WO2015007160A1 - 一种自驱动无线信号收发装置 - Google Patents
一种自驱动无线信号收发装置 Download PDFInfo
- Publication number
- WO2015007160A1 WO2015007160A1 PCT/CN2014/081489 CN2014081489W WO2015007160A1 WO 2015007160 A1 WO2015007160 A1 WO 2015007160A1 CN 2014081489 W CN2014081489 W CN 2014081489W WO 2015007160 A1 WO2015007160 A1 WO 2015007160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless signal
- self
- conductive layer
- metal conductive
- power supply
- Prior art date
Links
- 230000008054 signal transmission Effects 0.000 claims abstract description 8
- 238000003825 pressing Methods 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims description 44
- 239000002184 metal Substances 0.000 claims description 44
- 229920000642 polymer Polymers 0.000 claims description 38
- -1 polyethylene terephthalate Polymers 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 11
- 238000004146 energy storage Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 6
- 238000010248 power generation Methods 0.000 claims description 6
- 230000000087 stabilizing effect Effects 0.000 claims description 6
- 239000004812 Fluorinated ethylene propylene Substances 0.000 claims description 5
- 239000002033 PVDF binder Substances 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 239000004642 Polyimide Substances 0.000 claims description 5
- 239000004793 Polystyrene Substances 0.000 claims description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 5
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 5
- 229920009441 perflouroethylene propylene Polymers 0.000 claims description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 3
- UOVSDUIHNGNMBZ-UHFFFAOYSA-N 1-chloro-1,2-difluoroethane Chemical compound FCC(F)Cl UOVSDUIHNGNMBZ-UHFFFAOYSA-N 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- 239000000306 component Substances 0.000 description 37
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
Definitions
- the invention belongs to the technical field of wireless transmission and reception, and more particularly to a self-driven wireless signal transceiver.
- Electricity is the most efficient and direct form of energy use, and many forms of energy are ultimately converted to electricity and used by people.
- the application of electric energy is divided into macro and micro aspects. On the macro level, the normal operation of society and people's daily life depend on the electric energy generated and transmitted by conventional energy or new energy.
- the power consumption is generally low.
- the battery is only used as a power supply component, and the switch acts as a signal source for controlling the transmission signal and passes through the touch switch.
- the signal is transmitted.
- the service life of the wireless signal transceiver depends on the life of the battery. In the event of a battery failure, the signal may be lost due to the power problem, and even the system may be paralyzed.
- the present invention provides a self-driving wireless signal transmitting apparatus and a receiving apparatus thereof, the object of which is to improve the power supply component and integrate it with a signal source, correspondingly
- the self-driving wireless signal transmission and reception function can be realized, and the structure is compact, easy to handle, stable in performance, and strong in applicability.
- a self-driving wireless signal transmitting apparatus comprising a power source and a signal source integrating unit, and a wireless signal transmitting end, wherein: the power source and the signal source integrating unit are flexible
- the power generating component is in the form of a first component and a second component, wherein the first component is composed of a high molecular polymer insulating layer and a first metal conductive layer deposited on an upper surface of the high molecular polymer insulating layer, and a metal conductive layer is formed with a first electrode at an edge thereof; a second component is composed of a flexible substrate and a second metal conductive layer deposited on an upper surface of the flexible substrate, and a second electrode is formed at an edge of the second metal conductive layer
- the first and second components are coupled at their outer edges, and the lower surface of the high molecular polymer insulating layer and the upper surface of the second metal conductive layer are opposed to each other and have a certain gap, and
- the wireless signal transmitting end is connected to the power source and the signal source unit circuit for receiving an alternating current signal from the power source and the signal source unit, and then driving the wireless signal transmitting tube according to the alternating current signal, thereby implementing the wireless signal. Launch operation.
- the material of the polymer polymer insulating layer is selected from the group consisting of polyethylene terephthalate, polytetrafluoroethylene, polystyrene, polyimide, polyethylene, and polydimethylsiloxane.
- the material of the first metal conductive layer is selected from copper, aluminum Or indium tin oxide
- the material of the second metal conductive layer is selected from the group consisting of gold, silver, copper or aluminum.
- the lower surface of the polymer polymer insulating layer is further formed with A plurality of micro-nano concave-convex structures having an average size of 50 nm to 200 nm.
- the power source and signal source unit are formed by a single flexible power generating element or a plurality of flexible power generating elements connected in parallel with each other.
- the wireless signal transmitting end includes a voltage stabilizing chip, a transmitting chip and an infrared LED transmitting tube connected to each other, wherein the voltage stabilizing chip is configured to convert an alternating current signal from the power source and the signal source unit into The DC current signal is simultaneously regulated; the transmitting chip is used to modulate the converted DC current signal; and the infrared LED transmitting tube converts the modulated electrical signal into an optical signal and simultaneously emits an infrared signal.
- the self-driving wireless signal transmitting device has a flexible structure as a whole and is foldable.
- a corresponding self-driving wireless signal receiving apparatus comprising a power supply unit and a wireless signal receiving end, characterized in that:
- the power supply unit is in the form of a flexible power generating element and includes a first component and a second component, wherein the first component is composed of a polymer polymer insulating layer and a first metal conductive layer deposited on an upper surface of the polymer polymer insulating layer And forming a first electrode at an edge of the first metal conductive layer; the second component is composed of a flexible substrate and a second metal conductive layer deposited on an upper surface of the flexible substrate, and is in the second metal conductive layer a second electrode is formed on the edge; the first and second components are coupled at an outer edge thereof, and the lower surface of the high molecular polymer insulating layer and the upper surface of the second metal conductive layer are opposed to each other and have a certain gap In this way, the electric energy for the wireless signal receiving end can be generated by pressing and releasing the operations of the first and second components;
- the wireless signal receiving end is connected to the associated wireless signal transmitting end signal, and receives the wireless signal from the wireless signal transmitting end by using the power provided by the power supply unit and performs judgment processing thereon, thereby implementing the wireless signal receiving process.
- the material of the polymer polymer insulating layer is selected from the group consisting of polyethylene terephthalate, polytetrafluoroethylene, polystyrene, polyimide, polyethylene, and polydimethylsiloxane.
- Oxime fluorinated ethylene propylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, ethylene tetrafluoroethylene
- the material of the first metal conductive layer is selected from copper, aluminum or indium tin oxide
- the material of the second metal conductive layer is selected from gold, silver, copper or aluminum.
- the wireless signal receiving end includes a rectifying unit, an energy storage unit, and a receiving chip that are electrically connected to each other, wherein the rectifying unit is configured to convert an alternating current from the power supply unit into a direct current; The DC current obtained by the conversion is collected and stored; the receiving chip is used to receive the wireless signal from the wireless signal transmitting end and judge the processing by using the energy stored by the energy storage unit.
- the rectifying unit is configured to convert an alternating current from the power supply unit into a direct current
- the DC current obtained by the conversion is collected and stored
- the receiving chip is used to receive the wireless signal from the wireless signal transmitting end and judge the processing by using the energy stored by the energy storage unit.
- the self-driving wireless signal receiving device has a flexible structure as a whole and is foldable.
- the self-driving function can be smoothly realized while generating energy sufficient to drive the transmitting end in a short time, thereby making the overall structure simpler and more compact, Helps to improve working life and is suitable for all kinds of harsh application environments;
- the self-driving wireless signal transceiving device according to the present invention is flexible as a whole, can be bent and folded, and is processed, so that it has greater flexibility in application than conventional rigid devices, and has stable performance and cost. Low and easy to manufacture in large quantities.
- FIG. 1 is a schematic view showing the overall configuration of a power source and a signal source unit in a self-driving wireless signal transmitting apparatus according to the present invention
- Figure 2a is a current generated after a single press of the flexible power generating element according to the present invention a graph that changes over time;
- Figure 2b is a graphical representation of the integrated charge as a function of time obtained by integrating the current peaks in Figure 5a.
- FIG. 1 is a view showing the overall configuration of a power supply and a signal source unit in a self-driving wireless signal transmitting apparatus according to the present invention.
- the power supply and signal source unit 1 is in the form of a flexible power generating element, which may be composed of a single flexible power generating element or a plurality of flexible power generating elements connected in parallel with each other, and throughout the wireless signal transmitting device. In addition to being a working power source, it also functions as a signal source for controlling wireless signal transmission.
- each flexible power generating component (or referred to as a flexible generator) includes a first component
- a second component 12 wherein the first component 11 is composed of a polymer polymer insulating layer 111 and a first metal conductive layer 112 deposited on an upper surface of the polymer polymer insulating layer 111, and is electrically conductive at the first metal The edge of the layer 112 is formed with a first electrode 113; the second component 12 is composed of a flexible substrate 121 and a second metal conductive layer 122 deposited on the upper surface of the flexible substrate 121, and is formed at the edge of the second metal conductive layer 122.
- the first and second components are coupled at their outer edges, and the lower surface of the polymer insulating layer 111 and the upper surface of the second metal conductive layer 122 are opposed to each other and have a certain Gap, which can be pressed and released
- the physical operation of the first component and the second component can generate an alternating current having a certain intensity, and the alternating current is simultaneously transmitted as a signal source for controlling the wireless signal transmission to the wireless signal transmitting end connected to the circuit, thereby correspondingly triggering the wireless
- the signal transmitting end performs a transmitting operation of the wireless signal.
- the wireless signal transmitting end is connected to the power source and the signal source unit circuit, and according to a preferred embodiment of the present invention, specifically includes a voltage stabilizing chip connected to each other.
- a transmitting chip and an infrared LED transmitting tube wherein the voltage stabilizing chip is used for converting an alternating current signal from the power source and the signal source unit into a direct current signal, and is simultaneously regulated, for example, an ASM1117-1.8 chip can be used;
- a 74HC00N NAND gate chip can be used as a core component; and an infrared LED transmission tube converts the modulated electrical signal into an optical signal and simultaneously emits an infrared signal.
- the material of the polymer polymer insulating layer is selected from the group consisting of poly(ethylene terephthalate), polytetrafluoroethylene, polystyrene, polyimide, and polyethylene. , polydimethylsiloxane, fluorinated ethylene propylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, ethylene tetrafluoroethylene copolymer or polymethyl methacrylate; the first metal conductive layer
- the material is selected from the group consisting of copper, aluminum or indium tin oxide, and the material of the second metal conductive layer is selected from the group consisting of gold, silver, copper or aluminum.
- the lower surface of the high molecular polymer insulating layer is further formed with a plurality of micro/nano concave-convex structures, and the average size thereof is 50 nm to 200 nm.
- the flexibility obtained by processing the high molecular polymer insulating layer with polyethylene terephthalate, the first metal conductive layer made of copper, the flexible substrate as a paper material, and the second metal conductive layer made of aluminum is selected.
- the power generation component Take the power generation component as an example, and after a single press, record the curve of the generated current as a function of time. As shown in Figures 2a and 2b, the current peak width produced by a single trigger of the flexible power generating component is about 5 milliseconds. The integrated power generated by this process is 4 microcoulombs, enough to drive the entire signal transmitting system.
- a corresponding wireless signal receiving device is also disclosed in the present invention, and the power supply unit of the wireless signal receiving device is also in the form of a flexible power generating component. And comprising a first component and a second component, wherein the first component is composed of a polymer polymer insulating layer and a first metal conductive layer deposited on an upper surface of the polymer polymer insulating layer, and is in the first metal conductive layer The edge is formed with a first electrode; the second component is composed of a flexible substrate and a second metal conductive layer deposited on the upper surface of the flexible substrate, and a second electrode is formed at an edge of the second metal conductive layer; The second component is coupled at an outer edge thereof, and the lower surface of the high molecular polymer insulating layer and the upper surface of the second metal conductive layer are opposed to each other and have a gap therebetween, by pressing and releasing The first and second components operate to generate electrical energy for operation at the wireless signal receiving end.
- the specific configuration is similar
- the wireless signal receiving end is connected to the power supply unit circuit, and according to a preferred embodiment of the present invention, specifically includes a rectifying unit, an energy storage unit, and an electric circuit unit connected to each other a receiving chip, wherein the rectifying unit is configured to convert an alternating current from the power supply unit into a direct current; the energy storage unit is configured to collect and store the converted direct current; and the receiving chip is configured to be stored by the energy storage unit.
- the electrical energy receives the wireless signal from the wireless signal transmitting end and judges it.
- the electric energy sufficient to drive the signal receiving end can be obtained by the simple operation of the human body itself, for example, by pressing the flexible power generating element multiple times and stored in the energy storage unit for use in advance, thereby being compact and easy to implement.
- the self-driving wireless signal transceiving device of the present invention can realize the self-driving function of wireless transceiving without relying on battery power supply, and at the same time, the power source is also a signal source in the device, and the power source and the signal are realized.
- the integration of the source, compared with the existing wireless transceiver, the overall structure is simpler and more compact, which helps to improve the working life and is suitable for various harsh environments.
- the device as a whole is flexible and can be bent and folded while also facilitating processing, and has greater flexibility in application than a rigid conventional device; finally, the flexible nanogenerator generates more energy and can effectively
- the kinetic energy generated by the human body can generate enough energy to drive the transmitting end in a short period of time, and has the characteristics of stable performance, long working life, low cost, and convenient mass production and manufacturing.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Near-Field Transmission Systems (AREA)
Abstract
本发明公开了一种自驱动无线信号发射装置,包括电源与信号源单元、以及无线信号发射端,其中电源与信号源单元呈柔性发电元件的形式包括第一组件和第二组件,并可通过按压和松开第一、第二组件的操作来产生电流信号,同时将其作为控制无线信号发射的信号源;无线信号发射端同所述电源与信号源单元电路连接,用于接收来自电源与信号源单元的电流信号,然后依照该电流信号来相应驱动无线信号发射管,由此实现无线信号的发射操作。本发明还公开了相应的自驱动无线信号接收装置。通过本发明,相应能够在无需电池的情况下即可实现自驱动无线信号收发功能,同时具备结构紧凑、便于操控、性能稳定和适用性强等特点。
Description
一种自驱动无线信号收发装置
【技术领域】
本发明属于无线发射与接收技术领域, 更具体地, 涉及一种自驱动无 线信号收发装置。
【背景技术】
能源是整个世界发展和经济增长最基本的驱动力, 是人类赖以生存的 基础, 与我们的日常生活息息相关。 随着全球变暖、 环境污染等问题日益 加重, 以化石燃料为基础的常规能源已面临危机, 寻找清洁和可再生的绿 色能源成为当前社会发展和人类文明进歩所面临的一项迫切挑战。 电能是 能源应用中最有效、 最直接的一种形式, 很多能源形式最终都转换为电能 而被人们加以利用。 电能的应用分宏观和微观两个方面, 在宏观方面, 社 会的正常运转和人们的日常生活都有赖于常规能源或新能源所产生和输送 而来的电能; 在微观方面, 个人电子产品、 植入式生物传感器、 微电子机 械系统、 环境监控传感器、 甚至小到纳米机器人都需要独立、 持久性的供 能装置提供动力, 如何为这些微型器件提供合适的电源是一个重要问题。
例如, 对于无线信号收发装置之类的电子产品而言, 其功耗一般来说 是比较低的, 目前这类电子设备一般通过电池供电, 然而研究表明, 这种 电池供能方式至少存在以下的弊端: 首先, 现有无线信号收发装置的电源 和信号源是彼此独立分开的两个系统, 也即是说电池仅作为供能部件, 而 开关作为控制发射信号的信号源并通过触碰开关来发射信号, 在此情况下, 无线信号收发装置的使用寿命依赖于电池的寿命, 一旦遇上电池失效的情 况, 则可能由于电量问题而失去信号, 甚至造成系统的瘫痪; 其次, 由于 电源和信号源分开独立设置, 相应会造成无线信号收发装置内部的电路结 构复杂化, 而且难以使无线信号收发装置进一歩微型化; 最后, 废弃的电
池也会对环境造成严重影响, 并存在电池的替换不便和成本增加等问题。 【发明内容】
针对现有技术的以上缺陷或改进需求, 本发明提供了一种自驱动无线 信号发射装置及其接收装置, 其目的在于通过对其供能部件进行改进并与 信号源相整合, 相应能够在无需电池的情况下即可实现自驱动无线信号收 发功能, 同时具备结构紧凑、 便于操控、 性能稳定和适用性强等特点。
为实现上述目的, 按照本发明, 提供了一种自驱动无线信号发射装置, 该装置包括电源与信号源整合单元、 以及无线信号发射端, 其特征在于: 所述电源与信号源整合单元呈柔性发电元件的形式并包括第一组件和 第二组件, 其中第一组件由高分子聚合物绝缘层和沉积在该高分子聚合物 绝缘层上表面的第一金属导电层共同组成, 并在该第一金属导电层的边缘 形成有第一电极; 第二组件由柔性基底和沉积在该柔性基底上表面的第二 金属导电层共同组成, 并在该第二金属导电层的边缘形成有第二电极; 第 一、 第二组件在其外侧边缘相联接, 并且所述高分子聚合物绝缘层的下表 面与所述第二金属导电层的上表面相互对置并具备一定间隙, 以此方式可 通过按压和松开第一、 第二组件的操作来产生交流电流信号, 同时将其作 为控制无线信号发射的信号源;
所述无线信号发射端同所述电源与信号源单元电路连接, 用于接收来 自电源与信号源单元的交流电流信号, 然后依照该交流电流信号来相应驱 动无线信号发射管, 由此实现无线信号的发射操作。
作为进一歩优选地, 所述高分子聚合物绝缘层的材料选自聚对苯二甲 酸乙二醇酯、 聚四氟乙烯、 聚苯乙烯、 聚酰亚胺、 聚乙烯、 聚二甲基硅氧 垸、 氟化乙丙烯共聚物、 聚三氟氯乙烯、 聚偏二氟乙烯, 乙烯四氟乙烯共 聚物或聚甲基丙烯酸甲酯; 所述第一金属导电层的材料选自铜、 铝或者氧 化铟锡, 所述第二金属导电层的材料选自金、 银、 铜或者铝。
作为进一歩优选地, 所述高分子聚合物绝缘层的下表面还加工形成有
多个微纳米的凹凸结构, 且其平均尺寸为 50纳米 ~200纳米。
作为进一歩优选地, 所述电源与信号源单元由单个柔性发电元件或彼 此并联的多个柔性发电元件共同构成。
作为进一歩优选地, 所述无线信号发射端包括彼此电路相连的稳压芯 片、 发射芯片和红外 LED发射管, 其中稳压芯片用于将来自所述电源与信 号源单元的交流电流信号转换为直流电流信号, 同时予以稳压处理; 发射 芯片用于对转换后的直流电流信号进行调制; 红外 LED发射管则将调制后 的电信号转换为光信号, 同时向外发射红外信号。
作为进一歩优选地, 所述自驱动无线信号发射装置整体呈柔性结构, 并且可折叠加工。
按照本发明的另一方面, 还提供了相应的自驱动无线信号接收装置, 该装置包括电源单元以及无线信号接收端, 其特征在于:
所述电源单元呈柔性发电元件的形式并包括第一组件和第二组件, 其 中第一组件由高分子聚合物绝缘层和沉积在该高分子聚合物绝缘层上表面 的第一金属导电层共同组成, 并在该第一金属导电层的边缘形成有第一电 极; 第二组件由柔性基底和沉积在该柔性基底上表面的第二金属导电层共 同组成, 并在该第二金属导电层的边缘形成有第二电极; 第一、 第二组件 在其外侧边缘相联接, 并且所述高分子聚合物绝缘层的下表面与所述第二 金属导电层的上表面相互对置并具备一定间隙, 以此方式可通过按压和松 开第一、 第二组件的操作来产生供无线信号接收端工作的电能;
所述无线信号接收端与配套的无线信号发射端信号连接, 并利用所述 电源单元所提供的电能来接收来自无线信号发射端的无线信号且对其进行 判断处理, 由此实现无线信号接收过程。
作为进一歩优选地, 所述高分子聚合物绝缘层的材料选自聚对苯二甲 酸乙二醇酯、 聚四氟乙烯、 聚苯乙烯、 聚酰亚胺、 聚乙烯、 聚二甲基硅氧 垸、 氟化乙丙烯共聚物、 聚三氟氯乙烯、 聚偏二氟乙烯, 乙烯四氟乙烯共
聚物或聚甲基丙烯酸甲酯; 所述第一金属导电层的材料选自铜、 铝或者氧 化铟锡, 所述第二金属导电层的材料选自金、 银、 铜或者铝。
作为进一歩优选地, 所述无线信号接收端包括彼此电路连接的整流单 元、 储能单元和接收芯片, 其中整流单元用于将来自所述电源单元的交流 电流转换为直流电流; 储能单元用于对转换获得的直流电流予以收集储存; 接收芯片则用于利用所述储能单元所存储的电能来接收来自无线信号发射 端的无线信号并对其进行判断处理。
作为进一歩优选地, 所述自驱动无线信号接收装置整体呈柔性结构, 并且可折叠加工。
总体而言, 通过本发明所构思的以上技术方案与现有技术相比, 主要 具备以下的技术优点:
1、 通过采用柔性发电元件来替代各类无线信号收发装置中的电池并对 其整体系统进行结构优化, 能够充分、 便捷地利用人体自身的能量, 通过 简单操作即可保证无线信号收发操作所需的工作电能, 同时有效避免由于 电池耗尽而导致的各种不便;
2、 通过将无线信号发射装置中的电源与信号源模块予以整合, 能够在 在较短时间内产生足以驱动发射端的能量的同时还顺利实现自驱动功能, 从而使得整体结构更为简单紧凑, 有助于提高工作寿命, 并适用于各类恶 劣的应用环境;
3、 按照本发明的自驱动无线信号收发装置整体是柔性的, 可以弯曲折 叠并便有加工, 因此在应用上与传统的硬质装置相比具备更大的灵活性, 并具备性能稳定、 成本低和便于大批量制造等特点。
【附图说明】
图 1 是按照本发明的自驱动无线信号发射装置中电源与信号源单元的 整体构造示意图;
图 2a是对按照本发明的柔性发电元件予以单次按压后, 所产生的电流
随时间变化的曲线图;
图 2b是对图 5a中的电流峰进行积分所得到的积分电荷随时间变化的 示意图。
在所有附图中, 相同的附图标记用来表示相同的元件或结构, 其中: 11-第一组件 12-第二组件 111-高分子聚合物绝缘层 112-第一金 属导电层 113-第一电极 121-柔性基底 122-第二金属导电层 123-第二 电极
【具体实施方式】
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图 及实施例, 对本发明进行进一歩详细说明。 应当理解, 此处所描述的具体 实施例仅仅用以解释本发明, 并不用于限定本发明。 此外, 下面所描述的 本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可 以相互组合。
图 1 是按照本发明的自驱动无线信号发射装置中电源与信号源单元的 整体构造示意图。 如图 1中所示, 该电源与信号源单元 1呈柔性发电元件 的形式, 它可以由单个柔性发电元件构成, 或是彼此并联的多个柔性发电 元件共同构成, 并且在整个无线信号发射装置中除了作为工作电源之外, 还兼备作为控制无线信号发射的信号源的功能。
具体而言, 各个柔性发电元件 (或称之为柔性发电机) 包括第一组件
11和第二组件 12, 其中第一组件 11 由高分子聚合物绝缘层 111和沉积在 该高分子聚合物绝缘层 111上表面的第一金属导电层 112共同组成,并在该 第一金属导电层 112的边缘形成有第一电极 113; 第二组件 12由柔性基底 121和沉积在该柔性基底 121上表面的第二金属导电层 122共同组成,并在 该第二金属导电层 122的边缘形成有第二电极 123; 第一、第二组件在其外 侧边缘相联接, 并且所述高分子聚合物绝缘层 111 的下表面与所述第二金 属导电层 122 的上表面相互对置并具备一定间隙, 由此可通过按压和松开
第一、 第二组件的物理操作, 即可产生具备一定强度的交流电流, 该交流 电流同时作为控制无线信号发射的信号源被输送给与之电路相连的无线信 号发射端, 由此相应触发无线信号发射端来执行无线信号的发射操作。
作为本发明的自驱动无线信号发射装置中的另一功能组件, 无线信号 发射端同上述电源与信号源单元电路连接, 并按照本发明的一个优选实施 方式具体包括彼此电路相连的稳压芯片、 发射芯片和红外 LED发射管, 其 中稳压芯片用于将来自所述电源与信号源单元的交流电流信号转换为直流 电流信号, 同时予以稳压处理, 例如可采用 ASM1117-1.8芯片; 发射芯片 用于对转换后的直流电流信号进行调制,例如可采用 74HC00N的与非门芯 片作为核心元件; 红外 LED发射管则将调制后的电信号转换为光信号, 同 时向外发射红外信号。
按照本发明的另一优选实施方式, 所述高分子聚合物绝缘层的材料选 自聚对聚对苯二甲酸乙二醇酯、 聚四氟乙烯、 聚苯乙烯、 聚酰亚胺、 聚乙 烯、 聚二甲基硅氧垸、 氟化乙丙烯共聚物、 聚三氟氯乙烯、 聚偏二氟乙烯, 乙烯四氟乙烯共聚物或聚甲基丙烯酸甲酯; 所述第一金属导电层的材料选 自铜、 铝或者氧化铟锡, 所述第二金属导电层的材料选自金、 银、 铜或者 铝。 按照本发明的另一优选实施方式, 所述高分子聚合物绝缘层的下表面 还加工形成有多个微纳米的凹凸结构, 且其平均尺寸为 50纳米 ~200纳米。
下面选择以高分子聚合物绝缘层为聚对苯二甲酸乙二醇酯材质、 第一 金属导电层由铜构成、 柔性基底为纸质材质, 第二金属导电层由铝构成所 加工获得的柔性发电元件为例, 将其单次按压后并记录所产生的电流随时 间变化的曲线。 如图 2a和 2b中所示, 单次触发柔性发电元件时所产生的 电流峰宽约为 5毫秒, 这个过程所产生的积分电量是 4微库伦, 足以驱动 整个信号发射系统。
与上述无线信号发射装置相配套地, 本发明中还公开了相应的无线信 号接收装置, 该无线信号接收装置的电源单元同样呈柔性发电元件的形式,
并包括第一组件和第二组件, 其中第一组件由高分子聚合物绝缘层和沉积 在该高分子聚合物绝缘层上表面的第一金属导电层共同组成, 并在该第一 金属导电层的边缘形成有第一电极; 第二组件由柔性基底和沉积在该柔性 基底上表面的第二金属导电层共同组成, 并在该第二金属导电层的边缘形 成有第二电极; 第一、 第二组件在其外侧边缘相联接, 并且所述高分子聚 合物绝缘层的下表面与所述第二金属导电层的上表面相互对置并具备一定 间隙, 以此方式可通过按压和松开第一、 第二组件的操作来产生供无线信 号接收端工作的电能。 其具体构造与图 1中类似, 因此在此不再赘述。
作为本发明的自驱动无线信号接收装置中的另一功能组件, 无线信号 接收端同上述电源单元电路连接, 并按照本发明的一个优选实施方式具体 包括彼此电路连接的整流单元、 储能单元和接收芯片, 其中整流单元用于 将来自所述电源单元的交流电流转换为直流电流; 储能单元用于对转换获 得的直流电流予以收集储存; 接收芯片则用于利用所述储能单元所存储的 电能来接收来自无线信号发射端的无线信号并对其进行判断处理。 以此方 式, 能够通过人体自身的简单操作, 譬如多次按压柔性发电元件即可获得 足以驱动信号接收端工作的电能并预先存储在储能单元中备用, 由此可结 构紧凑、 便于操控地实现无线信号接收的自驱动过程。
综上所述, 通过本发明的自驱动无线信号收发装置能够在不依赖电池 供能的情况下即可实现无线收发的自驱动功能, 同时在该装置中电源也是 信号源, 实现了电源与信号源的整合, 相应与现有的无线收发装置相比, 整体结构更为简单紧凑, 有助于提高工作寿命, 并适用于各类恶劣的应用 环境。 此外, 该装置整体上是柔性的可以弯曲折叠同时也便于加工, 在应 用上相比与硬质的传统装置具有更大的灵活性; 最后, 柔性纳米发电机产 生的能量较大, 可以有效地利用人体产生的动能, 能够在较短的时间内产 生足够驱动发射端的能量, 同时具备性能稳定、 工作寿命长、 低成本、 便 于大批量加工制造等特点。
本领域的技术人员容易理解, 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神和原则之内所作的任何修改、
Claims
1、 一种自驱动无线信号发射装置, 该装置包括电源与信号源单元、 以 及无线信号发射端, 其特征在于:
所述电源与信号源单元呈柔性发电元件的形式并包括第一组件和第二 组件, 其中第一组件由高分子聚合物绝缘层和沉积在该高分子聚合物绝缘 层上表面的第一金属导电层共同组成, 并在该第一金属导电层的边缘形成 有第一电极; 第二组件由柔性基底和沉积在该柔性基底上表面的第二金属 导电层共同组成, 并在该第二金属导电层的边缘形成有第二电极; 第一、 第二组件在其外侧边缘相联接, 并且所述高分子聚合物绝缘层的下表面与 所述第二金属导电层的上表面相互对置并具备一定间隙, 以此方式可通过 按压和松开第一、 第二组件的操作来产生交流电流信号, 同时将其作为控 制无线信号发射的信号源;
所述无线信号发射端同所述电源与信号源单元电路连接, 用于接收来 自电源与信号源单元的交流电流信号, 然后依照该交流电流信号来相应驱 动无线信号发射管, 由此实现无线信号的发射操作。
2、 如权利要求 1所述的自驱动无线信号发射装置, 其特征在于, 所述 高分子聚合物绝缘层的材料选自聚对苯二甲酸乙二醇酯、 聚四氟乙烯、 聚 苯乙烯、 聚酰亚胺、 聚乙烯、 聚二甲基硅氧垸、 氟化乙丙烯共聚物、 聚三 氟氯乙烯、 聚偏二氟乙烯, 乙烯四氟乙烯共聚物或聚甲基丙烯酸甲酯; 所 述第一金属导电层的材料选自铜、 铝或者氧化铟锡, 所述第二金属导电层 的材料选自金、 银、 铜或者铝。
3、 如权利要求 1或 2所述的自驱动无线信号发射装置, 其特征在于, 所述高分子聚合物绝缘层的下表面还加工形成有多个微纳米的凹凸结构, 且其平均尺寸为 50纳米 ~200纳米。
4、 如权利要求 1-3任意一项所述的自驱动无线信号发射装置, 其特征
在于, 所述电源与信号源单元由单个柔性发电元件或彼此并联的多个柔性 发电元件共同构成。
5、 如权利要求 1-4任意一项所述的自驱动无线信号发射装置, 其特征 在于, 所述无线信号发射端包括彼此电路相连的稳压芯片、 发射芯片和红 外 LED发射管, 其中稳压芯片用于将来自所述电源与信号源单元的交流电 流信号转换为直流电流信号, 同时予以稳压处理; 发射芯片用于对转换后 的直流电流信号进行调制; 红外 LED发射管则将调制后的电信号转换为光 信号, 同时向外发射红外信号。
6、 如权利要求 5所述的自驱动无线信号发射装置, 其特征在于, 所述 自驱动无线信号发射装置整体呈柔性结构, 并且可折叠加工。
7、 一种自驱动无线信号接收装置, 该装置包括电源单元以及无线信号 接收端, 其特征在于:
所述电源单元呈柔性发电元件的形式并包括第一组件和第二组件, 其 中第一组件由高分子聚合物绝缘层和沉积在该高分子聚合物绝缘层上表面 的第一金属导电层共同组成, 并在该第一金属导电层的边缘形成有第一电 极; 第二组件由柔性基底和沉积在该柔性基底上表面的第二金属导电层共 同组成, 并在该第二金属导电层的边缘形成有第二电极; 第一、 第二组件 在其外侧边缘相联接, 并且所述高分子聚合物绝缘层的下表面与所述第二 金属导电层的上表面相互对置并具备一定间隙, 以此方式可通过按压和松 开第一、 第二组件的操作来产生供无线信号接收端工作的电能;
所述无线信号接收端与配套的无线信号发射端信号连接, 并利用所述 电源单元所提供的电能来接收来自无线信号发射端的无线信号且对其进行 判断处理, 由此实现无线信号接收过程。
8、 如权利要求 7所述的自驱动无线信号接收装置, 其特征在于, 所述 高分子聚合物绝缘层的材料选自聚对苯二甲酸乙二醇酯、 聚四氟乙烯、 聚 苯乙烯、 聚酰亚胺、 聚乙烯、 聚二甲基硅氧垸、 氟化乙丙烯共聚物、 聚三
氟氯乙烯、 聚偏二氟乙烯, 乙烯四氟乙烯共聚物或聚甲基丙烯酸甲酯; 所 述第一金属导电层的材料选自铜、 铝或者氧化铟锡, 所述第二金属导电层 的材料选自金、 银、 铜或者铝。
9、 如权利要求 8所述的自驱动无线信号接收装置, 其特征在于, 所述 无线信号接收端包括彼此电路连接的整流单元、 储能单元和接收芯片, 其 中整流单元用于将来自所述电源单元的交流电流转换为直流电流; 储能单 元用于对转换获得的直流电流予以收集储存; 接收芯片则用于利用所述储 能单元所存储的电能来接收来自无线信号发射端的无线信号并对其进行判 断处理。
10、 如权利要求 8或 9所述的自驱动无线信号接收装置, 其特征在于, 所述自驱动无线信号接收装置整体呈柔性结构, 并且可折叠加工。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310306475.9 | 2013-07-19 | ||
CN201310306475.9A CN103441775B (zh) | 2013-07-19 | 2013-07-19 | 一种自驱动无线信号收发装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015007160A1 true WO2015007160A1 (zh) | 2015-01-22 |
Family
ID=49695451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/081489 WO2015007160A1 (zh) | 2013-07-19 | 2014-07-02 | 一种自驱动无线信号收发装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103441775B (zh) |
WO (1) | WO2015007160A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103441775B (zh) * | 2013-07-19 | 2015-04-15 | 华中科技大学 | 一种自驱动无线信号收发装置 |
CN104282136A (zh) * | 2014-09-24 | 2015-01-14 | 华中科技大学 | 一种自驱动遥控器 |
CN107328494B (zh) * | 2017-06-26 | 2020-04-10 | 华中科技大学 | 一种微弹体纳米压力传感器及健康监测系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101017989A (zh) * | 2007-02-28 | 2007-08-15 | 西南科技大学 | 基于压电振动发电的自供电微型无线传感网络节点 |
CN102749158A (zh) * | 2012-04-13 | 2012-10-24 | 纳米新能源(唐山)有限责任公司 | 一种自供电压力传感器 |
CN103441775A (zh) * | 2013-07-19 | 2013-12-11 | 华中科技大学 | 一种自驱动无线信号收发装置 |
CN203352580U (zh) * | 2013-07-19 | 2013-12-18 | 华中科技大学 | 一种自驱动无线信号收发装置 |
CN203352483U (zh) * | 2013-07-19 | 2013-12-18 | 华中科技大学 | 一种基于柔性发电元件的自驱动定位装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8255004B2 (en) * | 2009-02-18 | 2012-08-28 | Qualcomm Incorporated | Methods and systems for communicating using variable temperature control |
CN101908902A (zh) * | 2009-06-08 | 2010-12-08 | 深圳富泰宏精密工业有限公司 | 无线通信装置及其功放效率控制模块 |
CN102377446A (zh) * | 2011-08-22 | 2012-03-14 | 华容电子(昆山)有限公司 | 无线usb搜寻网络卡 |
-
2013
- 2013-07-19 CN CN201310306475.9A patent/CN103441775B/zh active Active
-
2014
- 2014-07-02 WO PCT/CN2014/081489 patent/WO2015007160A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101017989A (zh) * | 2007-02-28 | 2007-08-15 | 西南科技大学 | 基于压电振动发电的自供电微型无线传感网络节点 |
CN102749158A (zh) * | 2012-04-13 | 2012-10-24 | 纳米新能源(唐山)有限责任公司 | 一种自供电压力传感器 |
CN103441775A (zh) * | 2013-07-19 | 2013-12-11 | 华中科技大学 | 一种自驱动无线信号收发装置 |
CN203352580U (zh) * | 2013-07-19 | 2013-12-18 | 华中科技大学 | 一种自驱动无线信号收发装置 |
CN203352483U (zh) * | 2013-07-19 | 2013-12-18 | 华中科技大学 | 一种基于柔性发电元件的自驱动定位装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103441775B (zh) | 2015-04-15 |
CN103441775A (zh) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bai et al. | Hybrid, multi-source, and integrated energy harvesters | |
CN110601331B (zh) | 一种基于摩擦纳米发电机的手机自充电系统 | |
Hamilton | Recent advances in energy harvesting technology and techniques | |
CN109243830A (zh) | 一种自供电电致变色超级电容器 | |
WO2015007160A1 (zh) | 一种自驱动无线信号收发装置 | |
WO2017097038A1 (zh) | 一种自主供电的可穿戴设备 | |
CN102916611B (zh) | 一种柔性发电装置及其制造方法 | |
CN201369687Y (zh) | 一种自供电的移动终端 | |
WO2014166286A1 (zh) | 采用纳米摩擦发电机的发电系统 | |
CN104104262B (zh) | 发电系统 | |
CN201839826U (zh) | 自发电服装 | |
WO2014101395A1 (zh) | 儿童玩具 | |
CN202818155U (zh) | 一种柔性发电装置 | |
CN106487084A (zh) | 一种基于物联网的自供电定位通信装置 | |
CN101533931A (zh) | 多功能便携式充电器 | |
WO2002099956A3 (en) | Micro power supply with integrated charging capability | |
CN210324121U (zh) | 一种基于自发电的无线键盘 | |
CN203352580U (zh) | 一种自驱动无线信号收发装置 | |
CN203574414U (zh) | 一种移动电源 | |
Hussain et al. | Flexible triboelectric nanogenerator based on paper, PET and aluminum | |
CN202735965U (zh) | 一种自发电无线键盘 | |
CN112181121A (zh) | 一种自驱动外部中断休眠单片机唤醒系统及方法 | |
CN201654986U (zh) | 无线遥控装置 | |
CN204070964U (zh) | 自发电行李箱 | |
CN204965719U (zh) | 一种微型振动发电机供电的无线遥控收发系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14825686 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14825686 Country of ref document: EP Kind code of ref document: A1 |