WO2015005408A1 - Hydrazide compound, and use thereof for controlling harmful arthropods - Google Patents

Hydrazide compound, and use thereof for controlling harmful arthropods Download PDF

Info

Publication number
WO2015005408A1
WO2015005408A1 PCT/JP2014/068372 JP2014068372W WO2015005408A1 WO 2015005408 A1 WO2015005408 A1 WO 2015005408A1 JP 2014068372 W JP2014068372 W JP 2014068372W WO 2015005408 A1 WO2015005408 A1 WO 2015005408A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
formula
compound represented
usually
tert
Prior art date
Application number
PCT/JP2014/068372
Other languages
French (fr)
Japanese (ja)
Inventor
彩乃 小綿
一哉 氏原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2015005408A1 publication Critical patent/WO2015005408A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/80Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/04Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member

Definitions

  • the present invention relates to a hydrazide compound and its use for controlling harmful arthropods.
  • An object of the present invention is to provide a novel hydrazide compound having a controlling activity against harmful arthropods.
  • the present inventor As a result of studying to find a compound having control activity against harmful arthropods, the present inventor has found that a hydrazide compound represented by the following formula (1) (hereinafter referred to as the present compound) is against harmful arthropods. As a result, the present inventors have found that it has a controlling effect, and have reached the present invention. That is, the present invention is as follows. [1] Formula (1) Wherein, X 1 is a chlorine atom, R 1 is hydrogen atom, X 2 is chlorine atom or fluorine atom, if X 2 is a chlorine atom, R 2 is Shikuropurokiru group, X 2 Is a fluorine atom, R 2 is a 3,3,3-trifluoropropyl group.
  • the hydrazide compound represented by this [2] The compound according to [1], wherein R 2 is a cyclopropyl group. [3] The compound according to [1], wherein R 2 is a 3,3,3-trifluoropropyl group. [4] A harmful arthropod control agent comprising the hydrazide compound according to any one of [1] to [3] as an active ingredient. [5] A method for controlling harmful arthropods, which comprises applying an effective amount of the hydrazide compound according to any one of [1] to [3] to harmful arthropods or habitats of harmful arthropods .
  • the compounds of the present invention include isomers derived from asymmetric carbon atoms, but the present invention includes isomers having harmful arthropod controlling activity and isomer mixtures in any ratio.
  • the compound of the present invention can be produced by reacting the compound represented by the formula (2) with the compound represented by the formula (3).
  • X 1 , X 2 , R 1 and R 2 represent the same meaning as described above, and L represents a hydroxyl group or a chlorine atom.
  • the reaction is usually performed in a solvent.
  • the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • L is a chlorine atom
  • the reaction is usually carried out in the presence of a base.
  • the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
  • the reaction is carried out in the presence of a condensing agent.
  • the condensing agent used in the reaction include dicyclohexylcarbodiimide and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride.
  • the amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (3) with respect to 1 mol of the compound represented by the formula (2), and the base or condensing agent is usually 1 to 1 mol.
  • the ratio is 10 moles.
  • the reaction is further optionally carried out in an arbitrary ratio of 0.1 mol to 1 mol with respect to 1 mol of the compound represented by the formula (2). Etc. can also be added.
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound of the present invention can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound of the present invention can be further purified by chromatography, recrystallization and the like.
  • the compound of the present invention can be produced by reacting the compound represented by the formula (4) with the acid (5).
  • the reaction is usually performed in a solvent.
  • the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • Examples of the acid (5) used in the reaction include hydrochloric acid, acetic acid, trifluoroacetic acid and the like.
  • the amount of the reagent used for the reaction is usually 1 to 10 moles of the acid (5) with respect to 1 mole of the compound represented by the formula (4).
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound of the present invention can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound of the present invention can be further purified by chromatography, recrystallization and the like.
  • the compound of the present invention can also be produced by reacting a compound represented by formula (6) with a compound represented by formula (7).
  • X 1 , X 2 , R 1 and R 2 represent the same meaning as described above, and Z represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, and a trifluoro group.
  • the reaction is usually performed in a solvent.
  • solvent used in the reaction examples include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • Aromatic hydrocarbons such as toluene and xylene
  • esters such as ethyl acetate
  • sulfoxides such as dimethyl sulfoxide and sulfolane
  • halogenated hydrocarbons such as 1,2-dichloroethan
  • the reaction is carried out in the presence of a base as necessary.
  • the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
  • the amount of the reagent used for the reaction is such that the compound represented by the formula (7) is usually 1 to 5 mol and the base is usually 1 to 5 mol per 1 mol of the compound represented by the formula (6). It is a ratio.
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.1 to 24 hours.
  • the compound of the present invention can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound of the present invention can be further purified by chromatography, recrystallization and the like.
  • the reaction is a coupling reaction using a general transition metal catalyst described in literature, for example, Org. Lett. 3, 3803-3805 (2001).
  • the compound represented by the formula (4) can be produced by reacting the compound represented by the formula (8) with the compound represented by the formula (3).
  • the reaction is usually performed in a solvent.
  • the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • L is a chlorine atom
  • the reaction is usually carried out in the presence of a base.
  • the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
  • the reaction is carried out in the presence of a condensing agent.
  • the condensing agent used in the reaction include dicyclohexylcarbodiimide and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride.
  • the amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (3) with respect to 1 mol of the compound represented by the formula (8), and the base or condensing agent is usually 1 to 1 mol.
  • the ratio is 10 moles.
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (4) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (4) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (8) can be produced by reacting the compound represented by the formula (9) with the nitrite compound (10) and then reacting with the reducing agent (11). [Wherein, X 1 and X 2 represent the same meaning as described above. ]
  • the reaction is usually carried out in a solvent.
  • solvent used in the reaction examples include water, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethers such as ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, Aromatic hydrocarbons such as xylene, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • Examples of the nitrite compound (10) used in the reaction include nitrites such as sodium nitrite and nitrites such as ethyl nitrite.
  • Examples of the reducing agent (11) used in the reaction include sulfites such as sodium sulfite, metals such as zinc, tin (II) chloride and the like.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of the nitrite compound (10) and 1 to 10 moles of the reducing agent (11) with respect to 1 mole of the compound represented by the formula (9). The molar ratio.
  • the reaction temperature in the step of reacting the compound represented by the reaction formula (9) with the nitrite compound (10) is usually in the range of ⁇ 20 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours. is there.
  • the reaction mixture obtained in the step of reacting the compound represented by formula (9) and the nitrite compound (10) can be used as it is in the step of reacting with the reducing agent (11), and the reaction temperature in the step is usually It is in the range of ⁇ 20 to 50 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (8) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (8) can be further purified by chromatography, recrystallization and the like. (Reference production method 3)
  • the compound represented by the formula (8) can also be produced by reacting the compound represented by the formula (9) with the aminating agent (12). [Wherein, X 1 and X 2 represent the same meaning as described above. ] The reaction is usually carried out in a solvent.
  • Examples of the solvent used in the reaction include water, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethers such as ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, Aromatic hydrocarbons such as xylene, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • the reaction is usually performed in the presence of a base.
  • Examples of the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, metal hydroxides such as sodium hydroxide and triethylamine, And organic amines such as pyridine.
  • Examples of the aminating agent (12) used in the reaction include chloramines such as chloramine, O-acylhydroxylamines such as O-mesitoylhydroxylamine, O-sulfonylhydroxylamines, and hydroxylamine-O-sulfonic acids. Can be mentioned.
  • the amount of the reagent used in the reaction is usually 1 to 10 mol of the aminating agent (12) and 1 to 10 mol of the base, based on 1 mol of the compound represented by the formula (9). is there.
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (8) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (8) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (9) can also be produced by reacting the compound represented by the formula (13-1) with di-tert-butyl dicarbonate.
  • X 1 and X 2 represent the same meaning as described above.
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, xylene and the like.
  • Aromatic hydrocarbons such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • the reaction is usually performed in the presence of a base.
  • the base used in the reaction include organic amines such as triethylamine, carbonates such as sodium carbonate, and alkali metal hydroxides such as sodium hydroxide.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of di-tert-butyl dicarbonate and 1 to 10 moles of the base based on 1 mole of the compound represented by the formula (13-1). Is the ratio.
  • tetrabutylammonium bromide or the like is usually added at an arbitrary ratio from 0.05 mol to 0.10 mol with respect to 1 mol of the compound represented by formula (13-1). It can also be done.
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (9) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (9) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (13-1) can be produced by reducing the compound represented by the formula (14) by any method shown in the following (i) to (iii). [Wherein, X 1 and X 2 represent the same meaning as described above. ]
  • (I) A method of reacting with hydrogen gas in the presence of a transition metal catalyst. The reaction is carried out in a solvent.
  • the solvent used in the reaction include esters such as ethyl acetate, alcohols such as ethanol and methanol, water, acetic acid, hydrochloric acid, and mixtures thereof.
  • the transition metal catalyst used in the reaction include Raney nickel, palladium-carbon, and platinum dioxide.
  • the amount of the transition metal catalyst used in the reaction is usually 0.01 to 0.5 mol with respect to 1 mol of the compound represented by the formula (14).
  • the reaction temperature is usually in the range of 0 to 80 ° C.
  • the reaction time is usually in the range of 0.1 to 24 hours.
  • the compound represented by the formula (13-1) can be isolated by filtering the reaction mixture and performing post-treatment operations such as organic solvent extraction, drying, and concentration as necessary. .
  • the isolated compound represented by the formula (13-1) can be further purified by chromatography, recrystallization and the like.
  • (Ii) A method of reacting with hydrazine in the presence of a base. The reaction is carried out in a solvent.
  • Examples of the solvent used in the reaction include ethers such as diethylene glycol and triethylene glycol, water, and a mixture thereof.
  • Examples of the base used for the reaction include alkali metal hydroxides such as potassium hydroxide.
  • Examples of hydrazine used in the reaction include hydrazine hydrate.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of base and 1 to 10 moles of hydrazine to 1 mole of the compound represented by formula (14).
  • the compound represented by the formula (13-1) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (13-1) can be further purified by chromatography, recrystallization and the like.
  • (Iii) A method of reacting with a metal in the presence of an acid.
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include alcohols such as ethanol, water, and a mixture thereof.
  • the metal used in the reaction include iron, tin, and tin (II) chloride.
  • the acid used for the reaction include acetic acid, hydrochloric acid, and sulfuric acid.
  • the amount of the reagent used in the reaction is usually 2 to 20 moles of metal and 0.1 to 10 moles of acid with respect to 1 mole of the compound represented by the formula (14).
  • the reaction temperature is usually in the range of 0 to 100 ° C.
  • the reaction time is usually in the range of 0.5 to 12 hours.
  • the compound represented by the formula (13-1) can be isolated by filtering the reaction mixture and performing post-treatment operations such as organic solvent extraction, drying, and concentration as necessary. .
  • the isolated compound represented by the formula (13-1) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (16) can be produced by reacting the compound represented by the formula (13-1) with trifluoroacetic anhydride.
  • X 1 and X 2 represent the same meaning as described above.
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, xylene and the like.
  • Aromatic hydrocarbons such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of trifluoroacetic anhydride with respect to 1 mole of the compound represented by the formula (13-1).
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (16) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (16) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (9) can also be produced by reacting the compound represented by the formula (18) with hydroxylamine and a base.
  • X 1 and X 2 represent the same meaning as described above.
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, water, and mixtures thereof.
  • the hydroxylamine used in the reaction include hydroxylamine and mineral acid salt forms such as hydroxylamine hydrochloride and hydroxylamine sulfate, which can generate hydroxylamine in the reaction system.
  • the reaction is performed in the presence of a base.
  • the base used in this case include organic amines such as triethylamine, carbonates such as sodium carbonate, and alkali metal hydroxides such as sodium hydroxide.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of hydroxylamine per mole of the compound represented by formula (18), and is used when a salt of hydroxylamine and mineral acid is used.
  • the amount of the base to be obtained is usually 1 to 10 moles per mole of the salt of hydroxylamine and mineral acid.
  • a phase transfer catalyst such as tetrabutylammonium bromide is usually added at an arbitrary ratio from 0.1 mol to 1.0 mol with respect to 1 mol of the compound represented by the formula (18). It can also be done.
  • the reaction temperature is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (9) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (9) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (18) can also be produced by reacting the compound represented by the formula (19) and the compound represented by the formula (20) with a base and heating. [Wherein, X 1 and X 2 represent the same meaning as described above. ] The reaction is usually carried out in a solvent.
  • solvent used in the reaction examples include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
  • Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
  • the amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (20) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (19). It is a ratio.
  • the reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (18) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (18) can be further purified by chromatography, recrystallization or the like.
  • the compound represented by the formula (18) can also be produced by reacting the compound represented by the formula (21) with a dehydrating agent (22) and a base. [Wherein, X 1 and X 2 represent the same meaning as described above. ] The reaction is usually carried out in a solvent.
  • Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
  • Examples of the dehydrating agent (22) used in the reaction include acid chlorides such as thionyl chloride and carboxylic acid anhydrides such as acetic anhydride.
  • Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of the dehydrating agent (22) and 1 to 10 moles of the base with respect to 1 mole of the compound represented by the formula (21). .
  • the reaction temperature of the reaction is usually in the range of 0 to 200 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (18) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (18) can be further purified by chromatography, recrystallization or the like.
  • the compound represented by the formula (21) can be produced by reacting the compound represented by the formula (19) and the compound represented by the formula (20) with a base. [Wherein, X 1 and X 2 represent the same meaning as described above. ] The reaction is usually carried out in a solvent.
  • solvent used in the reaction examples include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
  • Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
  • the amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (20) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (19). It is a ratio.
  • the reaction temperature is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (21) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (21) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (20) can be produced by reacting the compound represented by the formula (23) with a trifluoromethylating reagent (24) and a base.
  • a trifluoromethylating reagent (24) and a base.
  • X 2 represents the same meaning as described above
  • R 6 represents a C1-C6 alkyl group.
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
  • examples of the trifluoromethylating agent (24) used in the reaction include trifluoromethyltrimethylsilyl.
  • Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
  • the amount of the reagent used in the reaction is usually 1 to 10 mol of the trifluoromethylating agent (24) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (23). It is a ratio.
  • the reaction temperature of the reaction is usually in the range of 0 to 200 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (20) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (20) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (20) can be produced by reacting the compound represented by the formula (25) with the Grignard reagent (26) and then reacting with the trifluoromethyl reagent (27). [Wherein, X 2 represents the same meaning as described above, and Y represents a halogen atom.
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, and 1,4-dioxane, hydrocarbons such as toluene, and mixtures thereof.
  • the Grignard reagent (26) used in the reaction include isopropyl magnesium bromide.
  • Examples of the trifluoromethylating reagent (27) used in the reaction include ethyl trifluoroacetate.
  • the amount of the reagent used for the reaction is usually 1 to 10 mol of Grignard reagent (26) and 1 to 1 of trifluoromethyl reagent (27) with respect to 1 mol of the compound represented by the formula (25).
  • the ratio is 10 moles.
  • the reaction temperature in the step of reacting the compound represented by the reaction formula (25) with the Grignard reagent (26) is usually in the range of ⁇ 20 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours. .
  • the reaction mixture obtained in the step of reacting the compound represented by the formula (25) with the Grignard reagent (26) can be used as it is in the step of reacting with the trifluoromethylating reagent (27), and the reaction temperature in this step is
  • the reaction time is usually in the range of ⁇ 20 to 50 ° C., and the reaction time is usually in the range of 0.5 to 12 hours.
  • the compound represented by the formula (20) can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (20) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (25) can be produced by reacting the compound represented by the formula (28) with the diazotization reagent (29) and then reacting with the inorganic halogen reagent (30).
  • X 2 represents the same meaning as described above
  • Y represents a halogen atom.
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include water, acidic aqueous solutions such as hydrochloric acid and sulfuric acid, and mixtures thereof.
  • the diazotization reagent (29) used for the reaction include nitrites such as sodium nitrite.
  • potassium iodide As an inorganic halogen reagent (30) used for reaction, potassium iodide etc.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of the diazotizing reagent (29) and 1 to 1 mole of the inorganic halogen reagent (30) with respect to 1 mole of the compound represented by the formula (28).
  • the ratio is 10 moles.
  • the reaction temperature in the step of reacting the compound represented by the reaction formula (28) with the diazotization reagent (29) is usually in the range of ⁇ 20 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours. is there.
  • the reaction mixture obtained in the step of reacting the compound represented by formula (28) with the diazotization reagent (29) can be used in the step of reacting with the inorganic halogen reagent (30) as it is, and the reaction temperature in the step is as follows. Usually, it is in the range of ⁇ 20 to 50 ° C., and the reaction time is usually in the range of 0.5 to 12 hours.
  • the compound represented by the formula (25) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (25) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (20) can also be produced by reacting the compound represented by the formula (31) with ozone and then reacting with a reducing agent.
  • a reducing agent such as X 2 represents the same meaning as described above.
  • the reaction is usually performed in a solvent.
  • the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, esters such as ethyl acetate, and halogenated hydrocarbons such as chloroform and dichloromethane. Alcohols such as methanol and ethanol, and mixtures thereof.
  • Examples of the reducing agent used in the reaction include dimethyl sulfide, triphenylphosphine, zinc, thiourea and the like.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of ozone and 1 to 10 moles of reducing agent per mole of the compound represented by formula (31).
  • the reaction temperature in the step of reacting the compound represented by the reaction formula (31) with ozone is usually in the range of ⁇ 100 to 0 ° C., and the reaction time is usually in the range of up to 24 hours.
  • the reaction mixture obtained in the step of reacting the compound represented by the formula (31) with ozone can be used as it is in the step of reacting with a reducing agent, and the reaction temperature in the step is usually in the range of ⁇ 78 to 30 ° C.
  • the reaction time is usually in the range of 0.5 to 12 hours.
  • the compound represented by the formula (20) can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (20) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (31) can be produced by reacting the Wittig reagent (33) with a base and then reacting with the compound represented by the formula (20).
  • the reaction is usually performed in a solvent.
  • the solvent used for the reaction include tetrahydrofuran, dityl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
  • Examples of the Wittig reagent (33) used in the reaction include methyltriphenylphosphonium bromide.
  • Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, organic lithiums such as butyl lithium, and organic amines such as triethylamine and pyridine.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of Wittig reagent (33) and 1 to 10 moles of base based on 1 mole of the compound represented by formula (20). .
  • the reaction temperature in the step of reacting the Wittig reagent (33) with the base is usually in the range of ⁇ 100 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the reaction mixture obtained in the step of reacting the Wittig reagent (33) with the base can be used as it is in the step of reacting with the compound represented by the formula (20), and the reaction temperature in this step is usually ⁇ 100 to It is in the range of 50 ° C., and the reaction time is usually in the range of 0.5 to 12 hours.
  • the compound represented by the formula (31) can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (31) can be further purified by chromatography, recrystallization and the like.
  • the compound represented by the formula (31) can be produced, for example, according to the method described in International Publication No. 2011/124998. [Wherein X 2 represents the same meaning as described above. ]
  • (Reference production method 17) The compound represented by the formula (6) can be produced by reacting the compound represented by the formula (34) with a base and then reacting the compound represented by the formula (31). [Wherein, X 1 , X 2 and Z represent the same meaning as described above. ] The reaction is usually carried out in a solvent.
  • solvent used in the reaction examples include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile.
  • Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
  • Examples of the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine. .
  • the amount of the reagent used for the reaction is usually 1 to 10 mol of the compound represented by the formula (31) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (34). It is a ratio.
  • the reaction temperature in the step of reacting the compound represented by the reaction formula (34) with the base is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the reaction mixture obtained in the step of reacting the compound represented by formula (34) with the base can be used as it is in the step of reacting with the compound represented by formula (31), and the reaction temperature in this step is usually 0. It is in the range of ⁇ 80 ° C, and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (6) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (6) can be further purified by chromatography, recrystallization or the like.
  • the compound represented by the formula (34) can be produced by reacting the compound represented by the formula (35) with a chlorinating agent (36).
  • the reaction is usually carried out in a solvent.
  • the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, hydrocarbons such as toluene, esters such as ethyl acetate, N, Examples include acid amides such as N-dimethylformamide, nitriles such as acetonitrile, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
  • Examples of the chlorinating agent (36) used in the reaction include chlorine gas and N-chlorosuccinimide.
  • the amount of the reagent used for the reaction is usually 1 to 10 moles of the chlorinating agent (36) with respect to 1 mole of the compound represented by the formula (35).
  • the reaction temperature is usually in the range of ⁇ 20 to 80 ° C.
  • the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (34) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (36) can be further purified by chromatography, recrystallization or the like.
  • the compound represented by the formula (35) can be produced by reacting the compound represented by the formula (37) with hydroxylamine. [Wherein, X 1 and Z represent the same meaning as described above. ] The reaction is usually carried out in a solvent.
  • Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, hydrocarbons such as toluene, esters such as ethyl acetate, N, Examples include acid amides such as N-dimethylformamide, alcohols such as ethanol and methanol, nitriles such as acetonitrile, sulfoxides such as dimethyl sulfoxide, water, and mixtures thereof.
  • hydroxylamine used in the reaction examples include those capable of producing hydroxylamine in the reaction system in the form of a salt of hydroxylamine and mineral acid, such as hydroxylamine hydrochloride and hydroxylamine sulfate.
  • the reaction is carried out in the presence of a base.
  • the base used in this case include organic amines such as triethylamine, carbonates such as sodium carbonate, and alkali metal hydroxides such as sodium hydroxide.
  • the amount of the reagent used in the reaction is usually 1 to 10 moles of hydroxylamine per mole of the compound represented by formula (37), and a salt of hydroxylamine and mineral acid is used in the reaction.
  • the amount of the base used in is usually 1 to 10 moles per mole of the salt of hydroxylamine and mineral acid.
  • the reaction temperature is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
  • the compound represented by the formula (35) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration.
  • the isolated compound represented by the formula (35) can be further purified by chromatography, recrystallization and the like.
  • harmful arthropods for which the compound of the present invention is effective include harmful insects and harmful mites, and specific examples thereof include the following.
  • Hemiptera small brown planthopper (Laodelphax striatellus), brown planthopper (Nilaparvata lugens), planthoppers such as Sejirounka (Sogatella furcifera), green rice leafhopper (Nephotettix cincticeps), Taiwan green rice leafhopper (Nephotettix virescens), tea Roh green leafhopper (Empoasca onukii) such as Leafhoppers, cotton aphids (Aphis gossypii), peach aphids (Myzus persicae), radish aphids (Brevicorine brassicae), snowy aphids (Aphis spiraecola), tulip beetle aphids iphum euphorbiae), potato beetle aphid (Aulacorthum solani), wheat pea aphid (Rhopalosiphum padi), citrus aphid (
  • Lepidoptera rice stem borer (Chilo suppressalis), Sankameiga (Tryporyza incertulas), leaf roller (Cnaphalocrocis medinalis), Watanomeiga (Notarcha derogata), Indian meal moth (Plodia interpunctella), the European corn borer (Ostrinia furnacalis), high Madara Roh moth (Hellula undalis), Japanese medusa such as Shibata toga (Pediasia teterrellus), Spodoptera litura, Spodoptera exigua, Ayuyotoga (Pseudaletia sepata), Atoga assicae), Agrotis ipsilon, Tamanaginawaba (Prusia nigrisigna), Trichopulsia, Heliotis, Helicoberpa, etc.
  • Thysanoptera western flower thrips (Frankliniella occidentalis), Minami thrips (Thrips peri), yellow tea thrips (Scirtothrips dorsalis), green onion thrips (Thrips tabaci), Hirazuhanaazamiuma (Frankliniella intonsa) thrips Diptera pests such as: housefly (Musca domestica), Culex popiens pallens, Cattle fly (Tabanus trigonus), Onion fly (Hyremya antiquaes), Hyaneya plateaus (Hilemya platerais) omyza oryzae), rice Hime leafminer (Hydrellia griseola), Inekimoguribae (Chlorops oryzae), melon fly (Dacus cucurbitae), Mediterranean fruit fly (Ceratitis capitata), legume leafminer (Liriomyza trifolii), tomato leafminer, (Liriomyza
  • Coleoptera beetle, Epilachna vigintioctopunctata (Epilachna vigintioctopunctata), cucurbit leaf beetle (Aulacophora femoralis), Kisujinomihamushi (Phyllotreta striolata), Inedorooimushi (Oulema oryzae), rice weevil (Echinocnemus squameus), rice water weevil (Lissorhoptrus oryzophilus), boll weevil (Anthonomus grandis), Azuki beetle (Callosobruchus chinensis), Shibahorusu weevil (Sphenophorus venatus), Japanese beetle (Popilia japonica), Douganebububu (Anomala cupre) ), Corn rootworm mate (Diabrotica spp.), Colorado potato beetle (Leptinotarsa decemlineat
  • Direct insect pests Tocusama grasshopper (Locusta migratoria), Kera (Gryllotalpa africana), Oxya yezoensis, Oyana japonica, etc.
  • Hymenopteran pests Athalia rosae, Achillyrmex spp., Fire ant (Solenopsis spp.) And the like.
  • Cockroach pests German cockroaches (Blatella germanica), Black cockroaches (Periplaneta furiginosa), American cockroaches (Periplaneta americana), Japanese cockroaches (Peripraneta brunet)
  • Mite order pests Taninychus urticae, Kantawa spider mite (Tetranychus kanzawai), citrus spider mite (Panonychus citri), mite spider mite (Pananycos ulmi), spider mite pistula mite (Panthonychus urmi), spider mite pistula mite (Panthonychus urmi), spider mite pistula mite (Panthonychus urmi); spider mite pistula mite (Panthonychus urmi); Tomato rustic mites (Aculops lycopersici), Chanosabi mites (Calacarus carinatus), Chanoagasabi
  • dust mites such as nemus latus, spider mites such as Brevipalpus phoenicis, spider mite, tick mite (Haemphysalis longicornis), mites Tick such as ticks (Ixodes persulcatus), bull ticks (Boophilus microplus), Rhipicephalus sanguineus, Typhophagus urticae (Tyrophagus pudensent) ophagus similis) grain mites such as, farinae (Dermatophagoides farinae), house dust mite such as pteronyssinus (Dermatophagoides ptrenyssnus), Hosotsumedani (Cheyletus eruditus), Stag Tsumedani (Cheyletus malaccensis), Tsumedani such as Minami Tsumedani (Cheyletus moorei), chicken mites such etc.
  • nemus latus spider mites
  • the harmful arthropod control agent of the present invention may be the compound of the present invention itself, but usually the compound of the present invention and an inert carrier such as a solid carrier, a liquid carrier, a gaseous carrier, etc. are mixed, if necessary, Add surfactants and other formulation adjuvants to prepare emulsions, oils, powders, granules, wettable powders, flowables, microcapsules, aerosols, smokers, poison baits, resin formulations, etc. It has become. These preparations usually contain 0.01 to 95% by weight of the compound of the present invention.
  • an inert carrier such as a solid carrier, a liquid carrier, a gaseous carrier, etc.
  • solid carrier used for formulation examples include clays (kaolin clay, diatomaceous earth, bentonite, fusami clay, acidic clay), synthetic hydrous silicon oxide, talc, ceramic, and other inorganic minerals (sericite, quartz, Sulfur, activated carbon, calcium carbonate, hydrated silica, etc.), fine fertilizers such as chemical fertilizers (ammonium sulfate, phosphorous acid, ammonium nitrate, urea, ammonium chloride, etc.) and granular materials.
  • clays kaolin clay, diatomaceous earth, bentonite, fusami clay, acidic clay
  • synthetic hydrous silicon oxide talc
  • ceramic and other inorganic minerals
  • fine fertilizers such as chemical fertilizers (ammonium sulfate, phosphorous acid, ammonium nitrate, urea, ammonium chloride, etc.) and granular materials.
  • liquid carrier examples include water, alcohols (methanol, ethanol, isopropyl alcohol, butanol, hexanol, benzyl alcohol, ethylene glycol, propylene glycol, phenoxyethanol, etc.), ketones (acetone, methyl ethyl ketone, cyclohexanone, etc.), and aromatic carbonization.
  • alcohols methanol, ethanol, isopropyl alcohol, butanol, hexanol, benzyl alcohol, ethylene glycol, propylene glycol, phenoxyethanol, etc.
  • ketones acetone, methyl ethyl ketone, cyclohexanone, etc.
  • aromatic carbonization examples include water, alcohols (methanol, ethanol, isopropyl alcohol, butanol, hexanol, benzyl alcohol, ethylene glycol, propylene glycol, phenoxyethanol, etc.
  • ketones acetone, methyl ethyl ketone
  • Hydrogen toluene, xylene, ethylbenzene, dodecylbenzene, phenylxylylethane, methylnaphthalene, etc.
  • aliphatic hydrocarbons hexane, cyclohexane, kerosene, light oil, etc.
  • esters ethyl acetate, butyl acetate, isopropyl myristate
  • nitriles acetonitrile, isobutyrate) Nitriles
  • ethers diisopropyl ether, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl
  • Acid amides N, N-dimethylformamide, N, N-dimethylacetamide, etc.
  • halogenated hydrocarbons diichloromethane, trichloroethane, carbon tetrachloride, etc.
  • sulfoxides dimethylsulfoxide, etc.
  • propylene carbonate and vegetable oil (Soybean oil, cottonseed oil, etc.).
  • gaseous carrier include fluorocarbon, butane gas, LPG (liquefied petroleum gas), dimethyl ether, and carbon dioxide gas.
  • surfactant examples include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyethylene glycol fatty acid ester, and the like, alkyl sulfonate, alkyl benzene sulfonate, and alkyl sulfate.
  • Anionic surfactants may be mentioned.
  • Other adjuvants for preparation include sticking agents, dispersants, colorants and stabilizers, such as casein, gelatin, saccharides (starch, gum arabic, cellulose derivatives, alginic acid, etc.), lignin derivatives, bentonite.
  • Synthetic water-soluble polymers polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acids, etc.
  • PAP isopropyl acid phosphate
  • BHT 2,6-di-tert-butyl-4-methylphenol
  • BHA 2,6-tert -Mixture of butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol
  • the method for controlling harmful arthropods of the present invention usually involves the harmful arthropod control agent of the present invention directly on the harmful arthropods or the place where the harmful arthropods live (plants, soil, indoors, animals, etc.) It is done by applying to.
  • the compound of the present invention can be used as it is in the method for controlling harmful arthropods of the present invention
  • the compound of the present invention is usually formulated in the form of the above-mentioned harmful arthropod control agent of the present invention, for example,
  • the method may be applied to harmful arthropods or habitats of harmful arthropods in the same manner as conventional harmful arthropod control agents, and the above-mentioned harmful arthropods are brought into contact with or ingested.
  • habitats for harmful arthropods in the present invention include paddy fields, fields, orchards, non-agricultural land, and houses.
  • Examples of such application methods include spraying treatment, soil treatment, seed treatment, and hydroponic liquid treatment.
  • the spraying treatment in the present invention specifically refers to, for example, a harmful arthropod by treating an active ingredient (the compound of the present invention) on the surface of the plant body such as foliage spraying, trunk spraying, etc. or the harmful arthropod itself.
  • a treatment method that exerts control efficacy against Soil treatment is, for example, by treating the active ingredient with soil or irrigation liquid to infiltrate and transfer from the roots to the inside of the plant body of the crop to be protected from damage such as feeding by harmful arthropods.
  • a treatment method for protecting the crop from damage caused by harmful arthropods is, for example, by treating the active ingredient with soil or irrigation liquid to infiltrate and transfer from the roots to the inside of the plant body of the crop to be protected from damage such as feeding by harmful arthropods.
  • planting treatment planting hole spraying, planting hole treatment soil mixing
  • plant source treatment stock source spraying, strain source
  • grooving treatment spreading grooving, mixing grooving soil
  • cropping treatment spreading, sprinkling soil mixing, sprinkling of growing season
  • sowing Temporary cropping treatment spraying at the time of sowing, mixing with soil at the time of sowing
  • full treatment spreading the entire soil, mixing with the whole soil
  • other soil spraying treatment spreading the growing leaves in the growing season, spraying under the crown or around the trunk
  • Other irrigation treatments irrigation, seedling stage irrigation, chemical solution injection treatment, subsurface irrigation, chemical drip irrigation, chemigation
  • nursery box treatment nursery box spraying, seed
  • the treatment method protects the crop from damage caused by harmful arthropods.
  • Specific examples include hydroponic liquid mixing and hydroponic liquid mixing.
  • the application amount is the amount of the compound of the present invention per 10,000 m 2 and is usually 1 to 10,000 g.
  • the harmful arthropod control agent of the present invention is formulated into an emulsion, a wettable powder, a flowable agent, etc., it is usually applied by diluting with water so that the active ingredient concentration becomes 0.01 to 10,000 ppm. Granules, powders and the like are usually applied as they are.
  • These preparations and water dilutions of these preparations may be applied directly to harmful arthropods or plants such as crops that should be protected from harmful arthropods, and harmful arthropods that inhabit cultivated land soil You may treat to this soil in order to control. Moreover, it can also process by the method of wrapping the resin formulation processed into the sheet form or the string form around the crop, stretching over the crop vicinity, and laying on the stock soil.
  • the application amount is 1 m 2 when treated on the surface.
  • the amount of the compound of the present invention per unit is usually 0.01 to 1000 mg, and when processing in a space, the amount of the compound of the present invention per 1 m 3 of the processing space is usually 0.01 to 500 mg.
  • the harmful arthropod control agent of the present invention is formulated into an emulsion, wettable powder, flowable agent, etc., it is usually diluted with water so that the active ingredient concentration is 0.1 to 1000 ppm, and applied. Apply oils, aerosols, smoke, poison baits, etc. as they are.
  • the compound of the present invention can be used as an insecticide for agricultural land such as fields, paddy fields, lawns, orchards, or non-agricultural land.
  • the compound of the present invention may be able to control pests on the farmland without causing any phytotoxicity on the farmland or the like where the following “crop” or the like is cultivated.
  • Agricultural crops corn, rice, wheat, barley, rye, oat, sorghum, cotton, soybean, peanut, buckwheat, sugar beet, rapeseed, sunflower, sugarcane, tobacco, etc.
  • Vegetables Solanum vegetables (eggplants, tomatoes, peppers, peppers, potatoes, etc.), Cucurbitaceae vegetables (cucumbers, pumpkins, zucchini, watermelons, melons, etc.), Brassicaceae vegetables (radish, turnip, horseradish, kohlrabi, Chinese cabbage, cabbage) , Mustard, broccoli, cauliflower, etc.), asteraceae vegetables (burdock, shungiku, artichokes, lettuce, etc.), liliaceae vegetables (leek, onion, garlic, asparagus), celery family vegetables (carrot, parsley, celery, American scallop, etc.) ), Red crustacean vegetables (spinach, chard, etc.), persimmon vegetables (perilla, mint, basil, etc.), strawberry, sweet potato, yam, taro, etc.
  • Trees other than fruit trees Cha, mulberry, flowering trees, street trees (ash, birch, dogwood, eucalyptus, ginkgo, lilac, maple, oak, poplar, redwood, fu, sycamore, zelkova, black bean, peach tree, Tsuga, rat, pine, Spruce, yew) etc.
  • crop has classic resistance to HPPD inhibitors such as isoxaflutol, ALS inhibitors such as imazetapyr and thifensulfuron methyl, EPSP synthase inhibitors, glutamine synthase inhibitors, and herbicides such as bromoxynil. Also included are crops granted by traditional breeding methods or genetic engineering techniques. Examples of “crop” tolerated by classical breeding methods include Clearfield® canola that is resistant to imidazolinone herbicides such as imazetapil, and sulfonylurea ALS-inhibiting herbicides such as thifensulfuron methyl For example, resistant STS soybeans.
  • crops that have been rendered tolerant by genetic engineering techniques include corn varieties that are resistant to glyphosate and glufosinate, and are already sold under trade names such as RoundupReady (registered trademark) and LibertyLink (registered trademark) .
  • the “crop” includes, for example, crops that can synthesize selective toxins known in the genus Bacillus using genetic recombination technology.
  • toxins expressed in such genetically modified plants include insecticidal proteins derived from Bacillus cereus and Bacillus popilie; Insecticidal proteins such as ⁇ -endotoxin, VIP1, VIP2, VIP3 or VIP3A; nematode-derived insecticidal proteins; toxins produced by animals such as scorpion toxin, spider toxin, bee toxin or insect-specific neurotoxin; Plant lectin; agglutinin; protease inhibitors such as trypsin inhibitor, serine protease inhibitor, patatin, cystatin, papain inhibitor; lysine, corn-RIP, abrin, ruffin, saporin, briodin, etc.
  • Ribosome inactivating protein RIP
  • steroid metabolic enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-UDP-glucosyltransferase, cholesterol oxidase; ecdysone inhibitor; HMG-COA reductase; sodium channel, calcium channel inhibitor, etc. Ion channel inhibitor; juvenile hormone esterase; diuretic hormone receptor; stilbene synthase; bibenzyl synthase; chitinase; glucanase and the like.
  • toxins expressed in such genetically modified crops hybrids of insecticidal proteins such as Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, ⁇ -endotoxin proteins, VIP1, VIP2, VIP3 or VIP3A Toxins, partially defective toxins, modified toxins are also included.
  • Hybrid toxins are produced by new combinations of different domains of these proteins using recombinant techniques.
  • Cry1Ab lacking a part Cry1Ab lacking a part of the amino acid sequence is known.
  • the modified toxin one or more amino acids of the natural toxin are substituted.
  • Examples of these toxins and recombinant plants capable of synthesizing these toxins are EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878. , WO 03/052073, and the like.
  • the toxins contained in these recombinant plants particularly confer resistance to Coleoptera pests, Diptera pests, and Lepidoptera pests.
  • genetically modified plants that contain one or more insecticidal pest resistance genes and express one or more toxins are already known and some are commercially available.
  • transgenic plants include YieldGard® (a corn variety that expresses Cry1Ab toxin), YieldGuard Rootworm® (a corn variety that expresses Cry3Bb1 toxin), YieldGard Plus® (Cry1Ab and Cry3Bb1) Corn varieties expressing toxin), Herculex I® (corn varieties expressing phosphinotricin N-astilyltransferase (PAT) to confer resistance to Cry1Fa2 toxin and glufosinate), NuCOTN33B® (Cotton variety expressing Cry1Ac toxin), Bollgard I (registered trademark) (cotton variety expressing Cry1Ac toxin), Bollgard II (registered trademark) (C Cotton varieties expressing y1Ac and Cry2Ab toxin), VIPCOT (registered trademark) (cotton varieties expressing VIP toxin), NewLeaf (registered trademark) (potato variety expressing Cry3A toxin),
  • the “crop” includes those given the ability to produce an anti-pathogenic substance having a selective action using a genetic recombination technique.
  • PR proteins and the like are known as examples of anti-pathogenic substances (PRPs, EP-A-0 392 225).
  • anti-pathogenic substances and genetically modified plants that produce them are described in EP-A-0 392 225, WO 95/33818, EP-A-0 353 191 and the like.
  • Examples of anti-pathogenic substances expressed in such genetically modified plants include, for example, sodium channel inhibitors, calcium channel inhibitors (KP1, KP4, KP6 toxins produced by viruses, etc.).
  • Ion channel inhibitor Ion channel inhibitor
  • stilbene synthase bibenzyl synthase
  • chitinase glucanase
  • PR protein PR protein
  • peptide antibiotics antibiotics having heterocycles, protein factors involved in plant disease resistance (referred to as plant disease resistance gene, WO03 / 000906)) and other anti-pathogenic substances produced by microorganisms.
  • the harmful arthropod control agent of the present invention includes other harmful arthropod control agents, acaricides, nematicides, fungicides, herbicides, plant growth regulators, synergists, fertilizers, soil improvers. It may contain animal feed or the like. Further, the compound of the present invention and harmful arthropod control agents such as other types of insecticides, acaricides, nematicides or fungicides, plant hormone agents, plant growth regulators, herbicides, etc. (isomers) It is also possible to mix synergists, safeners, pigments, fertilizers, etc., and prepare mixed preparations as appropriate, and use them for spraying treatment, soil treatment and hydroponic liquid treatment. is there.
  • Examples of the active ingredients of the other harmful arthropod control agents, acaricides and / or nematicides include the following.
  • Organophosphorus compounds Acephate, aluminum phosphide, butathiofos, cadusafos, chlorethoxyphos, chlorfenvinphos, chlorpyvinphos, chlorpyvinphos Chlorpyrifos-methyl, cyanophos (CYAP), diazinon, DCIP (dichlorodipropionic ether), dichlorfenthion (ECP), dichlorvos (DichV) Dimethoate, dimethylvinphos, disulfoton, EPN, etion, ethoprofos, etrimfos, fenthion (MPP), fenitrothion (fethrothion) fothiazate, formothione, hydrogen phosphide, isofenphos, isoxathion, malathion, mesulfenfos, methidation Monocrotophos, Naled (BRP), Oxydeprofos (ESP), Parathion, Phosal
  • Phenylpyrazole compounds Acetoprole, etiprole, fipronil, vaniliprole, pyriprole, pyrafluprole, etc.
  • Bt toxin insecticide live spores and produced crystal toxins derived from Bacillus thuringiensis, and mixtures thereof
  • Hydrazine compounds Chromafenozide, halofenozide, methoxyphenozide, tebufenozide, etc.
  • Acaricides acequinocyl, amitraz, benzoximate, phenisobromolate, chinomethionate, chlorbenzilate, chlorbenzilate, cBS ), Kelsen (dicofol), etoxazole, fenbutatin oxide, phenothiocarb, fenpyroximate, fluacrylpyriproxyl roxyfen, hexythiazox, propargite (BPPS), polynactin complex (polyactin), pyridaben, dipymidifene, tebufenpyrad, tebufenpyrad, tebufenpyrad, tebufenpyrad, tebufenpyrad Amidoflumet, bifenazate, cyflumetofen, etc.
  • Nematicide (nematode active ingredient) DCIP, fostiazate, levamisole hydrochloride, methylisothio
  • Reference production example 1 ⁇ 2-Chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl obtained by Reference Production Example 2 ⁇ 17.3 g of tert-butyl carbamate was dissolved in 96 mL of tetrahydrofuran, and 96 mL of 28% aqueous sodium hydroxide solution, 31 mL of aqueous ammonia, 10.5 g of ammonium chloride, and 1.7 g of trioctylmethylammonium chloride were added.
  • Reference production example 4 13.5 g of tert-butyl N- (5-acetyl-2-chlorophenyl) carbamate obtained in Reference Production Example 7 and 3 ′, 5′-dichloro-4′-fluoro-2 obtained in Reference Production Example 5 , 2,2-trifluoroacetophenone and 14.0 mL of triethylamine were dissolved in 100 mL of tetrahydrofuran and stirred at 60 ° C. for 1 hour and at 80 ° C. for 1 hour. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure and N- ⁇ 2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-3-hydroxy.
  • Reference production example 6 19.2 g of sodium nitrite was dissolved in 280 mL of concentrated sulfuric acid, and a solution of 25.0 g of 3,5-dichloro-4-fluoroaniline in 280 mL of acetic acid was added under ice cooling. After stirring at the same temperature for 3 hours, the mixture was stirred at room temperature for 1 hour. A solution prepared by dissolving 96.9 g of potassium potassium in 500 mL of water was added under ice cooling, and the mixture was stirred at 70 ° C. for 1 hour. Cool to room temperature and extract the reaction mixture with dichloromethane and chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • Reference production example 12 N- ⁇ 2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl obtained by Reference Production Example 8 ⁇ 500 mg of tert-butyl carbazate and 0.15 ml of triethylamine were dissolved in 1.8 ml of tetrahydrofuran, 0.08 ml of acetyl chloride was added dropwise under ice cooling, and the mixture was stirred at the same temperature for 5 minutes. After stirring at room temperature for 30 minutes, water was added to the reaction mixture and the mixture was extracted with ethyl acetate.
  • N′-acetyl-N- ⁇ 2-chloro-5- [5- (3,4,5-tri 480 mg of a crude product of tert-butyl chlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl ⁇ carbazate was obtained.
  • 0.88 mL of trifluoroacetic acid was added at room temperature, and the mixture was stirred at room temperature for 2 hours.
  • the reaction mixture was concentrated under reduced pressure, and the resulting residue was subjected to silica gel column chromatography to give N ′- ⁇ 2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl.
  • comparative compound (a) 200 mg of -4,5-dihydroisoxazol-3-yl] phenyl ⁇ acetylhydrazide (hereinafter referred to as comparative compound (a)) was obtained.
  • a part represents a weight part.
  • Formulation Example 1 Nine parts of each of the compounds (1) to (2) of the present invention are dissolved in 37.5 parts of xylene and 37.5 parts of dimethylformamide, to which 10 parts of polyoxyethylene styrylphenyl ether and 6 parts of calcium dodecylbenzenesulfonate are added. And stirring well to obtain an emulsion.
  • Formulation Example 2 To 40 parts of each of the compounds (1) to (2) of the present invention, 5 parts of Solpol 5060 (registered trademark of Toho Chemical Co., Ltd.) was added and mixed well to prepare Carplex # 80 (registered trademark of Shionogi & Co., synthetic silicon hydroxide).
  • Fine powder 32 parts and 23 parts of 300 mesh diatomaceous earth are added and mixed with a juice mixer to obtain a wettable powder.
  • Formulation Example 3 Add 3 parts of each of the compounds (1) to (2) of the present invention, 5 parts of synthetic silicon hydroxide fine powder, 5 parts of sodium dodecylbenzenesulfonate, 30 parts of bentonite and 57 parts of clay, and stir and mix well. An appropriate amount of water is added to the mixture, further stirred, granulated with a granulator, and dried by ventilation to obtain granules.
  • Formulation Example 4 Juice after thoroughly mixing 4.5 parts of each of the compounds (1) to (2) of the present invention, 1 part of a synthetic silicon hydroxide fine powder, 1 part of Doreles B (Sankyo Co., Ltd.) as a flocculant and 7 parts of clay in a mortar Stir and mix with a mixer. 86.5 parts of cut clay is added to the resulting mixture and mixed well with stirring to obtain a powder.
  • Formulation Example 5 Formulation by mixing 10 parts of each of the compounds (1) to (2) of the present invention, 35 parts of white carbon containing 50 parts of polyoxyethylene alkyl ether sulfate ammonium salt and 55 parts of water, and finely pulverizing them by a wet pulverization method. Get.
  • Formulation Example 6 0.5 parts of each of the compounds (1) to (2) of the present invention are dissolved in 10 parts of dichloromethane, and this is mixed with 89.5 parts of Isopar M (isoparaffin: Exxon Chemical Registration) to obtain an oil.
  • Formulation Example 7 0.1 part of each of the compounds (1) to (2) of the present invention and 49.9 parts of Neothiozole (Chuo Kasei Co., Ltd.) are placed in an aerosol can and fitted with an aerosol valve, followed by 25 parts of dimethyl ether and 25 parts of LPG. Is added, shaken, and an actuator is attached to obtain an oily aerosol.
  • Formulation Example 8 0.6 parts of each of the compounds (1) to (2) of the present invention, 0.01 part of BHT, 5 parts of xylene, 3.39 parts of deodorized kerosene and 1 part of an emulsifier ⁇ Atmos 300 (registered trademark of Atmos Chemical) ⁇
  • the dissolved one and 50 parts of distilled water are filled into an aerosol container, a valve part is attached, and 40 parts of propellant (LPG) is pressurized and filled through the valve to obtain an aqueous aerosol.
  • LPG propellant
  • test examples show that the compounds of the present invention are effective as active ingredients of harmful arthropod control compositions.
  • this invention compound is represented by the said compound number.
  • Test example 1 Each formulation of the present compounds (1) to (2) obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution.
  • a filter paper of the same size was laid on the bottom of a polyethylene cup having a diameter of 5.5 cm, 0.7 ml of the test chemical solution was dropped onto the filter paper, and 30 mg of sucrose was uniformly added as a bait.
  • Ten female fly (Musca domestica) females were released into the polyethylene cup and capped. The life and death of the housefly was investigated 24 hours later, and the mortality rate was determined by the following formula.
  • Death rate (%) (Number of dead insects / number of test insects) ⁇ 100 As a result, the death rate was 90% or more in the treatments of the compound formulas (1) to (2) of the present invention.
  • Test example 3 Each formulation of the present compounds (1) to (2) obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution. 20 mL of the test chemical solution was sprayed on cabbage (Brassicae oleracea) at the 3-4 leaf stage.
  • the above-ground part is cut off, stored in a polyethylene cup (capacity 100 mL) together with 5 second-ordered larvae (Plutella xylostella), stored at 25 ° C., and after 5 days, the number of surviving insects is investigated.
  • Test example 4 Each formulation of the present compounds (1) to (2) obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution.
  • Artificial fodder Insector LF (Nippon Agricultural Industries) placed on the bottom of a 5.5 cm diameter polyethylene cup with the same size filter paper, sliced to 6 mm thickness and cut in half, and 2 mL of the above test chemical solution was irrigated. After the test dilution was air-dried, 5 4th instar larvae of Spodoptera litura were released and capped. Six days later, the number of surviving insects was examined, and the death rate was determined by the following formula.
  • Control value (%) ⁇ 1 ⁇ (Cb ⁇ Tai) / (Cai ⁇ Tb) ⁇ ⁇ 100
  • the character in a formula represents the following meaning.
  • Test Example 8 About this invention compound (1) and (2), the acetone solution was prepared so that it might become a dosage (mg / m ⁇ 2 >) as shown in Table 1 when processing on a glass surface. 0.2 mL of an acetone solution was uniformly applied to the inner wall of a glass screw tube and a lid (No. 5 manufactured by Marum Corp.). After drying, put a test tick (Tetula tick, non-blood-sucking young tick, 10 per group) in the screw tube, close the lid and seal, investigate the number of lethals two days later, and calculate the death rate by the following formula: Was calculated.
  • the compound of the present invention is useful as an active ingredient of a harmful arthropod control agent.

Abstract

Provided are a hydrazide compound represented by formula (1) and exerting an excellent effect of controlling harmful arthropods, a harmful arthropod control agent containing said compound as an active ingredient, and a method for controlling harmful arthropods in which an effective amount of said compound is applied to harmful arthropods or to the habitat of harmful arthropods.

Description

ヒドラジド化合物及びその有害節足動物防除用途Hydrazide compounds and their use for controlling harmful arthropods
 本発明はヒドラジド化合物及びその有害節足動物防除用途に関する。 The present invention relates to a hydrazide compound and its use for controlling harmful arthropods.
 従来、有害節足動物に対して防除活性を有する化合物が有害節足動物防除剤の有効成分として見出され、開発されている。
またある種のヒドラジド化合物が有害節足動物防除剤の有効成分として知られている(例えば、特許文献1及び特許文献2参照。)。
Conventionally, compounds having control activity against harmful arthropods have been found and developed as active ingredients of harmful arthropod control agents.
Also, certain hydrazide compounds are known as active ingredients of harmful arthropod control agents (see, for example, Patent Document 1 and Patent Document 2).
国際公開第2010/032437号International Publication No. 2010/032437 国際公開第2010/090344号International Publication No. 2010/090344
 本発明は、有害節足動物に対して防除活性を有する新規なヒドラジド化合物を提供することを課題とする。 An object of the present invention is to provide a novel hydrazide compound having a controlling activity against harmful arthropods.
 本発明者は、有害節足動物に対して防除活性を有する化合物を見出すべく検討した結果、下記式(1)で示されるヒドラジド化合物(以下、本発明化合物と記す)が有害節足動物に対して防除効力を有することを見出し、本発明に至った。
即ち、本発明は以下の通りである。
〔1〕式(1)
Figure JPOXMLDOC01-appb-I000002
〔式中、Xは塩素原子であり、Rは水素原子であり、Xは塩素原子またはフッ素原子であり、Xが塩素原子である場合、Rはシクロプロキル基であり、Xがフッ素原子である場合、Rは3,3,3−トリフルオロプロピル基である。〕で表されるヒドラジド化合物。
〔2〕Rがシクロプロキル基である[1]に記載の化合物。
〔3〕Rが3,3,3−トリフルオロプロピル基である[1]に記載の化合物。
〔4〕〔1〕~〔3〕いずれか一項に記載のヒドラジド化合物を有効成分として含有することを特徴とする有害節足動物防除剤。
〔5〕〔1〕~〔3〕いずれか一項に記載のヒドラジド化合物の有効量を有害節足動物又は有害節足動物の生息場所に施用することを特徴とする有害節足動物の防除方法。
As a result of studying to find a compound having control activity against harmful arthropods, the present inventor has found that a hydrazide compound represented by the following formula (1) (hereinafter referred to as the present compound) is against harmful arthropods. As a result, the present inventors have found that it has a controlling effect, and have reached the present invention.
That is, the present invention is as follows.
[1] Formula (1)
Figure JPOXMLDOC01-appb-I000002
Wherein, X 1 is a chlorine atom, R 1 is hydrogen atom, X 2 is chlorine atom or fluorine atom, if X 2 is a chlorine atom, R 2 is Shikuropurokiru group, X 2 Is a fluorine atom, R 2 is a 3,3,3-trifluoropropyl group. ] The hydrazide compound represented by this.
[2] The compound according to [1], wherein R 2 is a cyclopropyl group.
[3] The compound according to [1], wherein R 2 is a 3,3,3-trifluoropropyl group.
[4] A harmful arthropod control agent comprising the hydrazide compound according to any one of [1] to [3] as an active ingredient.
[5] A method for controlling harmful arthropods, which comprises applying an effective amount of the hydrazide compound according to any one of [1] to [3] to harmful arthropods or habitats of harmful arthropods .
本発明化合物には不斉炭素原子に由来する異性体が存在するが、本発明には有害節足動物防除活性を有する各異性体及び任意の比率の異性体混合物が含まれる。 The compounds of the present invention include isomers derived from asymmetric carbon atoms, but the present invention includes isomers having harmful arthropod controlling activity and isomer mixtures in any ratio.
 本発明化合物の製造について、以下に説明する。 The production of the compound of the present invention will be described below.
(製造法1)
 本発明化合物は、式(2)で示される化合物と式(3)で示される化合物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000003
〔式中、X、X、R及びRは前記と同じ意味を表し、Lは水酸基又は塩素原子を表す。〕
 反応は、通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 Lが塩素原子である場合、反応は通常塩基の存在下で行われる。
 反応に用いられる塩基としては、例えば水素化ナトリウム等のアルカリ金属水素化物類、炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 Lが水酸基である場合、反応は縮合剤の存在下で行われる。
 反応に用いられる縮合剤としては、例えばジシクロヘキシルカルボジイミド及び1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩が挙げられる。
 反応に用いられる試剤の量は、式(2)で示される化合物1モルに対して、式(3)で示される化合物が通常1~10モルの割合であり、塩基又は縮合剤が通常1~10モルの割合である。
 Lが水酸基である場合、反応は、さらに必要に応じて、式(2)で示される化合物1モルに対して、通常は0.1モル~1モルまで任意の割合で、1−ヒドロキシベンゾトリアゾール等を加えて行うこともできる。
 反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、本発明化合物を単離することもできる。単離された本発明化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(製造法2)
 本発明化合物は、式(4)で示される化合物と酸(5)とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000004
〔式中、X、X及びRは[1]と同じ意味を表す。〕
 反応は、通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 反応に用いられる酸(5)としては、例えば塩酸、酢酸、トリフルオロ酢酸等が挙げられる。
 反応に用いられる試剤の量は、式(4)で示される化合物1モルに対して、酸(5)が通常1~10モルの割合である。
 反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、本発明化合物を単離することができる。単離された本発明化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(Production method 1)
The compound of the present invention can be produced by reacting the compound represented by the formula (2) with the compound represented by the formula (3).
Figure JPOXMLDOC01-appb-I000003
[Wherein, X 1 , X 2 , R 1 and R 2 represent the same meaning as described above, and L represents a hydroxyl group or a chlorine atom. ]
The reaction is usually performed in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof. Can be mentioned.
When L is a chlorine atom, the reaction is usually carried out in the presence of a base.
Examples of the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
When L is a hydroxyl group, the reaction is carried out in the presence of a condensing agent.
Examples of the condensing agent used in the reaction include dicyclohexylcarbodiimide and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride.
The amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (3) with respect to 1 mol of the compound represented by the formula (2), and the base or condensing agent is usually 1 to 1 mol. The ratio is 10 moles.
In the case where L is a hydroxyl group, the reaction is further optionally carried out in an arbitrary ratio of 0.1 mol to 1 mol with respect to 1 mol of the compound represented by the formula (2). Etc. can also be added.
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound of the present invention can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound of the present invention can be further purified by chromatography, recrystallization and the like.
(Production method 2)
The compound of the present invention can be produced by reacting the compound represented by the formula (4) with the acid (5).
Figure JPOXMLDOC01-appb-I000004
[Wherein, X 1 , X 2 and R 2 represent the same meaning as [1]. ]
The reaction is usually performed in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof. Can be mentioned.
Examples of the acid (5) used in the reaction include hydrochloric acid, acetic acid, trifluoroacetic acid and the like.
The amount of the reagent used for the reaction is usually 1 to 10 moles of the acid (5) with respect to 1 mole of the compound represented by the formula (4).
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound of the present invention can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound of the present invention can be further purified by chromatography, recrystallization and the like.
(製造法3)
 本発明化合物は、式(6)で示される化合物と式(7)で示される化合物とを反応させることにより製造することもできる。
Figure JPOXMLDOC01-appb-I000005
〔式中、X、X、R及びRは前記と同じ意味を表し、Zはフッ素原子、塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基、p−トルエンスルホニルオキシ基及びトリフルオロメタンスルホニルオキシ基等の脱離基を表す。〕
 反応は、通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 反応は必要に応じて、塩基の存在下で行われる。
 反応に用いられる塩基としては、例えば水素化ナトリウム等のアルカリ金属水素化物類、炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられる試剤の量は、式(6)で示される化合物1モルに対して、式(7)で示される化合物が通常1~5モルの割合であり、塩基が通常1~5モルの割合である。
 反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.1~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、本発明化合物を単離することができる。単離された本発明化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
また、該反応は文献記載の一般的な遷移金属触媒を用いたカップリング反応、例えばOrg.Lett.,3,3803−3805(2001)に記載の反応条件に準じて行うこともできる。
(Production method 3)
The compound of the present invention can also be produced by reacting a compound represented by formula (6) with a compound represented by formula (7).
Figure JPOXMLDOC01-appb-I000005
[Wherein, X 1 , X 2 , R 1 and R 2 represent the same meaning as described above, and Z represents a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a methanesulfonyloxy group, a p-toluenesulfonyloxy group, and a trifluoro group. Represents a leaving group such as a lomethanesulfonyloxy group. ]
The reaction is usually performed in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof. Can be mentioned.
The reaction is carried out in the presence of a base as necessary.
Examples of the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
The amount of the reagent used for the reaction is such that the compound represented by the formula (7) is usually 1 to 5 mol and the base is usually 1 to 5 mol per 1 mol of the compound represented by the formula (6). It is a ratio.
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.1 to 24 hours.
After completion of the reaction, the compound of the present invention can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound of the present invention can be further purified by chromatography, recrystallization and the like.
In addition, the reaction is a coupling reaction using a general transition metal catalyst described in literature, for example, Org. Lett. 3, 3803-3805 (2001).
次に本発明化合物の製造に用いられる中間体の製造方法について説明する。 Next, the manufacturing method of the intermediate body used for manufacture of this invention compound is demonstrated.
 (参考製造法1)
 式(4)で示される化合物は、式(8)で示される化合物と式(3)で示される化合物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000006
〔式中、X、X、R及びLは前記と同じ意味を表す。〕
 反応は、通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 Lが塩素原子である場合、反応は通常塩基の存在下で行われる。
 反応に用いられる塩基としては、例えば水素化ナトリウム等のアルカリ金属水素化物類、炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 Lが水酸基である場合、該反応は縮合剤の存在下で行われる。
 反応に用いられる縮合剤としては、例えばジシクロヘキシルカルボジイミド及び1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩が挙げられる。
 反応に用いられる試剤の量は、式(8)で示される化合物1モルに対して、式(3)で示される化合物が通常1~10モルの割合であり、塩基又は縮合剤が通常1~10モルの割合である。
 該反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(4)で示される化合物を単離することもできる。単離された式(4)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法2)
 式(8)で示される化合物は、式(9)で示される化合物と亜硝酸化合物(10)と反応させた後、次いで還元剤(11)と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000007
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えば水、テトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、トルエン、キシレン等の芳香族炭化水素類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 反応に用いられる亜硝酸化合物(10)としては、例えば亜硝酸ナトリウム等の亜硝酸塩、亜硝酸エチル等の亜硝酸エステル類が挙げられる。
 反応に用いられる還元剤(11)としては、例えば亜硫酸ナトリウム等の亜硫酸塩、亜鉛等の金属、塩化スズ(II)等が挙げられる。
 反応に用いられる試剤の量は、式(9)で示される化合物1モルに対して、亜硝酸化合物(10)が通常1~10モルの割合であり、還元剤(11)が通常1~10モルの割合である。
 反応の式(9)で示される化合物と亜硝酸化合物(10)を反応させる工程における反応温度は、通常−20~30℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 式(9)で示される化合物と亜硝酸化合物(10)を反応させる工程で得られる反応混合物は、そのまま還元剤(11)と反応させる工程に用いることができ、該工程における反応温度は、通常−20~50℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(8)で示される化合物を単離することもできる。単離された式(8)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(参考製造法3)
 式(8)で示される化合物は、式(9)で示される化合物とアミノ化剤(12)とを反応させることにより製造することもできる。
Figure JPOXMLDOC01-appb-I000008
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えば水、テトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、トルエン、キシレン等の芳香族炭化水素類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 該反応は通常塩基の存在下で行われる。
反応に用いられる塩基としては、例えば水素化ナトリウム等のアルカリ金属水素化物類、炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類、水酸化ナトリウム等の金属水酸化物及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられるアミノ化剤(12)としては、例えばクロラミン等のクロラミン類、O−メシトイルヒドロキシルアミン等のO−アシルヒドロキシルアミン類、O−スルホニルヒドロキシルアミン類、ヒドロキシルアミン−O−スルホン酸が挙げられる。
 反応に用いられる試剤の量は、式(9)で示される化合物1モルに対して、アミノ化剤(12)が通常1~10モルの割合であり、塩基が通常1~10モルの割合である。
 反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(8)で示される化合物を単離することもできる。単離された式(8)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(Reference production method 1)
The compound represented by the formula (4) can be produced by reacting the compound represented by the formula (8) with the compound represented by the formula (3).
Figure JPOXMLDOC01-appb-I000006
[Wherein, X 1 , X 2 , R 2 and L represent the same meaning as described above. ]
The reaction is usually performed in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof. Can be mentioned.
When L is a chlorine atom, the reaction is usually carried out in the presence of a base.
Examples of the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
When L is a hydroxyl group, the reaction is carried out in the presence of a condensing agent.
Examples of the condensing agent used in the reaction include dicyclohexylcarbodiimide and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride.
The amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (3) with respect to 1 mol of the compound represented by the formula (8), and the base or condensing agent is usually 1 to 1 mol. The ratio is 10 moles.
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (4) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (4) can be further purified by chromatography, recrystallization and the like.
(Reference production method 2)
The compound represented by the formula (8) can be produced by reacting the compound represented by the formula (9) with the nitrite compound (10) and then reacting with the reducing agent (11).
Figure JPOXMLDOC01-appb-I000007
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include water, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethers such as ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, Aromatic hydrocarbons such as xylene, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
Examples of the nitrite compound (10) used in the reaction include nitrites such as sodium nitrite and nitrites such as ethyl nitrite.
Examples of the reducing agent (11) used in the reaction include sulfites such as sodium sulfite, metals such as zinc, tin (II) chloride and the like.
The amount of the reagent used in the reaction is usually 1 to 10 moles of the nitrite compound (10) and 1 to 10 moles of the reducing agent (11) with respect to 1 mole of the compound represented by the formula (9). The molar ratio.
The reaction temperature in the step of reacting the compound represented by the reaction formula (9) with the nitrite compound (10) is usually in the range of −20 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours. is there.
The reaction mixture obtained in the step of reacting the compound represented by formula (9) and the nitrite compound (10) can be used as it is in the step of reacting with the reducing agent (11), and the reaction temperature in the step is usually It is in the range of −20 to 50 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (8) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (8) can be further purified by chromatography, recrystallization and the like.
(Reference production method 3)
The compound represented by the formula (8) can also be produced by reacting the compound represented by the formula (9) with the aminating agent (12).
Figure JPOXMLDOC01-appb-I000008
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include water, tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethers such as ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, Aromatic hydrocarbons such as xylene, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
The reaction is usually performed in the presence of a base.
Examples of the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, metal hydroxides such as sodium hydroxide and triethylamine, And organic amines such as pyridine.
Examples of the aminating agent (12) used in the reaction include chloramines such as chloramine, O-acylhydroxylamines such as O-mesitoylhydroxylamine, O-sulfonylhydroxylamines, and hydroxylamine-O-sulfonic acids. Can be mentioned.
The amount of the reagent used in the reaction is usually 1 to 10 mol of the aminating agent (12) and 1 to 10 mol of the base, based on 1 mol of the compound represented by the formula (9). is there.
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (8) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (8) can be further purified by chromatography, recrystallization and the like.
(参考製造法4)
 式(9)で示される化合物は、式(13−1)で示される化合物と二炭酸ジ−tert−ブチルとを反応させることにより製造することもできる。
Figure JPOXMLDOC01-appb-I000009
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、トルエン、キシレン等の芳香族炭化水素類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 該反応は通常塩基の存在下で行われる。
反応に用いられる塩基としては、例えばトリエチルアミン等の有機アミン類、炭酸ナトリウム等の炭酸塩類及び水酸化ナトリウム等のアルカリ金属水酸化物類が挙げられる。
 反応に用いられる試剤の量は、式(13−1)で示される化合物1モルに対して、二炭酸ジ−tert−ブチルが通常1~10モルの割合であり、塩基が通常1~10モルの割合である。反応は、さらに必要に応じて、式(13−1)で示される化合物1モルに対して、通常は0.05モル~0.10モルまで任意の割合で、テトラブチルアンモニウムブロミド等を加えて行うこともできる。
 該反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(9)で示される化合物を単離することもできる。単離された式(9)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法5)
 式(13−1)で示される化合物は、式(14)で示される化合物を以下の(i)~(iii)に示すいずれかの方法で還元することにより製造することができる。
Figure JPOXMLDOC01-appb-I000010
〔式中、X及びXは前記と同じ意味を表す。〕
 (i)遷移金属触媒の存在下、水素ガスと反応させる方法。
 反応は溶媒中で行われる。
反応に用いられる溶媒としては、例えば、酢酸エチル等のエステル類、エタノール、メタノール等のアルコール類、水、酢酸、塩酸及びこれらの混合物が挙げられる。
 反応に用いられる遷移金属触媒としては、例えば、ラネーニッケル、パラジウム−炭素及び二酸化白金などが挙げられる。
 反応に用いられる遷移金属触媒の量は、式(14)で示される化合物1モルに対して、通常0.01~0.5モルの割合である。
 反応の反応温度は通常0~80℃の範囲であり、反応時間は通常0.1~24時間の範囲である。
 反応終了後は、反応混合物を濾過し、必要に応じて有機溶媒抽出、乾燥、濃縮する等の後処理操作を行うことにより、式(13−1)で示される化合物を単離することができる。単離された式(13−1)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (ii)塩基存在下、ヒドラジンと反応させる方法。
 反応は溶媒中で行われる。
 反応に用いられる溶媒としては、例えば、ジエチレングリコール、トリエチレングリコール等のエーテル類、水及びこれらの混合物が挙げられる。
 反応に用いられる塩基としては、例えば、水酸化カリウム等のアルカリ金属水酸化物が挙げられる。
 反応に用いられるヒドラジンとしては、例えばヒドラジン水和物が挙げられる。
 反応に用いられる試剤の量は、式(14)で示される化合物1モルに対して、塩基が通常1~10モルの割合であり、ヒドラジンが通常1~10モルの割合である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(13−1)で示される化合物を単離することができる。単離された式(13−1)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (iii)酸の存在下、金属と反応させる方法。
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えば、エタノール等のアルコール類、水及びこれらの混合物が挙げられる。
 反応に用いられる金属としては、例えば、鉄、スズ及び塩化スズ(II)が挙げられる。
 反応に用いられる酸としては、例えば、酢酸、塩酸及び硫酸が挙げられる。
 反応に用いられる試剤の量は、式(14)で示される化合物1モルに対して、金属が通常2~20モルの割合であり、酸が通常0.1~10モルの割合である。
 反応の反応温度は通常0~100℃の範囲であり、反応時間は通常0.5~12時間の範囲である。
 反応終了後は、反応混合物を濾過し、必要に応じて有機溶媒抽出、乾燥、濃縮する等の後処理操作を行うことにより、式(13−1)で示される化合物を単離することができる。単離された式(13−1)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(Reference production method 4)
The compound represented by the formula (9) can also be produced by reacting the compound represented by the formula (13-1) with di-tert-butyl dicarbonate.
Figure JPOXMLDOC01-appb-I000009
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, xylene and the like. Aromatic hydrocarbons, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
The reaction is usually performed in the presence of a base.
Examples of the base used in the reaction include organic amines such as triethylamine, carbonates such as sodium carbonate, and alkali metal hydroxides such as sodium hydroxide.
The amount of the reagent used in the reaction is usually 1 to 10 moles of di-tert-butyl dicarbonate and 1 to 10 moles of the base based on 1 mole of the compound represented by the formula (13-1). Is the ratio. In the reaction, if necessary, tetrabutylammonium bromide or the like is usually added at an arbitrary ratio from 0.05 mol to 0.10 mol with respect to 1 mol of the compound represented by formula (13-1). It can also be done.
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (9) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (9) can be further purified by chromatography, recrystallization and the like.
(Reference production method 5)
The compound represented by the formula (13-1) can be produced by reducing the compound represented by the formula (14) by any method shown in the following (i) to (iii).
Figure JPOXMLDOC01-appb-I000010
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
(I) A method of reacting with hydrogen gas in the presence of a transition metal catalyst.
The reaction is carried out in a solvent.
Examples of the solvent used in the reaction include esters such as ethyl acetate, alcohols such as ethanol and methanol, water, acetic acid, hydrochloric acid, and mixtures thereof.
Examples of the transition metal catalyst used in the reaction include Raney nickel, palladium-carbon, and platinum dioxide.
The amount of the transition metal catalyst used in the reaction is usually 0.01 to 0.5 mol with respect to 1 mol of the compound represented by the formula (14).
The reaction temperature is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.1 to 24 hours.
After completion of the reaction, the compound represented by the formula (13-1) can be isolated by filtering the reaction mixture and performing post-treatment operations such as organic solvent extraction, drying, and concentration as necessary. . The isolated compound represented by the formula (13-1) can be further purified by chromatography, recrystallization and the like.
(Ii) A method of reacting with hydrazine in the presence of a base.
The reaction is carried out in a solvent.
Examples of the solvent used in the reaction include ethers such as diethylene glycol and triethylene glycol, water, and a mixture thereof.
Examples of the base used for the reaction include alkali metal hydroxides such as potassium hydroxide.
Examples of hydrazine used in the reaction include hydrazine hydrate.
The amount of the reagent used in the reaction is usually 1 to 10 moles of base and 1 to 10 moles of hydrazine to 1 mole of the compound represented by formula (14).
After completion of the reaction, the compound represented by the formula (13-1) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (13-1) can be further purified by chromatography, recrystallization and the like.
(Iii) A method of reacting with a metal in the presence of an acid.
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include alcohols such as ethanol, water, and a mixture thereof.
Examples of the metal used in the reaction include iron, tin, and tin (II) chloride.
Examples of the acid used for the reaction include acetic acid, hydrochloric acid, and sulfuric acid.
The amount of the reagent used in the reaction is usually 2 to 20 moles of metal and 0.1 to 10 moles of acid with respect to 1 mole of the compound represented by the formula (14).
The reaction temperature is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 12 hours.
After completion of the reaction, the compound represented by the formula (13-1) can be isolated by filtering the reaction mixture and performing post-treatment operations such as organic solvent extraction, drying, and concentration as necessary. . The isolated compound represented by the formula (13-1) can be further purified by chromatography, recrystallization and the like.
(参考製造法6)
 式(16)で示される化合物は、式(13−1)で示される化合物とトリフルオロ酢酸無水物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000011
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、トルエン、キシレン等の芳香族炭化水素類、ジメチルスルホキシド、スルホラン等のスルホキシド類、1,2−ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類及びそれらの混合物が挙げられる。
 反応に用いられる試剤の量は、式(13−1)で示される化合物1モルに対して、トリフルオロ酢酸無水物が通常1~10モルの割合である。
 反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(16)で示される化合物を単離することもできる。単離された式(16)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法7)
 式(9)で示される化合物は、式(18)で示される化合物をヒドロキシルアミンと塩基とを反応させることにより製造することもできる。
Figure JPOXMLDOC01-appb-I000012
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド等のスルホキシド類、水及びこれらの混合物が挙げられる。
 反応に用いられるヒドロキシルアミンとしては、ヒドロキシルアミン塩酸塩及びヒドロキシルアミン硫酸塩等のヒドロキシルアミンと鉱酸との塩の形態であって、反応系内でヒドロキシルアミンを生成し得るものが挙げられるが、かかる場合には、該反応は塩基の存在下で行われる。かかる場合に用いられる塩基としては、例えばトリエチルアミン等の有機アミン類、炭酸ナトリウム等の炭酸塩類及び水酸化ナトリウム等のアルカリ金属水酸化物類が挙げられる。
 反応に用いられる試剤の量は、式(18)で示される化合物1モルに対して、ヒドロキシルアミンが通常1~10モルの割合であり、ヒドロキシルアミンと鉱酸との塩が用いられる場合に用いられる塩基の量は、ヒドロキシルアミンと鉱酸との塩1モルに対して通常1~10モルの割合である。
反応は、さらに必要に応じて、式(18)で示される化合物1モルに対して、通常は0.1モル~1.0モルまで任意の割合で、テトラブチルアンモニウムブロミド等の相関移動触媒を加えて行うこともできる。
 反応の反応温度は、通常0~80℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(9)で示される化合物を単離することができる。単離された式(9)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法8)
 式(18)で示される化合物は、式(19)で示される化合物及び式(20)で示される化合物を塩基と反応させ加熱することにより製造することもできる。
Figure JPOXMLDOC01-appb-I000013
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド等のスルホキシド類及びこれらの混合物が挙げられる。
 反応に用いられる塩基としては、例えば、炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類、及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられる試剤の量は、式(19)で示される化合物1モルに対して、式(20)で示される化合物が通常1~10モルの割合であり、塩基が通常1~10モルの割合である。
 反応の反応温度は、通常0~100℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(18)で示される化合物を単離することができる。単離された式(18)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法9)
 式(18)で示される化合物は、式(21)で示される化合物を脱水剤(22)及び塩基と反応させることにより製造することもできる。
Figure JPOXMLDOC01-appb-I000014
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド等のスルホキシド類及びこれらの混合物が挙げられる。
 反応に用いられる脱水剤(22)としては、例えば塩化チオニル等の酸塩化物類、無水酢酸等のカルボン酸無水物類が挙げられる。
 反応に用いられる塩基としては、例えば炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類、及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられる試剤の量は、式(21)で示される化合物1モルに対して、脱水剤(22)が通常1~10モルの割合であり、塩基が通常1~10モルの割合である。
 反応の反応温度は、通常0~200℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(18)で示される化合物を単離することができる。単離された式(18)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法10)
 式(21)で示される化合物は、式(19)で示される化合物及び式(20)で示される化合物を塩基と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000015
〔式中、X及びXは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド等のスルホキシド類及びこれらの混合物が挙げられる。
 反応に用いられる塩基としては、例えば炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類、及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられる試剤の量は、式(19)で示される化合物1モルに対して、式(20)で示される化合物が通常1~10モルの割合であり、塩基が通常1~10モルの割合である。
 反応の反応温度は、通常0~80℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(21)で示される化合物を単離することができる。単離された式(21)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(Reference production method 6)
The compound represented by the formula (16) can be produced by reacting the compound represented by the formula (13-1) with trifluoroacetic anhydride.
Figure JPOXMLDOC01-appb-I000011
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, acid amides such as N, N-dimethylformamide, toluene, xylene and the like. Aromatic hydrocarbons, sulfoxides such as dimethyl sulfoxide and sulfolane, halogenated hydrocarbons such as 1,2-dichloroethane, chloroform and chlorobenzene, and mixtures thereof.
The amount of the reagent used in the reaction is usually 1 to 10 moles of trifluoroacetic anhydride with respect to 1 mole of the compound represented by the formula (13-1).
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (16) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (16) can be further purified by chromatography, recrystallization and the like.
(Reference production method 7)
The compound represented by the formula (9) can also be produced by reacting the compound represented by the formula (18) with hydroxylamine and a base.
Figure JPOXMLDOC01-appb-I000012
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, water, and mixtures thereof.
Examples of the hydroxylamine used in the reaction include hydroxylamine and mineral acid salt forms such as hydroxylamine hydrochloride and hydroxylamine sulfate, which can generate hydroxylamine in the reaction system. In such a case, the reaction is performed in the presence of a base. Examples of the base used in this case include organic amines such as triethylamine, carbonates such as sodium carbonate, and alkali metal hydroxides such as sodium hydroxide.
The amount of the reagent used in the reaction is usually 1 to 10 moles of hydroxylamine per mole of the compound represented by formula (18), and is used when a salt of hydroxylamine and mineral acid is used. The amount of the base to be obtained is usually 1 to 10 moles per mole of the salt of hydroxylamine and mineral acid.
In the reaction, if necessary, a phase transfer catalyst such as tetrabutylammonium bromide is usually added at an arbitrary ratio from 0.1 mol to 1.0 mol with respect to 1 mol of the compound represented by the formula (18). It can also be done.
The reaction temperature is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (9) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (9) can be further purified by chromatography, recrystallization and the like.
(Reference production method 8)
The compound represented by the formula (18) can also be produced by reacting the compound represented by the formula (19) and the compound represented by the formula (20) with a base and heating.
Figure JPOXMLDOC01-appb-I000013
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
The amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (20) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (19). It is a ratio.
The reaction temperature of the reaction is usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (18) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (18) can be further purified by chromatography, recrystallization or the like.
(Reference production method 9)
The compound represented by the formula (18) can also be produced by reacting the compound represented by the formula (21) with a dehydrating agent (22) and a base.
Figure JPOXMLDOC01-appb-I000014
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
Examples of the dehydrating agent (22) used in the reaction include acid chlorides such as thionyl chloride and carboxylic acid anhydrides such as acetic anhydride.
Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
The amount of the reagent used in the reaction is usually 1 to 10 moles of the dehydrating agent (22) and 1 to 10 moles of the base with respect to 1 mole of the compound represented by the formula (21). .
The reaction temperature of the reaction is usually in the range of 0 to 200 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (18) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (18) can be further purified by chromatography, recrystallization or the like.
(Reference production method 10)
The compound represented by the formula (21) can be produced by reacting the compound represented by the formula (19) and the compound represented by the formula (20) with a base.
Figure JPOXMLDOC01-appb-I000015
[Wherein, X 1 and X 2 represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
The amount of the reagent used in the reaction is usually 1 to 10 mol of the compound represented by the formula (20) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (19). It is a ratio.
The reaction temperature is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (21) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (21) can be further purified by chromatography, recrystallization and the like.
(参考製造法11)
 式(20)で示される化合物は、式(23)で示される化合物をトリフルオロメチル化試薬(24)及び塩基と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000016
〔式中、Xは前記と同じ意味を表し、RはC1−C6アルキル基を表す。〕
反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド等のスルホキシド類及びこれらの混合物が挙げられる。
 反応に用いられるトリフルオロメチル化剤(24)としては、例えばトリフルオロメチルトリメチルシリル等が挙げられる。
 反応に用いられる塩基としては、例えば炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類、及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられる試剤の量は、式(23)で示される化合物1モルに対して、トリフルオロメチル化剤(24)が通常1~10モルの割合であり、塩基が通常1~10モルの割合である。
 反応の反応温度は、通常0~200℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(20)で示される化合物を単離することができる。単離された式(20)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法12)
 式(20)で示される化合物は、式(25)で示される化合物をグリニャール試薬(26)と反応さた後、トリフルオロメチル試薬(27)と反応させることにより製造することができる
Figure JPOXMLDOC01-appb-I000017
〔式中、Xは前記と同じ意味を表し、Yはハロゲン原子を表す。〕
反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、トルエン等の炭化水素類及びこれらの混合物が挙げられる。
 反応に用いられるグリニャール試薬(26)としては、例えばイソプロピルマグネシウムブロマイド等が挙げられる。
 反応に用いられるトリフルオロメチル化試薬(27)としては、例えばトリフルオロ酢酸エチル等が挙げられる。
 反応に用いられる試剤の量は、式(25)で示される化合物1モルに対して、グリニヤール試薬(26)が通常1~10モルの割合であり、トリフルオロメチル試薬(27)が通常1~10モルの割合である。
 反応の式(25)で示される化合物とグリニャール試薬(26)を反応させる工程における反応温度は、通常−20~30℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 式(25)で示される化合物とグリニャール試薬(26)を反応させる工程で得られる反応混合物は、そのままトリフルオロメチル化試薬(27)と反応させる工程に用いることができ、該工程における反応温度は、通常−20~50℃の範囲であり、反応時間は通常0.5~12時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(20)で示される化合物を単離することもできる。単離された式(20)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法13)
 式(25)で示される化合物は、式(28)で示される化合物をジアゾ化試薬(29)と反応させた後に、無機ハロゲン試薬(30)と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000018
〔式中、Xは前記と同じ意味を表し、Yはハロゲン原子を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えば水、塩酸や硫酸等の酸性水溶液及びそれらの混合物が挙げられる。
 反応に用いられるジアゾ化試薬(29)としては、例えば亜硝酸ナトリウム等の亜硝酸塩が挙げられる。
 反応に用いられる無機ハロゲン試薬(30)としては、例えばヨウ化カリウム等が挙げられる。
 反応に用いられる試剤の量は、式(28)で示される化合物1モルに対して、ジアゾ化試薬(29)が通常1~10モルの割合であり、無機ハロゲン試薬(30)が通常1~10モルの割合である。
 反応の式(28)で示される化合物とジアゾ化試薬(29)を反応させる工程における反応温度は、通常−20~30℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 式(28)で示される化合物とジアゾ化試薬(29)を反応させる工程で得られる反応混合物は、そのまま無機ハロゲン試薬(30)と反応させる工程に用いることができ、該工程における反応温度は、通常−20~50℃の範囲であり、反応時間は通常0.5~12時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(25)で示される化合物を単離することもできる。単離された式(25)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法14)
 式(20)で示される化合物は、式(31)で示される化合物をオゾンと反応させた後、次いで還元剤と反応させることにより製造することもできる。
Figure JPOXMLDOC01-appb-I000019
〔式中、Xは前記と同じ意味を表す。〕
該反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、酢酸エチル等のエステル類、クロロホルム、ジクロロメタン等のハロゲン化炭化水素類、メタノール、エタノール等のアルコール類及びこれらの混合物が挙げられる。
 反応に用いられる還元剤としては、例えばジメチルスルフィド、トリフェニルホスフィン、亜鉛、チオウレア等が挙げられる。
 反応に用いられる試剤の量は、式(31)で示される化合物1モルに対して、オゾンが通常1~10モルの割合であり、還元剤が通常1~10モルの割合である。
反応の式(31)で示される化合物とオゾンを反応させる工程における反応温度は、通常−100~0℃の範囲であり、反応時間は通常24時間までの範囲である。
 式(31)で示される化合物とオゾンを反応させる工程で得られる反応混合物は、そのまま還元剤と反応させる工程に用いることができ、該工程における反応温度は、通常−78~30℃の範囲であり、反応時間は通常0.5~12時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(20)で示される化合物を単離することもできる。単離された式(20)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(参考製造法15)
 式(31)で示される化合物は、Wittig試薬(33)と塩基とを反応させた後、次いで式(20)で示される化合物と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000020
〔式中、Xは前記と同じ意味を表す。〕
該反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド等のスルホキシド類及びこれらの混合物が挙げられる。
 反応に用いられるWittig試薬(33)としては、例えばメチルトリフェニルホスホニウムブロミド等が挙げられる。
反応に用いられる塩基としては、例えば、炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類、ブチルリチウム等の有機リチウム類及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられる試剤の量は、式(20)で示される化合物1モルに対して、Wittig試薬(33)が通常1~10モルの割合であり、塩基が通常1~10モルの割合である。
 反応のWittig試薬(33)と塩基を反応させる工程における反応温度は、通常−100~30℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応のWittig試薬(33)と塩基を反応させる工程で得られる反応混合物は、そのまま式(20)で示される化合物と反応させる工程に用いることができ、該工程における反応温度は、通常−100~50℃の範囲であり、反応時間は通常0.5~12時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(31)で示される化合物を単離することもできる。単離された式(31)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法16)
 式(31)で示される化合物は、例えば国際公報第2011/124998号記載の方法に準じて製造することができる。
Figure JPOXMLDOC01-appb-I000021
〔式中、Xは前記と同じ意味を表す。〕
 (参考製造法17)
 式(6)で示される化合物は、式(34)で示される化合物と塩基とを反応させた後、次いで式(31)で示される化合物とを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000022
〔式中、X、X及びZは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、ジメチルスルホキシド等のスルホキシド類及びこれらの混合物が挙げられる。
 反応に用いられる塩基としては、例えば水素化ナトリウム等のアルカリ金属水素化物類、炭酸カリウム等の炭酸塩類、カリウムtert−ブトキシド等のアルカリ金属アルコキシド類、及びトリエチルアミン、ピリジン等の有機アミン類が挙げられる。
 反応に用いられる試剤の量は、式(34)で示される化合物1モルに対して、式(31)で示される化合物が通常1~10モルの割合であり、塩基が通常1~10モルの割合である。
 反応の式(34)で示される化合物と塩基とを反応させる工程における反応温度は、通常0~80℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 式(34)で示される化合物と塩基とを反応させる工程で得られる反応混合物は、そのまま式(31)で示される化合物と反応させる工程に用いることができ、該工程における反応温度は、通常0~80℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(6)で示される化合物を単離することができる。単離された式(6)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法18)
式(34)で示される化合物は、式(35)で示される化合物を塩素化剤(36)と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000023
〔式中、X及びZは前記と同じ意味を表す。〕
 反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、トルエン等の炭化水素類、酢酸エチルなどのエステル類、N,N−ジメチルホルムアミド等の酸アミド類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のスルホキシド類及びこれらの混合物が挙げられる。
 反応に用いられる塩素化剤(36)としては、例えば塩素ガス及びN−クロロスクシンイミドが挙げられる。
 反応に用いられる試剤の量は、式(35)で示される化合物1モルに対して、塩素化剤(36)が通常1~10モルの割合である。
 反応の反応温度は、通常−20~80℃の範囲であり。反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(34)で示される化合物を単離することもできる。単離された式(36)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
 (参考製造法19)
 式(35)で示される化合物は、式(37)で示される化合物とヒドロキシルアミンとを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-I000024
〔式中、X及びZは前記と同じ意味を表す。〕
反応は通常溶媒中で行われる。
 反応に用いられる溶媒としては、例えばテトラヒドロフラン、ジエチルエーテル、tert−ブチルメチルエーテル、エチレングリコールジメチルエーテル、1,4−ジオキサン等のエーテル類、トルエン等の炭化水素類、酢酸エチル等のエステル類、N,N−ジメチルホルムアミド等の酸アミド類、エタノール、メタノール等のアルコール類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のスルホキシド類、水及びこれらの混合物が挙げられる。
 反応に用いられるヒドロキシルアミンとしては、ヒドロキシルアミン塩酸塩及びヒドロキシルアミン硫酸塩等のヒドロキシルアミンと鉱酸との塩の形態で反応系内でヒドロキシルアミンを生成し得るものが挙げられるが、かかる場合には、反応は塩基の存在下で行われる。かかる場合に用いられる塩基としては、例えばトリエチルアミン等の有機アミン類、炭酸ナトリウム等の炭酸塩類及び水酸化ナトリウム等のアルカリ金属水酸化物類が挙げられる。
 反応に用いられる試剤の量は、式(37)で示される化合物1モルに対して、ヒドロキシルアミンが通常1~10モルの割合であり、反応にヒドロキシルアミンと鉱酸との塩が用いられる場合に用いられる塩基の量は、ヒドロキシルアミンと鉱酸との塩1モルに対して通常1~10モルの割合である。
 反応の反応温度は、通常0~80℃の範囲であり、反応時間は通常0.5~24時間の範囲である。
 反応終了後は、反応混合物を有機溶媒抽出し、乾燥、濃縮する等の後処理操作を行うことにより、式(35)で示される化合物を単離することができる。単離された式(35)で示される化合物はクロマトグラフィー、再結晶等によりさらに精製することもできる。
(Reference production method 11)
The compound represented by the formula (20) can be produced by reacting the compound represented by the formula (23) with a trifluoromethylating reagent (24) and a base.
Figure JPOXMLDOC01-appb-I000016
[Wherein, X 2 represents the same meaning as described above, and R 6 represents a C1-C6 alkyl group. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
Examples of the trifluoromethylating agent (24) used in the reaction include trifluoromethyltrimethylsilyl.
Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine.
The amount of the reagent used in the reaction is usually 1 to 10 mol of the trifluoromethylating agent (24) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (23). It is a ratio.
The reaction temperature of the reaction is usually in the range of 0 to 200 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (20) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (20) can be further purified by chromatography, recrystallization and the like.
(Reference production method 12)
The compound represented by the formula (20) can be produced by reacting the compound represented by the formula (25) with the Grignard reagent (26) and then reacting with the trifluoromethyl reagent (27).
Figure JPOXMLDOC01-appb-I000017
[Wherein, X 2 represents the same meaning as described above, and Y represents a halogen atom. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, and 1,4-dioxane, hydrocarbons such as toluene, and mixtures thereof.
Examples of the Grignard reagent (26) used in the reaction include isopropyl magnesium bromide.
Examples of the trifluoromethylating reagent (27) used in the reaction include ethyl trifluoroacetate.
The amount of the reagent used for the reaction is usually 1 to 10 mol of Grignard reagent (26) and 1 to 1 of trifluoromethyl reagent (27) with respect to 1 mol of the compound represented by the formula (25). The ratio is 10 moles.
The reaction temperature in the step of reacting the compound represented by the reaction formula (25) with the Grignard reagent (26) is usually in the range of −20 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours. .
The reaction mixture obtained in the step of reacting the compound represented by the formula (25) with the Grignard reagent (26) can be used as it is in the step of reacting with the trifluoromethylating reagent (27), and the reaction temperature in this step is The reaction time is usually in the range of −20 to 50 ° C., and the reaction time is usually in the range of 0.5 to 12 hours.
After completion of the reaction, the compound represented by the formula (20) can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (20) can be further purified by chromatography, recrystallization and the like.
(Reference production method 13)
The compound represented by the formula (25) can be produced by reacting the compound represented by the formula (28) with the diazotization reagent (29) and then reacting with the inorganic halogen reagent (30).
Figure JPOXMLDOC01-appb-I000018
[Wherein, X 2 represents the same meaning as described above, and Y represents a halogen atom. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include water, acidic aqueous solutions such as hydrochloric acid and sulfuric acid, and mixtures thereof.
Examples of the diazotization reagent (29) used for the reaction include nitrites such as sodium nitrite.
As an inorganic halogen reagent (30) used for reaction, potassium iodide etc. are mentioned, for example.
The amount of the reagent used in the reaction is usually 1 to 10 moles of the diazotizing reagent (29) and 1 to 1 mole of the inorganic halogen reagent (30) with respect to 1 mole of the compound represented by the formula (28). The ratio is 10 moles.
The reaction temperature in the step of reacting the compound represented by the reaction formula (28) with the diazotization reagent (29) is usually in the range of −20 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours. is there.
The reaction mixture obtained in the step of reacting the compound represented by formula (28) with the diazotization reagent (29) can be used in the step of reacting with the inorganic halogen reagent (30) as it is, and the reaction temperature in the step is as follows. Usually, it is in the range of −20 to 50 ° C., and the reaction time is usually in the range of 0.5 to 12 hours.
After completion of the reaction, the compound represented by the formula (25) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (25) can be further purified by chromatography, recrystallization and the like.
(Reference production method 14)
The compound represented by the formula (20) can also be produced by reacting the compound represented by the formula (31) with ozone and then reacting with a reducing agent.
Figure JPOXMLDOC01-appb-I000019
[Wherein X 2 represents the same meaning as described above. ]
The reaction is usually performed in a solvent.
Examples of the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, esters such as ethyl acetate, and halogenated hydrocarbons such as chloroform and dichloromethane. Alcohols such as methanol and ethanol, and mixtures thereof.
Examples of the reducing agent used in the reaction include dimethyl sulfide, triphenylphosphine, zinc, thiourea and the like.
The amount of the reagent used in the reaction is usually 1 to 10 moles of ozone and 1 to 10 moles of reducing agent per mole of the compound represented by formula (31).
The reaction temperature in the step of reacting the compound represented by the reaction formula (31) with ozone is usually in the range of −100 to 0 ° C., and the reaction time is usually in the range of up to 24 hours.
The reaction mixture obtained in the step of reacting the compound represented by the formula (31) with ozone can be used as it is in the step of reacting with a reducing agent, and the reaction temperature in the step is usually in the range of −78 to 30 ° C. The reaction time is usually in the range of 0.5 to 12 hours.
After completion of the reaction, the compound represented by the formula (20) can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (20) can be further purified by chromatography, recrystallization and the like.
(Reference production method 15)
The compound represented by the formula (31) can be produced by reacting the Wittig reagent (33) with a base and then reacting with the compound represented by the formula (20).
Figure JPOXMLDOC01-appb-I000020
[Wherein X 2 represents the same meaning as described above. ]
The reaction is usually performed in a solvent.
Examples of the solvent used for the reaction include tetrahydrofuran, dityl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
Examples of the Wittig reagent (33) used in the reaction include methyltriphenylphosphonium bromide.
Examples of the base used in the reaction include carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, organic lithiums such as butyl lithium, and organic amines such as triethylamine and pyridine.
The amount of the reagent used in the reaction is usually 1 to 10 moles of Wittig reagent (33) and 1 to 10 moles of base based on 1 mole of the compound represented by formula (20). .
The reaction temperature in the step of reacting the Wittig reagent (33) with the base is usually in the range of −100 to 30 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
The reaction mixture obtained in the step of reacting the Wittig reagent (33) with the base can be used as it is in the step of reacting with the compound represented by the formula (20), and the reaction temperature in this step is usually −100 to It is in the range of 50 ° C., and the reaction time is usually in the range of 0.5 to 12 hours.
After completion of the reaction, the compound represented by the formula (31) can also be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (31) can be further purified by chromatography, recrystallization and the like.
(Reference production method 16)
The compound represented by the formula (31) can be produced, for example, according to the method described in International Publication No. 2011/124998.
Figure JPOXMLDOC01-appb-I000021
[Wherein X 2 represents the same meaning as described above. ]
(Reference production method 17)
The compound represented by the formula (6) can be produced by reacting the compound represented by the formula (34) with a base and then reacting the compound represented by the formula (31).
Figure JPOXMLDOC01-appb-I000022
[Wherein, X 1 , X 2 and Z represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, acid amides such as N, N-dimethylformamide, and nitriles such as acetonitrile. , Hydrocarbons such as toluene, esters such as ethyl acetate, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
Examples of the base used in the reaction include alkali metal hydrides such as sodium hydride, carbonates such as potassium carbonate, alkali metal alkoxides such as potassium tert-butoxide, and organic amines such as triethylamine and pyridine. .
The amount of the reagent used for the reaction is usually 1 to 10 mol of the compound represented by the formula (31) and 1 to 10 mol of the base based on 1 mol of the compound represented by the formula (34). It is a ratio.
The reaction temperature in the step of reacting the compound represented by the reaction formula (34) with the base is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
The reaction mixture obtained in the step of reacting the compound represented by formula (34) with the base can be used as it is in the step of reacting with the compound represented by formula (31), and the reaction temperature in this step is usually 0. It is in the range of ~ 80 ° C, and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (6) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (6) can be further purified by chromatography, recrystallization or the like.
(Reference production method 18)
The compound represented by the formula (34) can be produced by reacting the compound represented by the formula (35) with a chlorinating agent (36).
Figure JPOXMLDOC01-appb-I000023
[Wherein, X 1 and Z represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include ethers such as tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether and 1,4-dioxane, hydrocarbons such as toluene, esters such as ethyl acetate, N, Examples include acid amides such as N-dimethylformamide, nitriles such as acetonitrile, sulfoxides such as dimethyl sulfoxide, and mixtures thereof.
Examples of the chlorinating agent (36) used in the reaction include chlorine gas and N-chlorosuccinimide.
The amount of the reagent used for the reaction is usually 1 to 10 moles of the chlorinating agent (36) with respect to 1 mole of the compound represented by the formula (35).
The reaction temperature is usually in the range of −20 to 80 ° C. The reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (34) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (36) can be further purified by chromatography, recrystallization or the like.
(Reference production method 19)
The compound represented by the formula (35) can be produced by reacting the compound represented by the formula (37) with hydroxylamine.
Figure JPOXMLDOC01-appb-I000024
[Wherein, X 1 and Z represent the same meaning as described above. ]
The reaction is usually carried out in a solvent.
Examples of the solvent used in the reaction include tetrahydrofuran, diethyl ether, tert-butyl methyl ether, ethylene glycol dimethyl ether, ethers such as 1,4-dioxane, hydrocarbons such as toluene, esters such as ethyl acetate, N, Examples include acid amides such as N-dimethylformamide, alcohols such as ethanol and methanol, nitriles such as acetonitrile, sulfoxides such as dimethyl sulfoxide, water, and mixtures thereof.
Examples of hydroxylamine used in the reaction include those capable of producing hydroxylamine in the reaction system in the form of a salt of hydroxylamine and mineral acid, such as hydroxylamine hydrochloride and hydroxylamine sulfate. The reaction is carried out in the presence of a base. Examples of the base used in this case include organic amines such as triethylamine, carbonates such as sodium carbonate, and alkali metal hydroxides such as sodium hydroxide.
The amount of the reagent used in the reaction is usually 1 to 10 moles of hydroxylamine per mole of the compound represented by formula (37), and a salt of hydroxylamine and mineral acid is used in the reaction. The amount of the base used in is usually 1 to 10 moles per mole of the salt of hydroxylamine and mineral acid.
The reaction temperature is usually in the range of 0 to 80 ° C., and the reaction time is usually in the range of 0.5 to 24 hours.
After completion of the reaction, the compound represented by the formula (35) can be isolated by performing post-treatment operations such as extraction of the reaction mixture with an organic solvent, drying and concentration. The isolated compound represented by the formula (35) can be further purified by chromatography, recrystallization and the like.
本発明化合物が効力を有する有害節足動物としては、例えば、有害昆虫類や有害ダニ類などが挙げられ、具体的には、例えば、以下のものが挙げられる。 Examples of harmful arthropods for which the compound of the present invention is effective include harmful insects and harmful mites, and specific examples thereof include the following.
半翅目害虫:ヒメトビウンカ(Laodelphax striatellus)、トビイロウンカ(Nilaparvata lugens)、セジロウンカ(Sogatella furcifera)等のウンカ類、ツマグロヨコバイ(Nephotettix cincticeps)、タイワンツマグロヨコバイ(Nephotettix virescens)、チャノミドリヒメヨコバイ(Empoasca onukii)等のヨコバイ類、ワタアブラムシ(Aphis gossypii)、モモアカアブラムシ(Myzus persicae)、ダイコンアブラムシ(Brevicoryne brassicae)、ユキヤナギアブラムシ(Aphis spiraecola)、チューリップヒゲナガアブラムシ(Macrosiphum euphorbiae)、ジャガイモヒゲナガアブラムシ(Aulacorthum solani)、ムギクビレアブラムシ(Rhopalosiphum padi)、ミカンクロアブラムシ(Toxoptera citricidus)、モモコフキアブラムシ(Hyalopterus pruni)等のアブラムシ類、アオクサカメムシ(Nezara antennata)、ホソヘリカメムシ(Riptortus clavetus)、クモヘリカメムシ(Leptocorisa chinensis)、トゲシラホシカメムシ(Eysarcoris parvus)、クサギカメムシ(Halyomorpha mista)等のカメムシ類、オンシツコナジラミ(Trialeurodes vaporariorum)、タバココナジラミ(Bemisia tabaci)、シルバーリーフコナジラミ(Bemisia argentifolii)、ミカンコナジラミ(Dialeurodes citri)、ミカントゲコナジラミ(Aleurocanthus spiniferus)等のコナジラミ類、アカマルカイガラムシ(Aonidiella aurantii)、サンホーゼカイガラムシ(Comstockaspis perniciosa)、シトラススノースケール(Unaspis citri)、ルビーロウムシ(Ceroplastes rubens)、イセリヤカイガラムシ(Icerya purchasi)、フジコナカイガラムシ(Planococcus kraunhiae)、クワコナカイガラムシ(Pseudococcus longispinis)、クワシロカイガラムシ(Pseudaulacaspis pentagona)等のカイガラムシ類、グンバイムシ類、キジラミ類等。
鱗翅目害虫:ニカメイガ(Chilo suppressalis)、サンカメイガ(Tryporyza incertulas)、コブノメイガ(Cnaphalocrocis medinalis)、ワタノメイガ(Notarcha derogata)、ノシメマダラメイガ(Plodia interpunctella)、アワノメイガ(Ostrinia furnacalis)、ハイマダラノメイガ(Hellula undalis)、シバツトガ(Pediasia teterrellus)等のメイガ類、ハスモンヨトウ(Spodoptera litura)、シロイチモジヨトウ(Spodoptera exigua)、アワヨトウ(Pseudaletia separata)、ヨトウガ(Mamestra brassicae)、タマナヤガ(Agrotis ipsilon)、タマナギンウワバ(Plusia nigrisigna)、トリコプルシア属、ヘリオティス属、ヘリコベルパ属等のヤガ類、モンシロチョウ(Pieris rapae)等のシロチョウ類、アドキソフィエス属、ナシヒメシンクイ(Grapholita molesta)、マメシンクイガ(Leguminivora glycinivorella)、アズキサヤムシガ(Matsumuraeses azukivora)、リンゴコカクモンハマキ(Adoxophyes orana fasciata)、チャノコカクモンハマキ(Adoxophyes sp.)、チャハマキ(Homona magnanima)、ミダレカクモンハマキ(Archips fuscocupreanus)コドリンガ(Cydia pomonella)等のハマキガ類、チャノホソガ(Caloptilia theivora)、キンモンホソガ(Phyllonorycter ringoneella)のホソガ類、モモシンクイガ(Carposina niponensis)等のシンクイガ類、リオネティア属等のハモグリガ類、リマントリア属、ユープロクティス属等のドクガ類、コナガ(Plutella xylostella)等のスガ類、ワタアカミムシ(Pectinophora gossypiella)ジャガイモガ(Phthorimaea operculella)等のキバガ類、アメリカシロヒトリ(Hyphantria cunea)等のヒトリガ類、イガ(Tinea translucens)、コイガ(Tineola bisselliella)等のヒロズコガ類等。
アザミウマ目害虫:ミカンキイロアザミウマ(Frankliniella occidentalis)、ミナミキイロアザミウマ(Thrips parmi)、チャノキイロアザミウマ(Scirtothrips dorsalis)、ネギアザミウマ(Thrips tabaci)、ヒラズハナアザミウマ(Frankliniella intonsa)などのアザミウマ類
 双翅目害虫:イエバエ(Musca domestica)、アカイエカ(Culex popiens pallens)、ウシアブ(Tabanus trigonus)、タマネギバエ(Hylemya antiqua)、タネバエ(Hylemya platura)、シナハマダラカ(Anopheles sinensis)、イネハモグリバエ(Agromyza oryzae)、イネヒメハモグリバエ(Hydrellia griseola)、イネキモグリバエ(Chlorops oryzae)、ウリミバエ(Dacus cucurbitae)、チチュウカイミバエ(Ceratitis capitata)、マメハモグリバエ(Liriomyza trifolii)、トマトハモグリバエ、(Liriomyza sativae)、ナモグリバエ(Chromatomyia horticola)等。
 甲虫目害虫:ニジュウヤホシテントウ(Epilachna vigintioctopunctata)、ウリハムシ(Aulacophora femoralis)、キスジノミハムシ(Phyllotreta striolata)、イネドロオイムシ(Oulema oryzae)、イネゾウムシ(Echinocnemus squameus)、イネミズゾウムシ(Lissorhoptrus oryzophilus)、ワタミゾウムシ(Anthonomus grandis)、アズキゾウムシ(Callosobruchus chinensis)、シバオサゾウムシ(Sphenophorus venatus)、マメコガネ(Popillia japonica)、ドウガネブイブイ(Anomala cuprea)、コーンルートワームの仲間(Diabrotica spp.)、コロラドハムシ(Leptinotarsa decemlineata)、コメツキムシの仲間(Agriotes spp.)、タバコシバンムシ(Lasioderma serricorne)、ヒメマルカツオブシムシ(Anthrenus verbasci)、コクヌストモドキ(Tribolium castaneum)、ヒラタキクイムシ(Lyctus brunneus)、ゴマダラカミキリ(Anoplophora malasiaca)、マツノキクイムシ(Tomicus piniperda)等。
 直翅目害虫:トノサマバッタ(Locusta migratoria)、ケラ(Gryllotalpa africana)、コバネイナゴ(Oxya yezoensis)、ハネナガイナゴ(Oxya japonica)等。
 膜翅目害虫:カブラハバチ(Athalia rosae)、ハキリアリ(Acromyrmex spp.)、ファイヤーアント(Solenopsis spp.)等。
 ゴキブリ目害虫:チャバネゴキブリ(Blattella germanica)、クロゴキブリ(Periplaneta fuliginosa)、ワモンゴキブリ(Periplaneta americana)、トビイロゴキブリ(Periplaneta brunnea)、トウヨウゴキブリ(Blatta orientalis)等。
 ダニ目害虫:ナミハダニ(Tetranychus urticae)、カンザワハダニ(Tetranychus kanzawai)、ミカンハダニ(Panonychus citri)リンゴハダニ(Panonychus ulmi)、オリゴニカス属等のハダニ類、ミカンサビダニ(Aculops pelekassi)、リュウキュウミカンサビダニ(Phyllocoptruta citri)、トマトサビダニ(Aculops lycopersici)、チャノサビダニ(Calacarus carinatus)、チャノナガサビダニ(Acaphylla theavagrans)、ニセナシサビダニ(Eriophyes chibaensis)等のフシダニ類、チャノホコリダニ(Polyphagotarsonemus latus)等のホコリダニ類、ミナミヒメハダニ(Brevipalpus phoenicis)等のヒメハダニ類、ケナガハダニ類、フタトゲチマダニ(Haemaphysalis longicornis)、ヤマトチマダニ(Haemaphysalis flava)、タイワンカクマダニ(Dermacentor taiwanicus)、ヤマトマダニ(Ixodes ovatus)、シュルツマダニ(Ixodes persulcatus)、オウシマダニ(Boophilus microplus)、クリイロコイタマダニ(Rhipicephalus sanguineus)等のマダニ類、ケナガコナダニ(Tyrophagus putrescentiae)、ホウレンソウケナガコナダニ(Tyrophagus similis)等のコナダニ類、コナヒョウヒダニ(Dermatophagoides farinae)、ヤケヒョウヒダニ(Dermatophagoides ptrenyssnus)等のヒョウヒダニ類、ホソツメダニ(Cheyletus eruditus)、クワガタツメダニ(Cheyletus malaccensis)、ミナミツメダニ(Cheyletus moorei)等のツメダニ類、ワクモ類等。
Hemiptera: small brown planthopper (Laodelphax striatellus), brown planthopper (Nilaparvata lugens), planthoppers such as Sejirounka (Sogatella furcifera), green rice leafhopper (Nephotettix cincticeps), Taiwan green rice leafhopper (Nephotettix virescens), tea Roh green leafhopper (Empoasca onukii) such as Leafhoppers, cotton aphids (Aphis gossypii), peach aphids (Myzus persicae), radish aphids (Brevicorine brassicae), snowy aphids (Aphis spiraecola), tulip beetle aphids iphum euphorbiae), potato beetle aphid (Aulacorthum solani), wheat pea aphid (Rhopalosiphum padi), citrus aphid (Tomoptera citricidus), peach beetle (Homoptera) Stink bugs such as stink bugs (Riptortus clavetus), spider helicopter bugs (Leptocorina chinensis), bark beetles (Eysarcoris parvus), winged bugs (Haryomorpha mista) m), tobacco whitefly (Bemisia tabaci), silverleaf whitefly (Bemisia argentifolii), mandarin orange whitefly (Dialeurodes citri), whiteflies such as mandarin orange spiny whitefly (Aleurocanthus spiniferus), Acamar scale insects (Aonidiella aurantii), Sanho zero scale insects (Comstockaspis perniciosa ), Citrus snow scale (Unaspis citri), Ruby beetle (Ceroplastes rubens), Iceria purchasi, Fujino scale (Pranococcus kraunhiae), Pseudococcidae dura coccus longispinis), scale insects such as white peach scale (Pseudaulacaspis pentagona), tingidae class, psyllid, and the like.
Lepidoptera: rice stem borer (Chilo suppressalis), Sankameiga (Tryporyza incertulas), leaf roller (Cnaphalocrocis medinalis), Watanomeiga (Notarcha derogata), Indian meal moth (Plodia interpunctella), the European corn borer (Ostrinia furnacalis), high Madara Roh moth (Hellula undalis), Japanese medusa such as Shibata toga (Pediasia teterrellus), Spodoptera litura, Spodoptera exigua, Ayuyotoga (Pseudaletia sepata), Atoga assicae), Agrotis ipsilon, Tamanaginawaba (Prusia nigrisigna), Trichopulsia, Heliotis, Helicoberpa, etc. Leguminova glycinnivorella), Azusa yamashiga (Matsumuraeses azukivivora), Apple wolfberry (Adoxophyces orana moss), Adenophymata (Adoxophane). Fuscocuprenus, Cydia pomonella, and other genus of the genus Cypridaria, Eugenes of the genus Cyprus Species of the genus and other species, Suga such as Plutella xylostella, Cotton moth (Pectinophora gossypiella) Potato moth such as Phthorimaea operculella (Hyphantia, Hyphantriguri) nslucens), webbing clothes moth (Tineola bisselliella) Hirozukoga such as such.
Thysanoptera: western flower thrips (Frankliniella occidentalis), Minami thrips (Thrips parmi), yellow tea thrips (Scirtothrips dorsalis), green onion thrips (Thrips tabaci), Hirazuhanaazamiuma (Frankliniella intonsa) thrips Diptera pests such as: housefly (Musca domestica), Culex popiens pallens, Cattle fly (Tabanus trigonus), Onion fly (Hyremya antiquaes), Hyaneya plateaus (Hilemya platerais) omyza oryzae), rice Hime leafminer (Hydrellia griseola), Inekimoguribae (Chlorops oryzae), melon fly (Dacus cucurbitae), Mediterranean fruit fly (Ceratitis capitata), legume leafminer (Liriomyza trifolii), tomato leafminer, (Liriomyza sativae), the pea (Chromatomyia horticola) etc.
Coleoptera: beetle, Epilachna vigintioctopunctata (Epilachna vigintioctopunctata), cucurbit leaf beetle (Aulacophora femoralis), Kisujinomihamushi (Phyllotreta striolata), Inedorooimushi (Oulema oryzae), rice weevil (Echinocnemus squameus), rice water weevil (Lissorhoptrus oryzophilus), boll weevil (Anthonomus grandis), Azuki beetle (Callosobruchus chinensis), Shibahorusu weevil (Sphenophorus venatus), Japanese beetle (Popilia japonica), Douganebububu (Anomala cupre) ), Corn rootworm mate (Diabrotica spp.), Colorado potato beetle (Leptinotarsa decemlineata), beetle beetle (Agriotes spp.), Tobacco beetle (Lasiderma serricorne), reverb worm Oyster beetle (Lyctus bruneus), Japanese beetle beetle (Anoprophora malasiaca), pine beetle (Tomicus pinipeda) and the like.
Direct insect pests: Tocusama grasshopper (Locusta migratoria), Kera (Gryllotalpa africana), Oxya yezoensis, Oyana japonica, etc.
Hymenopteran pests: Athalia rosae, Achillyrmex spp., Fire ant (Solenopsis spp.) And the like.
Cockroach pests: German cockroaches (Blatella germanica), Black cockroaches (Periplaneta furiginosa), American cockroaches (Periplaneta americana), Japanese cockroaches (Peripraneta brunet)
Mite order pests: Taninychus urticae, Kantawa spider mite (Tetranychus kanzawai), citrus spider mite (Panonychus citri), mite spider mite (Pananycos ulmi), spider mite pistula mite (Panthonychus urmi), spider mite pistula mite (Panthonychus urmi), spider mite pistula mite (Panthonychus urmi); Tomato rustic mites (Aculops lycopersici), Chanosabi mites (Calacarus carinatus), Chanoagasabi mite (Acaphylla theavagrans), Phytophorid mites (Eriophys chibaensis), etc. dust mites such as nemus latus, spider mites such as Brevipalpus phoenicis, spider mite, tick mite (Haemphysalis longicornis), mites Tick such as ticks (Ixodes persulcatus), bull ticks (Boophilus microplus), Rhipicephalus sanguineus, Typhophagus urticae (Tyrophagus pudensent) ophagus similis) grain mites such as, farinae (Dermatophagoides farinae), house dust mite such as pteronyssinus (Dermatophagoides ptrenyssnus), Hosotsumedani (Cheyletus eruditus), Stag Tsumedani (Cheyletus malaccensis), Tsumedani such as Minami Tsumedani (Cheyletus moorei), chicken mites such etc.
本発明の有害節足動物防除剤は、本発明化合物そのものでもよいが、通常は、本発明化合物と固体担体、液体担体、ガス状担体等の不活性担体とを混合し、必要に応じて、界面活性剤、その他の製剤用補助剤を添加して、乳剤、油剤、粉剤、粒剤、水和剤、フロアブル剤、マイクロカプセル剤、エアゾール剤、燻煙剤、毒餌剤、樹脂製剤等に製剤化されている。これらの製剤は、本発明化合物を、通常、0.01~95重量%含有する。 The harmful arthropod control agent of the present invention may be the compound of the present invention itself, but usually the compound of the present invention and an inert carrier such as a solid carrier, a liquid carrier, a gaseous carrier, etc. are mixed, if necessary, Add surfactants and other formulation adjuvants to prepare emulsions, oils, powders, granules, wettable powders, flowables, microcapsules, aerosols, smokers, poison baits, resin formulations, etc. It has become. These preparations usually contain 0.01 to 95% by weight of the compound of the present invention.
 製剤化の際に用いられる固体担体としては、例えば、粘土類(カオリンクレー、珪藻土、ベントナイト、フバサミクレー、酸性白土等)、合成含水酸化珪素、タルク、セラミック、その他の無機鉱物(セリサイト、石英、硫黄、活性炭、炭酸カルシウム、水和シリカ等)、化学肥料(硫安、燐安、硝安、尿素、塩安等)等の微粉末および粒状物等があげられる。液体担体としては、例えば、水、アルコール類(メタノール、エタノール、イソプロピルアルコール、ブタノール、ヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、フェノキシエタノール等)、ケトン類(アセトン、メチルエチルケトン、シクロヘキサノン等)、芳香族炭化水素類(トルエン、キシレン、エチルベンゼン、ドデシルベンゼン、フェニルキシリルエタン、メチルナフタレン等)、脂肪族炭化水素類(ヘキサン、シクロヘキサン、灯油、軽油等)、エステル類(酢酸エチル、酢酸ブチル、ミリスチン酸イソプロピル、オレイン酸エチル、アジピン酸ジイソプロピル、アジピン酸ジイソブチル、プロピレングリコールモノメチルエーテルアセテート等)、ニトリル類(アセトニトリル、イソブチロニトリル等)、エーテル類(ジイソプロピルエーテル、1,4−ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、3−メトキシ−3−メチル−1−ブタノール等)、酸アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、ハロゲン化炭化水素類(ジクロロメタン、トリクロロエタン、四塩化炭素等)、スルホキシド類(ジメチルスルホキシド等)、炭酸プロピレンおよび植物油(大豆油、綿実油等)が挙げられる。
 ガス状担体としては、例えば、フルオロカーボン、ブタンガス、LPG(液化石油ガス)、ジメチルエーテルおよび炭酸ガスがあげられる。
 界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリエチレングリコール脂肪酸エステル、等の非イオン界面活性剤、およびアルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸塩当の陰イオン界面活性剤が挙げられる。
 その他の製剤用補助剤としては、固着剤、分散剤、着色剤および安定剤等、具体的には例えば、カゼイン、ゼラチン、糖類(でんぷん、アラビアガム、セルロース誘導体、アルギン酸等)、リグニン誘導体、ベントナイト、合成水溶性高分子(ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸類等)、PAP(酸性りん酸イソプロピル)、BHT(2,6−ジ−tert−ブチル−4−メチルフェノール)、BHA(2−tert−ブチル−4−メトキシフェノールと3−tert−ブチル−4−メトキシフェノールとの混合物)が挙げられる。
Examples of the solid carrier used for formulation include clays (kaolin clay, diatomaceous earth, bentonite, fusami clay, acidic clay), synthetic hydrous silicon oxide, talc, ceramic, and other inorganic minerals (sericite, quartz, Sulfur, activated carbon, calcium carbonate, hydrated silica, etc.), fine fertilizers such as chemical fertilizers (ammonium sulfate, phosphorous acid, ammonium nitrate, urea, ammonium chloride, etc.) and granular materials. Examples of the liquid carrier include water, alcohols (methanol, ethanol, isopropyl alcohol, butanol, hexanol, benzyl alcohol, ethylene glycol, propylene glycol, phenoxyethanol, etc.), ketones (acetone, methyl ethyl ketone, cyclohexanone, etc.), and aromatic carbonization. Hydrogen (toluene, xylene, ethylbenzene, dodecylbenzene, phenylxylylethane, methylnaphthalene, etc.), aliphatic hydrocarbons (hexane, cyclohexane, kerosene, light oil, etc.), esters (ethyl acetate, butyl acetate, isopropyl myristate) , Ethyl oleate, diisopropyl adipate, diisobutyl adipate, propylene glycol monomethyl ether acetate, etc.), nitriles (acetonitrile, isobutyrate) Nitriles), ethers (diisopropyl ether, 1,4-dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, 3-methoxy-3-methyl-1-butanol, etc. ), Acid amides (N, N-dimethylformamide, N, N-dimethylacetamide, etc.), halogenated hydrocarbons (dichloromethane, trichloroethane, carbon tetrachloride, etc.), sulfoxides (dimethylsulfoxide, etc.), propylene carbonate and vegetable oil (Soybean oil, cottonseed oil, etc.).
Examples of the gaseous carrier include fluorocarbon, butane gas, LPG (liquefied petroleum gas), dimethyl ether, and carbon dioxide gas.
Examples of the surfactant include nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyethylene glycol fatty acid ester, and the like, alkyl sulfonate, alkyl benzene sulfonate, and alkyl sulfate. Anionic surfactants may be mentioned.
Other adjuvants for preparation include sticking agents, dispersants, colorants and stabilizers, such as casein, gelatin, saccharides (starch, gum arabic, cellulose derivatives, alginic acid, etc.), lignin derivatives, bentonite. , Synthetic water-soluble polymers (polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acids, etc.), PAP (isopropyl acid phosphate), BHT (2,6-di-tert-butyl-4-methylphenol), BHA (2-tert -Mixture of butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol).
本発明の有害節足動物防除方法は、通常、本発明の有害節足動物防除剤を有害節足動物に直接または有害節足動物の生息場所(植物体、土壌、家屋内、動物体等)に施用することにより行われる。 The method for controlling harmful arthropods of the present invention usually involves the harmful arthropod control agent of the present invention directly on the harmful arthropods or the place where the harmful arthropods live (plants, soil, indoors, animals, etc.) It is done by applying to.
また、本発明の有害節足動物防除方法は、本発明化合物をそのまま用いることもできるが、通常は、本発明化合物を前記した本発明の有害節足動物防除剤の形態に製剤化して、例えば、有害節足動物または有害節足動物の生息場所に従来の有害節足動物防除剤と同様の方法で施用し、発生する上記の有害節足動物に接触或いは摂取させる方法が挙げられる。
 本発明における有害節足動物の生息場所としては、水田、畑、果樹園、非農耕地、家屋等が挙げられる。
 かかる施用方法としては、例えば、散布処理、土壌処理、種子処理および水耕液処理が挙げられる。
 本発明における散布処理とは、具体的には、例えば、茎葉散布、樹幹散布等の植物体表面あるいは有害節足動物自体に、有効成分(本発明化合物)を処理することにより、有害節足動物に対する防除効力を発現する処理方法であり、
 土壌処理とは、例えば、有害節足動物による摂食等の被害から保護しようとする作物の植物体内部に根部等から浸透移行させるために、土壌あるいは灌水液等に有効成分を処理することにより、該作物を有害節足動物による被害から保護する処理方法であり、具体的には、例えば、植穴処理(植穴散布、植穴処理土壌混和)、株元処理(株元散布、株元土壌混和、株元灌注、育苗期後半株元処理)、植溝処理(植溝散布、植溝土壌混和)、作条処理(作条散布、作条土壌混和、生育期作条散布)、播種時作条処理(播種時作条散布、播種時作条土壌混和)、全面処理(全面土壌散布、全面土壌混和)、その他土壌散布処理(生育期粒剤葉面散布、樹冠下または主幹周辺散布、土壌表面散布、土壌表面混和、播穴散布、畦部地表面散布、株間散布)、その他灌注処理(土壌灌注、育苗期灌注、薬液注入処理、地際部灌注、薬液ドリップイリゲーション、ケミゲーション)、育苗箱処理(育苗箱散布、育苗箱灌注)、育苗トレイ処理(育苗トレイ散布、育苗トレイ灌注)、苗床処理(苗床散布、苗床灌注、水苗代苗床散布、苗浸漬)、床土混和処理(床土混和、播種前床土混和)、その他処理(培土混和、鋤き込み、表土混和、雨落ち部土壌混和、植位置処理、粒剤花房散布、ペースト肥料混和)が挙げられ、
 種子処理とは、例えば、有害節足動物による摂食等の被害から保護しようとする作物の種子、種芋または球根等に直接あるいはその近傍に有効成分を処理することにより、有害節足動物に対する防除効力を発現する処理方法であり、具体的には、例えば、吹きつけ処理、塗沫処理、浸漬処理、含浸処理、塗布処理、フィルムコート処理、ペレットコート処理が挙げられ、
 水耕液処理とは、例えば、有害節足動物による摂食等の被害から保護しようとする作物の植物体内部に根部等から浸透移行させるために水耕液等に有効成分を処理することにより、該作物を有害節足動物による被害から保護する処理方法であり、具体的には、例えば、水耕液混和、水耕液混入などが挙げられる。
In addition, although the compound of the present invention can be used as it is in the method for controlling harmful arthropods of the present invention, the compound of the present invention is usually formulated in the form of the above-mentioned harmful arthropod control agent of the present invention, for example, The method may be applied to harmful arthropods or habitats of harmful arthropods in the same manner as conventional harmful arthropod control agents, and the above-mentioned harmful arthropods are brought into contact with or ingested.
Examples of habitats for harmful arthropods in the present invention include paddy fields, fields, orchards, non-agricultural land, and houses.
Examples of such application methods include spraying treatment, soil treatment, seed treatment, and hydroponic liquid treatment.
The spraying treatment in the present invention specifically refers to, for example, a harmful arthropod by treating an active ingredient (the compound of the present invention) on the surface of the plant body such as foliage spraying, trunk spraying, etc. or the harmful arthropod itself. Is a treatment method that exerts control efficacy against
Soil treatment is, for example, by treating the active ingredient with soil or irrigation liquid to infiltrate and transfer from the roots to the inside of the plant body of the crop to be protected from damage such as feeding by harmful arthropods. , A treatment method for protecting the crop from damage caused by harmful arthropods. Specifically, for example, planting treatment (planting hole spraying, planting hole treatment soil mixing), plant source treatment (stock source spraying, strain source) Soil admixture, strainer irrigation, seedling treatment in the latter half of the seedling season), grooving treatment (spreading grooving, mixing grooving soil), cropping treatment (spreading, sprinkling soil mixing, sprinkling of growing season), sowing Temporary cropping treatment (spraying at the time of sowing, mixing with soil at the time of sowing), full treatment (spreading the entire soil, mixing with the whole soil), other soil spraying treatment (spreading the growing leaves in the growing season, spraying under the crown or around the trunk) , Soil surface spraying, soil surface mixing, sowing hole spraying, buttocks land surface spraying, inter-strain dispersion ), Other irrigation treatments (soil irrigation, seedling stage irrigation, chemical solution injection treatment, subsurface irrigation, chemical drip irrigation, chemigation), nursery box treatment (nursery box spraying, seedling box irrigation), seedling tray treatment (nursery tray spraying) , Nursery tray irrigation), nursery treatment (seed bed spraying, nursery bed irrigation, water seedling surrogate seedbed spraying, seedling soaking), bed soil blending treatment (floor soil blending, floor soil blending before sowing), other treatments (culture soil blending, seeding, Topsoil blending, raindrops soil blending, planting position treatment, granule inflorescence spraying, paste fertilizer blending)
Seed treatment is, for example, control of harmful arthropods by treating the active ingredients directly or in the vicinity of seeds, seed pods or bulbs of crops to be protected from damage such as feeding by harmful arthropods. It is a treatment method that expresses efficacy, and specifically includes, for example, spraying treatment, smearing treatment, dipping treatment, impregnation treatment, coating treatment, film coating treatment, pellet coating treatment,
Hydroponic liquid treatment is, for example, by treating active ingredients in hydroponic liquid etc. in order to infiltrate and transfer from inside the plant body of crops to be protected from damage such as feeding by harmful arthropods The treatment method protects the crop from damage caused by harmful arthropods. Specific examples include hydroponic liquid mixing and hydroponic liquid mixing.
本発明の有害節足動物防除剤を農業分野の有害節足動物防除に用いる場合、その施用量は10000mあたりの本発明化合物量で、通常、1~10000gである。本発明の有害節足動物防除剤が乳剤、水和剤、フロアブル剤等に製剤化されている場合は、通常、有効成分濃度が0.01~10000ppmとなるように水で希釈して施用し、粒剤、粉剤等は、通常、そのまま施用する。
これらの製剤や製剤の水希釈液は、有害節足動物または有害節足動物から保護すべき作物等の植物に直接散布処理してもよく、また耕作地の土壌に生息する有害節足動物を防除するために、該土壌に処理してもよい。
また、シート状やひも状に加工した樹脂製剤を作物に巻き付ける、作物近傍に張り渡す、株元土壌に敷く等の方法により処理することもできる。
When the harmful arthropod control agent of the present invention is used for controlling harmful arthropods in the agricultural field, the application amount is the amount of the compound of the present invention per 10,000 m 2 and is usually 1 to 10,000 g. When the harmful arthropod control agent of the present invention is formulated into an emulsion, a wettable powder, a flowable agent, etc., it is usually applied by diluting with water so that the active ingredient concentration becomes 0.01 to 10,000 ppm. Granules, powders and the like are usually applied as they are.
These preparations and water dilutions of these preparations may be applied directly to harmful arthropods or plants such as crops that should be protected from harmful arthropods, and harmful arthropods that inhabit cultivated land soil You may treat to this soil in order to control.
Moreover, it can also process by the method of wrapping the resin formulation processed into the sheet form or the string form around the crop, stretching over the crop vicinity, and laying on the stock soil.
本発明の有害節足動物防除剤を家屋内に生息する有害節足動物(例えば、ハエ、蚊、ゴキブリ)の防除に用いる場合、その施用量は、面上に処理する場合は処理面積1mあたりの本発明化合物量で、通常、0.01~1000mgであり、空間に処理する場合は処理空間1mあたりの本発明化合物量で、通常、0.01~500mgである。本発明の有害節足動物防除剤が乳剤、水和剤、フロアブル剤等に製剤化されている場合は、通常有効成分濃度が0.1~1000ppmとなるように水で希釈して施用し、油剤、エアゾール剤、燻煙剤、毒餌剤等はそのまま施用する。 When the harmful arthropod control agent of the present invention is used for controlling harmful arthropods (eg, flies, mosquitoes, cockroaches) living in the house, the application amount is 1 m 2 when treated on the surface. The amount of the compound of the present invention per unit is usually 0.01 to 1000 mg, and when processing in a space, the amount of the compound of the present invention per 1 m 3 of the processing space is usually 0.01 to 500 mg. When the harmful arthropod control agent of the present invention is formulated into an emulsion, wettable powder, flowable agent, etc., it is usually diluted with water so that the active ingredient concentration is 0.1 to 1000 ppm, and applied. Apply oils, aerosols, smoke, poison baits, etc. as they are.
 本発明化合物は、畑、水田、芝生、果樹園等の農耕地又は非農耕地用の殺虫剤として使用することができる。本発明化合物は、以下に挙げられる「作物」等を栽培する農耕地等において、該作物等に対して薬害を与えることなく、当該農耕地の害虫を防除することができる場合がある。
 農作物;トウモロコシ、イネ、コムギ、オオムギ、ライムギ、エンバク、ソルガム、ワタ、ダイズ、ピーナッツ、ソバ、テンサイ、ナタネ、ヒマワリ、サトウキビ、タバコ等、
 野菜;ナス科野菜(ナス、トマト、ピーマン、トウガラシ、ジャガイモ等)、ウリ科野菜(キュウリ、カボチャ、ズッキーニ、スイカ、メロン等)、アブラナ科野菜(ダイコン、カブ、セイヨウワサビ、コールラビ、ハクサイ、キャベツ、カラシナ、ブロッコリー、カリフラワー等)、キク科野菜(ゴボウ、シュンギク、アーティチョーク、レタス等)、ユリ科野菜(ネギ、タマネギ、ニンニク、アスパラガス)、セリ科野菜(ニンジン、パセリ、セロリ、アメリカボウフウ等)、アカザ科野菜(ホウレンソウ、フダンソウ等)、シソ科野菜(シソ、ミント、バジル等)、イチゴ、サツマイモ、ヤマノイモ、サトイモ等、
 花卉、
 観葉植物、
 果樹;仁果類(リンゴ、セイヨウナシ、ニホンナシ、カリン、マルメロ等)、核果類(モモ、スモモ、ネクタリン、ウメ、オウトウ、アンズ、プルーン等)、カンキツ類(ウンシュウミカン、オレンジ、レモン、ライム、グレープフルーツ等)、堅果類(クリ、クルミ、ハシバミ、アーモンド、ピスタチオ、カシューナッツ、マカダミアナッツ等)、液果類(ブルーベリー、クランベリー、ブラックベリー、ラズベリー等)、ブドウ、カキ、オリーブ、ビワ、バナナ、コーヒー、ナツメヤシ、ココヤシ等、
 果樹以外の樹;チャ、クワ、花木、街路樹(トネリコ、カバノキ、ハナミズキ、ユーカリ、イチョウ、ライラック、カエデ、カシ、ポプラ、ハナズオウ、フウ、プラタナス、ケヤキ、クロベ、モミノキ、ツガ、ネズ、マツ、トウヒ、イチイ)等。
The compound of the present invention can be used as an insecticide for agricultural land such as fields, paddy fields, lawns, orchards, or non-agricultural land. The compound of the present invention may be able to control pests on the farmland without causing any phytotoxicity on the farmland or the like where the following “crop” or the like is cultivated.
Agricultural crops: corn, rice, wheat, barley, rye, oat, sorghum, cotton, soybean, peanut, buckwheat, sugar beet, rapeseed, sunflower, sugarcane, tobacco, etc.
Vegetables: Solanum vegetables (eggplants, tomatoes, peppers, peppers, potatoes, etc.), Cucurbitaceae vegetables (cucumbers, pumpkins, zucchini, watermelons, melons, etc.), Brassicaceae vegetables (radish, turnip, horseradish, kohlrabi, Chinese cabbage, cabbage) , Mustard, broccoli, cauliflower, etc.), asteraceae vegetables (burdock, shungiku, artichokes, lettuce, etc.), liliaceae vegetables (leek, onion, garlic, asparagus), celery family vegetables (carrot, parsley, celery, American scallop, etc.) ), Red crustacean vegetables (spinach, chard, etc.), persimmon vegetables (perilla, mint, basil, etc.), strawberry, sweet potato, yam, taro, etc.
Bridegroom,
Foliage plant,
Fruit trees; pears (apples, pears, Japanese pears, quince, quince, etc.), nuclear fruits (peaches, plums, nectarines, ume, sweet cherry, apricots, prunes, etc.), citrus (satsuma mandarin, orange, lemon, lime, grapefruit) ), Nuts (chestnut, walnut, hazel, almond, pistachio, cashew nut, macadamia nut, etc.), berries (blueberry, cranberry, blackberry, raspberry, etc.), grape, oyster, olive, loquat, banana, coffee, Date palm, coconut palm, etc.
Trees other than fruit trees: Cha, mulberry, flowering trees, street trees (ash, birch, dogwood, eucalyptus, ginkgo, lilac, maple, oak, poplar, redwood, fu, sycamore, zelkova, black bean, peach tree, Tsuga, rat, pine, Spruce, yew) etc.
上記「作物」には、イソキサフルトール等のHPPD阻害剤、イマゼタピル、チフェンスルフロンメチル等のALS阻害剤、EPSP合成酵素阻害剤、グルタミン合成酵素阻害剤、ブロモキシニル等の除草剤に対する耐性を古典的な育種法、もしくは遺伝子組換え技術により付与された作物も含まれる。
 古典的な育種法により耐性を付与された「作物」の例として、イマゼタピル等のイミダゾリノン系除草剤に耐性のClearfield(登録商標)カノーラ、チフェンスルフロンメチル等のスルホニルウレア系ALS阻害型除草剤に耐性のSTSダイズ等がある。遺伝子組換え技術により耐性を付与された作物の例として、グリホサートやグルホシーネートに耐性のトウモロコシ品種があり、RoundupReady(登録商標)およびLibertyLink(登録商標)等の商品名ですでに販売されている。
 上記「作物」には、遺伝子組換え技術を用いて、例えば、バチルス属で知られている選択的毒素等を合成する事が可能となった作物も含まれる。
 この様な遺伝子組換え植物で発現される毒素として、バチルス・セレウスやバチルス・ポピリエ由来の殺虫性タンパク;バチルス・チューリンゲンシス由来のCry1Ab、Cry1Ac、Cry1F、Cry1Fa2、Cry2Ab、Cry3A、Cry3Bb1またはCry9C等のδ−エンドトキシン、VIP1、VIP2、VIP3またはVIP3A等の殺虫タンパク;線虫由来の殺虫タンパク;さそり毒素、クモ毒素、ハチ毒素または昆虫特異的神経毒素等動物によって産生される毒素;糸条菌類毒素;植物レクチン;アグルチニン;トリプシン阻害剤、セリンプロテアーゼ阻害剤、パタチン、シスタチン、パパイン阻害剤等のプロテアーゼ阻害剤;リシン、トウモロコシ−RIP、アブリン、ルフィン、サポリン、ブリオジン等のリボゾーム不活性化タンパク(RIP);3−ヒドロキシステロイドオキシダーゼ、エクジステロイド−UDP−グルコシルトランスフェラーゼ、コレステロールオキシダーゼ等のステロイド代謝酵素;エクダイソン阻害剤;HMG−COAリダクターゼ;ナトリウムチャネル、カルシウムチャネル阻害剤等のイオンチャネル阻害剤;幼若ホルモンエステラーゼ;利尿ホルモン受容体;スチルベンシンターゼ;ビベンジルシンターゼ;キチナーゼ;グルカナーゼ等が挙げられる。
 またこの様な遺伝子組換え作物で発現される毒素として、Cry1Ab、Cry1Ac、Cry1F、Cry1Fa2、Cry2Ab、Cry3A、Cry3Bb1またはCry9C等のδ−エンドトキシンタンパク、VIP1、VIP2、VIP3またはVIP3A等の殺虫タンパクのハイブリッド毒素、一部を欠損した毒素、修飾された毒素も含まれる。ハイブリッド毒素は組換え技術を用いて、これらタンパクの異なるドメインの新しい組み合わせによって作り出される。一部を欠損した毒素としては、アミノ酸配列の一部を欠損したCry1Abが知られている。修飾された毒素としては、天然型の毒素のアミノ酸の1つまたは複数が置換されている。
 これら毒素の例およびこれら毒素を合成する事ができる組換え植物は、EP−A−0 374 753、WO 93/07278、WO 95/34656、EP−A−0 427 529、EP−A−451 878、WO 03/052073等に記載されている。
 これらの組換え植物に含まれる毒素は、特に、甲虫目害虫、双翅目害虫、鱗翅目害虫への耐性を植物へ付与する。
 また、1つもしくは複数の殺虫性の害虫抵抗性遺伝子を含み、1つまたは複数の毒素を発現する遺伝子組換え植物は既に知られており、いくつかのものは市販されている。これら遺伝子組換え植物の例として、YieldGard(登録商標)(Cry1Ab毒素を発現するトウモロコシ品種)、YieldGard Rootworm(登録商標)(Cry3Bb1毒素を発現するトウモロコシ品種)、YieldGard Plus(登録商標)(Cry1AbとCry3Bb1毒素を発現するトウモロコシ品種)、Herculex I(登録商標)(Cry1Fa2毒素とグルホシネートへの耐性を付与する為にホスフィノトリシンN−アサチルトランスフェラーゼ(PAT)を発現するトウモロコシ品種)、NuCOTN33B(登録商標)(Cry1Ac毒素を発現するワタ品種)、Bollgard I(登録商標)(Cry1Ac毒素を発現するワタ品種)、Bollgard II(登録商標)(Cry1AcとCry2Ab毒素とを発現するワタ品種)、VIPCOT(登録商標)(VIP毒素を発現するワタ品種)、NewLeaf(登録商標)(Cry3A毒素を発現するジャガイモ品種)、NatureGard(登録商標)Agrisure(登録商標)GT Advantage(GA21グリホサート耐性形質)、Agrisure(登録商標)CB Advantage(Bt11コーンボーラー(CB)形質)、Protecta(登録商標)等が挙げられる。
 上記「作物」には、遺伝子組換え技術を用いて、選択的な作用を有する抗病原性物質を産生する能力を付与されたものも含まれる。
 抗病原性物質の例として、PRタンパク等が知られている(PRPs、EP−A−0 392 225)。このような抗病原性物質とそれを産生する遺伝子組換え植物は、EP−A−0 392 225、WO95/33818、EP−A−0 353 191等に記載されている。
 こうした遺伝子組換え植物で発現される抗病原性物質の例として、例えば、ナトリウムチャネル阻害剤、カルシウムチャネル阻害剤(ウイルスが産生するKP1、KP4、KP6毒素等が知られている。)等のイオンチャネル阻害剤;スチルベンシンターゼ;ビベンジルシンターゼ;キチナーゼ;グルカナーゼ;PRタンパク;ペプチド抗生物質、ヘテロ環を有する抗生物質、植物病害抵抗性に関与するタンパク因子(植物病害抵抗性遺伝子と呼ばれ、WO03/000906に記載されている。)等の微生物が産生する抗病原性物質等が挙げられる。
The above "crop" has classic resistance to HPPD inhibitors such as isoxaflutol, ALS inhibitors such as imazetapyr and thifensulfuron methyl, EPSP synthase inhibitors, glutamine synthase inhibitors, and herbicides such as bromoxynil. Also included are crops granted by traditional breeding methods or genetic engineering techniques.
Examples of “crop” tolerated by classical breeding methods include Clearfield® canola that is resistant to imidazolinone herbicides such as imazetapil, and sulfonylurea ALS-inhibiting herbicides such as thifensulfuron methyl For example, resistant STS soybeans. Examples of crops that have been rendered tolerant by genetic engineering techniques include corn varieties that are resistant to glyphosate and glufosinate, and are already sold under trade names such as RoundupReady (registered trademark) and LibertyLink (registered trademark) .
The “crop” includes, for example, crops that can synthesize selective toxins known in the genus Bacillus using genetic recombination technology.
Examples of toxins expressed in such genetically modified plants include insecticidal proteins derived from Bacillus cereus and Bacillus popilie; Insecticidal proteins such as δ-endotoxin, VIP1, VIP2, VIP3 or VIP3A; nematode-derived insecticidal proteins; toxins produced by animals such as scorpion toxin, spider toxin, bee toxin or insect-specific neurotoxin; Plant lectin; agglutinin; protease inhibitors such as trypsin inhibitor, serine protease inhibitor, patatin, cystatin, papain inhibitor; lysine, corn-RIP, abrin, ruffin, saporin, briodin, etc. Ribosome inactivating protein (RIP); steroid metabolic enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-UDP-glucosyltransferase, cholesterol oxidase; ecdysone inhibitor; HMG-COA reductase; sodium channel, calcium channel inhibitor, etc. Ion channel inhibitor; juvenile hormone esterase; diuretic hormone receptor; stilbene synthase; bibenzyl synthase; chitinase; glucanase and the like.
In addition, as toxins expressed in such genetically modified crops, hybrids of insecticidal proteins such as Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, δ-endotoxin proteins, VIP1, VIP2, VIP3 or VIP3A Toxins, partially defective toxins, modified toxins are also included. Hybrid toxins are produced by new combinations of different domains of these proteins using recombinant techniques. As a toxin lacking a part, Cry1Ab lacking a part of the amino acid sequence is known. In the modified toxin, one or more amino acids of the natural toxin are substituted.
Examples of these toxins and recombinant plants capable of synthesizing these toxins are EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878. , WO 03/052073, and the like.
The toxins contained in these recombinant plants particularly confer resistance to Coleoptera pests, Diptera pests, and Lepidoptera pests.
In addition, genetically modified plants that contain one or more insecticidal pest resistance genes and express one or more toxins are already known and some are commercially available. Examples of these transgenic plants include YieldGard® (a corn variety that expresses Cry1Ab toxin), YieldGuard Rootworm® (a corn variety that expresses Cry3Bb1 toxin), YieldGard Plus® (Cry1Ab and Cry3Bb1) Corn varieties expressing toxin), Herculex I® (corn varieties expressing phosphinotricin N-astilyltransferase (PAT) to confer resistance to Cry1Fa2 toxin and glufosinate), NuCOTN33B® (Cotton variety expressing Cry1Ac toxin), Bollgard I (registered trademark) (cotton variety expressing Cry1Ac toxin), Bollgard II (registered trademark) (C Cotton varieties expressing y1Ac and Cry2Ab toxin), VIPCOT (registered trademark) (cotton varieties expressing VIP toxin), NewLeaf (registered trademark) (potato variety expressing Cry3A toxin), NatureGard (registered trademark) Agurisure (registered trademark) (Trademark) GT Advantage (GA21 glyphosate resistant trait), Agurisure (registered trademark) CB Advantage (Bt11 corn borer (CB) trait), Protecta (registered trademark), and the like.
The “crop” includes those given the ability to produce an anti-pathogenic substance having a selective action using a genetic recombination technique.
PR proteins and the like are known as examples of anti-pathogenic substances (PRPs, EP-A-0 392 225). Such anti-pathogenic substances and genetically modified plants that produce them are described in EP-A-0 392 225, WO 95/33818, EP-A-0 353 191 and the like.
Examples of anti-pathogenic substances expressed in such genetically modified plants include, for example, sodium channel inhibitors, calcium channel inhibitors (KP1, KP4, KP6 toxins produced by viruses, etc.). Ion channel inhibitor; stilbene synthase; bibenzyl synthase; chitinase; glucanase; PR protein; peptide antibiotics, antibiotics having heterocycles, protein factors involved in plant disease resistance (referred to as plant disease resistance gene, WO03 / 000906)) and other anti-pathogenic substances produced by microorganisms.
本発明の有害節足動物防除剤には、他の有害節足動物防除剤、殺ダニ剤、殺線虫剤、殺菌剤、除草剤、植物生長調節剤、共力剤、肥料、土壌改良剤、動物用飼料等を含有していてもよい。
 また、本発明化合物と、例えば、他種の殺虫剤、殺ダニ剤、殺線虫剤または殺菌剤、植物ホルモン剤、植物成長調節物質、除草剤等の有害節足動物防除剤等(異性体およびその塩を含む)あるいは、共力剤、薬害軽減剤、色素、肥料等とを配合し、適宜混合製剤を作製して、散布処理、土壌処理および水耕液処理に使用することも可能である。
The harmful arthropod control agent of the present invention includes other harmful arthropod control agents, acaricides, nematicides, fungicides, herbicides, plant growth regulators, synergists, fertilizers, soil improvers. It may contain animal feed or the like.
Further, the compound of the present invention and harmful arthropod control agents such as other types of insecticides, acaricides, nematicides or fungicides, plant hormone agents, plant growth regulators, herbicides, etc. (isomers) It is also possible to mix synergists, safeners, pigments, fertilizers, etc., and prepare mixed preparations as appropriate, and use them for spraying treatment, soil treatment and hydroponic liquid treatment. is there.
上記の他の有害節足動物防除剤、殺ダニ剤および/または殺線虫剤の有効成分としては、例えば、以下のものが挙げられる。 Examples of the active ingredients of the other harmful arthropod control agents, acaricides and / or nematicides include the following.
(1)有機リン系化合物
 アセフェート(acephate)、りん化アルミニウム(Aluminium phosphide)、ブタチオホス(butathiofos)、キャドサホス(cadusafos)、クロルエトキシホス(chlorethoxyfos)、クロルフェンビンホス(chlorfenvinphos)、クロルピリホス(chlorpyrifos)、クロルピリホスメチル(chlorpyrifos−methyl)、シアノホス(cyanophos:CYAP)、ダイアジノン(diazinon)、DCIP(dichlorodiisopropyl ether)、ジクロフェンチオン(dichlofenthion:ECP)、ジクロルボス(dichlorvos:DDVP)、ジメトエート(dimethoate)、ジメチルビンホス(dimethylvinphos)、ジスルホトン(disulfoton)、EPN、エチオン(ethion)、エトプロホス(ethoprophos)、エトリムホス(etrimfos)、フェンチオン(fenthion:MPP)、フェニトロチオン(fenitrothion:MEP)、ホスチアゼート(fosthiazate)、ホルモチオン(formothion)、りん化水素(Hydrogen phosphide)、イソフェンホス(isofenphos)、イソキサチオン(isoxathion)、マラチオン(malathion)、メスルフェンホス(mesulfenfos)、メチダチオン(methidathion:DMTP)、モノクロトホス(monocrotophos)、ナレッド(naled:BRP)、オキシデプロホス(oxydeprofos:ESP)、パラチオン(parathion)、ホサロン(phosalone)、ホスメット(phosmet:PMP)、ピリミホスメチル(pirimiphos−methyl)、ピリダフェンチオン(pyridafenthion)、キナルホス(quinalphos)、フェントエート(phenthoate:PAP)、プロフェノホス(profenofos)、プロパホス(propaphos)、プロチオホス(prothiofos)、ピラクロホス(pyraclorfos)、サリチオン(salithion)、スルプロホス(sulprofos)、テブピリムホス(tebupirimfos)、テメホス(temephos)、テトラクロルビンホス(tetrachlorvinphos)、テルブホス(terbufos)、チオメトン(thiometon)、トリクロルホン(trichlorphon:DEP)、バミドチオン(vamidothion)等、
(2)カーバメート系化合物
 アラニカルブ(alanycarb)、ベンダイオカルブ(bendiocarb)、ベンフラカルブ(benfuracarb)、BPMC、カルバリル(carbaryl)、カルボフラン(carbofuran)、カルボスルファン(carbosulfan)、クロエトカルブ(cloethocarb)、エチオフェンカルブ(ethiofencarb)、フェノブカルブ(fenobucarb)、フェノチオカルブ(fenothiocarb)、フェノキシカルブ(fenoxycarb)、フラチオカルブ(furathiocarb)、イソプロカルブ(isoprocarb:MIPC)、メトルカルブ(metolcarb)、メソミル(methomyl)、メチオカルブ(methiocarb)、NAC、オキサミル(oxamyl)、ピリミカーブ(pirimicarb)、プロポキスル(propoxur:PHC)、XMC、チオジカルブ(thiodicarb)、キシリルカルブ(xylylcarb)等、
(3)合成ピレスロイド系化合物
 アクリナトリン(acrinathrin)、アレスリン(allethrin)、ベンフルスリン(benfluthrin)、ベータ−シフルトリン(beta−cyfluthrin)、ビフェントリン(bifenthrin)、シクロプロトリン(cycloprothrin)、シフルトリン(cyfluthrin)、シハロトリン(cyhalothrin)、シペルメトリン(cypermethrin)、デルタメトリン(deltamethrin)、エスフェンバレレート(esfenvalerate)、エトフェンプロックス(ethofenprox)、フェンプロパトリン(fenpropathrin)、フェンバレレート(fenvalerate)、フルシトリネート(flucythrinate)、フルフェンプロックス(flufenoprox)、フルメスリン(flumethrin)、フルバリネート(fluvalinate)、ハルフェンプロックス(halfenprox)、イミプロトリン(imiprothrin)、ペルメトリン(permethrin)、プラレトリン(prallethrin)、ピレトリン(pyrethrins)、レスメトリン(resmethrin)、シグマ−サイパーメスリン(sigma−cypermethrin)、シラフルオフェン(silafluofen)、テフルトリン(tefluthrin)、トラロメトリン(tralomethrin)、トランスフルトリン(transfluthrin)、2,3,5,6−テトラフルオロ−4−(メトキシメチル)ベンジル(EZ)−(1RS,3RS;1RS,3SR)−2,2−ジメチル−3−プロプ−1−エニルシクロプロパンカルボキシレート、2,3,5,6−テトラフルオロ−4−メチルベンジル(EZ)−(1RS,3RS;1RS,3SR)−2,2−ジメチル−3−プロプ−1−エニルシクロプロパンカルボキシレート、2,3,5,6−テトラフルオロ−4−(メトキシメチル)ベンジル(1RS,3RS;1RS,3SR)−2,2ジメチル−3−(2−メチル−1−プロペニル)シクロプロパンカルボキシレート等、
(4)ネライストキシン系化合物
 カルタップ(cartap)、ベンスルタップ(bensultap)、チオシクラム(thiocyclam)、モノスルタップ(monosultap)、ビスルタップ(bisultap)等、
(5)ネオニコチノイド系化合物
 イミダクロプリド(imidacloprid)、ニテンピラム(nitenpyram)、アセタミプリド(acetamiprid)、チアメトキサム(thiamethoxam)、チアクロプリド(thiacloprid)、ジノテフラン(dinotefuran)、クロチアニジン(clothianidin)等、
(6)ベンゾイル尿素系化合物
 クロルフルアズロン(chlorfluazuron)、ビストリフルロン(bistrifluron)、ジアフェンチウロン(diafenthiuron)、ジフルベンズロン(diflubenzuron)、フルアズロン(fluazuron)、フルシクロクスロン(flucycloxuron)、フルフェノクスロン(flufenoxuron)、ヘキサフルムロン(hexaflumuron)、ルフェヌロン(lufenuron)、ノバルロン(novaluron)、ノビフルムロン(noviflumuron)、テフルベンズロン(teflubenzuron)、トリフルムロン(triflumuron)等、
(7)フェニルピラゾール系化合物
 アセトプロール(acetoprole)、エチプロール(ethiprole)、フィプロニル(fipronil)、バニリプロール(vaniliprole)、ピリプロール(pyriprole)、ピラフルプロール(pyrafluprole)等、
(8)Btトキシン系殺虫剤
 バチルス・チューリンゲンシス菌由来の生芽胞および産生結晶毒素、並びにそれらの混合物、
(9)ヒドラジン系化合物
 クロマフェノジド(chromafenozide)、ハロフェノジド(halofenozide)、メトキシフェノジド(methoxyfenozide)、テブフェノジド(tebufenozide)等、
(10)有機塩素系化合物
 アルドリン(aldrin)、ディルドリン(dieldrin)、ジエノクロル(dienochlor)、エンドスルファン(endosulfan)、メトキシクロル(methoxychlor)等、
(11)天然系殺虫剤
 マシン油(machine oil)、硫酸ニコチン(nicotine−sulfate)等、
(12)その他の殺虫剤
 アベルメクチン(avermectin−B)、ブロモプロピレート(bromopropylate)、ブプロフェジン(buprofezin)、クロルフェナピル(chlorphenapyr)、シロマジン(cyromazine)、D−D(1,3−Dichloropropene)、エマメクチンベンゾエート(emamectin−benzoate)、フェナザキン(fenazaquin)、フルピラゾホス(flupyrazofos)、ハイドロプレン(hydroprene)、インドキサカルブ(indoxacarb)、メトキサジアゾン(metoxadiazone)、ミルベマイシンA(milbemycin−A)、ピメトロジン(pymetrozine)、ピリダリル(pyridalyl)、ピリプロキシフェン(pyriproxyfen)、スピノサッド(spinosad)、スルフラミド(sulfluramid)、トルフェンピラド(tolfenpyrad)、トリアゼメイト(triazamate)、フルベンジアミド(flubendiamide)、SI−0009、シフルメトフェン(cyflumetofen)、亜ひ酸(Arsenicacid)、ベンクロチアズ(benclothiaz)、石灰窒素(Calcium cyanamide)、石灰硫黄合剤(Calcium polysulfide)、クロルデン(chlordane)、DDT、DSP、フルフェネリウム(flufenerim)、フロニックアミド(flonicamid)、フルリムフェン(flurimfen)、ホルメタネート(formetanate)、メタム・アンモニウム(metam−ammonium)、メタム・ナトリウム(metam−sodium)、臭化メチル(Methyl bromide)、ニディノテフラン(nidinotefuran)、オレイン酸カリウム(Potassium oleate)、プロトリフェンビュート(protrifenbute)、スピロメシフェン(spiromesifen)、硫黄(Sulfur)、メタフルミゾン(metaflumizone)、スピロテトラマット(spirotetramat)等、
 殺ダニ剤
 アセキノシル(acequinocyl)、アミトラズ(amitraz)、ベンゾキシメート(benzoximate)、フェニソブロモレート(bromopropylate)、キノメチオネート(chinomethionat)、クロルベンジレート(chlorobenzilate)、CPCBS(chlorfenson)、クロフェンテジン(clofentezine)、ケルセン(ジコホル:dicofol)、エトキサゾール(etoxazole)、酸化フェンブタスズ(fenbutatin oxide)、フェノチオカルブ(fenothiocarb)、フェンピロキシメート(fenpyroximate)、フルアクリピリム(fluacrypyrim)、フルプロキシフェン(fluproxyfen)、ヘキシチアゾクス(hexythiazox)、プロパルギット(propargite:BPPS)、ポリナクチン複合体(polynactins)、ピリダベン(pyridaben)、ピリミジフェン(Pyrimidifen)、テブフェンピラド(tebufenpyrad)、テトラジホン(tetradifon)、スピロディクロフェン(spirodiclofen)、アミドフルメット(amidoflumet)、ビフェナゼート(Bifenazate)、シフルメトフェン(Cyflumetofen)等、
 殺線虫剤(殺線虫活性成分)
 DCIP、フォスチアゼート(fosthiazate)、塩酸レバミゾール(levamisol)、メチルイソチオシアネート(methyisothiocyanate)、酒石酸モランテル(morantel tartarate)等。
(1) Organophosphorus compounds Acephate, aluminum phosphide, butathiofos, cadusafos, chlorethoxyphos, chlorfenvinphos, chlorpyvinphos, chlorpyvinphos Chlorpyrifos-methyl, cyanophos (CYAP), diazinon, DCIP (dichlorodipropionic ether), dichlorfenthion (ECP), dichlorvos (DichV) Dimethoate, dimethylvinphos, disulfoton, EPN, etion, ethoprofos, etrimfos, fenthion (MPP), fenitrothion (fethrothion) fothiazate, formothione, hydrogen phosphide, isofenphos, isoxathion, malathion, mesulfenfos, methidation Monocrotophos, Naled (BRP), Oxydeprofos (ESP), Parathion, Phosalone, Phosmet: PMP, Pirimiphosentyl, pyrimiphosentylthiol Quinalphos, phentoate (PAP), profenofos, propopafos, prothiofos, pyrachlorfos, salithion, sulprofos sulprofos upirimfos), temephos (temephos), tetra-chloro bottles host (tetrachlorvinphos), terbufos (terbufos), thiometon (thiometon), trichlorfon (trichlorphon: DEP), vamidothion (vamidothion), etc.,
(2) Carbamate compounds alaniccarb, bendiocarb, benfuracarb, BPMC, carbaryl, carbofuran, carbothofen, carbotophene ), Fenobucarb, phenothiocarb, phenoxycarb, furathiocarb, isoprocarb (MIPC), metocarbyl, metocarbyl thiocarb), NAC, oxamyl, spirimicarb, propoxur (PHC), XMC, thiodicarb, xylylcarb, etc.
(3) Synthetic pyrethroid compounds Acrinathrin, Allethrin, Benfluthrin, Beta-Cyfluthrin, Bifenthrin, Cycloprothrin, Cycloprothrin (Cycloprothrin) cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, ethofenprox, fenpropathrin, fenvalerate, fenvalerate (Flucytrinate), flufenprox, flumethrin, fluvalinate, halfenprox, imiprothrin, permethrin, p, methrerin, p Resmethrin, sigma-cypermethrin, silafluofen, tefluthrin, tralomethrin, transfluthrin 5, transfluthrin 6, transfluthrin 6, transfluthrin 6, Fluoro-4- (methoxymethyl) benzyl (EZ)-(1RS, 3RS; 1RS, 3SR) -2,2-dimethyl-3-prop-1-enylcyclopropanecarboxylate, 2,3,5,6-tetra Fluoro-4-methylbenzyl (EZ)-(1RS, 3RS; 1RS, 3SR) -2,2-dimethyl-3-prop-1-enylcyclopropanecarboxylate, 2,3,5,6-tetrafluoro-4 -(Methoxymethyl) benzyl (1RS, 3RS; 1RS, 3SR) -2,2dimethyl-3- (2-methyl-1-propenyl) cyclopropanecarboxylate, etc.
(4) Nereistoxin compounds Cartap, bensultap, thiocyclam, monosultap, bisultap, etc.
(5) Neonicotinoid compounds Imidacloprid, nitenpyram, acetamiprid, thiamethoxam, thiacloprid, dinoteurine, dinotefur
(6) Benzoylurea compounds Chlorfluazuron, bistrifluron, diafenthiuron, diflubenzuron, fluazuron, flucycloxuron, flucycloxuron Flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, triflumuuron, triflumulon, etc.
(7) Phenylpyrazole compounds Acetoprole, etiprole, fipronil, vaniliprole, pyriprole, pyrafluprole, etc.
(8) Bt toxin insecticide, live spores and produced crystal toxins derived from Bacillus thuringiensis, and mixtures thereof,
(9) Hydrazine compounds Chromafenozide, halofenozide, methoxyphenozide, tebufenozide, etc.,
(10) Organochlorine compounds Aldrin, dieldrin, dienochlor, endosulfan, methoxychlor, etc.
(11) Natural pesticide machine oil, nicotine sulfate, etc.
(12) Other insecticides avermectin (vermectin-B), bromopropyrate, buprofezin, chlorfenapyr, cyromazine, D-D (1, ro-dictin) emamectin-benzoate, phenazaquin, flupyrazofos, hydroprene, indoxacarb, methoxadiazone, tetroylamine, milbemycin A, z (Pyridalyl), pyriproxyfen, spinosad, sulfuramide, tolfenpyrad, triazamate, flubendamide, flubendamide, flubendamide Arsenicacid, Benclothiaz, Calcium cyanoamide, Calcium polysulfide, Chlordane, DDT, DSP, flufenem, flufenamide flurimfen, formatenate, metham-ammonium, metham-sodium, methyl bromide, nidinotefuran, potassium oleate, pitolephenate Butto (protrifenbute), spiromesifen (spiromesifen), sulfur (Sulfur), metaflumizone (spiratetrazone), spirotetramat, etc.
Acaricides acequinocyl, amitraz, benzoximate, phenisobromolate, chinomethionate, chlorbenzilate, chlorbenzilate, cBS ), Kelsen (dicofol), etoxazole, fenbutatin oxide, phenothiocarb, fenpyroximate, fluacrylpyriproxyl roxyfen, hexythiazox, propargite (BPPS), polynactin complex (polyactin), pyridaben, dipymidifene, tebufenpyrad, tebufenpyrad, tebufenpyrad, tebufenpyrad, tebufenpyrad Amidoflumet, bifenazate, cyflumetofen, etc.
Nematicide (nematode active ingredient)
DCIP, fostiazate, levamisole hydrochloride, methylisothiocyanate, morantel tartrate and the like.
次に本発明化合物の光学活性体の具体例を示す。
N’−{2−クロロ−5−[(R)−5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}シクロプロパンカルボヒドラジド、
N’−{2−クロロ−5−[(S)−5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}シクロプロパンカルボヒドラジド、
N’−{2−クロロ−5−[(R)−5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}−4,4,4−トリフルオロブチロヒドラジド、
N’−{2−クロロ−5−[(S)−5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}−4,4,4−トリフルオロブチロヒドラジド。
Next, specific examples of the optically active substance of the compound of the present invention are shown.
N ′-{2-chloro-5-[(R) -5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} cyclopropane Carbohydrazide,
N ′-{2-chloro-5-[(S) -5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} cyclopropane Carbohydrazide,
N ′-{2-chloro-5-[(R) -5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} -4,4,4-trifluorobutyrohydrazide,
N ′-{2-chloro-5-[(S) -5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} -4,4,4-trifluorobutyrohydrazide.
以下、本発明を製造例、製剤例及び試験例等によりさらに詳しく説明するが、本発明はこれらの例に限定されるものではない。 Hereinafter, although this invention is demonstrated in more detail by a manufacture example, a formulation example, a test example, etc., this invention is not limited to these examples.
まず、本発明化合物の製造例を以下に示す。
製造例1
N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチル350mg及びトリエチルアミン0.11mlをテトラヒドロフラン1.3mlに溶かし、ここに室温で4,4,4−トリフルオロブチリルクロライド0.09mlを滴下して、室温で5分撹拌した。反応混合物に水を加えてtert−ブチルメチルエーテルと酢酸エチルで抽出し、有機層を減圧下濃縮し、N’−4,4,4−トリフルオロブチリル−N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチルの粗生成物387mgを得た。得られたN’−4,4,4−トリフルオロブチリル−N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチルの粗生成物387mgに室温でトリフルオロ酢酸0.65mLを加え、同温で1.5時間撹拌した。反応混合物にtert−ブチルメチルエーテルを加え減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーに付し、N’−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}−4,4,4−トリフルオロブチロヒドラジド(以下、本発明化合物(1)と記す。)305mgを得た。
本発明化合物(1)
Figure JPOXMLDOC01-appb-I000025
H−NMR(CDCl)δ:7.56(2H,d,J=6.0Hz),7.36(1H,d,J=8.2Hz),7.25(1H,d,J=2.1Hz),7.21−7.17(1H,m),7.01(1H,dd,J=8.2,2.1Hz),6.51(1H,d,J=2.8Hz),4.02(1H,d,J=17.2Hz),3.62(1H,d,J=17.2Hz),2.75−2.46(4H,m).
First, the manufacture example of this invention compound is shown below.
Production Example 1
N- {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbazate tert-butyl 350 mg and 0.11 ml of triethylamine were dissolved in 1.3 ml of tetrahydrofuran, 0.09 ml of 4,4,4-trifluorobutyryl chloride was added dropwise thereto at room temperature, and the mixture was stirred at room temperature for 5 minutes. Water was added to the reaction mixture and the mixture was extracted with tert-butyl methyl ether and ethyl acetate. The organic layer was concentrated under reduced pressure, and N′-4,4,4-trifluorobutyryl-N- {2-chloro-5- 387 mg of a crude product of tert-butyl [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbazate was obtained. N′-4,4,4-trifluorobutyryl-N- {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4, To a crude product of tert-butyl 5-dihydroisoxazol-3-yl] phenyl} carbazate was added 0.65 mL of trifluoroacetic acid at room temperature, and the mixture was stirred at the same temperature for 1.5 hours. To the reaction mixture was added tert-butyl methyl ether and concentrated under reduced pressure. The obtained residue was subjected to silica gel column chromatography, and N ′-{2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydro 305 mg of isoxazol-3-yl] phenyl} -4,4,4-trifluorobutyrohydrazide (hereinafter referred to as the present compound (1)) was obtained.
Compound (1) of the present invention
Figure JPOXMLDOC01-appb-I000025
1 H-NMR (CDCl 3 ) δ: 7.56 (2H, d, J = 6.0 Hz), 7.36 (1H, d, J = 8.2 Hz), 7.25 (1H, d, J = 2.1 Hz), 7.21-7.17 (1 H, m), 7.01 (1 H, dd, J = 8.2, 2.1 Hz), 6.51 (1 H, d, J = 2.8 Hz) ), 4.02 (1H, d, J = 17.2 Hz), 3.62 (1H, d, J = 17.2 Hz), 2.75-2.46 (4H, m).
製造例2
N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチルに換えて参考製造例8により得られたN−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチルを用いて、製造例1と同様の方法により、N’−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}シクロプロパンカルボヒドラジド(以下、本発明化合物(2)と記す。)を得た。
本発明化合物2
Figure JPOXMLDOC01-appb-I000026
H−NMR(CDCl)δ:7.65−7.36(4H,m),7.33(1H,d,J=8.4Hz),6.94(1H,dd,J=8.4,2.0Hz),6.54(1H,br s),4.04(1H,d,J=17.6Hz),3.64(1H,d,J=17.6Hz),1.53(1H,m),1.07(2H,m),0.91(2H,m).
Production Example 2
N- {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbazate tert-butyl Instead of N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazole-3- N ′-{2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoro] by the same method as in Production Example 1 using tert-butyl yl] phenyl} carbazate Methyl-4,5-dihydroisoxazol-3-yl] phenyl} cyclopropanecarbohydrazide (hereinafter referred to as the present compound (2)) was obtained.
Compound 2 of the present invention
Figure JPOXMLDOC01-appb-I000026
1 H-NMR (CDCl 3 ) δ: 7.65-7.36 (4H, m), 7.33 (1H, d, J = 8.4 Hz), 6.94 (1H, dd, J = 8. 4, 2.0 Hz), 6.54 (1 H, br s), 4.04 (1 H, d, J = 17.6 Hz), 3.64 (1 H, d, J = 17.6 Hz), 1.53 (1H, m), 1.07 (2H, m), 0.91 (2H, m).
参考製造例1
参考製造例2により得られた{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバミン酸tert−ブチル17.3gをテトラヒドロフラン96mLに溶かし、28%水酸化ナトリウム水溶液96mL、アンモニア水31mL、塩化アンモニウム10.5g、トリオクチルメチルアンモニウムクロライド1.7gを加えた。この混合液に室温にて5%次亜塩素酸ナトリウム水溶液96mLを25分間かけて滴下した。同温で15分撹拌後、反応混合物にtert−ブチルメチルエーテルを加え有機層を分離し、10%亜硫酸ナトリウム水溶液を加え再度抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーに付し、N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチル9.00g得た。
N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000027
H−NMR(CDCl)δ:7.61(1H,d,J=2.1Hz),7.58(2H,d,J=6.2Hz),7.56−7.52(1H,m),7.48(1H,d,J=8.5Hz),4.56−4.52(2H,m),4.07(1H,d,J=17.2Hz),3.71−3.61(1H,m),1.57(9H,s).
 参考製造例2
 参考製造例3により得られたN−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−2−ブテノイル]フェニル}カルバミン酸tert−ブチル17.0g及びテトラブチルアンモニウムブロミド3.6gをtert−ブチルメチルエーテル66mLに溶かし、ここに氷冷下でヒドロキシルアミン塩酸塩4.6g及び水酸化ナトリウム5.6gを水27mLに溶かした溶液を滴下し、室温で1時間撹拌した。反応混合物に3N塩酸を加え中和し、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮し、再結晶により、N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバミン酸tert−ブチル17.3gを得た。
N−{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバミン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000028
H−NMR(CDCl)δ:8.39(1H,d,J=1.8Hz),7.59(2H,d,J=6.2Hz),7.46(1H,dd,J=8.4,1.7Hz),7.39(1H,d,J=8.5Hz),7.13−7.07(1H,m),4.12(1H,d,J=17.2Hz),3.71(1H,d,J=17.4Hz),1.55(9H,s).
 参考製造例3
 参考製造例4により得られたN−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−3−ヒドロキシブタノイル]フェニル}カルバミン酸tert−ブチル27.0g、トリエチルアミン14.0mL、及びN,N−ジメチル−4−アミノピリジン610mgをトルエン50mLに溶かし、ここに室温で無水酢酸4.7mLを滴下し、50℃で3時間撹拌した。室温まで冷却した反応混合物に水を加えてtert−ブチルメチルエーテルで抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーに付し、N−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−2−ブテノイル]フェニル}カルバミン酸tert−ブチル17.1gを得た。
N−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−2−ブテノイル]フェニル}カルバミン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000029
H−NMR(CDCl)δ:8.70(1H,s),7.44−7.41(1H,m),7.34−7.31(1H,m),7.29−7.28(1H,m),7.07−7.03(1H,m),1.57(9H,s).
 参考製造例4
 参考製造例7により得られたN−(5−アセチル−2−クロロフェニル)カルバミン酸tert−ブチル13.5gと参考製造例5により得られた3’,5’−ジクロロ−4’−フルオロ−2,2,2−トリフルオロアセトフェノン15.5g及びトリエチルアミン14.0mLをテトラヒドロフラン100mLに溶かし、60℃で1時間、80℃で1時間撹拌した。室温まで冷却し、反応混合物を減圧下濃縮し、N−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−3−ヒドロキシブタノイル]フェニル}カルバミン酸tert−ブチルの粗生成物27.0gを得た。
N−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−3−ヒドロキシブタノイル]フェニル}カルバミン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000030
H−NMR(CDCl)δ:8.81(1H,s),7.60(2H,d,J=6.2Hz),7.53(1H,dd,J=8.5,2.1Hz),7.47−7.38(1H,m),7.15(1H,s),5.75(1H,s),3.95(1H,d,J=17.6Hz),3.68(1H,d,J=17.6Hz),1.56(9H,s)
 参考製造例5
 参考製造例6で製造された1,3−ジクロロ−2−フルオロ−5−ヨードベンゼン29.6gを脱気したテトラヒドロフラン55mLに溶かし、氷冷下イソプロピルマグネシウムクロライド60mLを20分間で滴下した。同温で1時間撹拌後、トリフルオロ酢酸エチル15.8mLを20分間で滴下した。同温で1.5時間撹拌後、反応混合物に1N塩酸を加え、THF及び酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣を減圧蒸留によって、3’,5’−ジクロロ−4’−フルオロ−2,2,2−トリフルオロアセトフェノン15.5gを得た。
3’,5’−ジクロロ−4’−フルオロ−2,2,2−トリフルオロアセトフェノン
Figure JPOXMLDOC01-appb-I000031
H−NMR(CDCl)δ:8.05(2H,dd,J=6.1,0.8Hz).
 参考製造例6
 濃硫酸280mLに亜硝酸ナトリウム19.2gを溶かし、氷冷下3,5−ジクロロ−4−フルオロアニリン25.0gを酢酸280mLに溶かした溶液を加えた。同温で3時間撹拌後、室温で1時間撹拌した。氷冷下でヨウカカリウム96.9gを水500mLに溶かした溶液を加え、70℃で1時間撹拌した。室温まで冷却し、反応混合物をジクロロメタン及びクロロホルムで抽出した。有機層を無水硫酸ナトリウムで乾燥後、減圧下濃縮した。得られた残渣をtert−ブチルメチルエーテルに溶かし、チオ硫酸ナトリウム水溶液で分液し、有機層に重曹水を加えて再び分液した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィーに付し、1,3−ジクロロ−2−フルオロ−5−ヨードベンゼン29.7gを得た。
1,3−ジクロロ−2−フルオロ−5−ヨードベンゼン
Figure JPOXMLDOC01-appb-I000032
H−NMR(CDCl)δ:7.64(2H,dd,J=6.2,0.7Hz).
 参考製造例7
 5−アセチル−2−クロロアニリン50.0gにテトラブチルアンモニウムブロミド4.75gと二炭酸ジ−tert−ブチル96.5gを加え、90度に加熱した。同温で5.5時間撹拌後、反応混合物を減圧濃縮した。得られた残渣にメタノール100mLと炭酸カリウム61.0g加え、室温で1時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮した。得られた残渣を再結晶によって、N−(5−アセチル−2−クロロフェニル)カルバミン酸tert−ブチル54.9gを得た。
N−(5−アセチル−2−クロロフェニル)カルバミン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000033
H−NMR(CDCl)δ:8.79(1H,d,J=1.8Hz),7.58(1H,dd,J=8.5,2.1Hz),7.43(1H,d,J=8.5Hz),7.12−7.02(1H,br),2.62(3H,s),1.56(9H,s).
 参考製造例8
{2−クロロ−5−[5−(3,5−ジクロロ−4−フルオロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバミン酸tert−ブチルに換えてN−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバミン酸tert−ブチルを用いて、参考製造例1と同様の方法により、N−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチル得た。
N−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000034
H−NMR(CDCl)δ:7.63−4.47(5H,m),4.54(2H,s),4.08(1H,d,J=17.6Hz),3.68(1H,d,J=17.6Hz),1.40(9H,s).
 参考製造例9
N−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−2−ブテノイル]フェニル}カルバミン酸tert−ブチルに換えてN−{2−クロロ−5−[3−(3,4,5−トリクロロフェニル)−4,4,4−トリフルオロ−2−ブテノイル]フェニル}カルバミン酸tert−ブチルを用いて、参考製造例2と同様の方法により、N−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバミン酸tert−ブチルを得た。
N−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバミン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000035
H−NMR(CDCl)δ:8.39(1H,d,J=2.0Hz),7.65(2H,s),7.47(1H,dd,J=8.6,2.0Hz),7.39(1H,d,J=8.6Hz),7.10(1H br s),4.12(1H,d,J=17.6Hz),3.70(1H,d,J=17.6Hz),1.55(9H,s).
 参考製造例10
N−{2−クロロ−5−[3−(3,5−ジクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−3−ヒドロキシブタノイル]フェニル}カルバミン酸tert−ブチルに換えてN−{2−クロロ−5−[3−(3,4,5−トリクロロフェニル)−4,4,4−トリフルオロ−3−ヒドロキシブタノイル]フェニル}カルバミン酸tert−ブチルを用いて、参考製造例3と同様の方法により、N−{2−クロロ−5−[3−(3,4,5−トリクロロフェニル)−4,4,4−トリフルオロ−2−ブテノイル]フェニル}カルバミン酸tert−ブチルを得た。
N−{2−クロロ−5−[3−(3,4,5−トリクロロフェニル)−4,4,4−トリフルオロ−2−ブテノイル]フェニル}カルバミン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000036
H−NMR(CDCl)δ:8.69(1H,s),7.44−7.33(5H,m),7.05(1H,s),1.56(9H,s).
 参考製造例11
3’,5’−ジクロロ−4’−フルオロ−2,2,2−トリフルオロアセトフェノンに換えて3’,4’,5’−トリクロロ−2,2,2−トリフルオロアセトフェノンを用いて、参考製造例4と同様の方法により、N−{2−クロロ−5−[3−(3,4,5−トリクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−3−ヒドロキシブタノイル]フェニル}カルバミン酸tert−ブチルを得た。
N−{2−クロロ−5−[3−(3,4,5−トリクロロ−4−フルオロフェニル)−4,4,4−トリフルオロ−3−ヒドロキシブタノイル]フェニル}カルバミン酸tert−ブチル
Figure JPOXMLDOC01-appb-I000037
H−NMR(CDCl)δ:7.79(1H,dd,J=8.4,2.0Hz),7.66(1H,d,J=2.0Hz),7.59(1H,d,J=8.4Hz),7.41(1H,s),7.31(2H,s),2.67(3H,s),1.37(9H,s).
参考製造例12
参考製造例8により得られたN−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチル500mg及びトリエチルアミン0.15mlをテトラヒドロフラン1.8mlに溶かし、ここに氷冷下でアセチルクロライド0.08mlを滴下して、同温5分撹拌した。室温で30分撹拌した後、反応混合物に水を加え酢酸エチルで抽出し、減圧下濃縮後、N’−アセチル−N−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチルの粗生成物480mgを得た。得られたN’−アセチル−N−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}カルバジン酸tert−ブチルの粗生成物480mgに室温でトリフルオロ酢酸0.88mLを加え、室温で2時間撹拌した。反応混合物を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーに付し、N’−{2−クロロ−5−[5−(3,4,5−トリクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}アセチルヒドラジド(以下、比較化合物(a)と記す。)、200mgを得た。
比較化合物(a)
Figure JPOXMLDOC01-appb-I000038
H−NMR(CDCl)δ:7.64−7.61(2H,m),7.35(1H,d,J=8.2Hz),7.32(1H,d,J=2.0Hz),7.22−7.19(1H,m),6.95(1H,dd,J=8.2,2.0Hz),6.52−6.50(1H,m),4.04(1H,d,J=17.0Hz),3.63(1H,d,J=17.2Hz),2.14(3H,s).
Reference production example 1
{2-Chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl obtained by Reference Production Example 2 } 17.3 g of tert-butyl carbamate was dissolved in 96 mL of tetrahydrofuran, and 96 mL of 28% aqueous sodium hydroxide solution, 31 mL of aqueous ammonia, 10.5 g of ammonium chloride, and 1.7 g of trioctylmethylammonium chloride were added. To this mixed solution, 96 mL of 5% aqueous sodium hypochlorite solution was added dropwise at room temperature over 25 minutes. After stirring at the same temperature for 15 minutes, tert-butyl methyl ether was added to the reaction mixture, the organic layer was separated, and a 10% aqueous sodium sulfite solution was added for extraction again. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was subjected to silica gel column chromatography, and N- {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroiso 9.00 g of tert-butyl oxazol-3-yl] phenyl} carbazate was obtained.
N- {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbazate tert-butyl
Figure JPOXMLDOC01-appb-I000027
1 H-NMR (CDCl 3 ) δ: 7.61 (1H, d, J = 2.1 Hz), 7.58 (2H, d, J = 6.2 Hz), 7.56-7.52 (1H, m), 7.48 (1H, d, J = 8.5 Hz), 4.56-4.52 (2H, m), 4.07 (1H, d, J = 17.2 Hz), 3.71- 3.61 (1H, m), 1.57 (9H, s).
Reference production example 2
N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-2-butenoyl] phenyl} carbamic acid obtained in Reference Production Example 3 17.0 g of tert-butyl and 3.6 g of tetrabutylammonium bromide were dissolved in 66 mL of tert-butyl methyl ether, and 4.6 g of hydroxylamine hydrochloride and 5.6 g of sodium hydroxide were dissolved in 27 mL of water under ice cooling. The solution was added dropwise and stirred at room temperature for 1 hour. The reaction mixture was neutralized with 3N hydrochloric acid, and extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and recrystallized to give N- {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4. , 5-Dihydroisoxazol-3-yl] phenyl} carbamate 17.3 g of tert-butyl was obtained.
N- {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbamate tert-butyl
Figure JPOXMLDOC01-appb-I000028
1 H-NMR (CDCl 3 ) δ: 8.39 (1H, d, J = 1.8 Hz), 7.59 (2H, d, J = 6.2 Hz), 7.46 (1H, dd, J = 8.4, 1.7 Hz), 7.39 (1 H, d, J = 8.5 Hz), 7.13-7.07 (1 H, m), 4.12 (1 H, d, J = 17.2 Hz) ), 3.71 (1H, d, J = 17.4 Hz), 1.55 (9H, s).
Reference production example 3
N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-3-hydroxybutanoyl] phenyl} obtained in Reference Production Example 4 27.0 g of tert-butyl carbamate, 14.0 mL of triethylamine, and 610 mg of N, N-dimethyl-4-aminopyridine were dissolved in 50 mL of toluene, and 4.7 mL of acetic anhydride was added dropwise thereto at room temperature, and the mixture was stirred at 50 ° C. for 3 hours. Stir. Water was added to the reaction mixture cooled to room temperature, and the mixture was extracted with tert-butyl methyl ether. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was subjected to silica gel column chromatography, and N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-2-butenoyl ] 17.1 g of tert-butyl phenyl} carbamate was obtained.
Tert-Butyl N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-2-butenoyl] phenyl} carbamate
Figure JPOXMLDOC01-appb-I000029
1 H-NMR (CDCl 3 ) δ: 8.70 (1H, s), 7.44-7.41 (1H, m), 7.34-7.31 (1H, m), 7.29-7 .28 (1H, m), 7.07-7.03 (1H, m), 1.57 (9H, s).
Reference production example 4
13.5 g of tert-butyl N- (5-acetyl-2-chlorophenyl) carbamate obtained in Reference Production Example 7 and 3 ′, 5′-dichloro-4′-fluoro-2 obtained in Reference Production Example 5 , 2,2-trifluoroacetophenone and 14.0 mL of triethylamine were dissolved in 100 mL of tetrahydrofuran and stirred at 60 ° C. for 1 hour and at 80 ° C. for 1 hour. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure and N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-3-hydroxy. 27.0 g of a crude product of tert-butyl butanoyl] phenyl} carbamate was obtained.
N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-3-hydroxybutanoyl] phenyl} carbamate tert-butyl
Figure JPOXMLDOC01-appb-I000030
1 H-NMR (CDCl 3 ) δ: 8.81 (1H, s), 7.60 (2H, d, J = 6.2 Hz), 7.53 (1H, dd, J = 8.5, 2. 1 Hz), 7.47-7.38 (1 H, m), 7.15 (1 H, s), 5.75 (1 H, s), 3.95 (1 H, d, J = 17.6 Hz), 3 .68 (1H, d, J = 17.6 Hz), 1.56 (9H, s)
Reference production example 5
29.6 g of 1,3-dichloro-2-fluoro-5-iodobenzene produced in Reference Production Example 6 was dissolved in 55 mL of degassed tetrahydrofuran, and 60 mL of isopropylmagnesium chloride was added dropwise over 20 minutes under ice cooling. After stirring at the same temperature for 1 hour, 15.8 mL of ethyl trifluoroacetate was added dropwise over 20 minutes. After stirring at the same temperature for 1.5 hours, 1N hydrochloric acid was added to the reaction mixture, and the mixture was extracted with THF and ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The obtained residue was distilled under reduced pressure to obtain 15.5 g of 3 ′, 5′-dichloro-4′-fluoro-2,2,2-trifluoroacetophenone.
3 ′, 5′-dichloro-4′-fluoro-2,2,2-trifluoroacetophenone
Figure JPOXMLDOC01-appb-I000031
1 H-NMR (CDCl 3 ) δ: 8.05 (2H, dd, J = 6.1, 0.8 Hz).
Reference production example 6
19.2 g of sodium nitrite was dissolved in 280 mL of concentrated sulfuric acid, and a solution of 25.0 g of 3,5-dichloro-4-fluoroaniline in 280 mL of acetic acid was added under ice cooling. After stirring at the same temperature for 3 hours, the mixture was stirred at room temperature for 1 hour. A solution prepared by dissolving 96.9 g of potassium potassium in 500 mL of water was added under ice cooling, and the mixture was stirred at 70 ° C. for 1 hour. Cool to room temperature and extract the reaction mixture with dichloromethane and chloroform. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was dissolved in tert-butyl methyl ether, liquid-separated with an aqueous sodium thiosulfate solution, and sodium bicarbonate water was added to the organic layer, followed by liquid separation. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The obtained residue was subjected to silica gel column chromatography to obtain 29.7 g of 1,3-dichloro-2-fluoro-5-iodobenzene.
1,3-dichloro-2-fluoro-5-iodobenzene
Figure JPOXMLDOC01-appb-I000032
1 H-NMR (CDCl 3 ) δ: 7.64 (2H, dd, J = 6.2, 0.7 Hz).
Reference production example 7
To 50.0 g of 5-acetyl-2-chloroaniline, 4.75 g of tetrabutylammonium bromide and 96.5 g of di-tert-butyl dicarbonate were added and heated to 90 degrees. After stirring at the same temperature for 5.5 hours, the reaction mixture was concentrated under reduced pressure. To the obtained residue, 100 mL of methanol and 61.0 g of potassium carbonate were added, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The obtained residue was recrystallized to obtain 54.9 g of tert-butyl N- (5-acetyl-2-chlorophenyl) carbamate.
Tert-Butyl N- (5-acetyl-2-chlorophenyl) carbamate
Figure JPOXMLDOC01-appb-I000033
1 H-NMR (CDCl 3 ) δ: 8.79 (1H, d, J = 1.8 Hz), 7.58 (1H, dd, J = 8.5, 2.1 Hz), 7.43 (1H, d, J = 8.5 Hz), 7.12-7.02 (1H, br), 2.62 (3H, s), 1.56 (9H, s).
Reference production example 8
Replaced with tert-butyl {2-chloro-5- [5- (3,5-dichloro-4-fluorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbamate Tert-butyl N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbamate In the same manner as in Reference Production Example 1, N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazole- Obtained tert-butyl 3-yl] phenyl} carbazate.
N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbazate tert-butyl
Figure JPOXMLDOC01-appb-I000034
1 H-NMR (CDCl 3 ) δ: 7.63-4.47 (5H, m), 4.54 (2H, s), 4.08 (1H, d, J = 17.6 Hz), 3.68 (1H, d, J = 17.6 Hz), 1.40 (9H, s).
Reference production example 9
N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-2-butenoyl] phenyl} carbamate instead of tert-butyl N- Using tert-butyl {2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-2-butenoyl] phenyl} carbamate, In a similar manner, N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbamic acid Tert-butyl was obtained.
N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbamate tert-butyl
Figure JPOXMLDOC01-appb-I000035
1 H-NMR (CDCl 3 ) δ: 8.39 (1H, d, J = 2.0 Hz), 7.65 (2H, s), 7.47 (1H, dd, J = 8.6, 2. 0 Hz), 7.39 (1 H, d, J = 8.6 Hz), 7.10 (1 H br s), 4.12 (1 H, d, J = 17.6 Hz), 3.70 (1 H, d, J = 17.6 Hz), 1.55 (9H, s).
Reference production example 10
Instead of tert-butyl N- {2-chloro-5- [3- (3,5-dichloro-4-fluorophenyl) -4,4,4-trifluoro-3-hydroxybutanoyl] phenyl} carbamate Using tert-butyl N- {2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-3-hydroxybutanoyl] phenyl} carbamate for reference In the same manner as in Production Example 3, N- {2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-2-butenoyl] phenyl} carbamic acid tert -Butyl was obtained.
N- {2-chloro-5- [3- (3,4,5-trichlorophenyl) -4,4,4-trifluoro-2-butenoyl] phenyl} carbamate tert-butyl
Figure JPOXMLDOC01-appb-I000036
1 H-NMR (CDCl 3) δ: 8.69 (1H, s), 7.44-7.33 (5H, m), 7.05 (1H, s), 1.56 (9H, s).
Reference production example 11
Reference was made by using 3 ′, 4 ′, 5′-trichloro-2,2,2-trifluoroacetophenone instead of 3 ′, 5′-dichloro-4′-fluoro-2,2,2-trifluoroacetophenone. In the same manner as in Production Example 4, N- {2-chloro-5- [3- (3,4,5-trichloro-4-fluorophenyl) -4,4,4-trifluoro-3-hydroxybutanoyl Tert-butyl phenyl} carbamate was obtained.
N- {2-chloro-5- [3- (3,4,5-trichloro-4-fluorophenyl) -4,4,4-trifluoro-3-hydroxybutanoyl] phenyl} carbamate tert-butyl
Figure JPOXMLDOC01-appb-I000037
1 H-NMR (CDCl 3 ) δ: 7.79 (1H, dd, J = 8.4, 2.0 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.59 (1H, d, J = 8.4 Hz), 7.41 (1H, s), 7.31 (2H, s), 2.67 (3H, s), 1.37 (9H, s).
Reference production example 12
N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl obtained by Reference Production Example 8 } 500 mg of tert-butyl carbazate and 0.15 ml of triethylamine were dissolved in 1.8 ml of tetrahydrofuran, 0.08 ml of acetyl chloride was added dropwise under ice cooling, and the mixture was stirred at the same temperature for 5 minutes. After stirring at room temperature for 30 minutes, water was added to the reaction mixture and the mixture was extracted with ethyl acetate. After concentration under reduced pressure, N′-acetyl-N- {2-chloro-5- [5- (3,4,5-tri 480 mg of a crude product of tert-butyl chlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} carbazate was obtained. N'-acetyl-N- {2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl obtained } To 480 mg of a crude product of tert-butyl carbamate, 0.88 mL of trifluoroacetic acid was added at room temperature, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was subjected to silica gel column chromatography to give N ′-{2-chloro-5- [5- (3,4,5-trichlorophenyl) -5-trifluoromethyl. 200 mg of -4,5-dihydroisoxazol-3-yl] phenyl} acetylhydrazide (hereinafter referred to as comparative compound (a)) was obtained.
Comparative compound (a)
Figure JPOXMLDOC01-appb-I000038
1 H-NMR (CDCl 3 ) δ: 7.64-7.61 (2H, m), 7.35 (1H, d, J = 8.2 Hz), 7.32 (1H, d, J = 2. 0 Hz), 7.22-7.19 (1 H, m), 6.95 (1 H, dd, J = 8.2, 2.0 Hz), 6.52-6.50 (1 H, m), 4. 04 (1H, d, J = 17.0 Hz), 3.63 (1 H, d, J = 17.2 Hz), 2.14 (3H, s).
次に製剤例を示す。なお、部は重量部を表す。 Next, formulation examples are shown. In addition, a part represents a weight part.
製剤例1
 本発明化合物(1)~(2)の各々9部を、キシレン37.5部およびジメチルホルムアミド37.5部に溶解し、これにポリオキシエチレンスチリルフェニルエーテル10部およびドデシルベンゼンスルホン酸カルシウム6部を加え、よく攪拌混合して乳剤を得る。
製剤例2
 本発明化合物(1)~(2)の各々40部にソルポール5060(東邦化学登録商標名)5部を加え、よく混合して、カープレックス#80(塩野義製薬登録商標名、合成含水酸化ケイ素微粉末)32部、300メッシュ珪藻土23部を加え、ジュースミキサーで混合して、水和剤を得る。
製剤例3
 本発明化合物(1)~(2)の各々3部、合成含水酸化珪素微粉末5部、ドデシルベンゼンスルホン酸ナトリウム5部、ベントナイト30部およびクレー57部を加え、よく攪拌混合し、ついでこれらの混合物に適当量の水を加え、さらに攪拌し、増粒機で製粒し、通風乾燥して粒剤を得る。
製剤例4
 本発明化合物(1)~(2)の各々4.5部、合成含水酸化珪素微粉末1部、凝集剤としてドリレスB(三共社製)1部、クレー7部を乳鉢でよく混合した後にジュースミキサーで攪拌混合する。得られた混合物にカットクレー86.5部を加えて、充分攪拌混合し、粉剤を得る。
製剤例5
 本発明化合物(1)~(2)の各々10部、ポリオキシエチレンアルキルエーテルサルフェートアンモニウム塩50部を含むホワイトカーボン35部及び水55部を混合し、湿式粉砕法で微粉砕することにより、製剤を得る。
製剤例6
 本発明化合物(1)~(2)の各々0.5部をジクロロメタン10部に溶解し、これをアイソパーM(イソパラフィン:エクソン化学登録商標名)89.5部に混合して油剤を得る。
製剤例7
 本発明化合物(1)~(2)の各々0.1部、ネオチオゾール(中央化成株式会社)49.9部をエアゾール缶に入れ、エアゾールバルブを装着した後、25部のジメチルエーテル及び25部のLPGを充填し、振とうを加え、アクチュエータを装着することにより油性エアゾールを得る。
製剤例8
 本発明化合物(1)~(2)の各々0.6部、BHT0.01部、キシレン5部、脱臭灯油3.39部および乳化剤{アトモス300(アトモスケミカル社登録商標名)}1部を混合溶解したものと、蒸留水50部とをエアゾール容器に充填し、バルブ部分を取り付け、該バルブを通じて噴射剤(LPG)40部を加圧充填して、水性エアゾールを得る。
Formulation Example 1
Nine parts of each of the compounds (1) to (2) of the present invention are dissolved in 37.5 parts of xylene and 37.5 parts of dimethylformamide, to which 10 parts of polyoxyethylene styrylphenyl ether and 6 parts of calcium dodecylbenzenesulfonate are added. And stirring well to obtain an emulsion.
Formulation Example 2
To 40 parts of each of the compounds (1) to (2) of the present invention, 5 parts of Solpol 5060 (registered trademark of Toho Chemical Co., Ltd.) was added and mixed well to prepare Carplex # 80 (registered trademark of Shionogi & Co., synthetic silicon hydroxide). Fine powder) 32 parts and 23 parts of 300 mesh diatomaceous earth are added and mixed with a juice mixer to obtain a wettable powder.
Formulation Example 3
Add 3 parts of each of the compounds (1) to (2) of the present invention, 5 parts of synthetic silicon hydroxide fine powder, 5 parts of sodium dodecylbenzenesulfonate, 30 parts of bentonite and 57 parts of clay, and stir and mix well. An appropriate amount of water is added to the mixture, further stirred, granulated with a granulator, and dried by ventilation to obtain granules.
Formulation Example 4
Juice after thoroughly mixing 4.5 parts of each of the compounds (1) to (2) of the present invention, 1 part of a synthetic silicon hydroxide fine powder, 1 part of Doreles B (Sankyo Co., Ltd.) as a flocculant and 7 parts of clay in a mortar Stir and mix with a mixer. 86.5 parts of cut clay is added to the resulting mixture and mixed well with stirring to obtain a powder.
Formulation Example 5
Formulation by mixing 10 parts of each of the compounds (1) to (2) of the present invention, 35 parts of white carbon containing 50 parts of polyoxyethylene alkyl ether sulfate ammonium salt and 55 parts of water, and finely pulverizing them by a wet pulverization method. Get.
Formulation Example 6
0.5 parts of each of the compounds (1) to (2) of the present invention are dissolved in 10 parts of dichloromethane, and this is mixed with 89.5 parts of Isopar M (isoparaffin: Exxon Chemical Registration) to obtain an oil.
Formulation Example 7
0.1 part of each of the compounds (1) to (2) of the present invention and 49.9 parts of Neothiozole (Chuo Kasei Co., Ltd.) are placed in an aerosol can and fitted with an aerosol valve, followed by 25 parts of dimethyl ether and 25 parts of LPG. Is added, shaken, and an actuator is attached to obtain an oily aerosol.
Formulation Example 8
0.6 parts of each of the compounds (1) to (2) of the present invention, 0.01 part of BHT, 5 parts of xylene, 3.39 parts of deodorized kerosene and 1 part of an emulsifier {Atmos 300 (registered trademark of Atmos Chemical)} The dissolved one and 50 parts of distilled water are filled into an aerosol container, a valve part is attached, and 40 parts of propellant (LPG) is pressurized and filled through the valve to obtain an aqueous aerosol.
次に、本発明化合物が有害節足動物防除組成物の有効成分として有効であることを試験例により示す。なお、本発明化合物は前記の化合物番号で表す。 Next, test examples show that the compounds of the present invention are effective as active ingredients of harmful arthropod control compositions. In addition, this invention compound is represented by the said compound number.
試験例1
 製剤例5により得られた本発明化合物(1)~(2)の各々の製剤を、有効成分濃度が500ppmとなるように水で希釈し、試験用薬液を調製した。直径5.5cmのポリエチレンカップの底に同大の濾紙を敷き、上記試験用薬液0.7mlを濾紙上に滴下し、餌としてショ糖30mgを均一に入れた。該ポリエチレンカップ内にイエバエ(Musca domestica)雌成虫10頭を放ち、蓋をした。24時間後にイエバエの生死を調査し、下記式により死虫率を求めた。
 死虫率(%)=(死亡虫数/供試虫数)×100
 その結果、本発明化合物(1)~(2)の処理において死虫率100%を示した。
試験例2
 製剤例5により得られた本発明化合物(1)~(2)の各々の製剤を、有効成分濃度が500ppmとなるように水で希釈し、試験用薬液を調製した。上記試験用薬液0.7mlをイオン交換水100mlに加えた(有効成分濃度3.5ppm)。該液中にアカイエカ(Culex pipiens pallens)終令幼虫20頭を放ち、8日後にその生死を調査し、下記式により死虫率を求めた。
 死虫率(%)=(死亡虫数/供試虫数)×100
 その結果、本発明化合物式(1)~(2)の処理において死虫率90%以上を示した。
試験例3
 製剤例5により得られた本発明化合物(1)~(2)の各々の製剤を、有効成分濃度が500ppmとなるように水で希釈し、試験用薬液を調製した。3~4葉期のキャベツ(Brassicae oleracea)に上記試験用薬液20mLを散布した。該試験用薬液が乾いた後、地上部を切り取り、コナガ(Plutella xylostella)2令幼虫5頭とともにポリエチレンカップ(容量100mL)に収容し25℃で保管し、5日後に生存虫数を調査し、下記式により死虫率を求めた。
 死虫率(%)=(死亡虫数/供試虫数)×100
 その結果、本発明化合物(1)~(2)の処理において死虫率100%を示した。
Test example 1
Each formulation of the present compounds (1) to (2) obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution. A filter paper of the same size was laid on the bottom of a polyethylene cup having a diameter of 5.5 cm, 0.7 ml of the test chemical solution was dropped onto the filter paper, and 30 mg of sucrose was uniformly added as a bait. Ten female fly (Musca domestica) females were released into the polyethylene cup and capped. The life and death of the housefly was investigated 24 hours later, and the mortality rate was determined by the following formula.
Death rate (%) = (Number of dead insects / number of test insects) × 100
As a result, the treatment with the compounds (1) and (2) of the present invention showed a mortality rate of 100%.
Test example 2
Each formulation of the present compounds (1) to (2) obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution. 0.7 ml of the test chemical solution was added to 100 ml of ion-exchanged water (active ingredient concentration: 3.5 ppm). Twenty dead larvae of Culex pipiens pallens were released into the liquid, and their viability was investigated after 8 days, and the mortality rate was determined by the following formula.
Death rate (%) = (Number of dead insects / number of test insects) × 100
As a result, the death rate was 90% or more in the treatments of the compound formulas (1) to (2) of the present invention.
Test example 3
Each formulation of the present compounds (1) to (2) obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution. 20 mL of the test chemical solution was sprayed on cabbage (Brassicae oleracea) at the 3-4 leaf stage. After the test chemical solution is dried, the above-ground part is cut off, stored in a polyethylene cup (capacity 100 mL) together with 5 second-ordered larvae (Plutella xylostella), stored at 25 ° C., and after 5 days, the number of surviving insects is investigated. The mortality rate was calculated by the following formula.
Death rate (%) = (Number of dead insects / number of test insects) × 100
As a result, the treatment with the compounds (1) and (2) of the present invention showed a mortality rate of 100%.
試験例4
製剤例5により得られた本発明化合物(1)~(2)の各々の製剤を、有効成分濃度が500ppmとなるように水で希釈し、試験用薬液を調製した。直径5.5cmのポリエチレンカップの底に同大の濾紙を敷き、厚さ6mmにスライスして更に半分に切った人工飼料:インセクタLF(日本農産工業)をその上に置き、上記試験用薬液2mLを灌注した。該試験用希釈液を風乾させた後、ハスモンヨトウ(Spodoptela litura)4齢幼虫5頭を放ち、蓋をした。6日後に生存虫数を調査し、下記式により死虫率を求めた。
死虫率(%)=(死亡虫数/供試虫数)×100
その結果、本発明化合物(1)~(2)の処理において死虫率100%を示した。
試験例5
製剤例5により得られた本発明化合物(1)の製剤を、有効成分濃度が500ppmとなるように水で希釈し、試験用薬液を調製した。
直径5.5cmのポリエチレンカップの底に同大の濾紙を敷き、厚さ2mmにスライスした人工飼料:シルクメイト2S(日本農産工業)をその上に置き、上記試験用薬液(500ppm)1mLを灌注した。該試験用希釈液を風乾させた後、当該人工飼料の上に直径5.5cmのろ紙をのせ、その上にリンゴコカクモンハマキ(Adox ophyes orana)初齢幼虫30頭を放ち、蓋をした。7日後に生存虫数を調査し、下記式により死虫率を求めた。
死虫率(%)=(死亡虫数/供試虫数)×100
その結果、本発明化合物(1)の処理において死虫率100%を示した。
試験例6
製剤例5により得られた本発明化合物(1)の製剤を有効成分濃度が500ppmとなるように水で希釈し、試験用散布液を調製した。一方、ポリエチレンカップにキュウリを植え、第1本葉が展開するまで生育させ、そこにワタアブラムシ約20頭を寄生させた。1日後、そのキュウリに上記の試験用散布液を20ml/カップの割合で散布した。散布6日後にワタアブラムシの数を調査し、次の式により防除価を求めた。
防除価(%)={1−(Cb×Tai)/(Cai×Tb)}×100
なお、式中の文字は以下の意味を表す。
Cb:無処理区の処理前の虫数
Cai:無処理区の観察時の虫数
Tb:処理区の処理前の虫数
Tai:処理区の観察時の虫数
その結果、本発明化合物(1)の処理において死虫率90%以上を示した。
Test example 4
Each formulation of the present compounds (1) to (2) obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution. Artificial fodder: Insector LF (Nippon Agricultural Industries) placed on the bottom of a 5.5 cm diameter polyethylene cup with the same size filter paper, sliced to 6 mm thickness and cut in half, and 2 mL of the above test chemical solution Was irrigated. After the test dilution was air-dried, 5 4th instar larvae of Spodoptera litura were released and capped. Six days later, the number of surviving insects was examined, and the death rate was determined by the following formula.
Death rate (%) = (Number of dead insects / number of test insects) × 100
As a result, the treatment with the compounds (1) and (2) of the present invention showed a mortality rate of 100%.
Test Example 5
The preparation of Compound (1) of the present invention obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test drug solution.
Artificial fodder: Silk Mate 2S (Nippon Agricultural Industry) sliced to a thickness of 2 mm is placed on the bottom of a 5.5 cm diameter polyethylene cup, and 1 mL of the test chemical solution (500 ppm) is irrigated. did. After the test dilution was air-dried, a filter paper having a diameter of 5.5 cm was placed on the artificial feed, and 30 first-instar larvae of Adox ophyces orana were released on the artificial feed and capped. Seven days later, the number of surviving insects was examined, and the death rate was calculated according to the following formula.
Death rate (%) = (Number of dead insects / number of test insects) × 100
As a result, the death rate was 100% in the treatment with the compound (1) of the present invention.
Test Example 6
The preparation of the compound (1) of the present invention obtained in Formulation Example 5 was diluted with water so that the active ingredient concentration was 500 ppm to prepare a test spray solution. On the other hand, a cucumber was planted in a polyethylene cup and allowed to grow until the first true leaf developed, and about 20 cotton aphids were infested there. One day later, the test spray solution was sprayed onto the cucumber at a rate of 20 ml / cup. Six days after spraying, the number of cotton aphids was investigated, and the control value was determined by the following formula.
Control value (%) = {1− (Cb × Tai) / (Cai × Tb)} × 100
In addition, the character in a formula represents the following meaning.
Cb: number of insects before treatment in the untreated group Cai: number of insects when observed in the untreated group Tb: number of insects before treatment of the treated group Tai: number of insects during observation of the treated group As a result, the compound of the present invention (1 ) Showed a death rate of 90% or more.
試験例7
本発明化合物(1)の所定濃度0.125%(w/v)のアセトン溶液を調製した。該アセトン溶液1μlをチャバネゴキブリ雌成虫(Blattella germanica)の胸部腹面側に滴下処理した後、供試虫を直径約9cm、高さ約4.5cmのプラスチックカップへ移し、餌及び水と共に25℃で放置した。7日後に生存虫数を調査し、下記式により死虫率を求めた。
死虫率(%)=(死亡虫数/供試虫数)×100
その結果、本発明化合物(1)の処理において死虫率100%を示した。
試験例8
 本発明化合物(1)および(2)について、ガラス面に処理した際に表1に示すような薬量(mg/m)となるようにアセトン溶液を調製した。アセトン溶液0.2mLを、ガラス製スクリュー管および蓋(株式会社マルエム製 NO.5)の内壁に均一に塗布した。乾燥後、該スクリュー管内に供試ダニ(フタトゲチマダニ、未吸血若ダニ、1群10頭)を入れ、蓋を閉じて密封し、2日後に致死数を調査し、以下の計算式で死虫率を算出した。
 死虫率(%)=100×(死亡マダニ数/供試マダニ数)
また、比較対照として参考製造例12により得られた比較化合物(a)
および下式
Figure JPOXMLDOC01-appb-I000039
で示されるN’−{2−クロロ−5−[5−(3,5−ジクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}シクロプロパンカルボヒドラジド(特開2010−090344号公報記載のPresent Compound(13)以下、比較化合物(b)と記す。)
および下式
Figure JPOXMLDOC01-appb-I000040
で示されるN’−{2−クロロ−5−[5−(3,5−ジクロロフェニル)−5−トリフルオロメチル−4,5−ジヒドロイソオキサゾール−3−イル]フェニル}−4,4,4−トリフルオロブチロヒドラジド(特開2010−090344号公報記載のPresent Compound(17)、以下比較化合物(c)を用いて同様に試験を行った。
結果を、[表1]に記す。
Figure JPOXMLDOC01-appb-T000041
Test Example 7
An acetone solution of the present compound (1) having a predetermined concentration of 0.125% (w / v) was prepared. After 1 μl of the acetone solution was dropped on the chest abdominal surface of adult German cockroach (Blatella germanica), the test worm was transferred to a plastic cup having a diameter of about 9 cm and a height of about 4.5 cm, and left at 25 ° C. with food and water. did. Seven days later, the number of surviving insects was examined, and the death rate was calculated according to the following formula.
Death rate (%) = (Number of dead insects / number of test insects) × 100
As a result, the death rate was 100% in the treatment with the compound (1) of the present invention.
Test Example 8
About this invention compound (1) and (2), the acetone solution was prepared so that it might become a dosage (mg / m < 2 >) as shown in Table 1 when processing on a glass surface. 0.2 mL of an acetone solution was uniformly applied to the inner wall of a glass screw tube and a lid (No. 5 manufactured by Marum Corp.). After drying, put a test tick (Tetula tick, non-blood-sucking young tick, 10 per group) in the screw tube, close the lid and seal, investigate the number of lethals two days later, and calculate the death rate by the following formula: Was calculated.
Death rate (%) = 100 x (number of dead ticks / number of test ticks)
Moreover, the comparative compound (a) obtained by Reference Production Example 12 as a comparative control
And the following formula
Figure JPOXMLDOC01-appb-I000039
N ′-{2-chloro-5- [5- (3,5-dichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} cyclopropanecarbohydrazide (Present Compound (13) described in Japanese Unexamined Patent Publication No. 2010-090344, hereinafter referred to as Comparative Compound (b).)
And the following formula
Figure JPOXMLDOC01-appb-I000040
N ′-{2-chloro-5- [5- (3,5-dichlorophenyl) -5-trifluoromethyl-4,5-dihydroisoxazol-3-yl] phenyl} -4,4,4 -Trifluorobutyrohydrazide (Present Compound (17) described in JP 2010-090344 A, hereinafter referred to as Comparative Compound (c)) was similarly tested.
The results are shown in [Table 1].
Figure JPOXMLDOC01-appb-T000041
 本発明化合物は、有害節足動物防除剤の有効成分として有用である。 The compound of the present invention is useful as an active ingredient of a harmful arthropod control agent.

Claims (5)

  1.  式(1)
    Figure JPOXMLDOC01-appb-I000001
    〔式中、Xは塩素原子であり、Rは水素原子であり、Xは塩素原子またはフッ素原子であり、Xが塩素原子である場合、Rはシクロプロキル基であり、Xがフッ素原子である場合、Rは3,3,3−トリフルオロプロピル基である。〕で表されるヒドラジド化合物。
    Formula (1)
    Figure JPOXMLDOC01-appb-I000001
    Wherein, X 1 is a chlorine atom, R 1 is hydrogen atom, X 2 is chlorine atom or fluorine atom, if X 2 is a chlorine atom, R 2 is Shikuropurokiru group, X 2 Is a fluorine atom, R 2 is a 3,3,3-trifluoropropyl group. ] The hydrazide compound represented by this.
  2.  Rがシクロプロキル基である請求項1に記載の化合物。 The compound according to claim 1, wherein R 2 is a cyclopropyl group.
  3.  Rが3,3,3−トリフルオロプロピル基である請求項1に記載の化合物。 The compound according to claim 1, wherein R 2 is a 3,3,3-trifluoropropyl group.
  4.  請求項1~請求項3いずれか一項に記載のヒドラジド化合物を有効成分として含有することを特徴とする有害節足動物防除剤。 A harmful arthropod control agent comprising the hydrazide compound according to any one of claims 1 to 3 as an active ingredient.
  5.  請求項1~請求項3いずれか一項に記載のヒドラジド化合物の有効量を有害節足動物又は有害節足動物の生息場所に施用することを特徴とする有害節足動物の防除方法。 A method for controlling harmful arthropods, which comprises applying an effective amount of the hydrazide compound according to any one of claims 1 to 3 to harmful arthropods or habitats of harmful arthropods.
PCT/JP2014/068372 2013-07-08 2014-07-03 Hydrazide compound, and use thereof for controlling harmful arthropods WO2015005408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142352 2013-07-08
JP2013-142352 2013-07-08

Publications (1)

Publication Number Publication Date
WO2015005408A1 true WO2015005408A1 (en) 2015-01-15

Family

ID=52280086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068372 WO2015005408A1 (en) 2013-07-08 2014-07-03 Hydrazide compound, and use thereof for controlling harmful arthropods

Country Status (2)

Country Link
JP (1) JP2015034158A (en)
WO (1) WO2015005408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061914A1 (en) * 2020-09-28 2022-03-31 台州臻挚生物科技有限公司 Method for preparing 3,5-dihalotrifluoroacetophenone and derivative thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105814A1 (en) * 2006-03-10 2007-09-20 Nissan Chemical Industries, Ltd. Substituted isoxazoline compound and pest control agent
WO2010090344A1 (en) * 2009-02-06 2010-08-12 Sumitomo Chemical Company, Limited Hydrazide compound and use of the same in pest control
JP2011178673A (en) * 2010-02-26 2011-09-15 Nissan Chem Ind Ltd Control method for non-agricultural/horticultural insect pest

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105814A1 (en) * 2006-03-10 2007-09-20 Nissan Chemical Industries, Ltd. Substituted isoxazoline compound and pest control agent
WO2010090344A1 (en) * 2009-02-06 2010-08-12 Sumitomo Chemical Company, Limited Hydrazide compound and use of the same in pest control
JP2011178673A (en) * 2010-02-26 2011-09-15 Nissan Chem Ind Ltd Control method for non-agricultural/horticultural insect pest

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022061914A1 (en) * 2020-09-28 2022-03-31 台州臻挚生物科技有限公司 Method for preparing 3,5-dihalotrifluoroacetophenone and derivative thereof

Also Published As

Publication number Publication date
JP2015034158A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP5747440B2 (en) Hydrazide compound and its use for pest control
JP6060263B2 (en) Condensed oxazole compounds and their use for pest control
JP5256753B2 (en) Isoxazoline compounds and their pest control applications
JP5540640B2 (en) Heterocyclic compounds and their use for controlling harmful arthropods
CN101679374A (en) Hydrazide compound and harmful arthropod-controlling agent containing the same
JP2016511220A (en) Pest control composition and use thereof
KR20090129459A (en) Hydrazide compound and harmful arthropod-controlling agent containing the same
US20120022055A1 (en) Pest controlling composition
JP5527686B2 (en) Harmful arthropod control composition and harmful arthropod control method
JP2014111558A (en) Pest controlling composition and its use
JP2012102089A (en) Pyrimidine compound and use thereof for harmful organism control
JP5315828B2 (en) Fluorine-containing organic sulfur compounds and their harmful arthropod control agents
WO2014002754A1 (en) Amide compound and use thereof for pest control
CN108137502A (en) Pyridine compounds
JP2014065675A (en) Pest controlling composition and use thereof
CN110198942B (en) Fused heterocyclic compound and composition containing the same
KR20110132341A (en) Insecticidal composition comprising an anthranilic hydrazide derivative and a pyrethroid
JP2011105705A (en) Pyron compound and usage thereof for pest control
JP2009073776A (en) Heterocyclic compound and harmful arthropod controller
WO2015005408A1 (en) Hydrazide compound, and use thereof for controlling harmful arthropods
JP2019094290A (en) Pyrazine compound
JP5423011B2 (en) Nitrile compounds and their use for controlling harmful arthropods
JP2010168328A (en) N-phenylimine compound and use thereof for pest control
JP2009143872A (en) Heterocyclic compound and harmful arthropod controlling agent thereof
JP2015059116A (en) Hydrazide compound and its application for controlling harmful arthropod

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14822987

Country of ref document: EP

Kind code of ref document: A1