WO2015008320A1 - Gene spatial distribution analysis system for cell tissue - Google Patents

Gene spatial distribution analysis system for cell tissue Download PDF

Info

Publication number
WO2015008320A1
WO2015008320A1 PCT/JP2013/069239 JP2013069239W WO2015008320A1 WO 2015008320 A1 WO2015008320 A1 WO 2015008320A1 JP 2013069239 W JP2013069239 W JP 2013069239W WO 2015008320 A1 WO2015008320 A1 WO 2015008320A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
needles
tissue
collection
sampling
Prior art date
Application number
PCT/JP2013/069239
Other languages
French (fr)
Japanese (ja)
Inventor
智晴 梶山
徹 土生
神原 秀記
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/069239 priority Critical patent/WO2015008320A1/en
Publication of WO2015008320A1 publication Critical patent/WO2015008320A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N1/08Devices for withdrawing samples in the solid state, e.g. by cutting involving an extracting tool, e.g. core bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • B01L3/0217Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids of the plunger pump type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/54Supports specially adapted for pipettes and burettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/021Adjust spacings in an array of wells, pipettes or holders, format transfer between arrays of different size or geometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • G01N2001/288Filter punches

Definitions

  • the present invention relates to an apparatus and system for simultaneously collecting a plurality of tissue sections from cellular tissues such as plant parts and animal organs.
  • the present invention also relates to a gene analysis method for collected tissue sections, and more particularly to an apparatus for analyzing nucleic acids derived from plant tissues having cell walls and vacuoles.
  • Non-patent Documents 1 and 3 A technique has been reported in which a minute part of a plant tissue is collected using a needle or the like and a substance such as a gene or protein expressed in the collected material is analyzed.
  • this technique microscopic sections are separated and collected under microscopic observation by using a needle or a chip that vibrates with a piezo element for plant tissue sliced using a microtome.
  • cDNA is synthesized by reverse transcription for genes in the collected sections.
  • Non-patent Document 2 discloses that cDNA is synthesized on beads using a sample ground at a liquid nitrogen temperature.
  • a cDNA library using a gene obtained from cells as a template is synthesized on a microcarrier such as magnetic beads, and the cDNA library is synthesized.
  • a gene analysis method has been developed in which quantitative PCR for the first gene is performed, and then washed and the cDNA library is repeatedly used for quantitative analysis for the second and third genes. This technique enables quantitative analysis of multiple types of genes per cell (Non-Patent Document 4).
  • the present inventors examined a study of capturing the response of plants to the environment as a change in gene expression. Specifically, we examined how gene expression differs depending on differences in plant solids and spatial location when external stimuli were applied to plants. In particular, by performing a multipoint analysis on the gene expression state at regular intervals, it becomes possible to analyze the spatial distribution of gene expression at a site, and to analyze gene responses between tissues. In order to realize this analysis, it is necessary to extract a plurality of tissue sections at a certain interval from a region of interest in the tissue and extract a gene.
  • the collected tissue sections are collected in individual containers, and gene collection work is performed independently.
  • this container it is effective to use tubes or microplates arranged at regular intervals, but in order to increase the gene recovery rate from the collected tissue section, it is quickly transferred to the container after collection. , It is necessary to suppress the gene degradation. Since the arrangement interval of these containers is generally larger than the interval when the sections are collected, it is necessary to change the interval.
  • the prior art does not disclose such collection means or a method for collecting in a container.
  • the present inventors solved the above problems by the following method.
  • the tissue section collecting apparatus of the present invention has a plurality of needles for collecting microsections of tissue, achieves a state in which the needles are close to each other at the time of collecting a section from the tissue, and at the time of collecting (discharging) the collected section In addition, it has a configuration that can be quickly changed to a container interval of a tube or a microplate as a collection container. Furthermore, the present inventors have found that a change in position of a plurality of needles can be quickly performed by switching the position by rotating one part.
  • the present invention includes the following.
  • the distance between the plurality of needles at the collection position is wider than the distance between the plurality of needles at the discharge position, The collection device.
  • a plurality of needles are coupled to the arm,
  • the arm is attached to the case,
  • the case includes a main body and a slide portion around the main body,
  • the slide part is attached to the main body so that it can rotate.
  • the eight arms coupled to the eight peripheral needles are respectively attached to the case at at least two positions of the main body and the slide portion, and the arm is attached to the main body by the rotation of the slide portion relative to the main body.
  • the peripheral needle arranged at the corner at the collection position is arranged at the center of the side at the discharge position, and the peripheral needle arranged at the center of the side at the collection position is arranged at the corner at the discharge position.
  • the attachment part to the body of the arm coupled to the peripheral needle disposed at the corner at the collection position is more than the attachment part to the body of the arm coupled to the peripheral needle disposed at the center of the side at the collection position.
  • a system for collecting sections from a plurality of points of cellular tissue The collection device according to any one of [1] to [12]; Means for inserting the first gel layer into the needle; A second gel layer for placing cellular tissue; A mechanism for moving the needle with the second gel layer so as to penetrate the tissue.
  • An apparatus for analyzing nucleic acids derived from a plurality of points in a cell tissue The collection device according to any one of [1] to [12] or the collection system according to [13]; Means for disrupting the cells; Means for separating nucleic acids; Means for analyzing nucleic acids; Including the analysis device.
  • the present invention makes it possible to simultaneously and rapidly collect a plurality of tissue sections of cellular tissue, and to analyze the spatial distribution characteristics of gene expression.
  • the present inventors have developed the following method for collecting a section of plant tissue.
  • the collection device and system of the present invention are particularly preferably used for carrying out the collection method.
  • the plant tissue was collected with a collection needle.
  • a tissue collection needle using 27G or 31G tubules, and developed a method to collect sections from multiple sites of the same individual.
  • a solution containing pure water or a gene degrading enzyme inhibitor is prepared as a droplet, The harvested section was transferred and the droplet was cooled to liquid nitrogen temperature.
  • tissue damage occurs due to contact with the needle. Therefore, as a means for preventing this damage, it was necessary to protect the collected section with a gel layer of gel or polymer in advance.
  • the gel layer such as gel or polymer needs to be a substance that does not inhibit such reaction.
  • the above method is a method of collecting a section of plant tissue, Insert the first gel layer into the needle, Place the plant tissue on the second gel layer, A method for collecting a plant tissue section, comprising the step of passing the needle through the plant tissue together with a second gel layer and collecting a section of the plant tissue with the needle.
  • the cell tissue to be sliced in the present invention is preferably a plant cell tissue, but the harvesting device of the present invention can also be used for sectioning from animal cell tissue.
  • the “plant” in the plant cell tissue means any organism classified as a plant, specifically, an organism having a cell wall and performing photosynthesis. More specifically, seed plants, fern plants, moss plants, multicellular algae and the like are included.
  • the plant cell tissue may be any tissue collected from such a plant, and may be a tissue obtained from organs such as roots, leaves, stems, vascular systems, buds, flowers, and seeds. The obtained plant tissue may be used as it is, or may be pretreated (washing, cutting, etc.).
  • the “section” to be collected refers to a small piece of plant tissue, and is preferably as small as possible, for example, one piece is 0.5 mm or less.
  • animal cell tissue application to human cells such as a thin section of a pathological sample or a cultured cell sheet is possible.
  • the sampling device of the present invention has a plurality of needles.
  • the plurality of needles are configured so that they can be quickly changed at the collection position and the discharge position.
  • the distance between the plurality of needles at the collection position is wider than the distance between the plurality of needles at the discharge position. That is, by collecting sections from cellular tissue at the narrowest possible interval at the needle collection position and then changing to the discharge position, a container for performing gene recovery work after collecting the sections, for example, at certain intervals
  • the section can be rapidly discharged into the arranged tube or microplate, for example, within 1 minute. Therefore, the collection position of the needle refers to the position of the needle when a section is collected from the cell tissue, and the discharge position refers to the position of the needle when the section collected by the needle is discharged to another container or the like. .
  • the change of the needle collection position and the discharge position is preferably performed by an arm coupled to a plurality of needles.
  • the plurality of needles may be coupled to one arm, or the plurality of needles may be coupled to the plurality of arms.
  • the sampling device of the present invention preferably further has a case, and a plurality of arms respectively coupled to a plurality of needles are attached to the case.
  • the case preferably includes a main body and a slide portion around the main body, and the slide portion is rotatably attached to the main body. It is preferable from the viewpoint of quick position change that the change of the collection position and the discharge position of the plurality of needles can be switched by rotation of the slide portion with respect to the main body in the case.
  • an arm coupled with a plurality of needles may have a structure that can be expanded and contracted, and the arm may be configured to expand and contract to change the needle collection position and the discharge position.
  • the expandable structure include a bellows structure, and a plurality of needles are coupled to the bellows structure arm, and the sampling position and the discharge position may be changed by expanding and contracting the bellows structure.
  • a plurality of needles arranged in a vertical row are surrounded by a vertical guide member, and are configured to be movable only in the vertical direction inside the vertical guide member, and the plurality of needles arranged in a horizontal row are horizontal guide members And may be configured to be movable only in the lateral direction within the laterally long guide member.
  • the distance in the lateral direction of the plurality of needles can be changed by moving the plurality of vertically long guide members closer to or away from each other in the lateral direction.
  • the lateral distances of the plurality of needles can be changed by moving the plurality of horizontally long guide members closer to or away from each other in the longitudinal direction. That is, by moving the vertically long guide member and the horizontally long guide member, the needle collection position and the discharge position can be changed, and the interval between the needles can be narrowed or widened.
  • a 31G injection needle when used, it has an outer diameter of 0.26 mm, an inner diameter of 0.13 mm, and a tube thickness of 0.06 mm, and a section of about 11 cells / layer can be collected.
  • narrower tubes than the above is not disturbed.
  • thin tubes made of stainless steel have an outer diameter of 80 ⁇ m and a wall thickness of about 25 ⁇ m.
  • the shape of the needle tip of the needle is not particularly limited, and may be, for example, a round shape, an oval shape, a square shape, a diamond shape, or the like, but preferably has a quadrangular needle tip having four vertices.
  • the needle at the tip having four vertices has an effect of suppressing variation in the amount of collected tissue not only in plant tissue but also in collecting a section from animal tissue. In particular, it can be utilized when recovering a section from a partial microregion such as a pathological section prepared by freezing or formalin fixation.
  • the needle preferably further has a syringe structure.
  • a syringe structure For example, it can be performed by inserting a thin tube (hollow thin tube) into the needle and using it as a plunger (presser) for discharging the slice. Thereby, it is possible to discharge the plant tissue section collected in the needle easily and without damage.
  • the needle may be connected to the plunger by a mounting tool such as a luer lock, or may be held by a mechanical pencil in the holder.
  • the needle may be treated with a nucleolytic enzyme inhibitor (eg, an RNAse inhibitor) before use, thereby preventing the nucleic acid in the plant tissue section from being degraded. Moreover, you may process with a hydrophilic polymer before use, and it becomes easy to hold
  • a nucleolytic enzyme inhibitor eg, an RNAse inhibitor
  • the interval between the center lines of the needles is in the direction of the sides of the lattice (for example, the centers of the peripheral needle 305 and the peripheral needle 308 in FIG. Line distance) is 0.26 mm, and in the diagonal direction (for example, the distance between the center lines of the peripheral needle 305 and the central needle 301 in FIG. 3) is ⁇ 0.1352 mm.
  • the nine needles at the discharge position are preferably arranged in a square lattice shape or a rectangular lattice shape. The arrangement of the square lattice or the rectangular lattice at the discharge position is wider than the arrangement at the collection position.
  • the distance between the needles at the collection position and the discharge position is 10 to 25 times.
  • the interval between the center lines of the needles is the direction of the sides of the lattice (for example, the distance between the center lines of the needles 301 and 302 in FIG. 4).
  • 6 mm, and ⁇ 72 mm in the diagonal direction for example, the distance between the center lines of needles 301 and 308 in FIG. 4).
  • the center needle may be fixed to the case.
  • the eight arms coupled to the eight peripheral needles are preferably attached to the case at at least two positions of the main body and the slide portion, respectively, and the arm is attached to the main body by the rotation of the slide portion with respect to the main body. It is configured to rotate around the center.
  • the peripheral needle arranged at the corner at the collection position is arranged at the center of the side at the discharge position
  • the peripheral needle arranged at the center of the side at the collection position is It is arranged at the corner at the discharge position.
  • the attachment to the body of the arm connected to the peripheral needle arranged at the corner at the collection position is more central to the needle than the attachment to the body of the arm connected to the peripheral needle located in the center of the side at the collection position. Close position, inside concentric circles.
  • the invention also relates to a system for collecting sections from multiple points of cellular tissue.
  • the collection system of the present invention comprises: The above collection device; Means for inserting the first gel layer into the needle; A second gel layer for placing cellular tissue; And a mechanism for moving the needle so as to penetrate the tissue together with the second gel layer.
  • the means for inserting the first gel layer into the needle can be a mechanism for moving the collection needle so as to penetrate the gel sheet. Or it is good also as a means which inject
  • the arrangement of the cellular tissue in the second gel layer is not particularly limited, and may be performed by placing the cellular tissue on a gel sheet or by placing the cellular tissue in a container containing the solution and gelling the solution. it can.
  • a gel layer may be further disposed on the cell tissue. In that case, the first gel layer may or may not be inserted into the needle in advance.
  • the needle is passed through the cell tissue together with the second gel layer, and a section of the cell tissue is collected by the needle.
  • a tissue section is collected in the needle while being sandwiched between the first gel layer and the second gel layer.
  • the needle penetration is preferably performed as perpendicular to the cell tissue and the second gel layer as possible. In this way, tissue sections can be collected quickly, preferably within 5 minutes, and the resulting tissue sections are also small, protecting the tissue.
  • ⁇ Tissue sections collected by the needle are transferred into the droplet as quickly as possible and frozen.
  • the time until the tissue section is transferred into a droplet and frozen is within 3 minutes, preferably within 1 minute. Thereby, it is possible to fix a gene expression state that is less affected by physical stimulation at the time of collection.
  • Droplets are prepared with pure water, physiological saline, phosphate buffered saline (PBS), TE buffer, and a solution obtained by adding a nucleolytic enzyme inhibitor (for example, RNAse inhibitor) to these solvents.
  • a nucleolytic enzyme inhibitor for example, RNAse inhibitor
  • reagents based on ammonium sulfate (representative product name: RNALater (Ambion® Inc.)) and guanidine-based storage and extraction reagents (representative products: RLT buffer and RLC buffer) (QIAGEN)) is available.
  • the size of the droplet varies depending on the size of the collected slice, but is preferably 1 ⁇ L or less, for example, 0.5 ⁇ L.
  • the size of the droplet should be minimized as its components may inhibit cDNA synthesis.
  • Such a droplet is prepared, for example, in a tube, and a tissue section is transferred there.
  • the tube for preparing the droplets can be any type and size of tube known in the art. For example, when performing gene expression analysis, a PCR tube can be employed.
  • the tube is made of a material that can easily hold the contents of the droplet or tissue section (such as nucleic acid), or has been treated so as to be easily held.
  • the tube can be made of a hydrophilic material (for example, a hydrophilic polymer), or the surface of the tube can be subjected to hydrophilic treatment (for example, coating with a hydrophilic polymer, UV ozone treatment method, etc.).
  • freeze the droplet After transferring the tissue section to the droplet, freeze the droplet. Freezing can be performed by methods known in the art. For example, a method using liquid nitrogen and a freezer are generally used. By freezing, the gene expression status in the tissue section can be preserved, and cell disruption described later is facilitated.
  • tissue sections collected as described above First, the cells of the tissue section collected by the method of the present invention are crushed.
  • the disruption of cells can be performed by any method known in the art, and physical disruption such as homogenization using pestle, glass beads, or ultrasonic treatment can be used.
  • the pestle When disrupting cells using a pestle, in a preferred embodiment, the pestle has a shape that can be homogenized in a tube and then integrated with the tube for centrifugation. More preferably, the pestle has a shape that can be subjected to centrifugation with its tip fully inserted into the tube.
  • the pestle and the tube can be integrated by using a cap that can fix the pestle to the tube.
  • the pestle and the tube can be integrated by using a stopper that is integrated with the tube and is positioned in the center of the tube without shaking in the horizontal direction.
  • nucleic acid derived from the tissue section is separated.
  • nucleic acid to be separated include genomic DNA, messenger RNA (mRNA), non-coding RNA (ncRNA), microRNA, and fragments thereof.
  • Nucleic acid separation can be performed using methods known in the art depending on the type of nucleic acid to be separated. For example, nucleic acids contained in cells, ie, DNA and RNA, using proteolytic enzymes such as Proteinase K, chaotropic salts such as guanidine thiocyanate and guanidine hydrochloride, surfactants such as Tween and SDS, or commercially available reagents for cell lysis Can be eluted.
  • proteolytic enzymes such as Proteinase K
  • chaotropic salts such as guanidine thiocyanate and guanidine hydrochloride
  • surfactants such as Tween and SDS
  • commercially available reagents for cell lysis Can be eluted.
  • Genomic DNA may be fragmented by physical cleavage or restriction enzyme cleavage.
  • DNA is degraded by a DNA degrading enzyme (DNase), and a sample containing only RNA as a nucleic acid is obtained.
  • DNase DNA degrading enzyme
  • cDNA is synthesized from a sample containing only RNA by capturing only mRNA using a DNA probe containing a poly-T sequence and then performing reverse transcription using reverse transcriptase from the mRNA. be able to.
  • a library By immobilizing a nucleic acid (for example, genomic DNA, mRNA, etc.) isolated from a tissue as described above or a nucleic acid (for example, cDNA) having the same or complementary sequence as the nucleic acid on a solid phase carrier, A library can be created. Moreover, tissue-derived nucleic acids can be analyzed by analyzing nucleic acids separated from tissues as described above (or nucleic acids immobilized on solid phase carriers). Such nucleic acid library preparation methods and nucleic acid analysis methods are well known in the art. For example, a tissue-derived cDNA library can be prepared on beads as a solid phase carrier, and nucleic acids (genes) expressed in the tissue can be repeatedly analyzed.
  • a tissue-derived cDNA library can be prepared on beads as a solid phase carrier, and nucleic acids (genes) expressed in the tissue can be repeatedly analyzed.
  • nucleic acids derived from cell tissues can be used quickly and efficiently.
  • the collection system of the present invention includes information input means (camera, observation stage, monitor, etc.) for determining the section collection location on the cell tissue, needle position determination means, needle movement / position adjustment means, needle position A cleaning means or the like may be provided.
  • the tissue section collecting apparatus of the present embodiment has a plurality of needles for collecting microsections of the tissue, achieves a state in which the needles are close to each other when collecting the sections from the tissue, and when collecting the collected sections, A collection needle head that can be quickly changed to the collection container tube or the microplate container interval is used.
  • a collection needle head that can be quickly changed to the collection container tube or the microplate container interval is used.
  • industry standard standards for microplates such as 9 mm intervals and 4.5 mm intervals are used.
  • FIG. 1 is a bird's-eye view of a collection needle head in which nine needles for cell tissue section collection are arranged in 3 ⁇ 3.
  • the sampling needle defines one central needle as the central needle 101 and eight peripheral needles as the peripheral needle 102.
  • 31G was used as the needle.
  • the 31G needle has an outer diameter of 0.26mm, an inner diameter of 0.13mm, and a tube wall thickness of 0.06mm.
  • the shape of the needle tip of the needle is not particularly limited, and may be, for example, a round shape, an oval shape, a square shape, a rhombus shape, or the like, but preferably has a quadrangular needle tip having four vertices. Thereby, the dispersion
  • Each needle further has a syringe structure.
  • a thin tube 103 made of tungsten can be inserted into a needle and used as a plunger (presser) for discharging a slice. As a result, the tissue section collected in the needle can be discharged easily and without damage.
  • Each needle is coupled to an arm.
  • the central needle arm is 104.
  • FIG. 2 is an example of a peripheral needle and arm.
  • the arm 201 is coupled to the needle 202 by a portion 203. As a bonding method, adhesion or the like can be used. For convenience, the needle can be wrapped with resin or tape and fixed to the arm.
  • the arm has a hole 204 for a movable center and a hole 205 for slide movement.
  • FIG. 3 is a schematic view of the needle head as seen from above. Consists of a central needle 301, a central needle arm (not shown) connected to the case, eight peripheral needles 302 to 309, eight arms 312 to 319 integrated therewith, and a case Is done.
  • the case includes a main body 310 and a slide portion 311 that can move in a circumferential shape.
  • Each of the eight peripheral needle arms has a center point at eight central pins 320 in the case main body, and the movable pin 321 of the case slide portion is configured to fit in the slide movable hole.
  • both needles are arranged in a square lattice in the gathering state of the needles, that is, the collection position (FIG. 3) and the diffusion state, that is, the discharge position (FIG. 4). It is a feature that can be achieved only by sliding the slide portion.
  • FIG. 5 illustrates a specific structure. A description will be given by taking two pairs of needles and arms as an example. First, the needle position 501 and the position 502 indicate the needle position when the needle 302 in FIG. 3 is gathered (collection position) and enlarged (discharge position), respectively.
  • a line segment 503 is a line segment connecting the position 501 and the position 502, and a broken line 504 is a perpendicular bisector of the line segment 503.
  • the center point 505 is on this perpendicular bisector.
  • An arm 506 and an arm 507 indicate arm positions at the time of gathering (collection position) and at the time of enlargement (discharge position), respectively.
  • An arc 508 indicates the range of movement of the movable pin when the arm is movable.
  • the arc 508 is on the dashed circle 509, the center of which is the same as the center of the case and the position of the center needle. That is, the center of the case slide portion coincides with the center of the center needle, and the center angle of the arc 508 indicates the slide amount (rotation amount) of the slide portion.
  • the movable center points of the arms to which they are coupled are all located on the circle of the broken line 510.
  • the needle position 511 and the position 512 indicate the needle position when the needle 308 of FIG. 3 is assembled (collection position) and enlarged (discharge position), respectively.
  • a line segment 513 is a line segment connecting the position 501 and the position 502, and a broken line 514 is a perpendicular bisector of the line segment 513. It can be seen that the center point 515 is on this vertical bisector.
  • An arc 516 indicates a moving range of the movable pin when the arm is moved, that is, a slide amount (rotation amount).
  • the 8Eight peripheral needles are divided into two groups according to their moving distance.
  • the needles 302 to 305 are corners at the time of gathering (collection position), and the center of the side at the time of enlargement (discharge position), and the movement distance is small.
  • the needles 306 to 309 are at the center of the side at the time of gathering (collection position) and are corners at the time of enlargement (discharge position), and the movement distance is large. Since the length and center angle of the arc, which is the range of movement of the slide part, must be the same for the eight peripheral needles, the position of the center pin of the arm coupled to the needles 302 to 305 having a small moving distance is the moving distance.
  • Reference numerals 601 to 603 denote three needles
  • reference numerals 604 to 606 denote flangers.
  • FIG. 6A when the needles are arranged in an assembled state (collecting position) and the needles are inserted into the gel sheet 607, a gel layer 608 can be formed in each needle as shown in FIG. 6B.
  • this gel layer may be formed in advance with another polymer or the like.
  • the tissue is collected.
  • the tissue 701 to be collected is placed on the gel sheet 702.
  • the assembled needle is pierced into the tissue and the underlying gel sheet.
  • the tissue layer and the lower gel layer are inserted into the three needles under the previous gel layer.
  • the needle is gently pulled up, a sample is obtained in which the tissue sections at three adjacent points are collected in the shape of a gel / tissue / gel sandwich in the needle.
  • FIG. 8 is a microscopic image of a section actually collected. Collected using a 31G needle. (1) in FIG. 8 is a section taken from the shoot apex portion, and shoot apex cells and buds and vascular bundles at both ends can be observed. (2) in FIG. 8 is a section taken from the center of the cotyledon, and the cotyledon cell can be confirmed.
  • the needle is changed to an expanded state (discharge position), and the sample is pushed out into droplets formed on the inner wall of the tube 703 arranged in advance at a constant interval, for example, 9 mm as shown in FIG. 7B.
  • the gel layer protects the slice, it can be transferred into the droplet without causing breakage of the slice. It is important to use droplets when transferring the sample to the tube.
  • the sample to be handled is very small and cannot be observed with the naked eye, so that it is difficult to move reliably.
  • the tissue section pushed out by the capillary tip can be reliably moved into the droplet.
  • Droplets are prepared with pure water, physiological saline, phosphate buffered saline (PBS), TE buffer, and a solution obtained by adding a nucleolytic enzyme inhibitor (for example, RNAse inhibitor) to these solvents.
  • a nucleolytic enzyme inhibitor for example, RNAse inhibitor
  • reagents based on ammonium sulfate (representative product name: RNALater (Ambion® Inc.)) and guanidine-based storage and extraction reagents (representative products: RLT buffer and RLC buffer) (QIAGEN)) is available.
  • the size of the droplet varies depending on the size of the collected slice, but is preferably 1 ⁇ L or less, for example, 0.5 ⁇ L.
  • the size of the droplet should be minimized as its components may inhibit cDNA synthesis.
  • Such a droplet is prepared, for example, in a tube, and a plant tissue section is transferred thereto.
  • the tube for preparing the droplets can be any type and size of tube known in the art.
  • a PCR tube can be employed.
  • the tube is made of a material that can easily hold the contents of the droplets or plant tissue sections (such as nucleic acids) or has been treated so as to be easily held.
  • the tube can be made of a hydrophilic material (for example, a hydrophilic polymer), or the surface of the tube can be subjected to a hydrophilic treatment (for example, coating with a hydrophilic polymer, a UV ozone treatment method, or the like).
  • a microplate can be used instead of the tube.
  • the droplet is frozen with liquid nitrogen or the like.
  • the genes in the tissue section are preserved. It is important to quickly perform from collection to ejection to droplets and freezing. After freezing, pestle is used to crush the whole ice droplet, and it is recovered with a centrifuge, and a cDNA library is synthesized on magnetic beads, so that the gene expression level can be analyzed.
  • a 2% weight agarose gel was prepared with sterilized ultrapure water and dispensed into a petri dish so that a gel sheet having a thickness of about 2 mm was formed.
  • Tissue section collection (1) A needle was attached to a collection device (needle holder), and a thin tube was inserted into the needle. With the needle placed at the collection position, the needle was inserted into the agarose gel sheet to form a gel layer in the needle.
  • Tissue disruption (1) The tube was taken out of liquid nitrogen, and the ice droplet containing the specimen was crushed with a pestle (about 5 seconds). 0.5 ⁇ L ice droplets can be easily crushed together with the internal specimen.
  • cDNA cloning The cDNA library is prepared using the method described in Japanese Patent Application Laid-Open No. 2007-319028 or Non-Patent Document 4. Specifically, it is as follows.
  • a master mix having the following composition was prepared (amount per tube). 10 x DNase I Buffer 0.36 ⁇ l DNase I 0.5 ⁇ l PBS pH7.4 2.6 ⁇ l The master mix was dispensed (3.46 ⁇ L after dispensing) and treated at room temperature for 5-10 minutes.
  • Reverse transcription was performed using the following reagents. 5 x RT Buffer 6.0 ⁇ l 0.1M DTT 1.0 ⁇ l RNase OUT 1.0 ⁇ l Super Script III RT 1.0 ⁇ l The mixture was reacted at 50 ° C. for 50 minutes with stirring, treated at 85 ° C. for 1.5 minutes, and ice-cooled.
  • RNase H was added at 1.0 ⁇ L, reacted at 37 ° C. for 30 minutes with stirring, and ice-cooled.
  • 31G was used as a sampling needle, and sampling was performed with a sampling interval of 0.3 mm.
  • Nine sections were collected, and the expression levels of the vascular marker gene SUC2 (AT1G22710), the tissue marker KNAT2 (AT1G70510), and the control gene TUB2 (AT5G62690) were measured by quantitative PCR.
  • the sequences of probes and amplification oligos used for quantitative PCR analysis are shown in Table 1.
  • FIG. 9 shows the amount of each gene at 9 points collected from a cell tissue section.
  • the amount of each gene was normalized with the expression level of TUB2 as 100,000.
  • Each gene amount of 3 ⁇ 3 points could be measured in about 1 mm square in the cotyledon.
  • TUB2 FW primer CCAGTTGTAGTTTTTTTCTCTGCTT (SEQ ID NO: 1)
  • RV primer GGCAATAACAAGATTAAGAACAAAAG
  • MGB probe CATCAACCAGATATGTCAAATA (SEQ ID NO: 3)
  • KNAT2 FW primer TCGATTGGTGGAATGTTCATAA
  • RV primer AGAGATATTTTGTCGCCTTCAGT (SEQ ID NO: 5)
  • MGB probe AAATGGGCCTTACCC (SEQ ID NO: 6)
  • RV primer ACCACCGAATAGTTCGTCGAAT (SEQ ID NO: 8)
  • MGB probe CTGTGGGAGGTGGAC (SEQ ID NO: 9)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

In the sampling and genetic analysis of plant cell tissue, an "excision" stimulus, which is a significant physical stimulus on solid matter during sampling, is applied and intracellular gene destruction begins to occur from that instant. Therefore, to analyze the spatial distribution of gene expression, the present invention provides a method for sampling and collecting multiple tissue sections rapidly. The present invention relates to a sampling device for sampling sections from multiple points of cell tissue, wherein: the sampling device comprises multiple needles; the sampling device is configured so that the needles can be rapidly changed between a sampling position and a discharging position; and the distances between the multiple needles at the sampling position are greater than the distances between the multiple needles at the discharging position.

Description

細胞組織の遺伝子空間分布解析システムGene spatial distribution analysis system for cellular tissue
 本発明は、植物の部位や動物の臓器などの細胞組織から、複数点の組織切片を同時に採取するための装置およびシステムに関する。また本発明は、採取した組織切片の遺伝子解析方法、特に細胞壁や液胞を有する植物組織由来の核酸を解析する装置に関する。 The present invention relates to an apparatus and system for simultaneously collecting a plurality of tissue sections from cellular tissues such as plant parts and animal organs. The present invention also relates to a gene analysis method for collected tissue sections, and more particularly to an apparatus for analyzing nucleic acids derived from plant tissues having cell walls and vacuoles.
 植物組織の微小部位を、ニードル等を用いて採取し、採取物内に発現している遺伝子やタンパク質などの物質を解析する技術が報告されている(非特許文献1、3)。この技術では、ミクロトームを用いて薄片化した植物組織を対象として、ニードルや、ピエゾ素子で振動するチップにより、顕微鏡観察下で微小切片を分離回収している。また、同技術では、回収した切片中の遺伝子について、逆転写によりcDNA合成している。 A technique has been reported in which a minute part of a plant tissue is collected using a needle or the like and a substance such as a gene or protein expressed in the collected material is analyzed (Non-patent Documents 1 and 3). In this technique, microscopic sections are separated and collected under microscopic observation by using a needle or a chip that vibrates with a piezo element for plant tissue sliced using a microtome. In this technique, cDNA is synthesized by reverse transcription for genes in the collected sections.
 また、植物組織中の発現遺伝子のcDNAクローニング技術としては、ビーズ上に固定したpoly(T)プローブを鋳型としたcDNA合成技術が開示されている(非特許文献2)。同技術では、液体窒素温度で粉砕した試料を用い、ビーズ上にcDNAを合成することが開示されている。 Also, as a cDNA cloning technique for an expressed gene in plant tissue, a cDNA synthesis technique using a poly (T) probe immobilized on beads as a template is disclosed (Non-patent Document 2). This technique discloses that cDNA is synthesized on beads using a sample ground at a liquid nitrogen temperature.
 また、動物細胞を利用する例では、ビーズ上のcDNAを用いた定量PCR解析技術として、細胞から得る遺伝子を鋳型とするcDNAライブラリを、磁気ビーズ等の微小担体上に合成し、そのcDNAライブラリを利用して、第一の遺伝子に関する定量PCRを実施、その後、洗浄して上記cDNAライブラリを第二、第三の遺伝子に関する定量解析に、繰り返し利用する遺伝子解析方法が開発されている。この技術により、細胞1個について、複数種類の遺伝子の定量解析が可能である(非特許文献4)。 In an example using animal cells, as a quantitative PCR analysis technique using cDNA on beads, a cDNA library using a gene obtained from cells as a template is synthesized on a microcarrier such as magnetic beads, and the cDNA library is synthesized. A gene analysis method has been developed in which quantitative PCR for the first gene is performed, and then washed and the cDNA library is repeatedly used for quantitative analysis for the second and third genes. This technique enables quantitative analysis of multiple types of genes per cell (Non-Patent Document 4).
 本発明者らは、植物の環境に対する応答を、遺伝子発現の変化として捉える研究を検討した。具体的には、植物に外部刺激を与えた場合、植物固体の部位の違いや空間的位置の違いにより、遺伝子発現がどの様に異なるかを検討した。特に、遺伝子の発現状態を、ある一定の間隔で複数点解析を行うことで、部位の遺伝子発現の空間分布が解析可能となり、組織間の遺伝子応答などを解析することが可能となる。この解析の実現には、組織の関心部位より、ある一定の間隔で、組織切片を複数個採取し、遺伝子を抽出することが必要である。 The present inventors examined a study of capturing the response of plants to the environment as a change in gene expression. Specifically, we examined how gene expression differs depending on differences in plant solids and spatial location when external stimuli were applied to plants. In particular, by performing a multipoint analysis on the gene expression state at regular intervals, it becomes possible to analyze the spatial distribution of gene expression at a site, and to analyze gene responses between tissues. In order to realize this analysis, it is necessary to extract a plurality of tissue sections at a certain interval from a region of interest in the tissue and extract a gene.
 しかし、植物組織の採取と遺伝子解析では、採取時に組織に対して大きな物理刺激である「切除」刺激が与えられ、その瞬間より細胞内での遺伝子破壊が発生することが確認された。これは、植物細胞内の主に液胞内に豊富に蓄えられている遺伝子分解酵素が「切除」刺激により細胞内に浸潤してしまうためであると考えられている。従来技術では、この浸潤の影響を回避するため、予め採取対象の組織を液体窒素温度に凍結させる方法を採用しているが、完全な凍結状態からの微小切片の採取は困難であることや、採取作業中に凍結融解が発生すると遺伝子の分解が生じることから、遺伝子の回収率が低いことが大きな課題であった。また、ある範囲の複数点の微小切片を採取して、遺伝子を回収する方法は知られていなかった。特に、採取可能な切片の間隔は、遺伝子分布の空間分解能となるため、できる限り狭い間隔で採取することが必要である。従来技術では、これらの課題に対応する技術は開示されていない。 However, in the collection and genetic analysis of plant tissues, it was confirmed that a gene excision in the cell occurred from the moment when a “resection” stimulus, which is a large physical stimulus, was given to the tissue at the time of collection. This is considered to be because gene-degrading enzymes that are abundantly stored mainly in vacuoles in plant cells infiltrate into cells due to “resection” stimulation. In the prior art, in order to avoid the influence of this infiltration, a method of freezing the tissue to be collected in advance to a liquid nitrogen temperature is employed, but it is difficult to collect a microsection from a completely frozen state, Since gene degradation occurs when freezing and thawing occurs during collection, low gene recovery is a major issue. In addition, a method for collecting genes by collecting a plurality of microsections in a certain range has not been known. In particular, since the interval between sections that can be collected is a spatial resolution of gene distribution, it is necessary to collect at intervals as narrow as possible. The prior art does not disclose a technique that addresses these issues.
 また、採取した組織切片は、個別の容器に回収し、それぞれ独立に遺伝子回収作業が行われる。この容器としては、ある一定の間隔で配置されたチューブや、マイクロプレートを用いることが有効であるが、採取した組織切片からの遺伝子回収率を高くするためには、採取後に迅速に容器に移し、遺伝子分解を抑制した状態にする必要がある。これらの容器の配置間隔は、一般的に切片を採取した際の間隔より大きくなるため、間隔の変更を行う必要がある。従来技術では、このような、採取手段や、容器への回収方法などは開示されていない。 In addition, the collected tissue sections are collected in individual containers, and gene collection work is performed independently. As this container, it is effective to use tubes or microplates arranged at regular intervals, but in order to increase the gene recovery rate from the collected tissue section, it is quickly transferred to the container after collection. , It is necessary to suppress the gene degradation. Since the arrangement interval of these containers is generally larger than the interval when the sections are collected, it is necessary to change the interval. The prior art does not disclose such collection means or a method for collecting in a container.
 本発明者らは、以下の方法で、上記の課題を解決した。 The present inventors solved the above problems by the following method.
 本発明の組織切片採取装置は、組織の微小切片を採取するニードルを複数有し、組織からの切片採取時にはニードルが互いに近接する状態を達成し、採取した切片の回収時(吐出時)には、回収容器であるチューブやマイクロプレートの容器間隔に迅速に変更可能な構成を有する。さらに、複数のニードルの位置変更を、1つの部品の回転で切り替える構成とすることで、迅速に実施できることを見出した。 The tissue section collecting apparatus of the present invention has a plurality of needles for collecting microsections of tissue, achieves a state in which the needles are close to each other at the time of collecting a section from the tissue, and at the time of collecting (discharging) the collected section In addition, it has a configuration that can be quickly changed to a container interval of a tube or a microplate as a collection container. Furthermore, the present inventors have found that a change in position of a plurality of needles can be quickly performed by switching the position by rotating one part.
 すなわち、本発明は、以下を包含する。 That is, the present invention includes the following.
[1]細胞組織の複数点から切片を採取するための採取装置であって、
 複数のニードルを有し、
 ニードルを採取位置と吐出位置に迅速に変更できるように構成されており、
 採取位置における前記複数のニードル間の距離が、吐出位置における前記複数のニードル間の距離よりも広い、
前記採取装置。
[1] A collection device for collecting sections from a plurality of points of cellular tissue,
Having a plurality of needles,
It is configured so that the needle can be quickly changed between the collection position and the discharge position.
The distance between the plurality of needles at the collection position is wider than the distance between the plurality of needles at the discharge position,
The collection device.
[2]複数のニードルがアームに結合されており、
 アームがケースに取り付けられており、
 ケースが、本体と本体周囲のスライド部とを含み、
 スライド部が本体に対して回転可能に取り付けられており、
 前記複数のニードルの採取位置と吐出位置の変更を、ケースにおける本体に対するスライド部の回転によって切替え可能に構成されている、[1]記載の採取装置。
[2] A plurality of needles are coupled to the arm,
The arm is attached to the case,
The case includes a main body and a slide portion around the main body,
The slide part is attached to the main body so that it can rotate.
The collection device according to [1], wherein the change of the collection position and the discharge position of the plurality of needles can be switched by rotation of the slide portion with respect to the main body in the case.
[3]採取位置において、9本のニードルが、正方格子状に配置され、中心に存在する1本の中心ニードルと周辺に存在する8本の周辺ニードルとからなる、[2]記載の採取装置。 [3] The sampling apparatus according to [2], wherein at the sampling position, nine needles are arranged in a square lattice pattern, and include one central needle present at the center and eight peripheral needles present at the periphery. .
[4]吐出位置において、9本のニードルが正方格子状または長方格子状に配置される、[3]記載の採取装置。 [4] The sampling device according to [3], wherein nine needles are arranged in a square lattice shape or a rectangular lattice shape at the discharge position.
[5]ケースにおける本体に対するスライド部の回転中心が、中心ニードルの位置と一致している、[3]または[4]記載の採取装置。 [5] The collection device according to [3] or [4], wherein the center of rotation of the slide portion with respect to the main body in the case coincides with the position of the center needle.
[6]8本の周辺ニードルに結合した8本のアームは、それぞれ本体とスライド部の少なくとも2か所でケースに取りつけられており、本体に対するスライド部の回転によって、アームが本体への取り付け部を中心に回転するよう構成されている、[5]記載の採取装置。 [6] The eight arms coupled to the eight peripheral needles are respectively attached to the case at at least two positions of the main body and the slide portion, and the arm is attached to the main body by the rotation of the slide portion relative to the main body. The sampling device according to [5], wherein the sampling device is configured to rotate around the center.
[7]採取位置において角に配置される周辺ニードルは、吐出位置において辺の中央に配置され、採取位置において辺の中央に配置される周辺ニードルは、吐出位置において角に配置される、[4]~[6]のいずれかに記載の採取装置。 [7] The peripheral needle arranged at the corner at the collection position is arranged at the center of the side at the discharge position, and the peripheral needle arranged at the center of the side at the collection position is arranged at the corner at the discharge position. [4 ] To [6].
[8]採取位置において角に配置される周辺ニードルに結合したアームの本体への取り付け部が、採取位置において辺の中央に配置される周辺ニードルに結合したアームの本体への取り付け部よりも、中心ニードルに近い、[7]に記載の採取装置。 [8] The attachment part to the body of the arm coupled to the peripheral needle disposed at the corner at the collection position is more than the attachment part to the body of the arm coupled to the peripheral needle disposed at the center of the side at the collection position. The collection device according to [7], which is close to the central needle.
[9]ニードルがシリンジ構造を有するものである、[1]~[8]のいずれかに記載の採取装置。 [9] The collection device according to any one of [1] to [8], wherein the needle has a syringe structure.
[10]ニードルが、4つの頂点を有する四角形の針先を有する、[1]~[9]のいずれかに記載の採取装置。 [10] The collection device according to any one of [1] to [9], wherein the needle has a square needle tip having four vertices.
[11]ニードルの外径が0.26mm以下であり、内径が0.13mm以下である、[1]~[10]のいずれかに記載の採取装置。 [11] The collection device according to any one of [1] to [10], wherein the needle has an outer diameter of 0.26 mm or less and an inner diameter of 0.13 mm or less.
[12]細胞組織が植物細胞組織である、[1]~[11]のいずれかに記載の装置。 [12] The device according to any one of [1] to [11], wherein the cell tissue is a plant cell tissue.
[13]細胞組織の複数点から切片を採取するシステムであって、
 [1]~[12]のいずれかに記載の採取装置と、
 ニードルに第1のゲル層を挿入させる手段と、
 細胞組織を配置するための第2のゲル層と、
 ニードルを、第2のゲル層とともに組織を貫通させるように移動させる機構と
を含む、前記採取システム。
[13] A system for collecting sections from a plurality of points of cellular tissue,
The collection device according to any one of [1] to [12];
Means for inserting the first gel layer into the needle;
A second gel layer for placing cellular tissue;
A mechanism for moving the needle with the second gel layer so as to penetrate the tissue.
[14]細胞組織の複数点由来の核酸を解析する装置であって、
 [1]~[12]のいずれかに記載の採取装置または[13]記載の採取システムと、
 細胞を破砕する手段と、
 核酸を分離する手段と、
 核酸を分析する手段と、
を含む、前記解析装置。
[14] An apparatus for analyzing nucleic acids derived from a plurality of points in a cell tissue,
The collection device according to any one of [1] to [12] or the collection system according to [13];
Means for disrupting the cells;
Means for separating nucleic acids;
Means for analyzing nucleic acids;
Including the analysis device.
[15]細胞を破砕する手段がペッスルである、[14]記載の解析装置。 [15] The analyzer according to [14], wherein the means for crushing cells is a pestle.
 本発明により、細胞組織の複数点の組織切片を同時かつ迅速に採取することが可能となり、遺伝子発現の空間分布特性の解析が可能となる。 The present invention makes it possible to simultaneously and rapidly collect a plurality of tissue sections of cellular tissue, and to analyze the spatial distribution characteristics of gene expression.
本発明の採取装置の一実施形態を説明する図である。It is a figure explaining one Embodiment of the collection device of this invention. ニードルとアームの一実施形態を説明する図である。It is a figure explaining one Embodiment of a needle and an arm. ニードルの採取位置の一実施形態を説明する図である。It is a figure explaining one Embodiment of the collection position of a needle. ニードルの吐出位置の一実施形態を説明する図である。It is a figure explaining one Embodiment of the discharge position of a needle. ニードルの採取位置と吐出位置の変更の仕組の一実施形態を説明する図である。It is a figure explaining one Embodiment of the mechanism of the change of the collection position and discharge position of a needle. 本発明の採取装置を用いた細胞組織切片採取の手順の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the procedure of a cell-tissue section collection using the collection apparatus of this invention. 本発明の採取装置を用いた細胞組織切片採取の手順の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the procedure of a cell-tissue section collection using the collection apparatus of this invention. 本発明の採取装置によって実際に採取された細胞組織切片の顕微鏡像を示す写真である。It is a photograph which shows the microscopic image of the cell-tissue section actually extract | collected with the collection device of this invention. 本発明の採取装置によって細胞組織切片から採取された9点における各遺伝子量を図示したものである。The amount of each gene at nine points collected from a cell tissue section by the collection device of the present invention is illustrated.
 本発明者らは、下記の植物組織の切片の採取方法を開発した。本発明の採取装置およびシステムは、当該採取方法を実施するために特に好適に用いられる。 The present inventors have developed the following method for collecting a section of plant tissue. The collection device and system of the present invention are particularly preferably used for carrying out the collection method.
 植物体の組織の一部を、任意に選択し、迅速に採取するため、採集用ニードルにより植物組織の採集を実施した。具体的には、27Gまたは31Gの細管を用いた組織採集用ニードルを開発し、同一個体の複数部位から一挙に切片を採取する方法を開発した。また、遺伝子発現状態を迅速に保存するために、採取切片を迅速に氷点下温度に低下させる方法として、純水や、遺伝子分解酵素の阻害剤を含んだ溶液を液滴として準備し、その中に採取切片を移し、液滴を液体窒素温度に冷却した。ここで、微小切片を、ニードルから確実に液滴に移すために、ニードルにシリンジ構造をもたせ、ニードル内の組織をプランジャで押しだすことが好適であることを見出した。この際、ニードルの接触により、組織の破損が発生するため、この破損を防ぐ手段として、採取切片を、予め、ゲルやポリマーなどのゲル層で保護することが必要であった。遺伝子固定やcDNA合成(逆転写反応)を行う場合には、このゲルやポリマーなどのゲル層は、そのような反応に対する阻害が起きない物質であることが必要であった。それらのゲル層で組織を保護し、液滴内に迅速に切片を移し、液体窒素温度で冷却することで、切除から冷却までを1分以内で実施した。 In order to select a part of the plant tissue arbitrarily and collect it quickly, the plant tissue was collected with a collection needle. Specifically, we developed a tissue collection needle using 27G or 31G tubules, and developed a method to collect sections from multiple sites of the same individual. In addition, in order to quickly preserve the gene expression state, as a method for quickly reducing the collected section to below freezing temperature, a solution containing pure water or a gene degrading enzyme inhibitor is prepared as a droplet, The harvested section was transferred and the droplet was cooled to liquid nitrogen temperature. Here, in order to reliably transfer the microsection from the needle to the droplet, it has been found that it is preferable to give the needle a syringe structure and push the tissue in the needle with a plunger. At this time, tissue damage occurs due to contact with the needle. Therefore, as a means for preventing this damage, it was necessary to protect the collected section with a gel layer of gel or polymer in advance. In the case of performing gene fixation or cDNA synthesis (reverse transcription reaction), the gel layer such as gel or polymer needs to be a substance that does not inhibit such reaction. These gel layers protected tissue, transferred sections quickly into droplets, and cooled at liquid nitrogen temperature to achieve excision to cooling within 1 minute.
 微小切片の組織を含む液滴を、氷点下にすることは、組織内の細胞を完全に破壊するためにも有効であった。氷点下にて凍結した状態で、ペッスルなどにより物理的な力を加えると、全ての細胞組織は完全に破砕され、細胞質は細胞壁外に抽出できた。ただし、ペッスル表面に遺伝子が付着し、遺伝子回収率が低下することを防ぐ目的で、(i)ペッスル等の破砕用具への遺伝子付着を低減するため、予め親水性ポリマーをチューブ表面にコーティングする、(ii)破砕後の付着物を分離し再回収するため、ペッスルをチューブ内に留まった状態で、ペッスルごと遠心分離できる技術、(iii)破砕後のcDNA合成処理における反応ボリュームの微少量化、を行った。 It was effective to completely destroy the cells in the tissue by making the droplet containing the tissue of the microsection below the freezing point. When physical force was applied with a pestle or the like in a state of freezing below freezing, all cell tissues were completely crushed and the cytoplasm could be extracted outside the cell wall. However, for the purpose of preventing gene adhesion to the pestle surface and reducing the gene recovery rate, (i) In order to reduce gene adhesion to crushing tools such as pestle, a hydrophilic polymer is coated on the tube surface in advance. (ii) A technique that allows the whole pestle to be centrifuged while the pestle remains in the tube in order to separate and recollect the crushed adhering material. (iii) Minimizing the reaction volume in the cDNA synthesis process after crushing. went.
 上記の手法は、すなわち、植物組織の切片を採取する方法であって、
 第1のゲル層をニードルに挿入し、
 第2のゲル層の上に植物組織を配置し、
 第2のゲル層とともに前記植物組織に前記ニードルを貫通させて、ニードルに植物組織の切片を採取する
工程を含むことを特徴とする植物組織切片の採取方法である。
The above method is a method of collecting a section of plant tissue,
Insert the first gel layer into the needle,
Place the plant tissue on the second gel layer,
A method for collecting a plant tissue section, comprising the step of passing the needle through the plant tissue together with a second gel layer and collecting a section of the plant tissue with the needle.
 したがって、本発明において切片採取の対象となる細胞組織は、好ましくは植物細胞組織であるが、本発明の採取装置は動物細胞組織からの切片採取にも使用できる。植物細胞組織の「植物」とは、植物に分類されるあらゆる生物を意味し、具体的には細胞壁を有し、光合成を行う生物である。より具体的には、種子植物、シダ植物、コケ植物、多細胞藻類などが含まれる。植物細胞組織は、このような植物から回収された任意の組織であってよく、例えば根、葉、茎、維管束系、芽、花、種子などの器官から得られる組織とすることができる。得られた植物組織は、そのまま使用してもよいし、あるいは前処理(洗浄、切断など)を行ってもよい。採取しようとする「切片」とは、植物組織の小片を指し、できる限り小さい、例えば一片が0.5mm以下であることが好ましい。また、動物細胞組織の具体例としては、病理サンプルの薄膜化した切片や、培養細胞シート等のヒト細胞への応用が可能である。 Therefore, the cell tissue to be sliced in the present invention is preferably a plant cell tissue, but the harvesting device of the present invention can also be used for sectioning from animal cell tissue. The “plant” in the plant cell tissue means any organism classified as a plant, specifically, an organism having a cell wall and performing photosynthesis. More specifically, seed plants, fern plants, moss plants, multicellular algae and the like are included. The plant cell tissue may be any tissue collected from such a plant, and may be a tissue obtained from organs such as roots, leaves, stems, vascular systems, buds, flowers, and seeds. The obtained plant tissue may be used as it is, or may be pretreated (washing, cutting, etc.). The “section” to be collected refers to a small piece of plant tissue, and is preferably as small as possible, for example, one piece is 0.5 mm or less. Moreover, as a specific example of animal cell tissue, application to human cells such as a thin section of a pathological sample or a cultured cell sheet is possible.
 本発明の採取装置は、複数のニードルを有する。この複数のニードルが採取位置と吐出位置で迅速に変更できるように構成されている。そして、採取位置における複数のニードル間の距離は、吐出位置における前記複数のニードル間の距離よりも広い。すなわち、ニードルの採取位置においてできる限り狭い間隔で細胞組織から切片を採取し、その後吐出位置に変更することにより、切片を回収した後で遺伝子回収作業が行うための容器、例えばある一定の間隔で配置されたチューブや、マイクロプレート中に、切片を迅速に、例えば1分以内に吐出することができる。したがって、ニードルの採取位置とは、細胞組織から切片を採取する際のニードルの位置をさし、吐出位置とは、ニードルに採取した切片を別の容器等に吐出する際のニードルの位置をさす。 The sampling device of the present invention has a plurality of needles. The plurality of needles are configured so that they can be quickly changed at the collection position and the discharge position. The distance between the plurality of needles at the collection position is wider than the distance between the plurality of needles at the discharge position. That is, by collecting sections from cellular tissue at the narrowest possible interval at the needle collection position and then changing to the discharge position, a container for performing gene recovery work after collecting the sections, for example, at certain intervals The section can be rapidly discharged into the arranged tube or microplate, for example, within 1 minute. Therefore, the collection position of the needle refers to the position of the needle when a section is collected from the cell tissue, and the discharge position refers to the position of the needle when the section collected by the needle is discharged to another container or the like. .
 ニードルの採取位置と吐出位置の変更は、好ましくは複数のニードルに結合したアームによってなされる。複数のニードルは、1つのアームに結合していてもよいし、複数のニードルがそれぞれ複数のアームに結合していてもよい。本発明の採取装置は、好ましくはさらにケースを有し、複数のニードルにそれぞれ結合した複数のアームがケースに取り付けられている。ケースは、好ましくは、本体と本体周囲のスライド部とを含み、スライド部が本体に対して回転可能に取り付けられている。複数のニードルの採取位置と吐出位置の変更は、ケースにおける本体に対するスライド部の回転によって切替え可能に構成されていることが、迅速な位置変更の観点から好ましい。 The change of the needle collection position and the discharge position is preferably performed by an arm coupled to a plurality of needles. The plurality of needles may be coupled to one arm, or the plurality of needles may be coupled to the plurality of arms. The sampling device of the present invention preferably further has a case, and a plurality of arms respectively coupled to a plurality of needles are attached to the case. The case preferably includes a main body and a slide portion around the main body, and the slide portion is rotatably attached to the main body. It is preferable from the viewpoint of quick position change that the change of the collection position and the discharge position of the plurality of needles can be switched by rotation of the slide portion with respect to the main body in the case.
 別の実施形態では、複数のニードルが結合したアームが伸縮可能な構造を有し、アームが伸び縮みすることによって、ニードルの採取位置と吐出位置を変更するよう構成されていてもよい。伸縮可能な構造としては、蛇腹構造が挙げられ、蛇腹構造のアームに複数のニードルが結合されており、蛇腹構造が伸縮することによって、採取位置と吐出位置を変更するよう構成されていてもよい。あるいは、縦一列に配置された複数のニードルが縦長ガイド部材で囲まれ、縦長ガイド部材内部で縦方向にのみ移動可能に構成されており、かつ横一列に配置された複数のニードルが横長ガイド部材で囲まれ、横長ガイド部材内部で横方向にのみ移動可能に構成されている態様でもよい。縦長ガイド部材とその内部に配置された縦一列のニードルの組は複数組存在し、横長ガイド部材とその内部に配置された横一列のニードルの組も複数組存在する。複数の縦長ガイド部材を横方向に近づけたり離したりすることで複数のニードルの横方向の距離を変更できる。同時に、複数の横長ガイド部材を縦方向に近づけたり離したりすることで複数のニードルの横方向の距離を変更できる。すなわち、縦長ガイド部材および横長ガイド部材を動かすことで、ニードルの採取位置と吐出位置を変更でき、ニードルの間隔を狭めたり広げたりすることが可能である。 In another embodiment, an arm coupled with a plurality of needles may have a structure that can be expanded and contracted, and the arm may be configured to expand and contract to change the needle collection position and the discharge position. Examples of the expandable structure include a bellows structure, and a plurality of needles are coupled to the bellows structure arm, and the sampling position and the discharge position may be changed by expanding and contracting the bellows structure. . Alternatively, a plurality of needles arranged in a vertical row are surrounded by a vertical guide member, and are configured to be movable only in the vertical direction inside the vertical guide member, and the plurality of needles arranged in a horizontal row are horizontal guide members And may be configured to be movable only in the lateral direction within the laterally long guide member. There are a plurality of sets of vertically long guide members and a single vertical row of needles disposed therein, and there are also a plurality of sets of horizontal long guide members and a single horizontal row of needles disposed therein. The distance in the lateral direction of the plurality of needles can be changed by moving the plurality of vertically long guide members closer to or away from each other in the lateral direction. At the same time, the lateral distances of the plurality of needles can be changed by moving the plurality of horizontally long guide members closer to or away from each other in the longitudinal direction. That is, by moving the vertically long guide member and the horizontally long guide member, the needle collection position and the discharge position can be changed, and the interval between the needles can be narrowed or widened.
 ニードル(採取ニードル)は、細胞組織、好ましくは植物細胞組織から切片を採取するのに好適な強度およびサイズを有するものであれば特に限定されるものではない。例えば、ステンレス製の市販の注射針を、必要であれば加工を行って、使用することができる。好適なサイズは、27Gおよび31Gのゲージのものであり、小さいサイズであれば微小の切片を採取することができる。例えば、27Gの注射針を使用した場合、外径0.4mm、内径0.2mm、管肉厚0.1mmであり、約26細胞/層の切片を採取することができる。また例えば31Gの注射針を使用した場合には、外径0.26mm、内径0.13mm、管肉厚0.06mmであり、約11細胞/層の切片を採取することができる。但し、上記より細い細管の利用も妨げない。現在、ステンレス材料による細管としては、外径80μm、肉厚25μm程度のものまで報告されている。 The needle (collecting needle) is not particularly limited as long as it has strength and size suitable for collecting a section from a cell tissue, preferably a plant cell tissue. For example, a commercially available injection needle made of stainless steel can be used after being processed if necessary. Preferred sizes are those of 27G and 31G gauges, and small sections can be taken with small sizes. For example, when a 27G injection needle is used, it has an outer diameter of 0.4 mm, an inner diameter of 0.2 mm, and a tube wall thickness of 0.1 mm, and a section of about 26 cells / layer can be collected. For example, when a 31G injection needle is used, it has an outer diameter of 0.26 mm, an inner diameter of 0.13 mm, and a tube thickness of 0.06 mm, and a section of about 11 cells / layer can be collected. However, the use of narrower tubes than the above is not disturbed. At present, it has been reported that thin tubes made of stainless steel have an outer diameter of 80 μm and a wall thickness of about 25 μm.
 ニードルの針先の形状も特に限定されるものではなく、例えば丸形、楕円形、四角形、菱形などの形状でよいが、4つの頂点を有する四角形の針先を有することが好ましい。これにより、採取する植物組織の量のばらつきを抑えることができる。また、4つの頂点を有する針先のニードルは、植物組織に限らず、動物組織からの切片採取においても、採取組織量のばらつきを抑える効果を有する。特に、凍結やホルマリン固定により作製した病理切片などの一部分の微小領域より、切片を回収する際に活用できる。 The shape of the needle tip of the needle is not particularly limited, and may be, for example, a round shape, an oval shape, a square shape, a diamond shape, or the like, but preferably has a quadrangular needle tip having four vertices. Thereby, the dispersion | variation in the quantity of the plant tissue extract | collected can be suppressed. Further, the needle at the tip having four vertices has an effect of suppressing variation in the amount of collected tissue not only in plant tissue but also in collecting a section from animal tissue. In particular, it can be utilized when recovering a section from a partial microregion such as a pathological section prepared by freezing or formalin fixation.
 ニードルはさらに、シリンジ構造を有することが好ましい。例えば、細管(中空細管)をニードル内に挿入し、プランジャ(押子)として、切片の吐出に利用することによって行うことができる。これにより、ニードル内に採取された植物組織切片を簡便にかつ損傷なく吐出することが可能である。また、ニードルをルアーロックなどの装着具によってプランジャと接続してもよいし、あるいはシャープペンシル状にホルダに保持されてもよい。 The needle preferably further has a syringe structure. For example, it can be performed by inserting a thin tube (hollow thin tube) into the needle and using it as a plunger (presser) for discharging the slice. Thereby, it is possible to discharge the plant tissue section collected in the needle easily and without damage. Further, the needle may be connected to the plunger by a mounting tool such as a luer lock, or may be held by a mechanical pencil in the holder.
 ニードルは、使用前に核酸分解酵素の阻害剤(例えばRNAse阻害剤)で処理してもよく、これにより植物組織切片内の核酸が分解されるのを防止することができる。また、使用前に親水性ポリマーにより処理してもよく、これによりニードル内にゲル層や植物組織切片が保持されやすくなる。 The needle may be treated with a nucleolytic enzyme inhibitor (eg, an RNAse inhibitor) before use, thereby preventing the nucleic acid in the plant tissue section from being degraded. Moreover, you may process with a hydrophilic polymer before use, and it becomes easy to hold | maintain a gel layer and a plant tissue section in a needle by this.
 本発明の採取装置は、好ましくは9本のニードルを有する。9本のニードルは、採取位置において正方格子状に配置され、好ましくは最密の正方格子状に配置される。換言すれば、複数のニードルは、採取位置において互いに接する状態にまで近接する状態にある。採取位置において正方格子状に配置された9本のニードルは、中心に存在する1本の中心ニードルと周辺に存在する8本の周辺ニードルとからなる。 The sampling device of the present invention preferably has nine needles. The nine needles are arranged in a square lattice at the sampling position, preferably in a close-packed square lattice. In other words, the plurality of needles are close to a state where they are in contact with each other at the sampling position. The nine needles arranged in a square lattice at the sampling position are composed of one central needle at the center and eight peripheral needles at the periphery.
 例えば、外径0.26mmのニードル9本が最密の正方格子状に配置される場合、ニードルの中心線の間隔は格子の辺の方向(例えば、図3の周辺ニードル305と周辺ニードル308の中心線の距離)で0.26mmであり、対角線の方向(例えば、図3の周辺ニードル305と中心ニードル301の中心線の距離)で√0.1352mmである。吐出位置において9本のニードルは、好ましくは、正方格子状または長方格子状に配置される。吐出位置における正方格子状または長方格子状の配置は、採取位置における配置よりも間隔が広くなる。例えば、採取位置と吐出位置では、ニードル間の距離は、10~25倍である。外径0.26mmのニードル9本が吐出位置において正方格子状に配置される場合、例えば、ニードルの中心線の間隔は格子の辺の方向(例えば、図4のニードル301と302の中心線の距離)で6mmであり、対角線の方向(例えば、図4のニードル301と308の中心線の距離)で√72mmである。 For example, when nine needles having an outer diameter of 0.26 mm are arranged in a close-packed square lattice, the interval between the center lines of the needles is in the direction of the sides of the lattice (for example, the centers of the peripheral needle 305 and the peripheral needle 308 in FIG. Line distance) is 0.26 mm, and in the diagonal direction (for example, the distance between the center lines of the peripheral needle 305 and the central needle 301 in FIG. 3) is √0.1352 mm. The nine needles at the discharge position are preferably arranged in a square lattice shape or a rectangular lattice shape. The arrangement of the square lattice or the rectangular lattice at the discharge position is wider than the arrangement at the collection position. For example, the distance between the needles at the collection position and the discharge position is 10 to 25 times. When nine needles having an outer diameter of 0.26 mm are arranged in a square lattice at the discharge position, for example, the interval between the center lines of the needles is the direction of the sides of the lattice (for example, the distance between the center lines of the needles 301 and 302 in FIG. 4). ) And 6 mm, and √72 mm in the diagonal direction (for example, the distance between the center lines of needles 301 and 308 in FIG. 4).
 ケースにおける本体に対するスライド部の回転中心が、中心ニードルの位置と一致していることから、本体に対してスライド部を回転させると、中心ニードルは移動せず、周辺ニードルのみが移動することとなる。したがって、中心ニードルはケースに固定されていてもよい。 Since the rotation center of the slide portion with respect to the main body in the case coincides with the position of the central needle, when the slide portion is rotated with respect to the main body, the central needle does not move, and only the peripheral needle moves. . Therefore, the center needle may be fixed to the case.
 8本の周辺ニードルに結合した8本のアームは、好ましくは、それぞれ本体とスライド部の少なくとも2か所でケースに取りつけられており、本体に対するスライド部の回転によって、アームが本体への取り付け部を中心に回転するよう構成される。その場合、本体に対してスライド部を回転させると、採取位置において角に配置される周辺ニードルは、吐出位置において辺の中央に配置され、採取位置において辺の中央に配置される周辺ニードルは、吐出位置において角に配置される。採取位置において角に配置される周辺ニードルに結合したアームの本体への取り付け部は、採取位置において辺の中央に配置される周辺ニードルに結合したアームの本体への取り付け部よりも、中心ニードルに近い位置、同心円の内側にある。 The eight arms coupled to the eight peripheral needles are preferably attached to the case at at least two positions of the main body and the slide portion, respectively, and the arm is attached to the main body by the rotation of the slide portion with respect to the main body. It is configured to rotate around the center. In that case, when the slide part is rotated with respect to the main body, the peripheral needle arranged at the corner at the collection position is arranged at the center of the side at the discharge position, and the peripheral needle arranged at the center of the side at the collection position is It is arranged at the corner at the discharge position. The attachment to the body of the arm connected to the peripheral needle arranged at the corner at the collection position is more central to the needle than the attachment to the body of the arm connected to the peripheral needle located in the center of the side at the collection position. Close position, inside concentric circles.
 本発明はまた、細胞組織の複数点から切片を採取するシステムに関する。本発明の採取システムは、
 上記採取装置と、
 ニードルに第1のゲル層を挿入させる手段と、
 細胞組織を配置するための第2のゲル層と、
 ニードルを、第2のゲル層とともに組織を貫通させるように移動させる機構と
を含む。
The invention also relates to a system for collecting sections from multiple points of cellular tissue. The collection system of the present invention comprises:
The above collection device;
Means for inserting the first gel layer into the needle;
A second gel layer for placing cellular tissue;
And a mechanism for moving the needle so as to penetrate the tissue together with the second gel layer.
 ニードルに第1のゲル層を挿入するには、例えば、ニードルをゲルシートに1回以上貫通させる方法、ニードルに溶液を入れて溶液をゲル化する方法、などの任意の方法を採用することができる。すなわち、ニードルに第1のゲル層を挿入させる手段は、採取ニードルをゲルシートを貫通させるように移動する機構とすることができる。あるいは、ニードルにゲル化可能な溶液を注入して、その溶液をゲル化することができる手段としてもよい。 In order to insert the first gel layer into the needle, for example, an arbitrary method such as a method of penetrating the needle one or more times through the gel sheet, a method of putting the solution into the needle and gelling the solution can be adopted. . That is, the means for inserting the first gel layer into the needle can be a mechanism for moving the collection needle so as to penetrate the gel sheet. Or it is good also as a means which inject | pours the solution which can be gelatinized into a needle and can gelatinize the solution.
 第2のゲル層への細胞組織の配置も特に限定されるものではなく、ゲルシートに細胞組織を置くことによって、または溶液を含む容器に細胞組織を入れ、溶液をゲル化することによって行うことができる。なお、細胞組織の上にさらにゲル層が配置されてもよい。その場合は、第1のゲル層が事前にニードルに挿入されていてもよいし、挿入されていなくてもよい。 The arrangement of the cellular tissue in the second gel layer is not particularly limited, and may be performed by placing the cellular tissue on a gel sheet or by placing the cellular tissue in a container containing the solution and gelling the solution. it can. A gel layer may be further disposed on the cell tissue. In that case, the first gel layer may or may not be inserted into the needle in advance.
 続いて、第2のゲル層とともに細胞組織にニードルを貫通させて、ニードルに細胞組織の切片を採取する。これにより、ニードル内には、第1のゲル層と第2のゲル層に挟まれた状態で組織切片が採取される。ニードルの貫通は、細胞組織および第2のゲル層に対してできる限り垂直に行うことが好ましい。このようにして、組織切片を迅速に、好ましくは5分以内に採取することができ、得られた組織切片も微小で、組織が保護されることになる。 Subsequently, the needle is passed through the cell tissue together with the second gel layer, and a section of the cell tissue is collected by the needle. As a result, a tissue section is collected in the needle while being sandwiched between the first gel layer and the second gel layer. The needle penetration is preferably performed as perpendicular to the cell tissue and the second gel layer as possible. In this way, tissue sections can be collected quickly, preferably within 5 minutes, and the resulting tissue sections are also small, protecting the tissue.
 ニードルに採取された組織切片は、できるだけ迅速に液滴内に移し、凍結する。例えば、組織切片を液滴内に移し、凍結するまでの時間が、3分以内、好ましくは1分以内となるようにする。それにより、採取時の物理的刺激による影響が少ない遺伝子発現状態を固定することができる。 ¡Tissue sections collected by the needle are transferred into the droplet as quickly as possible and frozen. For example, the time until the tissue section is transferred into a droplet and frozen is within 3 minutes, preferably within 1 minute. Thereby, it is possible to fix a gene expression state that is less affected by physical stimulation at the time of collection.
 液滴は、純水、生理食塩水、リン酸緩衝生理食塩水(PBS)、TEバッファ、ならびにそれらの溶媒に核酸分解酵素の阻害剤(例えばRNAse阻害剤)を添加した溶液などで調製する。特に核酸分解酵素の阻害剤添加溶液としては、硫酸アンモニウム成分を基本とする試薬(代表製品名:RNALater(Ambion Inc.))や、グアニジン系の保存液兼抽出試薬(代表製品:RLTバッファやRLCバッファ(QIAGEN))が利用可能である。 Droplets are prepared with pure water, physiological saline, phosphate buffered saline (PBS), TE buffer, and a solution obtained by adding a nucleolytic enzyme inhibitor (for example, RNAse inhibitor) to these solvents. Especially for nuclease inhibitor addition solutions, reagents based on ammonium sulfate (representative product name: RNALater (Ambion® Inc.)) and guanidine-based storage and extraction reagents (representative products: RLT buffer and RLC buffer) (QIAGEN)) is available.
 液滴の大きさは、採取した切片の大きさに応じて異なるが、好ましくは1μL以下、例えば0.5μLとすることができる。特に、液滴として核酸分解酵素の阻害剤を添加した溶液を用いる場合、その成分がcDNA合成を阻害する可能性があるため、液滴の大きさは必要最小限とするほうが良い。このような液滴を、例えばチューブ内に準備し、そこへ組織切片を移す。液滴を準備するチューブは、当技術分野で公知の任意の種類およびサイズのチューブを用いることができる。例えば遺伝子発現分析を行う場合には、PCRチューブを採用することができる。チューブは、液滴や組織切片の内容物(核酸など)が保持されやすいような材質であるかまたは保持されやすいように処理されていることが好ましい。例えば、チューブを親水性の材質(例えば親水性ポリマーなど)で作製したり、チューブの表面に親水性処理(例えば親水性ポリマーによるコーティング、UVオゾン処理方法など)を行うことができる。 The size of the droplet varies depending on the size of the collected slice, but is preferably 1 μL or less, for example, 0.5 μL. In particular, when a solution to which a nucleolytic enzyme inhibitor is added is used as a droplet, the size of the droplet should be minimized as its components may inhibit cDNA synthesis. Such a droplet is prepared, for example, in a tube, and a tissue section is transferred there. The tube for preparing the droplets can be any type and size of tube known in the art. For example, when performing gene expression analysis, a PCR tube can be employed. It is preferable that the tube is made of a material that can easily hold the contents of the droplet or tissue section (such as nucleic acid), or has been treated so as to be easily held. For example, the tube can be made of a hydrophilic material (for example, a hydrophilic polymer), or the surface of the tube can be subjected to hydrophilic treatment (for example, coating with a hydrophilic polymer, UV ozone treatment method, etc.).
 組織切片を液滴へ移した後、液滴を凍結する。凍結は、当技術分野で公知の方法により行うことができる。例えば、液体窒素を用いる方法、フリーザーの利用などが一般的に行われている。凍結によって、組織切片における遺伝子発現状況を保存することができ、また後述する細胞の破砕も容易となる。 After transferring the tissue section to the droplet, freeze the droplet. Freezing can be performed by methods known in the art. For example, a method using liquid nitrogen and a freezer are generally used. By freezing, the gene expression status in the tissue section can be preserved, and cell disruption described later is facilitated.
 次に、上述のようにして採取された組織切片から核酸を分離する方法について説明する。まず、本発明の方法により採取された組織切片の細胞を破砕する。細胞の破砕は、当技術分野で公知の任意の方法により行うことができ、物理的破砕、例えばペッスル、ガラスビーズまたは超音波処理を用いたホモジナイズなどを利用することができる。 Next, a method for separating nucleic acids from tissue sections collected as described above will be described. First, the cells of the tissue section collected by the method of the present invention are crushed. The disruption of cells can be performed by any method known in the art, and physical disruption such as homogenization using pestle, glass beads, or ultrasonic treatment can be used.
 ペッスルを用いて細胞の破砕を行う場合、好ましい実施形態では、ペッスルは、チューブ内で組織切片の細胞をホモジナイズした後、チューブと一体化して遠心分離に供することができる形状を有する。より好ましくは、ペッスルは、その先端がチューブの内部に完全に挿入された状態で遠心分離に供することができる形状を有する。例えば、ペッスルをチューブに固定化することができるキャップを用いることによって、ペッスルとチューブを一体化することができる。あるいは、ペッスルがチューブと一体化し、水平方向にぶれずにチューブの中心に位置するようなストッパーを用いて、ペッスルとチューブを一体化することができる。このような形状のペッスルを用いて遠心分離を行うことによって、ペッスル表面へ組織切片の内容物(核酸など)が付着しても内容物を高効率に回収することができると共に、迅速な操作が可能となる。 When disrupting cells using a pestle, in a preferred embodiment, the pestle has a shape that can be homogenized in a tube and then integrated with the tube for centrifugation. More preferably, the pestle has a shape that can be subjected to centrifugation with its tip fully inserted into the tube. For example, the pestle and the tube can be integrated by using a cap that can fix the pestle to the tube. Alternatively, the pestle and the tube can be integrated by using a stopper that is integrated with the tube and is positioned in the center of the tube without shaking in the horizontal direction. By centrifuging using a pestle with such a shape, the contents can be recovered with high efficiency even when the contents (such as nucleic acids) of a tissue section adhere to the surface of the pestle, and rapid operation is possible. It becomes possible.
 またペッスルは、組織切片の核酸などが付着しないような材質であるかまたは核酸などが付着しないように処理されていることが好ましい。例えば、ペッスルを撥水性の材質(例えばポリエーテルエーテルケトン(PEEK)、ポリ塩化ビニリデンなど)で作製する場合には、ペッスルの表面に親水性処理(例えば親水性ポリマーによるコーティング、UVオゾン処理方法など)を行うことができる。これにより、ペッスル表面への組織切片の核酸などの付着を防止することができ、組織切片の核酸の回収率をさらに高めることができる。 In addition, it is preferable that the pestle is made of a material that does not attach nucleic acid or the like of the tissue section or is treated so that nucleic acid or the like does not adhere. For example, when the pestle is made of a water-repellent material (eg, polyetheretherketone (PEEK), polyvinylidene chloride, etc.), the surface of the pestle is subjected to hydrophilic treatment (eg, coating with a hydrophilic polymer, UV ozone treatment method, etc.) )It can be performed. Thereby, adhesion of nucleic acid or the like of the tissue section to the pestle surface can be prevented, and the recovery rate of the nucleic acid of the tissue section can be further increased.
 細胞破砕後、組織切片由来の核酸を分離する。分離する核酸の種類としては、ゲノムDNA、メッセンジャーRNA(mRNA)、非コードRNA(ncRNA)、マイクロRNA、ならびにそれらの断片などが含まれる。核酸の分離は、分離しようとする核酸の種類に応じて、当技術分野で公知の方法を用いて行うことができる。例えば、Proteinase Kのようなタンパク質分解酵素、チオシアン酸グアニジン・グアニジン塩酸といったカオトロピック塩、TweenおよびSDSといった界面活性剤、あるいは市販の細胞溶解用試薬を用いて、細胞に含まれる核酸、すなわちDNAおよびRNAを溶出することができる。ゲノムDNAは、物理的切断または制限酵素切断などにより断片化してもよい。RNA(mRNAなど)を分離する場合には、上記のように溶出された核酸のうち、DNAをDNA分解酵素(DNase)により分解し、核酸としてRNAのみを含む試料が得られる。cDNAを調製する場合には、RNAのみを含む試料から、ポリT配列を含むDNAプローブを用いてmRNAのみを捕捉した後、mRNAから逆転写酵素を用いる逆転写反応を行うことによってcDNAを合成することができる。 After the cells are disrupted, the nucleic acid derived from the tissue section is separated. Examples of the nucleic acid to be separated include genomic DNA, messenger RNA (mRNA), non-coding RNA (ncRNA), microRNA, and fragments thereof. Nucleic acid separation can be performed using methods known in the art depending on the type of nucleic acid to be separated. For example, nucleic acids contained in cells, ie, DNA and RNA, using proteolytic enzymes such as Proteinase K, chaotropic salts such as guanidine thiocyanate and guanidine hydrochloride, surfactants such as Tween and SDS, or commercially available reagents for cell lysis Can be eluted. Genomic DNA may be fragmented by physical cleavage or restriction enzyme cleavage. In the case of separating RNA (mRNA or the like), among the nucleic acids eluted as described above, DNA is degraded by a DNA degrading enzyme (DNase), and a sample containing only RNA as a nucleic acid is obtained. When cDNA is prepared, cDNA is synthesized from a sample containing only RNA by capturing only mRNA using a DNA probe containing a poly-T sequence and then performing reverse transcription using reverse transcriptase from the mRNA. be able to.
 上述のようにして組織から分離された核酸(例えばゲノムDNA、mRNAなど)または該核酸と同じ若しくは相補的な配列を有する核酸(例えばcDNA)を固相担体に固定化することにより、組織由来核酸ライブラリを作製することができる。また、上述のようにして組織から分離された核酸(または固相担体に固定化された核酸)を分析することにより、組織由来核酸を分析することができる。このような核酸ライブラリの作製方法や核酸の分析方法は、当技術分野で周知である。例えば固相担体としてビーズ上に組織由来cDNAのライブラリを作製し、組織において発現している核酸(遺伝子)を反復して分析することができる。具体的には、細胞組織の複数の点(複数箇所)から切片を採取し、それぞれの切片から核酸を分離し、それぞれの切片由来の核酸に対応するcDNAライブラリを作製し、該核酸を定量PCRにより分析することによって、細胞組織の複数の箇所における1種以上の遺伝子発現状況を分析することが可能である。このように、本発明によって、迅速に、かつ高効率に、細胞組織由来の核酸を利用することが可能となる。 By immobilizing a nucleic acid (for example, genomic DNA, mRNA, etc.) isolated from a tissue as described above or a nucleic acid (for example, cDNA) having the same or complementary sequence as the nucleic acid on a solid phase carrier, A library can be created. Moreover, tissue-derived nucleic acids can be analyzed by analyzing nucleic acids separated from tissues as described above (or nucleic acids immobilized on solid phase carriers). Such nucleic acid library preparation methods and nucleic acid analysis methods are well known in the art. For example, a tissue-derived cDNA library can be prepared on beads as a solid phase carrier, and nucleic acids (genes) expressed in the tissue can be repeatedly analyzed. Specifically, sections are collected from multiple points (multiple locations) of cell tissue, nucleic acids are separated from each section, a cDNA library corresponding to the nucleic acid derived from each section is prepared, and the nucleic acid is quantitatively PCR It is possible to analyze the expression status of one or more genes at a plurality of locations in the cell tissue. Thus, according to the present invention, nucleic acids derived from cell tissues can be used quickly and efficiently.
 また、本発明の採取システムは、細胞組織上の切片採取場所を決定するための情報入力手段(カメラ、観察ステージ、モニターなど)、ニードルの位置決定手段、ニードルの移動・位置調整手段、ニードルの洗浄手段などを備えていてもよい。 Further, the collection system of the present invention includes information input means (camera, observation stage, monitor, etc.) for determining the section collection location on the cell tissue, needle position determination means, needle movement / position adjustment means, needle position A cleaning means or the like may be provided.
 以下、図面を参照して本発明の実施形態の具体例について説明する。ただし、これらの実施例は本発明を実現するための一例に過ぎず、本発明を限定するものではないことに注意すべきである。 Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. However, it should be noted that these examples are merely examples for realizing the present invention and do not limit the present invention.
 本実施例の組織切片採取装置は、組織の微小切片を採取するニードルを複数有し、組織からの切片採取時にはニードルが互いに接する状態にまで近接する状態を達成し、採取した切片の回収時には、回収容器であるチューブや、マイクロプレートの容器間隔に迅速に変更できる採取ニードルヘッドを用いる。特に、回収容器の間隔としては、9mm間隔、および4.5mm間隔など、マイクロプレートの業界標準規格を用いる。 The tissue section collecting apparatus of the present embodiment has a plurality of needles for collecting microsections of the tissue, achieves a state in which the needles are close to each other when collecting the sections from the tissue, and when collecting the collected sections, A collection needle head that can be quickly changed to the collection container tube or the microplate container interval is used. In particular, as the interval between the collection containers, industry standard standards for microplates such as 9 mm intervals and 4.5 mm intervals are used.
 図1は、細胞組織切片採取用ニードル9本が、3×3配置となっている採取ニードルヘッドの鳥瞰図である。採取ニードルは、中心の1本を中心ニードル101と定義し、その周辺の8本を周辺ニードル102と定義する。ニードルは、31Gを用いた。31Gのニードルは外径0.26mm、内径0.13mm、管肉厚0.06mmである。 FIG. 1 is a bird's-eye view of a collection needle head in which nine needles for cell tissue section collection are arranged in 3 × 3. The sampling needle defines one central needle as the central needle 101 and eight peripheral needles as the peripheral needle 102. As the needle, 31G was used. The 31G needle has an outer diameter of 0.26mm, an inner diameter of 0.13mm, and a tube wall thickness of 0.06mm.
 ニードルの針先の形状は特に限定されるものではなく、例えば丸形、楕円形、四角形、菱形などの形状でよいが、4つの頂点を有する四角形の針先を有することが好ましい。これにより、採取する組織の量のばらつきを抑えることができる。また、各ニードルはさらに、シリンジ構造を有する。例えば、タングステン製の細管103をニードル内に挿入し、プランジャ(押子)として、切片の吐出に利用できる。これにより、ニードル内に採取された組織切片を簡便にかつ損傷なく吐出することが可能である。各ニードルは、それぞれアームと結合している。中心ニードルのアームは、104である。周辺ニードルのアームは、説明図が煩雑となるため、1本のみ記載したが(105)、すべて1本ずつ結合している。各アームは、ニードルの束を包む様に配置されたケース106と接続している。なお、ケース106は、半周だけ図示した。また、ケースにはスライド部107がある。中心ニードルのアーム104は、ケースと結合し、一体化されている。他のニードルは、アームを介して、可動な状態でケースに接続している。図2は、周辺ニードルとアームの1例である。アーム201は、ニードル202と部分203で結合している。結合方法としては、接着などを用いることができる。簡便には、樹脂やテープなどで、ニードルをくるむ様にし、アームに固定することができる。アームは、可動中心用の穴204と、スライド可動用の穴205を有している。 The shape of the needle tip of the needle is not particularly limited, and may be, for example, a round shape, an oval shape, a square shape, a rhombus shape, or the like, but preferably has a quadrangular needle tip having four vertices. Thereby, the dispersion | variation in the quantity of the extract | collected tissue can be suppressed. Each needle further has a syringe structure. For example, a thin tube 103 made of tungsten can be inserted into a needle and used as a plunger (presser) for discharging a slice. As a result, the tissue section collected in the needle can be discharged easily and without damage. Each needle is coupled to an arm. The central needle arm is 104. Although only one arm of the peripheral needle is described because the illustration is complicated (105), all are connected one by one. Each arm is connected to a case 106 arranged to wrap a bundle of needles. The case 106 is shown only half a circle. The case has a slide portion 107. The central needle arm 104 is coupled to and integrated with the case. The other needle is movably connected to the case via the arm. FIG. 2 is an example of a peripheral needle and arm. The arm 201 is coupled to the needle 202 by a portion 203. As a bonding method, adhesion or the like can be used. For convenience, the needle can be wrapped with resin or tape and fixed to the arm. The arm has a hole 204 for a movable center and a hole 205 for slide movement.
 図3は、ニードルヘッドを上面より見た模式図である。中心ニードル301と、ケースに接続している中心ニードル用アーム(図示せず)と、8本の周辺ニードル302~309と、それらと一体化している8本のアーム312~319、およびケースで構成される。ケースは、本体310と、円周状に可動できるスライド部311で構成されている。8本の周辺ニードル用アームは、それぞれ、ケース本体内の8個の中心ピン320に中心点を有し、ケーススライド部の可動ピン321がスライド可動用の穴に収まる構造である。このため、ケースのスライド部を円周状に動かすと、アームが中心点を支点として動き、その結果、ニードルは位置をかえることができる。図4は、スライド部を動かし、ニードル位置を変えた状態を示す。9本のニードルは、例えば9mmピッチの正方格子の配置となっている。 FIG. 3 is a schematic view of the needle head as seen from above. Consists of a central needle 301, a central needle arm (not shown) connected to the case, eight peripheral needles 302 to 309, eight arms 312 to 319 integrated therewith, and a case Is done. The case includes a main body 310 and a slide portion 311 that can move in a circumferential shape. Each of the eight peripheral needle arms has a center point at eight central pins 320 in the case main body, and the movable pin 321 of the case slide portion is configured to fit in the slide movable hole. For this reason, when the slide part of the case is moved in a circumferential shape, the arm moves with the center point as a fulcrum, and as a result, the needle can be repositioned. FIG. 4 shows a state where the slide portion is moved and the needle position is changed. The nine needles are arranged in a square grid with a pitch of 9 mm, for example.
 本実施例のヘッドは、ニードルの集合状態、すなわち採取位置(図3)と、拡散状態、すなわち吐出位置(図4)において、各ニードルが両方とも正方格子の配置をとること、および、その変更がスライド部のスライドだけで達成できることが特徴である。図5は、具体的構造を説明している。2組のニードルとアームを例にとって説明する。まず、ニードル位置501および位置502は、それぞれ、図3のニードル302の集合時(採取位置)および拡大時(吐出位置)のニードル位置を示す。線分503は、位置501と位置502を結ぶ線分であり、破線504は線分503の垂直2等分線である。中心点505は、この垂直2等分線上にあることが分かる。アーム506およびアーム507は、それぞれ集合時(採取位置)および拡大時(吐出位置)のアーム位置を示す。円弧508は、アーム可動時の可動ピンの動く範囲を示している。円弧508は、破線の円509上にあり、その中心は、ケースの中心、および中心ニードルの位置と同じである。即ち、ケーススライド部の中心は、中心ニードルの中心と一致しており、円弧508の中心角は、スライド部のスライド量(回転量)を示す。この様に、ニードル302と同じく、集合時にニードル位置が3×3配置の角のニードル302~305に関しては、それらが結合するアームの可動中心点は、全て破線510の円上に位置する。 In the head of this embodiment, both needles are arranged in a square lattice in the gathering state of the needles, that is, the collection position (FIG. 3) and the diffusion state, that is, the discharge position (FIG. 4). It is a feature that can be achieved only by sliding the slide portion. FIG. 5 illustrates a specific structure. A description will be given by taking two pairs of needles and arms as an example. First, the needle position 501 and the position 502 indicate the needle position when the needle 302 in FIG. 3 is gathered (collection position) and enlarged (discharge position), respectively. A line segment 503 is a line segment connecting the position 501 and the position 502, and a broken line 504 is a perpendicular bisector of the line segment 503. It can be seen that the center point 505 is on this perpendicular bisector. An arm 506 and an arm 507 indicate arm positions at the time of gathering (collection position) and at the time of enlargement (discharge position), respectively. An arc 508 indicates the range of movement of the movable pin when the arm is movable. The arc 508 is on the dashed circle 509, the center of which is the same as the center of the case and the position of the center needle. That is, the center of the case slide portion coincides with the center of the center needle, and the center angle of the arc 508 indicates the slide amount (rotation amount) of the slide portion. In this manner, as with the needle 302, regarding the needles 302 to 305 having a 3 × 3 arrangement at the time of assembly, the movable center points of the arms to which they are coupled are all located on the circle of the broken line 510.
 同様に、ニードル位置511および位置512は、それぞれ、図3のニードル308の集合時(採取位置)および拡大時(吐出位置)のニードル位置を示す。線分513は、位置501と位置502を結ぶ線分であり、破線514は線分513の垂直2等分線である。中心点515は、この垂直2等分線上にあることが分かる。円弧516は、アーム可動時の可動ピンの動く範囲、即ちスライド量(回転量)を示す。この様に、ニードル308と同じく、集合時にニードル位置が3×3配置の辺の中央に位置するニードル306~309に関しては、それらが結合するアームの可動中心点は、全て破線517の円上に位置する。 Similarly, the needle position 511 and the position 512 indicate the needle position when the needle 308 of FIG. 3 is assembled (collection position) and enlarged (discharge position), respectively. A line segment 513 is a line segment connecting the position 501 and the position 502, and a broken line 514 is a perpendicular bisector of the line segment 513. It can be seen that the center point 515 is on this vertical bisector. An arc 516 indicates a moving range of the movable pin when the arm is moved, that is, a slide amount (rotation amount). In this way, as with the needle 308, regarding the needles 306 to 309 that are located at the center of the side of the 3 × 3 arrangement at the time of assembly, all the movable center points of the arms to which they are coupled are on the circle of the broken line 517. To position.
 8本の周辺ニードルは、その移動距離から、2組に分かれる。ニードル302~305は、集合時(採取位置)においては角で、拡大時(吐出位置)においては辺の中央となり、移動距離は小さい。一方、ニードル306~309は、集合時(採取位置)においては辺の中央で、拡大時(吐出位置)においては角となり、移動距離は大きい。スライド部の動く範囲である円弧の長さや中心角は、8本の周辺ニードルで同一とする必要があるため、移動距離の小さいニードル302~305に結合したアームの中心ピンの位置は、移動距離の大きいニードル306~309に結合したアームの中心ピンの位置より、同心円状の内側に配置される。この位置を適切に調整することにより、2種の移動を、同じスライド移動角度(回転角度)で同時に行うことができる。即ち、円弧508と円弧516が同じ量であれば、スライド部のスライドにより、両種のニードルの移動を同時に制御でき、集合時も拡大時も正方格子状配置を達成できる。 8Eight peripheral needles are divided into two groups according to their moving distance. The needles 302 to 305 are corners at the time of gathering (collection position), and the center of the side at the time of enlargement (discharge position), and the movement distance is small. On the other hand, the needles 306 to 309 are at the center of the side at the time of gathering (collection position) and are corners at the time of enlargement (discharge position), and the movement distance is large. Since the length and center angle of the arc, which is the range of movement of the slide part, must be the same for the eight peripheral needles, the position of the center pin of the arm coupled to the needles 302 to 305 having a small moving distance is the moving distance. It is arranged inside the concentric circle from the position of the center pin of the arm coupled to the needles 306 to 309 having a large diameter. By appropriately adjusting this position, two types of movements can be performed simultaneously at the same slide movement angle (rotation angle). In other words, if the arc 508 and the arc 516 are the same amount, the movement of both types of needles can be controlled simultaneously by sliding the slide portion, and a square lattice arrangement can be achieved at the time of assembly and expansion.
 次に、この採取用ニードルヘッドの使用方法を説明する。簡単のため、3本のニードルのみを図示して、図6にて説明する。601~603は3本のニードルであり、604~606は、フランジャを示している。まず、図6(a)の通り、ニードルを集合状態(採取位置)に配置し、ゲルシート607にニードルを挿入すると、図6(b)の様に、各ニードル内にゲル層608を形成できる。ただし、このゲル層は、予め、他のポリマーなどで形成したものを用いても良い。 Next, how to use this sampling needle head will be described. For simplicity, only three needles are illustrated and described with reference to FIG. Reference numerals 601 to 603 denote three needles, and reference numerals 604 to 606 denote flangers. First, as shown in FIG. 6A, when the needles are arranged in an assembled state (collecting position) and the needles are inserted into the gel sheet 607, a gel layer 608 can be formed in each needle as shown in FIG. 6B. However, this gel layer may be formed in advance with another polymer or the like.
 次に、組織の採取を実施する。図7(a)の様に、採取対象の組織701を、ゲルシート702上に配置する。その状態で、集合状態のニードルを組織と下のゲルシートに突き刺す。その結果、3本のニードル内には、先のゲル層の下に、組織層と、下部ゲル層が挿入される。この後、ニードルを静かに引き上げると、ニードル内には、近接する3地点の組織切片が、上記のゲル・組織・ゲルのサンドイッチ状に採取された試料が得られる。 Next, the tissue is collected. As shown in FIG. 7A, the tissue 701 to be collected is placed on the gel sheet 702. In that state, the assembled needle is pierced into the tissue and the underlying gel sheet. As a result, the tissue layer and the lower gel layer are inserted into the three needles under the previous gel layer. Thereafter, when the needle is gently pulled up, a sample is obtained in which the tissue sections at three adjacent points are collected in the shape of a gel / tissue / gel sandwich in the needle.
 図8は、実際に採取された切片の顕微鏡像である。31Gニードルを用いて採取した。図8の(1)は、茎頂部分より採取された切片であり、茎頂細胞や芽、および両端の維管束が観察できる。図8の(2)は子葉の中央より採取された切片であり、子葉細胞が確認できる。 FIG. 8 is a microscopic image of a section actually collected. Collected using a 31G needle. (1) in FIG. 8 is a section taken from the shoot apex portion, and shoot apex cells and buds and vascular bundles at both ends can be observed. (2) in FIG. 8 is a section taken from the center of the cotyledon, and the cotyledon cell can be confirmed.
 次に、ニードルを拡大状態(吐出位置)に変更し、図7(b)の通り、あらかじめ一定の間隔、例えば9mm間隔で配置したチューブ703の内壁に形成した液滴に試料を押し出す。この場合、ゲル層が切片を保護するため、切片の破損を生じることなく、液滴内に移すことができる。なお、チューブに試料を移す際、液滴を用いることは重要である。液滴を用いずに、チューブの内壁に付着させる場合、取り扱う試料が微小であり、肉眼では観察できないため、確実な移動が難しい。液滴を用いることにより、細管先端により押し出された組織切片は、確実に液滴内に移動させることが可能である。 Next, the needle is changed to an expanded state (discharge position), and the sample is pushed out into droplets formed on the inner wall of the tube 703 arranged in advance at a constant interval, for example, 9 mm as shown in FIG. 7B. In this case, since the gel layer protects the slice, it can be transferred into the droplet without causing breakage of the slice. It is important to use droplets when transferring the sample to the tube. When the sample is attached to the inner wall of the tube without using a droplet, the sample to be handled is very small and cannot be observed with the naked eye, so that it is difficult to move reliably. By using the droplet, the tissue section pushed out by the capillary tip can be reliably moved into the droplet.
 液滴は、純水、生理食塩水、リン酸緩衝生理食塩水(PBS)、TEバッファ、ならびにそれらの溶媒に核酸分解酵素の阻害剤(例えばRNAse阻害剤)を添加した溶液などで調製する。特に核酸分解酵素の阻害剤添加溶液としては、硫酸アンモニウム成分を基本とする試薬(代表製品名:RNALater(Ambion Inc.))や、グアニジン系の保存液兼抽出試薬(代表製品:RLTバッファやRLCバッファ(QIAGEN))が利用可能である。 Droplets are prepared with pure water, physiological saline, phosphate buffered saline (PBS), TE buffer, and a solution obtained by adding a nucleolytic enzyme inhibitor (for example, RNAse inhibitor) to these solvents. Especially for nuclease inhibitor addition solutions, reagents based on ammonium sulfate (representative product name: RNALater (Ambion® Inc.)) and guanidine-based storage and extraction reagents (representative products: RLT buffer and RLC buffer) (QIAGEN)) is available.
 液滴の大きさは、採取した切片の大きさに応じて異なるが、好ましくは1μL以下、例えば0.5μLとすることができる。特に、液滴として核酸分解酵素の阻害剤を添加した溶液を用いる場合、その成分がcDNA合成を阻害する可能性があるため、液滴の大きさは必要最小限とするほうが良い。このような液滴を、例えばチューブ内に準備し、そこへ植物組織切片を移す。 The size of the droplet varies depending on the size of the collected slice, but is preferably 1 μL or less, for example, 0.5 μL. In particular, when a solution to which a nucleolytic enzyme inhibitor is added is used as a droplet, the size of the droplet should be minimized as its components may inhibit cDNA synthesis. Such a droplet is prepared, for example, in a tube, and a plant tissue section is transferred thereto.
 液滴を準備するチューブは、当技術分野で公知の任意の種類およびサイズのチューブを用いることができる。例えば後述する遺伝子発現分析を行う場合には、PCRチューブを採用することができる。チューブは、液滴や植物組織切片の内容物(核酸など)が保持されやすいような材質であるかまたは保持されやすいように処理されていることが好ましい。例えば、チューブを親水性の材質(例えば親水性ポリマーなど)で作製したり、チューブの表面に親水性処理(例えば親水性ポリマーによるコーティング、UVオゾン処理方法など)したりすることができる。なお、チューブのかわりに、マイクロプレートを用いることも可能である。 The tube for preparing the droplets can be any type and size of tube known in the art. For example, when performing gene expression analysis described later, a PCR tube can be employed. It is preferable that the tube is made of a material that can easily hold the contents of the droplets or plant tissue sections (such as nucleic acids) or has been treated so as to be easily held. For example, the tube can be made of a hydrophilic material (for example, a hydrophilic polymer), or the surface of the tube can be subjected to a hydrophilic treatment (for example, coating with a hydrophilic polymer, a UV ozone treatment method, or the like). Note that a microplate can be used instead of the tube.
 その後、液滴を液体窒素等により、凍結する。これにより、組織切片内の遺伝子は、保存される状態となる。採取から、液滴への吐出と凍結までを、迅速に実施することが重要である。凍結後ペッスルを用いて氷滴ごと破砕し、遠心分離器で回収し、磁気ビーズ上にcDNAライブラリを合成すれば、遺伝子発現量の解析が可能となる。 Thereafter, the droplet is frozen with liquid nitrogen or the like. As a result, the genes in the tissue section are preserved. It is important to quickly perform from collection to ejection to droplets and freezing. After freezing, pestle is used to crush the whole ice droplet, and it is recovered with a centrifuge, and a cDNA library is synthesized on magnetic beads, so that the gene expression level can be analyzed.
 次に、試料として、播種後4日経過のシロイヌナズナ(野生型のCol株)の芽生え株について、子葉より組織切片を採取し、遺伝子発現解析を実施した例を、以下に説明する。 Next, an example in which a tissue section was collected from a cotyledon and a gene expression analysis was performed on a seedling of Arabidopsis thaliana (wild-type Col strain) 4 days after seeding as a sample will be described below.
1.事前準備
 本実施例では、組織切片は、アガロースゲルにより挟む状態で採取した。事前準備として、以下を実施した。
1. Prior preparation In the present Example, the tissue slice was extract | collected in the state pinched | interposed with the agarose gel. As advance preparations, the following was implemented.
(1)重量2%濃度アガロースゲルを滅菌状態の超純水で作製し、約2mmの厚さのゲルシートができる様にシャーレに分注した。 (1) A 2% weight agarose gel was prepared with sterilized ultrapure water and dispensed into a petri dish so that a gel sheet having a thickness of about 2 mm was formed.
(2)ペッスルを、RNase阻害剤で処理して乾燥し、その後、0.1%Tween20、10mM Tris-HCl(pH8.0)を浸潤させ、乾燥させた。 (2) The pestle was treated with an RNase inhibitor and dried, and then infiltrated with 0.1% Tween 20, 10 mM Tris-HCl (pH 8.0) and dried.
(3)0.2mL PCRチューブの壁面に、約0.5μLのバッファーRLCの液滴を形成し、室温に置いた。 (3) About 0.5 μL of a buffer RLC droplet was formed on the wall of a 0.2 mL PCR tube and placed at room temperature.
(4)液体窒素を準備した。 (4) Liquid nitrogen was prepared.
2.組織切片採取
(1)ニードルを採取装置(ニードルホルダー)に装着し、細管をニードル内に挿入した。ニードルを採取位置に配置した状態で、アガロースゲルシートにニードルを挿入し、ニードル内にゲル層を形成した。
2. Tissue section collection (1) A needle was attached to a collection device (needle holder), and a thin tube was inserted into the needle. With the needle placed at the collection position, the needle was inserted into the agarose gel sheet to form a gel layer in the needle.
(2)採取対象の植物をゲルシート上に配置し、ニードルを採取部位に挿入した。植物と下のゲルシートを同時に貫通させた。この結果、ゲル層、植物組織層、ゲル層のサンドイッチ状のものが、ニードル内に採取できた。 (2) The plant to be collected was placed on the gel sheet, and a needle was inserted into the collection site. The plant and the lower gel sheet were penetrated simultaneously. As a result, a sandwich of a gel layer, a plant tissue layer, and a gel layer could be collected in the needle.
(3)すぐに、ケースのスライド部をスライドさせることにより、ニードルを吐出位置に変更し、ニードル内のサンドイッチ状態の検体をシリンジで押し出すと共に、それらを、0.2mLチューブ内の液滴に移した。検体を移したチューブのフタを閉じ、すぐにチューブを液体窒素に浸し、検体を含む液滴を冷却した。 (3) Immediately, by sliding the slide part of the case, the needle is changed to the discharge position, the specimen in the sandwich state in the needle is pushed out by the syringe, and they are transferred to the droplet in the 0.2 mL tube. . The lid of the tube to which the sample was transferred was closed, and the tube was immediately immersed in liquid nitrogen to cool the droplet containing the sample.
3.組織破砕
(1)チューブを液体窒素から取り出し、検体を含む氷滴を、ペッスルでつぶした(5秒程度)。0.5μLの氷滴は、内部の検体ごと容易に破砕できる。
3. Tissue disruption (1) The tube was taken out of liquid nitrogen, and the ice droplet containing the specimen was crushed with a pestle (about 5 seconds). 0.5 μL ice droplets can be easily crushed together with the internal specimen.
(2)ペッスルキャップを装着して、チューブをペッスルごと遠心した(10秒程度)。 (2) A pestle cap was attached and the tube was centrifuged together with the pestle (about 10 seconds).
(3)ペッスルをチューブから外し、フタを閉め、再び液体窒素に浸した。 (3) The pestle was removed from the tube, the lid was closed, and it was immersed again in liquid nitrogen.
4.cDNAクローニング
 cDNAライブラリ作製は、特開2007-319028号、或いは、非特許文献4に記載の方法を用いる。具体的には、以下の通りである。
4). cDNA cloning The cDNA library is prepared using the method described in Japanese Patent Application Laid-Open No. 2007-319028 or Non-Patent Document 4. Specifically, it is as follows.
(1)まず、以下の組成のマスターMixを準備した(量は、1チューブあたり)。

   10 x DNase I Buffer          0.36 μl
   DNase I                0.5 μl
   PBS pH7.4               2.6 μl

 上記マスターMixを分注(分注後、3.46μL)し、室温で5~10分処理した。
(1) First, a master mix having the following composition was prepared (amount per tube).

10 x DNase I Buffer 0.36 μl
DNase I 0.5 μl
PBS pH7.4 2.6 μl

The master mix was dispensed (3.46 μL after dispensing) and treated at room temperature for 5-10 minutes.
(2)EDTA(2.5mM)を1.2μL注入し、70℃、5分間処理し、氷冷した。 (2) 1.2 μL of EDTA (2.5 mM) was injected, treated at 70 ° C. for 5 minutes, and cooled on ice.
(3)以下の試薬を加えた。

   0.1% Tween20, 10mM Tris-HCl(pH8.0)  15.6 μl
   10mM dNTP Mix             1.0 μl
   オリゴ(dT)30磁気ビーズ         1.0 μl

 オリゴ(dT)30磁気ビーズは、磁気ビーズにオリゴ(dT)30を、予め固定したものである。続いて、70℃で5分間反応後、4℃に冷却した。
(3) The following reagents were added.

0.1% Tween20, 10 mM Tris-HCl (pH 8.0) 15.6 μl
10 mM dNTP Mix 1.0 μl
Oligo (dT) 30 magnetic beads 1.0 μl

The oligo (dT) 30 magnetic beads are obtained by immobilizing oligo (dT) 30 on magnetic beads in advance. Subsequently, the mixture was reacted at 70 ° C. for 5 minutes and then cooled to 4 ° C.
(4)下記試薬を用いて、逆転写を行った。

   5 x RT Buffer             6.0μl
   0.1M DTT                1.0μl
   RNase OUT               1.0μl
   Super Script III RT          1.0μl

 50℃で50分間、攪拌しながら反応させ、85℃で1.5分処理し、氷冷した。
(4) Reverse transcription was performed using the following reagents.

5 x RT Buffer 6.0μl
0.1M DTT 1.0μl
RNase OUT 1.0μl
Super Script III RT 1.0μl

The mixture was reacted at 50 ° C. for 50 minutes with stirring, treated at 85 ° C. for 1.5 minutes, and ice-cooled.
(5)RNase Hを1.0μL加え、37℃で30分間、攪拌しながら反応させ、氷冷した。 (5) RNase H was added at 1.0 μL, reacted at 37 ° C. for 30 minutes with stirring, and ice-cooled.
 以上の工程で、ビーズ上にcDNAライブラリを合成した。 Through the above steps, a cDNA library was synthesized on the beads.
 本実施例では、採取用ニードルとして、31Gを用い、採取時の間隔を0.3mmとして採取を行った。9個の切片を採取し、維管束マーカー遺伝子SUC2 (AT1G22710)と組織マーカーKNAT2 (AT1G70510)および、コントロール遺伝子TUB2 (AT5G62690)の発現量を、定量PCRにより測定した。定量PCR解析に用いたプローブおよび増幅用オリゴの配列は、表1に記載した。 In this example, 31G was used as a sampling needle, and sampling was performed with a sampling interval of 0.3 mm. Nine sections were collected, and the expression levels of the vascular marker gene SUC2 (AT1G22710), the tissue marker KNAT2 (AT1G70510), and the control gene TUB2 (AT5G62690) were measured by quantitative PCR. The sequences of probes and amplification oligos used for quantitative PCR analysis are shown in Table 1.
 図9は、細胞組織切片から採取した9点における各遺伝子量を図示したものである。各遺伝子量を、TUB2の発現量を100,000として規格化した。子葉内の約1mm四方において、3×3のポイントの各遺伝子量が測定できた。 FIG. 9 shows the amount of each gene at 9 points collected from a cell tissue section. The amount of each gene was normalized with the expression level of TUB2 as 100,000. Each gene amount of 3 × 3 points could be measured in about 1 mm square in the cotyledon.
[表1]

(1)TUB2
FWプライマー:CCAGTTGTAGTTTTTTTCTCTGCTT(配列番号1)
RVプライマー:GGCAATAACAAGATTAAGAACAAAAG(配列番号2)
MGBプローブ:CATCAACCAGATATGTCAAATA(配列番号3)

(2)KNAT2
FWプライマー:TCGATTGGTGGAATGTTCATAA(配列番号4)
RVプライマー:AGAGATATTTTGTCGCCTTCAGT(配列番号5)
MGBプローブ:AAATGGCCTTACCC(配列番号6)

(3)SUC2
FWプライマー:CATTGTCGTCCCTCAGATGGT(配列番号7)
RVプライマー:ACCACCGAATAGTTCGTCGAAT(配列番号8)
MGBプローブ:CTGTGGGAGGTGGAC(配列番号9)
[Table 1]

(1) TUB2
FW primer: CCAGTTGTAGTTTTTTTCTCTGCTT (SEQ ID NO: 1)
RV primer: GGCAATAACAAGATTAAGAACAAAAG (SEQ ID NO: 2)
MGB probe: CATCAACCAGATATGTCAAATA (SEQ ID NO: 3)

(2) KNAT2
FW primer: TCGATTGGTGGAATGTTCATAA (SEQ ID NO: 4)
RV primer: AGAGATATTTTGTCGCCTTCAGT (SEQ ID NO: 5)
MGB probe: AAATGGGCCTTACCC (SEQ ID NO: 6)

(3) SUC2
FW primer: CATTGTCGTCCCTCAGATGGT (SEQ ID NO: 7)
RV primer: ACCACCGAATAGTTCGTCGAAT (SEQ ID NO: 8)
MGB probe: CTGTGGGAGGTGGAC (SEQ ID NO: 9)
101:中心ニードル
102:周辺ニードル
103:細管
104:アーム
105:アーム
106:ケース
107:スライド部
201:アーム
202:ニードル
203:結合部分
204:穴
205:穴
301:中心ニードル   
302-309:周辺ニードル
310:本体
311:スライド部
312-319:アーム
320:中心ピン
321:可動ピン
501-502:ニードル位置
503:線分
504:破線
505:中心点
506-507:アーム
508:円弧
509:円
510:破線
511-512:ニードル位置
513:線分
514:破線
515:中心点
516:円弧
517:破線
601-603:ニードル
604-606:フランジャ
607:ゲルシート
608:ゲル層
701:組織
702:ゲルシート
703:チューブ
101: Center needle
102: Peripheral needle
103: Capillary tube
104: Arm
105: Arm
106: Case
107: Slide part
201: Arm
202: Needle
203: Combined part
204: Hole
205: hole
301: Center needle
302-309: Peripheral needle
310: Body
311: Slide part
312-319: Arm
320: Center pin
321: Movable pin
501-502: Needle position
503: Line segment
504: Dashed line
505: Center point
506-507: Arm
508: Arc
509: Yen
510: Dashed line
511-512: Needle position
513: Line segment
514: Dashed line
515: Center point
516: Arc
517: Dashed line
601-603: Needle
604-606: Flanger
607: Gel sheet
608: Gel layer
701: Organization
702: Gel sheet
703: Tube

Claims (15)

  1.  細胞組織の複数点から切片を採取するための採取装置であって、
     複数のニードルを有し、
     ニードルを採取位置と吐出位置に迅速に変更できるように構成されており、
     採取位置における前記複数のニードル間の距離が、吐出位置における前記複数のニードル間の距離よりも広い、
    前記採取装置。
    A collection device for collecting sections from multiple points of cellular tissue,
    Having a plurality of needles,
    It is configured so that the needle can be quickly changed between the collection position and the discharge position.
    The distance between the plurality of needles at the collection position is wider than the distance between the plurality of needles at the discharge position,
    The collection device.
  2.  複数のニードルがアームに結合されており、
     アームがケースに取り付けられており、
     ケースが、本体と本体周囲のスライド部とを含み、
     スライド部が本体に対して回転可能に取り付けられており、
     前記複数のニードルの採取位置と吐出位置の変更を、ケースにおける本体に対するスライド部の回転によって切替え可能に構成されている、請求項1記載の採取装置。
    A plurality of needles are connected to the arm,
    The arm is attached to the case,
    The case includes a main body and a slide portion around the main body,
    The slide part is attached to the main body so that it can rotate.
    The collection device according to claim 1, wherein the collection position and the discharge position of the plurality of needles can be switched by rotation of a slide portion with respect to a main body in the case.
  3.  採取位置において、9本のニードルが、正方格子状に配置され、中心に存在する1本の中心ニードルと周辺に存在する8本の周辺ニードルとからなる、請求項2記載の採取装置。 The sampling device according to claim 2, wherein at the sampling position, nine needles are arranged in a square lattice pattern and are composed of one central needle existing in the center and eight peripheral needles existing in the periphery.
  4.  吐出位置において、9本のニードルが正方格子状または長方格子状に配置される、請求項3記載の採取装置。 The sampling device according to claim 3, wherein nine needles are arranged in a square lattice shape or a rectangular lattice shape at the discharge position.
  5.  ケースにおける本体に対するスライド部の回転中心が、中心ニードルの位置と一致している、請求項3または4記載の採取装置。 The sampling device according to claim 3 or 4, wherein the center of rotation of the slide portion with respect to the main body in the case coincides with the position of the central needle.
  6.  8本の周辺ニードルに結合した8本のアームは、それぞれ本体とスライド部の少なくとも2か所でケースに取りつけられており、本体に対するスライド部の回転によって、アームが本体への取り付け部を中心に回転するよう構成されている、請求項5記載の採取装置。 The eight arms connected to the eight peripheral needles are respectively attached to the case at at least two locations of the main body and the slide portion, and the arm is centered on the attachment portion to the main body by the rotation of the slide portion relative to the main body. 6. A sampling device according to claim 5, wherein the sampling device is configured to rotate.
  7.  採取位置において角に配置される周辺ニードルは、吐出位置において辺の中央に配置され、採取位置において辺の中央に配置される周辺ニードルは、吐出位置において角に配置される、請求項4~6のいずれか1項記載の採取装置。 The peripheral needle arranged at the corner at the collection position is arranged at the center of the side at the discharge position, and the peripheral needle arranged at the center of the side at the collection position is arranged at the corner at the discharge position. The collection device according to any one of the above.
  8.  採取位置において角に配置される周辺ニードルに結合したアームの本体への取り付け部が、採取位置において辺の中央に配置される周辺ニードルに結合したアームの本体への取り付け部よりも、中心ニードルに近い、請求項7記載の採取装置。 The attachment part to the body of the arm connected to the peripheral needle arranged at the corner at the sampling position is closer to the central needle than the attachment part to the body of the arm connected to the peripheral needle arranged in the center of the side at the collection position. The collecting device according to claim 7, which is close.
  9.  ニードルがシリンジ構造を有するものである、請求項1~8のいずれか1項記載の採取装置。 The sampling device according to any one of claims 1 to 8, wherein the needle has a syringe structure.
  10.  ニードルが、4つの頂点を有する四角形の針先を有する、請求項1~9のいずれか1項記載の採取装置。 The sampling device according to any one of claims 1 to 9, wherein the needle has a square needle tip having four vertices.
  11.  ニードルの外径が0.26mm以下であり、内径が0.13mm以下である、請求項1~10のいずれか1項記載の採取装置。 The sampling device according to any one of claims 1 to 10, wherein the needle has an outer diameter of 0.26 mm or less and an inner diameter of 0.13 mm or less.
  12.  細胞組織が植物細胞組織である、請求項1~11のいずれか1項記載の装置。 The apparatus according to any one of claims 1 to 11, wherein the cell tissue is a plant cell tissue.
  13.  細胞組織の複数点から切片を採取するシステムであって、
     請求項1~12のいずれか1項記載の採取装置と、
     ニードルに第1のゲル層を挿入させる手段と、
     細胞組織を配置するための第2のゲル層と、
     ニードルを、第2のゲル層とともに組織を貫通させるように移動させる機構と
    を含む、前記採取システム。
    A system for collecting sections from multiple points of cellular tissue,
    The collection device according to any one of claims 1 to 12,
    Means for inserting the first gel layer into the needle;
    A second gel layer for placing cellular tissue;
    A mechanism for moving the needle with the second gel layer so as to penetrate the tissue.
  14.  細胞組織の複数点由来の核酸を解析する装置であって、
     請求項1~12のいずれか1項記載の採取装置または請求項13記載の採取システムと、
     細胞を破砕する手段と、
     核酸を分離する手段と、
     核酸を分析する手段と、
    を含む、前記解析装置。
    An apparatus for analyzing nucleic acids derived from multiple points of cellular tissue,
    The collection device according to any one of claims 1 to 12 or the collection system according to claim 13,
    Means for disrupting the cells;
    Means for separating nucleic acids;
    Means for analyzing nucleic acids;
    Including the analysis device.
  15.  細胞を破砕する手段がペッスルである、請求項14記載の解析装置。 The analysis device according to claim 14, wherein the means for crushing the cells is a pestle.
PCT/JP2013/069239 2013-07-16 2013-07-16 Gene spatial distribution analysis system for cell tissue WO2015008320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069239 WO2015008320A1 (en) 2013-07-16 2013-07-16 Gene spatial distribution analysis system for cell tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069239 WO2015008320A1 (en) 2013-07-16 2013-07-16 Gene spatial distribution analysis system for cell tissue

Publications (1)

Publication Number Publication Date
WO2015008320A1 true WO2015008320A1 (en) 2015-01-22

Family

ID=52345816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069239 WO2015008320A1 (en) 2013-07-16 2013-07-16 Gene spatial distribution analysis system for cell tissue

Country Status (1)

Country Link
WO (1) WO2015008320A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035844A1 (en) * 2007-08-02 2009-02-05 Hong Kong Baptist University Mechanical cell wounder device and related method
WO2013125141A1 (en) * 2012-02-23 2013-08-29 株式会社日立製作所 Plant tissue sampling method and plant gene analysis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035844A1 (en) * 2007-08-02 2009-02-05 Hong Kong Baptist University Mechanical cell wounder device and related method
WO2013125141A1 (en) * 2012-02-23 2013-08-29 株式会社日立製作所 Plant tissue sampling method and plant gene analysis method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRANDT S. ET AL.: "A simple, chisel-assisted mechanical microdissection system for harvesting homogenous plant tissue suitable for the analysis of nucleic acids and proteins.", PLANT MOL. BIOL. REP., vol. 21, no. 4, 2003, pages 417 - 427 *
SHIOKAI S. ET AL.: "Leaf-punch method to prepare a large number of PCR templates from plants for SNP analysis.", MOL. BREED., vol. 23, no. 2, 2009, pages 329 - 336 *
TOMOHARU KAJIYAMA ET AL.: "Shokubutsu Taio 1 Saibo Kaiseki Gijutsu no Kaihatsu <Bui Tokuiteki na Kino Kaiseki ni Muketa Bisho Seppen Saishu Gijutsu>", PROCEEDINGS OF THE ANNUAL MEETING OF THE JAPANESE SOCIETY OF PLANT PHYSIOLOGISTS, vol. 53 RD, 2012, pages 122 *

Similar Documents

Publication Publication Date Title
US8911680B2 (en) Device for collecting and triggered release of a biological sample
McDonald et al. “Tips and tricks” for high-pressure freezing of model systems
JP5859635B2 (en) Plant tissue collection method and plant gene analysis method
Kang Electron microscopy and high-pressure freezing of Arabidopsis
Edge-Garza et al. A high-throughput and cost-efficient DNA extraction protocol for the tree fruit crops of apple, sweet cherry, and peach relying on silica beads during tissue sampling
US20040115720A1 (en) High throughput automatic nucleic acid isolation and quantitation methods
CN112334578A (en) Method and device for single cell analysis
Natarajan et al. based archiving of mammalian and plant samples for RNA analysis
Vrána et al. Flow analysis and sorting of plant chromosomes
Badaeva et al. In situ hybridization to plant chromosomes
US20210041333A1 (en) Mass production manufacturing method for tissue chip
US7915016B2 (en) cDNA production from cells after laser microdissection
Karahara et al. High-pressure freezing and low-temperature processing of plant tissue samples for electron microscopy
Chen et al. High‐throughput procedure for single pollen grain collection and polymerase chain reaction in plants
WO2015008320A1 (en) Gene spatial distribution analysis system for cell tissue
Zhang et al. Laser-capture microdissection of maize kernel compartments for RNA-seq-based expression analysis
Wang et al. Clonal analysis of planarian stem cells by subtotal irradiation and single-cell transplantation
Schapire et al. A simplified and rapid method for the isolation and transfection of Arabidopsis leaf mesophyll protoplasts for large-scale applications
Laval et al. Distribution of actin gene isoforms in the Arabidopsis leaf measured in microsamples from intact individual cells
Khattak et al. Generation of transgenic axolotls (Ambystoma mexicanum)
CN106604636A (en) Plant embryo storage and manipulation
Sychla et al. Characterization of programmable transcription activators in the model monocot setaria viridis via protoplast transfection
Nestorova et al. Spaceflight validation of one-step Gene Sampling tool for genetic analysis on the International Space Station
KR102182941B1 (en) Methods for RNA Extraction and Cattles Stress Analysis
CN113747787A (en) Methods, systems and apparatus for plant material screening and propagation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP