WO2015008453A1 - Method for creating database for identification and quantification of peptide peaks in mass spectrometry - Google Patents

Method for creating database for identification and quantification of peptide peaks in mass spectrometry Download PDF

Info

Publication number
WO2015008453A1
WO2015008453A1 PCT/JP2014/003600 JP2014003600W WO2015008453A1 WO 2015008453 A1 WO2015008453 A1 WO 2015008453A1 JP 2014003600 W JP2014003600 W JP 2014003600W WO 2015008453 A1 WO2015008453 A1 WO 2015008453A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
peak
group
elution time
peptide peak
Prior art date
Application number
PCT/JP2014/003600
Other languages
French (fr)
Japanese (ja)
Inventor
純男 大槻
Original Assignee
国立大学法人熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人熊本大学 filed Critical 国立大学法人熊本大学
Publication of WO2015008453A1 publication Critical patent/WO2015008453A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry

Definitions

  • the present invention relates to a peptide peak elution time for identifying and / or quantifying peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS). And a method for creating a database storing MRM transitions and peak intensities corresponding to the elution time of the peptide peak, a database created using such a method, and LC-MS / MS using such a database.
  • the present invention relates to a method for identifying and quantifying peptide peaks of peptides constituting a target protein in a sample by analysis.
  • Proteomics is a method for comprehensive analysis of proteins, and is an important method for life science, especially biomarker research. In recent years, proteomics is expected not only as a comprehensive identification of proteins present in samples, but also as a comprehensive quantitative comparison tool (quantitative proteomics) for comprehensive identification and quantification of proteins that vary between different samples.
  • Quantitative proteomics is a shotgun proteomics, that is, a method based on the method of proteolytic enzyme treatment of a sample containing a large number of proteins to separate peptide fragments and identify the peptide fragments using mass spectrometry. Proteins that can be produced are limited to those identified in the same analysis sample. Therefore, the number of proteins that can be comparatively analyzed has been increased by improving mass spectrometry or a method of separating peptide fragments before mass spectrometry.
  • proteomics using multiple reaction monitoring is a technique for quantifying a target protein using a specific MRM transition based on the mass-to-charge ratio (m / z) of a precursor (precursor) ion (Q1) and a product ion (Q3)
  • m / z mass-to-charge ratio
  • Q1 precursor ion
  • Q3 product ion
  • Non-Patent Documents 1 to 3 By using such a technique in combination with an internal standard peptide labeled with a stable isotope, quantitative changes in target proteins in different samples can be quantified with high sensitivity and high accuracy.
  • Non-Patent Documents 4 and 7 Recently, a SWATH-MS acquisition method has been developed as a new data acquisition method in LC-MS / MS (Non-Patent Documents 4 and 7). With this SWATH-MS acquisition method, it is possible to acquire all MS / MS data from a sample and perform MRM analysis using MRM transitions.
  • the data acquired by SWATH includes information on proteins expressed at a very low level (Non-patent Document 4)
  • the data acquired by SWATH is the same as the conventional mass spectrometry method such as shotgun proteomics.
  • the expression level is determined by quantitative analysis (standard SWATH quantification method) based on information such as MRM transition and elution time (also referred to as “retention time (RT)”) for the identified protein. Proteins that were not identified in the same analysis sample due to low values cannot be quantified.
  • An object of the present invention is to provide a method for creating a database for identifying and quantifying peptide peaks of a peptide constituting a target protein with high sensitivity and comprehensiveness by analysis using LC-MS / MS
  • Another object of the present invention is to provide a method capable of identifying and quantifying peptide peaks of a peptide constituting a target protein with high sensitivity and comprehensiveness by analysis using LC-MS / MS.
  • the elution time also called retention time (RT)
  • RT retention time
  • the present invention provides (1) identification and / or quantification of peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS).
  • LC-MS / MS liquid chromatograph-tandem mass spectrometer
  • (A) Obtain the standard elution time of the peptide peak group and the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group obtained by mass spectrometry using LC-MS / MS and store them in the database
  • the present invention also relates to the method according to (1) above, wherein (2) steps (b) to (f) are repeated 2 to 25 times.
  • the present invention also provides (3) a database for identifying and / or quantifying peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS).
  • LC-MS / MS liquid chromatograph-tandem mass spectrometer
  • the present invention also provides (4) peptide peaks of peptides constituting one or more target proteins in one or more samples by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS).
  • the present invention relates to a method for identification, comprising the following steps (A) to (E).
  • step (A) A step of preparing a target peptide group by subjecting the target protein group in the sample to a fragmentation treatment with a protein digestive enzyme;
  • step (B) Using the target peptide group prepared in step (A), analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS) was performed, and peptide peak elution time, mass-to-charge ratio (m / Z), and obtaining data including MRM chromatogram information;
  • C) The target peptide peak group is identified based on the mass-to-charge ratio (m / z) of the peptide peak obtained in step (B), and described in the above (1) or (2) from the target peptide peak group A step of selecting a peptide peak common to the peptide peak group stored in the database created by using the method as a target peptide peak group for standardization;
  • step (D) Based on the elution time of the target peptide peak group for standardization selected in step (C), a database
  • the present invention (5) further comprises the following steps (F) and (G) for quantifying the peptide peak of the peptide constituting the target protein among a plurality of samples ( It relates to the method described in 4).
  • (F) A step of selecting a peptide peak for quantification of the target peptide peak group from the target peptide peak group identified in step (E) based on the ratio of the peak area and the peak intensity;
  • (G) The peptide peak area for quantification of the target peptide peak group selected in the step (F) is calculated for a plurality of samples, and the peptide peak of the peptide constituting the target protein among the plurality of samples is calculated from the ratio of the calculated peak areas.
  • the present invention relates to (6) the method according to (4) or (5) above, wherein the fragmentation treatment with a protein digestive enzyme is a fragmentation treatment with a combined use of trypsin and lysylendopeptidase.
  • peptide peaks of peptides constituting the target protein can be identified and quantified with high sensitivity and comprehensiveness, so that samples from healthy individuals and samples from patients with various diseases such as cancer, Alzheimer and heart disease, It is possible to identify and quantitate a protein of interest whose expression level fluctuates in a highly sensitive and comprehensive manner, and is useful in the biomarker search field and the disease diagnosis field using biomarkers.
  • FIGS. 1C to 1E are diagrams showing the results of creating a database of the present invention using human liver microsome (HLM) fractions.
  • FIG. 2A shows an outline of a method for reconstructing an ion library using the database of the present invention.
  • FIG. 2B shows the difference between the measured value RT and the corrected (shifted) nRT when the ion library is reconstructed using the database of the present invention.
  • FIG. 2C is a diagram showing the results of comparing the areas of peptide peaks identified and quantified using standard SWATH quantification methods in two experiments (“Exp1” and “Exp2” in the figure).
  • FIG. 2D is a diagram showing the results of comparing the areas of peptide peaks identified and quantified using the database of the present invention by two experiments (“Exp1” and “Exp2” in the figure).
  • FIG. 2E shows the results of comparing peptide peak areas extracted and validated from peptide peaks identified using the database of the present invention by two experiments (“Exp1” and “Exp2” in the figure).
  • FIG. 2F shows the number of MRM transitions among the peptide peaks extracted by performing peptide peak validation from the peptide peaks identified using the database of the present invention by two experiments (“Exp1” and “Exp2” in the figure).
  • FIG. 3 is a diagram showing the results of extracting three or more peptide peaks and comparing their areas.
  • FIG. 3 is a diagram showing the results of SWATH quantitative analysis using the model sample according to the database of the present invention.
  • the database of the present invention is used to identify and / or quantify a plurality of peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS).
  • LC-MS / MS liquid chromatograph-tandem mass spectrometer
  • the elution time of 10,000 or more peptide peaks, the MRM transition corresponding to the elution time of the peptide peak, and the peak intensity are stored.
  • the “peptide peak” stored in the database of the present invention contains the target protein. Peaks from the constituent peptides are included.
  • the database of the present invention can be created using a method comprising the following steps (a) to (f) (hereinafter sometimes referred to as “the present database creation method”).
  • Step (a) the standard elution time of the peptide peak group and the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group obtained by mass spectrometry using LC-MS / MS are obtained, and the database is obtained. To store.
  • the above “standard elution time of peptide peak group obtained by mass spectrometry using LC-MS / MS, and MRM transition and peak intensity corresponding to the standard elution time of such peptide peak group” The obtained sample (target protein sample) was fragmented with a protein digestive enzyme, and a peptide group containing peptides constituting the target protein was prepared, followed by analysis using LC-MS / MS.
  • It may be the standard elution time of a peak derived from a peptide group (peptide peak group), or the MRM transition or peak intensity corresponding to the standard elution time of the peptide peak group, or obtained by a third party performing the above analysis.
  • peptide peak group a peak derived from a peptide group
  • MRM transition or peak intensity corresponding to the standard elution time of the peptide peak group
  • the target protein sample is not particularly limited as long as it is a sample containing the target protein.
  • cells, tissues, blood and the like collected from a living body are freeze-thawed, French press, glass beads, homogenizer, Unfractionated sample obtained by crushing using an ultrasonic crusher etc., and cell membrane fraction obtained by fractionating such unfractionated sample by fractional centrifugation, sucrose density gradient centrifugation, etc.
  • a sample and a cytoplasm fraction sample can be mentioned.
  • the protein digestion enzyme is not particularly limited as long as it is an enzyme that can be digested (cut) at a specific amino acid site of a protein to prepare a fragmented peptide.
  • trypsin, chymotrypsin, endoproteinase Glu-C Mention may be made of endoproteinase Lys-C, endoproteinase Arg-C, endoproteinase Asn-C, lysyl endopeptidase, and clostripain.
  • the fragmentation treatment with a protein digestion enzyme is not particularly limited as long as it is a fragmentation treatment with one or a plurality of protein digestion enzymes, but from the viewpoint of efficient fragmentation treatment, a fragmentation treatment with a plurality of the above protein digestion enzymes is preferable.
  • a fragmentation treatment using a combination of trypsin and lysyl endopeptidase can be preferably exemplified.
  • the peptide groups are first separated by LC (liquid chromatography) of LC-MS / MS.
  • LC liquid chromatography
  • cation exchange chromatography that performs separation using the difference in the charge of the peptide
  • reverse phase chromatography that performs separation using the difference in the hydrophobicity of the peptide. It may be mentioned, and may be a combination of both.
  • tandem mass spectrometry (MS / MS) is performed on each separated peptide.
  • the ionization method in mass spectrometry is preferably an electrospray ionization method (ESI method), which is a soft ionization method.
  • ESI method electrospray ionization method
  • mass spectrometry peptides ionized by various ionization methods are separated according to mass by an analyzer. Examples of the analyzer include a magnetic mass separator (Sector ⁇ MS), a quadrupole mass separator (QMS), a time-of-flight mass separator (TOFMS), and a Fourier transform ion cyclotron mass separator (FT-ICRMS). Or a combination thereof.
  • a method in an automated measurement mode is preferable. Specifically, an IDA (Information Dependent Acquisition) measurement method, a DDA (Data Dependent Acquisition) measurement method, etc. Can be mentioned.
  • the obtained MS / MS data is imported into protein identification software such as Protein® Pilot, Peak® View, MASCOT, etc., and peptide groups are identified using protein databases such as UniProt, EMBL, Swiss-Prot.
  • the identified peptide groups have a peptide peak with low reliability, so those with a highly reliable peptide peak from among the peptide peaks of the identified peptide group (peptide peak group)
  • a highly reliable peptide peak MS / MS data of the peptide group identified by the above software is converted into an ion library file (text file) and exported to Access (manufactured by Microsoft).
  • the peptide reliability score (peptide ⁇ ⁇ ⁇ ⁇ confidence score), which is an index indicating peptide reliability, can be selected based on the reliability score when the reliability is 100% (shown as 1.00), for example, Peptides with a score above 0.85, peptides above 0.90, peptides above 0.92.
  • MRM transitions ionized peptide having a particular mass mass filter (Q1) and a gas collision-induced cleavage to pass (precursor ions): caused by (CID C ollision I nduced D issociation ) the It means a combination of mass filters (Q3) that allow the precursor ions to be fragmented (product ions) (combination of mass-to-charge ratio [m / z] of Q1 and Q3).
  • the peptide peak group is identified a plurality of times in the peptide-derived peak by the software, and as a result, a plurality of different elution times may be obtained even for the same peptide peak. In that case, an average elution time obtained by averaging the elution times of peptide peaks is obtained and stored in a database. Moreover, the peptide peak may be misidentified by the above software, and the elution time of the misidentified peptide peak is greatly different from the elution time of the positively identified peptide peak.
  • examples of the method include a method of excluding by selecting the peptide peak elution time and the standard deviation (SD) of the average elution time.
  • Examples of the standard deviation of the elution time include, for example, less than 1.0 minute, less than 0.5 minute, less than 0.4 minute, less than 0.3 minute, and less than 0.2 minute. Less than 2 minutes are preferred.
  • the database it is preferable to store UniProt accession number corresponding to the standard elution time of the peptide peak group, and related information such as the amino acid sequence and valence of the peptide including information on peptide modification.
  • the peptide peak can be further characterized and can be used to specify the amino acid sequence of the peptide corresponding to the peptide peak, ie, the peptide constituting the protein of interest.
  • Step (b) In step (b), the elution time of the peptide peak 'group, the MRM transition and the peak intensity corresponding to the elution time of the peptide peak' group, obtained by mass spectrometry using LC-MS / MS, are obtained.
  • the above "elution time of peptide peak 'group obtained by mass spectrometry using LC-MS / MS, and MRM transition and peak intensity corresponding to the elution time of such peptide peak'group” are actually the target protein.
  • the sample containing '(target protein' sample) is fragmented with a protein digestion enzyme to prepare a group of peptides containing peptides that constitute the target protein ', and then analyzed using LC-MS / MS
  • a protein digestion enzyme to prepare a group of peptides containing peptides that constitute the target protein ', and then analyzed using LC-MS / MS
  • the peptide obtained by the above analysis The standard elution time of the peak 'group, the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak' group (data [ Distribution]) is also included.
  • the protein 'sample is not particularly limited as long as it contains a protein. Specifically, cells, tissues, blood and the like collected from a living body can be frozen and thawed, French press, glass beads, homogenizer, Unfractionated sample obtained by crushing treatment using a sonication device, etc., and cell membrane fraction sample obtained by subjecting such unfractionated sample to fractionation by fractional centrifugation, sucrose density gradient centrifugation, etc. And cytoplasmic fraction samples.
  • the protein 'sample may be the same sample as the protein sample in step (a), but a different sample is preferable because information on more peptide peaks can be stored in the database.
  • step (a) After the protein 'sample is fragmented with protein digestion enzymes and the peptide group is prepared, analysis is performed using LC-MS / MS to determine the elution time of the peptide peak group and the standard elution of the peptide peak group. The detailed description until the acquisition of the MRM transition corresponding to the time and the peak intensity is as described above in the step (a).
  • the conditions for the fragmentation treatment with the protein digestive enzyme in step (b), the analysis using LC-MS / MS, the identification and selection of peptide peaks, etc. are preferably the same as the conditions in step (a).
  • Step (c) a peptide peak common to the peptide peak 'group is selected from the peptide peak group as a peptide peak group for standardization.
  • the peptide peak group for standardization is selected using relational database software such as Access software (manufactured by Microsoft), MRM transition (mass-to-charge ratio [m / z] of Q1 and Q3) in the peptide peak group and the above. This can be done by comparing the MRM transitions in the 'peptide peak' group and selecting peptide peaks with the same (same) MRM transition.
  • Step (d) In step (d), based on the standard elution time of the peptide peak group for standardization selected in step (c), the standard elution time of the peptide peak group and the elution time of the peptide peak ′ group are aligned, The elution time of the peptide peak 'group is normalized to the standard elution time of the peptide peak group, and the standard elution time of the peptide peak' group is obtained.
  • the peptide is optimized so as to be optimized based on the standard elution time of the peptide peak group for standardization in the peptide peak group. Any method can be used as long as it can shift the elution time of the peak 'group (actually measured value) and standardize it to the standard elution time of the peptide peak group.
  • Origin 9 software manufactured by OriginLab
  • Excel manufactured by Microsoft
  • the shift time is calculated by smoothing using a percentile filter (100 points, 50%), and the elution time is shifted based on the calculated time.
  • a percentile filter 100 points, 50%
  • the shift time is calculated by smoothing using a percentile filter (100 points, 50%), and the elution time is shifted based on the calculated time.
  • it shifts the elution time based on the calculated shift time can be a method.
  • Step (e) the standard elution time of the peptide peak 'group obtained in step (d) is incorporated into the standard elution time of the peptide peak group and stored in the database as the standard elution time of the new peptide peak group. . That is, in step (e), the standard elution time of the peptide peak group is stored in the standard elution time of the peptide peak group (the elution time of the peptide peak group is normalized to the standard elution time of the peptide peak group). Create a database of accumulated standard elution times.
  • Step (f) the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak 'group are stored in the database. That is, in step (f), in addition to the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group, the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak 'group were stored in the database and accumulated. Store MRM transition and peak intensity corresponding to standard elution time.
  • the peak intensity of the standardizing peptide peak group is an average value or total value with the peak intensity of the standardizing peptide peak group stored in the database.
  • the two values may be compared and the larger value may be selected and stored in the database, or both may be accumulated and stored in the database in order to calculate the total value as necessary.
  • steps (b) to (f) are repeated at least twice.
  • at least twice for example, 2 to 200 times, 2 to 100 times, 2 to 50 times, 2 to 25 times, 2 to 10 times, 10 to 200 times, 10 to 100 times, 10 to 50 times It may be 10 to 25 times, 25 to 200 times, 25 to 100 times, 25 to 50 times, 50 to 200 times, 50 to 100 times, etc., but 2 to 25 times is more preferable.
  • steps (b) to (f) are repeated, the protein peak for obtaining MRM transition and peak intensity corresponding to the elution time of the peptide peak 'group obtained in step (b) and the elution time, In order to efficiently increase the accumulation level of the accumulated standard elution time, a different sample is preferable for each repetition.
  • the peptide peak of the peptide constituting the target protein can be identified.
  • Step (A) In the step (A), the target protein group in the sample is fragmented with a protein digestive enzyme to prepare the target peptide group.
  • the sample is not particularly limited as long as it contains a target protein.
  • cells, tissues, blood, etc. collected from a living body can be frozen and thawed, French press, glass beads, homogenizer, ultrasonic wave.
  • a cytoplasmic fraction sample can be mentioned.
  • the protein digestion enzyme is not particularly limited as long as it is an enzyme that can be digested (cut) at a specific amino acid site of a protein to prepare a fragmented peptide.
  • trypsin, chymotrypsin, endoproteinase Glu-C Mention may be made of endoproteinase Lys-C, endoproteinase Arg-C, endoproteinase Asn-C, lysyl endopeptidase, and clostripain.
  • the fragmentation treatment with a protein digestion enzyme is not particularly limited as long as it is a fragmentation treatment with one or a plurality of protein digestion enzymes, but from the viewpoint of efficient fragmentation treatment, a fragmentation treatment with a plurality of the above protein digestion enzymes is preferable.
  • a fragmentation treatment using a combination of trypsin and lysyl endopeptidase can be preferably exemplified.
  • the fragmentation treatment conditions by the protein digestive enzyme conditions such as temperature and time can be appropriately selected depending on the properties of the protein digestive enzyme to be used. For example, when trypsin is used, it is 1 to 36 hours at 30 ° C. to 45 ° C. More preferably, it is 16 to 24 hours at 36 to 37 ° C.
  • lysyl endopeptidase When lysyl endopeptidase is used, it is preferably 1 to 36 hours at 15 to 45 ° C., more preferably 2 to 4 hours at 15 to 25 ° C. When trypsin and lysyl endopeptidase are used in combination, it is preferably 1 to 36 hours at 15 to 45 ° C, more preferably 10 to 14 hours at 20 to 30 ° C.
  • step (B) the target peptide group prepared in step (A) is used for analysis using LC-MS / MS, and the elution time and mass-to-charge ratio (m / z) of the peptide peak in liquid chromatography are analyzed.
  • MRM transition corresponding to peptide peak elution time MRM transition corresponding to peptide peak elution time
  • data including MRM chromatogram information means data that can extract the MRM chromatogram of the peptide peak, and specifically, the peptide peak in the MRM transition corresponding to the elution time of the peptide peak.
  • the peptide groups are first separated by LC (liquid chromatography) of LC-MS / MS.
  • LC liquid chromatography
  • cation exchange chromatography that performs separation using the difference in the charge of the peptide
  • reverse phase chromatography that performs separation using the difference in the hydrophobicity of the peptide. It may be mentioned, and may be a combination of both.
  • tandem mass spectrometry (MS / MS) is performed on each separated peptide.
  • the ionization method in mass spectrometry is preferably an electrospray ionization method (ESI method), which is a soft ionization method.
  • ESI method electrospray ionization method
  • mass spectrometry peptides ionized by various ionization methods are separated according to mass by an analyzer. Examples of the analyzer include a magnetic mass separator (Sector ⁇ MS), a quadrupole mass separator (QMS), a time-of-flight mass separator (TOFMS), and a Fourier transform ion cyclotron mass separator (FT-ICRMS). Or a combination thereof.
  • a method in an automated measurement mode is preferable. Specifically, an IDA (Information Dependent Acquisition) measurement method, a DDA (Data Dependent Acquisition) measurement method, etc. Can be mentioned.
  • data including MRM chromatogram information can be acquired using an MRM measurement method or a SWATH-MS measurement method.
  • the obtained MS / MS data is imported into protein identification software such as Protein® Pilot, Peak® View, MASCOT, etc., and peptide groups are identified using protein databases such as UniProt, EMBL, Swiss-Prot.
  • the identified peptide groups have a peptide peak with low reliability, so those with a highly reliable peptide peak from among the peptide peaks of the identified peptide group (peptide peak group)
  • a highly reliable peptide peak MS / MS data of the peptide group identified by the above software is converted into an ion library file (text file) and exported to Access (manufactured by Microsoft).
  • the peptide reliability score (peptide ⁇ ⁇ ⁇ ⁇ confidence score), which is an index indicating peptide reliability, can be selected based on the reliability score when the reliability is 100% (shown as 1.00), for example, Peptides with a score above 0.85, peptides above 0.90, peptides above 0.92.
  • the target peptide peak group is identified based on the mass-to-charge ratio (m / z) of the peptide peak acquired in the step (B), and stored in the database from the target peptide peak group.
  • a peptide peak common to the peptide peak group is selected as the target peptide peak group for standardization.
  • the target peptide peak group for standardization is selected by using software such as Access software (manufactured by Microsoft), and the MRM transition (the mass-to-charge ratio of Q1 and Q3 [m / Z]) and the MRM transition in the target peptide peak group, and a peptide peak having the same (same) MRM transition can be selected.
  • step (D) based on the elution time of the target peptide peak group for standardization selected in step (C), the elution time of the target peptide peak group and the standard elution time of the peptide peak group stored in this database
  • the standard elution time of the peptide peak group stored in the database is shifted to the elution time of the target peptide peak group, the shifted standard elution time, and the MRM transition corresponding to the shifted standard elution time and
  • the peak intensity is acquired as a reconstructed ion library.
  • any method can be used as long as the standard elution time of the peptide peak group in this database is shifted so that it can be optimized, and the actual value can be converted to the elution time of the target peptide peak group.
  • the shift time is calculated by smoothing using the percentile filter (100 points, 50%) for the peptide peak group for standardization among the peptide peak groups in this database.
  • the standard elution time is shifted based on the measured time and the database
  • the calculated shift time according to the shift amount of the target peptide peak for standardization nearby (for example, the shift time is calculated using linear correction).
  • a method of shifting the elution time based on the above can be mentioned.
  • the shifted standard elution time is imported into Access (manufactured by Microsoft) and further reconstituted with the MRM transition and peak intensity corresponding to the shifted standard elution time. Data including MRM transitions and peak intensities corresponding to shifted standard elution times).
  • step (E) the MRM chromatogram of the peptide peak is extracted from the data including the MRM chromatogram information acquired in step (B) using the reconstructed ion library acquired in step (D), and the MRM chromatogram Identify peptide groups of interest from the gram.
  • the target peptide peak group In order to identify the target peptide peak group from the MRM chromatogram of the peptide peak, first, from the data including the MRM chromatogram information, the peptide peak elution time and the peak intensity in each MRM transition of the peptide peak derived from the target peptide To create a (two-dimensional) chromatogram. Next, from these chromatograms, peptide peaks having the same elution time as the standard elution time shifted in the reconstructed ion library (standard elution time converted so that the elution time of the target peptide peak group becomes the reference). And a peptide peak having an elution time in common with the shifted standard elution time is identified as the target peptide peak.
  • the “common elution time” includes the same elution time as the shifted standard elution time, as well as an elution time in a range including the shifted standard elution time, for example, the shifted standard elution time ⁇ 2.0 minutes, Shifted standard elution time ⁇ 1.5 min, shifted standard elution time ⁇ 1.0 min, shifted standard elution time ⁇ 0.5 min, shifted standard elution time ⁇ 0.3 min, shifted standard elution time ⁇ 0.2 minutes, shifted standard elution time ⁇ 0.1 minutes, etc. are also included.
  • this database stores relevant information such as the UniProt accession number corresponding to the standard elution time of peptide peaks and peptide amino acid sequences and valences that contain information related to peptide modification, the relevant information will be used as the basis. Furthermore, the amino acid sequence of the peptide corresponding to the target peptide peak, that is, the peptide constituting the target protein can be specified.
  • the ratio of the peak area to the peak intensity is further selected from the target peptide peak group identified in step (E).
  • the step (F) of selecting the peptide peak for quantification of the target peptide peak group, and the peptide peak area for quantification of the target peptide peak group selected in the step (F) were calculated for a plurality of samples and calculated. What provided the process (G) which quantifies the peptide peak of the peptide which comprises the target protein between several samples from ratio of a peak area is preferable.
  • a peptide peak for quantification of the target peptide peak group is selected.
  • the peptide peak for quantification of the target peptide peak group can be selected from the target peptide peak group identified in the step (E) using the ratio of the peak area and the peak intensity as an index, specifically,
  • the MRM transitions of the target peptide peak stored in the database used for the total peptide peak area (c) and the peak intensity total (b) may be MRM transitions of all target peptide peaks.
  • An MRM transition that gives a peak intensity that exceeds a certain ratio with respect to the peak intensity may be selected.
  • “exceeding a certain ratio with respect to the maximum peak intensity” means, for example, 5% Exceeding 10%, exceeding 15%, exceeding 20%, exceeding 25%, exceeding 30%, etc., but preferably exceeding 20% with respect to the maximum peak intensity.
  • the peptide peak for quantification is preferably selected based on the number of MRM transitions. For example, a peptide peak having an MRM transition number of 2 or more, 3 or more, 4 or more, 5 or more is selected as the peptide peak for quantification. However, it is more preferable to select a peptide peak having an MRM transition number of 3 or more as a peptide peak for quantification.
  • Process (G) In the step (G), as a method for quantifying the peptide peak of the peptide constituting the target protein among a plurality of samples from the ratio of the calculated peak areas, the peak of the peptide peak of the peptide constituting the target protein in a specific sample is used.
  • a peptide-labeled stable isotope-labeled target peptide that constitutes a target protein with any one or more stable isotope-labeled elements is prepared, and this stable isotope-labeled target peptide is used as an internal standard for a specific sample.
  • the peak area of the peptide peak of the peptide constituting the target protein, and the specific sample Includes a method for absolute quantification of a change in the peak area of the peptide peak of the peptide constituting the target protein in different samples.
  • FIGS. 1A An outline of the database creation method of the present invention is shown in FIGS.
  • Example # 1 a sample for mass spectrometry was prepared from the first protein sample (“Sample # 1” in FIG. 1A) (for details, refer to [Method 1: Preparation of sample to be analyzed by LC-MS / MS] described later).
  • Mass spectrometry using LC-MS / MS is performed, and MS / MS data of the first sample peptide peak (group) constituting the first protein sample is obtained by IDA (Information Dependent Acquisition) measurement (details will be described later) [See Method 2: LC-MS / MS].
  • IDA Information Dependent Acquisition
  • the first sample peptide group is identified using Protein Pilot, Peak View software, or the like based on the MS / MS data, and the MS / MS data is converted into an ion library file.
  • a highly reliable peptide peak group for example, in this example, a confidence score> 0.99 was used as a selection criterion
  • a more reliable average elution time in this example, Peptide peak group having standard deviation [SD] ⁇ 0.2 min of elution time of the same peptide as a selection criterion
  • the elution time of such peptide peak group is defined as standard elution time (standard RT, nRT) Save (store) in database.
  • the second protein sample (“Sample # 2" in FIG. 1A) is also analyzed in the same manner as the first protein sample, the second sample peptide peak group is identified and selected, and the measured RT2 of the second sample peptide peak group is identified. To get. Thereafter, a peptide peak common to the second sample peptide peak group is selected as a standardization peptide peak group from the first sample peptide peak group stored in the database. Based on the nRT of the standardized peptide peak group, the measured RT2 of the standardized peptide peak in the second sample peptide peak group is shifted so as to optimize the alignment (for example, a percentile filter is used in this embodiment). Calculate the shift time by smoothing).
  • Peptide peaks other than the standardization peptide peak in the second sample peptide peak group are shifted according to the shift amount of the nearby standardization peptide peak (for example, in this embodiment, the shift time is calculated using linear correction).
  • the measured RT2 is standardized (converted) to nRT with the measured RT2 as nRT2 for all the second sample peptide peak groups.
  • the MRM transition, peak intensity and related information (valence, UniProt accession number, peptide amino acid sequence including information on peptide modification) are also stored (FIG. 1B).
  • the third protein sample (“Sample # 3” in FIG. 1A) is also analyzed in the same manner as the first protein sample and the second protein sample, and the third sample peptide peak group is identified and selected.
  • the measured RT3 of the 3-sample peptide peak group is acquired, normalized to nRT3, and stored in a database, thereby increasing the accumulation level of accumulated nRT (nRT + nRT2 + nRT3).
  • a highly reliable average nRT is selected from the database during alignment for each peptide peak and compared with the measured RT (for example, in this example, the standard deviation of RT [SD] ⁇ 0.2 minutes as selection criteria).
  • the nRT conversion process is shown for RT of one kind of fraction (red [fraction 1]).
  • the time difference was plotted (FIG. 1D, red dot), and the amount of shift time was calculated by smoothing (FIG. 1D, green line).
  • the difference between the nRT converted from the measured RT of the standardization peptide peak in fraction 1 and the nRT of the standardization peptide peak in the database is within 0.2 min for the 98.3% standardization peptide peak. (FIG. 1E) This result shows that the error can be converted to nRT within 0.2 minutes. Similar results were obtained when the LC solvent was replaced anew or when the intracellular fraction sample of cultured cells was analyzed.
  • nRT and MRM transition information of 107,715 peptide peaks could be created.
  • Such peptide peaks are characterized by a UniProt accession number and a peptide sequence and valency containing information regarding the modification of the precursor peptide.
  • a database containing related information (valence, UniProt accession number, peptide amino acid sequence including information on peptide modification) was used for subsequent analysis.
  • FIG. 2A shows an outline of a method for reconstructing an ion library using the database of the present invention.
  • IDA analysis using LC-MS / MS is performed using a measurement sample containing the target protein, and an ion library file is obtained.
  • a target peptide peak group with high reliability for example, in this example, a confidence score> 0.99 is selected as a selection criterion is selected and stored in the target peptide peak group and the database of the present invention.
  • Peptide peaks that are common peptide peaks and have high reliability of RT values based on both RTs is selected as the target peptide peak group for standardization.
  • the nRT of the standard peptide peak group stored in the database is shifted and corrected to convert the nRT to RT based on the actual measurement value and create a reconstructed ion library And used for SWATH quantitative analysis.
  • the present inventors have developed a simple index for peak validation (see [Method 5: Peptide peak validation] described below for details). That is, the peak area obtained from the chromatogram of the MRM transition that gives the maximum peak intensity among the MRM transitions of the target peptide peak stored in the present database / (c) with respect to the database of the present invention Total sum of peptide peak areas obtained from chromatograms of MRM transitions of target peptide peaks stored in this database] / [(a) Maximum peak intensity in MRM transition giving maximum peak intensity / (b) of peak area The sum of peak intensities in MRM transitions used for the total] was calculated for each MRM transition, and target peptide peaks in the range of 0.5 to 2 were extracted as effective peaks.
  • the MRM transition of the target peptide peak stored in the database used for the total peptide peak area (c) and peak intensity total (b) is 20% of the maximum peak intensity.
  • An MRM transition that gave a peak intensity that exceeded was selected (see [Method 4: Reconstruction of ion library file based on database of the present invention] described later).
  • the ratio of peptide peaks whose peak area difference width is within 2 times increases from 61.1% to 87.4% (37707/43129), and the peak area difference width is The ratio of peptide peaks within 1.5-fold was shown to increase from 47.5% to 74.1% (FIG. 2E). This result shows that the validation of the peptide peak is effective.
  • the number was 171 (54.8% of the total number of registered peaks [312]), but quantified using an ion library reconstructed from the database of the present invention and extracted by validation (hereinafter referred to as “the present invention”).
  • the number of synthetic peptide peaks for which an increase could be detected increased to 263 (84.3% of the total number of registered peaks [312]) (FIG. 3A).
  • Similar results were obtained even when analysis was performed using other combinations with different synthetic peptide ratios. For example, a sample spiked with 0.5 fmol of synthetic peptide and 25 fmol of synthetic peptide were spiked.
  • the number of peak peaks was 166 (53.2% of the total number of registered peaks [312]), whereas when the SWATH quantification using the database of the present invention was used, the number of synthetic peptide peaks that could detect an increase was It increased to 238 (76.2% of the total number of registered peaks [312]) (FIG. 3A).
  • the area ratio of peptide peaks between a sample spiked with 0.5 fmol of synthetic peptide and a sample spiked with 5 fmol of synthetic peptide showed a 10.4 fold difference (FIG. 3C). That is, detection was possible with a peak area ratio corresponding to the ratio of the amount of the synthetic peptide. This result indicates that the peptide of the present invention is identified by using the database of the present invention, and the peptide peak extracted by validation of the identified peptide peak can be detected with sufficient accuracy.
  • the SWATH quantification method using the database of the present invention is excellent in that it can accurately detect the increase and decrease of peptide peaks that could not be identified using the standard SWATH quantification method.
  • the sample was reduced with DTT (dithiothreitol) in the presence of nitrogen for 60 minutes at room temperature and then S-carbamoylmethylated with iodoacetamide for 60 minutes at room temperature.
  • the alkylated protein was precipitated with a mixture of methanol and chloroform. This precipitate was dissolved in 6M urea and diluted with 100 mM Tris-HCl (pH 8.0). After diluting the sample to 1 M urea, trypsin digested with lysyl endopeptidase at the enzyme / substrate ratio of 1: 100 at 25 ° C.
  • Method 2 LC-MS / MS
  • a nanoLC system (Ultimate 3000 RSLCnano; manufactured by DIONEX) was connected to a nano-electrospray ionization mass spectrometer (TripleTOF 5600; manufactured by ABSCIEX1) operated in the positive ionization mode to analyze a sample containing the target protein.
  • the parameter values of ion source gas, curtain gas, ion spray voltage, interface heater temperature, and declustering potential were 20, 20, 2300, 150, and 80, respectively.
  • Rolling collision energy is used at an accumulation time of 50 microseconds, collision energy dispersion coefficient 5, ion emission delay 30 and ion emission width 15, and precursor ions (Q1) are 300 to 1008 and product ions (Q3) are 100 to 1600.
  • Scan and IDA method was performed. The maximum number of candidate precursor ions for observing product ions was 20 ions / cycle. Analyzed ions were excluded for 10 seconds.
  • the accumulation time was 50 microseconds, and the SWATH window of precursor ions was set to a mass-to-charge ratio of 300 to 1008 13 Da (including 1 Da overlap), and the SWATH-MS acquisition method was performed.
  • Product ions were scanned from 100 to 1600 using rolling collision energy with the same settings as the IDA measurement.
  • the cycle time was 3.05 seconds.
  • Method 3 Accumulation of nRT data in the database of the present invention
  • MS / MS data obtained by IDA measurement using the above 23 types of samples and 2 types of synthetic peptide data sets are imported into Protein Pilot (ABSCIEX), and UniProt human protein database is searched to find the target peptide. Identified.
  • the result file (corresponding to [group file] in FIG. 1) was imported into Peak View using SWATH MicroApp (ABSCIEX), and the ion library file (text file) was exported to Access (Microsoft). Extracts transition data with a peptide confidence score exceeding 0.99, links each transition data with a unique transition name and a unique peptide peak name, and stores it in Microsoft SQL Server Express as a transition database did.
  • the transition data was integrated with a unique transition name by summing the relative intensities.
  • the RT average and standard deviation (SD) of each peptide peak was calculated in Access, and the RT average with SD ⁇ 0.2 min was used for RT alignment.
  • List all RTs and nRTs in Access export all RTs sorted by RTs and RT-nRTs of peptide peaks for standardization to Origin 9 software (OriginLab) for correction (smoothing and interpolation) Went. Smoothing was performed using a percentile filter (100 points, 50%), and linear interpolation was performed using smoothed data.
  • the interpolated data was stored in the nRT database in Access. NRT obtained from various samples was stored in the nRT database.
  • nRT and SD of each peptide peak are calculated by Access, the average of RT with SD ⁇ 0.2 minutes, or the RT of peptide detected in one experiment. (RT for a total of 106,074 peptides).
  • Method 4 Reconstruction of ion library file based on database of the present invention.
  • HLM HLM
  • analysis was performed by the IDA method in the course of the continuous SWATH acquisition method.
  • An ion library file was created from the data file obtained by the IDA method and imported into Access.
  • the average and SD of RT of the ion library and nRT of the nRT database were calculated, and all RTs and nRTs of overlapping peptide peaks with SD within 0.2 minutes were listed in Access.
  • a list of all nRTs sorted based on nRT and RT-nRT of standardization peptide peaks was exported to Origin 9 software for smoothing and interpolation.
  • the XIC extraction window was set to 1.5 minutes in FIG.
  • 5 transitions were used to calculate the peak area.
  • the number of transitions was set to “999” in order to use all selected transitions in the reconstructed ion library.
  • a model sample spiked with 25 fmol of the synthetic peptide was analyzed by the IDA method before the first sample and between the second and third repeats.
  • the transition information of the synthetic peptide was deleted from the ion library file exported from Peak View, and a reconstructed peak file was created without using the synthetic peptide information. Due to the different slope conditions, the difference in RT was greater than in FIG. 2B and the time window of the detected peak was set to 1.5 minutes instead of 1.0 minute.
  • the peak area data was imported into Marker View software (manufactured by ABSCIEX) and subjected to statistical analysis, and peptide peaks that significantly increased (p ⁇ 0.01 times and> 1.5 times) were extracted. Peak validation was performed on these markedly increased peptide peaks.
  • the peak area is the total area of the endogenous peptide and the added peptide.
  • the present invention is an effective technique for biomarker search, it can be used in the medical, pharmaceutical and bio fields.
  • SWATH data acquisition can only be done with ABSCIEX (the world's top share in mass spectrometry instrument) machine so far, so it is useful to put the algorithm of the database creation method of the present invention into the analysis software of ABSCIEX. It is. It is also expected that biosoftware companies will contribute to the development of analysis software by licensing the algorithm of the database creation method of the present invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention addresses the problem of providing: a method for creating a database for comprehensively identifying/quantifying, with high sensitivity, the peaks of peptides constituting a protein to be examined, through analysis using LC-MS/MS; and a method in which use of the database makes it possible to comprehensively identify/quantify, with high sensitivity, the peaks of peptides constituting a protein to be examined, through analysis using LC-MS/MS. The elution time for each common peptide peak among identified peptide peaks of analyzed samples is used as a reference to normalize the elution time for all the peptide peaks of the analyzed samples. Thus, a database comprising an accumulation of the normalized elution times is created. Using this database, a protein to be examined in a sample is analyzed using LC-MS/MS to identify the peaks of peptides to be examined, and the identified peptide peaks are checked for validation, thereby identifying/quantifying the peaks of peptides constituting the protein to be examined in a sample.

Description

質量分析におけるペプチドピークの同定・定量のためのデータベース作成方法Database creation method for peptide peak identification and quantification in mass spectrometry
 本発明は、液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により複数の対象タンパク質を構成するペプチドのペプチドピークを同定及び/又は定量するための、ペプチドピークの溶出時間、及び該ペプチドピークの溶出時間に対応するMRMトランジション並びにピーク強度を格納したデータベースを作成する方法や、かかる方法を用いて作成したデータベースや、かかるデータベースを用いて、LC-MS/MSを用いた解析により試料中の対象タンパク質を構成するペプチドのペプチドピークを同定・定量する方法に関する。 The present invention relates to a peptide peak elution time for identifying and / or quantifying peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS). And a method for creating a database storing MRM transitions and peak intensities corresponding to the elution time of the peptide peak, a database created using such a method, and LC-MS / MS using such a database. The present invention relates to a method for identifying and quantifying peptide peaks of peptides constituting a target protein in a sample by analysis.
 プロテオミクスは、タンパク質を網羅的に解析する手法であり、生命科学、特にバイオマーカーの研究に重要な手法である。近年、プロテオミクスは、試料中に存在するタンパク質の網羅的な同定のみならず、異なる試料間で変動するタンパク質を網羅的に同定・定量する網羅的定量比較のツール(定量プロテオミクス)としても期待が高まり、これまでに様々な手法が開発され、利用されている(非特許文献1)。定量プロテオミクスは、ショットガンプロテオミクス、すなわち、多数のタンパク質を含む試料をタンパク質分解酵素処理してペプチド断片を分離し、質量分析法を用いてペプチド断片を同定する手法を技術基盤としているため、比較解析できるタンパク質は同一解析試料において同定されたものに限られる。そのため、質量分析法や質量分析前にペプチド断片を分離する方法を改良することにより、比較解析できるタンパク質数を増加させることが行われている。 Proteomics is a method for comprehensive analysis of proteins, and is an important method for life science, especially biomarker research. In recent years, proteomics is expected not only as a comprehensive identification of proteins present in samples, but also as a comprehensive quantitative comparison tool (quantitative proteomics) for comprehensive identification and quantification of proteins that vary between different samples. Various techniques have been developed and used so far (Non-Patent Document 1). Quantitative proteomics is a shotgun proteomics, that is, a method based on the method of proteolytic enzyme treatment of a sample containing a large number of proteins to separate peptide fragments and identify the peptide fragments using mass spectrometry. Proteins that can be produced are limited to those identified in the same analysis sample. Therefore, the number of proteins that can be comparatively analyzed has been increased by improving mass spectrometry or a method of separating peptide fragments before mass spectrometry.
 ショットガンプロテオミクスを用いないプロテオミクスとして多重反応モニタリング(MRM)を用いたプロテオミクスがある。MRMを用いたプロテオミクスは、前駆(プリカーサー)イオン(Q1)及びプロダクトイオン(Q3)の質量電荷比(m/z)に基づき、特定のMRMトランジションを用いて標的タンパク質を定量する手法であるが(非特許文献1~3)、かかる手法と安定同位体で標識した内部標準ペプチドを組み合わせて用いることにより、異なる試料中における標的タンパク質の量的変化を、高感度且つ高精度に定量することができる(非特許文献4~6、特許文献1)。しかし、定量できるのは標的タンパク質に限られることや、質量分析におけるスキャン速度や標識内部標準ペプチド数により、定量できる標的タンパク質の数が限られていることが問題とされていた。 There is proteomics using multiple reaction monitoring (MRM) as proteomics without shotgun proteomics. Proteomics using MRM is a technique for quantifying a target protein using a specific MRM transition based on the mass-to-charge ratio (m / z) of a precursor (precursor) ion (Q1) and a product ion (Q3) ( Non-Patent Documents 1 to 3) By using such a technique in combination with an internal standard peptide labeled with a stable isotope, quantitative changes in target proteins in different samples can be quantified with high sensitivity and high accuracy. (Non-Patent Documents 4 to 6, Patent Document 1). However, it has been a problem that only the target protein can be quantified, and the number of target proteins that can be quantified is limited by the scanning speed in mass spectrometry and the number of labeled internal standard peptides.
 最近、LC-MS/MSにおける新たなデータ取得法としてSWATH-MS取得法が開発された(非特許文献4、7)。かかるSWATH-MS取得法により、試料から全てのMS/MSデータを取得し、MRMトランジションを用いたMRM解析を行うことができる。SWATHで取得したデータには、非常に低レベルで発現するタンパク質に関する情報も含まれるものの(非特許文献4)、SWATHで取得したデータは、同一解析試料をショットガンプロテオミクス等の従来の質量分析法により解析し、同定されたタンパク質についてのMRMトランジションや溶出時間(「保持時間[retention times;RT]」ともいう)等の情報に基づいて定量解析(標準的SWATH定量法)されるため、発現レベルが低い等の理由で同一解析試料において同定されなかったタンパク質については定量することができない。 Recently, a SWATH-MS acquisition method has been developed as a new data acquisition method in LC-MS / MS (Non-Patent Documents 4 and 7). With this SWATH-MS acquisition method, it is possible to acquire all MS / MS data from a sample and perform MRM analysis using MRM transitions. Although the data acquired by SWATH includes information on proteins expressed at a very low level (Non-patent Document 4), the data acquired by SWATH is the same as the conventional mass spectrometry method such as shotgun proteomics. The expression level is determined by quantitative analysis (standard SWATH quantification method) based on information such as MRM transition and elution time (also referred to as “retention time (RT)”) for the identified protein. Proteins that were not identified in the same analysis sample due to low values cannot be quantified.
国際公開第2007/055116号パンフレットInternational Publication No. 2007/055116 Pamphlet
 本発明の課題は、LC-MS/MSを用いた解析により、高感度に且つ網羅的に対象タンパク質を構成するペプチドのペプチドピークを同定・定量するためのデータベースを作成する方法や、前記データベースを用いてLC-MS/MSを用いた解析により、高感度に且つ網羅的に対象タンパク質を構成するペプチドのペプチドピークを同定・定量できる方法を提供することにある。 An object of the present invention is to provide a method for creating a database for identifying and quantifying peptide peaks of a peptide constituting a target protein with high sensitivity and comprehensiveness by analysis using LC-MS / MS, Another object of the present invention is to provide a method capable of identifying and quantifying peptide peaks of a peptide constituting a target protein with high sensitivity and comprehensiveness by analysis using LC-MS / MS.
 対象タンパク質を構成するペプチドがLC-MS/MSの液体クロマトグラフ部から溶出され質量分析計で検出されるまでの時間、すなわち溶出時間(保持時間[retention times;RT」ともいう])は、ペプチドピークを同定するために不可欠であるものの、解析試料間で変動することが問題とされていた。本発明者らは、上記課題を解決すべく鋭意検討する中で、解析試料間で同定されたペプチドピーク群のうち、共通するペプチドピーク群の溶出時間を基準として、解析試料間のペプチドピーク群の溶出時間の標準化を図り、標準化した溶出時間が蓄積したデータベースを作成したところ、データベース中に10万個以上のペプチドピークの溶出時間を精度よく蓄積することができることが見いだされた。さらにかかるデータベースを用いて試料中の対象タンパク質をLC-MS/MSを用いた解析を行い、測定対象ペプチドピークを同定し、同定したペプチドピークの中からペプチドピークのバリデーションを行うことにより、標準的SWATH定量法を用いて同定できなかったペプチドピークの増減も精度よく検出できることを確認した。本発明はこれらの知見に基づいて完成するに至ったものである。 The time until the peptide constituting the target protein is eluted from the LC-MS / MS liquid chromatograph and detected by the mass spectrometer, that is, the elution time (also called retention time (RT)) is the peptide. Although it is indispensable for identifying a peak, it has been a problem that it fluctuates between analysis samples. The inventors of the present invention have intensively studied to solve the above problems, and among peptide peak groups identified between analysis samples, peptide peak groups between analysis samples based on the elution time of a common peptide peak group. As a result of creating a database in which the standardized elution time was accumulated, it was found that elution times of 100,000 or more peptide peaks could be accurately accumulated in the database. Furthermore, by analyzing the target protein in the sample using LC-MS / MS using such a database, the peptide peak to be measured is identified, and the peptide peak is validated from among the identified peptide peaks. It was confirmed that the increase and decrease of peptide peaks that could not be identified using the SWATH quantitative method could be detected with high accuracy. The present invention has been completed based on these findings.
 すなわち、本発明は、(1)液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により複数の対象タンパク質を構成するペプチドのペプチドピークを同定及び/又は定量するための、ペプチドピークの溶出時間、及び該ペプチドピークの溶出時間に対応するMRMトランジション並びにピーク強度を格納したデータベースを作成する方法であって、以下の工程(a)~(f)を備えたことを特徴とする方法に関する。
(a)LC-MS/MSを用いた質量分析で得られる、ペプチドピーク群の標準溶出時間、及び、前記ペプチドピーク群の標準溶出時間に対応するMRMトランジション並びにピーク強度を取得し、データベースに格納する工程;
(b)LC-MS/MSを用いた質量分析で得られる、ペプチドピーク’群の溶出時間、及び、前記ペプチドピーク’群の溶出時間に対応するMRMトランジション並びにピーク強度を取得する工程;
(c)前記ペプチドピーク群の中から前記ペプチドピーク’群と共通するペプチドピークを標準化用ペプチドピーク群として選択する工程;
(d)工程(c)で選択した標準化用ペプチドピーク群の標準溶出時間を基準に、前記ペプチドピーク群の標準溶出時間と前記ペプチドピーク’群の溶出時間とのアライメントを行い、前記ペプチドピーク’群の溶出時間を前記ペプチドピーク群の標準溶出時間に標準化し、前記ペプチドピーク’群の標準溶出時間を取得する工程;
(e)工程(d)で取得した前記ペプチドピーク’群の標準溶出時間を前記ペプチドピーク群の標準溶出時間に組み込み、新たなペプチドピーク群の標準溶出時間として前記データベースに格納する工程;
(f)ペプチドピーク’群の標準溶出時間に対応するMRMトランジション及びピーク強度を、前記データベースに格納する工程;
That is, the present invention provides (1) identification and / or quantification of peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS). A method for creating a database storing peptide peptide elution times, MRM transitions corresponding to the peptide peak elution times, and peak intensities, comprising the following steps (a) to (f): On how to do.
(A) Obtain the standard elution time of the peptide peak group and the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group obtained by mass spectrometry using LC-MS / MS and store them in the database The step of:
(B) obtaining the elution time of the peptide peak 'group, the MRM transition corresponding to the elution time of the peptide peak' group, and the peak intensity obtained by mass spectrometry using LC-MS / MS;
(C) selecting a peptide peak common to the peptide peak ′ group from the peptide peak group as a peptide peak group for standardization;
(D) Based on the standard elution time of the peptide peak group for standardization selected in the step (c), the standard elution time of the peptide peak group and the elution time of the peptide peak 'group are aligned, and the peptide peak' Normalizing the elution time of the group to the standard elution time of the peptide peak group, and obtaining the standard elution time of the peptide peak 'group;
(E) The step of incorporating the standard elution time of the peptide peak 'group obtained in step (d) into the standard elution time of the peptide peak group and storing it in the database as the standard elution time of a new peptide peak group;
(F) storing the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak 'group in the database;
 また、本発明は、(2)工程(b)~(f)の工程を、2~25回繰り返すことを特徴とする上記(1)に記載の方法に関する。 The present invention also relates to the method according to (1) above, wherein (2) steps (b) to (f) are repeated 2 to 25 times.
 また、本発明は、(3)液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により複数の対象タンパク質を構成するペプチドのペプチドピークを同定及び/又は定量するためのデータベースであって、上記(1)又は(2)に記載の方法を用いて作成した、10万個以上のペプチドピークの溶出時間、及び該ペプチドピークの溶出時間に対応するMRMトランジション並びにピーク強度を備えたことを特徴とするデータベースに関する。 The present invention also provides (3) a database for identifying and / or quantifying peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS). An elution time of 100,000 or more peptide peaks prepared using the method described in (1) or (2) above, and an MRM transition and a peak intensity corresponding to the elution time of the peptide peak It relates to a database characterized by that.
 また、本発明は、(4)液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により1又は複数の試料中の1又は複数の対象タンパク質を構成するペプチドのペプチドピークを同定する方法であって、以下の工程(A)~(E)を備えたことを特徴とする方法に関する。
(A)試料中の対象タンパク質群をタンパク質消化酵素により断片化処理し、対象ペプチド群を調製する工程;
(B)工程(A)で調製した対象ペプチド群を用いて、液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析を行い、ペプチドピークの溶出時間、質量電荷比(m/z)、及びMRMクロマトグラム情報を含むデータを取得する工程;
(C)工程(B)で取得したペプチドピークの質量電荷比(m/z)を基に対象ペプチドピーク群を同定し、該対象ペプチドピーク群の中から上記(1)又は(2)に記載の方法を用いて作成したデータベースに格納されるペプチドピーク群と共通するペプチドピークを標準化用対象ペプチドピーク群として選択する工程;
(D)工程(C)で選択した標準化用対象ペプチドピーク群の溶出時間を基準に、対象ペプチドピーク群の溶出時間と、上記(1)又は(2)に記載の方法を用いて作成したデータベースに格納されるペプチドピーク群の標準溶出時間とのアライメントを行い、上記(1)又は(2)に記載の方法を用いて作成したデータベースに格納されるペプチドピーク群の標準溶出時間を、対象ペプチドピーク群の溶出時間にシフトし、シフトした標準溶出時間と、該シフトした標準溶出時間に対応するMRMトランジション及びピーク強度とを再構築イオンライブラリとして取得する工程;
(E)工程(D)で取得した再構築イオンライブラリを用いて、工程(B)で取得したMRMクロマトグラム情報を含むデータからペプチドピークのMRMクロマトグラムを抽出し、前記MRMクロマトグラムから対象ペプチドピーク群を同定する工程;
The present invention also provides (4) peptide peaks of peptides constituting one or more target proteins in one or more samples by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS). The present invention relates to a method for identification, comprising the following steps (A) to (E).
(A) A step of preparing a target peptide group by subjecting the target protein group in the sample to a fragmentation treatment with a protein digestive enzyme;
(B) Using the target peptide group prepared in step (A), analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS) was performed, and peptide peak elution time, mass-to-charge ratio (m / Z), and obtaining data including MRM chromatogram information;
(C) The target peptide peak group is identified based on the mass-to-charge ratio (m / z) of the peptide peak obtained in step (B), and described in the above (1) or (2) from the target peptide peak group A step of selecting a peptide peak common to the peptide peak group stored in the database created by using the method as a target peptide peak group for standardization;
(D) Based on the elution time of the target peptide peak group for standardization selected in step (C), a database created using the elution time of the target peptide peak group and the method described in (1) or (2) above The standard elution time of the peptide peak group stored in the database prepared using the method described in (1) or (2) above is aligned with the standard elution time of the peptide peak group stored in Shifting to the elution time of the peak group, and obtaining the shifted standard elution time and the MRM transition and peak intensity corresponding to the shifted standard elution time as a reconstructed ion library;
(E) Using the reconstructed ion library acquired in step (D), the MRM chromatogram of the peptide peak is extracted from the data including the MRM chromatogram information acquired in step (B), and the target peptide is extracted from the MRM chromatogram. Identifying a peak group;
 また、本発明は、(5)さらに、複数の試料間における対象タンパク質を構成するペプチドのペプチドピークを定量するための以下の工程(F)及び(G)を備えたことを特徴とする上記(4)に記載の方法に関する。
(F)工程(E)で同定した対象ペプチドピーク群の中から、ピーク面積とピーク強度との比を基に、対象ペプチドピーク群の定量用ペプチドピークを選択する工程;
(G)工程(F)で選択した対象ペプチドピーク群の定量用ペプチドピーク面積を複数の試料について算出し、算出したピーク面積の比から、複数の試料間における対象タンパク質を構成するペプチドのペプチドピークを定量する工程;
Further, the present invention (5) further comprises the following steps (F) and (G) for quantifying the peptide peak of the peptide constituting the target protein among a plurality of samples ( It relates to the method described in 4).
(F) A step of selecting a peptide peak for quantification of the target peptide peak group from the target peptide peak group identified in step (E) based on the ratio of the peak area and the peak intensity;
(G) The peptide peak area for quantification of the target peptide peak group selected in the step (F) is calculated for a plurality of samples, and the peptide peak of the peptide constituting the target protein among the plurality of samples is calculated from the ratio of the calculated peak areas. Quantifying
 さらに本発明は、(6)タンパク質消化酵素による断片化処理が、トリプシンとリシルエンドペプチダーゼとの併用による断片化処理であることを特徴とする上記(4)又は(5)に記載の方法に関する。 Furthermore, the present invention relates to (6) the method according to (4) or (5) above, wherein the fragmentation treatment with a protein digestive enzyme is a fragmentation treatment with a combined use of trypsin and lysylendopeptidase.
 本発明によると、高感度に且つ網羅的に対象タンパク質を構成するペプチドのペプチドピークを同定・定量できるため、健常者由来の試料と、癌やアルツハイマーや心疾患などの各種疾患患者由来の試料との間で発現量が変動する対象タンパク質を高感度且つ網羅的に同定し、定量することができ、バイオマーカー探索分野やバイオマーカーを用いた疾患診断分野で有用である。 According to the present invention, peptide peaks of peptides constituting the target protein can be identified and quantified with high sensitivity and comprehensiveness, so that samples from healthy individuals and samples from patients with various diseases such as cancer, Alzheimer and heart disease, It is possible to identify and quantitate a protein of interest whose expression level fluctuates in a highly sensitive and comprehensive manner, and is useful in the biomarker search field and the disease diagnosis field using biomarkers.
図1A及びBは、本発明のデータベースの作成方法の概要を示す。図1C~Eは、ヒト肝臓ミクロソーム(HLM)画分を用いて本発明のデータベースを作成した結果を示す図である。1A and 1B show an outline of a database creation method of the present invention. FIGS. 1C to 1E are diagrams showing the results of creating a database of the present invention using human liver microsome (HLM) fractions. 図2Aは、本発明のデータベースを用いたイオンライブラリの再構築法の概要を示す。図2Bは、本発明のデータベースを用いてイオンライブラリを再構築したときの実測値RTと補正(シフト)したnRTとの差異を示す。図2Cは、2回の実験(図中「Exp1」と「Exp2」)により、標準的SWATH定量法を用いて同定・定量したペプチドピークの面積を比較した結果を示す図である。図2Dは、2回の実験(図中「Exp1」と「Exp2」)により、本発明のデータベースを用いて同定・定量したペプチドピークの面積を比較した結果を示す図である。図2Eは、2回の実験(図中「Exp1」と「Exp2」)により、本発明のデータベースを用いて同定したペプチドピークからペプチドピークのバリデーションを行い抽出したペプチドピーク面積を比較した結果を示す図である。図2Fは、2回の実験(図中「Exp1」と「Exp2」)により、本発明のデータベースを用いて同定したペプチドピークからペプチドピークのバリデーションを行い抽出したペプチドピークの中からさらにMRMトランジション数が3以上のペプチドピークを抽出し、その面積を比較した結果を示す図である。FIG. 2A shows an outline of a method for reconstructing an ion library using the database of the present invention. FIG. 2B shows the difference between the measured value RT and the corrected (shifted) nRT when the ion library is reconstructed using the database of the present invention. FIG. 2C is a diagram showing the results of comparing the areas of peptide peaks identified and quantified using standard SWATH quantification methods in two experiments (“Exp1” and “Exp2” in the figure). FIG. 2D is a diagram showing the results of comparing the areas of peptide peaks identified and quantified using the database of the present invention by two experiments (“Exp1” and “Exp2” in the figure). FIG. 2E shows the results of comparing peptide peak areas extracted and validated from peptide peaks identified using the database of the present invention by two experiments (“Exp1” and “Exp2” in the figure). FIG. FIG. 2F shows the number of MRM transitions among the peptide peaks extracted by performing peptide peak validation from the peptide peaks identified using the database of the present invention by two experiments (“Exp1” and “Exp2” in the figure). FIG. 3 is a diagram showing the results of extracting three or more peptide peaks and comparing their areas. 図3は、モデル試料を用いて本発明のデータベースによるSWATH定量解析の結果を示す図である。FIG. 3 is a diagram showing the results of SWATH quantitative analysis using the model sample according to the database of the present invention.
 本発明のデータベースは、液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により複数の対象タンパク質を構成するペプチドの複数のペプチドピークを同定及び/又は定量するための、10万個以上のペプチドピークの溶出時間、及び該ペプチドピークの溶出時間に対応するMRMトランジション並びにピーク強度を格納したものであり、本発明のデータベースに格納される「ペプチドピーク」には、対象タンパク質を構成するペプチド由来のピークが含まれる。本発明のデータベースは、以下の工程(a)~(f)を備えた方法(以下、「本件データベースの作成方法」ということがある)を用いて作成することができる。 The database of the present invention is used to identify and / or quantify a plurality of peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS). The elution time of 10,000 or more peptide peaks, the MRM transition corresponding to the elution time of the peptide peak, and the peak intensity are stored. The “peptide peak” stored in the database of the present invention contains the target protein. Peaks from the constituent peptides are included. The database of the present invention can be created using a method comprising the following steps (a) to (f) (hereinafter sometimes referred to as “the present database creation method”).
工程(a)
 工程(a)においては、LC-MS/MSを用いた質量分析で得られる、ペプチドピーク群の標準溶出時間やかかるペプチドピーク群の標準溶出時間に対応するMRMトランジションやピーク強度を取得し、データベースに格納する。上記「LC-MS/MSを用いた質量分析で得られる、ペプチドピーク群の標準溶出時間やかかるペプチドピーク群の標準溶出時間に対応するMRMトランジションやピーク強度」は、実際に、自ら対象タンパク質を含む試料(対象タンパク質試料)をタンパク質消化酵素により断片化処理し、対象タンパク質を構成するペプチドを含むペプチド群を調製した後、LC-MS/MSを用いた解析を行うことにより得られた、上記ペプチド群由来のピーク(ペプチドピーク群)の標準溶出時間や、かかるペプチドピーク群の標準溶出時間に対応するMRMトランジションやピーク強度であってもよいし、第三者が上記解析を行うことにより得られた、ペプチドピーク群の標準溶出時間や、かかるペプチドピーク群の標準溶出時間に対応するMRMトランジションやピーク強度(のデータ[情報])であってもよい。
Step (a)
In step (a), the standard elution time of the peptide peak group and the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group obtained by mass spectrometry using LC-MS / MS are obtained, and the database is obtained. To store. The above “standard elution time of peptide peak group obtained by mass spectrometry using LC-MS / MS, and MRM transition and peak intensity corresponding to the standard elution time of such peptide peak group” The obtained sample (target protein sample) was fragmented with a protein digestive enzyme, and a peptide group containing peptides constituting the target protein was prepared, followed by analysis using LC-MS / MS. It may be the standard elution time of a peak derived from a peptide group (peptide peak group), or the MRM transition or peak intensity corresponding to the standard elution time of the peptide peak group, or obtained by a third party performing the above analysis. Corresponding to the standard elution time of the peptide peak group and the standard elution time of the peptide peak group. It may be a transition and the peak intensity (Data [Information of).
 上記対象タンパク質試料としては、対象タンパク質を含む試料であれば特に制限されず、具体的には、生体から採取された細胞、組織、血液等を、凍結融解法、フレンチプレス、グラスビーズ、ホモジナイザー、超音波破砕装置等を用いた破砕処理により得られる未分画試料や、かかる未分画試料を、分画遠心法、ショ糖密度勾配遠心法等による分画処理することにより得られる細胞膜画分試料や細胞質画分試料を挙げることができる。 The target protein sample is not particularly limited as long as it is a sample containing the target protein. Specifically, cells, tissues, blood and the like collected from a living body are freeze-thawed, French press, glass beads, homogenizer, Unfractionated sample obtained by crushing using an ultrasonic crusher etc., and cell membrane fraction obtained by fractionating such unfractionated sample by fractional centrifugation, sucrose density gradient centrifugation, etc. A sample and a cytoplasm fraction sample can be mentioned.
 上記タンパク質消化酵素としては、タンパク質の特定のアミノ酸部位で消化(切断)され、断片したペプチドが調製できる酵素であれば特に制限されず、具体的には、トリプシン、キモトリプシン、エンドプロテイナーゼGlu-C、エンドプロテイナーゼLys-C、エンドプロテイナーゼArg-C、エンドプロテイナーゼAsn-C、リシルエンドペプチダーゼ、及びクロストリパインを挙げることができる。タンパク質消化酵素により断片化処理は、1又は複数のタンパク質消化酵素による断片化処理であれば特に制限されないが、効率よく断片化処理できるという点から、複数の上記タンパク質消化酵素による断片化処理が好ましく、具体的にはトリプシンとリシルエンドペプチダーゼとの併用による断片化処理を好適に例示することができる。 The protein digestion enzyme is not particularly limited as long as it is an enzyme that can be digested (cut) at a specific amino acid site of a protein to prepare a fragmented peptide. Specifically, trypsin, chymotrypsin, endoproteinase Glu-C, Mention may be made of endoproteinase Lys-C, endoproteinase Arg-C, endoproteinase Asn-C, lysyl endopeptidase, and clostripain. The fragmentation treatment with a protein digestion enzyme is not particularly limited as long as it is a fragmentation treatment with one or a plurality of protein digestion enzymes, but from the viewpoint of efficient fragmentation treatment, a fragmentation treatment with a plurality of the above protein digestion enzymes is preferable. Specifically, a fragmentation treatment using a combination of trypsin and lysyl endopeptidase can be preferably exemplified.
 上記LC-MS/MSを用いた解析においては、まずLC-MS/MSのLC(液体クロマトグラフィー)により、ペプチド群が分離される。ここで液体クロマトグラフィーとしては、具体的には、ペプチドの電荷の違いを利用して分離を行なう陽イオン交換クロマトグラフィーや、ペプチドの疎水性の違いを利用して分離を行なう逆相クロマトグラフィーを挙げることができ、両者を組み合わせたものであってもよい。 In the analysis using the above LC-MS / MS, the peptide groups are first separated by LC (liquid chromatography) of LC-MS / MS. Here, as liquid chromatography, specifically, cation exchange chromatography that performs separation using the difference in the charge of the peptide or reverse phase chromatography that performs separation using the difference in the hydrophobicity of the peptide. It may be mentioned, and may be a combination of both.
 次いで、分離された各ペプチドについて、タンデム質量分析(MS/MS)を行う。質量分析におけるイオン化の方法はソフトイオン化法であるエレクトロスプレーイオン化法(ESI法)を用いることが好ましい。質量分析では、各種イオン化法によりイオン化したペプチドはアナライザーで質量に応じて分離される。上記アナライザーとしては、例えば、磁場型質量分離装置(Sector MS)、四重極型質量分離装置(QMS)、飛行時間型質量分離装置(TOFMS)、フーリエ変換イオンサイクロトロン型質量分離装置(FT-ICRMS)を挙げることができ、さらにこれらを組み合わせたものでもよい。 Next, tandem mass spectrometry (MS / MS) is performed on each separated peptide. The ionization method in mass spectrometry is preferably an electrospray ionization method (ESI method), which is a soft ionization method. In mass spectrometry, peptides ionized by various ionization methods are separated according to mass by an analyzer. Examples of the analyzer include a magnetic mass separator (Sector 型 MS), a quadrupole mass separator (QMS), a time-of-flight mass separator (TOFMS), and a Fourier transform ion cyclotron mass separator (FT-ICRMS). Or a combination thereof.
 イオン化したペプチドの検出からMS/MSデータの取得までの方法としては、自動化した測定モードで行う方法が好ましく、具体的にはIDA(Information Dependent Acquisition)測定法、DDA(Data Dependent Acquisition)測定法等を挙げることができる。得られたMS/MSデータは、Protein Pilot、Peak View、MASCOT等のタンパク質同定のためのソフトウエアにインポートし、UniProt、EMBL、Swiss-Prot等のタンパク質データベースを用いてペプチド群を同定する。同定したペプチド群の中には、信頼性の低いペプチドピークを有するものが含まれているため、同定したペプチド群のペプチドピーク(ペプチドピーク群)の中から、信頼性の高いペプチドピークを有するものを選択することが好ましく、信頼性の高いペプチドピークとしては、上記ソフトウエアにより同定したペプチド群のMS/MSデータをイオンライブラリファイル(テキストファイル)に変換し、Access(Microsoft社製)にエクスポートすることにより、ペプチド信頼性を示す指標であるペプチド信頼度スコア(peptide confidence score)(信頼性が100%の場合の信頼度スコアは1.00として示す)を基に選択することができ、例えば、前記スコアが0.85を超えるペプチド、0.90を超えるペプチド、0.92を超えるペプチド、0.94を超えるペプチド、0.95を超えるペプチド、0.96を超えるペプチド、0.97を超えるペプチド、0.98を超えるペプチド、0.99を超えるペプチドなどを挙げることができるが、0.99を超えるペプチドがより好ましい。 As a method from detection of ionized peptides to acquisition of MS / MS data, a method in an automated measurement mode is preferable. Specifically, an IDA (Information Dependent Acquisition) measurement method, a DDA (Data Dependent Acquisition) measurement method, etc. Can be mentioned. The obtained MS / MS data is imported into protein identification software such as Protein® Pilot, Peak® View, MASCOT, etc., and peptide groups are identified using protein databases such as UniProt, EMBL, Swiss-Prot. Some of the identified peptide groups have a peptide peak with low reliability, so those with a highly reliable peptide peak from among the peptide peaks of the identified peptide group (peptide peak group) As a highly reliable peptide peak, MS / MS data of the peptide group identified by the above software is converted into an ion library file (text file) and exported to Access (manufactured by Microsoft). Thus, the peptide reliability score (peptide ペ プ チ ド confidence score), which is an index indicating peptide reliability, can be selected based on the reliability score when the reliability is 100% (shown as 1.00), for example, Peptides with a score above 0.85, peptides above 0.90, peptides above 0.92. Peptides greater than 0.94, peptides greater than 0.95, peptides greater than 0.96, peptides greater than 0.97, peptides greater than 0.98, peptides greater than 0.99, etc. More than .99 peptides are more preferred.
 ペプチドピーク群について、液体クロマトグラフィーにおける溶出時間とかかる溶出時間に対応するMRMトランジションやピーク強度に関する情報を取得し、データベースに格納する。本願明細書中において、「MRMトランジション」とは、特定質量を有するイオン化したペプチド(プリカーサーイオン)を通過させる質量フィルター(Q1)とガス衝突誘導開裂(CID: Collision Induced Dissociation)によって生じる前記プリカーサーイオンが断片化したもの(プロダクトイオン)を通過させる質量フィルター(Q3)の組み合わせ(Q1とQ3の質量電荷比[m/z]の組み合わせ)のことを意味する。ペプチドピーク群は、上記ソフトウエアによりペプチド由来のピークにおいて複数回同定され、結果、同じペプチドピークであっても異なる複数の溶出時間を取得することがある。その場合には、ペプチドピークの溶出時間を平均した平均溶出時間を取得し、データベースに格納する。また、上記ソフトウエアによりペプチドピークが誤同定される場合があり、誤同定されたペプチドピークの溶出時間は、正同定されたペプチドピークの溶出時間と大きく異なる。このため、誤同定されたペプチドピークのデータを除外することが好ましく、その方法としては、例えば、ペプチドピークの溶出時間や平均溶出時間の標準偏差(SD)を選択することにより除外する方法を挙げることができ、溶出時間の標準偏差としては、例えば1.0分未満、0.5分未満、0.4分未満、0.3分未満、0.2分未満を挙げることができ、0.2分未満が好ましい。 For the peptide peak group, information on the elution time in liquid chromatography and the MRM transition and peak intensity corresponding to the elution time are acquired and stored in a database. In the present specification, the term "MRM transitions", ionized peptide having a particular mass mass filter (Q1) and a gas collision-induced cleavage to pass (precursor ions): caused by (CID C ollision I nduced D issociation ) the It means a combination of mass filters (Q3) that allow the precursor ions to be fragmented (product ions) (combination of mass-to-charge ratio [m / z] of Q1 and Q3). The peptide peak group is identified a plurality of times in the peptide-derived peak by the software, and as a result, a plurality of different elution times may be obtained even for the same peptide peak. In that case, an average elution time obtained by averaging the elution times of peptide peaks is obtained and stored in a database. Moreover, the peptide peak may be misidentified by the above software, and the elution time of the misidentified peptide peak is greatly different from the elution time of the positively identified peptide peak. For this reason, it is preferable to exclude erroneously identified peptide peak data, and examples of the method include a method of excluding by selecting the peptide peak elution time and the standard deviation (SD) of the average elution time. Examples of the standard deviation of the elution time include, for example, less than 1.0 minute, less than 0.5 minute, less than 0.4 minute, less than 0.3 minute, and less than 0.2 minute. Less than 2 minutes are preferred.
 上記データベースには、さらに、ペプチドピーク群の標準溶出時間に対応するUniProtアクセッション番号や、ペプチドの修飾に関する情報を含むペプチドのアミノ酸配列や価数等の関連情報を格納することが好ましい。これらの情報により、ペプチドピークをさらに特徴付けることができ、ペプチドピークに対応するペプチド、すなわち対象タンパク質を構成するペプチドのアミノ酸配列を特定するために用いることができる。 In the database, it is preferable to store UniProt accession number corresponding to the standard elution time of the peptide peak group, and related information such as the amino acid sequence and valence of the peptide including information on peptide modification. With this information, the peptide peak can be further characterized and can be used to specify the amino acid sequence of the peptide corresponding to the peptide peak, ie, the peptide constituting the protein of interest.
工程(b)
 工程(b)においては、LC-MS/MSを用いた質量分析で得られる、ペプチドピーク’群の溶出時間や、かかるペプチドピーク’群の溶出時間に対応するMRMトランジションやピーク強度を取得する。上記「LC-MS/MSを用いた質量分析で得られる、ペプチドピーク’群の溶出時間や、かかるペプチドピーク’群の溶出時間に対応するMRMトランジションやピーク強度」には、実際に、対象タンパク質’を含む試料(対象タンパク質’試料)をタンパク質消化酵素により断片化処理し、対象タンパク質’を構成するペプチド’を含むペプチド’群を調製した後、LC-MS/MSを用いた解析を行って得られた、上記ペプチド’群由来のピーク(ペプチドピーク’群)の標準溶出時間や、かかるペプチドピーク’群の標準溶出時間に対応するMRMトランジションやピーク強度の他、上記解析により得られたペプチドピーク’群の標準溶出時間や、かかるペプチドピーク’群の標準溶出時間に対応するMRMトランジションやピーク強度(のデータ[情報])も含まれる。
Step (b)
In step (b), the elution time of the peptide peak 'group, the MRM transition and the peak intensity corresponding to the elution time of the peptide peak' group, obtained by mass spectrometry using LC-MS / MS, are obtained. The above "elution time of peptide peak 'group obtained by mass spectrometry using LC-MS / MS, and MRM transition and peak intensity corresponding to the elution time of such peptide peak'group" are actually the target protein. The sample containing '(target protein' sample) is fragmented with a protein digestion enzyme to prepare a group of peptides containing peptides that constitute the target protein ', and then analyzed using LC-MS / MS In addition to the standard elution time of the peak derived from the peptide group (peptide peak group) and the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group, the peptide obtained by the above analysis The standard elution time of the peak 'group, the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak' group (data [ Distribution]) is also included.
 上記タンパク質’試料としては、タンパク質を含む試料であれば特に制限されず、具体的には、生体から採取された細胞、組織、血液等を、凍結融解法、フレンチプレス、グラスビーズ、ホモジナイザー、超音波破砕装置等を用いた破砕処理により得られる未分画試料や、かかる未分画試料を、分画遠心法、ショ糖密度勾配遠心法等による分画処理することにより得られる細胞膜画分試料や細胞質画分試料を挙げることができる。上記タンパク質’試料としては、工程(a)におけるタンパク質試料と同じ試料であってもよいが、より多くのペプチドピークに関する情報をデータベースに格納することができるため、異なる試料が好ましい。 The protein 'sample is not particularly limited as long as it contains a protein. Specifically, cells, tissues, blood and the like collected from a living body can be frozen and thawed, French press, glass beads, homogenizer, Unfractionated sample obtained by crushing treatment using a sonication device, etc., and cell membrane fraction sample obtained by subjecting such unfractionated sample to fractionation by fractional centrifugation, sucrose density gradient centrifugation, etc. And cytoplasmic fraction samples. The protein 'sample may be the same sample as the protein sample in step (a), but a different sample is preferable because information on more peptide peaks can be stored in the database.
 タンパク質’試料をタンパク質消化酵素により断片化処理し、ペプチド’群を調製した後、LC-MS/MSを用いた解析を行い、ペプチドピーク’群の溶出時間や、かかるペプチドピーク’群の標準溶出時間に対応するMRMトランジションやピーク強度を取得するまでの詳細な説明は、工程(a)において既述のとおりである。工程(b)におけるタンパク質消化酵素による断片化処理や、LC-MS/MSを用いた解析や、ペプチドピークの同定・選択等の条件は、工程(a)における条件と同じであることが好ましい。 After the protein 'sample is fragmented with protein digestion enzymes and the peptide group is prepared, analysis is performed using LC-MS / MS to determine the elution time of the peptide peak group and the standard elution of the peptide peak group. The detailed description until the acquisition of the MRM transition corresponding to the time and the peak intensity is as described above in the step (a). The conditions for the fragmentation treatment with the protein digestive enzyme in step (b), the analysis using LC-MS / MS, the identification and selection of peptide peaks, etc. are preferably the same as the conditions in step (a).
工程(c)
 工程(c)においては、上記ペプチドピーク群の中から上記ペプチドピーク’群と共通するペプチドピークを標準化用ペプチドピーク群として選択する。標準化用ペプチドピーク群の選択は、Accessソフトウエア(Microsoft社製)等のリレーショナルデータベースソフトウエアを用いて、上記ペプチドピーク群におけるMRMトランジション(Q1とQ3の質量電荷比[m/z])と上記ペプチドピーク’群におけるMRMトランジションとを比較し、MRMトランジションが共通(同一)のペプチドピークを選択することにより行うことができる。
Step (c)
In step (c), a peptide peak common to the peptide peak 'group is selected from the peptide peak group as a peptide peak group for standardization. The peptide peak group for standardization is selected using relational database software such as Access software (manufactured by Microsoft), MRM transition (mass-to-charge ratio [m / z] of Q1 and Q3) in the peptide peak group and the above. This can be done by comparing the MRM transitions in the 'peptide peak' group and selecting peptide peaks with the same (same) MRM transition.
工程(d)
 工程(d)においては、工程(c)で選択した標準化用ペプチドピーク群の標準溶出時間を基準に、上記ペプチドピーク群の標準溶出時間と上記ペプチドピーク’群の溶出時間とのアライメントを行い、上記ペプチドピーク’群の溶出時間を上記ペプチドピーク群の標準溶出時間に標準化し、上記ペプチドピーク’群の標準溶出時間を取得する。上記ペプチドピーク’群の溶出時間を上記ペプチドピーク群の標準溶出時間に標準化する方法としては、ペプチドピーク群の中の標準化用ペプチドピーク群の標準溶出時間を基準にして、最適化するようにペプチドピーク’群の(実測値)溶出時間をシフトし、ペプチドピーク群の標準溶出時間へ標準化できる方法であればよく、例えば、Origin 9ソフトウエア(OriginLab社製)、Excel(Microsoft社製)等のソフトウエアを用い、ペプチドピーク’群のうち標準化用ペプチドピーク群については、パーセンタイルフィルター(100ポイント、50%)を用いたスムージングによってシフト時間を算出し、算出した時間に基づいて溶出時間をシフトするとともに、ペプチドピーク’群のうち標準化用ペプチドピーク群以外のペプチドピーク’については、近傍の標準化用ペプチドピークのシフト量に応じて(例えば、線形補正を用いてシフト時間を算出し)、算出したシフト時間に基づいて溶出時間をシフトする方法を挙げることができる。
Step (d)
In step (d), based on the standard elution time of the peptide peak group for standardization selected in step (c), the standard elution time of the peptide peak group and the elution time of the peptide peak ′ group are aligned, The elution time of the peptide peak 'group is normalized to the standard elution time of the peptide peak group, and the standard elution time of the peptide peak' group is obtained. As a method for normalizing the elution time of the peptide peak 'group to the standard elution time of the peptide peak group, the peptide is optimized so as to be optimized based on the standard elution time of the peptide peak group for standardization in the peptide peak group. Any method can be used as long as it can shift the elution time of the peak 'group (actually measured value) and standardize it to the standard elution time of the peptide peak group. For example, Origin 9 software (manufactured by OriginLab), Excel (manufactured by Microsoft), etc. Using software, for the peptide peak group for standardization among the peptide peak 'group, the shift time is calculated by smoothing using a percentile filter (100 points, 50%), and the elution time is shifted based on the calculated time. In addition, for peptide peaks other than the peptide peak group for standardization among the peptide peaks Depending on the shift amount of standardization for peptide peaks (e.g., calculates the shift time using a linear correction), it shifts the elution time based on the calculated shift time can be a method.
工程(e)
 工程(e)においては、工程(d)で取得した上記ペプチドピーク’群の標準溶出時間を上記ペプチドピーク群の標準溶出時間に組み込み、新たなペプチドピーク群の標準溶出時間として上記データベースに格納する。すなわち、工程(e)では、ペプチドピーク群の標準溶出時間に、ペプチドピーク’群の標準溶出時間(ペプチドピーク’群の溶出時間がペプチドピーク群の標準溶出時間へ標準化した溶出時間)を保存し、蓄積した標準溶出時間のデータベースを作成する。
Step (e)
In step (e), the standard elution time of the peptide peak 'group obtained in step (d) is incorporated into the standard elution time of the peptide peak group and stored in the database as the standard elution time of the new peptide peak group. . That is, in step (e), the standard elution time of the peptide peak group is stored in the standard elution time of the peptide peak group (the elution time of the peptide peak group is normalized to the standard elution time of the peptide peak group). Create a database of accumulated standard elution times.
工程(f)
 工程(f)においては、ペプチドピーク’群の標準溶出時間に対応するMRMトランジション及びピーク強度を、前記データベースに格納する。すなわち、工程(f)では、ペプチドピーク群の標準溶出時間に対応するMRMトランジション及びピーク強度に加え、ペプチドピーク’群の標準溶出時間に対応するMRMトランジション及びピーク強度がデータベースに保存され、蓄積した標準溶出時間に対応するMRMトランジション及びピーク強度を格納する。ここで、ペプチドピーク’群の標準溶出時間に対応するピーク強度のうち、標準化用ペプチドピーク群のピーク強度は、データベースに格納されている標準化用ペプチドピーク群のピーク強度との平均値や合計値の他、両者を比較して大きい値の方を選択し、データベースに格納してもよく、或いは必要に応じて合計値を算出するために両者を蓄積してデータベースに格納してもよい。
Step (f)
In step (f), the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak 'group are stored in the database. That is, in step (f), in addition to the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group, the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak 'group were stored in the database and accumulated. Store MRM transition and peak intensity corresponding to standard elution time. Here, among the peak intensities corresponding to the standard elution time of the peptide peak 'group, the peak intensity of the standardizing peptide peak group is an average value or total value with the peak intensity of the standardizing peptide peak group stored in the database. In addition, the two values may be compared and the larger value may be selected and stored in the database, or both may be accumulated and stored in the database in order to calculate the total value as necessary.
 工程(b)~(f)を繰り返すことにより、蓄積した標準溶出時間の蓄積レベルを高めたデータベースを作成することができるため、工程(b)~(f)の工程を、少なくとも2回繰り返すことが好ましく、少なくとも2回としては、例えば、2~200回、2~100回、2~50回、2~25回、2~10回、10~200回、10~100回、10~50回、10~25回、25~200回、25~100回、25~50回、50~200回、50~100回などであってもよいが、2~25回がより好ましい。また、工程(b)~(f)を繰り返す場合、工程(b)で取得するペプチドピーク’群の溶出時間やかかる溶出時間に対応するMRMトランジションやピーク強度を得るためのタンパク質’試料としては、蓄積した標準溶出時間の蓄積レベルを効率よく高めるために、それぞれの繰り返しで異なる試料が好ましい。 By repeating steps (b) to (f), a database with an increased accumulation level of accumulated standard elution time can be created. Therefore, steps (b) to (f) are repeated at least twice. Preferably, at least twice, for example, 2 to 200 times, 2 to 100 times, 2 to 50 times, 2 to 25 times, 2 to 10 times, 10 to 200 times, 10 to 100 times, 10 to 50 times It may be 10 to 25 times, 25 to 200 times, 25 to 100 times, 25 to 50 times, 50 to 200 times, 50 to 100 times, etc., but 2 to 25 times is more preferable. In addition, when steps (b) to (f) are repeated, the protein peak for obtaining MRM transition and peak intensity corresponding to the elution time of the peptide peak 'group obtained in step (b) and the elution time, In order to efficiently increase the accumulation level of the accumulated standard elution time, a different sample is preferable for each repetition.
 本件データベースの作成方法を用いて作成したデータベース(以下、「本件データベース」ということがある)を用い、1又は複数の試料中の1又は複数の対象タンパク質をLC-MS/MSを用いた解析を以下の工程(A)~(E)を備えた方法(以下、「本件解析方法」ということがある)にしたがって行うと、対象タンパク質を構成するペプチドのペプチドピークを同定することができる。 Analysis using LC-MS / MS for one or more target proteins in one or more samples using a database created using the database creation method (hereinafter sometimes referred to as the “database”) When performed according to a method comprising the following steps (A) to (E) (hereinafter sometimes referred to as “the present analysis method”), the peptide peak of the peptide constituting the target protein can be identified.
工程(A)
 工程(A)においては、試料中の対象タンパク質群をタンパク質消化酵素により断片化処理し、対象ペプチド群を調製する。
Step (A)
In the step (A), the target protein group in the sample is fragmented with a protein digestive enzyme to prepare the target peptide group.
 上記試料としては、対象タンパク質を含む試料であれば特に制限されず、具体的には、生体から採取された細胞、組織、血液等を、凍結融解法、フレンチプレス、グラスビーズ、ホモジナイザー、超音波破砕装置等を用いた破砕処理により得られる未分画試料や、かかる未分画試料を、分画遠心法、ショ糖密度勾配遠心法等による分画処理することにより得られる細胞膜画分試料や細胞質画分試料を挙げることができる。 The sample is not particularly limited as long as it contains a target protein. Specifically, cells, tissues, blood, etc. collected from a living body can be frozen and thawed, French press, glass beads, homogenizer, ultrasonic wave. Unfractionated samples obtained by crushing treatment using a crushing device, etc., and cell membrane fraction samples obtained by fractionating such unfractionated samples by fractional centrifugation, sucrose density gradient centrifugation, etc. A cytoplasmic fraction sample can be mentioned.
 上記タンパク質消化酵素としては、タンパク質の特定のアミノ酸部位で消化(切断)され、断片したペプチドが調製できる酵素であれば特に制限されず、具体的には、トリプシン、キモトリプシン、エンドプロテイナーゼGlu-C、エンドプロテイナーゼLys-C、エンドプロテイナーゼArg-C、エンドプロテイナーゼAsn-C、リシルエンドペプチダーゼ、及びクロストリパインを挙げることができる。タンパク質消化酵素により断片化処理は、1又は複数のタンパク質消化酵素による断片化処理であれば特に制限されないが、効率よく断片化処理できるという点から、複数の上記タンパク質消化酵素による断片化処理が好ましく、具体的にはトリプシンとリシルエンドペプチダーゼとの併用による断片化処理を好適に例示することができる。タンパク質消化酵素による断片化処理条件としては、用いるタンパク質消化酵素の性質により温度や時間等の条件を適宜選択することができ、例えばトリプシンを用いる場合、30℃~45℃において1~36時間であることが好ましく、36~37℃において16~24時間であることがより好ましい。また、リシルエンドペプチダーゼを用いる場合、15~45℃において1~36時間であることが好ましく、15~25℃において2~4時間であることがさらに好ましい。また、トリプシンとリシルエンドペプチダーゼを併用する場合、15℃~45℃において1~36時間であることが好ましく、20~30℃において10~14時間であることがより好ましい。 The protein digestion enzyme is not particularly limited as long as it is an enzyme that can be digested (cut) at a specific amino acid site of a protein to prepare a fragmented peptide. Specifically, trypsin, chymotrypsin, endoproteinase Glu-C, Mention may be made of endoproteinase Lys-C, endoproteinase Arg-C, endoproteinase Asn-C, lysyl endopeptidase, and clostripain. The fragmentation treatment with a protein digestion enzyme is not particularly limited as long as it is a fragmentation treatment with one or a plurality of protein digestion enzymes, but from the viewpoint of efficient fragmentation treatment, a fragmentation treatment with a plurality of the above protein digestion enzymes is preferable. Specifically, a fragmentation treatment using a combination of trypsin and lysyl endopeptidase can be preferably exemplified. As the fragmentation treatment conditions by the protein digestive enzyme, conditions such as temperature and time can be appropriately selected depending on the properties of the protein digestive enzyme to be used. For example, when trypsin is used, it is 1 to 36 hours at 30 ° C. to 45 ° C. More preferably, it is 16 to 24 hours at 36 to 37 ° C. When lysyl endopeptidase is used, it is preferably 1 to 36 hours at 15 to 45 ° C., more preferably 2 to 4 hours at 15 to 25 ° C. When trypsin and lysyl endopeptidase are used in combination, it is preferably 1 to 36 hours at 15 to 45 ° C, more preferably 10 to 14 hours at 20 to 30 ° C.
 工程(B)
 工程(B)においては、工程(A)で調製した対象ペプチド群を用いて、LC-MS/MSを用いた解析を行い、ペプチドピークの液体クロマトグラフィーにおける溶出時間、質量電荷比(m/z)(ペプチドピークの溶出時間に対応するMRMトランジション)、及びMRMクロマトグラム情報を含むデータを取得する。ここで「MRMクロマトグラム情報を含むデータ」とは、ペプチドピークのMRMクロマトグラムを抽出できるデータのことを意味し、具体的には、ペプチドピークの溶出時間に対応するMRMトランジションにおける、ペプチドピークの溶出時間とピーク強度から構成される(2次元)クロマトグラムを抽出できるデータのことをいう。
Process (B)
In step (B), the target peptide group prepared in step (A) is used for analysis using LC-MS / MS, and the elution time and mass-to-charge ratio (m / z) of the peptide peak in liquid chromatography are analyzed. ) (MRM transition corresponding to peptide peak elution time) and data including MRM chromatogram information. Here, the “data including MRM chromatogram information” means data that can extract the MRM chromatogram of the peptide peak, and specifically, the peptide peak in the MRM transition corresponding to the elution time of the peptide peak. Data that can extract a (two-dimensional) chromatogram composed of elution time and peak intensity.
 上記LC-MS/MSを用いた解析においては、まずLC-MS/MSのLC(液体クロマトグラフィー)により、ペプチド群が分離される。ここで液体クロマトグラフィーとしては、具体的には、ペプチドの電荷の違いを利用して分離を行なう陽イオン交換クロマトグラフィーや、ペプチドの疎水性の違いを利用して分離を行なう逆相クロマトグラフィーを挙げることができ、両者を組み合わせたものであってもよい。 In the analysis using the above LC-MS / MS, the peptide groups are first separated by LC (liquid chromatography) of LC-MS / MS. Here, as liquid chromatography, specifically, cation exchange chromatography that performs separation using the difference in the charge of the peptide or reverse phase chromatography that performs separation using the difference in the hydrophobicity of the peptide. It may be mentioned, and may be a combination of both.
 次いで、分離された各ペプチドについて、タンデム質量分析(MS/MS)を行う。質量分析におけるイオン化の方法はソフトイオン化法であるエレクトロスプレーイオン化法(ESI法)を用いることが好ましい。質量分析では、各種イオン化法によりイオン化したペプチドはアナライザーで質量に応じて分離される。上記アナライザーとしては、例えば、磁場型質量分離装置(Sector MS)、四重極型質量分離装置(QMS)、飛行時間型質量分離装置(TOFMS)、フーリエ変換イオンサイクロトロン型質量分離装置(FT-ICRMS)を挙げることができ、さらにこれらを組み合わせたものでもよい。 Next, tandem mass spectrometry (MS / MS) is performed on each separated peptide. The ionization method in mass spectrometry is preferably an electrospray ionization method (ESI method), which is a soft ionization method. In mass spectrometry, peptides ionized by various ionization methods are separated according to mass by an analyzer. Examples of the analyzer include a magnetic mass separator (Sector 型 MS), a quadrupole mass separator (QMS), a time-of-flight mass separator (TOFMS), and a Fourier transform ion cyclotron mass separator (FT-ICRMS). Or a combination thereof.
 イオン化したペプチドの検出からMS/MSデータの取得までの方法としては、自動化した測定モードで行う方法が好ましく、具体的にはIDA(Information Dependent Acquisition)測定法、DDA(Data Dependent Acquisition)測定法等を挙げることができる。また、MRMクロマトグラム情報を含むデータは、MRM測定法やSWATH-MS測定法を用いて取得することができる。得られたMS/MSデータは、Protein Pilot、Peak View、MASCOT等のタンパク質同定のためのソフトウエアにインポートし、UniProt、EMBL、Swiss-Prot等のタンパク質データベースを用いてペプチド群を同定する。同定したペプチド群の中には、信頼性の低いペプチドピークを有するものが含まれているため、同定したペプチド群のペプチドピーク(ペプチドピーク群)の中から、信頼性の高いペプチドピークを有するものを選択することが好ましく、信頼性の高いペプチドピークとしては、上記ソフトウエアにより同定したペプチド群のMS/MSデータをイオンライブラリファイル(テキストファイル)に変換し、Access(Microsoft社製)にエクスポートすることにより、ペプチド信頼性を示す指標であるペプチド信頼度スコア(peptide confidence score)(信頼性が100%の場合の信頼度スコアは1.00として示す)を基に選択することができ、例えば、前記スコアが0.85を超えるペプチド、0.90を超えるペプチド、0.92を超えるペプチド、0.94を超えるペプチド、0.95を超えるペプチド、0.96を超えるペプチド、0.97を超えるペプチド、0.98を超えるペプチド、0.99を超えるペプチドなどを挙げることができるが、0.99を超えるペプチドがより好ましい。 As a method from detection of ionized peptides to acquisition of MS / MS data, a method in an automated measurement mode is preferable. Specifically, an IDA (Information Dependent Acquisition) measurement method, a DDA (Data Dependent Acquisition) measurement method, etc. Can be mentioned. In addition, data including MRM chromatogram information can be acquired using an MRM measurement method or a SWATH-MS measurement method. The obtained MS / MS data is imported into protein identification software such as Protein® Pilot, Peak® View, MASCOT, etc., and peptide groups are identified using protein databases such as UniProt, EMBL, Swiss-Prot. Some of the identified peptide groups have a peptide peak with low reliability, so those with a highly reliable peptide peak from among the peptide peaks of the identified peptide group (peptide peak group) As a highly reliable peptide peak, MS / MS data of the peptide group identified by the above software is converted into an ion library file (text file) and exported to Access (manufactured by Microsoft). Thus, the peptide reliability score (peptide ペ プ チ ド confidence score), which is an index indicating peptide reliability, can be selected based on the reliability score when the reliability is 100% (shown as 1.00), for example, Peptides with a score above 0.85, peptides above 0.90, peptides above 0.92. Peptides greater than 0.94, peptides greater than 0.95, peptides greater than 0.96, peptides greater than 0.97, peptides greater than 0.98, peptides greater than 0.99, etc. More than .99 peptides are more preferred.
工程(C)
 工程(C)においては、工程(B)で取得したペプチドピークの質量電荷比(m/z)を基に対象ペプチドピーク群を同定し、該対象ペプチドピーク群の中から本件データベースに格納されるペプチドピーク群と共通するペプチドピークを標準化用対象ペプチドピーク群として選択する。標準化用対象ペプチドピーク群の選択は、Accessソフトウエア(Microsoft社製)等のソフトウエアを用いて、本発明のデータベースに格納されるペプチドピーク群におけるMRMトランジション(Q1とQ3の質量電荷比[m/z])と対象ペプチドピーク群におけるMRMトランジションとを比較し、MRMトランジションが共通(同一)のペプチドピークを選択することにより行うことができる。
Process (C)
In the step (C), the target peptide peak group is identified based on the mass-to-charge ratio (m / z) of the peptide peak acquired in the step (B), and stored in the database from the target peptide peak group. A peptide peak common to the peptide peak group is selected as the target peptide peak group for standardization. The target peptide peak group for standardization is selected by using software such as Access software (manufactured by Microsoft), and the MRM transition (the mass-to-charge ratio of Q1 and Q3 [m / Z]) and the MRM transition in the target peptide peak group, and a peptide peak having the same (same) MRM transition can be selected.
工程(D)
 工程(D)においては、工程(C)で選択した標準化用対象ペプチドピーク群の溶出時間を基準に、対象ペプチドピーク群の溶出時間と、本件データベースに格納されるペプチドピーク群の標準溶出時間とのアライメントを行い、本件データベースに格納されるペプチドピーク群の標準溶出時間を、対象ペプチドピーク群の溶出時間にシフトし、シフトした標準溶出時間と、該シフトした標準溶出時間に対応するMRMトランジション及びピーク強度とを再構築イオンライブラリとして取得する。本件データベースに格納されるペプチドピーク群の標準溶出時間を、対象ペプチドピーク群の溶出時間にシフトする方法としては、対象ペプチドピーク群の中の標準化用対象ペプチドピーク群の溶出時間を基準にして、最適化するように本件データベースのペプチドピーク群の標準溶出時間をシフトし、対象ペプチドピーク群の溶出時間へ実測値化できる方法であればよく、例えば、Origin 9ソフトウエア(OriginLab社製)、Excel(Microsoft社製)等のソフトウエアを用い、本件データベースのペプチドピーク群のうち標準化用対象ペプチドピーク群については、パーセンタイルフィルター(100ポイント、50%)を用いたスムージングによってシフト時間を算出し、算出した時間に基づいて標準溶出時間をシフトするとともに、本件データベースのペプチドピーク群のうち標準化用対象ペプチドピーク群以外のペプチドピークについては、近傍の標準化用対象ペプチドピークのシフト量に応じて(例えば、線形補正を用いてシフト時間を算出し)、算出したシフト時間に基づいて溶出時間をシフトする方法を挙げることができる。シフトした標準溶出時間は、Access(Microsoft社製)にインポートし、さらに該シフトした標準溶出時間に対応するMRMトランジション及びピーク強度と統合することにより再構築イオンライブラリ(シフトした標準溶出時間と、該シフトした標準溶出時間に対応するMRMトランジション及びピーク強度を含むデータ)とを取得する。
Process (D)
In step (D), based on the elution time of the target peptide peak group for standardization selected in step (C), the elution time of the target peptide peak group and the standard elution time of the peptide peak group stored in this database The standard elution time of the peptide peak group stored in the database is shifted to the elution time of the target peptide peak group, the shifted standard elution time, and the MRM transition corresponding to the shifted standard elution time and The peak intensity is acquired as a reconstructed ion library. As a method of shifting the standard elution time of the peptide peak group stored in the database to the elution time of the target peptide peak group, based on the elution time of the target peptide peak group for standardization in the target peptide peak group, Any method can be used as long as the standard elution time of the peptide peak group in this database is shifted so that it can be optimized, and the actual value can be converted to the elution time of the target peptide peak group. For example, Origin 9 software (manufactured by OriginLab), Excel Using software such as Microsoft (manufactured by Microsoft), the shift time is calculated by smoothing using the percentile filter (100 points, 50%) for the peptide peak group for standardization among the peptide peak groups in this database. The standard elution time is shifted based on the measured time and the database For peptide peaks other than the target peptide peak group for standardization in the peptide peak group, the calculated shift time according to the shift amount of the target peptide peak for standardization nearby (for example, the shift time is calculated using linear correction). A method of shifting the elution time based on the above can be mentioned. The shifted standard elution time is imported into Access (manufactured by Microsoft) and further reconstituted with the MRM transition and peak intensity corresponding to the shifted standard elution time. Data including MRM transitions and peak intensities corresponding to shifted standard elution times).
工程(E)
 工程(E)においては、工程(D)で取得した再構築イオンライブラリを用いて、工程(B)で取得したMRMクロマトグラム情報を含むデータからペプチドピークのMRMクロマトグラムを抽出し、前記MRMクロマトグラムから対象ペプチドピーク群を同定する。
Process (E)
In step (E), the MRM chromatogram of the peptide peak is extracted from the data including the MRM chromatogram information acquired in step (B) using the reconstructed ion library acquired in step (D), and the MRM chromatogram Identify peptide groups of interest from the gram.
 上記ペプチドピークのMRMクロマトグラムから対象ペプチドピーク群を同定するために、まずMRMクロマトグラム情報を含むデータから、対象ペプチド由来のペプチドピークの各MRMトランジションにおいて、ペプチドピークの溶出時間とピーク強度から構成される(2次元)クロマトグラムを作成する。次に、かかるクロマトグラムの中から、再構築イオンライブラリにおけるシフトした標準溶出時間(対象ペプチドピーク群の溶出時間が基準となるように変換された標準溶出時間)と共通する溶出時間を有するペプチドピークを抽出し、シフトした標準溶出時間と共通する溶出時間を有するペプチドピークを対象ペプチドピークとして同定する。ここで、「共通する溶出時間」には、シフトした標準溶出時間と同一の溶出時間の他、シフトした標準溶出時間を含む範囲の溶出時間、例えば、シフトした標準溶出時間±2.0分、シフトした標準溶出時間±1.5分、シフトした標準溶出時間±1.0分、シフトした標準溶出時間±0.5分、シフトした標準溶出時間±0.3分、シフトした標準溶出時間±0.2分、シフトした標準溶出時間±0.1分なども含まれる。本件データベースに、ペプチドピーク群の標準溶出時間に対応するUniProtアクセッション番号や、ペプチドの修飾に関する情報を含むペプチドのアミノ酸配列や価数等の関連情報が格納されると、これらの関連情報を基に、対象ペプチドピークに対応するペプチド、すなわち対象タンパク質を構成するペプチドのアミノ酸配列を特定することができる。 In order to identify the target peptide peak group from the MRM chromatogram of the peptide peak, first, from the data including the MRM chromatogram information, the peptide peak elution time and the peak intensity in each MRM transition of the peptide peak derived from the target peptide To create a (two-dimensional) chromatogram. Next, from these chromatograms, peptide peaks having the same elution time as the standard elution time shifted in the reconstructed ion library (standard elution time converted so that the elution time of the target peptide peak group becomes the reference). And a peptide peak having an elution time in common with the shifted standard elution time is identified as the target peptide peak. Here, the “common elution time” includes the same elution time as the shifted standard elution time, as well as an elution time in a range including the shifted standard elution time, for example, the shifted standard elution time ± 2.0 minutes, Shifted standard elution time ± 1.5 min, shifted standard elution time ± 1.0 min, shifted standard elution time ± 0.5 min, shifted standard elution time ± 0.3 min, shifted standard elution time ± 0.2 minutes, shifted standard elution time ± 0.1 minutes, etc. are also included. If this database stores relevant information such as the UniProt accession number corresponding to the standard elution time of peptide peaks and peptide amino acid sequences and valences that contain information related to peptide modification, the relevant information will be used as the basis. Furthermore, the amino acid sequence of the peptide corresponding to the target peptide peak, that is, the peptide constituting the target protein can be specified.
 本件解析方法は、複数の試料間における対象タンパク質を構成するペプチドのペプチドピークを定量するために、さらに、工程(E)で同定した対象ペプチドピーク群の中から、ピーク面積とピーク強度との比を基に、対象ペプチドピーク群の定量用ペプチドピークを選択する工程(F)、及び、工程(F)で選択した対象ペプチドピーク群の定量用ペプチドピーク面積を複数の試料について算出し、算出したピーク面積の比から、複数の試料間における対象タンパク質を構成するペプチドのペプチドピークを定量する工程(G)を備えたものが好ましい。 In this analysis method, in order to quantify the peptide peak of the peptide constituting the target protein among a plurality of samples, the ratio of the peak area to the peak intensity is further selected from the target peptide peak group identified in step (E). Based on the above, the step (F) of selecting the peptide peak for quantification of the target peptide peak group, and the peptide peak area for quantification of the target peptide peak group selected in the step (F) were calculated for a plurality of samples and calculated. What provided the process (G) which quantifies the peptide peak of the peptide which comprises the target protein between several samples from ratio of a peak area is preferable.
工程(F)
 工程(F)においては、対象ペプチドピーク群の定量用ペプチドピークを選択する。対象ペプチドピーク群の定量用ペプチドピークの選択は、工程(E)で同定した対象ペプチドピーク群の中から、ピーク面積とピーク強度との比を指標にして行うことができ、具体的には、工程(E)で同定した対象ペプチドピークについて、「(d)本件データベースに格納される対象ペプチドピークのMRMトランジションのうち、最大ピーク強度を付与するMRMトランジションのクロマトグラムから得られるピーク面積」と、「(c)本件データベースに格納される対象ペプチドピークのMRMトランジションのクロマトグラムから得られるペプチドピーク面積の合計」と、「(a)前記最大ピーク強度を付与するMRMトランジションにおける最大ピーク強度」と、「(b)前記ピーク面積の合計に用いたMRMトランジションにおけるピーク強度の合計」とを、式[(d)本件データベースに格納される対象ペプチドピークのMRMトランジションのうち、最大ピーク強度を付与するMRMトランジションのクロマトグラムから得られるピーク面積/(c)本件データベースに格納される対象ペプチドピークのMRMトランジションのクロマトグラムから得られるペプチドピーク面積の合計]/[(a)前記最大ピーク強度を付与するMRMトランジションにおける最大ピーク強度/(b)前記ピーク面積の合計に用いたMRMトランジションにおけるピーク強度の合計]に入力することにより値(指標値)を算出し、算出した指標値が0.25~4.0の範囲、好ましくは0.33~3.0の範囲、より好ましくは0.5~2.0の範囲を示す対象ペプチドピークを定量用ペプチドピークとして選択する。上記ペプチドピーク面積の合計(c)やピーク強度の合計(b)に用いる本件データベースに格納される対象ペプチドピークのMRMトランジションとしては、すべての対象ペプチドピークのMRMトランジションであってもよいが、最大ピーク強度に対してある割合を超えるピーク強度を付与するMRMトランジションを選択してもよく、その場合の「最大ピーク強度に対してある割合を超える」としては、例えば最大ピーク強度に対して5%を超える、10%を超える、15%を超える、20%を超える、25%を超える、30%を超える等を挙げることができるが、最大ピーク強度に対して20%を超えるが好ましい。また、定量用ペプチドピークは、さらにMRMトランジション数に基づいて選択することが好ましく、例えば、MRMトランジション数が2以上、3以上、4以上、5以上のペプチドピークを定量用ペプチドピークとして選択することを挙げることができるが、MRMトランジション数が3以上のペプチドピークを定量用ペプチドピークとして選択することがより好ましい。
Process (F)
In the step (F), a peptide peak for quantification of the target peptide peak group is selected. The peptide peak for quantification of the target peptide peak group can be selected from the target peptide peak group identified in the step (E) using the ratio of the peak area and the peak intensity as an index, specifically, For the target peptide peak identified in step (E), “(d) the peak area obtained from the chromatogram of the MRM transition that gives the maximum peak intensity among the MRM transitions of the target peptide peak stored in the database”; “(C) the total peptide peak area obtained from the MRM transition chromatogram of the target peptide peak stored in the database”, “(a) the maximum peak intensity in the MRM transition that gives the maximum peak intensity”, “(B) In the MRM transition used for the sum of the peak areas The peak area obtained from the chromatogram of the MRM transition that gives the maximum peak intensity among the MRM transitions of the target peptide peak stored in the database (c) / (c) Total of peptide peak areas obtained from chromatogram of MRM transition of target peptide peak stored in database] / [(a) Maximum peak intensity in MRM transition that gives the maximum peak intensity / (b) Total of peak area The total value of the peak intensity in the MRM transition used in the above is calculated (index value), and the calculated index value is in the range of 0.25 to 4.0, preferably 0.33 to 3.0. A target peptide peak showing a range, more preferably a range of 0.5 to 2.0. Selected as an amount for peptide peaks. The MRM transitions of the target peptide peak stored in the database used for the total peptide peak area (c) and the peak intensity total (b) may be MRM transitions of all target peptide peaks. An MRM transition that gives a peak intensity that exceeds a certain ratio with respect to the peak intensity may be selected. In this case, “exceeding a certain ratio with respect to the maximum peak intensity” means, for example, 5% Exceeding 10%, exceeding 15%, exceeding 20%, exceeding 25%, exceeding 30%, etc., but preferably exceeding 20% with respect to the maximum peak intensity. Further, the peptide peak for quantification is preferably selected based on the number of MRM transitions. For example, a peptide peak having an MRM transition number of 2 or more, 3 or more, 4 or more, 5 or more is selected as the peptide peak for quantification. However, it is more preferable to select a peptide peak having an MRM transition number of 3 or more as a peptide peak for quantification.
工程(G)
 工程(G)において、算出したピーク面積の比から、複数の試料間における対象タンパク質を構成するペプチドのペプチドピークを定量する方法としては、特定の試料における対象タンパク質を構成するペプチドのペプチドピークのピーク面積と、前記特定の試料とは異なる試料における対象タンパク質を構成するペプチドのペプチドピークのピーク面積との変化を相対的に定量する方法の他、15N,13C,18O,及びHのいずれか1以上の安定同位体標識元素で対象タンパク質を構成するペプチド標識された、濃度既知の安定同位体標識標的ペプチドを用意し、かかる安定同位体標識標的ペプチドを内部標準として、特定の試料における対象タンパク質を構成するペプチドのペプチドピークのピーク面積と、前記特定の試料とは異なる試料における対象タンパク質を構成するペプチドのペプチドピークのピーク面積との変化を絶対的に定量する方法が含まれる。
Process (G)
In the step (G), as a method for quantifying the peptide peak of the peptide constituting the target protein among a plurality of samples from the ratio of the calculated peak areas, the peak of the peptide peak of the peptide constituting the target protein in a specific sample is used. 15 N, 13 C, 18 O, and 2 H in addition to a method for relatively quantifying the change in area and the peak area of the peptide peak of the peptide constituting the target protein in a sample different from the specific sample A peptide-labeled stable isotope-labeled target peptide that constitutes a target protein with any one or more stable isotope-labeled elements is prepared, and this stable isotope-labeled target peptide is used as an internal standard for a specific sample. The peak area of the peptide peak of the peptide constituting the target protein, and the specific sample Includes a method for absolute quantification of a change in the peak area of the peptide peak of the peptide constituting the target protein in different samples.
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the technical scope of the present invention is not limited to these examples.
[結果1:MRMアレイデータベース(本発明のデータベース)作成方法の概要]
 本発明のデータベースの作成方法の概要を図1A及びBに示す。まず、第1タンパク質試料(図1Aの「Sample #1」)から質量分析用試料を調製し(詳細は、後述の[方法1:LC-MS/MSにより解析する試料の調製法]参照)、LC-MS/MSを用いた質量分析を行い、IDA(Information Dependent Acquisition)測定により第1タンパク質試料を構成する第1試料ペプチドピーク(群)のMS/MSデータを取得する(詳細は、後述の[方法2:LC-MS/MS]参照)。続いて、MS/MSデータを基にProtein PilotやPeak Viewソフトウエア等を用いて第1試料ペプチド群を同定し、前記MS/MSデータをイオンライブラリファイルに変換する。次に、信頼性の高いペプチドピーク群(例えば、本実施例においては、信頼度スコア>0.99を選択規準とした)を選択し、さらに信頼性の高い平均溶出時間(本実施例においては、同一ペプチドの溶出時間の標準偏差[SD]<0.2分を選択基準とした)を有するペプチドピーク群を選択し、かかるペプチドピーク群の溶出時間を標準溶出時間(標準RT、nRT)としてデータベースに保存(格納)する。次いで第2タンパク質試料(図1Aの「Sample #2」)も第1タンパク質試料と同様の方法で解析し、第2試料ペプチドピーク群を同定・選択し、かかる第2試料ペプチドピーク群の実測RT2を取得する。その後、データベースに格納した第1試料ペプチドピーク群の中から、第2試料ペプチドピーク群と共通するペプチドピークを、標準化用ペプチドピーク群として選択する。かかる標準化用ペプチドピーク群のnRTを基準にして、アライメントを最適化するように第2試料ペプチドピーク群内の標準化用ペプチドピークの実測RT2をシフトさせる(たとえば、本実施例においてはパーセンタイルフィルターを用いたスムージングによってシフト時間を算出)。第2試料ペプチドピーク群内の標準化用ペプチドピーク以外のペプチドピークは近傍の標準化用ペプチドピークのシフト量に応じてシフトさせる(たとえば、本実施例においては線形補正を用いてシフト時間を算出)。以上のシフトによりすべての第2試料ペプチドピーク群に対して実測RT2をnRT2としてnRTに標準化(変換)する。第2試料ペプチドピーク群のnRT2をデータベースに保存することにより、蓄積したnRT(nRT+nRT2)のデータベースを作成する。nRTの蓄積と同時にMRMトランジション、ピーク強度及び関連情報(価数、UniProtアクセッション番号、ペプチドの修飾に関する情報を含むペプチドのアミノ酸配列)も格納する(図1B)。さらに、第3タンパク質試料(図1Aの「Sample #3」)についても第1タンパク質試料や第2タンパク質試料と同様の方法で解析を行い、第3試料ペプチドピーク群を同定・選択し、かかる第3試料ペプチドピーク群の実測RT3を取得し、nRT3に標準化し、データベースに保存することにより、蓄積したnRT(nRT+nRT2+nRT3)の蓄積レベルを高める。なお、第4タンパク質試料以降は、各ペプチドピークについてアライメントの際にデータベースから信頼性の高い平均nRTを選択し、実測RTと比較を行う(たとえば、本実施例においてはRTの標準偏差[SD]<0.2分を選択基準とした)。
[Result 1: Overview of Method for Creating MRM Array Database (Database of the Present Invention)]
An outline of the database creation method of the present invention is shown in FIGS. First, a sample for mass spectrometry was prepared from the first protein sample (“Sample # 1” in FIG. 1A) (for details, refer to [Method 1: Preparation of sample to be analyzed by LC-MS / MS] described later). Mass spectrometry using LC-MS / MS is performed, and MS / MS data of the first sample peptide peak (group) constituting the first protein sample is obtained by IDA (Information Dependent Acquisition) measurement (details will be described later) [See Method 2: LC-MS / MS]. Subsequently, the first sample peptide group is identified using Protein Pilot, Peak View software, or the like based on the MS / MS data, and the MS / MS data is converted into an ion library file. Next, a highly reliable peptide peak group (for example, in this example, a confidence score> 0.99 was used as a selection criterion) and a more reliable average elution time (in this example, Peptide peak group having standard deviation [SD] <0.2 min of elution time of the same peptide as a selection criterion) is selected, and the elution time of such peptide peak group is defined as standard elution time (standard RT, nRT) Save (store) in database. Next, the second protein sample ("Sample # 2" in FIG. 1A) is also analyzed in the same manner as the first protein sample, the second sample peptide peak group is identified and selected, and the measured RT2 of the second sample peptide peak group is identified. To get. Thereafter, a peptide peak common to the second sample peptide peak group is selected as a standardization peptide peak group from the first sample peptide peak group stored in the database. Based on the nRT of the standardized peptide peak group, the measured RT2 of the standardized peptide peak in the second sample peptide peak group is shifted so as to optimize the alignment (for example, a percentile filter is used in this embodiment). Calculate the shift time by smoothing). Peptide peaks other than the standardization peptide peak in the second sample peptide peak group are shifted according to the shift amount of the nearby standardization peptide peak (for example, in this embodiment, the shift time is calculated using linear correction). With the above shift, the measured RT2 is standardized (converted) to nRT with the measured RT2 as nRT2 for all the second sample peptide peak groups. By storing nRT2 of the second sample peptide peak group in a database, a database of accumulated nRT (nRT + nRT2) is created. Simultaneously with the accumulation of nRT, the MRM transition, peak intensity and related information (valence, UniProt accession number, peptide amino acid sequence including information on peptide modification) are also stored (FIG. 1B). Further, the third protein sample (“Sample # 3” in FIG. 1A) is also analyzed in the same manner as the first protein sample and the second protein sample, and the third sample peptide peak group is identified and selected. The measured RT3 of the 3-sample peptide peak group is acquired, normalized to nRT3, and stored in a database, thereby increasing the accumulation level of accumulated nRT (nRT + nRT2 + nRT3). From the fourth protein sample onward, a highly reliable average nRT is selected from the database during alignment for each peptide peak and compared with the measured RT (for example, in this example, the standard deviation of RT [SD] <0.2 minutes as selection criteria).
[結果2:本発明のデータベースの作成法]
 ヒト肝臓ミクロソーム(HLM)(XTreme 200、XenoTech社製)を用いて、本発明のデータベースを作成した結果を図1C~Eに示す。HLMのトリプシン消化ペプチドをアルカリ条件下の逆相カラムで分画した3種類の画分のRT(図1Cの「赤(画分1)、青(画分2)、及び緑(画分3)」)と、対照としての未分画のHLMのRTとの差異を調べたところ、連続測定にもかかわらず3種類の画分で同定されたペプチドピークのRTは、未分画のHLMとはずれており、その時間差は画分毎に異なっていた(図1C)。上記1種類の画分のRT(赤[画分1])についてnRTの変換過程を示す。あらかじめ構築した本発明のデータベース(後述する23種類の試料のデータを蓄積したデータベース)内の6858個の共通ペプチドピーク(標準化用ペプチドピーク)のnRTと画分1の標準化用ペプチドピークの実測RTの時間差をプロットし(図1D、赤点)、平滑化によりシフト時間量を算出した(図1D、緑線)。画分1の標準化用ペプチドピークの実測RTから変換したnRTとデータベース内の標準化用ペプチドピークのnRTとの差は、98.3%の標準化用ペプチドピークで0.2分以内であることが示された(図1E)この結果は、誤差が0.2分以内でnRTに変換できることを示している。また、LC溶媒を新しく交換した場合や培養細胞の細胞内画分試料を解析した場合にも同様の結果が得られた。
[Result 2: Database creation method of the present invention]
The results of creating the database of the present invention using human liver microsomes (HLM) (XTreme 200, manufactured by XenoTech) are shown in FIGS. RT of three fractions obtained by fractionating tryptic peptides of HLM on a reverse phase column under alkaline conditions ("red (fraction 1), blue (fraction 2), and green (fraction 3) in FIG. 1C") )) And RT of the unfractionated HLM as a control, the RT of the peptide peaks identified in the three fractions despite continuous measurement was different from the unfractionated HLM. The time difference was different for each fraction (FIG. 1C). The nRT conversion process is shown for RT of one kind of fraction (red [fraction 1]). The nRT of 6858 common peptide peaks (standardization peptide peaks) and the measured RT of standardization peptide peaks of fraction 1 in the database of the present invention (a database in which data of 23 types of samples described later are accumulated) constructed in advance. The time difference was plotted (FIG. 1D, red dot), and the amount of shift time was calculated by smoothing (FIG. 1D, green line). The difference between the nRT converted from the measured RT of the standardization peptide peak in fraction 1 and the nRT of the standardization peptide peak in the database is within 0.2 min for the 98.3% standardization peptide peak. (FIG. 1E) This result shows that the error can be converted to nRT within 0.2 minutes. Similar results were obtained when the LC solvent was replaced anew or when the intracellular fraction sample of cultured cells was analyzed.
 さらに、23種類の試料(未分画のHLMのデータセット5組[XTreme 200、XenoTech社製]、HLM画分データセット10組[XTreme 200、XenoTech社製]、細胞株[HEK293、Caco2及びBeWo]の細胞内画分試料のデータセット8組)と、2種類の合成ペプチドのデータセット([Ohtsuki, S., et al. J Pharm Sci 100, 3547-3559 (2011)、Shawahna, R., et al. Mol Pharm 8, 1332-1341 (2011)、Uchida, Y., et al. J Neurochem 117, 333-345 (2011)参照]のデータセット2組)を基にデータを取得し、本発明のデータベースを作成した(詳細は、後述の[方法3:本発明のデータベースにおけるnRTデータの蓄積]参照)。その結果、107,715個のペプチドピークのnRTとMRMトランジション情報を含むデータベースを作成することができた。かかるペプチドピークは、UniProtアクセッション番号と、前駆ペプチドの修飾に関する情報を含むペプチド配列及び価数によって特徴付けられている。また、2回以上の実験のデータが蓄積されたペプチドピークは54,980個であり、その97.0%は、標準偏差(SD)が0.2分以内であることが示された。RTがSD<0.2分のペプチドピーク、及びRTを1回の実験で検出したペプチドピークを選択し(合計106,074個のペプチドピーク)、これらペプチドピークのnRTとMRMトランジションとピーク強度の他、関連情報(価数、UniProtアクセッション番号、ペプチドの修飾に関する情報を含むペプチドのアミノ酸配列)を含むデータベースを以降の解析に用いた。 Furthermore, 23 types of samples (5 unfractionated HLM datasets [XTreme 200, manufactured by XenoTech), 10 HLM fraction datasets (XTreme 200, manufactured by XenoTech), cell lines [HEK293, Caco2 and BeWo ] And 8 synthetic peptide data sets ([Ohtsuki, S., et al. J Pharm Sci 100, 3547-3559 (2011), Shawahna, R., et] al. Mol Pharm 8, 1332-1341 (2011), Uchida, Y., et al. J Neurochem 117, 333-345 (2011)] A database was created (see [Method 3: accumulation of nRT data in the database of the present invention] described later for details). As a result, a database including nRT and MRM transition information of 107,715 peptide peaks could be created. Such peptide peaks are characterized by a UniProt accession number and a peptide sequence and valency containing information regarding the modification of the precursor peptide. In addition, there were 54,980 peptide peaks in which data from two or more experiments were accumulated, and 97.0% of them showed that the standard deviation (SD) was within 0.2 minutes. Select peptide peaks for which RT was SD <0.2 min and peptide peaks for which RT was detected in one experiment (total 106,074 peptide peaks), and the nRT, MRM transition and peak intensity of these peptide peaks. In addition, a database containing related information (valence, UniProt accession number, peptide amino acid sequence including information on peptide modification) was used for subsequent analysis.
[結果3:本発明のデータベースを用いたイオンライブラリの再構築法の概要]
 本発明のデータベースを用いたイオンライブラリの再構築法の概要を図2Aに示す。まず、対象タンパク質を含む測定用試料を用いて、LC-MS/MSを用いたIDA解析を行い、イオンライブラリファイルを取得する。次に、信頼性の高い対象ペプチドピーク群(例えば、本実施例においては、信頼度スコア>0.99を選択基準とした)を選択し、対象ペプチドピーク群と本発明のデータベースに格納されている標準ペプチドピーク群とを比較し、共通のペプチドピークであり且つ両者のRTを基にRT値の信頼性が高いペプチドピーク(例えば、本実施例においては、標準偏差[SD]<0.2分を選択基準とした)を標準化用対象ペプチドピーク群として選択する。標準化用対象ペプチドピーク群のRTを基準に、データベースに格納される標準ペプチドピーク群のnRTをシフト・補正することにより、前記nRTを実測値に基づいたRTに変換し、再構築イオンライブラリを作成し、SWATH定量解析に用いる。
[Result 3: Outline of ion library reconstruction method using database of the present invention]
FIG. 2A shows an outline of a method for reconstructing an ion library using the database of the present invention. First, IDA analysis using LC-MS / MS is performed using a measurement sample containing the target protein, and an ion library file is obtained. Next, a target peptide peak group with high reliability (for example, in this example, a confidence score> 0.99 is selected as a selection criterion) is selected and stored in the target peptide peak group and the database of the present invention. Peptide peaks that are common peptide peaks and have high reliability of RT values based on both RTs (for example, in this example, standard deviation [SD] <0.2 Minutes as a selection criterion) is selected as the target peptide peak group for standardization. Based on the RT of the target peptide peak group for standardization, the nRT of the standard peptide peak group stored in the database is shifted and corrected to convert the nRT to RT based on the actual measurement value and create a reconstructed ion library And used for SWATH quantitative analysis.
[結果4:本発明のデータベースを用いたイオンライブラリの再構築]
 HLMを用いて、LC-MS/MSを用いたIDA解析を行い、イオンライブラリファイルを取得後、本発明のデータベースを用いて再構築イオンライブラリを作成し(詳細は、[方法4:本発明のデータベースを基にしたイオンライブラリファイルの再構築]参照)、実測値のRTとシフトしたnRTとの差異を測定した(図2B)。再構築用溶出時間として用いなかった0.90~0.99の信頼度スコアを有する対象ペプチド群(1585個のペプチド)のピークについて、実測値RTとシフトしたnRTとを比較して両者の差異幅を検証した。その結果、両者の差異幅が0.2分以内の対象ペプチドピークは、95.4%(1512個)あることが示された(図2B)。また、再構築用溶出時間として用いた信頼度スコア>0.99を有する対象ペプチドピーク群(12863個のペプチド)については、12784個のペプチドピーク(99.4%)のRTが0.2分以内の差異幅であることが示された。これらの結果は、シフトしたnRTに対応する実測値RTを十分特定できるため、シフトしたnRTを用いてクロマトグラム上の対象ペプチドピークを同定できることを示している。
[Result 4: Reconstruction of ion library using database of the present invention]
Using HLM, IDA analysis using LC-MS / MS is performed to obtain an ion library file, and then a reconstructed ion library is created using the database of the present invention (for details, see [Method 4: Reconstruction of ion library file based on database]), the difference between the measured RT and the shifted nRT was measured (FIG. 2B). Compare the measured value RT with the shifted nRT for the peak of the target peptide group (1585 peptides) having a confidence score of 0.90 to 0.99 that was not used as the elution time for reconstruction. The width was verified. As a result, it was shown that there were 95.4% (1512) target peptide peaks having a difference width between them of 0.2 minutes or less (FIG. 2B). For the target peptide peak group (12863 peptides) having a confidence score> 0.99 used as the elution time for reconstruction, RT of 12784 peptide peaks (99.4%) was 0.2 minutes. It was shown that the difference was within. These results indicate that the actual measured value RT corresponding to the shifted nRT can be sufficiently specified, and therefore the target peptide peak on the chromatogram can be identified using the shifted nRT.
[結果5:本発明のデータベースを用いたSWATH定量解析1]
 次に、本発明のデータベースを用いて同定したペプチドピークのピーク面積を再現的に定量できるかどうかを検討した。測定対象試料の一部をIDA解析し、対象ペプチドを同定し、本発明のデータベースを用いて対象ペプチドとの共通ペプチドピーク(標準化用ペプチドピーク)の溶出時間を利用しイオンライブラリを再構築した。さらに、測定対象試料をSWATH解析し、SWATHで取得したデータを再構築したイオンライブリーを用いて解析し対象ペプチドピークのピーク面積を定量した。1.5カ月後に同様の試料を用いて同様に解析を行い、両者のピーク面積を比較した。なお、ピーク面積は、全対象ペプチドピーク群のピーク面積の総計で標準化した。その結果、図2Dに示すように、両測定対象試料間で2倍以内の差異幅で再現性よく定量できる対象ペプチドピークは、61.1%(59553/97512)にとどまることが示された。特に、低ピーク面積を示す対象ペプチドピークの多くが2倍を超える差異で定量され、再現性に問題があることが示された。再現性を低下させる原因として、本発明のデータベースを用いて同定した対象ペプチドピークのうち、検出限界以下の対象ペプチドピークも定量してしまうことが考えられた。このため、定量できる対象ペプチドピークをバリデーション(validation)する必要があると考えた。
[Result 5: SWATH quantitative analysis 1 using the database of the present invention]
Next, it was examined whether the peak area of the peptide peak identified using the database of the present invention could be quantified reproducibly. A part of the measurement target sample was subjected to IDA analysis, the target peptide was identified, and the ion library was reconstructed using the elution time of the common peptide peak (standardization peptide peak) with the target peptide using the database of the present invention. Further, the sample to be measured was subjected to SWATH analysis, and the data acquired by SWATH was analyzed using an ion library obtained by reconstructing the sample, and the peak area of the target peptide peak was quantified. After 1.5 months, similar analysis was performed using similar samples, and the peak areas of the two were compared. The peak area was standardized by the total peak area of all target peptide peak groups. As a result, as shown in FIG. 2D, it was shown that the target peptide peak that can be quantified with good reproducibility within a difference width of 2 times or less between both measurement target samples remains at 61.1% (59553/97512). In particular, many of the target peptide peaks exhibiting a low peak area were quantified with a difference exceeding twice, indicating that there was a problem in reproducibility. As a cause of reducing the reproducibility, it was considered that among the target peptide peaks identified using the database of the present invention, the target peptide peak below the detection limit was also quantified. For this reason, it was thought that it was necessary to validate the target peptide peak which can be quantified.
 本発明者らは、ピークのバリデーション用の簡便な指標を開発した(詳細は、後述の[方法5:ペプチドピークのバリデーション]参照)。すなわち、本発明のデータベースに対して、式[(d)本件データベースに格納される対象ペプチドピークのMRMトランジションのうち、最大ピーク強度を付与するMRMトランジションのクロマトグラムから得られるピーク面積/(c)本件データベースに格納される対象ペプチドピークのMRMトランジションのクロマトグラムから得られるペプチドピーク面積の合計]/[(a)前記最大ピーク強度を付与するMRMトランジションにおける最大ピーク強度/(b)前記ピーク面積の合計に用いたMRMトランジションにおけるピーク強度の合計]の値を、各MRMトランジションについて算出し、0.5~2の範囲内にある対象ペプチドピークを有効なピークとして抽出した。なお、本実施例においては、上記ペプチドピーク面積の合計(c)やピーク強度の合計(b)に用いる本件データベースに格納される対象ペプチドピークのMRMトランジションは、最大ピーク強度に対して20%を超えるピーク強度を付与するMRMトランジションを選択した(後述の[方法4:本発明のデータベースを基にしたイオンライブラリファイルの再構築]参照)。バリデーション指標を用いてピークを抽出すると、ピーク面積の差異幅が2倍以内のペプチドピークの割合は61.1%から87.4%(37707/43129)へ増加するとともに、ピーク面積の差異幅が1.5倍以内のペプチドピークの割合は47.5%から74.1%へ増加することが示された(図2E)。この結果は、上記ペプチドピークのバリデーションが有効であることを示している。さらに定量性よく定量できる対象ペプチドの割合を高めるため、MRMトランジション数が3以上のペプチドピークを抽出すると、ピーク面積の差異幅が2倍以内のペプチドの割合は87.4%から90.3%(32235/35692)へ増加することが示された(図2F)。かかるペプチドピークのバリデーションでピークを限定した後においても、定量できるペプチドの数は、標準的SWATH定量法を用いた場合よりも4.23倍(32235/7615:図2CとFとの比較)多かった。また、定量できる対象ペプチドのピーク面積の下限に着目したところ、標準的SWATH定量法を用いた場合よりも1/10低いレベルのものも定量できることが示された(図2Fの10カウントと図2Cの10カウントの比較)。これらの結果は、本発明のデータベースを用いて測定対象ペプチドピークを同定し、同定したペプチドピークの中から上記ペプチドピークのバリデーションを行うことにより、定量できるペプチドピークを効率よく抽出できることを示している。 The present inventors have developed a simple index for peak validation (see [Method 5: Peptide peak validation] described below for details). That is, the peak area obtained from the chromatogram of the MRM transition that gives the maximum peak intensity among the MRM transitions of the target peptide peak stored in the present database / (c) with respect to the database of the present invention Total sum of peptide peak areas obtained from chromatograms of MRM transitions of target peptide peaks stored in this database] / [(a) Maximum peak intensity in MRM transition giving maximum peak intensity / (b) of peak area The sum of peak intensities in MRM transitions used for the total] was calculated for each MRM transition, and target peptide peaks in the range of 0.5 to 2 were extracted as effective peaks. In this example, the MRM transition of the target peptide peak stored in the database used for the total peptide peak area (c) and peak intensity total (b) is 20% of the maximum peak intensity. An MRM transition that gave a peak intensity that exceeded was selected (see [Method 4: Reconstruction of ion library file based on database of the present invention] described later). When a peak is extracted using the validation index, the ratio of peptide peaks whose peak area difference width is within 2 times increases from 61.1% to 87.4% (37707/43129), and the peak area difference width is The ratio of peptide peaks within 1.5-fold was shown to increase from 47.5% to 74.1% (FIG. 2E). This result shows that the validation of the peptide peak is effective. Furthermore, in order to increase the proportion of target peptides that can be quantified with high quantitativeness, when peptide peaks with an MRM transition number of 3 or more are extracted, the proportion of peptides with a peak area difference width of 2 times or less ranges from 87.4% to 90.3%. It was shown to increase to (32235/35692) (FIG. 2F). Even after such peptide peak validation, the number of peptides that can be quantified is 4.23 times (32235/7615: comparison between FIG. 2C and F) more than when using the standard SWATH quantification method. It was. In addition, when focusing on the lower limit of the peak area of the target peptide that can be quantified, it was shown that even a level that is 1/10 lower than when using the standard SWATH quantification method can be quantified (the 10 3 count in FIG. 2F and the figure). 10 4 count comparison of 2C). These results indicate that the peptide peak that can be quantified can be efficiently extracted by identifying the peptide peak to be measured using the database of the present invention and performing validation of the peptide peak from the identified peptide peak. .
[結果6:本発明のデータベースを用いたSWATH定量解析2]
 次に、バリデーションを行って抽出したペプチドピークの面積の増減を十分検出できるかどうかについて、合成ペプチドをスパイクしたモデル試料(詳細は、後述の[方法6:本発明のデータベースを用いたペプチドピークの定量の検証]参照)を用いて検討した。0.1fmolの合成ペプチドをスパイクした試料と、25fmolの合成ペプチドをスパイクした試料とを比較して増加の有無を検証したところ、標準的SWATH定量を用いた場合、増加を検出できた合成ペプチドピーク数は171(総登録ピーク数[312]の54.8%)であったのに対して、本発明のデータベースから再構築したイオンライブラリを用いて定量を行いバリデーションにより抽出(以下、「本発明のデータベースを用いたSWATH定量」ということがある)した場合、増加を検出できた合成ペプチドピーク数は263(総登録ピーク数[312]の84.3%)と増加していた(図3A)。また、合成ペプチドの量比を変えた他の組合せを用いて解析した場合でも同様の結果が得られており、例えば、0.5fmolの合成ペプチドをスパイクした試料と、25fmolの合成ペプチドをスパイクした試料との間では、標準的SWATH定量を用いた場合、増加を検出できた合成ペプチドピーク数は171(総登録ピーク数[312]の54.8%)であったのに対して、本発明のデータベースを用いたSWATH定量を用いた場合、増加を検出できた合成ペプチドピーク数は264(総登録ピーク数[312]の84.6%)と増加しており、また、5fmolの合成ペプチドをスパイクした試料と、25fmolの合成ペプチドをスパイクした試料との間では、標準的SWATH定量を用いた場合、増加を検出できた合成ペプチドピーク数は166(総登録ピーク数[312]の53.2%)であったのに対して、本発明のデータベースを用いたSWATH定量を用いた場合、増加を検出できた合成ペプチドピーク数は238(総登録ピーク数[312]の76.2%)と増加していた(図3A)。これらの結果は、本発明のデータベースを用いて合成ペプチドを同定し、同定した合成ペプチドのピークについて、バリデーションにより抽出したペプチドピークは、そのピーク面積の増減を感度良く検出できることを示している。
[Result 6: SWATH quantitative analysis 2 using the database of the present invention]
Next, a model sample spiked with a synthetic peptide (for details, see [Method 6: Peptide peak using the database of the present invention described later) is used to determine whether the increase or decrease in the area of the peptide peak extracted by validation can be sufficiently detected. Quantitative verification]]). A sample spiked with 0.1 fmol of synthetic peptide and a sample spiked with 25 fmol of synthetic peptide were examined for the presence or absence of an increase. When standard SWATH quantification was used, a synthetic peptide peak that could detect an increase was detected. The number was 171 (54.8% of the total number of registered peaks [312]), but quantified using an ion library reconstructed from the database of the present invention and extracted by validation (hereinafter referred to as “the present invention”). The number of synthetic peptide peaks for which an increase could be detected increased to 263 (84.3% of the total number of registered peaks [312]) (FIG. 3A). . Similar results were obtained even when analysis was performed using other combinations with different synthetic peptide ratios. For example, a sample spiked with 0.5 fmol of synthetic peptide and 25 fmol of synthetic peptide were spiked. In comparison with the sample, when standard SWATH quantification was used, the number of synthetic peptide peaks that could detect an increase was 171 (54.8% of the total number of registered peaks [312]), whereas the present invention The number of synthetic peptide peaks for which an increase was detected was increased to 264 (84.6% of the total number of registered peaks [312]), and 5 fmol of synthetic peptide was detected. Synthetic peptides that were able to detect an increase between the spiked sample and the sample spiked with 25 fmol of synthetic peptide using standard SWATH quantification. The number of peak peaks was 166 (53.2% of the total number of registered peaks [312]), whereas when the SWATH quantification using the database of the present invention was used, the number of synthetic peptide peaks that could detect an increase was It increased to 238 (76.2% of the total number of registered peaks [312]) (FIG. 3A). These results indicate that the synthetic peptide is identified using the database of the present invention, and the peptide peak extracted by validation of the identified synthetic peptide peak can detect the increase or decrease in the peak area with high sensitivity.
 次に、上記バリデーションにより抽出したペプチドピークは、そのピーク面積の増減を精度よく定量できるかどうかについて検討した。0.5fmolの合成ペプチドでスパイクした試料と、5fmolの合成ペプチドでスパイクした試料との間でペプチドピークの面積比(詳細は、後述の[方法6:本発明のデータベースを用いたペプチドピークの定量の検証]参照)を比較すると、10.4倍の差があることが示された(図3C)。すなわち、合成ペプチドの量比に相当するピーク面積比で検出することができた。この結果は、本発明のデータベースを用いて合成ペプチドを同定し、同定した合成ペプチドのピークについて、バリデーションにより抽出したペプチドピークは、そのピーク面積の増減を十分な精度で検出できることを示している。なお、標準的SWATH定量法を用いた場合にも、0.5fmolの合成ペプチドでスパイクした試料と、5fmolの合成ペプチドでスパイクした試料との間でペプチドピークの面積比が9.9倍の差で検出できたものの(図3B)、本発明のデータベースを用いたSWATH定量法は、標準的SWATH定量法を用いて同定できなかったペプチドピークの増減も精度よく検出できる点で優れている。 Next, it was examined whether the peptide peak extracted by the above-described validation can accurately quantify the increase or decrease in the peak area. The area ratio of peptide peaks between a sample spiked with 0.5 fmol of synthetic peptide and a sample spiked with 5 fmol of synthetic peptide (for details, see [Method 6: Quantification of peptide peak using database of the present invention described later) Comparison])) showed a 10.4 fold difference (FIG. 3C). That is, detection was possible with a peak area ratio corresponding to the ratio of the amount of the synthetic peptide. This result indicates that the peptide of the present invention is identified by using the database of the present invention, and the peptide peak extracted by validation of the identified peptide peak can be detected with sufficient accuracy. Even when the standard SWATH quantification method is used, the peptide peak area ratio is 9.9 times different between the sample spiked with 0.5 fmol of the synthetic peptide and the sample spiked with 5 fmol of the synthetic peptide. However, the SWATH quantification method using the database of the present invention is excellent in that it can accurately detect the increase and decrease of peptide peaks that could not be identified using the standard SWATH quantification method.
[方法1:LC-MS/MSにより解析する試料の調製法]
 LC-MS/MSにより解析する試料は、文献(Ohtsuki, S., et al. Drug Metab Dispos 40, 83-92 (2012)、Ohtsuki, S., et al. J Pharm Sci 100, 3547-3559 (2011)、Yoneyama, T., et al. J Proteome Res 12, 753-762 (2013))に記載の方法を修正した方法を用いて調製した。以下にその調製方法を示す。まず、7M塩酸グアニジン及び10mMEDTAを含有する懸濁液に、タンパク質試料(50μg)を懸濁した。窒素存在下、室温で60分間、DTT(dithiothreitol)で試料を還元し、次いで、室温で60分間、ヨードアセトアミデでS-カルバモイルメチル化した。アルキル化されたタンパク質を、メタノールとクロロホルムの混合物で沈殿させた。この沈殿物を6M尿素に溶解し、100mMTris-HCl(pH8.0)で希釈した。試料を1M尿素まで希釈した後、リシルエンドペプチダーゼを酵素/基質が1:100の割合で用い、25℃で3時間消化し、次にトシルフェニルアラニルクロロメチルケトンで処理したトリプシンを酵素/基質が1:100の割合で用い、37℃で16時間消化した。GL-SDBチップ及びGL-GCチップ(ジーエルサイエンス社製)を用いて試料を脱塩し、蒸発させ、0.1%のギ酸に溶解し、試料を調製した。
[Method 1: Preparation of sample to be analyzed by LC-MS / MS]
Samples analyzed by LC-MS / MS are literature (Ohtsuki, S., et al. Drug Metab Dispos 40, 83-92 (2012), Ohtsuki, S., et al. J Pharm Sci 100, 3547-3559 ( 2011), Yoneyama, T., et al. J Proteome Res 12, 753-762 (2013)). The preparation method is shown below. First, a protein sample (50 μg) was suspended in a suspension containing 7 M guanidine hydrochloride and 10 mM EDTA. The sample was reduced with DTT (dithiothreitol) in the presence of nitrogen for 60 minutes at room temperature and then S-carbamoylmethylated with iodoacetamide for 60 minutes at room temperature. The alkylated protein was precipitated with a mixture of methanol and chloroform. This precipitate was dissolved in 6M urea and diluted with 100 mM Tris-HCl (pH 8.0). After diluting the sample to 1 M urea, trypsin digested with lysyl endopeptidase at the enzyme / substrate ratio of 1: 100 at 25 ° C. for 3 hours and then treated with tosylphenylalanyl chloromethyl ketone is then enzyme / substrate Was digested at 37 ° C. for 16 hours. The sample was desalted using a GL-SDB chip and a GL-GC chip (manufactured by GL Science), evaporated, dissolved in 0.1% formic acid, and a sample was prepared.
[方法2:LC-MS/MS]
 nanoLCシステム(Ultimate 3000 RSLCnano;DIONEX社製)を、正イオン化モードで作動させたナノ-エレクトロスプレーイオン化質量分析計(TripleTOF 5600;ABSCIEX1社製)に接続して用い、対象タンパク質を含む試料を分析した。イオン源ガス、カーテンガス、イオンスプレー電圧、インターフェースヒーター温度、及びデクラスタリング電位のパラメータ値は、それぞれ20、20、2300、150、及び80であった。累積時間50マイクロ秒、衝突エネルギー分散係数5、イオン放出遅延30及びイオン放出幅15にて、ローリング衝突エネルギーを利用し、前駆イオン(Q1)を300~1008、プロダクトイオン(Q3)を100~1600スキャンし、IDA法を行った。プロダクトイオンを観察するための候補前駆イオンの最大数は、20イオン/サイクルだった。分析したイオンは10秒間除外した。蓄積時間を50マイクロ秒とし、前駆イオンのSWATHウインドウを300~1008の13Da(1Daの重複を含む)の質量電荷比に設定し、SWATH-MS取得法を行った。プロダクトイオンは、IDA測定と同じ設定で、ローリング衝突エネルギーを用い、100~1600スキャンした。サイクル時間は3.05秒であった。C18カラム(Acclaim PepMap RSLC C18、2μm、100Å、内径75μm×25cm、 DIONEX社製)及びトラップカラム(内径100μm×2cm、 Acclaim PepMap100 C18を充填、5μm、100Å、DIONEX社製)を用い、40℃にてNanoLCを行った。0.1%ギ酸に1~25%及び25~50%のアセトニトリルを含有する直線勾配を適用し、流速300nL/分にて、60分間及び15分間(図1及び2)又は40分間及び10分間(図3)、対象ペプチドを溶出した。
[Method 2: LC-MS / MS]
A nanoLC system (Ultimate 3000 RSLCnano; manufactured by DIONEX) was connected to a nano-electrospray ionization mass spectrometer (TripleTOF 5600; manufactured by ABSCIEX1) operated in the positive ionization mode to analyze a sample containing the target protein. . The parameter values of ion source gas, curtain gas, ion spray voltage, interface heater temperature, and declustering potential were 20, 20, 2300, 150, and 80, respectively. Rolling collision energy is used at an accumulation time of 50 microseconds, collision energy dispersion coefficient 5, ion emission delay 30 and ion emission width 15, and precursor ions (Q1) are 300 to 1008 and product ions (Q3) are 100 to 1600. Scan and IDA method was performed. The maximum number of candidate precursor ions for observing product ions was 20 ions / cycle. Analyzed ions were excluded for 10 seconds. The accumulation time was 50 microseconds, and the SWATH window of precursor ions was set to a mass-to-charge ratio of 300 to 1008 13 Da (including 1 Da overlap), and the SWATH-MS acquisition method was performed. Product ions were scanned from 100 to 1600 using rolling collision energy with the same settings as the IDA measurement. The cycle time was 3.05 seconds. Using a C18 column (Acclaim PepMap RSLC C18, 2 μm, 100 mm, inner diameter 75 μm × 25 cm, manufactured by DIONEX) and a trap column (inner diameter 100 μm × 2 cm, packed with Acclaim PepMap100 C18, 5 μm, 100 mm, manufactured by DIONEX) at 40 ° C. NanoLC was performed. Apply a linear gradient containing 1-25% and 25-50% acetonitrile in 0.1% formic acid at a flow rate of 300 nL / min for 60 minutes and 15 minutes (Figures 1 and 2) or 40 minutes and 10 minutes. (FIG. 3), the target peptide was eluted.
[方法3:本発明のデータベースにおけるnRTデータの蓄積]
 上記23種類の試料と2種類の合成ペプチドのデータセットを用いてIDA測定により得られたMS/MSデータはProtein Pilot(ABSCIEX社製)にインポートし、UniProtヒトタンパク質データベースを検索して対象ペプチドを同定した。結果ファイル(図1の[group file]に相当)をSWATH MicroApp(ABSCIEX社製)を用いてPeak Viewにインポートし、イオンライブラリファイル(テキストファイル)をAccess(Microsoft社製)にエクスポートした。ペプチド信頼度スコア(peptide confidence score)が0.99を超えるトランジションデータを抽出し、抽出した各トランジションデータを固有のトランジション名及び固有のペプチドピーク名とリンクさせ、Microsoft SQL Server Expressにトランジションデータベースとして格納した。データベースサイズを縮小するため、トランジションデータを、相対強度を合計することで固有のトランジション名で統合した。各ペプチドピークのRTの平均及び標準偏差(SD)をAccess内で計算し、SD<0.2分であるRT平均値をRTアライメントに使用した。全てのRT及びnRTをAccessで一覧化し、RTによってソーティングした全てのRTと標準化用ペプチドピークのRT-nRTのリストをOrigin 9ソフトウエア(OriginLab社製)にエクスポートし、補正(平滑化及び補間)を行った。平滑化は、パーセンタイルフィルター(100ポイント、50%)を用いて行い、直線補間は平滑化したデータを用いて行った。補間したデータをAccess内のnRTデータベースに格納した。各種試料から取得したnRTをnRTデータベースに格納した。なお、IDAデータのRTと比較するため、各ペプチドピークのnRTの平均及びSDをAccessで計算し、SD<0.2分であるRTの平均、又は1回の実験で検出されたペプチドのRTを用いた(合計106,074個のペプチドのRT)。
[Method 3: Accumulation of nRT data in the database of the present invention]
MS / MS data obtained by IDA measurement using the above 23 types of samples and 2 types of synthetic peptide data sets are imported into Protein Pilot (ABSCIEX), and UniProt human protein database is searched to find the target peptide. Identified. The result file (corresponding to [group file] in FIG. 1) was imported into Peak View using SWATH MicroApp (ABSCIEX), and the ion library file (text file) was exported to Access (Microsoft). Extracts transition data with a peptide confidence score exceeding 0.99, links each transition data with a unique transition name and a unique peptide peak name, and stores it in Microsoft SQL Server Express as a transition database did. In order to reduce the database size, the transition data was integrated with a unique transition name by summing the relative intensities. The RT average and standard deviation (SD) of each peptide peak was calculated in Access, and the RT average with SD <0.2 min was used for RT alignment. List all RTs and nRTs in Access, export all RTs sorted by RTs and RT-nRTs of peptide peaks for standardization to Origin 9 software (OriginLab) for correction (smoothing and interpolation) Went. Smoothing was performed using a percentile filter (100 points, 50%), and linear interpolation was performed using smoothed data. The interpolated data was stored in the nRT database in Access. NRT obtained from various samples was stored in the nRT database. In addition, in order to compare with RT of IDA data, the average of nRT and SD of each peptide peak are calculated by Access, the average of RT with SD <0.2 minutes, or the RT of peptide detected in one experiment. (RT for a total of 106,074 peptides).
[方法4:本発明のデータベースを基にしたイオンライブラリファイルの再構築]
 HLMを用いて、連続SWATH取得法の過程でIDA法により分析した。IDA法で取得したデータファイルからイオンライブラリファイルを作成し、Accessにインポートした。イオンライブラリのRT、及びnRTデータベースのnRTの平均及びSDを計算し、SDが0.2分以内である重複ペプチドピークの全てのRT及びnRTをAccessで一覧化した。nRTに基づいてソーティングした全nRTと標準化用ペプチドピークのRT―nRTのリストをOrigin 9ソフトウエアにエクスポートし、平滑化及び補間を行った。平滑化は、パーセンタイルフィルター(100ポイント、50%)を用いて行い、直線補間は平滑化したデータを用いて行った。シフトしたnRTをAccessにインポートし、再構築イオンライブラリファイルを、トランジションデータベースのデータと統合することにより作成した。各ペプチドピークにおいて最大強度が20%を超えるトランジションを再構築イオンライブラリファイル用に選択した。再構築イオンライブラリファイルをSWATH MicroAppを備えたPeak Viewにインポートし、SWATHの取得データを使用してSWATH定量を行った。全てのペプチドピークについてピーク面積を得るため、ペプチド数、修飾の排除、共有配列選択の排除、XIC抽出ウインドウ、及びXIC幅を、それぞれ、「999」、「off」、「off」、「1.0分」及び「0.040Da」に設定した。勾配条件の違いにより、実測RTとシフトしたnRTとの差異が図3では図2よりも大きかったため、該図3ではXIC抽出ウインドウを1.5分に設定した。標準的SWATH定量では、ピーク面積の計算に5個のトランジションを使用した。本発明のデータベースを用いた定量では、選択した全てのトランジションを再構築イオンライブラリで使用するため、トランジション数を「999」に設定した。
[Method 4: Reconstruction of ion library file based on database of the present invention]
Using HLM, analysis was performed by the IDA method in the course of the continuous SWATH acquisition method. An ion library file was created from the data file obtained by the IDA method and imported into Access. The average and SD of RT of the ion library and nRT of the nRT database were calculated, and all RTs and nRTs of overlapping peptide peaks with SD within 0.2 minutes were listed in Access. A list of all nRTs sorted based on nRT and RT-nRT of standardization peptide peaks was exported to Origin 9 software for smoothing and interpolation. Smoothing was performed using a percentile filter (100 points, 50%), and linear interpolation was performed using smoothed data. The shifted nRT was imported into Access and a reconstructed ion library file was created by integrating with the data in the transition database. Transitions with a maximum intensity greater than 20% at each peptide peak were selected for the reconstructed ion library file. The reconstructed ion library file was imported into Peak View equipped with SWATH MicroApp, and SWATH quantification was performed using the SWATH acquisition data. In order to obtain peak areas for all peptide peaks, the number of peptides, exclusion of modifications, exclusion of shared sequence selection, XIC extraction window, and XIC width were set to “999”, “off”, “off”, “1. “0 min” and “0.040 Da”. Since the difference between the measured RT and the shifted nRT was larger in FIG. 3 than in FIG. 2 due to the difference in gradient conditions, the XIC extraction window was set to 1.5 minutes in FIG. For standard SWATH quantification, 5 transitions were used to calculate the peak area. In quantification using the database of the present invention, the number of transitions was set to “999” in order to use all selected transitions in the reconstructed ion library.
[方法5:ペプチドピークのバリデーション]
 ピークのバリデーションには、トランジションデータベース中の「相対ピーク強度」と、Peak Viewソフトウエアからエクスポートした結果ファイル中の各トランジション(イオン)の「ピーク面積」を使用した。Accessを使用して以下の手順を行った。各ペプチドピークについて、MRMトランジションデータベースにおける最大ピーク強度(a)、ピーク強度の合計(b)、及び最大ピーク強度を付与するトランジションを各ペプチドピークについてリスト化した。次に、Peak Viewからエクスポートした試料の結果ファイルにおいて、ピーク面積の合計(c)と、トランジションデータベースにおいて最大強度を付与するトランジションのピーク面積(d)を各ペプチドピークについて一覧化した。各ペプチドピークについて、式[(d)本件データベースに格納される対象ペプチドピークのMRMトランジションのうち、最大ピーク強度を付与するMRMトランジションのクロマトグラムから得られるピーク面積/(c)本件データベースに格納される対象ペプチドピークのMRMトランジションのクロマトグラムから得られるペプチドピーク面積の合計]/[(a)前記最大ピーク強度を付与するMRMトランジションにおける最大ピーク強度/(b)前記ピーク面積の合計に用いたMRMトランジションにおけるピーク強度の合計]によってバリデーションの指標を計算した。指標値が0.5~2の範囲にあるペプチドピークを比較に用いた。
[Method 5: Validation of peptide peak]
For peak validation, “relative peak intensity” in the transition database and “peak area” of each transition (ion) in the result file exported from Peak View software were used. The following procedure was performed using Access. For each peptide peak, the maximum peak intensity (a) in the MRM transition database, the sum of peak intensities (b), and the transition giving the maximum peak intensity are listed for each peptide peak. Next, in the result file of the sample exported from Peak View, the total peak area (c) and the peak area (d) of the transition that gives the maximum intensity in the transition database are listed for each peptide peak. For each peptide peak, the formula [(d) out of MRM transitions of the target peptide peak stored in the database, peak area obtained from the chromatogram of the MRM transition that gives the maximum peak intensity / (c) stored in the database. Sum of peptide peak areas obtained from chromatogram of MRM transition of target peptide peak to be obtained] / [(a) Maximum peak intensity in MRM transition that gives the maximum peak intensity / (b) MRM used for the sum of peak areas The index of validation was calculated by [total peak intensity in transition]. A peptide peak having an index value in the range of 0.5 to 2 was used for comparison.
[方法6:本発明のデータベースを用いたペプチドピークの定量の検証]
 トリプシンで消化した未分画のHLMに296種の合成ペプチド(Ohtsuki, S., et al. J Pharm Sci 100, 3547-3559 (2011)、Shawahna, R., et al. Mol Pharm 8, 1332-1341(2011)、Uchida, Y., et al. J Neurochem 117, 333-345 (2011))をそれぞれ4種類の量(0.1、0.5、5及び25fmol/注入)となるように添加し、モデル試料を作製した。これらのペプチドにより本発明のデータベース中の240種のペプチドから312個のペプチドピークがモデル試料において検出された。試料は、SWATH-MS取得法で繰り返し分析した(4回)。合成ペプチドを25fmolスパイクしたモデル試料を、第1試料の前、かつ、2回目と3回目のリピートの間にIDA法で分析した。Peak Viewからエクスポートしたイオンライブラリファイルから合成ペプチドのトランジション情報を削除し、合成ペプチドの情報を用いずに再構築ピークファイルを作成した。勾配条件が異なるため、RTの差異は図2Bより大きく、検出されたピークの時間ウインドウを1.0分ではなく、1.5分に設定した。ピーク面積データをMarker Viewソフトウエア(ABSCIEX社製)にインポートして統計分析を行い、顕著に増加した(p<0.01倍及び>1.5倍)ペプチドピークを抽出した。これら顕著に増加したペプチドピークについてピークのバリデーションを行った。合成ペプチドの一部はHLM中のタンパク質の測定に用いることができるため、ピーク面積は、内在性ペプチドと添加ペプチドの合計面積となっている。内在性ペプチドの量を除外するため、0.5又は5fmolのピーク面積比を以下のとおり計算した。
ピーク面積比=(0.5又は5fmolの合成ペプチドのピーク面積-0.1fmolの合成ペプチドのピーク面積)/(25fmolの合成ペプチドのピーク面積-0.1fmolの合成ペプチドのピーク面積)
[Method 6: Verification of peptide peak quantification using database of the present invention]
296 synthetic peptides (Ohtsuki, S., et al. J Pharm Sci 100, 3547-3559 (2011), Shawahna, R., et al. Mol Pharm 8, 1332- 1341 (2011), Uchida, Y., et al. J Neurochem 117, 333-345 (2011)) are added in 4 different amounts (0.1, 0.5, 5 and 25 fmol / injection). A model sample was prepared. With these peptides, 312 peptide peaks were detected in the model sample from 240 peptides in the database of the present invention. Samples were repeatedly analyzed by the SWATH-MS acquisition method (4 times). A model sample spiked with 25 fmol of the synthetic peptide was analyzed by the IDA method before the first sample and between the second and third repeats. The transition information of the synthetic peptide was deleted from the ion library file exported from Peak View, and a reconstructed peak file was created without using the synthetic peptide information. Due to the different slope conditions, the difference in RT was greater than in FIG. 2B and the time window of the detected peak was set to 1.5 minutes instead of 1.0 minute. The peak area data was imported into Marker View software (manufactured by ABSCIEX) and subjected to statistical analysis, and peptide peaks that significantly increased (p <0.01 times and> 1.5 times) were extracted. Peak validation was performed on these markedly increased peptide peaks. Since a part of the synthetic peptide can be used for measurement of the protein in the HLM, the peak area is the total area of the endogenous peptide and the added peptide. In order to exclude the amount of endogenous peptide, a peak area ratio of 0.5 or 5 fmol was calculated as follows.
Peak area ratio = (0.5 or 5 fmol synthetic peptide peak area−0.1 fmol synthetic peptide peak area) / (25 fmol synthetic peptide peak area−0.1 fmol synthetic peptide peak area)
 本発明は、バイオマーカー探索に有効な技術であるため、医療・製薬・バイオ分野に活用できる。また、SWATHのデータ取得は、現在までのところABSCIEX社(質量分析機器世界シェア一位)の機械でしかできないため、ABSCIEX社の解析ソフトウエアに本発明のデータベース作成方法のアルゴリズムを入れることが有用である。また、バイオソフトウェア企業に本発明のデータベース作成方法のアルゴリズムをライセンシングし、解析用ソフトの開発に貢献することも期待される。 Since the present invention is an effective technique for biomarker search, it can be used in the medical, pharmaceutical and bio fields. In addition, SWATH data acquisition can only be done with ABSCIEX (the world's top share in mass spectrometry instrument) machine so far, so it is useful to put the algorithm of the database creation method of the present invention into the analysis software of ABSCIEX. It is. It is also expected that biosoftware companies will contribute to the development of analysis software by licensing the algorithm of the database creation method of the present invention.

Claims (6)

  1. 液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により複数の対象タンパク質を構成するペプチドのペプチドピークを同定及び/又は定量するための、ペプチドピークの溶出時間、及び該ペプチドピークの溶出時間に対応するMRMトランジション並びにピーク強度を格納したデータベースを作成する方法であって、以下の工程(a)~(f)を備えたことを特徴とする方法。
    (a)LC-MS/MSを用いた質量分析で得られる、ペプチドピーク群の標準溶出時間、及び、前記ペプチドピーク群の標準溶出時間に対応するMRMトランジション並びにピーク強度を取得し、データベースに格納する工程;
    (b)LC-MS/MSを用いた質量分析で得られる、ペプチドピーク’群の溶出時間、及び、前記ペプチドピーク’群の溶出時間に対応するMRMトランジション並びにピーク強度を取得する工程;
    (c)前記ペプチドピーク群の中から前記ペプチドピーク’群と共通するペプチドピークを標準化用ペプチドピーク群として選択する工程;
    (d)工程(c)で選択した標準化用ペプチドピーク群の標準溶出時間を基準に、前記ペプチドピーク群の標準溶出時間と前記ペプチドピーク’群の溶出時間とのアライメントを行い、前記ペプチドピーク’群の溶出時間を前記ペプチドピーク群の標準溶出時間に標準化し、前記ペプチドピーク’群の標準溶出時間を取得する工程;
    (e)工程(d)で取得した前記ペプチドピーク’群の標準溶出時間を前記ペプチドピーク群の標準溶出時間に組み込み、新たなペプチドピーク群の標準溶出時間として前記データベースに格納する工程;
    (f)ペプチドピーク’群の標準溶出時間に対応するMRMトランジション及びピーク強度を、前記データベースに格納する工程;
    Peptide peak elution time for identifying and / or quantifying peptide peaks of peptides constituting a plurality of target proteins by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS), and the peptide A method for creating a database storing MRM transitions and peak intensities corresponding to peak elution times, comprising the following steps (a) to (f):
    (A) Obtain the standard elution time of the peptide peak group and the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak group obtained by mass spectrometry using LC-MS / MS and store them in the database The step of:
    (B) obtaining the elution time of the peptide peak 'group, the MRM transition corresponding to the elution time of the peptide peak' group, and the peak intensity obtained by mass spectrometry using LC-MS / MS;
    (C) selecting a peptide peak common to the peptide peak ′ group from the peptide peak group as a peptide peak group for standardization;
    (D) Based on the standard elution time of the peptide peak group for standardization selected in the step (c), the standard elution time of the peptide peak group and the elution time of the peptide peak 'group are aligned, and the peptide peak' Normalizing the elution time of the group to the standard elution time of the peptide peak group, and obtaining the standard elution time of the peptide peak 'group;
    (E) The step of incorporating the standard elution time of the peptide peak 'group obtained in step (d) into the standard elution time of the peptide peak group and storing it in the database as the standard elution time of a new peptide peak group;
    (F) storing the MRM transition and peak intensity corresponding to the standard elution time of the peptide peak 'group in the database;
  2. 工程(b)~(f)の工程を、2~25回繰り返すことを特徴とする請求項1に記載の方法。 The method according to claim 1, wherein the steps (b) to (f) are repeated 2 to 25 times.
  3. 液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により複数の対象タンパク質を構成するペプチドのペプチドピークを同定及び/又は定量するためのデータベースであって、請求項1又は2に記載の方法を用いて作成した、10万個以上のペプチドピークの溶出時間、及び該ペプチドピークの溶出時間に対応するMRMトランジション並びにピーク強度を備えたことを特徴とするデータベース。 A database for identifying and / or quantifying peptide peaks of peptides constituting a plurality of proteins of interest by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS), comprising: A database comprising the elution time of 100,000 or more peptide peaks, the MRM transition corresponding to the elution time of the peptide peaks, and the peak intensity, prepared using the method described in 1.
  4. 液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析により1又は複数の試料中の1又は複数の対象タンパク質を構成するペプチドのペプチドピークを同定する方法であって、以下の工程(A)~(E)を備えたことを特徴とする方法。
    (A)試料中の対象タンパク質群をタンパク質消化酵素により断片化処理し、対象ペプチド群を調製する工程;
    (B)工程(A)で調製した対象ペプチド群を用いて、液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)を用いた解析を行い、ペプチドピークの溶出時間、質量電荷比(m/z)、及びMRMクロマトグラム情報を含むデータを取得する工程;
    (C)工程(B)で取得したペプチドピークの質量電荷比(m/z)を基に対象ペプチドピーク群を同定し、該対象ペプチドピーク群の中から請求項1又は2に記載の方法を用いて作成したデータベースに格納されるペプチドピーク群と共通するペプチドピークを標準化用対象ペプチドピーク群として選択する工程;
    (D)工程(C)で選択した標準化用対象ペプチドピーク群の溶出時間を基準に、対象ペプチドピーク群の溶出時間と、請求項1又は2に記載の方法を用いて作成したデータベースに格納されるペプチドピーク群の標準溶出時間とのアライメントを行い、請求項1又は2に記載の方法を用いて作成したデータベースに格納されるペプチドピーク群の標準溶出時間を、対象ペプチドピーク群の溶出時間にシフトし、シフトした標準溶出時間と、該シフトした標準溶出時間に対応するMRMトランジション及びピーク強度とを再構築イオンライブラリとして取得する工程;
    (E)工程(D)で取得した再構築イオンライブラリを用いて、工程(B)で取得したMRMクロマトグラム情報を含むデータからペプチドピークのMRMクロマトグラムを抽出し、前記MRMクロマトグラムから対象ペプチドピーク群を同定する工程;
    A method for identifying peptide peaks of peptides constituting one or more target proteins in one or more samples by analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS), comprising: A method comprising steps (A) to (E).
    (A) A step of preparing a target peptide group by subjecting the target protein group in the sample to a fragmentation treatment with a protein digestive enzyme;
    (B) Using the target peptide group prepared in step (A), analysis using a liquid chromatograph-tandem mass spectrometer (LC-MS / MS) was performed, and peptide peak elution time, mass-to-charge ratio (m / Z), and obtaining data including MRM chromatogram information;
    (C) The target peptide peak group is identified based on the mass-to-charge ratio (m / z) of the peptide peak obtained in step (B), and the method according to claim 1 or 2 is performed from the target peptide peak group. A step of selecting a peptide peak common to the peptide peak group stored in the database created by using the peptide peak group for standardization;
    (D) Based on the elution time of the target peptide peak group for standardization selected in step (C), the elution time of the target peptide peak group and the database created using the method according to claim 1 or 2 are stored. The standard elution time of the peptide peak group stored in the database created using the method according to claim 1 is used as the elution time of the target peptide peak group. Acquiring a shifted standard elution time and an MRM transition and peak intensity corresponding to the shifted standard elution time as a reconstructed ion library;
    (E) Using the reconstructed ion library acquired in step (D), the MRM chromatogram of the peptide peak is extracted from the data including the MRM chromatogram information acquired in step (B), and the target peptide is extracted from the MRM chromatogram. Identifying a peak group;
  5. さらに、複数の試料間における対象タンパク質を構成するペプチドのペプチドピークを定量するための以下の工程(F)及び(G)を備えたことを特徴とする請求項4に記載の方法。
    (F)工程(E)で同定した対象ペプチドピーク群の中から、ピーク面積とピーク強度との比を基に、対象ペプチドピーク群の定量用ペプチドピークを選択する工程;
    (G)工程(F)で選択した対象ペプチドピーク群の定量用ペプチドピーク面積を複数の試料について算出し、算出したピーク面積の比から、複数の試料間における対象タンパク質を構成するペプチドのペプチドピークを定量する工程;
    Furthermore, the method of Claim 4 provided with the following process (F) and (G) for quantifying the peptide peak of the peptide which comprises the target protein between several samples.
    (F) A step of selecting a peptide peak for quantification of the target peptide peak group from the target peptide peak group identified in step (E) based on the ratio of the peak area and the peak intensity;
    (G) The peptide peak area for quantification of the target peptide peak group selected in the step (F) is calculated for a plurality of samples, and the peptide peak of the peptide constituting the target protein among the plurality of samples is calculated from the ratio of the calculated peak areas. Quantifying
  6. タンパク質消化酵素による断片化処理が、トリプシンとリシルエンドペプチダーゼとの併用による断片化処理であることを特徴とする請求項4又は5に記載の方法。 6. The method according to claim 4 or 5, wherein the fragmentation treatment with a protein digestion enzyme is a fragmentation treatment with a combination of trypsin and lysyl endopeptidase.
PCT/JP2014/003600 2013-07-16 2014-07-07 Method for creating database for identification and quantification of peptide peaks in mass spectrometry WO2015008453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-147591 2013-07-16
JP2013147591A JP6365863B2 (en) 2013-07-16 2013-07-16 Database creation method for peptide peak identification and quantification in mass spectrometry

Publications (1)

Publication Number Publication Date
WO2015008453A1 true WO2015008453A1 (en) 2015-01-22

Family

ID=52345933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003600 WO2015008453A1 (en) 2013-07-16 2014-07-07 Method for creating database for identification and quantification of peptide peaks in mass spectrometry

Country Status (2)

Country Link
JP (1) JP6365863B2 (en)
WO (1) WO2015008453A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121715A1 (en) * 2015-01-26 2016-08-04 国立大学法人名古屋大学 Method for providing information for evaluating prognosis of lung cancer patient, method for predicting prognosis of lung cancer patient, internal standard, antibody, device for predicting prognosis of lung cancer patient, program for prognosis prediction device, and recording medium
EP3304090A4 (en) * 2015-05-29 2018-11-07 Cedars-Sinai Medical Center Correlated peptides for quantitative mass spectrometry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524575A (en) * 2015-06-18 2018-08-30 シーダーズ−サイナイ メディカル センター The role of citrullination in the diagnosis of disease
US20190041393A1 (en) * 2015-09-14 2019-02-07 Shimadzu Corporation Peptide assignment method and peptide assignment system
JP7430265B2 (en) * 2019-12-17 2024-02-09 エフ. ホフマン-ラ ロシュ アーゲー Method and apparatus for multiple transition monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091344A (en) * 2003-08-13 2005-04-07 Hitachi Ltd Mass spectrometry system
WO2011007884A1 (en) * 2009-07-17 2011-01-20 国立大学法人九州大学 Method for quantifying protein
WO2013014853A1 (en) * 2011-07-22 2013-01-31 国立大学法人東北大学 Method for fabricating stable-isotope-labeled target peptide fragment in mass spectrometry
WO2013044401A1 (en) * 2011-09-28 2013-04-04 BiognoSYS AG Method for analysis of samples in targeted proteomics applications, computer program product and set of reference peptides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091344A (en) * 2003-08-13 2005-04-07 Hitachi Ltd Mass spectrometry system
WO2011007884A1 (en) * 2009-07-17 2011-01-20 国立大学法人九州大学 Method for quantifying protein
WO2013014853A1 (en) * 2011-07-22 2013-01-31 国立大学法人東北大学 Method for fabricating stable-isotope-labeled target peptide fragment in mass spectrometry
WO2013044401A1 (en) * 2011-09-28 2013-04-04 BiognoSYS AG Method for analysis of samples in targeted proteomics applications, computer program product and set of reference peptides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GILLET LC: "Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis", MOL CELL PROTEOMICS, vol. 11.6, 18 January 2012 (2012-01-18) *
HIROKAZU NAKATSUMI: "New horizons in biological research developed by next-generation proteomics : Say good-bye to Western blotting", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, vol. 84, no. 1, January 2012 (2012-01-01), pages 53 - 57 *
LIU, Y. ET AL.: "Quantitative measurements of N- linked glycoproteins in human plasma by SWATH- MS", PROTEOMICS, vol. 13.8, 11 March 2013 (2013-03-11), pages 1247 - 1256 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121715A1 (en) * 2015-01-26 2016-08-04 国立大学法人名古屋大学 Method for providing information for evaluating prognosis of lung cancer patient, method for predicting prognosis of lung cancer patient, internal standard, antibody, device for predicting prognosis of lung cancer patient, program for prognosis prediction device, and recording medium
EP3304090A4 (en) * 2015-05-29 2018-11-07 Cedars-Sinai Medical Center Correlated peptides for quantitative mass spectrometry
US10352942B2 (en) 2015-05-29 2019-07-16 Cedars-Sinai Medical Center Correlated peptides for quantitative mass spectrometry

Also Published As

Publication number Publication date
JP6365863B2 (en) 2018-08-01
JP2015021739A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
US8809062B2 (en) Method and apparatus for fractionation-based chemical analyses
US9146213B2 (en) Method and apparatus for performing retention time matching
JP5199101B2 (en) Methods for developing biomolecule assays
US7485852B2 (en) Mass analysis method and mass analysis apparatus
JP6365863B2 (en) Database creation method for peptide peak identification and quantification in mass spectrometry
JP2009540319A (en) Mass spectrometry biomarker assay
JP7431933B2 (en) Method for absolute quantification of low abundance polypeptides using mass spectrometry
US20170299605A1 (en) Srm methods in alzheimer&#39;s disease and neurological disease assays
WO2014194320A1 (en) Chromatography mass spectrometry method and system
Wu et al. Mass spectrometry for biomarker development
Marusina Mass Spec Gives Shot in Arm to Proteomic Analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826440

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826440

Country of ref document: EP

Kind code of ref document: A1