Matsushita Electric Ind Co Ltd Controller of motor and electric washing machine
JP2001104687A (en) * 1999-10-12 2001-04-17 Lg Electronics Inc Braking method for washing machine
JP2002374689A (en) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp Motor drive gear and washing machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220910A1 (en) * 2015-10-27 2017-06-01 BSH Hausgeräte GmbH Voltage monitoring for a motor drive circuit of a brushless washing machine motor
JP2018068324A (en) * 2016-10-24 2018-05-10 パナソニックIpマネジメント株式会社 Washing machine
CN109150031A (en) * 2017-06-15 2019-01-04 株式会社牧田 Electric working machine
CN109150031B (en) * 2017-06-15 2023-08-18 株式会社牧田 Electric working machine
WO2019163320A1 (en) * 2018-02-22 2019-08-29 パナソニックIpマネジメント株式会社 Control circuit for electric tool
US11136705B2 (en) 2019-05-15 2021-10-05 Haier Us Appliance Solutions, Inc. Detecting mechanical decoupling in a laundry appliance
US20220068535A1 (en) * 2020-08-28 2022-03-03 Hubbell Incorported Magnet control units
US11521774B2 (en) * 2020-08-28 2022-12-06 Hubbell Incorporated Magnet control units

Also Published As

Publication number Publication date
DE112014003296T5 (en) 2016-04-21
CN105378174A (en) 2016-03-02
CN105378174B (en) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2015008486A1 (en) Washing machine
JP6361018B2 (en) Inverter device and washing machine equipped with the same
JP6023974B2 (en) Washing machine
JP2017093534A (en) Washing machine
KR20140122349A (en) Sensorless control apparatus of washing machine and method thereof
JP6295407B2 (en) Inverter device and dehydrator using the same
JP6654373B2 (en) Washing machine
JP6229160B2 (en) Washing machine
WO2014091703A1 (en) Drum drive device, and clothes washer and clothes dryer using same
JP6229162B2 (en) Washing machine
JP6043950B2 (en) Washing and drying machine
JP6634603B2 (en) Washing machine
CN110731046B (en) Washing machine
KR102161630B1 (en) Motor drive apparatus performing regenerative breaking
KR102543582B1 (en) Motor Driving apparatus and laundry treatment maschine including the same
JP6244539B2 (en) Drum drive
JP6403418B2 (en) Washing machine
JP6064165B2 (en) Drum drive
JP2018137911A (en) Motor controller, and washing machine and dryer using the same
JP6751846B2 (en) Washing machine
JP6634602B2 (en) Washing machine
JP2016202596A (en) Motor control device for washing machine
CN113802329A (en) Washing machine
JP2013244170A (en) Washing machine
JP2016202594A (en) Motor control device for washing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014003296

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826684

Country of ref document: EP

Kind code of ref document: A1