WO2015007121A1 - 一种医疗器械及其应用 - Google Patents

一种医疗器械及其应用 Download PDF

Info

Publication number
WO2015007121A1
WO2015007121A1 PCT/CN2014/079705 CN2014079705W WO2015007121A1 WO 2015007121 A1 WO2015007121 A1 WO 2015007121A1 CN 2014079705 W CN2014079705 W CN 2014079705W WO 2015007121 A1 WO2015007121 A1 WO 2015007121A1
Authority
WO
WIPO (PCT)
Prior art keywords
duodenal
ampulla
adhesive sheet
biomimetic
microarray
Prior art date
Application number
PCT/CN2014/079705
Other languages
English (en)
French (fr)
Inventor
万平
Original Assignee
Wan Ping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wan Ping filed Critical Wan Ping
Priority to AU2014292687A priority Critical patent/AU2014292687B2/en
Priority to GB1602663.5A priority patent/GB2532163B/en
Priority to CA2918492A priority patent/CA2918492A1/en
Priority to US14/906,239 priority patent/US20160158052A1/en
Priority to NZ717105A priority patent/NZ717105A/en
Publication of WO2015007121A1 publication Critical patent/WO2015007121A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/0076Implantable devices or invasive measures preventing normal digestion, e.g. Bariatric or gastric sleeves

Definitions

  • the invention relates to a medical device built in a digestive tract, in particular to a duodenal inner membrane for preventing obesity and diabetes without damaging intestinal tissue.
  • Gastric bypass surgery can treat obesity. Recently, it has been found that obese patients not only have a significant weight loss after undergoing the operation, but also have a concomitant 2 Type 2 diabetes has also been alleviated (Chinese Journal of Diabetes, 2011, 3(3): 205-208 ): It is not necessary to inject insulin after surgery, and it is not necessary to take a variety of drugs to solve the problem of blood sugar, and the diabetic complications such as hypertension, obesity and dyslipidemia are obviously improved. Analysis of 22094 cases of gastric bypass surgery: 84% Type 2 diabetes is completely reversed after surgery, and most patients discontinue oral medication or insulin therapy before discharge (Chinese Journal of Medicine, 2011, 1 (21): 3-5 ). Foreign countries, including the US government, are actively promoting the development of this operation.
  • Prior art invention patent 'duodeal casing and its conveyor' (application date 2010.04.09, authorization notice day 2012.01.11)
  • the metal skeleton that covers the outer casing only relies on 'memory alloy' and the one-time static 'expansion' is 'close enough' to the intestinal wall, 'in a bowl and funnel type' '
  • the metal skeleton of the duodenal bulb segment' is 'adapted to the duodenal bulb'
  • the duodenum is active, especially on the upper edge of the duodenal bulb.
  • the metal skeleton is difficult to expand elastically. The distal part of the duodenum moves.
  • Prior art utility model patent 'duodenum - jejunal built-in casing' (application date 2010.12.06, authorization notice day 2011.09.28)
  • the hollow metal tube is made into a spiked fixing claw, 'on the wire of the ring bracket', tightly 'fixed', It is also necessary to plunge into the intestinal mucosa and directly damage the intestinal tissue.
  • the prior art (utility model patent 'duodenum - jejunal built-in casing') is designed with a tight line and a tight line ' Placed on the top of the ring bracket ', 'can be wound around the mouth for a week, or can be wound up for more than a week', but implanted in the body, especially considering only 'making is simple, closing performance'
  • the spur-fixed claw made of a hollow metal tube pierces the inner wall of the duodenal bulb cavity on the static annular stent, and the loosening, exudation and adhesion are repeated repeatedly with the movement of the gastrointestinal tract.
  • Prior art (utility model patent 'duodenum - The jejunal built-in casing ') only considers the 'smooth surface, soft and compact' on the hose material. It does not involve the elastic expansion and contraction of the circular stent for the duodenal bulb movement, nor does it involve the preparation of the hose with elastic material; The inelastic tight line that secures 'on the duodenal bulb' along the 'ring top' limits further limits the compliance of the annular stent to duodenal bulb activity.
  • Prior art invention patent 'duodeal casing and its conveyor' application date 2010.04.09, authorization notice day 2012.01.11
  • the prior art invention patent 'a device for delaying gastric emptying and regulating intestinal and pancreatic metabolism' application date 2012.02.22, application publication date 2012.07.11
  • the metal skeleton is easy to damage the intestinal mucosa and easily stimulate the intestinal wall to induce nausea or / and vomiting.
  • Prior art invention patent 'duodeal casing and its conveyor' (application date 2010.04.09, authorization notice day 2012.01.11 )
  • the outer casing covering the outer casing only depends on the 'memory alloy' and the one-time static 'expansion' of the 'bowl and funnel type' of the 'metal skeleton of the duodenal bulb segment'
  • the metal skeleton is difficult to elastically expand and moves toward the distal end of the duodenum.
  • the upper segment of the duodenal inner membrane of the present invention may be wavy or V-shaped or trapezoidal or wall-type ampulla elastic membrane, the outer surface of the ampulla elastic membrane is attached with a biomimetic microarray adhesive sheet, which can flexibly or flexibly move according to the movement of the duodenum and the ball, which can solve this problem. problem.
  • Prior art invention patent 'duodeal casing and its conveyor' application date 2010.04.09, authorization notice day 2012.01.11
  • the metal skeleton in the duodenal bulb hinders the common duodenal papilla of the bile duct and pancreatic duct at the lower end of the duodenal descending.
  • the duodenal tunica ampulla of the present invention is fixed by a biomimetic microarray adhesive sheet, and does not block the duodenal nipple of the common bile duct and the pancreatic duct at the lower end of the duodenal descending portion, which can solve the problem. problem.
  • the prior art (utility model patent 'duodenum - jejunal built-in sleeve') is only considered in the hose material'
  • the surface is smooth, soft and compact ', does not involve the elastic expansion and contraction of the circular stent for the duodenal bulb movement, nor does it involve the preparation of the hose with elastic material; 'fixed' on the duodenal bulb along the top of the circular stent '
  • the inelastic tight line limits the compliance of the ring stent to the duodenal bulb activity.
  • annular stent and its spiked fixation claw are placed on the upper edge of the duodenal bulb, when the gastric pyloric dilatation or retraction affects the activity of the duodenal bulb along the lower part, it is bound to hinder the twelve fingers.
  • the activity of the intestinal tract especially when the gastric pyloric expansion affects the activity of the duodenal bulb, the ring-shaped stent and its spur-fixed claws cannot expand, and the spur-fixed claws inserted into the mucosa of the duodenal bulb are Inwardly, the mucosal tissue of the duodenal bulb is clamped inwardly, and the whole body is in opposition to other tissues such as the submucosal muscle tissue of the duodenal bulb that is outwardly centrifugally expanded. Obviously, this kind of change or change is small.
  • the annular stent and the spiked fixation paw are detrimental to the duodenal bulb when the gastric pyloric dilatation or retraction affects the movement of the duodenal bulb along the lower portion; if the annular stent and The spiked fixed claw is placed at the lower edge of the duodenal bulb, and the pylorus of the stomach is dilated or retracted, although the lower edge of the duodenal bulb is less affected by the upper edge of the duodenal bulb, but even the ring is ignored. Scaffold and its spiked claws damage the duodenal bulb , The original cover of duodenal role it will disappear.
  • the ampulla elastic film and the attached bionic microarray adhesive sheet of the invention can flexibly or elastically conform to the movement of the duodenum and the ball, and neither damage the duodenal bulb tissue. Covering the duodenal bulb, this problem can be solved.
  • the ampulla elastic film of the present invention and the attached biomimetic microarray adhesive sheet do not affect the compliance of the duodenum and the ball movement, and the endoscopic forceps are used when the inner film is recovered.
  • the duodenal inner coating of the present invention can be recovered by easily desorbing with a near vertical force.
  • a duodenal inner coating said duodenal inner coating, all of which may be obtained from biocompatible biodegradable or non-biodegradable materials or/and strong hydrophobic materials.
  • the duodenal inner membrane can be divided into a ampulla and a tubular portion, the ampulla is located in the duodenal bulb, and the tubular portion can be extended to the jejunum.
  • the diameter, length and thickness of the tubular portion are matched with duodenum and jejunum in different populations, and the optimized diameter is 10-60 mm.
  • the length is matched with the duodenum and can extend to a segment of the jejunum that is continuous with the duodenum, the length is 80-700 mm, and the thickness of the coating in the tubular portion is 0.005 mm -1 mm.
  • the ampulla is a portion of the trumpet-shaped continuous tubular portion, and the optimized ampulla may also be columnar, spherical, or waist-shaped.
  • the thickness of the tampon inner coating is 0.005 mm -1 mm and the height is 6 mm. -100mm, the trumpet-shaped connecting tubular part is a progressive open acute angle, the optimized angle is 5 °C -65 °C, and its thickness, height and angle are matched with different groups of people.
  • the preparation of the duodenum and the tubular part of the duodenum can be electrospinning, electrostatic spraying, casting, laminating, micro-nano process or / and the release process
  • the material may be biocompatible, degradable or biocompatible, non-degradable or / or / and strongly hydrophobic or other well known and combinations thereof.
  • the duodenum inner covering ampulla may have a wave shape or an upper edge.
  • the biomimetic microarray adhesive sheet is obtained from a biocompatible biodegradable or non-biodegradable material or/and a hydrophobic material, Choice of silicone rubber, polyurethane, multi-walled carbon nanotubes, polyester resin, polyimide, elastomer, epoxy resin, polydimethylsiloxane, polystyrene, polytetrafluoroethylene, special Fluorine, polydimethylsiloxane, parylene, polyurethane and ethylene terephthalate, polymethyl methacrylate, etc.
  • the biomimetic microarray adhesive sheet can be stitched, bonded, anchored, braided, hooked, riveted, thermoplastic, frozen, pneumatic, electrostatic, etc.
  • the ampulla of the inner film is attached to the ampulla of the inner film, and the precise arrangement may be circular, olive, trapezoidal, square, triangular, cylindrical, diamond, shaped, etc. or a combination thereof. It may be a row or rows of rows, the biomimetic microarray adhesive sheet may be next to each other or a combination thereof, and the binder may be biocompatible polyurethane, polyurethane, silicone, fluorine Ethylene propylene or the like or a combination thereof or other known materials and combinations thereof.
  • the biomimetic system can be prepared by preparing the biomimetic microarray adhesive sheet attached to the duodenal tunica ampulla.
  • Medium Inductively Coupled Plasma (ICP) deep etching technique for erecting an upright microarray template on a silicon wafer, using polydimethoxysiloxane (PDMS) Casting onto a silicon template column array, peeling and demolding after curing, to obtain a polydimethoxysiloxane (PDMS) microarray template, and casting liquid polyurethane or/and other biocompatible materials in polydimethylox Silicone PDMS) on the microporous template, curing and demolding, resulting in a polyurethane biomimetic adhesion microarray.
  • Adhesion microarrays are prepared without the use of other materials and other methods.
  • the biomimetic microarray adhesive sheet has a suitable contact surface, and controls the ratio of the length of the pile to the length of the pile and the gap between the piles to avoid mutual adhesion; as an optimization, the ratio of the length of the pile is 0.1-5:20, length 0.1-200 ⁇ m, and fluff spacing 0.1-0.1 ⁇ m.
  • the preparation process of the biomimetic microarray adhesive sheet can also be performed by atomic force microscopy: flat paraffin, using a conical tip of an atomic force microscope probe to inscribe micropores on the surface, pouring liquid raw material into the hole, and cooling The paraffin is removed, and the surface of the polymer after demolding has microprotrusions similar in size and similar in size to the subdivision fork structure on the gecko bristles.
  • the preparation process of the biomimetic microarray adhesive sheet can also be injection molded by using an alumina template hole: aluminum foil, placed in an acidic electrolyte, anodized, and formed into a porous alumina plate, and the pore diameter and the pore spacing can be controlled by an oxidation voltage and an acidic solution.
  • Other mold injection methods can also be used.
  • the preparation process of the biomimetic microarray adhesive sheet can also be carried out by electrostatic induction etching: a polymer film is prepared on the smooth silicon wafer by the solution ruthenium film method, and the lower electrode is taken, and another silicon wafer is used as the upper electrode to be polymerized. An air gap is left between the surface of the object and the upper electrode to heat the polymer above the glass transition temperature, and a DC voltage is applied to the capacitor to generate an electric field strength to form a regular microstructure, which is cooled to room temperature to obtain a corresponding polymer. If the upper electrode itself has a microstructure, the polymer can accurately replicate the same protruding microstructure.
  • the preparation process of the biomimetic microarray adhesive sheet can also be performed by inductively coupled plasma etching: a silicon template, which is passivated and etched with a special gas, and can have a CRYO process and a BOSCH process.
  • CRYO process below -100 °C
  • passivation and etching are carried out simultaneously, and the gas can be SF 6 /O 2 .
  • BOSCH process ambient temperature, etching and passivation are carried out separately, SF 6 can be used for etching gas, and C 4 /F 8 can be used for passivation gas.
  • the preparation process of the biomimetic microarray adhesive sheet can also be performed by photolithography (electron beam projection lithography, nanoimprint lithography, etc.): artificially or computerly drawing a mask having a size tens or hundreds of times larger than the actual size, The actual working template is reduced, and the template is attached to the silicon substrate, and the photon beam is patterned on the silicon substrate through the template to form the same biomimetic array shape as the template.
  • photolithography electron beam projection lithography, nanoimprint lithography, etc.
  • the preparation process of the biomimetic microarray adhesive sheet can also be prepared by using array carbon nanotubes: chemical vapor deposition method, at high temperature, decomposing the carbon-containing gas, and the decomposed carbon atoms are directed to form ordered carbon under the action of the catalyst.
  • Nanotube array Chemical vapor deposition can be isothermal chemical deposition (TCVD) , ion enhanced chemical deposition (PECVD), floating catalytic chemical vapor deposition (FCCVD), and the like.
  • the preparation process of the biomimetic microarray adhesive sheet can also be carried out by reactive plasma dry etching: silicon wafer, preparing a micron-thick polymer film, and etching the aluminum film with an electron beam to form a microstructure.
  • the array using a large difference in the etching rate of the oxide plasma between the alumina and the polymer, is dry etched with an oxygen plasma to replicate the microstructure transfer on the aluminum film onto the polymer film.
  • the preparation process of the biomimetic microarray adhesive sheet may also be a soft etching method, a directional self-assembly method based on micro/nano fluff growth, or the like.
  • the inner membrane tubular part or / And the ampulla can be stitched, bonded, anchored, woven, hooked, nailed, thermoplastic, frozen, pneumatic, static, etc. or / And combinations thereof or other known methods plus one or root longitudinal or oblique or crossed or spiral or shaped bones or combinations thereof, which can strengthen, support, expand and prevent distortion of the inner film, and It has the function of supporting other inner coatings and supporting each other.
  • the duodenal canopy and the tubular portion of the duodenum can be gathered or folded into a spherical or cylindrical shape or a capsule shape or a spindle shape in vitro, and the folding method can be that the distal end of the inner covering is folded proximally. Or curl or cover, then the ampulla is turned inward.
  • the duodenal inner membrane can be endoscopic and X-ray fluoroscopy or other medical or And the biological observation equipment and instrument-assisted feeding into the duodenum through the upper digestive tract, the device can be multi-claw instruments (the number of claws can be matched with the precise arrangement of the bionic microarray adhesive sheets) through endoscopic forceps or / And other instruments extend the center to open the ampulla of the varus, then reset the varus of the inverted ampulla, position it in the duodenal bulb, adhere, and then use the instrument or / and / or / and / or / and Gravity or / And other methods gently push the distal end of the duodenal canal to the target site.
  • multi-claw instruments the number of claws can be matched with the precise arrangement of the bionic microarray adhesive sheets
  • endoscopic forceps or / And other instruments extend the center to open the ampulla of the varus, then reset the varus of the inverted ampulla, position it in the duo
  • the ampulla of the inner membrane is placed in the upper part of the duodenum, and the lower edge of the ampulla is in the stomach of the duodenal papilla and the nipple (or small nipple).
  • the bile duct pancreatic duct fluid is not blocked from entering the intestinal lumen.
  • the tubular portion of the inner membrane is located at the upper part of the duodenum, followed by the duodenal descending portion, the horizontal portion and the ascending portion, and the elongated tubular portion is located at the jejunum portion of the duodenal ascending portion.
  • the duodenal inner membrane When the contents of the intestines move, the duodenal inner membrane does not desorb due to the lack of vertical traction. When the duodenal bulb expands and expands, there is no opposite in the duodenum. Near the vertical pulling force, the duodenal inner membrane will not desorb.
  • a multi-claw instrument (the number of claws can be matched with the precise arrangement of the biomimetic microarray adhesive sheet) can be adjusted by endoscopic forceps or And other instruments are inserted from the upper edge of the ampulla, pulling the force close to the vertical direction, about 90° from the upper edge of the ampulla The angle of the corner is easily removed and recovered, avoiding avulsion and other damage to the intestinal tissue.
  • the upper edge of the abdomen of the ampulla is turned inside, and the detached biomimetic microarray adhesive sheet is adhered to other parts of the ampulla itself to easily remove and recover the duodenal lining.
  • the duodenal inner membrane and the biomimetic microarray adhesive sheet thereof are soft, smooth, elastic, and have good histocompatibility, no acute systemic reaction, no chronic systemic reaction, no acute local reaction, No chronic local reactions.
  • the duodenal inner membrane divides the chyme and the bile and pancreatic juice in the body, avoids digestion, absorption and metabolism of the gastric effluent directly in the duodenum, and can be prepared to prevent obesity and damage the intestinal tissue. Medical devices for diabetes.
  • the length, thickness, elastic force, shape, ratio of length to fluff, length of fluff, diameter of fluff, and spacing of fluff in the duodenum inner covering are all reference values, and the actual manufacturing can be specifically designed according to needs.
  • an intraduodenal membrane which may be biocompatible biodegradable or non-biodegradable material or And strong hydrophobic material, mainly composed of elastic ampulla and tubular part, the ampulla is located in the duodenal bulb, the tubular part can continue to the jejunum, and the ampulla contains strong adhesion through the force direction without entering the intestinal tissue.
  • the biocompatible biomimetic microarray adhesive sheet can be easily removed and the upper part of the duodenal inner membrane can be wavy or V Type or trapezoidal or wall-type ampulla elastic membrane, the ampulla attached to the biomimetic microarray adhesive sheet can be flexibly or elastically moved in accordance with the movement of the duodenum and the ball, and the ampulla and the tubular portion can be together in vitro. It is folded or folded into a spherical or cylindrical shape or a capsule shape or a spindle shape.
  • the biomimetic microarray adhesive sheet has small area, thin thickness, strong adhesion without sticking into the mucous membrane, and the force application angle of the intestinal contents is difficult to be desorbed, and the angle of application of the endoscopic forceps can be easily desorbed and recovered. With installation, and repeated adhesion and desorption.
  • the biomimetic microarray adhesive sheet has the advantages of high adhesion, good stability, strong adaptability to materials and shapes, good self-cleaning property, no damage and pollution to intestinal tissues, and functions with other parts and components. Supported by each other, and prepared into a medical device for preventing obesity and diabetes without damaging intestinal tissues.
  • the duodenal inner membrane of the present invention can flexibly or elastically conform to the movement of the duodenum and the ball, and does not damage the duodenal tissue in both static and dynamic conditions. It avoids the incarceration in the soft intestine and does not hinder the bile duct and pancreatic duct effluent from entering the intestine.
  • Utility model patent with prior art 'duodenum - jejunal built-in casing' application date 2010.12.06, authorization announcement date 2011.09.28
  • prior art invention patent 'a duodenal casing and preparation method thereof ' Application date 2012.05.10, application publication date 2012.10.03
  • the above invention patent 'Duodenal casing and its conveyor' Application date 2010.04.09 , authorization announcement date 2012.01.11
  • utility model patent 'duodenum - jejunal built-in casing' application date 2010.12.06, authorization announcement day 2011.09.28
  • the duodenal inner membrane is not only desorbed and recovered, but also does not damage the intestinal tissue, and can be repeatedly used.
  • Figure 1 is a schematic diagram of the structure.
  • the parts or parts indicated by the reference numerals in Figure 1 are: 1- elastic ampulla; 2- biomimetic microarray adhesive sheet; 3- Tubular section.
  • the present invention provides an intraduodenal coating, all of which may be made of a biocompatible biodegradable or non-biodegradable material or / and strong hydrophobic materials are obtained.
  • the duodenal inner membrane can be divided into a ampulla 1 and a tubular portion 3, the ampulla 1 is located in the duodenal bulb, and the tubular portion 3 can be extended to the jejunum, the ampulla 1
  • the biomimetic microarray adhesive sheet 2 is attached to the outside.
  • the diameter, length and thickness of the tubular portion 3 are matched with duodenum and jejunum in different populations, and the optimized diameter is 10-60 mm.
  • the length is matched with the duodenum and can extend to a segment of the jejunum that is continuous with the duodenum, the length is 80-700 mm, and the thickness of the coating in the tubular portion 3 is 0.005 mm -1 mm.
  • the ampulla 1 The portion of the ampulla 1 that is horn-connected to the tubular portion 3 can also be cylindrical, spherical, or waist-shaped.
  • the thickness of the inner lining of the ampulla 1 is 0.005 mm -1 mm, and the height is 6mm -100mm, the trumpet-shaped connecting tubular part 3 is a progressive open acute angle, the optimized angle is 5 °C -65 °C, and its thickness, height and angle are matched with different groups of people.
  • the upper edge of the ampulla 1 may be a wave or V-shaped or trapezoidal or wall-type elastic film.
  • the biomimetic microarray adhesive sheet 2 is obtained from a biocompatible biodegradable or non-biodegradable material or/and a hydrophobic material.
  • a biocompatible biodegradable or non-biodegradable material or/and a hydrophobic material Choice of silicone rubber, polyurethane, multi-walled carbon nanotubes, polyester resin, polyimide, elastomer, epoxy resin, polydimethylsiloxane, polystyrene, polytetrafluoroethylene, special Fluorine, polydimethylsiloxane, parylene, polyurethane and ethylene terephthalate, polymethyl methacrylate, etc. or combinations and other suitable materials known in the art may be in the shape of a circle or an olive. Shape, trapezoid, square, triangle, column, diamond, profile, etc.
  • the size can be 1 square nanometer or more, or a combination of them
  • the top end of the adherent fiber fluff may be curved (shovel-like) or flat-headed or rounded indented or hierarchical structure or other shapes and structures, and combinations thereof.
  • the biomimetic microarray adhesive sheet 2 Can be attached to the inner film pot by stitching, bonding, anchoring, weaving, hooking, nailing, thermoplastic, freezing, air pressure, static electricity, etc. or/and combinations thereof or other known methods, and the like, and combinations thereof.
  • Abdomen 1 The precise arrangement may be circular, olive, trapezoidal, square, triangular, cylindrical, diamond, shaped, or the like, or a combination thereof, which may be one row or more rows, and the biomimetic microarray adhesive sheet 2
  • the adhesive may be a compact, separate or the like, or a combination thereof
  • the binder may be a biocompatible polyurethane, polyurethane, silicone, fluorinated ethylene propylene, or the like, or a combination thereof, or other known materials, and combinations thereof.
  • the preparation of the duodenal inner covering ampulla 1 attached to the biomimetic microarray adhesive sheet 2 can be used with a microelectromechanical system ( MEMS) Inductively Coupled Plasma (ICP) deep etching technique for erecting an upright microarray template on a silicon wafer, using polydimethoxysiloxane (PDMS) Casting onto a silicon template column array, peeling and demolding after curing, to obtain a polydimethoxysiloxane (PDMS) microarray template, and casting liquid polyurethane or/and other biocompatible materials in polydimethylox Silicone PDMS) on the microporous template, curing and demolding, resulting in a polyurethane biomimetic adhesion microarray.
  • Adhesion microarrays are prepared without the use of other materials and other methods.
  • biomimetic microarray adhesive sheet 2 With suitable contact surface, and control the ratio of the length of the fluff and the spacing of the fluff to avoid mutual adhesion; as an optimization, the ratio of the length of the fluff is 0.1-5:20, the length is 0.1-200 ⁇ m, and the interstitial spacing is 0.1-30.0 ⁇ m.
  • the preparation process of the biomimetic microarray adhesive sheet 2 can also be performed by atomic force microscopy: flat paraffin, the micropores are carved on the surface by the conical tip of the atomic force microscope probe, and the liquid raw material is poured into the hole. Cold, paraffin removal, the surface of the polymer after demolding has microprotrusions similar in size and similar in size to the subdivision forks on the gecko bristles.
  • the preparation process of the biomimetic microarray adhesive sheet 2 can also be injection molded with an alumina template hole: aluminum foil, placed in an acidic electrolyte, anodized, formed into a porous alumina plate, and the pore size and pore spacing can be controlled by an oxidation voltage and an acidic solution. .
  • Other mold injection methods can also be used.
  • an electrostatic induction etching method can also be used: a polymer film is prepared on a smooth silicon wafer by a solution ruthenium film method, and a silicon wafer is used as an upper electrode. An air gap is left between the surface of the polymer and the upper electrode, the polymer is heated to a temperature above the glass transition temperature, and a DC voltage is applied to the capacitor to generate an electric field strength to form a regular microstructure, which is cooled to room temperature to obtain a corresponding polymer. If the upper electrode itself has a microstructure, the polymer can accurately replicate the same protruding microstructure.
  • the preparation process of the biomimetic microarray adhesive sheet 2 can also be performed by an inductively coupled plasma etching technique: a silicon template, which is passivated and etched with a special gas, and can have a CRYO process and a BOSCH process.
  • CRYO process below -100 °C
  • passivation and etching are carried out simultaneously, and the gas can be SF 6 /O 2 .
  • BOSCH process ambient temperature, etching and passivation are carried out separately, SF 6 can be used for etching gas, and C 4 /F 8 can be used for passivation gas.
  • the preparation process of the biomimetic microarray adhesive sheet 2 can also be performed by photolithography (electron beam projection lithography, nanoimprint lithography, etc.): artificial or computer to draw a mask having a size tens or hundreds of times larger than the actual size.
  • photolithography electron beam projection lithography, nanoimprint lithography, etc.
  • the image is attached to the actual working template, and the template is attached to the silicon substrate.
  • the photon beam is patterned on the silicon substrate through the template to form the same biomimetic array shape as the template.
  • the preparation process of the biomimetic microarray adhesive sheet 2 can also be prepared by using array carbon nanotubes: chemical vapor deposition method, at high temperature, the carbon-containing gas is decomposed, and the decomposed carbon atoms are oriented under the action of the catalyst to form an orderly Carbon nanotube array.
  • Chemical vapor deposition can be isothermal chemical deposition (TCVD) , ion enhanced chemical deposition (PECVD), floating catalytic chemical vapor deposition (FCCVD), and the like.
  • the preparation process of the biomimetic microarray adhesive sheet 2 can also be carried out by reactive plasma dry etching: silicon wafer, preparing a micron-thick polymer film, and etching the aluminum film with an electron beam to form a micro
  • the array of structures using a large difference in the etching rate of the oxide plasma between the alumina and the polymer, is dry etched by oxygen plasma to replicate the microstructure transfer on the aluminum film onto the polymer film.
  • the preparation process of the biomimetic microarray adhesive sheet 2 may also be a soft etching method, a directional self-assembly method based on micro/nano fluff growth, or the like.
  • the inner membrane tubular part or / And the ampulla can be stitched, bonded, anchored, woven, hooked, nailed, thermoplastic, frozen, pneumatic, static, etc. or / And combinations thereof or other known methods plus one or root longitudinal or oblique or crossed or spiral or shaped bones or combinations thereof, which can strengthen, support, expand and prevent distortion of the inner film, and It has the function of supporting other inner coatings and supporting each other.
  • the duodenal inner covering ampulla 1 and the tubular portion 3 In vitro, it can be folded or folded into a spherical or cylindrical shape or a capsule shape or a spindle shape.
  • the folding method may be that the distal end of the inner covering film is folded or curled or covered at the proximal end, and then the ampulla is turned inwardly.
  • the duodenal inner membrane can be endoscopic and X-ray fluoroscopy or other medical or And the biological observation equipment and instrument-assisted feeding into the duodenum through the upper digestive tract, the device can be multi-claw instruments (the number of claws can be matched with the precise arrangement of the bionic microarray adhesive sheets) through endoscopic forceps or / And other instruments extend the center to open the varus of the ampulla 1 , and then the varus of the inverted ampulla 1 is reset, positioned in the duodenal bulb, adhered, and then with instruments or / and / or / and water or / and gravity or / And other methods gently push the distal end of the duodenal canal to the target site.
  • multi-claw instruments the number of claws can be matched with the precise arrangement of the bionic microarray adhesive sheets
  • endoscopic forceps or / And other instruments extend the center to open the varus of the ampulla 1 , and then the varus of the inverted ampulla 1 is
  • Inner tubular portion 3 Position of the duodenum descending duodenal descending, horizontal and ascending parts, extended tubular part 3 Position the jejunum segment of the duodenal ascending stalk.
  • a multi-claw instrument (the number of claws can be matched with the precise arrangement of the biomimetic microarray adhesive sheet) can be adjusted by endoscopic forceps or And other instruments are inserted from the upper edge of the ampulla, pulling the centripetal force close to the vertical direction, about 90° from the upper edge of the ampulla 1
  • the angle of the corner is easily removed and recovered, avoiding avulsion and other damage to the intestinal tissue.
  • the ampulla abdomen 1 upper edge, and also the desorption of the bionic microarray adhesive sheet 2 and the ampulla 1 The duodenal inner membrane can be easily removed and recovered by adhering to other parts of the body.
  • the duodenal inner film and its biomimetic microarray adhesive sheet 2 It is soft, smooth, elastic, good in histocompatibility, no acute systemic reaction, no chronic systemic reaction, no acute local reaction, no chronic local reaction.
  • the duodenal inner membrane divides the chyme and the bile and pancreatic juice in the body, avoids digestion, absorption and metabolism of the gastric effluent directly in the duodenum, and can be prepared to prevent obesity and damage the intestinal tissue. Medical devices for diabetes.
  • the length, thickness, elastic force, shape, ratio of length to fluff, length of fluff, diameter of fluff, and spacing of fluff in the duodenum inner covering are all reference values, and the actual manufacturing can be specifically designed according to needs.
  • a duodenal inner membrane that can be made of biocompatible biodegradable or non-biodegradable materials or And a strong hydrophobic material is obtained, mainly composed of a tubular portion 2 and a flared outer side attached to the ampulla 1 of the biomimetic microarray adhesive sheet 2.
  • the diameter, length and thickness of the tubular portion 3 match the duodenum and jejunum in different populations, and the optimized diameter is 25 mm.
  • the length is matched with the duodenum and can extend to a segment of the jejunum that is continuous with the duodenum, the length is 500 mm, and the thickness of the membrane in the tubular portion 3 is 0.1 mm.
  • the ampulla 1 is a trumpet-shaped connecting tubular part 3
  • the optimized part of the ampulla 1 has a thickness of 0.1 mm, and the flared tubular portion 3 is a progressively open acute angle with an optimized angle of 45 °C.
  • Optimized ampulla 1 The upper edge can be a wave-type elastic film.
  • the biomimetic microarray adhesive sheet 2 can be adhesively attached to the inner ampulla 1 , and the precise arrangement can be a diamond shape, which can be 2 rows or 3
  • the binder may be a biocompatible polyurethane, polyurethane, silicone, fluorinated ethylene propylene, or the like, or combinations thereof, or other well known materials, and combinations thereof.
  • biomimetic microarray adhesive sheet 2 inductively coupled plasma (MEMS) in microelectromechanical systems (MEMS) Deep etching technique: an upright microarray template is carved on a silicon wafer, polydimethoxysiloxane (PDMS) is cast onto a silicon template column array, and after solidification, the release mold is released to obtain polydimethoxysiloxane.
  • PDMS polydimethoxysiloxane
  • Alkane PDMS Microarray template for casting liquid polyurethane or / and other biocompatible materials onto polydimethoxysiloxane (PDMS)
  • the microporous template is cured and demolded to obtain a polyurethane biomimetic adhesion microarray.
  • Adhesion microarrays are prepared without the use of other materials and other methods.
  • Synthetic mussel adhesive protein polymer - dopamine - methacrylamide / Methoxyethyl acrylate copolymer P(DMA-co-MEA)
  • the synthesized dopa-containing copolymer was dissolved in methylene chloride, the polyurethane microarray was immersed in the solution, and a layer of dopamine-containing copolymer was modified on the outside of the polyurethane microarray. It is not excluded that other substances (including modifications and modified substances) which have strong adhesion under dry conditions and strong adhesion in water, and a preparation method can be formed.
  • biomimetic microarray adhesive sheet 2 Have a suitable contact surface and control the ratio of the length of the pile to the length of the pile to avoid mutual adhesion.
  • the duodenal inner film and its biomimetic microarray adhesive sheet 2 It is soft, smooth, elastic, good in histocompatibility, no acute systemic reaction, no chronic systemic reaction, no acute local reaction, no chronic local reaction.
  • the inner tubular portion 3 can be bonded or And the method of weaving adds a spiral of bone to strengthen, support, expand and prevent distortion of the inner film, and cooperate with the function of the inner film.
  • the duodenum covered ampulla 1 and the tubular part 3 It can be folded or folded into a cylindrical shape in vitro, and the folding method may be that the distal end of the inner covering is folded or curled or covered at the proximal end, and then the ampulla 1 is turned inward.
  • the duodenal lining can be performed in the endoscope and X Under the fluoroscopy, the upper digestive tract is sent to the duodenum.
  • the multi-claw device (the number of claws is matched with the precise arrangement of the bionic microarray adhesive sheet) can be circumscribed by the endoscopic forceps.
  • the ampulla 1 and the ampulla 1 Eversion reset positioned in the duodenal bulb, adhered to the instrument or / and gas or / and water or / and gravity or / And other methods gently push the distal end of the duodenal canal to the target site.
  • the duodenal inner membrane does not desorb due to the lack of vertical traction.
  • the duodenal bulb expands and expands, there is no opposite in the duodenum. Near the vertical pulling force, the duodenal inner membrane will not desorb.
  • the above-mentioned multi-claw instrument can be clamped from the ampulla via the endoscope 1
  • the upper edge is inserted, and the force is pulled in a direction close to the vertical direction, and the angle is about 90° from the upper edge of the ampulla 1 to easily recover and recover.
  • the upper edge of the ampulla 1 is turned over, and the detached biomimetic microarray adhesive sheet is also taken. 2 Adhesive to the other part of the ampulla 1 can easily remove and recover the duodenal lining.
  • the first step uses the glow discharge of CF4 gas to generate F Activating radicals of atoms. Then F Atomic activated radicals can react with silicon or silica to form silicon tetrafluoride gas, thereby exhibiting an etching effect.
  • the second step introducing fluorine atoms into the argon plasma, and by using the synergistic effect of the plasma, fluorine and silicon can react quickly to make the etching effect better.
  • Step 3 Introduce the mask pattern on the silicon and then use Oxford The ICP180 etching system etches a column array with a high aspect ratio on the silicon wafer.
  • the polydimethylsiloxane is cast onto the silicon template column array and placed in an oven at 60 ° C for 4 h. Curing, stripping and demolding can obtain a hole array template of polydimethylsiloxane, and then other polymer liquid is cast on the polydimethylsiloxane pore array template, and a large area can be obtained after curing and demoulding. The micron-sized polymer bionic foot bristles adhere to the array.
  • pore size is 150 nm
  • the pore length is 60 ⁇ m
  • the biomimetic material may be polymethyl methacrylate or the like.
  • Electrostatic Induction Etching A polymer film is prepared on a smooth silicon wafer by a solution ruthenium method, which is a lower electrode, and another silicon wafer is used as an upper electrode, and the polymer surface and the upper electrode are retained. Air gap 100-1000 nm, heat the polymer above the glass transition temperature, and apply a DC voltage of 30-40 V to the capacitor, producing 105V/m The electric field strength forms a regular microstructure and is cooled to room temperature to obtain the corresponding polymer. If the upper electrode itself has a microstructure, the polymer can accurately replicate the same protruding microstructure.
  • the silicon template is passivated and etched with a special gas, which can be CRYO process and BOSCH process.
  • CRYO process -100 ° C below the low temperature, passivation and etching simultaneously, the gas can be used SF 6 /O 2 .
  • BOSCH process Normal temperature, etching and passivation are carried out separately, SF 6 can be used for etching gas, and C 4 /F 8 can be used for passivation gas.
  • the prepared polystyrene has a pore diameter of 200 nm and a ratio of the length to the fluff of 1:10.
  • Lithography electro beam projection lithography, nanoimprint lithography, etc.: manually or computerly draw a mask that is tens or hundreds of times larger than the actual size, shrink into a practical working template, and attach the template to the silicon substrate.
  • the photon beam is patterned on the silicon substrate through the template to form the same biomimetic array shape as the template, or by other etching techniques such as ion beam etching.
  • the parylene can be made to have a larger end fluff and a thin hydrophobic film deposited on the surface to prevent adhesion to each other. This surface has a concave fluff that produces the largest per square centimeter.
  • the force of 18N is about 4 times higher than the fluff of the flat tip.
  • the biomimetic material with this end produces an adsorption force that is nearly 70 times higher than that of the hemispherical end material.
  • Array Carbon Nanotubes Chemical vapor deposition, at high temperatures, decomposes carbon-containing gases, and the decomposed carbon atoms are directed to form an ordered array of carbon nanotubes in the presence of a catalyst.
  • the chemical vapor deposition method may be isothermal chemical deposition (TCVD), ion enhanced chemical deposition (PECVD), or floating catalytic chemical vapor deposition (FCCVD).
  • TCVD isothermal chemical deposition
  • PECVD ion enhanced chemical deposition
  • FCCVD floating catalytic chemical vapor deposition
  • a vertically aligned multi-walled carbon nanotube array can be grown on a silicon substrate by TCVD using Fe and Al as catalysts at 750 ° C under an atmosphere of ethylene and hydrogen.
  • the growth of the bristles is 150-600 ⁇ m and the diameter is 200-800 ⁇ m.
  • the 1cm 2 can produce the adsorption force of 36N.
  • the adsorption of the villi is 4 times that of the gecko and 10 times that of the ordinary polymer. This ordered hierarchical structure It produces an adsorption force four times higher than that of a cluttered structure.
  • Reactive plasma dry etching silicon wafer, preparing a micron-thick polymer film, etching the aluminum film with electron beam to form a microstructure array, and then using alumina and polymer to oxygen plasma The large difference in etch rate is dry etched with oxygen plasma to replicate the microstructure transfer on the aluminum film onto the polymer film. It is also possible to use a soft etching method, a directional self-assembly method based on micro/nano fluff growth, or the like.
  • Micro-adhesive array casting process the casting mold material is brass, a well-known processing method is used to fabricate a microplate array, a micro-adhesive array is cast in a vacuum environment, and a casting material is made of a biocompatible material such as 184.
  • a biocompatible material such as 184.
  • the whole set of molds and the adhesion array are taken out, cooled to normal temperature, and can be demolded by temperature change.
  • the release agent can be liquid paraffin or dimethicone, and the sealant can be solid paraffin.
  • the strips after demolding have fewer breaks, good ends, and can be reused.
  • the adhesive array has anisotropic adhesive properties, controllability of normal adhesion, and large tangential adhesion.
  • An upright micron array template is fabricated on a silicon wafer by ICP deep etching in MEMS, and polydimethoxysiloxane (PDMS) Casting on the array, then curing it and peeling off the mold to obtain a polydimethoxysiloxane (PDMS) template with micropores and then casting the polyurethane liquid in polydimethoxysiloxane (PDMS On the top, after curing, the polyurethane biomimetic adhesion microarray with micron array is obtained.
  • the main process steps are: the first step uses the glow discharge of CF4 gas to generate the activated radical of the F atom.
  • F Atomic activated radicals can react with silicon or silica to form silicon tetrafluoride gas, thereby exhibiting an etching effect.
  • the second step introducing fluorine atoms into the argon plasma, and by using the synergistic effect of the plasma, fluorine and silicon can react quickly to make the etching effect better.
  • Step 3 Introduce the mask pattern on the silicon and then use Oxford The ICP180 etching system etches a column array with a high aspect ratio on the silicon wafer. Finally, the polydimethylsiloxane is cast onto the silicon template column array and placed in an oven at 60 ° C for 4 h.
  • Curing, stripping and demolding can obtain a hole array template of polydimethylsiloxane, and then other polymer liquid is cast on the polydimethylsiloxane pore array template, and a large area can be obtained after curing and demoulding.
  • the micron-sized polymer bionic foot bristles adhere to the array. It is not excluded to prepare an adherent microarray using other substances and other methods.
  • Synthetic mussel adhesive protein polymer - Dopamine - Methacrylamide / Methoxy Ethacrylate Copolymer P(DMA-co-MEA)
  • the synthesized dopa-containing copolymer was dissolved in a dichloromethane solution, and the polyurethane microarray was immersed in the solution, and a dopamine-containing copolymer was modified on the outside of the polyurethane microarray. It is not excluded that other substances (including modifications and modified substances) which have strong adhesion under dry conditions and strong adhesion in water, and a preparation method can be formed.
  • Rabbit dermal stem cell suspension density 6 ⁇ 10 4 /ml, transfer to culture dish, rotate the culture dish, make the cells evenly dispersed to the surface, culture until single layer near confluence; discard the medium, add fresh medium, culture dish The sample was placed in the center, and trypsin was dropped into the medium on the 1st, 2d, 3d, 4d, and 6d, so that the adherent cells on the culture dish wall were detached into the medium, and the quantitative medium was dripped onto the cell counting plate. Count the cell growth; 6d, observe the growth of rabbit dermal stem cells under the inverted microscope. The cells in the experimental group grow well in the medium at the edge of the material.
  • the cells are attached to the edge of the material, and the cells are counted at a concentration of 8.53 ⁇ 10 4 /ml.
  • the cell counts in the 1d, 2d, 3d, 4d and 6d culture dishes were counted, and the cell growth curve was drawn, indicating that there was no significant difference between the experimental group and the normal control group (P ⁇ 0.0.5).
  • the leaching medium is selected from sterile physiological saline, rinsed three times with three distilled waters, and after cobalt 60 irradiation, the material is aseptically leached at 37 ° C for 72 h to prepare the extract. 100ml.
  • the biomimetic microarray adhesive sheet 2 was rinsed three times with three distilled waters, and the cobalt 60 was used after irradiation.
  • 12 Only healthy adult New Zealand rabbits, male and female, were randomly divided into 3 groups, 20% urethane 5ml/kg Abdominal injection anesthesia, cut off the hair in the back of the rabbit's back, iodophor disinfection operation area, cut the skin, separate the subcutaneous tissue, expose the paraspinal muscles, implant the material sheet, suture, disinfection, the longitudinal axis of the muscle fiber 30mm from the midline 1w Disassemble, the animals were sacrificed at 1w, 4w, 12w, the local spinal column muscle tissue was taken, the saline was cleaned, 4% paraformaldehyde was washed, and fixed in 4% paraformaldehyde solution.
  • Implant 1w The naked eye showed no obvious tissue edema in the material group.
  • the striated muscle edema was not obvious, the muscle fiber continuity was acceptable, a small amount of inflammatory cells infiltrated in the interstitial tissue, and there was a small amount of fibrous tissue at the edge of the embedding tissue.
  • Implant 12w There was no obvious tissue edema in the material group, the tissue structure was still intact, no obvious inflammatory reaction, and a small amount of fibrous tissue around the tissue was wrapped.
  • the synthesized doba-containing copolymer was dissolved in methylene chloride, and the polyurethane array was dipped into the solution, and a layer of dopamine-containing copolymer was modified on the outside of the array.
  • the nanoindenter is tested for elastic modulus.
  • the resolution of the force is 1nN
  • the depth resolution is 0.04nm
  • the maximum load is 10mN
  • the maximum indentation depth is 20nm.
  • the flat head with 100 ⁇ m length and 1 ⁇ m width is used.
  • the load is displacement. Control mode, the probe's maximum vertical displacement is within 200nm, and each sample is tested at 4 points.
  • the modified biomimetic adhesive array exhibited adhesion properties in water.
  • the tangential adhesion can reach 2.21 N/cm 2 and the normal adhesion can reach 2.15 N/cm 2 .
  • the adhesion increases with the increase of the pre-pressure, and the adhesion is maximum when the pre-pressure is 6.11 N/cm 2 .
  • Each length, thickness, diameter, and the like of the present invention are reference values, and actual manufacturing can be specifically designed according to individual needs.
  • the present invention is not intended to include the same prior art, or may be implemented using the prior art.

Landscapes

  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Obesity (AREA)
  • Nursing (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种十二指肠内覆膜,由生物相容的可生物降解或不可生物降解材料或/和疏水性材料得到,主要由弹性壶腹部(1)与管状部(3)组成,壶腹部(1)包含可通过施力方向强力粘附而不扎入肠组织的并可轻松脱附回收的生物相容的仿生微阵列粘附片(2),该粘附片(2)稳定性好、对材质和形貌适应性强、自清洁性好、不损伤和污染肠组织,可重复粘附和脱附,与其他部件在功能上彼此支持,当肠道内容物运动时,由于无接近垂直的牵扯力,该内覆膜不会脱附,当十二指肠球部扩充膨大时,由于该内覆膜无相反的接近垂直的牵扯力,也不会脱附,而回收时依接近垂直的施力即可轻松脱附回收。该十二指肠内覆膜可以制备成不损伤肠组织的防治肥胖和糖尿病的医疗器械。

Description

一种医疗器械及其应用 技术领域
本发明涉及一种消化道内置医疗器械,特别是涉及一种不损伤肠组织的防治肥胖和糖尿病的十二指肠内覆膜。
背景技术
胃转流手术可治疗肥胖。近来发现,肥胖患者接受该手术后,不仅体重显著下降,且并发的 2 型糖尿病病情也得以缓解(中华糖尿病杂志 ,2011,3(3):205-208 ):术后不必注射胰岛素,也不必服用多种药物,即可解决血糖问题,且高血压、肥胖、血脂紊乱等糖尿病并发症均有明显改善。 22094 例胃转流手术后分析: 84% 的 2 型糖尿病在术后完全逆转,大多数患者在出院前停止了口服药物或胰岛素治疗(中国医药科学 ,2011,1(21):3-5 )。国外包括美国政府都在积极推动该手术的发展, 2011 年 3 月,在美国纽约召开的第二届国际 2 型糖尿病介入治疗大会上,国际糖尿病联盟( IDF )首次发表声明,认为胃流转手术可用于治疗肥胖的 2 型糖尿病患者,并可减少糖尿病慢性并发症的发生与发展(中国医药科学 ,2011,1(22):1-2 ),若早期手术,还可预防糖尿病严重并发症(糖尿病天地 : 文摘刊 ,2011,10:51 )。
但 ' 胃转流手术 ' 有临床风险,如死亡、肠梗阻、吻合口漏、肺栓塞、深静脉血栓、门静脉损伤、呼吸系统疾病等(中华糖尿病杂志 ,2011,3(3):205-208 )。因此,在体于十二指肠内置入十二指肠内覆膜防治肥胖与糖尿病,以替代上述 ' 胃转流手术 ' ,有应用意义。
现有技术的发明专利 ' 十二指肠套管及其输送器 ' (申请日 2010.04.09 ,授权公告日 2012.01.11 )中覆盖外套管的仅依赖 ' 记忆合金 ' 一次性静态 ' 扩张 ' 的金属骨架虽 ' 充分紧贴 ' 肠壁, ' 呈碗型和漏斗型 ' 的 ' 十二指肠球腔段的金属骨架 ' 虽 ' 贴合十二指肠球腔 ' ,但十二指肠是活动的,尤其是十二指肠球部上沿,当胃幽门扩张牵动紧沿其下的十二指肠球部的扩张时,该金属骨架难以弹性扩张而顺势往十二指肠远端移动,在胃幽门回缩时,该金属骨架或逆向复位(十二指肠球部粘膜较薄,为溃疡的好发部位;如此反复则易损伤粘膜,并易刺激肌壁张力感受器而易诱发恶心或 / 和呕吐 [ 周吕,柯美云:《胃肠动力学:基础与临床》 117 页 ] )或在十二指肠球部远端由软性肠道代偿性扩容而嵌顿。现有技术发明专利'一种延缓胃排空并调节肠胰代谢的器械'(申请日 2012.02.22 ,申请公布日 2012.07.11 )的金属骨架亦如此。
现有技术实用新型专利 ' 十二指肠 - 空肠内置套管 ' (申请日 2010.12.06 ,授权公告日 2011.09.28 )为解决固定的问题,将空心金属管制成尖刺固定爪, ' 套在环形支架的金属丝上 ' ,紧紧地 ' 固定 ' , 也必须扎入肠粘膜而直接损伤肠组织。为解决日后移除问题,现有技术(实用新型专利 ' 十二指肠 - 空肠内置套管 ' )又设计了紧口线,紧口线 ' 置于环形支架的顶部 ' , ' 可以绕上口一周,也可以绕上口多周 ' ,但植入体内,尤其是在仅考虑 ' 制作简便、收口性能 ' 的静态环形支架上由空心金属管制成的尖刺固定爪刺入十二指肠球腔内壁,随着胃肠运动,不断重复着松动、渗出、粘连。现有技术(实用新型专利 ' 十二指肠 - 空肠内置套管 ' )在软管材质上也仅考虑 ' 表面光滑、柔软致密 ' ,未涉及环形支架对十二指肠球部活动适应性弹性伸缩,也未涉及采用弹性材质制备软管; ' 固定 ' 在十二指肠球部上沿 ' 环形支架顶部 ' 的没有弹性的紧口线更限制了环形支架对十二指肠球部活动的顺应。该现有技术(实用新型专利 ' 十二指肠 - 空肠内置套管 ' )与前述发明专利 ' 十二指肠套管及其输送器 ' 的现有技术相比,由于其环形支架及其尖刺固定爪只是位于十二指肠球部,虽不阻挡十二指肠降部下端的胆管和胰管的共同开口的十二指肠乳头,但若置于十二指肠球部上沿,当胃幽门扩张或回缩牵动紧沿其下的十二指肠球部的活动(周吕,柯美云:《胃肠动力学:基础与临床》 381 页、 520 页、 522 页)时,该环形支架及其尖刺固定爪势必阻碍十二指肠球部的活动,尤其是胃幽门扩张牵动十二指肠球部活动时,环形支架及其尖刺固定爪不能顺势扩展,而扎入十二指肠球部粘膜内的尖刺固定爪,又向内向心拽住十二指肠球部粘膜组织,整体与向外离心扩张的十二指肠球部粘膜下肌肉组织等其他组织活动相悖,显然,这种不能顺势变动或变动很小的环形支架及其尖刺固定爪,在胃幽门扩张或回缩牵动紧沿其下的十二指肠球部的活动时,对十二指肠球部组织是有损害的;若置于十二指肠球部下沿,胃幽门的扩张或回缩,虽然对十二指肠球部下沿的牵动小于对十二指肠球部上沿的牵动,但即便忽略环形支架及其尖刺固定爪对十二指肠球部粘膜的损害,则原本对十二指肠球部遮盖的作用就随之消失了。
同样,现有技术发明专利 ' 一种十二指肠套管及其制备方法 ' (申请日 2012.05.10 ,申请公布日 2012.10.03 )的镍钛诺锚定部分, 也必须扎入肠粘膜而直接损伤肠组织。
技术问题
现有技术的发明专利 ' 十二指肠套管及其输送器 ' (申请日 2010.04.09 ,授权公告日 2012.01.11 )和现有技术发明专利'一种延缓胃排空并调节肠胰代谢的器械'(申请日 2012.02.22 ,申请公布日 2012.07.11 )的金属骨架易损伤肠粘膜易刺激肠壁而诱发恶心或 / 和呕吐,现有技术的实用新型专利 ' 十二指肠 - 空肠内置套管 ' (申请日 2010.12.06 ,授权公告日 2011.09.28 )、现有技术发明专利 ' 一种十二指肠套管及其制备方法 ' (申请日 2012.05.10 ,申请公布日 2012.10.03 ),固定时均必须扎入肠粘膜而直接损伤肠组织。本发明所述的壶腹部弹力膜及其附连的仿生微阵列粘附片,面积小、厚度薄、不扎入粘膜却抓缚力强,肠内容物流动的施力角度难以脱附,内镜钳道的施力角度可以轻松脱附与安装,且可重复粘附和脱附,不损伤肠组织。
现有技术的发明专利 ' 十二指肠套管及其输送器 ' (申请日 2010.04.09 ,授权公告日 2012.01.11 )中覆盖外套管的仅依赖 ' 记忆合金 ' 一次性静态 ' 扩张 ' 的 ' 呈碗型和漏斗型 ' 的 ' 十二指肠球腔段的金属骨架 ' ,当胃幽门扩张牵动紧沿其下的十二指肠球部的扩张时,该金属骨架难以弹性扩张而顺势往十二指肠远端移动,在胃幽门回缩时,该金属骨架或逆向复位(易损伤粘膜)或在十二指肠球部远端由软性肠道代偿性扩容而嵌顿。本发明所述的十二指肠内覆膜上段可以是波浪型或 V 型或梯形或城墙型的壶腹部弹力膜,壶腹部弹力膜外表面附连仿生微阵列粘附片,可以整体顺应十二指肠及球部的运动而伸缩或弹性活动,即可以解决此问题。
现有技术的发明专利 ' 十二指肠套管及其输送器 ' (申请日 2010.04.09 ,授权公告日 2012.01.11 )中的金属骨架十二指肠球后段阻挡了十二指肠降部下端的胆管和胰管的共同开口的十二指肠乳头。本发明所述的十二指肠内覆膜壶腹部以仿生微阵列粘附片固定,不阻挡十二指肠降部下端的胆管和胰管的共同开口的十二指肠乳头,即可以解决此问题。
现有技术的实用新型专利 ' 十二指肠 - 空肠内置套管 ' (申请日 2010.12.06 ,授权公告日 2011.09.28 )为解决固定的问题,在仅考虑 ' 制作简便、收口性能 ' 的静态环形支架上由空心金属管制成的尖刺固定爪刺入十二指肠球腔内壁。现有技术(实用新型专利 ' 十二指肠 - 空肠内置套管 ' )在软管材质上也仅考虑 ' 表面光滑、柔软致密 ' ,未涉及环形支架对十二指肠球部活动适应性弹性伸缩,也未涉及采用弹性材质制备软管; ' 固定 ' 在十二指肠球部上沿 ' 环形支架顶部 ' 的没有弹性的紧口线更限制了环形支架对十二指肠球部活动的顺应。若该环形支架及其尖刺固定爪置于十二指肠球部上沿,当胃幽门扩张或回缩牵动紧沿其下的十二指肠球部的活动时,其势必阻碍十二指肠球部的活动,尤其是胃幽门扩张牵动十二指肠球部活动时,环形支架及其尖刺固定爪不能顺势扩展,而扎入十二指肠球部粘膜内的尖刺固定爪,又向内向心拽住十二指肠球部粘膜组织,整体与向外离心扩张的十二指肠球部粘膜下肌肉组织等其他组织活动相悖,显然,这种不能顺势变动或变动很小的环形支架及其尖刺固定爪,在胃幽门扩张或回缩牵动紧沿其下的十二指肠球部的活动时,对十二指肠球部是有损害的;若该环形支架及其尖刺固定爪置于十二指肠球部下沿,胃幽门的扩张或回缩,虽然对十二指肠球部下沿的牵动小于对十二指肠球部上沿的牵动,但即便忽略环形支架及其尖刺固定爪对十二指肠球部粘膜的损害,则原本对十二指肠球部遮盖的作用就随之消失了。本发明所述的壶腹部弹力膜及其附连的仿生微阵列粘附片,可以整体顺应十二指肠及球部的运动而伸缩或弹性活动,既不损伤十二指肠球部组织,又遮盖了十二指肠球部,即可以解决此问题。其次,本发明所述的壶腹部弹力膜及其附连的仿生微阵列粘附片,不影响对十二指肠及球部运动的顺应,在回收该内覆膜时,经内镜钳道以接近垂直力即可轻松脱附,回收本发明所述的十二指肠内覆膜。
技术解决方案
一种十二指肠内覆膜,所述的一种十二指肠内覆膜,其所有部件均可以由生物相容的可生物降解或不可生物降解材料或 / 和强疏水材料得到。
所述的十二指肠内覆膜可以分为壶腹部与管状部,壶腹部位于十二指肠球部,管状部可延续到空肠。
所述的管状部的直径、长度和厚度与不同人群体内十二指肠及空肠相匹配,优化的直径为 10-60mm ,长度与十二指肠匹配并可以延伸到与十二指肠接续的一段空肠,长度为 80-700mm ,管状部内覆膜的厚度为 0.005mm -1mm 。
所述的壶腹部为喇叭状接续管状部的部分,优化的壶腹部也可以是柱状的、球状的、腰鼓状的,优化的壶腹部内覆膜的厚度为 0.005mm -1mm ,高度为 6mm -100mm ,喇叭状接续管状部为渐进开放锐角,优化的角度为 5 ℃ -65 ℃ ,其厚度、高度和角度与不同人群体相匹配。
作为优化,所述的十二指肠内覆膜壶腹部及管状部的制备,可以是静电纺、静电喷、流延、压膜、微纳工艺或 / 和防粘工艺,材料可以是生物相容的可降解或生物相容不可降解或 / 或 / 和强疏水或其他公知的及其它们的组合。
作为优化,所述的十二指肠内覆膜壶腹部,上缘可以是波浪型或 V 型或梯形或城墙型弹力膜。作为优化,所述的仿生微阵列粘附片由生物相容的可生物降解或不可生物降解材料或 / 和疏水性材料得到 , 可选择硅橡胶、聚亚胺酯、多壁碳纳米管、聚酯树脂、聚酰亚胺、人造橡胶、环氧树脂、聚二甲基硅氧烷、聚苯乙烯、聚四氟乙烯、特氟龙、聚二甲基硅氧烷、聚对二甲苯、聚氨酯与对苯二甲酸乙二酯、聚甲基丙烯酸甲酯等或组合以及公知的其他适合的材料,形状可以是圆形、橄榄形、梯形、方形、三角形、柱形、菱形、异形等或它们的组合,大小可以是 1 平方纳米或 1 平方纳米以上或它们的组合 , 粘附纤维绒毛的顶端可以是弯曲状(铲状)或平压头状或圆压头状或层级结构或其他形状与结构及其组合。作为优化,所述的仿生微阵列粘附片可以用缝合、粘合、锚合、编织、钩钳、钉铆、热塑、冻固、气压、静电等或 / 和它们的组合或其他公知的方法等及其组合附连到内覆膜壶腹部,精确排列可以是圆形、橄榄形、梯形、方形、三角形、柱形、菱形、异形等或它们的组合,可以是一排或一排以上的数排,仿生微阵列粘附片可以是紧挨或分开等或它们的组合,粘合剂可以是生物相容的聚氨酯、聚亚氨酯、硅树脂、氟化乙烯丙烯等或它们的组合或其他公知的材料及其组合。
作为优化,制备所述的十二指肠内覆膜壶腹部附连的仿生微阵列粘附片,可以用微机电系统( MEMS )中电感耦合等离子体( ICP )深刻蚀技术在硅片上刻出直立的微阵列模板,将聚二甲氧基硅氧烷( PDMS )浇铸到硅模板柱阵列上,固化后剥离脱模,得聚二甲氧基硅氧烷( PDMS )微阵列孔模板,将液态聚氨酯或 / 和其他生物相容的材料浇铸在聚二甲氧基硅氧烷( PDMS )微米孔模板上,固化脱模,得聚氨酯仿生粘附微阵列。不排除用其他物质和其他方法制备粘附微阵列。
作为优化,合成仿贻贝粘附蛋白聚合物 - 多巴胺 - 甲基丙烯酸酰胺 / 甲氧基乙基丙烯酸酯共聚物 (P(DMA-co-MEA)) ,也可以用其他公知的方法;合成的含多巴的共聚物溶解于二氯甲烷液,将聚氨酯微阵列浸入此溶液,聚氨酯微阵列外面即修饰了一层含多巴胺的共聚物。不排除可以形成既在干燥条件下有强粘附力又在水中也有强粘附力的其他物质(包括修饰物与被修饰物)及制备方法。作为优化,仿生微阵列粘附片具有适宜的接触表面,并控制绒毛径长比以及绒毛间距以免相互粘合;作为优化,绒毛径长比为 0.1-5:20 ,长度为 0.1-200μm ,绒毛间距为 0.1-30.0μm 。
仿生微阵列粘附片的制备过程中还可以用原子力显微镜刻蚀法:平整的石蜡,用原子力显微镜探针的圆锥形尖端在其表面刻出微孔,将液态原材料浇注入孔内,置冷,去除石蜡,脱模后的聚合物表面即具有了与壁虎刚毛上细分叉结构相似、尺寸相近的微突起。
仿生微阵列粘附片的制备过程中还可以用氧化铝模板孔洞注入成型:铝箔,置酸性电解液中,阳极氧化,成有孔氧化铝板,以氧化电压和酸性溶液可调控孔径和孔间距。也可以用其他的模具注塑法。
仿生微阵列粘附片的制备过程中还可以用静电诱导刻蚀法:用溶液甩膜法在光滑硅片上制备一层聚合物薄膜,为下方电极,另取一片硅片为上方电极,聚合物表面与上方电极间保留空气间隙,加热聚合物至玻璃化温度以上,并给电容器施加直流电压,产生电场强度,形成规整微结构,冷却至室温,即得相应聚合物。若上方电极自身就具微结构,则能使聚合物准确复制出同样突起的微结构。
仿生微阵列粘附片的制备过程中还可以用电感耦合等离子体刻蚀技术:硅模板,用特殊气体对其钝化及刻蚀,可以有CRYO 工艺和BOSCH 工艺。CRYO 工艺:-100 ℃以下,钝化和刻蚀同步进行,气体可以用SF6/O2。BOSCH工艺:常温,刻蚀和钝化分开进行,刻蚀气体可以用SF6,钝化气体可以用C4/F8
仿生微阵列粘附片的制备过程中还可以用光刻技术(电子束投影光刻、纳米压印光刻技术等):人工或计算机绘制尺寸比实际大几十或几百倍的掩模,缩制成实际工作模板,将模板附在硅基板上,光子束透过模板在硅基板上刻出与模板相同的仿生阵列形状。
仿生微阵列粘附片的制备过程中还可以用阵列纳米碳管制备:化学气相沉积法,高温下,将含碳元素的气体分解,分解出来的碳原子在催化剂作用下定向生成有序的碳纳米管阵列。化学气相沉积法可以有等热化学沉积(TCVD) 、离子体增强化学沉积( PECVD) 、浮动催化化学气相沉积法(FCCVD) 等。
仿生微阵列粘附片的制备过程中还可以用反应性等离子体干刻蚀法:硅片,制备一层微米级厚度的聚合物薄膜,用电子束对铝膜刻蚀,使其形成微结构阵列,再利用氧化铝与聚合物对氧等离子体的蚀刻速率的巨大差异,用氧等离子体干蚀刻,使铝膜上的微结构转移复制到聚合物薄膜上。
仿生微阵列粘附片的制备过程中还可以用软蚀刻法、基于微纳米绒毛生长的定向自装配法等。
作为优化,内覆膜管状部或 / 和壶腹部可以用缝合、粘合、锚合、编织、钩钳、钉铆、热塑、冻固、气压、静电等或 / 和它们的组合或其他公知的方法加一根或树根纵行或斜行或交叉或螺旋或异形的筋骨或它们的组合,此筋骨可以对内覆膜加固、支撑、扩张及防止扭曲,并具有其他协同内覆膜、与内覆膜功能相互支持的作用。
作为优化,所述的十二指肠内覆膜壶腹部与管状部在体外可以一起收拢或折叠为球状或圆柱状或胶囊状或纺锤状,折叠方式可以是内覆膜远端往近端折叠或卷曲或覆盖,然后壶腹部向心内翻。
作为优化,所述的十二指肠内覆膜可以在内镜和 X 射线透视或其他医学或 / 和生物学观察设备与仪器辅助下经上消化道送入十二指肠,装置时,可以多爪器械(爪的数量可与仿生微阵列粘附片精确排列相匹配)经内镜钳道或 / 和其他器械延中心离心撑开内翻的壶腹部,再将内翻的壶腹部外翻复位,定位在十二指肠球部,粘附,再以器械或 / 和气或 / 和水或 / 和重力或 / 和其他方法轻柔推送所述的十二指肠内覆膜远端至目标位置。若是记忆材料,则在肠内的记忆温度下逐渐展开,内覆膜的壶腹部位置十二指肠上部,壶腹部的下边缘在十二指肠乳头及副乳头(或小乳头)的近胃幽门侧,不阻碍胆管胰管液进入肠腔。内覆膜的管状部位置十二指肠上部接续的十二指肠降部、水平部和升部,延长的管状部位置十二指肠升部接续的空肠段。当肠道内容物运动时,由于没有接近垂直的牵扯力,十二指肠内覆膜不会脱附;当十二指肠球部扩充膨大时,由于十二指肠内覆膜没有相反的接近垂直的牵扯力,十二指肠内覆膜也不会脱附。
作为优化,在回收所述的十二指肠内覆膜时,可以多爪器械(爪的数量可与仿生微阵列粘附片精确排列相匹配)经内镜钳道或 / 和其他器械从壶腹部上缘插入,以接近垂直方向的向心牵扯力,从壶腹部上缘约 90° 的夹角局部顺势轻松脱附回收,避免了撕脱及其他损伤肠道组织。脱附后随即内翻壶腹部上缘,也顺势让脱附的仿生微阵列粘附片与壶腹部自身其他部位粘附,即可轻松取出、回收十二指肠内覆膜。
作为优化,所述的十二指肠内覆膜及其仿生微阵列粘附片,柔软、光滑、有弹性,组织相容性良好,无急性全身反应、无慢性全身反应、无急性局部反应、无慢性局部反应。
所述的十二指肠内覆膜,在体内将食糜与胆汁胰液分流,避免了胃流出物直接在十二指肠的消化、吸收、代谢,可以制备成不损伤肠组织的防治肥胖和糖尿病的医疗器械。
所述的十二指肠内覆膜各部位长度、厚度、弹力、形状、绒毛径长比、绒毛长度、绒毛直径、绒毛间距等数均为参考值,实际制造可依据需要具体设计。
有益效果
提供一种十二指肠内覆膜,该内覆膜可以由生物相容的可生物降解或不可生物降解材料或 / 和强疏水材料得到,主要由弹性壶腹部与管状部组成,壶腹部位于十二指肠球部,管状部可延续到空肠,壶腹部包含可通过施力方向强力粘附而不扎入肠组织的并可轻松脱附回收的生物相容的仿生微阵列粘附片,十二指肠内覆膜上段可以是波浪型或 V 型或梯形或城墙型的壶腹部弹力膜,附连仿生微阵列粘附片的壶腹部整体可顺应十二指肠及球部的运动而伸缩或弹性活动,壶腹部与管状部在体外可一起收拢或折叠为球状或圆柱状或胶囊状或纺锤状。所述的仿生微阵列粘附片面积小、厚度薄、不扎入粘膜却抓缚力强,肠内容物流动的施力角度难以脱附,内镜钳道的施力角度可以轻松脱附回收与安装,且可重复粘附和脱附。该仿生微阵列粘附片粘附力大、稳定性好、对材质和形貌适应性强、自清洁性好、不会对肠组织造成损伤和污染等优点,与其他部位与部件在功能上彼此支持,而制备成不损伤肠组织的防治肥胖和糖尿病的医疗器械。
与现有技术的发明专利 ' 十二指肠套管及其输送器 ' (申请日 2010.04.09 ,授权公告日 2012.01.11 )和现有技术发明专利'一种延缓胃排空并调节肠胰代谢的器械'(申请日 2012.02.22 ,申请公布日 2012.07.11 )、相比,本发明所述的十二指肠内覆膜可以整体顺应十二指肠及球部的运动而伸缩或弹性活动,无论是静态还是动态均不损伤十二指肠组织的损伤、避免了在软性肠道的嵌顿、不阻碍胆管和胰管流出物进入肠管。与现有技术的实用新型专利 ' 十二指肠 - 空肠内置套管 ' (申请日 2010.12.06 ,授权公告日 2011.09.28 )相比,本发明所述的壶腹部弹力膜及其仿生微阵列粘附片,可以整体顺应十二指肠及球部的运动而伸缩或弹性活动,既不损伤对十二指肠球部组织,又遮盖了十二指肠球部。与现有技术的实用新型专利 ' 十二指肠 - 空肠内置套管 ' (申请日 2010.12.06 ,授权公告日 2011.09.28 )、现有技术发明专利 ' 一种十二指肠套管及其制备方法 ' (申请日 2012.05.10 ,申请公布日 2012.10.03 )及上述发明专利 ' 十二指肠套管及其输送器 ' (申请日 2010.04.09 ,授权公告日 2012.01.11 )和实用新型专利 ' 十二指肠 - 空肠内置套管 ' (申请日 2010.12.06 ,授权公告日 2011.09.28 )相比,本发明所述的十二指肠内覆膜以其壶腹部弹力膜的仿生微阵列粘附片,不仅脱附、回收极为方便,不损伤肠组织,而且可以重复使用。
附图说明
图 1 是结构示意图。
图 1 中标号所表示的部件或部位为: 1- 弹性壶腹部; 2- 仿生微阵列粘附片; 3- 管状部。
本发明的最佳实施方式
下面结合附图和具体实例对本发明作进一步说明:
如附图所示,本发明提供了一种十二指肠内覆膜,其所有部件均可以由生物相容的可生物降解或不可生物降解材料或 / 和强疏水材料得到。所述的十二指肠内覆膜可以分为壶腹部 1 与管状部 3 ,壶腹部 1 位于十二指肠球部,管状部 3 可延续到空肠,壶腹部 1 外侧附连仿生微阵列粘附片 2 。
所述的管状部 3 的直径、长度和厚度与不同人群体内十二指肠及空肠相匹配,优化的直径为 10-60mm ,长度与十二指肠匹配并可以延伸到与十二指肠接续的一段空肠,长度为 80-700mm ,管状部 3 内覆膜的厚度为 0.005mm -1mm 。所述的壶腹部 1 为喇叭状接续管状部 3 的部分,优化的壶腹部 1 也可以是柱状的、球状的、腰鼓状的,优化的壶腹部 1 内覆膜的厚度为 0.005mm -1mm ,高度为 6mm -100mm ,喇叭状接续管状部 3 为渐进开放锐角,优化的角度为 5 ℃ -65 ℃ ,其厚度、高度和角度与不同人群体相匹配。
作为优化,所述的壶腹部 1 的上缘可以是波浪型或 V 型或梯形或城墙型弹力膜。
作为优化,所述的仿生微阵列粘附片 2 由生物相容的可生物降解或不可生物降解材料或 / 和疏水性材料得到 , 可选择硅橡胶、聚亚胺酯、多壁碳纳米管、聚酯树脂、聚酰亚胺、人造橡胶、环氧树脂、聚二甲基硅氧烷、聚苯乙烯、聚四氟乙烯、特氟龙、聚二甲基硅氧烷、聚对二甲苯、聚氨酯与对苯二甲酸乙二酯、聚甲基丙烯酸甲酯等或组合以及公知的其他适合的材料,形状可以是圆形、橄榄形、梯形、方形、三角形、柱形、菱形、异形等或它们的组合,大小可以是 1 平方纳米或 1 平方纳米以上或它们的组合 , 粘附纤维绒毛的顶端可以是弯曲状(铲状)或平压头状或圆压头状或层级结构或其他形状与结构及其组合。作为优化,所述的仿生微阵列粘附片 2 可以用缝合、粘合、锚合、编织、钩钳、钉铆、热塑、冻固、气压、静电等或 / 和它们的组合或其他公知的方法等及其组合附连到内覆膜壶腹部 1 ,精确排列可以是圆形、橄榄形、梯形、方形、三角形、柱形、菱形、异形等或它们的组合,可以是一排或一排以上的数排,仿生微阵列粘附片 2 可以是紧挨或分开等或它们的组合,粘合剂可以是生物相容的聚氨酯、聚亚氨酯、硅树脂、氟化乙烯丙烯等或它们的组合或其他公知的材料及其组合。
作为优化,制备所述的十二指肠内覆膜壶腹部 1 附连的仿生微阵列粘附片 2 ,可以用微机电系统( MEMS )中电感耦合等离子体( ICP )深刻蚀技术在硅片上刻出直立的微阵列模板,将聚二甲氧基硅氧烷( PDMS )浇铸到硅模板柱阵列上,固化后剥离脱模,得聚二甲氧基硅氧烷( PDMS )微阵列孔模板,将液态聚氨酯或 / 和其他生物相容的材料浇铸在聚二甲氧基硅氧烷( PDMS )微米孔模板上,固化脱模,得聚氨酯仿生粘附微阵列。不排除用其他物质和其他方法制备粘附微阵列。
作为优化,合成仿贻贝粘附蛋白聚合物 - 多巴胺 - 甲基丙烯酸酰胺 / 甲氧基乙基丙烯酸酯共聚物 (P(DMA-co-MEA)) ,也可以用其他公知的方法;合成的含多巴的共聚物溶解于二氯甲烷液,将聚氨酯微阵列浸入此溶液,聚氨酯微阵列外面即修饰了一层含多巴胺的共聚物。不排除可以形成既在干燥条件下有强粘附力又在水中也有强粘附力的其他物质(包括修饰物与被修饰物)及制备方法。作为优化,仿生微阵列粘附片 2 具有适宜的接触表面,并控制绒毛径长比以及绒毛间距以免相互粘合;作为优化,绒毛径长比为 0.1-5:20 ,长度为 0.1-200μm ,绒毛间距为 0.1-30.0μm 。
仿生微阵列粘附片2的制备过程中还可以用原子力显微镜刻蚀法:平整的石蜡,用原子力显微镜探针的圆锥形尖端在其表面刻出微孔,将液态原材料浇注入孔内,置冷,去除石蜡,脱模后的聚合物表面即具有了与壁虎刚毛上细分叉结构相似、尺寸相近的微突起。
仿生微阵列粘附片2的制备过程中还可以用氧化铝模板孔洞注入成型:铝箔,置酸性电解液中,阳极氧化,成有孔氧化铝板,以氧化电压和酸性溶液可调控孔径和孔间距。也可以用其他的模具注塑法。
仿生微阵列粘附片2的制备过程中还可以用静电诱导刻蚀法:用溶液甩膜法在光滑硅片上制备一层聚合物薄膜,为下方电极,另取一片硅片为上方电极,聚合物表面与上方电极间保留空气间隙,加热聚合物至玻璃化温度以上,并给电容器施加直流电压,产生电场强度,形成规整微结构,冷却至室温,即得相应聚合物。若上方电极自身就具微结构,则能使聚合物准确复制出同样突起的微结构。
仿生微阵列粘附片2的制备过程中还可以用电感耦合等离子体刻蚀技术:硅模板,用特殊气体对其钝化及刻蚀,可以有CRYO 工艺和BOSCH 工艺。CRYO 工艺:-100 ℃以下,钝化和刻蚀同步进行,气体可以用SF6/O2。BOSCH工艺:常温,刻蚀和钝化分开进行,刻蚀气体可以用SF6,钝化气体可以用C4/F8
仿生微阵列粘附片2的制备过程中还可以用光刻技术(电子束投影光刻、纳米压印光刻技术等):人工或计算机绘制尺寸比实际大几十或几百倍的掩模,缩制成实际工作模板,将模板附在硅基板上,光子束透过模板在硅基板上刻出与模板相同的仿生阵列形状。
仿生微阵列粘附片2的制备过程中还可以用阵列纳米碳管制备:化学气相沉积法,高温下,将含碳元素的气体分解,分解出来的碳原子在催化剂作用下定向生成有序的碳纳米管阵列。化学气相沉积法可以有等热化学沉积(TCVD) 、离子体增强化学沉积( PECVD) 、浮动催化化学气相沉积法(FCCVD) 等。
仿生微阵列粘附片2的制备过程中还可以用反应性等离子体干刻蚀法:硅片,制备一层微米级厚度的聚合物薄膜,用电子束对铝膜刻蚀,使其形成微结构阵列,再利用氧化铝与聚合物对氧等离子体的蚀刻速率的巨大差异,用氧等离子体干蚀刻,使铝膜上的微结构转移复制到聚合物薄膜上。
仿生微阵列粘附片2的制备过程中还可以用软蚀刻法、基于微纳米绒毛生长的定向自装配法等。
作为优化,内覆膜管状部或 / 和壶腹部可以用缝合、粘合、锚合、编织、钩钳、钉铆、热塑、冻固、气压、静电等或 / 和它们的组合或其他公知的方法加一根或树根纵行或斜行或交叉或螺旋或异形的筋骨或它们的组合,此筋骨可以对内覆膜加固、支撑、扩张及防止扭曲,并具有其他协同内覆膜、与内覆膜功能相互支持的作用。
作为优化,所述的十二指肠内覆膜壶腹部 1 与管状部 3 在体外可以一起收拢或折叠为球状或圆柱状或胶囊状或纺锤状,折叠方式可以是内覆膜远端往近端折叠或卷曲或覆盖,然后壶腹部向心内翻。
作为优化,所述的十二指肠内覆膜可以在内镜和 X 射线透视或其他医学或 / 和生物学观察设备与仪器辅助下经上消化道送入十二指肠,装置时,可以多爪器械(爪的数量可与仿生微阵列粘附片精确排列相匹配)经内镜钳道或 / 和其他器械延中心离心撑开内翻的壶腹部 1 ,再将内翻的壶腹部 1 外翻复位,定位在十二指肠球部,粘附,再以器械或 / 和气或 / 和水或 / 和重力或 / 和其他方法轻柔推送所述的十二指肠内覆膜远端至目标位置。若是记忆材料,则在肠内的记忆温度下逐渐展开,内覆膜的壶腹部 1 位置十二指肠上部,壶腹部 1 的下边缘在十二指肠乳头及副乳头(或小乳头)的近胃幽门侧,不阻碍胆管胰管液进入肠腔。内覆膜的管状部 3 位置十二指肠上部接续的十二指肠降部、水平部和升部,延长的管状部 3 位置十二指肠升部接续的空肠段。当肠道内容物运动时,由于没有接近垂直的牵扯力,十二指肠内覆膜不会脱附;当十二指肠球部扩充膨大时,由于十二指肠内覆膜没有相反的接近垂直的牵扯力,十二指肠内覆膜也不会脱附。
作为优化,在回收所述的十二指肠内覆膜时,可以多爪器械(爪的数量可与仿生微阵列粘附片精确排列相匹配)经内镜钳道或 / 和其他器械从壶腹部上缘插入,以接近垂直方向的向心牵扯力,从壶腹部 1 上缘约 90° 的夹角局部顺势轻松脱附回收,避免了撕脱及其他损伤肠道组织。脱附后随即内翻壶腹部 1 上缘,也顺势让脱附的仿生微阵列粘附片 2 与壶腹部 1 自身其他部位粘附,即可轻松取出、回收十二指肠内覆膜。
作为优化,所述的十二指肠内覆膜及其仿生微阵列粘附片 2 ,柔软、光滑、有弹性,组织相容性良好,无急性全身反应、无慢性全身反应、无急性局部反应、无慢性局部反应。
所述的十二指肠内覆膜,在体内将食糜与胆汁胰液分流,避免了胃流出物直接在十二指肠的消化、吸收、代谢,可以制备成不损伤肠组织的防治肥胖和糖尿病的医疗器械。
所述的十二指肠内覆膜各部位长度、厚度、弹力、形状、绒毛径长比、绒毛长度、绒毛直径、绒毛间距等数均为参考值,实际制造可依据需要具体设计。
本发明的实施方式
实施例 1
一种十二指肠内覆膜,可以由生物相容的可生物降解或不可生物降解材料或 / 和强疏水材料得到,主要由管状部 2 与喇叭状接续的外侧附连仿生微阵列粘附片 2 的壶腹部 1 组成。
管状部 3 的直径、长度和厚度与不同人群体内十二指肠及空肠相匹配,优化的直径为 25mm ,长度与十二指肠匹配并可以延伸到与十二指肠接续的一段空肠,长度为 500mm ,管状部 3 内覆膜的厚度为 0.1mm 。壶腹部 1 为喇叭状接续管状部 3 的部分,优化的壶腹部 1 内覆膜的厚度为 0.1mm ,喇叭状接续管状部 3 为渐进开放锐角,优化的角度为 45 ℃ 。 优化的壶腹部 1 的上缘可以是波浪型弹力膜。作为优化,仿生微阵列粘附片 2 可以粘合附连到内覆膜壶腹部 1 ,精确排列可以是菱形,可以是 2 排或 3 排,粘合剂可以是生物相容的聚氨酯、聚亚氨酯、硅树脂、氟化乙烯丙烯等或它们的组合或其他公知的材料及其组合。
作为优化,仿生微阵列粘附片 2 ,可以用微机电系统( MEMS )中电感耦合等离子体( ICP )深刻蚀技术在硅片上刻出直立的微阵列模板,将聚二甲氧基硅氧烷( PDMS )浇铸到硅模板柱阵列上,固化后剥离脱模,得聚二甲氧基硅氧烷( PDMS )微阵列孔模板,将液态聚氨酯或 / 和其他生物相容的材料浇铸在聚二甲氧基硅氧烷( PDMS )微米孔模板上,固化脱模,得聚氨酯仿生粘附微阵列。不排除用其他物质和其他方法制备粘附微阵列。合成仿贻贝粘附蛋白聚合物 - 多巴胺 - 甲基丙烯酸酰胺 / 甲氧基乙基丙烯酸酯共聚物 (P(DMA-co-MEA)) ;合成的含多巴的共聚物溶解于二氯甲烷液,将聚氨酯微阵列浸入此溶液,聚氨酯微阵列外面即修饰了一层含多巴胺的共聚物。不排除可以形成既在干燥条件下有强粘附力又在水中也有强粘附力的其他物质(包括修饰物与被修饰物)及制备方法。作为优化,仿生微阵列粘附片 2 具有适宜的接触表面,并控制绒毛径长比以及绒毛间距以免相互粘合。作为优化,所述的十二指肠内覆膜及其仿生微阵列粘附片 2 ,柔软、光滑、有弹性,组织相容性良好,无急性全身反应、无慢性全身反应、无急性局部反应、无慢性局部反应。
作为优化,内覆膜管状部 3 可以用粘合或 / 和编织的方法加一根螺旋的筋骨以对内覆膜加固、支撑、扩张及防止扭曲,协同内覆膜的功能。
实施例 2
作为优化,十二指肠内覆膜壶腹部 1 与管状部 3 在体外可以一起收拢或折叠为圆柱状,折叠方式可以是内覆膜远端往近端折叠或卷曲或覆盖,然后壶腹部 1 向心内翻。
作为优化,十二指肠内覆膜可以在内镜和 X 射线透视下经上消化道送入十二指肠,装置时,可以多爪器械(爪的数量与仿生微阵列粘附片精确排列相匹配)经内镜钳道延中心离心撑开内翻的壶腹部 1 ,再将内翻的壶腹部 1 外翻复位,定位在十二指肠球部,粘附,再以器械或 / 和气或 / 和水或 / 和重力或 / 和其他方法轻柔推送所述的十二指肠内覆膜远端至目标位置。当肠道内容物运动时,由于没有接近垂直的牵扯力,十二指肠内覆膜不会脱附;当十二指肠球部扩充膨大时,由于十二指肠内覆膜没有相反的接近垂直的牵扯力,十二指肠内覆膜也不会脱附。
作为优化,在回收十二指肠内覆膜时,可以上述多爪器械经内镜钳道从壶腹部 1 上缘插入,以接近垂直方向的向心牵扯力,从壶腹部 1 上缘约 90° 的夹角局部顺势轻松脱附回收。脱附后随即内翻壶腹部 1 上缘,也顺势让脱附的仿生微阵列粘附片 2 与壶腹部 1 自身其他部位粘附,即可轻松取出、回收十二指肠内覆膜。
实施例 3
制备仿生微阵列粘附片 2 主要的工艺步骤为:第一步利用 CF4 气体的辉光放电作用产生 F 原子的活化自由基。然后 F 原子活化自由基可以与硅或二氧化硅反应生成四氟化硅气体,从而显示出刻蚀效果。第二步:在氩气等离子体中引入氟原子,通过利用等离子体的协同作用氟和硅可以快速反应从而可以使得刻蚀的效果更佳。第三步:在硅片上引入掩模板图形,然后使用牛津 ICP180 刻蚀系统在硅片上刻蚀出高长径比的柱阵列,最后将聚二甲基硅氧烷浇铸到硅模板柱阵列上,置入烘箱在 60℃ 下经烘烤 4h 固化,剥离脱模即可得到聚二甲基硅氧烷的孔阵列模板,然后再将其他高分子液体浇铸在聚二甲基硅氧烷孔阵列模板上,固化脱模后即可获得大面积的微米级高分子仿生脚掌刚毛粘附阵列。
实施例 4
平整的石蜡,用原子力显微镜探针的圆锥形尖端在其表面刻出微孔,孔长为 3μm ,孔径为 400nm ,孔间距为 1.5μm ,将液态聚酰亚胺材料浇注入孔内,置冷,去除石蜡,脱模后的聚合物表面即具有了与壁虎刚毛上细分叉结构相似、尺寸相近的微突起。
实施例 5
铝箔,置酸性电解液中,阳极氧化,以氧化电压和酸性溶液可调控孔径和孔间距,孔径为 150 nm ,孔长为 60μm ,仿生材料可以用聚甲基丙烯酸甲酯等。
实施例 6
静电诱导刻蚀法:静电诱导刻蚀法:用溶液甩膜法在光滑硅片上制备一层聚合物薄膜,为下方电极,另取一片硅片为上方电极,聚合物表面与上方电极间保留空气间隙 100-1000 nm ,加热聚合物至玻璃化温度以上,并给电容器施加直流电压 30-40 V ,产生 105V/m 电场强度,形成规整微结构,冷却至室温,即得相应聚合物。若上方电极自身就具微结构,则能使聚合物准确复制出同样突起的微结构。
实施例 7
硅模板,用特殊气体对其钝化及刻蚀,可以有 CRYO 工艺和 BOSCH 工艺。 CRYO 工艺: -100 ℃ 以下低温,钝化和刻蚀同步进行,气体可以用 SF6/O2 。 BOSCH 工艺:常温,刻蚀和钝化分开进行,刻蚀气体可以用 SF6 ,钝化气体可以用 C4/F8 。制备的聚苯乙烯孔径为 200nm ,绒毛径长比为 1:10 。
实施例 8
光刻技术(电子束投影光刻、纳米压印光刻技术等):人工或计算机绘制尺寸比实际大几十或几百倍的掩模,缩制成实际工作模板,将模板附在硅基板上,光子束透过模板在硅基板上刻出与模板相同的仿生阵列形状,或辅以其它刻蚀技术如离子束刻蚀。可将聚对二甲苯制得末端较大的绒毛,并在其表面沉积一层薄的疏水性膜以防止相互之间的粘合。这种表面呈凹状的绒毛每平方厘米能够产生最大 18N 的力 , 比平尖端的绒毛高出约 4 倍。带有这种末端的仿生材料所产生的吸附力,比半球状末端材料的吸附力高出近 70 倍。
实施例 9
阵列纳米碳管的制备:化学气相沉积法,高温下,将含碳元素的气体分解,分解出来的碳原子在有催化剂的地方定向生成有序的碳纳米管阵列。化学气相沉积法可以有等热化学沉积 (TCVD) 、离子体增强化学沉积 ( PECVD) 、浮动催化化学气相沉积法 (FCCVD) 等。可用 TCVD 法,以 Fe 和 Al 为催化剂在 750 ℃ 乙烯和氢气气氛下, 在硅基底上生长出竖直精确排列的多壁碳纳米管阵列 。生长出来的刚毛长为 150-600μm ,直径为 200-800μm , 1cm 2 可以产生 36N 的吸附力 , 其绒毛的吸附力是壁虎的 4 倍、普通聚合材料的 10 倍,这种有序分级的结构能产生比杂乱结构高 4 倍的吸附力。
实施例 10
反应性等离子体干刻蚀法:硅片,制备一层微米级厚度的聚合物薄膜,用电子束对铝膜刻蚀,使其形成微结构阵列,再利用氧化铝与聚合物对氧等离子体的蚀刻速率的巨大差异,用氧等离子体干蚀刻,使铝膜上的微结构转移复制到聚合物薄膜上。还可以用软蚀刻法、基于微纳米绒毛生长的定向自装配法等。
实施例 11
微粘附阵列浇注工艺:浇注模具材料为黄铜,公知的加工工艺制作薄板微孔阵列,真空环境下浇注微粘附阵列,浇注材料用生物相容材料如 184 型硅橡胶等,加热固化,固化的硅橡胶阵列基体本身不具粘性,具有良好的自洁性。取出整套模具及粘附阵列,冷却至常温,可以变温脱模,脱模剂可以用液体石蜡或二甲基硅油,密封剂可以用固体石蜡。脱模后的阵列支杆断裂少,末端保持好,可重复使用等优点。粘附阵列具有各向异性的粘附特性,法向粘附力具有可控性,切向粘附力较大等特性。
实施例 12
用 MEMS 中 ICP 深刻蚀技术在硅片上刻出直立的微米阵列模板,将聚二甲氧基硅氧烷( PDMS )浇铸在阵列上,然后将其固化后剥离脱模,即得到具有微米孔的聚二甲氧基硅氧烷( PDMS )模板仿然后再将聚氨酯液态浇铸在聚二甲氧基硅氧烷( PDMS )上,经固化脱模后即得到具有微米阵列的聚氨酯仿生粘附微阵列。(主要的工艺步骤为:第一步利用 CF4 气体的辉光放电作用产生 F 原子的活化自由基。然后 F 原子活化自由基可以与硅或二氧化硅反应生成四氟化硅气体,从而显示出刻蚀效果。第二步:在氩气等离子体中引入氟原子,通过利用等离子体的协同作用氟和硅可以快速反应从而可以使得刻蚀的效果更佳。第三步:在硅片上引入掩模板图形,然后使用牛津 ICP180 刻蚀系统在硅片上刻蚀出高长径比的柱阵列,最后将聚二甲基硅氧烷浇铸到硅模板柱阵列上,置入烘箱在 60℃ 下经烘烤 4h 固化,剥离脱模即可得到聚二甲基硅氧烷的孔阵列模板,然后再将其他高分子液体浇铸在聚二甲基硅氧烷孔阵列模板上,固化脱模后即可获得大面积的微米级高分子仿生脚掌刚毛粘附阵列。)不排除用其他物质和其他方法制备粘附微阵列。合成仿贻贝粘附蛋白聚合物 - 多巴胺 - 甲基丙烯酸酰胺 / 甲氧基乙基丙烯酸酯共聚物 (P(DMA-co-MEA)) ,合成的含多巴的共聚物溶解于二氯甲烷液,将聚氨酯微阵列浸入此溶液,聚氨酯微阵列外面即修饰了一层含多巴胺的共聚物。不排除可以形成既在干燥条件下有强粘附力又在水中也有强粘附力的其他物质(包括修饰物与被修饰物)及制备方法。
实施例 13
兔真皮干细胞悬液,密度 6×104/ml ,移注于培养皿,转动培养皿,使细胞均匀分散到表面,培养至单层近汇合;弃去培养基,加入新鲜培养基,培养皿中央放置试样,第 1d 、 2d 、 3d 、 4d 、 6d 分别滴胰蛋白酶入培养基中,使培养皿壁的粘附细胞脱落到培养基中,取定量培养基滴到细胞记数板上,记数细胞生长; 6d ,将培养皿在倒置显微镜下观察兔真皮干细胞生长,实验组细胞在材料边缘的培养基中生长良好,可见细胞已贴附在材料边缘,计数细胞,浓度为 8.53 × 104/ml 。将第 1d 、 2d 、 3d 、 4d 及 6d 培养皿中的细胞计数,绘制细胞生长曲线,提示实验组细胞生长与正常对照组的差异无显著性意义( P<0.0.5 )。
实施例 14
按《国标 - 医疗器械生物学评价》第 12 部分制备仿生微阵列粘附片 2 材料浸提液,具体步骤:浸提介质选用灭菌生理盐水,三蒸水漂洗 3 遍,钴 60 照射后备用,无菌状态下将材料于 37℃ 下浸提 72 h ,制得浸提液 100ml 。 30 只健康 Balbc 小鼠,雄性,随机分为 3 组,即浸提液组、阳性对照组、阴性对照组。试验开始前即刻,称重、记录并标记。浸提液摇匀, 50ml/kg Balbc 小鼠尾静脉注射,生理盐水为阴性对照, 4.5 ml /L 苯酚水溶液为阳性对照, 72 h 内观察 Balbc 小鼠反应及存活率。结果显示,浸提液组及阴性对照组无 1 例死亡,无明显不良反应,体重变化差异无极显著意义。
实施例 15
仿生微阵列粘附片 2 ,三蒸水漂洗 3 遍,钴 60 照射后备用。 12 只健康成年新西兰兔,雌雄各半,随机分为 3 组, 20% 乌拉坦 5ml/kg 腹腔注射麻醉,剪除兔背部手术区毛发,碘伏消毒手术区域,切开皮肤,分离皮下组织,暴露脊柱旁肌肉,距中线 30mm 处顺肌纤维长轴将材料薄片埋植,缝合,消毒, 1w 拆线,于 1w 、 4w 、 12w 将动物处死,取局部脊柱旁肌肉组织,生理盐水清洗干净, 4% 的多聚甲醛清洗,固定于 4% 的多聚甲醛溶液中, 24h 后石蜡包埋、浸蜡、切片, HE 染色,光学显微镜下观察。植入 1w ,肉眼见材料组无明显组织水肿,切片见横纹肌水肿不明显,肌纤维连续性尚可,组织间质中有少量炎性细胞浸润,包埋处组织边缘有纤维组织少量增生。植入 12w ,材料组无明显组织水肿,组织结构尚完整,无明显炎症反应,包埋处组织周围少量纤维组织包裹。
实施例 16
将合成的含多巴的共聚物溶解于二氯甲烷中,将聚氨酯阵列浸泡入此溶液中,则在阵列外面修饰了一层含多巴胺的共聚物。纳米压痕仪行弹性模量测试,力的分辨率为 1nN ,深度分辨率为 0.04nm ,最大载荷为 10mN ,最大压入深度为 20nm ,选用 100μm 长、 1μm 宽的平头压头,载荷采用位移控制模式,探针最大垂直位移在 200nm 以内,每个样品测试 4 个点。修饰后的仿生粘附阵列在水中显示出粘附性能。弹性模量越小,其对应的粘附力越大。修饰后切向粘附力可达 2.21 N/cm2 ,法向粘附力可达 2.15 N/cm2 。粘附力随预压力的增大而增大,预压力为 6.11 N/cm2 时,粘附力最大。
本发明的各长度、厚度与直径等均为参考值,实际制造可依据个体需要具体设计。
本发明未涉及部分包含相同的现有技术,或可以采用现有技术加以实现。
工业实用性
序列表自由内容

Claims (10)

  1. 一种十二指肠内覆膜,其特征在于由生物相容的可生物降解或 / 和不可生物降解材料或 / 和疏水性材料得到,主要由弹性壶腹部与管状部组成,壶腹部位于十二指肠球部,管状部可延续到空肠,壶腹部包含可通过施力方向强力粘附而不扎入肠组织的并可轻松脱附回收的生物相容的仿生微阵列粘附片,十二指肠内覆膜上段可以是波浪型或 V 型或梯形或城墙型的壶腹部弹力膜,附连仿生微阵列粘附片的壶腹部整体可顺应十二指肠及球部的运动而伸缩或弹性活动,壶腹部与管状部在体外可一起收拢或折叠为球状或圆柱状或胶囊状或纺锤状。
  2. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,所述的仿生微阵列粘附片由生物相容的可生物降解或 / 和不可生物降解材料或 / 和疏水性材料得到 , 可选择硅橡胶、聚亚胺酯、多壁碳纳米管、聚酯树脂、聚酰亚胺、人造橡胶、环氧树脂、聚二甲基硅氧烷、聚苯乙烯、聚四氟乙烯、特氟龙、聚二甲基硅氧烷、聚对二甲苯、聚氨酯与对苯二甲酸乙二酯、聚甲基丙烯酸甲酯等或组合以及其他适合的材料,形状可以是圆形、橄榄形、梯形、方形、三角形、柱形、菱形、异形等或它们的组合,大小可以是 1 平方纳米或 1 平方纳米以上或它们的组合 , 粘附纤维绒毛的顶端可以是弯曲状(铲状)或平压头状或圆压头状或层级结构或其他形状与结构及其组合。
  3. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,所述的仿生微阵列粘附片可以用缝合、粘合、锚合、编织、钩钳、钉铆、热塑、冻固、气压、静电等或 / 和它们的组合或其他方法等及其组合附连到内覆膜壶腹部,精确排列可以是圆形、橄榄形、梯形、方形、三角形、柱形、菱形、异形等或它们的组合,可以是一排或一排以上的数排,仿生微阵列粘附片可以是紧挨或分开等或它们的组合,粘合剂可以是生物相容的聚氨酯、聚亚氨酯、硅树脂、氟化乙烯丙烯等或它们的组合或其他材料及其组合。
  4. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,所述的仿生微阵列粘附片面积小、厚度薄、不扎入粘膜却抓缚力强,肠内容物流动的施力角度难以脱附,内镜钳道的施力角度可以轻松脱附回收与安装,且可重复粘附和脱附。
  5. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,所述的仿生微阵列粘附片可以由原子力显微镜刻蚀法、氧化铝模板孔洞注入成型及其他模具注塑、静电诱导刻蚀法、电感耦合等离子体刻蚀技术、光刻技术(电子束投影光刻、纳米压印光刻技术等)、阵列纳米碳管、反应性等离子体干刻蚀法、软蚀刻法、基于微纳米绒毛生长的定向自装配法等及其组合或其他方法制备。
  6. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,所述的仿生微阵列粘附片粘附力大、稳定性好、对材质和形貌适应性强、自清洁性好、不会对肠组织造成损伤和污染等优点,与其他部位与部件在功能上彼此支持。
  7. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,所述的十二指肠内覆膜壶腹部与管状部在体外可以一起收拢或折叠为球状或圆柱状或胶囊状或纺锤状,折叠方式可以是内覆膜远端往近端折叠或卷曲或覆盖,然后壶腹部向心内翻。
  8. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,所述的十二指肠内覆膜可以在内镜和 X 射线透视或其他医学或 / 和生物学观察设备与仪器辅助下经上消化道送入十二指肠,装置时,延中心离心撑开,将内翻的壶腹部外翻复位,定位在十二指肠球部,粘附,当肠道内容物运动时,由于没有接近垂直的牵扯力,十二指肠内覆膜不会脱附,当十二指肠球部扩充膨大时,由于十二指肠内覆膜没有相反的接近垂直的牵扯力,十二指肠内覆膜也不会脱附。
  9. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于,在回收所述的十二指肠内覆膜时,可以多爪器械(爪的数量可与仿生微阵列粘附片精确排列相匹配)经内镜钳道从壶腹部上缘插入,以接近垂直方向的向心牵扯力,从壶腹部上缘约 90° 的夹角局部顺势轻松脱附,避免了撕脱及其他损伤肠道组织,脱附后随即内翻壶腹部上缘,也顺势让脱附的仿生微阵列粘附片与壶腹部自身其他部位粘附,即可轻松取出十二指肠内覆膜。
  10. 根据权利要求 1 所述的十二指肠内覆膜,其特征在于可以制备成不损伤肠组织的防治肥胖病和糖尿病的医疗器械。
PCT/CN2014/079705 2013-07-18 2014-06-12 一种医疗器械及其应用 WO2015007121A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2014292687A AU2014292687B2 (en) 2013-07-18 2014-06-12 Medical instrument and application thereof
GB1602663.5A GB2532163B (en) 2013-07-18 2014-06-12 A duodenal liner with a biocompatible microarray adhesive
CA2918492A CA2918492A1 (en) 2013-07-18 2014-06-12 Duodenal membrane with microarray adhesive piece
US14/906,239 US20160158052A1 (en) 2013-07-18 2014-06-12 Medical Device and Application Thereof
NZ717105A NZ717105A (en) 2013-07-18 2014-06-12 Medical device and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310301366.8 2013-07-18
CN201310301366.8A CN103315835B (zh) 2013-07-18 2013-07-18 一种医疗器械及其应用

Publications (1)

Publication Number Publication Date
WO2015007121A1 true WO2015007121A1 (zh) 2015-01-22

Family

ID=49185080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079705 WO2015007121A1 (zh) 2013-07-18 2014-06-12 一种医疗器械及其应用

Country Status (7)

Country Link
US (1) US20160158052A1 (zh)
CN (1) CN103315835B (zh)
AU (1) AU2014292687B2 (zh)
CA (1) CA2918492A1 (zh)
GB (1) GB2532163B (zh)
NZ (1) NZ717105A (zh)
WO (1) WO2015007121A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833129A (zh) * 2019-03-11 2019-06-04 曲梅花 带有螺旋弹力丝的大小鼠十二指肠-空肠内置套管

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102783976B (zh) * 2012-08-21 2014-12-10 万平 一种用静电纺制成的十二指肠内覆膜
CN103315835B (zh) * 2013-07-18 2015-05-13 万平 一种医疗器械及其应用
CN105596128B (zh) * 2016-01-23 2018-09-11 万平 十二指肠内覆膜
KR101790029B1 (ko) * 2017-04-13 2017-10-25 경북대학교 산학협력단 불소고무를 이용한 건식접착제, 불소고무를 이용한 건식접착제 제조 방법 및 건식접착 구조물 사출 방법
US11911236B2 (en) * 2017-07-25 2024-02-27 3M Innovative Properties Company Water-resistant polymer-based dental articles
CN111803254B (zh) * 2020-07-17 2022-06-03 山东大学齐鲁医院 一种内镜减重装置及其工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031981A1 (en) * 2009-09-11 2011-03-17 Gi Dynamics, Inc. Anchors with open heads
CN102012632A (zh) * 2010-09-10 2011-04-13 中国科学院合肥物质科学研究院 一种具有不同顶端结构的仿生粘附阵列的制备方法
CN103142262A (zh) * 2013-03-31 2013-06-12 万平 一种十二指肠内覆膜
CN103315835A (zh) * 2013-07-18 2013-09-25 万平 一种医疗器械及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6675809B2 (en) * 2001-08-27 2004-01-13 Richard S. Stack Satiation devices and methods
US8563117B2 (en) * 2006-08-04 2013-10-22 Phillip B. Messersmith Biomimetic modular adhesive complex: materials, methods and applications therefore
KR101160646B1 (ko) * 2010-05-14 2012-06-29 신경민 위 절제 후 음식물 의한 부작용 방지 전용 스텐트
CN102153867B (zh) * 2010-10-28 2013-01-30 南京航空航天大学 高度几何仿生刚毛阵列及制法和用途
CN102080272B (zh) * 2010-12-17 2012-05-23 中国科学院长春应用化学研究所 一种粘合材料的制备方法
CN102621352B (zh) * 2011-02-01 2015-01-07 国家纳米科学中心 原子力显微镜探针及其针尖以及幽门螺杆菌与胃黏液黏附能力的检测方法
CN102551938B (zh) * 2012-02-22 2014-06-18 常州德天医疗器械有限公司 一种延缓胃排空并调节肠胰代谢的器械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031981A1 (en) * 2009-09-11 2011-03-17 Gi Dynamics, Inc. Anchors with open heads
CN102012632A (zh) * 2010-09-10 2011-04-13 中国科学院合肥物质科学研究院 一种具有不同顶端结构的仿生粘附阵列的制备方法
CN103142262A (zh) * 2013-03-31 2013-06-12 万平 一种十二指肠内覆膜
CN103315835A (zh) * 2013-07-18 2013-09-25 万平 一种医疗器械及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833129A (zh) * 2019-03-11 2019-06-04 曲梅花 带有螺旋弹力丝的大小鼠十二指肠-空肠内置套管

Also Published As

Publication number Publication date
AU2014292687A1 (en) 2016-03-10
GB2532163A (en) 2016-05-11
CA2918492A1 (en) 2015-01-22
NZ717105A (en) 2017-08-25
CN103315835B (zh) 2015-05-13
CN103315835A (zh) 2013-09-25
GB201602663D0 (en) 2016-03-30
GB2532163B (en) 2020-06-03
AU2014292687B2 (en) 2017-04-20
US20160158052A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
WO2015007121A1 (zh) 一种医疗器械及其应用
JP6697531B2 (ja) 陰圧治療装置および陰圧治療装置を製造するためのフィルム
US11291576B2 (en) Disposable stoma plug and method of use thereof
US20060037617A1 (en) Airway implant devices and methods of use
CN103764069B (zh) 用于在肠道中受控锚固的外科手术设备
CA1107905A (en) Artificial sphincter
WO2014161446A1 (zh) 一种十二指肠内覆膜
US11311404B2 (en) Stomal diverter device
US11033417B2 (en) Prosthesis for enterostomy patients
CN205758745U (zh) 一种口腔护理辅助清洁器
WO2017124847A1 (zh) 十二指肠内覆膜
US11872106B2 (en) Device and method for controlling fecal incontinence
CN201978300U (zh) 一种医用气管插管固定器
WO1995002368A1 (en) Percutaneous colostomy catheter
WO2020250145A1 (en) Prosthesis for enterostomy patients
CN213129634U (zh) 小肠隔离保护装置
CN211094683U (zh) 一种口腔种植牙外科用手术洞巾
CN102697590B (zh) 一种十二指肠套管及其制备方法
CN221130121U (zh) 一种悬挂式前列腺支架及前列腺部尿道粘膜透皮给药载体
CN214967195U (zh) 一种直肠肛管术后止血排气装置
CN212282515U (zh) 一种用于宫腔防粘连的球囊子宫支架
CN219579187U (zh) 一种方便使用的造口袋
CN111938722A (zh) 小肠隔离保护装置
CN2647343Y (zh) 鼻腔多功能引流器
CN2810642Y (zh) 气囊式阴道扩张器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2918492

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14906239

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201602663

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140612

ENP Entry into the national phase

Ref document number: 2014292687

Country of ref document: AU

Date of ref document: 20140612

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14826228

Country of ref document: EP

Kind code of ref document: A1