WO2015005235A1 - Glass - Google Patents

Glass Download PDF

Info

Publication number
WO2015005235A1
WO2015005235A1 PCT/JP2014/067889 JP2014067889W WO2015005235A1 WO 2015005235 A1 WO2015005235 A1 WO 2015005235A1 JP 2014067889 W JP2014067889 W JP 2014067889W WO 2015005235 A1 WO2015005235 A1 WO 2015005235A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
sio
cao
temperature
mgo
Prior art date
Application number
PCT/JP2014/067889
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 林
三和 晋吉
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to US14/901,248 priority Critical patent/US10173922B2/en
Priority to KR1020157020091A priority patent/KR102265030B1/en
Priority to CN201480022055.0A priority patent/CN105121374A/en
Priority to KR1020217001728A priority patent/KR102359866B1/en
Priority to KR1020227003656A priority patent/KR102646604B1/en
Publication of WO2015005235A1 publication Critical patent/WO2015005235A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to glass, and more specifically to glass suitable for substrates of organic EL (OLED) displays and liquid crystal displays. Further, the present invention relates to a glass suitable for a substrate of an oxide TFT and a low temperature p-Si.TFT (LTPS) driven display.
  • OLED organic EL
  • LTPS low temperature p-Si.TFT
  • an OLED display or a liquid crystal display driven by LTPS is suitable.
  • An OLED display emits light when a current flows through an OLED element constituting a pixel.
  • a material having low resistance and high electron mobility is used as the driving TFT element.
  • an oxide TFT typified by IGZO (indium, gallium, zinc oxide) has attracted attention.
  • An oxide TFT has low resistance and high mobility, and can be formed at a relatively low temperature.
  • Conventional p-Si TFTs, especially LTPS form elements on a large-area glass plate due to the instability of an excimer laser used when polycrystallizing an amorphous Si (a-Si) film.
  • the TFT characteristics are likely to vary, and screen display unevenness is likely to occur in TV applications.
  • an oxide TFT has been attracting attention as an effective TFT forming material because it has excellent uniformity of TFT characteristics when an element is formed on a large-area glass plate, and has already been put into practical use in part.
  • the alkali component in the glass is large, alkali ions are diffused into the semiconductor material on which the film is formed during the heat treatment, and the characteristics of the film are deteriorated. Therefore, the content of alkali components (particularly, Li component and Na component) is low or not substantially contained.
  • Various chemicals such as acid and alkali are used in the photolithography etching step. Therefore, it has excellent chemical resistance.
  • the glass plate is heat-treated at a temperature of several hundred degrees Celsius in steps such as film formation and annealing. When the glass plate is thermally contracted during the heat treatment, pattern deviation or the like is likely to occur. Therefore, heat shrinkage is difficult, especially the strain point is high.
  • the coefficient of thermal expansion is close to that of a member (for example, a-Si, p-Si) formed on a glass plate.
  • the thermal expansion coefficient is 30 to 40 ⁇ 10 ⁇ 7 / ° C.
  • the thermal shock resistance is also improved.
  • the Young's modulus (or specific Young's modulus) is high in order to suppress defects caused by the bending of the glass plate.
  • the following properties (6) and (7) are required for glass.
  • (6) Excellent meltability in order to prevent melting defects such as bubbles, blisters and striae.
  • (7) Excellent devitrification resistance to avoid generation of foreign matter in the glass plate.
  • the present invention has been made in view of the above circumstances, and its technical problem is to create a glass suitable for LTPS, an OLED display driven by an oxide TFT element, and a liquid crystal display. Specifically, The idea is to create a glass with high devitrification resistance even when the strain point and Young's modulus are high.
  • SiO 2 —Al 2 O 3 —B 2 O 3 —RO (RO is one or more of MgO, CaO, SrO, BaO) system. Focusing on glass, it can be found that if the contents of SiO 2 , Al 2 O 3 , B 2 O 3 and RO are optimized, the strain point, Young's modulus, etc. are improved, and SiO 2 -Al is used as the initial phase. When 2 or more kinds of 2 O 3 -RO crystal, SiO 2 crystal, and SiO 2 -Al 2 O 3 crystal are precipitated, the glass is stabilized and the devitrification resistance is remarkably improved. I found out.
  • the glass of the present invention contains SiO 2 , Al 2 O 3 , B 2 O 3 and RO as a glass composition, and precipitates in the temperature range from the liquidus temperature (liquidus temperature ⁇ 50 ° C.).
  • the liquidus temperature is obtained by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat and holding it in a temperature gradient furnace for 24 hours. The boat is taken out and set to the highest temperature at which devitrification (crystal foreign matter) is observed inside the glass by microscopic observation.
  • the “ ⁇ system crystal” refers to a crystal composed of explicit components.
  • the SiO 2 —Al 2 O 3 —RO based crystal is preferably a SiO 2 —Al 2 O 3 —CaO based crystal.
  • the SiO 2 —Al 2 O 3 —RO based crystal is preferably anorthite
  • the SiO 2 based crystal is cristobalite
  • the SiO 2 —Al 2 O 3 based crystal is preferably mullite.
  • the glass of the present invention preferably has a liquidus temperature lower than 1250 ° C.
  • the content of Li 2 O + Na 2 O + K 2 O in the glass composition is less than 0.5 wt%. In this way, it becomes easy to prevent a situation where alkali ions are diffused into the deposited semiconductor material during the heat treatment and the characteristics of the film are deteriorated.
  • Li 2 O + Na 2 O + K 2 O refers to the total amount of Li 2 O, Na 2 O and K 2 O.
  • the glass of the present invention has a glass composition of mass%, SiO 2 57-70%, Al 2 O 3 16-25%, B 2 O 3 1-8%, MgO 0-5%, CaO 2-13%. , SrO 0-6%, BaO 0-7%, ZnO 0-5%, ZrO 2 0-5%, TiO 2 0-5%, P 2 O 5 0-5%, molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is preferably 0.8 to 1.3, and the molar ratio CaO / Al 2 O 3 is preferably 0.3 to 1.0.
  • MgO + CaO + SrO + BaO refers to the total amount of MgO, CaO, SrO and BaO.
  • the glass of the present invention as a glass composition, in mass%, SiO 2 58 ⁇ 70% , Al 2 O 3 16 ⁇ 25%, B 2 O 3 2 ⁇ 7%, MgO 0 ⁇ 5%, CaO 3 ⁇ 13% , SrO 0-6%, BaO 0-6%, ZnO 0-5%, ZrO 2 0-5%, TiO 2 0-5%, P 2 O 5 0-5%, SnO 2 0-5%
  • the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 0.8 to 1.3, the molar ratio CaO / Al 2 O 3 is 0.3 to 1.0, and substantially Li 2 O, Na 2 O. It is preferable not to contain.
  • substantially does not contain refers to the case where the content of the explicit component is 0.1% or less (preferably 0.05% or less), for example, “substantially contains Li 2 O”. “No” refers to the case where the content of Li 2 O is 0.1% or less (preferably 0.05% or less).
  • the glass of the present invention preferably has a molar ratio CaO / MgO of 2 to 20.
  • the glass of the present invention preferably has a strain point of 700 ° C. or higher.
  • strain point refers to a value measured based on the method of ASTM C336.
  • the glass of the present invention preferably has a Young's modulus of 75 GPa or more. “Young's modulus” refers to a value measured by a dynamic elastic modulus measurement method (resonance method) based on JIS R1602.
  • the glass of the present invention preferably has a specific Young's modulus of 30 GPa / (g / cm 3 ) or more.
  • specific Young's modulus is a value obtained by dividing Young's modulus by density.
  • the glass of the present invention has a flat plate shape and is preferably used for a liquid crystal display.
  • the glass of the present invention has a flat plate shape and is preferably used for an OLED display.
  • the glass of the present invention has a flat plate shape and is preferably used for an oxide TFT drive display.
  • crystals precipitated in the temperature range from the liquidus temperature are SiO 2 —Al 2 O 3 —RO crystal, SiO 2 crystal, SiO 2 —.
  • Al 2 O 3 -based crystals it has a property that two or more types of crystals are precipitated, and preferably has a property that three types of crystals are precipitated.
  • the glass is stabilized and the liquidus temperature is greatly reduced.
  • a glass satisfying the above required characteristics (1) to (7) can be easily obtained if it is a glass in which a plurality of the crystals are precipitated near the liquidus temperature.
  • SiO 2 —Al 2 O 3 —RO based crystal SiO 2 —Al 2 O 3 —CaO based crystal is preferable, and anorthite is particularly preferable.
  • SiO 2 crystal cristobalite is preferable.
  • Mullite is preferred as the SiO 2 —Al 2 O 3 based crystal. If a glass in which a plurality of the crystals are precipitated near the liquidus temperature is obtained, it becomes easier to obtain a glass satisfying the required characteristics (1) to (7), particularly (7).
  • the glass of the present invention has a glass composition of mass%, SiO 2 57-70%, Al 2 O 3 16-25%, B 2 O 3 1-8%, MgO 0-5%, CaO 2-13%. , SrO 0-6%, BaO 0-7%, ZnO 0-5%, ZrO 2 0-5%, TiO 2 0-5%, P 2 O 5 0-5%, molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is preferably 0.8 to 1.3, and the molar ratio CaO / Al 2 O 3 is preferably 0.3 to 1.0.
  • the reason why the content of each component is regulated as described above will be described below. In addition, in description of each component, the following% display points out the mass% unless there is particular notice.
  • the preferred upper limit content of SiO 2 is 70%, 68%, 66% or 65%, especially 64%, and the preferred lower limit content is 57%, 58%, 59% or 60%, especially 61%.
  • the most preferable content range is 61 to 64%.
  • the content of Al 2 O 3 When the content of Al 2 O 3 is too low, the strain point is lowered, the thermal shrinkage value is increased, the Young's modulus is lowered, and the glass plate is easily bent. On the other hand, if the content of Al 2 O 3 is too high, the BHF (buffered hydrofluoric acid) resistance is lowered, and the glass surface is likely to become cloudy and the crack resistance is liable to be lowered. Furthermore, SiO 2 —Al 2 O 3 -based crystals, particularly mullite, precipitate in the glass, and the liquidus viscosity tends to decrease.
  • the preferred upper limit content of Al 2 O 3 is 25%, 23%, 22% or 21%, especially 20%, and the preferred lower limit content is 16%, 17% or 17.5%, In particular, it is 18%. The most preferable content range is 18 to 20%.
  • B 2 O 3 is a component that works as a flux and lowers viscosity to improve meltability.
  • the content of B 2 O 3 is preferably 1 to 8%, 2 to 8%, 3 to 7.5%, 3 to 7% or 4 to 7%, particularly preferably 5 to 7%.
  • the content of B 2 O 3 is too low, it does not sufficiently act as a flux, and the BHF resistance and crack resistance are likely to decrease. In addition, the liquidus temperature is likely to rise.
  • the content of B 2 O 3 is too high, the strain point, heat resistance, and acid resistance tend to decrease. In particular, when the content of B 2 O 3 is 7% or more, the tendency becomes remarkable. If the content of B 2 O 3 is too high, it decreases Young's modulus, tends large amount of deflection of the glass plate.
  • the mass ratio Al 2 O 3 / B 2 O 3 is preferably 1 to 5, 1.5 to 4.5, or 2 to 4, particularly preferably 2.5 to 3. .5.
  • MgO is a component that improves the meltability by lowering the high temperature viscosity without lowering the strain point. MgO has the effect of reducing the density most in RO. However, when it is introduced excessively, SiO 2 -based crystals, particularly cristobalite, are precipitated, and the liquidus viscosity tends to decrease. Further, MgO is a component that easily reacts with BHF or hydrofluoric acid to form a product. This reaction product may adhere to the element on the surface of the glass plate or adhere to the glass plate, causing the element or the glass plate to become cloudy. Therefore, the content of MgO is preferably 0 to 5%, more preferably 0.01 to 4%, still more preferably 0.03 to 3%, and most preferably 0.05 to 2.5%.
  • CaO like MgO, is a component that lowers the high temperature viscosity without lowering the strain point and significantly improves the meltability. If the CaO content is too high, SiO 2 -Al 2 O 3 -RO-based crystals, especially anorthite, precipitate, the liquidus viscosity tends to decrease, and the BHF resistance decreases, resulting in a reaction product. There is a possibility that an object sticks to the element on the surface of the glass plate or adheres to the glass plate, causing the element or the glass plate to become cloudy.
  • the preferred upper limit content of CaO is 12%, 11% or 10.5%, especially 10%, and the preferred lower limit content is 2%, 3% or 3.5%, especially 4%. is there. The most preferable content range is 4 to 10%.
  • the preferable upper limit value of the molar ratio CaO / Al 2 O 3 is 1.0, 0.9, 0.85, 0.8, 0.78 or 0.76, particularly 0.75, and the preferable lower limit value. Is 0.3, 0.4, 0.5, 0.55, 0.58, 0.60, 0.62 or 0.64, in particular 0.65.
  • molar ratio CaO / MgO When the molar ratio CaO / MgO is adjusted to a predetermined range, two or more types of crystals are likely to precipitate at a temperature near the liquidus temperature. When the molar ratio CaO / MgO is small, SiO 2 -based crystals are likely to precipitate. On the other hand, when the molar ratio CaO / MgO increases, SiO 2 —Al 2 O 3 —CaO based crystals tend to precipitate.
  • a preferable upper limit value of the molar ratio CaO / MgO is 20, 17, 14, 12, 10 or 8, particularly 6, and a preferable lower limit value is 2, 2.5, 2.8, 3.1, 3. 3, 3.5 or 3.8, especially 4.
  • SrO is a component that enhances chemical resistance and devitrification resistance. However, if the ratio is excessively increased in the entire RO, the meltability tends to decrease and the density and the thermal expansion coefficient easily increase. . Therefore, the content of SrO is preferably 0 to 6% or 0 to 5%, particularly preferably 0 to 4.5%.
  • BaO is a component that enhances chemical resistance and devitrification resistance, but if its content is too high, the density tends to increase. Moreover, BaO has a poor effect of improving the meltability in RO. Glass containing SiO 2 , Al 2 O 3 , B 2 O 3 and RO in the glass composition is generally difficult to melt. Therefore, from the viewpoint of supplying a high-quality glass plate at a low cost and in large quantities, it is necessary to improve the meltability. It is very important to reduce the defect rate due to bubbles, foreign matters and the like. Therefore, the content of BaO is preferably 0 to 7%, 0 to 6% or 0.1 to 5%, particularly preferably 0.5 to 4%.
  • MgO, SrO, and BaO have the property of improving crack resistance compared to CaO. Therefore, the content of MgO + SrO + BaO (total amount of MgO, SrO and BaO) is preferably 2% or more or 3% or more, particularly preferably more than 3%. However, if the content of MgO + SrO + BaO is too high, the density and the thermal expansion coefficient tend to increase. Therefore, the content of MgO + SrO + BaO is preferably 9% or less or 8% or less.
  • the liquidus temperature is drastically lowered, and it is difficult for crystal foreign matter to be generated in the glass, thereby improving the meltability and formability.
  • the content of MgO + CaO + SrO + BaO is preferably less than 15% or less than 14%, particularly preferably less than 13%.
  • the preferred upper limit of the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 1.3, 1.25, 1.2, 1.15 or 1.10, particularly 1.08, and the preferred lower limit is 0. .8, 0.85, 0.88, 0.91, 0.93, 0.95 or 0.96, especially 0.97.
  • the mass ratio CaO / (MgO + SrO + BaO) is preferably 0.7 or more, 0.8 or more or 0.9 or more, particularly preferably 1 or more, and the mass ratio CaO / MgO Is preferably 2 or more, 3 or more, or 4 or more, particularly preferably 5 or more.
  • ZnO is a component that improves meltability and BHF resistance. However, if its content is too high, the glass tends to devitrify or the strain point decreases, making it difficult to ensure heat resistance. . Therefore, the content of ZnO is preferably 0 to 5%, particularly preferably 0 to 1%.
  • ZrO 2 is a component that enhances chemical durability. However, when the amount of ZrO 2 is increased, devitrification of ZrSiO 4 tends to occur.
  • the preferred lower limit of ZrO 2 content is 1%, 0.5%, 0.3% or 0.2%, especially 0.1%, and 0.005% or more is introduced from the viewpoint of chemical durability. It is preferable to do. The most preferable content range is 0.005 to 0.1%.
  • ZrO 2 may be introduced from a raw material or may be introduced by elution from a refractory.
  • TiO 2 has the effect of lowering the high-temperature viscosity to increase the meltability and the chemical durability, but when the amount introduced is excessive, the ultraviolet transmittance tends to decrease.
  • the content of TiO 2 is preferably 3% or less, 1% or less, 0.5% or less, 0.1% or less or 0.05% or less, particularly preferably 0.03% or less. If a very small amount of TiO 2 is introduced (for example, 0.001% or more), an effect of suppressing coloring by ultraviolet rays can be obtained.
  • P 2 O 5 is a component that increases the strain point and is effective for precipitating two or more types of crystals by suppressing the precipitation of SiO 2 —Al 2 O 3 —RO-based crystals, particularly anorthite. It is an ingredient. However, when P 2 O 5 is contained in a large amount, the glass is likely to undergo phase separation.
  • the content of P 2 O 5 is preferably 0 to 5%, 0 to 3%, 0 to 2% or 0 to 1%, particularly preferably 0 to 0.5%.
  • metal powder such as As 2 O 3 , Sb 2 O 3 , SnO 2 , SO 3 , Fe 2 O 3 , CeO 2 , F 2 , Cl 2 , C, Al, Si, or the like can be used. .
  • the total content is preferably 3% or less.
  • As 2 O 3 and Sb 2 O 3 are environmentally hazardous chemicals, so it is desirable not to use them as much as possible.
  • the contents of As 2 O 3 and Sb 2 O 3 are less than 0.3%, less than 0.1%, less than 0.09%, less than 0.05%, less than 0.03%, and less than 0.01%, respectively. Alternatively, it is preferably less than 0.005%, particularly preferably less than 0.003%.
  • SnO 2 functions as a fining agent for reducing bubbles in the glass and has an effect of maintaining a relatively high ultraviolet transmittance when coexisting with Fe 2 O 3 or FeO.
  • the preferable upper limit content of SnO 2 is 0.5% or 0.4%, particularly 0.3%, and the preferable lower limit content is 0.01% or 0.05%. 1%.
  • the content of Fe 2 O 3 or FeO in terms of Fe 2 O 3 is from 0.01 to 0.05%, is introduced to SnO 2 0.01 ⁇ 0.5%, bubble quality and UV transmittance The rate can be increased.
  • “Fe 2 O 3 conversion” refers to a value obtained by converting the total Fe amount to the Fe 2 O 3 amount regardless of the valence.
  • Iron is a component mixed from the raw material as an impurity, but if the iron content is too high, the ultraviolet transmittance may be lowered. When the ultraviolet transmittance is lowered, there is a possibility that a defect may occur in a photolithography process for manufacturing a TFT or a liquid crystal alignment process using ultraviolet rays. Therefore, the preferable upper limit content of iron is 0.001% in terms of Fe 2 O 3 , and the preferable lower limit content is 0.05% and 0.04% in terms of Fe 2 O 3. Or 0.03%, especially 0.02%. The most preferable content range is 0.001% to 0.02%.
  • Cr 2 O 3 is a component mixed from the raw material as an impurity, but if the content of Cr 2 O 3 is too high, light enters from the end face of the glass plate, and the foreign matter inside the glass plate is inspected by scattered light. In such a case, it is difficult to transmit light, and there is a possibility that a defect may occur in the foreign substance inspection. In particular, this problem is likely to occur when the substrate size is 730 mm ⁇ 920 mm or more. Further, the thickness of the glass plate is small (for example 0.5mm or less, 0.4 mm or less, or 0.3mm or less), since the light incident from the glass plate end face is reduced, to restrict the content of Cr 2 O 3 Significance increases.
  • the preferable upper limit content of Cr 2 O 3 is 0.001%, 0.0008%, 0.0006% or 0.0005%, particularly 0.0003%, and the preferable lower limit content is 0.00001%. It is.
  • the most preferable content range is 0.00001 to 0.0003%.
  • Rh 2 O 3 may be mixed from a platinum production container.
  • the content of Rh 2 O 3 is preferably 0 to 0.0005%, more preferably 0.00001 to 0.0001%.
  • SO 3 is a component mixed from the raw material as an impurity. However, if the content of SO 3 is too high, bubbles called reboil may be generated during melting and molding, which may cause defects in the glass. is there.
  • the preferable upper limit content of SO 3 is 0.005%, 0.003% or 0.002%, particularly 0.001%, and the preferable lower limit content is 0.0001%.
  • the most preferable content range is 0.0001% to 0.001%.
  • Alkaline components particularly Li 2 O and Na 2 O, are preferable to reduce their content to 0.5% in order to degrade the characteristics of various films and semiconductor elements formed on the glass plate. It is desirable not to contain.
  • the amount introduced is preferably 5% or less or 3% or less, particularly preferably 1% or less.
  • the density is preferably 2.52 g / cm 3 or less, 2.51 g / cm 3 or less, 2.50 g / cm 3 or less or 2.49 g / cm 3 or less, particularly preferably 2.48 / cm 3 or less.
  • the density is preferably 2.43 g / cm 3 or more, or 2.44 g / cm 3 or more, particularly preferably 2.45 g / cm 3 or more.
  • the thermal expansion coefficient is preferably 30 to 40 ⁇ 10 ⁇ 7 / ° C., 32 to 39 ⁇ 10 ⁇ 7 / ° C., or 33 to 38 ⁇ 10 ⁇ 7 / ° C., particularly preferably 34 to 37. ⁇ 10 -7 / ° C.
  • thermal expansion coefficient refers to an average thermal expansion coefficient measured in a temperature range of 30 to 380 ° C., and can be measured, for example, with a dilatometer.
  • a large-area glass plate for example, 730 ⁇ 920 mm or more, 1100 ⁇ 1250 mm or more, or 1500 ⁇ 1500 mm or more
  • a thin glass plate for example, a plate thickness of 0.1 mm or more. 5 mm or less, 0.4 mm or less, or 0.3 mm or less.
  • Specific modulus is preferably 30GPa / g ⁇ cm -3 or more, 30.5GPa / g ⁇ cm -3 or more, or 31GPa / g ⁇ cm -3 or more, and particularly preferably 31.5GPa / g ⁇ cm -3 or more It is. Also, when the glass plate becomes large and thin, warping of the glass plate becomes a problem after a heat treatment process on a surface plate or a film formation process of various metal films, oxide films, semiconductor films, organic films, etc. Become. In order to reduce the warpage of the glass plate, it is effective to increase the Young's modulus of the glass plate.
  • the Young's modulus is preferably 75 GPa or more, particularly preferably 76 GPa or more.
  • the process temperature of LTPS used in ultra-high-definition mobile displays is about 400-600 ° C.
  • the strain point is preferably 680 ° C. or higher or 690 ° C. or higher, particularly preferably 700 ° C. or higher.
  • oxide TFTs have been fabricated by a temperature process of 300 to 400 ° C. equivalent to a-Si. However, if annealing is performed at a higher heat treatment temperature than before, more stable device characteristics can be obtained. I understand.
  • the heat treatment temperature is about 400 to 600 ° C., and a glass plate with low heat shrinkage is required even in this application.
  • the heat shrinkage value is preferably 5 ppm or more, particularly preferably 8 ppm or more.
  • the heat shrinkage value can also be reduced by reducing the cooling rate during molding.
  • the annealing point of glass be Ta (° C.)
  • R (° C./min) be the average cooling rate during molding in the temperature range from a temperature 100 ° C. higher than Ta to a temperature 100 ° C. lower than Ta. upon cooling during molding
  • logR ⁇ 0.00018361Ta 2 -0.23414Ta + 75.29 more preferably satisfies the relationship logR ⁇ 0.00011821Ta 2 -0.14847Ta + 47.03
  • LogR ⁇ 0.000054326Ta 2 ⁇ 0.064985Ta + 19.56 is more preferably satisfied.
  • the heat shrinkage value tends to be excessive.
  • molten glass flows down the surface of a wedge-shaped refractory (or a refractory coated with a platinum group metal), joins at the lower end of the wedge, and is formed into a plate shape.
  • a ribbon-shaped molten glass is flowed down from a platinum group metal pipe having a slit-shaped opening and cooled to be formed into a plate shape. If the temperature of the molten glass in contact with the forming apparatus is too high, the forming apparatus will be deteriorated, and the productivity of the glass plate will be easily lowered. Therefore, the temperature at a high temperature viscosity of 10 5.0 dPa ⁇ s is preferably 1300 ° C.
  • the “temperature at 10 5.0 dPa ⁇ s” can be measured by, for example, a platinum ball pulling method.
  • the temperature at a high temperature viscosity of 10 5.0 dPa ⁇ s corresponds to the temperature of the molten glass at the time of molding.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is preferably 1650 ° C. or lower, 1640 ° C. or lower, 1630 ° C. or lower, or 1620 ° C.
  • the “temperature at 10 2.5 dPa ⁇ s” can be measured by, for example, a platinum ball pulling method.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s corresponds to the melting temperature, and the lower this temperature, the better the meltability.
  • Devitrification resistance is important when molding by the downdraw method or the like.
  • the liquidus temperature is preferably less than 1250 ° C., 1230 ° C. or less, 1220 ° C. or less, 1210 ° C. Or 1200 ° C. or less, particularly preferably 1190 ° C. or less.
  • the liquidus viscosity is preferably 10 5.0 dPa ⁇ s or more, 10 5.2 dPa ⁇ s or more, 10 5.3 dPa ⁇ s or more, 10 5.4 dPa ⁇ s or more, or 10 5.5 dPa ⁇ s or more, and particularly preferably 10 5.6 dPa ⁇ s or more.
  • dPa ⁇ s or more refers to the viscosity of glass at the liquidus temperature, and can be measured by, for example, a platinum ball pulling method.
  • a transparent conductive film, an insulating film, a semiconductor film, a metal film, etc. are formed on a glass plate used for a high-definition display. Furthermore, various circuits and patterns are formed by a photolithography etching process. In these film forming process and photolithography etching process, the glass plate is subjected to various chemical treatments. For example, in a TFT type active matrix liquid crystal display, an insulating film or a transparent conductive film is formed on a glass plate, and a large number of amorphous silicon or polycrystalline silicon TFTs (thin film transistors) are formed on the glass plate by a photolithography etching process.
  • the glass of the present invention is preferably formed by an overflow down draw method.
  • the overflow down draw method is a method in which molten glass is overflowed from both sides of a wedge-shaped refractory, and the overflowed molten glass is merged at the lower end of the wedge shape, and is stretched downward to form a glass plate.
  • the surface to be the surface of the glass plate is not in contact with the refractory, and is formed in a free surface state. For this reason, it is possible to produce an unpolished glass plate with good surface quality at low cost, and it is easy to increase the area and thickness.
  • the material of the refractory used in the overflow downdraw method is not particularly limited as long as it can realize desired dimensions and surface accuracy.
  • the method of applying a force when performing downward stretch molding is not particularly limited.
  • a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass, or a plurality of pairs of heat-resistant rolls are contacted only near the end face of the glass. It is also possible to adopt a method of stretching by stretching.
  • a glass plate can be formed by, for example, a downdraw method (slot down method, redraw method, etc.), a float method, or the like.
  • the thickness is not particularly limited, but is preferably 0.5 mm or less, 0.4 mm or less, or 0.35 mm or less, particularly preferably 0.3 mm or less.
  • the smaller the plate thickness the easier it is to reduce the weight of the device.
  • the smaller the plate thickness the easier the glass plate bends.
  • board thickness can be adjusted with the flow rate at the time of glass manufacture, a board drawing speed, etc.
  • the strain point can be increased by lowering the ⁇ -OH value.
  • the ⁇ -OH value is preferably 0.5 / mm or less, 0.45 / mm or less or 0.4 / mm or less, particularly preferably 0.35 / mm or less. If the ⁇ -OH value is too large, the strain point tends to decrease. If the ⁇ -OH value is too small, the meltability tends to be lowered. Therefore, the ⁇ -OH value is preferably 0.01 / mm or more, particularly preferably 0.05 / mm or more.
  • the following methods may be mentioned.
  • a component (Cl, SO 3 or the like) that lowers the ⁇ -OH value is added to the glass.
  • (4) N 2 bubbling is performed in molten glass.
  • Adopt a small melting furnace. Increase the flow rate of the molten glass. (7) An electric melting method is adopted.
  • ⁇ -OH value refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
  • ⁇ -OH value (1 / X) log (T 1 / T 2 )
  • X Glass wall thickness (mm)
  • T 1 Transmittance (%) at a reference wavelength of 3846 cm ⁇ 1
  • T 2 Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm ⁇ 1
  • the glass of the present invention is preferably used for an OLED display substrate. OLEDs are generally being marketed, but cost reduction by mass production is strongly desired. Since the glass of the present invention is excellent in productivity and can be easily increased in area and thickness, such a requirement can be satisfied accurately.
  • Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 30).
  • Each sample was produced as follows. First, a glass batch in which glass raw materials were prepared so as to have the glass composition in the table was placed in a platinum crucible and melted at 1600 ° C. for 24 hours. In melting the glass batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured out on a carbon plate and formed into a plate shape.
  • the density is a value measured by the well-known Archimedes method.
  • the thermal expansion coefficient is an average thermal expansion coefficient measured with a dilatometer in a temperature range of 30 to 380 ° C.
  • the Young's modulus refers to a value measured by a dynamic elastic modulus measurement method (resonance method) based on JIS R1602, and the specific Young's modulus is a value obtained by dividing Young's modulus by density.
  • strain point and softening point are values measured by the fiber elongation method based on the method of ASTM C336.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s and 10 5.0 dPa ⁇ s is a value measured by a platinum ball pulling method.
  • each sample was pulverized, passed through a standard sieve 30 mesh (500 ⁇ m), and the glass powder remaining on 50 mesh (300 ⁇ m) was placed in a platinum boat and held in a temperature gradient furnace for 24 hours.
  • the highest temperature at which devitrification (crystal foreign matter) was observed inside the glass by microscopic observation was taken as the liquidus temperature.
  • crystals precipitated in the temperature range from the liquidus temperature were evaluated as the initial phase.
  • “Ano” indicates an anosite
  • “Cri” indicates cristobalite
  • “Mul” indicates mullite.
  • the viscosity of the glass at the liquidus temperature was measured by the platinum ball pulling method, and this was defined as the liquidus viscosity.
  • the surface of the obtained sample is observed to be chemically resistant. Evaluated. Specifically, after chemical treatment, the glass surface is strongly clouded or cracked, “X”, those with weak cloudiness and roughness are “ ⁇ ”, and those with no change are “O”. It was. As conditions for chemical treatment, acid resistance was evaluated by treatment at 80 ° C. for 3 hours using 10% by mass hydrochloric acid, and BHF resistance was evaluated by treatment at 20 ° C. for 30 minutes using a well-known 130 BHF solution. .
  • Sample No. Nos. 1 to 30 have a density of 2.45 to 2.48 g / cm 3 , which can reduce the weight of the glass plate. Further, the thermal expansion coefficient is 33 to 37 ⁇ 10 ⁇ 7 / ° C. and the strain point is 702 ° C. or higher, so that the heat shrinkage value can be reduced. In addition, the Young's modulus is 75 GPa or more and the specific Young's modulus is 30.3 GPa / (g / cm 3 ) or more, so that bending and deformation hardly occur. The temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is 1678 ° C.
  • the temperature at a high temperature viscosity of 10 5.0 dPa ⁇ s is 1250 ° C. or lower
  • the liquidus temperature is 1230 ° C. or lower
  • the liquidus viscosity is 10 4.8 dPa ⁇ s. Since it is more than s, it has excellent meltability and moldability, and is suitable for mass production. Furthermore, chemical resistance is also excellent.
  • the glass of the present invention can remarkably improve devitrification resistance even when the strain point and Young's modulus are high. Therefore, the glass of the present invention is suitable for a substrate of a display such as an OLED display or a liquid crystal display, and is suitable for a substrate of a display driven by LTPS or an oxide TFT.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Glass Compositions (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

A glass according to the present invention is characterized by having a glass composition comprising SiO2, Al2O3, B2O3 and RO (wherein RO represents at least one component selected from MgO, CaO, SrO and BaO), and also characterized in that at least two types of crystals independently selected from a SiO2-Al2O3-RO-based crystal, a SiO2-based crystal and a SiO2-Al2O3-based crystal is precipitated in a temperature range from a liquidus temperature to a temperature that is lower by -50°C than the liquidus temperature.

Description

ガラスGlass
 本発明は、ガラスに関し、具体的には、有機EL(OLED)ディスプレイ、液晶ディスプレイの基板に好適なガラスに関する。更に、酸化物TFT、低温p-Si・TFT(LTPS)駆動のディスプレイの基板に好適なガラスに関する。 The present invention relates to glass, and more specifically to glass suitable for substrates of organic EL (OLED) displays and liquid crystal displays. Further, the present invention relates to a glass suitable for a substrate of an oxide TFT and a low temperature p-Si.TFT (LTPS) driven display.
 従来から、液晶ディスプレイ等のフラットパネルディスプレイ、ハードディスク、フィルター、センサー等の基板として、ガラスが広く使用されている。近年では、従来の液晶ディスプレイに加えて、OLEDディスプレイが、自発光、高い色再現性、高視野角、高速応答、高精細等の理由から、盛んに開発されると共に、一部では既に実用化されている。また、スマートフォン等のモバイル機器の液晶ディスプレイ、OLEDディスプレイは、小面積でありながら、多くの情報を表示することが要求されるため、超高精細の画面が必要になる。更に動画表示を行うため、高速応答も必要になる。 Conventionally, glass has been widely used as a substrate for flat panel displays such as liquid crystal displays, hard disks, filters and sensors. In recent years, in addition to conventional liquid crystal displays, OLED displays have been actively developed for reasons such as self-emission, high color reproducibility, high viewing angle, high-speed response, and high definition, and some have already been put into practical use. Has been. In addition, a liquid crystal display or an OLED display of a mobile device such as a smartphone is required to display a large amount of information even though it has a small area. Furthermore, since a moving image is displayed, a high-speed response is required.
 このような用途では、OLEDディスプレイ、或いはLTPSで駆動する液晶ディスプレイが好適である。OLEDディスプレイは、画素を構成するOLED素子に電流が流れることで発光する。このため、駆動TFT素子として、低抵抗、高電子移動度の材料が使用される。この材料として、上記のLTPS以外に、IGZO(インジウム、ガリウム、亜鉛酸化物)に代表される酸化物TFTが注目されている。酸化物TFTは、低抵抗、高移動度であり、且つ比較的低温で形成が可能である。従来のp-Si・TFT、特にLTPSは、非結晶Si(a-Si)の膜を多結晶化する際に用いるエキシマレーザの不安定性に起因して、大面積のガラス板に素子を形成する際にTFT特性がばらつき易く、TV用途等では、画面の表示ムラが生じ易かった。一方、酸化物TFTは、大面積のガラス板に素子を形成する場合に、TFT特性の均質性に優れるため、有力なTFT形成材料として注目されており、一部では既に実用化されている。 For such applications, an OLED display or a liquid crystal display driven by LTPS is suitable. An OLED display emits light when a current flows through an OLED element constituting a pixel. For this reason, a material having low resistance and high electron mobility is used as the driving TFT element. As this material, in addition to the LTPS described above, an oxide TFT typified by IGZO (indium, gallium, zinc oxide) has attracted attention. An oxide TFT has low resistance and high mobility, and can be formed at a relatively low temperature. Conventional p-Si TFTs, especially LTPS, form elements on a large-area glass plate due to the instability of an excimer laser used when polycrystallizing an amorphous Si (a-Si) film. In this case, the TFT characteristics are likely to vary, and screen display unevenness is likely to occur in TV applications. On the other hand, an oxide TFT has been attracting attention as an effective TFT forming material because it has excellent uniformity of TFT characteristics when an element is formed on a large-area glass plate, and has already been put into practical use in part.
 高精細のディスプレイの基板に用いられるガラスには、多くの特性が要求される。特に、以下の(1)~(5)の特性が要求される。 Many properties are required for glass used for high-definition display substrates. In particular, the following characteristics (1) to (5) are required.
 (1)ガラス中のアルカリ成分が多いと、熱処理中にアルカリイオンが成膜された半導体物質中に拡散し、膜の特性の劣化を招く。よって、アルカリ成分(特に、Li成分、Na成分)の含有量が低いこと、或いは実質的に含有しないこと。
 (2)フォトリソグラフィーエッチング工程では、種々の酸、アルカリ等の薬液が使用される。よって、耐薬品性に優れていること。
 (3)成膜、アニール等の工程で、ガラス板は数百℃の温度に熱処理される。熱処理の際に、ガラス板が熱収縮すると、パターンズレ等が発生し易くなる。よって、熱収縮し難いこと、特に歪点が高いこと。
 (4)熱膨張係数が、ガラス板上に成膜される部材(例えば、a-Si、p-Si)に近いこと。例えば、熱膨張係数が30~40×10-7/℃であること。なお、熱膨張係数が40×10-7/℃以下であると、耐熱衝撃性も向上する。
 (5)ガラス板の撓みに起因する不具合を抑制するために、ヤング率(又は比ヤング率)が高いこと。
(1) When the alkali component in the glass is large, alkali ions are diffused into the semiconductor material on which the film is formed during the heat treatment, and the characteristics of the film are deteriorated. Therefore, the content of alkali components (particularly, Li component and Na component) is low or not substantially contained.
(2) Various chemicals such as acid and alkali are used in the photolithography etching step. Therefore, it has excellent chemical resistance.
(3) The glass plate is heat-treated at a temperature of several hundred degrees Celsius in steps such as film formation and annealing. When the glass plate is thermally contracted during the heat treatment, pattern deviation or the like is likely to occur. Therefore, heat shrinkage is difficult, especially the strain point is high.
(4) The coefficient of thermal expansion is close to that of a member (for example, a-Si, p-Si) formed on a glass plate. For example, the thermal expansion coefficient is 30 to 40 × 10 −7 / ° C. When the thermal expansion coefficient is 40 × 10 −7 / ° C. or less, the thermal shock resistance is also improved.
(5) The Young's modulus (or specific Young's modulus) is high in order to suppress defects caused by the bending of the glass plate.
 更に、ガラス板を製造する観点から、ガラスには、以下の(6)、(7)の特性が要求される。
 (6)泡、ブツ、脈理等の溶融欠陥を防止するために、溶融性に優れていること。
 (7)ガラス板中の異物発生を避けるために、耐失透性に優れていること。
Furthermore, from the viewpoint of producing a glass plate, the following properties (6) and (7) are required for glass.
(6) Excellent meltability in order to prevent melting defects such as bubbles, blisters and striae.
(7) Excellent devitrification resistance to avoid generation of foreign matter in the glass plate.
 上記要求特性(1)~(7)を満たすガラス系として、SiO2、Al23、B23及びRO(ROは、MgO、CaO、SrO、BaOの内、1種類又は2種類以上)を含むガラスが有望である。しかし、このガラスは、オーバーフローダウンドロー法等で成形する場合、成形温度が高くなり易く、成形時にガラス中に失透異物が発生し易いという問題があった。特に、このガラスの歪点とヤング率を高めるためには、Al23とMgOの含有量を増加させると共に、B23の含有量を低減する必要性が高くなるが、その場合、上記問題が顕在化し易くなる。 As glass systems satisfying the above required characteristics (1) to (7), SiO 2 , Al 2 O 3 , B 2 O 3 and RO (RO is one or more of MgO, CaO, SrO and BaO) ) Glass is promising. However, when this glass is molded by the overflow downdraw method or the like, there is a problem that the molding temperature tends to be high, and devitrified foreign matter is easily generated in the glass at the time of molding. In particular, in order to increase the strain point and Young's modulus of this glass, it is necessary to increase the content of Al 2 O 3 and MgO and reduce the content of B 2 O 3 . The above problem is easily realized.
 本発明は上記事情に鑑み成されたものであり、その技術的課題は、LTPS、酸化物TFT素子で駆動するOLEDディスプレイ、液晶ディスプレイに好適なガラスを創案することであり、具体的には、歪点とヤング率が高い場合でも、耐失透性が高いガラスを創案することである。 The present invention has been made in view of the above circumstances, and its technical problem is to create a glass suitable for LTPS, an OLED display driven by an oxide TFT element, and a liquid crystal display. Specifically, The idea is to create a glass with high devitrification resistance even when the strain point and Young's modulus are high.
 本発明者等は、種々の実験を繰り返した結果、SiO2-Al23-B23-RO(ROは、MgO、CaO、SrO、BaOの内、1種類又は2種類以上)系ガラスに着目し、SiO2、Al23、B23及びROの含有量を適正化すれば、歪点、ヤング率等が向上することを見出すと共に、初相として、SiO2-Al23-RO系結晶、SiO2系結晶、SiO2-Al23系結晶の内、2種類以上の結晶が析出する場合に、ガラスが安定化して、耐失透性が顕著に向上することを見出した。すなわち、本発明のガラスは、ガラス組成として、SiO2、Al23、B23及びROを含み、且つ液相線温度から(液相線温度-50℃)の温度範囲において、析出する結晶が、SiO2-Al23-RO系結晶、SiO2系結晶、SiO2-Al23系結晶の内、2種類以上であることを特徴とする。ここで、「液相線温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取り出し、顕微鏡観察により、ガラス内部に失透(結晶異物)が認められた最も高い温度とする。「~系結晶」とは、明示の成分により構成される結晶を指す。 As a result of repeating various experiments, the present inventors have found that SiO 2 —Al 2 O 3 —B 2 O 3 —RO (RO is one or more of MgO, CaO, SrO, BaO) system. Focusing on glass, it can be found that if the contents of SiO 2 , Al 2 O 3 , B 2 O 3 and RO are optimized, the strain point, Young's modulus, etc. are improved, and SiO 2 -Al is used as the initial phase. When 2 or more kinds of 2 O 3 -RO crystal, SiO 2 crystal, and SiO 2 -Al 2 O 3 crystal are precipitated, the glass is stabilized and the devitrification resistance is remarkably improved. I found out. That is, the glass of the present invention contains SiO 2 , Al 2 O 3 , B 2 O 3 and RO as a glass composition, and precipitates in the temperature range from the liquidus temperature (liquidus temperature −50 ° C.). There are two or more types of crystals to be selected among SiO 2 —Al 2 O 3 —RO crystal, SiO 2 crystal, and SiO 2 —Al 2 O 3 crystal. Here, the “liquidus temperature” is obtained by passing the standard sieve 30 mesh (500 μm) and putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat and holding it in a temperature gradient furnace for 24 hours. The boat is taken out and set to the highest temperature at which devitrification (crystal foreign matter) is observed inside the glass by microscopic observation. The “˜system crystal” refers to a crystal composed of explicit components.
 本発明のガラスは、SiO2-Al23-RO系結晶が、SiO2-Al23-CaO系結晶であることが好ましい。 In the glass of the present invention, the SiO 2 —Al 2 O 3 —RO based crystal is preferably a SiO 2 —Al 2 O 3 —CaO based crystal.
 本発明のガラスは、SiO2-Al23-RO系結晶がアノーサイト、SiO2系結晶がクリストバライト、SiO2-Al23系結晶がムライトであることが好ましい。 In the glass of the present invention, the SiO 2 —Al 2 O 3 —RO based crystal is preferably anorthite, the SiO 2 based crystal is cristobalite, and the SiO 2 —Al 2 O 3 based crystal is preferably mullite.
 本発明のガラスは、液相線温度が1250℃より低いことが好ましい。 The glass of the present invention preferably has a liquidus temperature lower than 1250 ° C.
 本発明のガラスは、ガラス組成中のLi2O+Na2O+K2Oの含有量が0.5質量%以下であることが好ましい。このようにすれば、熱処理中にアルカリイオンが成膜された半導体物質中に拡散し、膜の特性が劣化する事態を防止し易くなる。ここで、「Li2O+Na2O+K2O」は、Li2O、Na2O及びK2Oの合量を指す。 The glass of the present invention, it is preferable that the content of Li 2 O + Na 2 O + K 2 O in the glass composition is less than 0.5 wt%. In this way, it becomes easy to prevent a situation where alkali ions are diffused into the deposited semiconductor material during the heat treatment and the characteristics of the film are deteriorated. Here, “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O and K 2 O.
 本発明のガラスは、ガラス組成として、質量%で、SiO2 57~70%、Al23 16~25%、B23 1~8%、MgO 0~5%、CaO 2~13%、SrO 0~6%、BaO 0~7%、ZnO 0~5%、ZrO2 0~5%、TiO2 0~5%、P25 0~5%を含有し、モル比(MgO+CaO+SrO+BaO)/Al23が0.8~1.3、モル比CaO/Al23が0.3~1.0であることが好ましい。ここで、「MgO+CaO+SrO+BaO」とは、MgO、CaO、SrO及びBaOの合量を指す。 The glass of the present invention has a glass composition of mass%, SiO 2 57-70%, Al 2 O 3 16-25%, B 2 O 3 1-8%, MgO 0-5%, CaO 2-13%. , SrO 0-6%, BaO 0-7%, ZnO 0-5%, ZrO 2 0-5%, TiO 2 0-5%, P 2 O 5 0-5%, molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is preferably 0.8 to 1.3, and the molar ratio CaO / Al 2 O 3 is preferably 0.3 to 1.0. Here, “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO and BaO.
 本発明のガラスは、ガラス組成として、質量%で、SiO2 58~70%、Al23 16~25%、B23 2~7%、MgO 0~5%、CaO 3~13%、SrO 0~6%、BaO 0~6%、ZnO 0~5%、ZrO2 0~5%、TiO2 0~5%、P25 0~5%、SnO2 0~5%を含有し、モル比(MgO+CaO+SrO+BaO)/Al23が0.8~1.3、モル比CaO/Al23が0.3~1.0であり、実質的にLi2O、Na2Oを含有しないことが好ましい。ここで、「実質的に含有しない」とは、明示の成分の含有量が0.1%以下(好ましくは0.05%以下)の場合を指し、例えば、「実質的にLi2Oを含有しない」とは、Li2Oの含有量が0.1%以下(好ましくは0.05%以下)の場合を指す。 The glass of the present invention, as a glass composition, in mass%, SiO 2 58 ~ 70% , Al 2 O 3 16 ~ 25%, B 2 O 3 2 ~ 7%, MgO 0 ~ 5%, CaO 3 ~ 13% , SrO 0-6%, BaO 0-6%, ZnO 0-5%, ZrO 2 0-5%, TiO 2 0-5%, P 2 O 5 0-5%, SnO 2 0-5% The molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 0.8 to 1.3, the molar ratio CaO / Al 2 O 3 is 0.3 to 1.0, and substantially Li 2 O, Na 2 O. It is preferable not to contain. Here, “substantially does not contain” refers to the case where the content of the explicit component is 0.1% or less (preferably 0.05% or less), for example, “substantially contains Li 2 O”. “No” refers to the case where the content of Li 2 O is 0.1% or less (preferably 0.05% or less).
 本発明のガラスは、モル比CaO/MgOが2~20であることが好ましい。 The glass of the present invention preferably has a molar ratio CaO / MgO of 2 to 20.
 本発明のガラスは、歪点が700℃以上であることが好ましい。ここで、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。 The glass of the present invention preferably has a strain point of 700 ° C. or higher. Here, “strain point” refers to a value measured based on the method of ASTM C336.
 本発明のガラスは、ヤング率が75GPa以上であることが好ましい。「ヤング率」は、JIS R1602に基づく動的弾性率測定法(共振法)により測定した値を指す。 The glass of the present invention preferably has a Young's modulus of 75 GPa or more. “Young's modulus” refers to a value measured by a dynamic elastic modulus measurement method (resonance method) based on JIS R1602.
 本発明のガラスは、比ヤング率が30GPa/(g/cm3)以上であることが好ましい。ここで、「比ヤング率」は、ヤング率を密度で割った値である。 The glass of the present invention preferably has a specific Young's modulus of 30 GPa / (g / cm 3 ) or more. Here, “specific Young's modulus” is a value obtained by dividing Young's modulus by density.
 本発明のガラスは、平板形状であり、液晶ディスプレイに用いることが好ましい。 The glass of the present invention has a flat plate shape and is preferably used for a liquid crystal display.
 本発明のガラスは、平板形状であり、OLEDディスプレイに用いることが好ましい。 The glass of the present invention has a flat plate shape and is preferably used for an OLED display.
 本発明のガラスは、平板形状であり、酸化物TFT駆動のディスプレイに用いることが好ましい。 The glass of the present invention has a flat plate shape and is preferably used for an oxide TFT drive display.
 本発明のガラスは、液相線温度から(液相線温度-50℃)の温度範囲において、析出する結晶が、SiO2-Al23-RO系結晶、SiO2系結晶、SiO2-Al23系結晶の内、2種類以上の結晶が析出する性質を有し、好ましくは3種類の結晶が析出する性質を有することが好ましい。また、2種類の結晶を析出させる場合、SiO2-Al23-RO系結晶とSiO2系結晶を析出させることが好ましい。複数の結晶相が液体と平衡状態になる領域近傍では、ガラスが安定化して、液相線温度が大幅に低下する。更に、液相線温度付近で上記結晶が複数析出するガラスであれば、上記要求特性(1)~(7)を満たすガラスを得易くなる。 In the glass of the present invention, crystals precipitated in the temperature range from the liquidus temperature (liquidus temperature −50 ° C.) are SiO 2 —Al 2 O 3 —RO crystal, SiO 2 crystal, SiO 2 —. Among the Al 2 O 3 -based crystals, it has a property that two or more types of crystals are precipitated, and preferably has a property that three types of crystals are precipitated. When two kinds of crystals are precipitated, it is preferable to deposit SiO 2 —Al 2 O 3 —RO based crystals and SiO 2 based crystals. In the vicinity of the region where the plurality of crystal phases are in equilibrium with the liquid, the glass is stabilized and the liquidus temperature is greatly reduced. Furthermore, a glass satisfying the above required characteristics (1) to (7) can be easily obtained if it is a glass in which a plurality of the crystals are precipitated near the liquidus temperature.
 SiO2-Al23-RO系結晶として、SiO2-Al23-CaO系結晶が好ましく、特にアノーサイトが好ましい。SiO2系結晶として、クリストバライトが好ましい。SiO2-Al23系結晶として、ムライトが好ましい。液相線温度付近で上記結晶が複数析出するガラスであれば、上記要求特性(1)~(7)、特に(7)を満たすガラスを更に得易くなる。 As the SiO 2 —Al 2 O 3 —RO based crystal, SiO 2 —Al 2 O 3 —CaO based crystal is preferable, and anorthite is particularly preferable. As the SiO 2 crystal, cristobalite is preferable. Mullite is preferred as the SiO 2 —Al 2 O 3 based crystal. If a glass in which a plurality of the crystals are precipitated near the liquidus temperature is obtained, it becomes easier to obtain a glass satisfying the required characteristics (1) to (7), particularly (7).
 本発明のガラスは、ガラス組成として、質量%で、SiO2 57~70%、Al23 16~25%、B23 1~8%、MgO 0~5%、CaO 2~13%、SrO 0~6%、BaO 0~7%、ZnO 0~5%、ZrO2 0~5%、TiO2 0~5%、P25 0~5%を含有し、モル比(MgO+CaO+SrO+BaO)/Al23が0.8~1.3、モル比CaO/Al23が0.3~1.0であることが好ましい。上記のように、各成分の含有量を規制した理由を以下に説明する。なお、各成分の説明において、下記の%表示は、特に断りがない限り、質量%を指す。 The glass of the present invention has a glass composition of mass%, SiO 2 57-70%, Al 2 O 3 16-25%, B 2 O 3 1-8%, MgO 0-5%, CaO 2-13%. , SrO 0-6%, BaO 0-7%, ZnO 0-5%, ZrO 2 0-5%, TiO 2 0-5%, P 2 O 5 0-5%, molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is preferably 0.8 to 1.3, and the molar ratio CaO / Al 2 O 3 is preferably 0.3 to 1.0. The reason why the content of each component is regulated as described above will be described below. In addition, in description of each component, the following% display points out the mass% unless there is particular notice.
 SiO2の含有量が低過ぎると、耐薬品性、特に耐酸性が低下すると共に、歪点が低下し、また低密度化を図り難くなる。一方、SiO2の含有量が高過ぎると、高温粘度が高くなり、溶融性が低下し易くなると共に、SiO2系結晶、特にクリストバライトが析出して、液相線粘度が低下し易くなる。SiO2の好ましい上限含有量は70%、68%、66%または65%であって、特に64%であり、好ましい下限含有量は57%、58%、59%または60%であって、特に61%である。最も好ましい含有範囲は61~64%である。 When the content of SiO 2 is too low, chemical resistance, particularly acid resistance is lowered, strain point is lowered, and it is difficult to reduce the density. On the other hand, when the content of SiO 2 is too high, the high-temperature viscosity becomes high and the meltability is liable to be lowered, and the SiO 2 crystal, particularly cristobalite, is precipitated and the liquidus viscosity is liable to be lowered. The preferred upper limit content of SiO 2 is 70%, 68%, 66% or 65%, especially 64%, and the preferred lower limit content is 57%, 58%, 59% or 60%, especially 61%. The most preferable content range is 61 to 64%.
 Al23の含有量が低過ぎると、歪点が低下し、熱収縮値が大きくなると共に、ヤング率が低下して、ガラス板が撓み易くなる。一方、Al23の含有量が高過ぎると、耐BHF(バッファードフッ酸)性が低下し、ガラス表面に白濁が生じ易くなると共に、耐クラック抵抗性が低下し易くなる。更にガラス中にSiO2-Al23系結晶、特にムライトが析出して、液相線粘度が低下し易くなる。Al23の好ましい上限含有量は25%、23%、22%または21%であって、特に20%であり、好ましい下限含有量は16%、17%または17.5%であって、特に18%である。最も好ましい含有範囲は18~20%である。 When the content of Al 2 O 3 is too low, the strain point is lowered, the thermal shrinkage value is increased, the Young's modulus is lowered, and the glass plate is easily bent. On the other hand, if the content of Al 2 O 3 is too high, the BHF (buffered hydrofluoric acid) resistance is lowered, and the glass surface is likely to become cloudy and the crack resistance is liable to be lowered. Furthermore, SiO 2 —Al 2 O 3 -based crystals, particularly mullite, precipitate in the glass, and the liquidus viscosity tends to decrease. The preferred upper limit content of Al 2 O 3 is 25%, 23%, 22% or 21%, especially 20%, and the preferred lower limit content is 16%, 17% or 17.5%, In particular, it is 18%. The most preferable content range is 18 to 20%.
 B23は、融剤として働き、粘性を下げて溶融性を改善する成分である。B23の含有量は、好ましくは1~8%、2~8%、3~7.5%、3~7%または4~7%、特に好ましくは5~7%である。B23の含有量が低過ぎると、融剤として十分に作用せず、耐BHF性や耐クラック性が低下し易くなる。また液相線温度が上昇し易くなる。一方、B23の含有量が高過ぎると、歪点、耐熱性、耐酸性が低下し易くなる。特に、B23の含有量が7%以上になると、その傾向が顕著になる。また、B23の含有量が高過ぎると、ヤング率が低下して、ガラス板の撓み量が大きくなり易い。 B 2 O 3 is a component that works as a flux and lowers viscosity to improve meltability. The content of B 2 O 3 is preferably 1 to 8%, 2 to 8%, 3 to 7.5%, 3 to 7% or 4 to 7%, particularly preferably 5 to 7%. When the content of B 2 O 3 is too low, it does not sufficiently act as a flux, and the BHF resistance and crack resistance are likely to decrease. In addition, the liquidus temperature is likely to rise. On the other hand, if the content of B 2 O 3 is too high, the strain point, heat resistance, and acid resistance tend to decrease. In particular, when the content of B 2 O 3 is 7% or more, the tendency becomes remarkable. If the content of B 2 O 3 is too high, it decreases Young's modulus, tends large amount of deflection of the glass plate.
 歪点と溶融性のバランスを考慮すると、質量比Al23/B23は、好ましくは1~5、1.5~4.5または2~4、特に好ましくは2.5~3.5である。 In consideration of the balance between strain point and meltability, the mass ratio Al 2 O 3 / B 2 O 3 is preferably 1 to 5, 1.5 to 4.5, or 2 to 4, particularly preferably 2.5 to 3. .5.
 MgOは、歪点を下げずに高温粘性を下げて、溶融性を改善する成分である。また、MgOは、RO中では最も密度を下げる効果が有するが、過剰に導入すると、SiO2系結晶、特にクリストバライトが析出して、液相線粘度が低下し易くなる。更に、MgOは、BHF又はフッ酸と反応して生成物を形成し易い成分である。この反応生成物は、ガラス板表面の素子上に固着したり、ガラス板に付着したりして、素子やガラス板を白濁させるおそれがある。よって、MgOの含有量は、好ましくは0~5%、より好ましくは0.01~4%、更に好ましくは0.03~3%、最も好ましくは0.05~2.5%である。 MgO is a component that improves the meltability by lowering the high temperature viscosity without lowering the strain point. MgO has the effect of reducing the density most in RO. However, when it is introduced excessively, SiO 2 -based crystals, particularly cristobalite, are precipitated, and the liquidus viscosity tends to decrease. Further, MgO is a component that easily reacts with BHF or hydrofluoric acid to form a product. This reaction product may adhere to the element on the surface of the glass plate or adhere to the glass plate, causing the element or the glass plate to become cloudy. Therefore, the content of MgO is preferably 0 to 5%, more preferably 0.01 to 4%, still more preferably 0.03 to 3%, and most preferably 0.05 to 2.5%.
 CaOは、MgOと同様にして、歪点を下げずに高温粘性を下げて、溶融性を顕著に改善する成分である。CaOの含有量が高過ぎると、SiO2-Al23-RO系結晶、特にアノーサイトが析出して、液相線粘度が低下し易くなると共に、耐BHF性が低下して、反応生成物がガラス板表面の素子上に固着したり、ガラス板に付着したりして、素子やガラス板を白濁させるおそれがある。CaOの好ましい上限含有量は12%、11%または10.5%であって、特に10%であり、好ましい下限含有量は2%、3%または3.5%であって、特に4%である。最も好ましい含有範囲は4~10%である。 CaO, like MgO, is a component that lowers the high temperature viscosity without lowering the strain point and significantly improves the meltability. If the CaO content is too high, SiO 2 -Al 2 O 3 -RO-based crystals, especially anorthite, precipitate, the liquidus viscosity tends to decrease, and the BHF resistance decreases, resulting in a reaction product. There is a possibility that an object sticks to the element on the surface of the glass plate or adheres to the glass plate, causing the element or the glass plate to become cloudy. The preferred upper limit content of CaO is 12%, 11% or 10.5%, especially 10%, and the preferred lower limit content is 2%, 3% or 3.5%, especially 4%. is there. The most preferable content range is 4 to 10%.
 モル比CaO/Al23を所定範囲に調整すると、液相線温度付近の温度において、2種類以上の結晶が析出し易くなる。モル比CaO/Al23が小さくなると、SiO2-Al23系結晶が析出し易くなる。一方、モル比CaO/Al23が大きくなると、SiO2-Al23-CaO系結晶が析出し易くなる。モル比CaO/Al23の好ましい上限値は1.0、0.9、0.85、0.8、0.78または0.76であって、特に0.75であり、好ましい下限値は0.3、0.4、0.5、0.55、0.58、0.60、0.62または0.64であって、特に0.65である。 When the molar ratio CaO / Al 2 O 3 is adjusted to a predetermined range, two or more types of crystals are likely to precipitate at a temperature near the liquidus temperature. When the molar ratio CaO / Al 2 O 3 is reduced, SiO 2 —Al 2 O 3 based crystals are likely to precipitate. On the other hand, when the molar ratio CaO / Al 2 O 3 increases, SiO 2 —Al 2 O 3 —CaO based crystals tend to precipitate. The preferable upper limit value of the molar ratio CaO / Al 2 O 3 is 1.0, 0.9, 0.85, 0.8, 0.78 or 0.76, particularly 0.75, and the preferable lower limit value. Is 0.3, 0.4, 0.5, 0.55, 0.58, 0.60, 0.62 or 0.64, in particular 0.65.
 モル比CaO/MgOを所定範囲に調整すると、液相線温度付近の温度において、2種類以上の結晶が析出し易くなる。モル比CaO/MgOが小さくなると、SiO2系結晶が析出し易くなる。一方、モル比CaO/MgOが大きくなると、SiO2-Al23-CaO系結晶が析出し易くなる。モル比CaO/MgOの好ましい上限値は20、17、14、12、10または8であって、特に6であり、好ましい下限値は2、2.5、2.8、3.1、3.3、3.5または3.8であって、特に4である。 When the molar ratio CaO / MgO is adjusted to a predetermined range, two or more types of crystals are likely to precipitate at a temperature near the liquidus temperature. When the molar ratio CaO / MgO is small, SiO 2 -based crystals are likely to precipitate. On the other hand, when the molar ratio CaO / MgO increases, SiO 2 —Al 2 O 3 —CaO based crystals tend to precipitate. A preferable upper limit value of the molar ratio CaO / MgO is 20, 17, 14, 12, 10 or 8, particularly 6, and a preferable lower limit value is 2, 2.5, 2.8, 3.1, 3. 3, 3.5 or 3.8, especially 4.
 SrOは、耐薬品性、耐失透性を高める成分であるが、RO全体の中で、その割合を高め過ぎると、溶融性が低下し易くなると共に、密度、熱膨張係数が上昇し易くなる。よって、SrOの含有量は、好ましくは0~6%または0~5%、特に好ましくは0~4.5%である。 SrO is a component that enhances chemical resistance and devitrification resistance. However, if the ratio is excessively increased in the entire RO, the meltability tends to decrease and the density and the thermal expansion coefficient easily increase. . Therefore, the content of SrO is preferably 0 to 6% or 0 to 5%, particularly preferably 0 to 4.5%.
 BaOは、耐薬品性、耐失透性を高める成分であるが、その含有量が高過ぎると、密度が上昇し易くなる。また、BaOは、ROの中では、溶融性を高める効果が乏しい。ガラス組成中にSiO2、Al23、B23及びROを含むガラスは、一般的に溶融し難いため、高品質のガラス板を安価、且つ大量に供給する観点から、溶融性を高めて、泡、異物等による不良率を軽減することが非常に重要になる。よって、BaOの含有量は、好ましくは0~7%、0~6%または0.1~5%、特に好ましくは0.5~4%である。なお、ガラス組成中にSiO2、Al23、B23及びROを含むガラスでは、SiO2の含有量を低減すると、溶融性が効果的に向上するが、SiO2の含有量を低減すると、耐酸性が低下し易くなると共に、密度、熱膨張係数が上昇し易くなる。 BaO is a component that enhances chemical resistance and devitrification resistance, but if its content is too high, the density tends to increase. Moreover, BaO has a poor effect of improving the meltability in RO. Glass containing SiO 2 , Al 2 O 3 , B 2 O 3 and RO in the glass composition is generally difficult to melt. Therefore, from the viewpoint of supplying a high-quality glass plate at a low cost and in large quantities, it is necessary to improve the meltability. It is very important to reduce the defect rate due to bubbles, foreign matters and the like. Therefore, the content of BaO is preferably 0 to 7%, 0 to 6% or 0.1 to 5%, particularly preferably 0.5 to 4%. In addition, in the glass containing SiO 2 , Al 2 O 3 , B 2 O 3 and RO in the glass composition, when the content of SiO 2 is reduced, the meltability is effectively improved, but the content of SiO 2 is reduced. If it reduces, acid resistance will fall easily and a density and a thermal expansion coefficient will rise easily.
 MgO、SrO、BaOは、CaOに比べて、耐クラック性を高める性質がある。従って、MgO+SrO+BaOの含有量(MgO、SrO及びBaOの合量)は、好ましくは2%以上または3%以上、特に好ましくは3%超である。しかし、MgO+SrO+BaOの含有量が高過ぎると、密度、熱膨張係数が上昇し易くなる。よって、MgO+SrO+BaOの含有量は、好ましくは9%以下または8%以下である。 MgO, SrO, and BaO have the property of improving crack resistance compared to CaO. Therefore, the content of MgO + SrO + BaO (total amount of MgO, SrO and BaO) is preferably 2% or more or 3% or more, particularly preferably more than 3%. However, if the content of MgO + SrO + BaO is too high, the density and the thermal expansion coefficient tend to increase. Therefore, the content of MgO + SrO + BaO is preferably 9% or less or 8% or less.
 ROの内、2種類以上を混合して導入すると、液相線温度が大幅に低下し、ガラス中に結晶異物が生じ難くなり、溶融性、成形性が改善する。しかし、MgO+CaO+SrO+BaOの含有量が高過ぎると、密度が上昇して、ガラス板の軽量化を図り難くなる。よって、MgO+CaO+SrO+BaOの含有量は、好ましくは15%未満または14%未満、特に好ましくは13%未満である。 When two or more types of RO are mixed and introduced, the liquidus temperature is drastically lowered, and it is difficult for crystal foreign matter to be generated in the glass, thereby improving the meltability and formability. However, if the content of MgO + CaO + SrO + BaO is too high, the density increases, making it difficult to reduce the weight of the glass plate. Therefore, the content of MgO + CaO + SrO + BaO is preferably less than 15% or less than 14%, particularly preferably less than 13%.
 モル比(MgO+CaO+SrO+BaO)/Al23を所定範囲に調整すると、液相線温度付近で、2種類以上の結晶が析出し易くなる。モル比(MgO+CaO+SrO+BaO)/Al23が小さくなると、SiO2-Al23系結晶が析出し易くなる。一方、モル比(MgO+CaO+SrO+BaO)/Al23が大きくなると、SiO2-Al23-RO系結晶、SiO2系結晶が析出し易くなる。モル比(MgO+CaO+SrO+BaO)/Al23の好ましい上限値は1.3、1.25、1.2、1.15または1.10であって、特に1.08であり、好ましい下限値は0.8、0.85、0.88、0.91、0.93、0.95または0.96であって、特に0.97である。 When the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is adjusted to a predetermined range, two or more types of crystals are likely to precipitate near the liquidus temperature. When the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 becomes smaller, SiO 2 —Al 2 O 3 -based crystals tend to precipitate. On the other hand, when the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 increases, SiO 2 —Al 2 O 3 —RO based crystals and SiO 2 based crystals tend to precipitate. The preferred upper limit of the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is 1.3, 1.25, 1.2, 1.15 or 1.10, particularly 1.08, and the preferred lower limit is 0. .8, 0.85, 0.88, 0.91, 0.93, 0.95 or 0.96, especially 0.97.
 ROの混合比を最適化するために、質量比CaO/(MgO+SrO+BaO)は、好ましくは0.7以上、0.8以上または0.9以上、特に好ましくは1以上であり、質量比CaO/MgOは、好ましくは2以上、3以上または4以上、特に好ましくは5以上である。 In order to optimize the mixing ratio of RO, the mass ratio CaO / (MgO + SrO + BaO) is preferably 0.7 or more, 0.8 or more or 0.9 or more, particularly preferably 1 or more, and the mass ratio CaO / MgO Is preferably 2 or more, 3 or more, or 4 or more, particularly preferably 5 or more.
 ZnOは、溶融性、耐BHF性を改善する成分であるが、その含有量が高過ぎると、ガラスが失透し易くなったり、歪点が低下したりして、耐熱性を確保し難くなる。よって、ZnOの含有量は、好ましくは0~5%、特に好ましくは0~1%である。 ZnO is a component that improves meltability and BHF resistance. However, if its content is too high, the glass tends to devitrify or the strain point decreases, making it difficult to ensure heat resistance. . Therefore, the content of ZnO is preferably 0 to 5%, particularly preferably 0 to 1%.
 ZrO2は、化学的耐久性を高める成分であるが、その導入量が多くなると、ZrSiO4の失透ブツが発生し易くなる。ZrO2の好ましい下限含有量は1%、0.5%、0.3%または0.2%であって、特に0.1%であり、化学的耐久性の観点から0.005%以上導入することが好ましい。最も好ましい含有範囲は0.005~0.1%である。なお、ZrO2は、原料から導入してもよいし、耐火物からの溶出により導入してもよい。 ZrO 2 is a component that enhances chemical durability. However, when the amount of ZrO 2 is increased, devitrification of ZrSiO 4 tends to occur. The preferred lower limit of ZrO 2 content is 1%, 0.5%, 0.3% or 0.2%, especially 0.1%, and 0.005% or more is introduced from the viewpoint of chemical durability. It is preferable to do. The most preferable content range is 0.005 to 0.1%. ZrO 2 may be introduced from a raw material or may be introduced by elution from a refractory.
 TiO2は、高温粘性を下げて溶融性を高め、また化学的耐久性を高める効果があるが、導入量が過剰になると、紫外線透過率が低下し易くなる。TiO2の含有量は、好ましくは3%以下、1%以下、0.5%以下、0.1%以下または0.05%以下、特に好ましくは0.03%以下である。なお、TiO2を極少量導入(例えば0.001%以上)すると、紫外線による着色を抑制する効果が得られる。 TiO 2 has the effect of lowering the high-temperature viscosity to increase the meltability and the chemical durability, but when the amount introduced is excessive, the ultraviolet transmittance tends to decrease. The content of TiO 2 is preferably 3% or less, 1% or less, 0.5% or less, 0.1% or less or 0.05% or less, particularly preferably 0.03% or less. If a very small amount of TiO 2 is introduced (for example, 0.001% or more), an effect of suppressing coloring by ultraviolet rays can be obtained.
 P25は、歪点を高める成分であると共に、SiO2-Al23-RO系結晶、特にアノーサイトの析出を抑制して、2種類以上の結晶を析出させるために、有効な成分である。但し、P25を多量に含有させると、ガラスが分相し易くなる。P25の含有量は、好ましくは0~5%、0~3%、0~2%または0~1%、特に好ましくは0~0.5%である。 P 2 O 5 is a component that increases the strain point and is effective for precipitating two or more types of crystals by suppressing the precipitation of SiO 2 —Al 2 O 3 —RO-based crystals, particularly anorthite. It is an ingredient. However, when P 2 O 5 is contained in a large amount, the glass is likely to undergo phase separation. The content of P 2 O 5 is preferably 0 to 5%, 0 to 3%, 0 to 2% or 0 to 1%, particularly preferably 0 to 0.5%.
 清澄剤として、As23、Sb23、SnO2、SO3、Fe23、CeO2、F2、Cl2、C、或いはAl、Si等の金属粉末等を用いることができる。これらの含有量は、合量で3%以下が好ましい。 As a clarifying agent, metal powder such as As 2 O 3 , Sb 2 O 3 , SnO 2 , SO 3 , Fe 2 O 3 , CeO 2 , F 2 , Cl 2 , C, Al, Si, or the like can be used. . The total content is preferably 3% or less.
 As23、Sb23は、環境負荷化学物質であるため、できるだけ使用しないことが望ましい。As23、Sb23の含有量は、それぞれ0.3%未満、0.1%未満、0.09%未満、0.05%未満、0.03%未満、0.01%未満または0.005%未満が好ましく、特に0.003%未満が好ましい。 As 2 O 3 and Sb 2 O 3 are environmentally hazardous chemicals, so it is desirable not to use them as much as possible. The contents of As 2 O 3 and Sb 2 O 3 are less than 0.3%, less than 0.1%, less than 0.09%, less than 0.05%, less than 0.03%, and less than 0.01%, respectively. Alternatively, it is preferably less than 0.005%, particularly preferably less than 0.003%.
 SnO2は、ガラス中の泡を低減する清澄剤としての働きを有すると共に、Fe23又はFeOと共存する際に、紫外線透過率を比較的高く維持する効果を有する。一方、SnO2の含有量が高過ぎると、ガラス中にSnO2の失透ブツが発生し易くなる。SnO2の好ましい上限含有量は0.5%または0.4%であって、特に0.3%であり、好ましい下限含有量は0.01%または0.05%であって、特に0.1%である。また、Fe23換算でFe23又はFeOの含有量が0.01~0.05%に対して、SnO2を0.01~0.5%導入すれば、泡品位と紫外線透過率を高めることができる。ここで、「Fe23換算」は、価数によらず全Fe量をFe23量に換算した値を指す。 SnO 2 functions as a fining agent for reducing bubbles in the glass and has an effect of maintaining a relatively high ultraviolet transmittance when coexisting with Fe 2 O 3 or FeO. On the other hand, if the SnO 2 content is too high, devitrification of SnO 2 tends to occur in the glass. The preferable upper limit content of SnO 2 is 0.5% or 0.4%, particularly 0.3%, and the preferable lower limit content is 0.01% or 0.05%. 1%. Further, with respect to the content of Fe 2 O 3 or FeO in terms of Fe 2 O 3 is from 0.01 to 0.05%, is introduced to SnO 2 0.01 ~ 0.5%, bubble quality and UV transmittance The rate can be increased. Here, “Fe 2 O 3 conversion” refers to a value obtained by converting the total Fe amount to the Fe 2 O 3 amount regardless of the valence.
 鉄は、不純物として、原料から混入する成分であるが、鉄の含有量が高過ぎると、紫外線透過率が低下する恐れがある。紫外線透過率が低下すると、TFTを作製するフォトリソグラフィー工程や紫外線による液晶の配向工程で不具合が発生するおそれがある。よって、鉄の好ましい上限含有量は、Fe23に換算して、0.001%であり、好ましい下限含有量は、Fe23に換算して、0.05%、0.04%または0.03%であって、特に0.02%である。最も好ましい含有範囲は0.001%~0.02%である。 Iron is a component mixed from the raw material as an impurity, but if the iron content is too high, the ultraviolet transmittance may be lowered. When the ultraviolet transmittance is lowered, there is a possibility that a defect may occur in a photolithography process for manufacturing a TFT or a liquid crystal alignment process using ultraviolet rays. Therefore, the preferable upper limit content of iron is 0.001% in terms of Fe 2 O 3 , and the preferable lower limit content is 0.05% and 0.04% in terms of Fe 2 O 3. Or 0.03%, especially 0.02%. The most preferable content range is 0.001% to 0.02%.
 Cr23は、不純物として、原料から混入する成分であるが、Cr23の含有量が高過ぎると、ガラス板端面から光を入射し、散乱光によりガラス板内部の異物検査を行う場合に、光の透過が生じ難くなり、異物検査に不具合が生じるおそれがある。特に、基板サイズが730mm×920mm以上の場合に、この不具合が発生し易くなる。また、ガラス板の板厚が小さい(例えば0.5mm以下、0.4mm以下または0.3mm以下)と、ガラス板端面から入射する光が少なくなるため、Cr23の含有量を規制する意義が大きくなる。Cr23の好ましい上限含有量は0.001%、0.0008%、0.0006%または0.0005%であって、特に0.0003%であり、好ましい下限含有量は0.00001%である。最も好ましい含有範囲は0.00001~0.0003%である。 Cr 2 O 3 is a component mixed from the raw material as an impurity, but if the content of Cr 2 O 3 is too high, light enters from the end face of the glass plate, and the foreign matter inside the glass plate is inspected by scattered light. In such a case, it is difficult to transmit light, and there is a possibility that a defect may occur in the foreign substance inspection. In particular, this problem is likely to occur when the substrate size is 730 mm × 920 mm or more. Further, the thickness of the glass plate is small (for example 0.5mm or less, 0.4 mm or less, or 0.3mm or less), since the light incident from the glass plate end face is reduced, to restrict the content of Cr 2 O 3 Significance increases. The preferable upper limit content of Cr 2 O 3 is 0.001%, 0.0008%, 0.0006% or 0.0005%, particularly 0.0003%, and the preferable lower limit content is 0.00001%. It is. The most preferable content range is 0.00001 to 0.0003%.
 SnO2を0.01~0.5%含む場合、Rh23の含有量が高過ぎると、ガラスが着色し易くなる。なお、Rh23は、白金の製造容器から混入する可能性がある。Rh23の含有量は、好ましくは0~0.0005%、より好ましくは0.00001~0.0001%である。 When SnO 2 is contained in an amount of 0.01 to 0.5%, if the content of Rh 2 O 3 is too high, the glass tends to be colored. Note that Rh 2 O 3 may be mixed from a platinum production container. The content of Rh 2 O 3 is preferably 0 to 0.0005%, more preferably 0.00001 to 0.0001%.
 SO3は、不純物として、原料から混入する成分であるが、SO3の含有量が高過ぎると、溶融や成形中に、リボイルと呼ばれる泡を発生させて、ガラス中に欠陥を生じさせるおそれがある。SO3の好ましい上限含有量は0.005%、0.003%または0.002%であって、特に0.001%であり、好ましい下限含有量は0.0001%である。最も好ましい含有範囲は0.0001%~0.001%である。 SO 3 is a component mixed from the raw material as an impurity. However, if the content of SO 3 is too high, bubbles called reboil may be generated during melting and molding, which may cause defects in the glass. is there. The preferable upper limit content of SO 3 is 0.005%, 0.003% or 0.002%, particularly 0.001%, and the preferable lower limit content is 0.0001%. The most preferable content range is 0.0001% to 0.001%.
 アルカリ成分、特にLi2O、Na2Oは、ガラス板上に形成される各種の膜や半導体素子の特性を劣化させるため、その含有量を0.5%まで低減することが好ましく、実質的に含有しないことが望ましい。 Alkaline components, particularly Li 2 O and Na 2 O, are preferable to reduce their content to 0.5% in order to degrade the characteristics of various films and semiconductor elements formed on the glass plate. It is desirable not to contain.
 上記成分以外にも、他の成分を導入してもよい。その導入量は、好ましくは5%以下または3%以下、特に好ましくは1%以下である。 In addition to the above components, other components may be introduced. The amount introduced is preferably 5% or less or 3% or less, particularly preferably 1% or less.
 近年、OLEDディスプレイ、液晶ディスプレイ等のモバイル用途のフラットパネルディスプレイでは、軽量化の要求が高まっており、ガラス板にも軽量化が求められている。この要求を満たすためには、低密度化によるガラス板の軽量化が望ましい。密度は、好ましくは2.52g/cm3以下、2.51g/cm3以下、2.50g/cm3以下または2.49g/cm3以下、特に好ましくは2.48/cm3以下である。一方、密度が低過ぎると、溶融温度の上昇、液相線粘度の低下が生じ易くなり、ガラス板の生産性が低下し易くなる。また歪点も低下し易くなる。よって、密度は、好ましくは2.43g/cm3以上または2.44g/cm3以上、特に好ましくは2.45g/cm3以上である。 In recent years, flat panel displays for mobile applications such as OLED displays and liquid crystal displays have been increasingly required to be lightweight, and glass plates are also required to be lightweight. In order to satisfy this requirement, it is desirable to reduce the weight of the glass plate by reducing the density. The density is preferably 2.52 g / cm 3 or less, 2.51 g / cm 3 or less, 2.50 g / cm 3 or less or 2.49 g / cm 3 or less, particularly preferably 2.48 / cm 3 or less. On the other hand, if the density is too low, the melting temperature and the liquidus viscosity are likely to be lowered, and the productivity of the glass plate is likely to be lowered. In addition, the strain point is likely to decrease. Therefore, the density is preferably 2.43 g / cm 3 or more, or 2.44 g / cm 3 or more, particularly preferably 2.45 g / cm 3 or more.
 本発明のガラスにおいて、熱膨張係数は、好ましくは30~40×10-7/℃、32~39×10-7/℃、または33~38×10-7/℃、特に好ましくは34~37×10-7/℃である。このようにすれば、ガラス板上に成膜される部材(例えば、a-Si、p-Si)の熱膨張係数に整合し易くなる。ここで、「熱膨張係数」は、30~380℃の温度範囲で測定した平均熱膨張係数を指し、例えばディラトメーターで測定可能である。 In the glass of the present invention, the thermal expansion coefficient is preferably 30 to 40 × 10 −7 / ° C., 32 to 39 × 10 −7 / ° C., or 33 to 38 × 10 −7 / ° C., particularly preferably 34 to 37. × 10 -7 / ° C. In this way, it becomes easy to match the thermal expansion coefficient of a member (for example, a-Si, p-Si) formed on the glass plate. Here, “thermal expansion coefficient” refers to an average thermal expansion coefficient measured in a temperature range of 30 to 380 ° C., and can be measured, for example, with a dilatometer.
 OLEDディスプレイ又は液晶ディスプレイ等では、大面積のガラス板(例えば、730×920mm以上、1100×1250mm以上、または1500×1500mm以上)が使用されると共に、薄肉のガラス板(例えば、板厚が0.5mm以下、0.4mm以下、または0.3mm以下)が使用される傾向にある。ガラス板が大面積化、薄肉化すると、自重による撓みが大きな問題になる。ガラス板の撓みを低減するためには、ガラス板の比ヤング率を高める必要がある。比ヤング率は、好ましくは30GPa/g・cm-3以上、30.5GPa/g・cm-3以上、または31GPa/g・cm-3以上、特に好ましくは31.5GPa/g・cm-3以上である。また、ガラス板が大面積化、薄肉化すると、定盤上での熱処理工程、或いは各種の金属膜、酸化物膜、半導体膜、有機膜等の成膜工程後に、ガラス板の反りが問題になる。ガラス板の反りを低減するためには、ガラス板のヤング率を高めることが有効である。ヤング率は、好ましくは75GPa以上、特に好ましくは76GPa以上である。 In an OLED display, a liquid crystal display, or the like, a large-area glass plate (for example, 730 × 920 mm or more, 1100 × 1250 mm or more, or 1500 × 1500 mm or more) is used, and a thin glass plate (for example, a plate thickness of 0.1 mm or more). 5 mm or less, 0.4 mm or less, or 0.3 mm or less). When the glass plate becomes large and thin, bending due to its own weight becomes a big problem. In order to reduce the bending of the glass plate, it is necessary to increase the specific Young's modulus of the glass plate. Specific modulus is preferably 30GPa / g · cm -3 or more, 30.5GPa / g · cm -3 or more, or 31GPa / g · cm -3 or more, and particularly preferably 31.5GPa / g · cm -3 or more It is. Also, when the glass plate becomes large and thin, warping of the glass plate becomes a problem after a heat treatment process on a surface plate or a film formation process of various metal films, oxide films, semiconductor films, organic films, etc. Become. In order to reduce the warpage of the glass plate, it is effective to increase the Young's modulus of the glass plate. The Young's modulus is preferably 75 GPa or more, particularly preferably 76 GPa or more.
 現在、超高精細のモバイルディスプレイに用いられるLTPSでは、その工程温度が約400~600℃である。この工程温度での熱収縮を抑制するために、歪点は、好ましくは680℃以上または690℃以上、特に好ましくは700℃以上である。 At present, the process temperature of LTPS used in ultra-high-definition mobile displays is about 400-600 ° C. In order to suppress thermal shrinkage at this process temperature, the strain point is preferably 680 ° C. or higher or 690 ° C. or higher, particularly preferably 700 ° C. or higher.
 最近では、OLEDディスプレイが、モバイルやTV等の用途でも使用される。この用途の駆動TFT素子として、上記のLTPS以外に、酸化物TFTが着目されている。従来まで、酸化物TFTは、a-Siと同等の300~400℃の温度プロセスで作製されていたが、従来よりも高い熱処理温度でアニールを行うと、より安定した素子特性が得られることが分かってきた。その熱処理温度は、400~600℃程度であり、この用途でも低熱収縮のガラス板が要求されるようになっている。 Recently, OLED displays are also used for mobile and TV applications. In addition to the LTPS described above, an oxide TFT has attracted attention as a driving TFT element for this application. Conventionally, oxide TFTs have been fabricated by a temperature process of 300 to 400 ° C. equivalent to a-Si. However, if annealing is performed at a higher heat treatment temperature than before, more stable device characteristics can be obtained. I understand. The heat treatment temperature is about 400 to 600 ° C., and a glass plate with low heat shrinkage is required even in this application.
 本発明のガラスにおいて、室温(25℃)から5℃/分の速度で500℃まで昇温し、500℃で1時間保持した後、5℃/分の速度で室温まで降温したとき、熱収縮値は、好ましくは30ppm以下、25ppm以下、23ppm以下、22ppm以下、21ppm以下、20ppm以下、19ppm以下、18ppm以下、17ppm以下または16ppm以下、特に好ましくは15ppm以下である。このようにすれば、LTPSの製造工程で熱処理を受けても、画素ピッチズレ等の不具合が生じ難くなる。なお、熱収縮値が小さ過ぎると、ガラスの生産性が低下し易くなる。よって、熱収縮値は、好ましくは5ppm以上、特に好ましくは8ppm以上である。 When the glass of the present invention was heated from room temperature (25 ° C.) to 500 ° C. at a rate of 5 ° C./minute, held at 500 ° C. for 1 hour, and then cooled to room temperature at a rate of 5 ° C./minute, The value is preferably 30 ppm or less, 25 ppm or less, 23 ppm or less, 22 ppm or less, 21 ppm or less, 20 ppm or less, 19 ppm or less, 18 ppm or less, 17 ppm or less, or 16 ppm or less, particularly preferably 15 ppm or less. In this way, even if heat treatment is performed in the LTPS manufacturing process, problems such as pixel pitch deviation are less likely to occur. If the heat shrinkage value is too small, the productivity of the glass tends to decrease. Therefore, the heat shrinkage value is preferably 5 ppm or more, particularly preferably 8 ppm or more.
 熱収縮値は、歪点を高める以外にも、成形時の冷却速度を低下させることでも低減することができる。特に、ガラスの徐冷点をTa(℃)とし、Taよりも100℃高い温度からTaよりも100℃低い温度までの間の温度範囲における成形時の平均冷却速度をR(℃/分)としたときに、成形時の冷却は、logR≦0.00018361Ta2-0.23414Ta+75.29の関係を満たすことが好ましく、logR≦0.00011821Ta2-0.14847Ta+47.03の関係を満たすことがより好ましく、logR≦0.000054326Ta2-0.064985Ta+19.56の関係を満たすことが更に好ましい。上記関係式が満たされない場合、熱収縮値が過大になり易い。 In addition to increasing the strain point, the heat shrinkage value can also be reduced by reducing the cooling rate during molding. In particular, let the annealing point of glass be Ta (° C.), and let R (° C./min) be the average cooling rate during molding in the temperature range from a temperature 100 ° C. higher than Ta to a temperature 100 ° C. lower than Ta. upon cooling during molding, it is preferable to satisfy the relationship of logR ≦ 0.00018361Ta 2 -0.23414Ta + 75.29, more preferably satisfies the relationship logR ≦ 0.00011821Ta 2 -0.14847Ta + 47.03 LogR ≦ 0.000054326Ta 2 −0.064985Ta + 19.56 is more preferably satisfied. When the above relational expression is not satisfied, the heat shrinkage value tends to be excessive.
 オーバーフローダウンドロー法では、楔形の耐火物(或いは白金族金属で被覆された耐火物)の表面を溶融ガラスが流下し、楔の下端で合流して、板状に成形される。スロットダウンドロー法では、例えば、スリット状の開口部を持つ白金族金属製のパイプからリボン状の溶融ガラスを流下、冷却して、板状に成形される。成形装置に接触している溶融ガラスの温度が高過ぎると、成形装置の老朽化を招き、ガラス板の生産性が低下し易くなる。よって、高温粘度105.0dPa・sにおける温度は、好ましくは1300℃以下、1280℃以下、1270℃以下、1260℃以下、1250℃以下または1240℃以下、特に好ましくは1230℃以下である。ここで、「105.0dPa・sにおける温度」は、例えば白金球引き上げ法で測定可能である。なお、高温粘度105.0dPa・sにおける温度は、成形時の溶融ガラスの温度に相当している。 In the overflow down-draw method, molten glass flows down the surface of a wedge-shaped refractory (or a refractory coated with a platinum group metal), joins at the lower end of the wedge, and is formed into a plate shape. In the slot down draw method, for example, a ribbon-shaped molten glass is flowed down from a platinum group metal pipe having a slit-shaped opening and cooled to be formed into a plate shape. If the temperature of the molten glass in contact with the forming apparatus is too high, the forming apparatus will be deteriorated, and the productivity of the glass plate will be easily lowered. Therefore, the temperature at a high temperature viscosity of 10 5.0 dPa · s is preferably 1300 ° C. or lower, 1280 ° C. or lower, 1270 ° C. or lower, 1260 ° C. or lower, 1250 ° C. or lower, or 1240 ° C. or lower, particularly preferably 1230 ° C. or lower. Here, the “temperature at 10 5.0 dPa · s” can be measured by, for example, a platinum ball pulling method. The temperature at a high temperature viscosity of 10 5.0 dPa · s corresponds to the temperature of the molten glass at the time of molding.
 ガラス組成中にSiO2、Al23、B23及びROを含むガラスは、一般的に、溶融し難い。このため、溶融性の向上が課題になる。溶融性を高めると、泡、異物等による不良率が軽減されるため、高品質のガラス板を大量、且つ安価に供給することができる。一方、高温域でのガラスの粘度が高過ぎると、溶融工程で脱泡が促進され難くなる。よって、高温粘度102.5dPa・sにおける温度は、好ましくは1650℃以下、1640℃以下、1630℃以下または1620℃以下、特に好ましくは1610℃以下である。ここで、「102.5dPa・sにおける温度」は、例えば白金球引き上げ法で測定可能である。なお、高温粘度102.5dPa・sにおける温度は、溶融温度に相当しており、この温度が低い程、溶融性に優れている。 Glass containing SiO 2 , Al 2 O 3 , B 2 O 3 and RO in the glass composition is generally difficult to melt. For this reason, improvement of meltability becomes a problem. When the meltability is increased, the defect rate due to bubbles, foreign matters, and the like is reduced, so that a high-quality glass plate can be supplied in a large amount at a low cost. On the other hand, when the viscosity of the glass in a high temperature range is too high, defoaming is hardly promoted in the melting step. Therefore, the temperature at a high temperature viscosity of 10 2.5 dPa · s is preferably 1650 ° C. or lower, 1640 ° C. or lower, 1630 ° C. or lower, or 1620 ° C. or lower, particularly preferably 1610 ° C. or lower. Here, the “temperature at 10 2.5 dPa · s” can be measured by, for example, a platinum ball pulling method. The temperature at a high temperature viscosity of 10 2.5 dPa · s corresponds to the melting temperature, and the lower this temperature, the better the meltability.
 ダウンドロー法等で成形する場合、耐失透性が重要になる。ガラス組成中にSiO2、Al23、B23及びROを含むガラスの成形温度を考慮すると、液相線温度は、好ましくは1250℃未満、1230℃以下、1220℃以下、1210℃以下または1200℃以下、特に好ましくは1190℃以下である。また、液相線粘度は、好ましくは105.0dPa・s以上、105.2dPa・s以上、105.3dPa・s以上、105.4dPa・s以上または105.5dPa・s以上、特に好ましくは105.6dPa・s以上である。ここで、「液相線粘度」は、液相線温度におけるガラスの粘度を指し、例えば白金球引き上げ法で測定可能である。 Devitrification resistance is important when molding by the downdraw method or the like. Considering the molding temperature of glass containing SiO 2 , Al 2 O 3 , B 2 O 3 and RO in the glass composition, the liquidus temperature is preferably less than 1250 ° C., 1230 ° C. or less, 1220 ° C. or less, 1210 ° C. Or 1200 ° C. or less, particularly preferably 1190 ° C. or less. The liquidus viscosity is preferably 10 5.0 dPa · s or more, 10 5.2 dPa · s or more, 10 5.3 dPa · s or more, 10 5.4 dPa · s or more, or 10 5.5 dPa · s or more, and particularly preferably 10 5.6 dPa · s or more. dPa · s or more. Here, “liquidus viscosity” refers to the viscosity of glass at the liquidus temperature, and can be measured by, for example, a platinum ball pulling method.
 高精細のディスプレイに用いられるガラス板には、透明導電膜、絶縁膜、半導体膜、金属膜等が成膜される。更に、フォトリソグラフィーエッチング工程によって種々の回路、パターンが形成される。これらの成膜工程、フォトリソグラフィーエッチング工程において、ガラス板は、種々の薬液処理を受ける。例えば、TFT型アクティブマトリックス液晶ディスプレイでは、ガラス板上に絶縁膜や透明導電膜を成膜し、更にアモルファスシリコンや多結晶シリコンのTFT(薄膜トランジスタ)がフォトリソグラフィーエッチング工程によりガラス板上に多数形成される。このような工程では、硫酸、塩酸、アルカリ溶液、フッ酸、BHF等の種々の薬液処理を受ける。特に、BHFは、絶縁膜のエッチングに広く用いられるが、BHFは、ガラス板を侵食して、ガラス板の表面を白濁させ易く、またその反応生成物が、製造工程中のフィルターを詰まらせたり、ガラス板上に付着するおそれがある。上記事情から、ガラス板の耐薬品性を高めることが重要になる。 A transparent conductive film, an insulating film, a semiconductor film, a metal film, etc. are formed on a glass plate used for a high-definition display. Furthermore, various circuits and patterns are formed by a photolithography etching process. In these film forming process and photolithography etching process, the glass plate is subjected to various chemical treatments. For example, in a TFT type active matrix liquid crystal display, an insulating film or a transparent conductive film is formed on a glass plate, and a large number of amorphous silicon or polycrystalline silicon TFTs (thin film transistors) are formed on the glass plate by a photolithography etching process. The In such a process, various chemical treatments such as sulfuric acid, hydrochloric acid, alkaline solution, hydrofluoric acid, and BHF are performed. In particular, BHF is widely used for etching an insulating film. However, BHF erodes the glass plate and tends to cloud the surface of the glass plate, and the reaction product clogs the filter during the manufacturing process. There is a risk of adhering to the glass plate. From the above situation, it is important to increase the chemical resistance of the glass plate.
 本発明のガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法とは、楔形の耐火物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを楔形の下端で合流させながら、下方に延伸成形してガラス板を成形する方法である。オーバーフローダウンドロー法では、ガラス板の表面となるべき面は耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができ、大面積化や薄肉化も容易である。なお、オーバーフローダウンドロー法で用いる耐火物の材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、十分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。 The glass of the present invention is preferably formed by an overflow down draw method. The overflow down draw method is a method in which molten glass is overflowed from both sides of a wedge-shaped refractory, and the overflowed molten glass is merged at the lower end of the wedge shape, and is stretched downward to form a glass plate. In the overflow down draw method, the surface to be the surface of the glass plate is not in contact with the refractory, and is formed in a free surface state. For this reason, it is possible to produce an unpolished glass plate with good surface quality at low cost, and it is easy to increase the area and thickness. The material of the refractory used in the overflow downdraw method is not particularly limited as long as it can realize desired dimensions and surface accuracy. In addition, the method of applying a force when performing downward stretch molding is not particularly limited. For example, a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with the glass, or a plurality of pairs of heat-resistant rolls are contacted only near the end face of the glass. It is also possible to adopt a method of stretching by stretching.
 オーバーフローダウンドロー法以外にも、例えば、ダウンドロー法(スロットダウン法、リドロー法等)、フロート法等でガラス板を成形することも可能である。 In addition to the overflow downdraw method, a glass plate can be formed by, for example, a downdraw method (slot down method, redraw method, etc.), a float method, or the like.
 本発明のガラスにおいて、厚み(板厚)は、特に限定されないが、好ましくは0.5mm以下、0.4mm以下または0.35mm以下、特に好ましくは0.3mm以下である。板厚が小さい程、デバイスを軽量化し易くなる。一方、板厚が小さい程、ガラス板が撓み易くなるが、本発明のガラスは、ヤング率や比ヤング率が高いため、撓みに起因する不具合が生じ難い。なお、板厚は、ガラス製造時の流量や板引き速度等で調整可能である。 In the glass of the present invention, the thickness (plate thickness) is not particularly limited, but is preferably 0.5 mm or less, 0.4 mm or less, or 0.35 mm or less, particularly preferably 0.3 mm or less. The smaller the plate thickness, the easier it is to reduce the weight of the device. On the other hand, the smaller the plate thickness, the easier the glass plate bends. However, since the glass of the present invention has a high Young's modulus and specific Young's modulus, it is difficult for defects caused by bending to occur. In addition, plate | board thickness can be adjusted with the flow rate at the time of glass manufacture, a board drawing speed, etc.
 本発明のガラスにおいて、β-OH値を低下させると、歪点を高めることができる。β-OH値は、好ましくは0.5/mm以下、0.45/mm以下または0.4/mm以下、特に好ましくは0.35/mm以下である。β-OH値が大き過ぎると、歪点が低下し易くなる。なお、β-OH値が小さ過ぎると、溶融性が低下し易くなる。よって、β-OH値は、好ましくは0.01/mm以上、特に好ましくは0.05/mm以上である。 In the glass of the present invention, the strain point can be increased by lowering the β-OH value. The β-OH value is preferably 0.5 / mm or less, 0.45 / mm or less or 0.4 / mm or less, particularly preferably 0.35 / mm or less. If the β-OH value is too large, the strain point tends to decrease. If the β-OH value is too small, the meltability tends to be lowered. Therefore, the β-OH value is preferably 0.01 / mm or more, particularly preferably 0.05 / mm or more.
 β-OH値を低下させる方法として、以下の方法が挙げられる。(1)含水量の低い原料を選択する。(2)ガラス中にβ-OH値を低下させる成分(Cl、SO3等)を添加する。(3)炉内雰囲気中の水分量を低下させる。(4)溶融ガラス中でN2バブリングを行う。(5)小型溶融炉を採用する。(6)溶融ガラスの流量を多くする。(7)電気溶融法を採用する。 As a method for reducing the β-OH value, the following methods may be mentioned. (1) Select a raw material with a low water content. (2) A component (Cl, SO 3 or the like) that lowers the β-OH value is added to the glass. (3) Reduce the amount of moisture in the furnace atmosphere. (4) N 2 bubbling is performed in molten glass. (5) Adopt a small melting furnace. (6) Increase the flow rate of the molten glass. (7) An electric melting method is adopted.
 ここで、「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた値を指す。
β-OH値 = (1/X)log(T1/T2
X:ガラス肉厚(mm)
1:参照波長3846cm-1における透過率(%)
2:水酸基吸収波長3600cm-1付近における最小透過率(%)
Here, “β-OH value” refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
β-OH value = (1 / X) log (T 1 / T 2 )
X: Glass wall thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1
T 2 : Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm −1
 本発明のガラスは、OLEDディスプレイの基板に用いることが好ましい。OLEDは、一般に市販されつつあるが、大量生産によるコストダウンが強く望まれている。本発明のガラスは、生産性に優れており、且つ大面積化や薄肉化が容易であるため、このような要求を的確に満たすことができる。 The glass of the present invention is preferably used for an OLED display substrate. OLEDs are generally being marketed, but cost reduction by mass production is strongly desired. Since the glass of the present invention is excellent in productivity and can be easily increased in area and thickness, such a requirement can be satisfied accurately.
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1~3は、本発明の実施例(試料No.1~30)を示している。 Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 30).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 次のように、各試料を作製した。まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れ、1600℃で24時間溶融した。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出し、板状に成形した。得られた各試料について、密度、熱膨張係数、ヤング率、比ヤング率、歪点、軟化点、高温粘度102.5dPa・sにおける温度、高温粘度105.0dPa・sにおける温度、液相線温度、初相、液相線粘度logηTL、耐薬品性を評価した。 Each sample was produced as follows. First, a glass batch in which glass raw materials were prepared so as to have the glass composition in the table was placed in a platinum crucible and melted at 1600 ° C. for 24 hours. In melting the glass batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured out on a carbon plate and formed into a plate shape. About each obtained sample, density, thermal expansion coefficient, Young's modulus, specific Young's modulus, strain point, softening point, temperature at high temperature viscosity of 10 2.5 dPa · s, temperature at high temperature viscosity of 10 5.0 dPa · s, liquidus temperature The initial phase, liquidus viscosity log ηTL, and chemical resistance were evaluated.
 密度は、周知のアルキメデス法によって測定した値である。 The density is a value measured by the well-known Archimedes method.
 熱膨張係数は、30~380℃の温度範囲において、ディラトメーターで測定した平均熱膨張係数である。 The thermal expansion coefficient is an average thermal expansion coefficient measured with a dilatometer in a temperature range of 30 to 380 ° C.
 ヤング率は、JIS R1602に基づく動的弾性率測定法(共振法)により測定した値を指し、比ヤング率は、ヤング率を密度で割った値である。 The Young's modulus refers to a value measured by a dynamic elastic modulus measurement method (resonance method) based on JIS R1602, and the specific Young's modulus is a value obtained by dividing Young's modulus by density.
 歪点、軟化点は、ASTM C336の方法に基づいて、ファイバーエロンゲーション法で測定した値である。 The strain point and softening point are values measured by the fiber elongation method based on the method of ASTM C336.
 高温粘度102.5dPa・s、105.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。 The temperature at a high temperature viscosity of 10 2.5 dPa · s and 10 5.0 dPa · s is a value measured by a platinum ball pulling method.
 次に、各試料を粉砕し、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、白金ボートを取り出し、顕微鏡観察により、ガラス内部に失透(結晶異物)が認められた最も高い温度を液相線温度とした。そして、液相線温度から(液相線温度-50℃)の温度範囲に析出している結晶を初相として評価した。表中で「Ano」は、アノーサイトを指し、「Cri」は、クリストバライトを指し、「Mul」は、ムライトを指している。更に、液相線温度におけるガラスの粘度を白金球引き上げ法で測定し、これを液相線粘度とした。 Next, each sample was pulverized, passed through a standard sieve 30 mesh (500 μm), and the glass powder remaining on 50 mesh (300 μm) was placed in a platinum boat and held in a temperature gradient furnace for 24 hours. The highest temperature at which devitrification (crystal foreign matter) was observed inside the glass by microscopic observation was taken as the liquidus temperature. Then, crystals precipitated in the temperature range from the liquidus temperature (liquidus temperature −50 ° C.) were evaluated as the initial phase. In the table, “Ano” indicates an anosite, “Cri” indicates cristobalite, and “Mul” indicates mullite. Furthermore, the viscosity of the glass at the liquidus temperature was measured by the platinum ball pulling method, and this was defined as the liquidus viscosity.
 また、各試料の両面を光学研磨した上で、所定の濃度に設定された薬液中で、所定の温度で所定の時間浸漬した後、得られた試料の表面を観察することにより、耐薬品性を評価した。具体的には、薬液処理後に、ガラス表面が強く白濁したり、クラックが入っているものを「×」、弱い白濁、荒れが見られるものを「△」、全く変化の無いものを「○」とした。薬液処理の条件として、耐酸性は、10質量%塩酸を用いて、80℃、3時間処理で評価し、耐BHF性は、周知の130BHF溶液を用いて、20℃、30分間処理で評価した。 In addition, after both surfaces of each sample are optically polished and immersed in a chemical solution set to a predetermined concentration at a predetermined temperature for a predetermined time, the surface of the obtained sample is observed to be chemically resistant. Evaluated. Specifically, after chemical treatment, the glass surface is strongly clouded or cracked, “X”, those with weak cloudiness and roughness are “△”, and those with no change are “O”. It was. As conditions for chemical treatment, acid resistance was evaluated by treatment at 80 ° C. for 3 hours using 10% by mass hydrochloric acid, and BHF resistance was evaluated by treatment at 20 ° C. for 30 minutes using a well-known 130 BHF solution. .
 試料No.1~30は、密度が2.45~2.48g/cm3であり、ガラス板の軽量化を図ることができる。また熱膨張係数が33~37×10-7/℃、歪点が702℃以上であり、熱収縮値を低減することができる。またヤング率が75GPa以上、比ヤング率が30.3GPa/(g/cm3)以上であり、撓みや変形が生じ難い。また高温粘度102.5dPa・sにおける温度が1678℃以下、高温粘度105.0dPa・sにおける温度が1250℃以下であり、且つ液相線温度が1230℃以下、液相線粘度が104.8dPa・s以上であるため、溶融性や成形性に優れており、大量生産に向いている。更に耐薬品性も優れている。 Sample No. Nos. 1 to 30 have a density of 2.45 to 2.48 g / cm 3 , which can reduce the weight of the glass plate. Further, the thermal expansion coefficient is 33 to 37 × 10 −7 / ° C. and the strain point is 702 ° C. or higher, so that the heat shrinkage value can be reduced. In addition, the Young's modulus is 75 GPa or more and the specific Young's modulus is 30.3 GPa / (g / cm 3 ) or more, so that bending and deformation hardly occur. The temperature at a high temperature viscosity of 10 2.5 dPa · s is 1678 ° C. or lower, the temperature at a high temperature viscosity of 10 5.0 dPa · s is 1250 ° C. or lower, the liquidus temperature is 1230 ° C. or lower, and the liquidus viscosity is 10 4.8 dPa · s. Since it is more than s, it has excellent meltability and moldability, and is suitable for mass production. Furthermore, chemical resistance is also excellent.
 表中の試料No.12,20、23、24の材質について、オーバーフローダウンドロー法にて0.5mm厚のガラス板を成形した後、30mm×160mmの寸法に切断した。なお、ガラスの徐冷点をTa(℃)とし、Taよりも100℃高い温度からTaよりも100℃低い温度までの間の温度範囲における成形時の平均冷却速度をR(℃/分)としたときに、成形時の冷却条件がlogR≦0.00011821Ta2-0.14847Ta+47.03の関係を満たすように調整した。続いて、得られたガラス板について、室温(25℃)から5℃/分の速度で500℃まで昇温し、500℃で1時間保持した後、5℃/分の速度で室温まで降温したときの熱収縮値を測定したところ、15~20ppmであった。 Sample No. in the table. About the material of 12, 20, 23, 24, after shape | molding the glass plate of 0.5 mm thickness by the overflow downdraw method, it cut | disconnected to the dimension of 30 mm x 160 mm. In addition, let the annealing point of glass be Ta (° C.), and the average cooling rate at the time of molding in a temperature range from a temperature 100 ° C. higher than Ta to a temperature 100 ° C. lower than Ta is R (° C./min). Then, the cooling condition at the time of molding was adjusted so as to satisfy the relationship of logR ≦ 0.00011821Ta 2 −0.14847Ta + 47.03. Subsequently, the obtained glass plate was heated from room temperature (25 ° C.) to 500 ° C. at a rate of 5 ° C./min, held at 500 ° C. for 1 hour, and then cooled to room temperature at a rate of 5 ° C./min. When the heat shrinkage value was measured, it was 15 to 20 ppm.
 本発明のガラスは、歪点とヤング率が高い場合でも、耐失透性を顕著に高めることができる。よって、本発明のガラスは、OLEDディスプレイ、液晶ディスプレイ等のディスプレイの基板に好適であり、LTPS、酸化物TFTで駆動するディスプレイの基板に好適である。 The glass of the present invention can remarkably improve devitrification resistance even when the strain point and Young's modulus are high. Therefore, the glass of the present invention is suitable for a substrate of a display such as an OLED display or a liquid crystal display, and is suitable for a substrate of a display driven by LTPS or an oxide TFT.

Claims (14)

  1.  ガラス組成として、SiO2、Al23、B23及びRO(ROは、MgO、CaO、SrO、BaOの内、1種類又は2種類以上)を含み、且つ液相線温度から(液相線温度-50℃)の温度範囲において、析出する結晶が、SiO2-Al23-RO系結晶、SiO2系結晶、SiO2-Al23系結晶の内、2種類以上であることを特徴とするガラス。 As glass composition, it contains SiO 2 , Al 2 O 3 , B 2 O 3 and RO (RO is one or more of MgO, CaO, SrO and BaO), and from the liquidus temperature (liquid In the temperature range of the phase line temperature (-50 ° C.), two or more kinds of crystals are precipitated out of SiO 2 —Al 2 O 3 —RO crystal, SiO 2 crystal, and SiO 2 —Al 2 O 3 crystal. Glass characterized by being.
  2.  SiO2-Al23-RO系結晶が、SiO2-Al23-CaO系結晶であることを特徴とする請求項1に記載のガラス。 2. The glass according to claim 1, wherein the SiO 2 —Al 2 O 3 —RO based crystal is a SiO 2 —Al 2 O 3 —CaO based crystal.
  3.  SiO2-Al23-RO系結晶がアノーサイト、SiO2系結晶がクリストバライト、SiO2-Al23系結晶がムライトであることを特徴とする請求項1に記載のガラス。 2. The glass according to claim 1, wherein the SiO 2 —Al 2 O 3 —RO based crystal is anorthite, the SiO 2 based crystal is cristobalite, and the SiO 2 —Al 2 O 3 based crystal is mullite.
  4.  液相線温度が1250℃より低いことを特徴とする請求項1~3の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 3, wherein the liquidus temperature is lower than 1250 ° C.
  5.  ガラス組成中のLi2O+Na2O+K2Oの含有量が0.5質量%以下であることを特徴とする請求項1~4の何れか1項に記載のガラス。 5. The glass according to claim 1, wherein the content of Li 2 O + Na 2 O + K 2 O in the glass composition is 0.5% by mass or less.
  6.  ガラス組成として、質量%で、SiO2 57~70%、Al23 16~25%、B23 1~8%、MgO 0~5%、CaO 2~13%、SrO 0~6%、BaO 0~7%、ZnO 0~5%、ZrO2 0~5%、TiO2 0~5%、P25 0~5%を含有し、モル比(MgO+CaO+SrO+BaO)/Al23が0.8~1.3、モル比CaO/Al23が0.3~1.0であることを特徴とする請求項1~5の何れか1項に記載のガラス。 As glass composition, SiO 2 57-70%, Al 2 O 3 16-25%, B 2 O 3 1-8%, MgO 0-5%, CaO 2-13%, SrO 0-6% by mass%. , BaO 0 to 7%, ZnO 0 to 5%, ZrO 2 0 to 5%, TiO 2 0 to 5%, P 2 O 5 0 to 5%, and the molar ratio (MgO + CaO + SrO + BaO) / Al 2 O 3 is The glass according to any one of claims 1 to 5, wherein 0.8 to 1.3 and a molar ratio CaO / Al 2 O 3 is 0.3 to 1.0.
  7.  ガラス組成として、質量%で、SiO2 58~70%、Al23 16~25%、B23 2~7%、MgO 0~5%、CaO 3~13%、SrO 0~6%、BaO 0~6%、ZnO 0~5%、ZrO2 0~5%、TiO2 0~5%、P25 0~5%、SnO2 0~5%を含有し、モル比(MgO+CaO+SrO+BaO)/Al23が0.8~1.3、モル比CaO/Al23が0.3~1.0であり、実質的にLi2O、Na2Oを含有しないことを特徴とする請求項1~6の何れか1項に記載のガラス。 As a glass composition, SiO 2 58 to 70%, Al 2 O 3 16 to 25%, B 2 O 3 2 to 7%, MgO 0 to 5%, CaO 3 to 13%, SrO 0 to 6% by mass%. , BaO 0-6%, ZnO 0-5%, ZrO 2 0-5%, TiO 2 0-5%, P 2 O 5 0-5%, SnO 2 0-5%, molar ratio (MgO + CaO + SrO + BaO ) / Al 2 O 3 is 0.8 to 1.3, molar ratio CaO / Al 2 O 3 is 0.3 to 1.0, and is substantially free of Li 2 O and Na 2 O. The glass according to any one of claims 1 to 6.
  8.  モル比CaO/MgOが2~20であることを特徴とする請求項1~7の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 7, wherein the molar ratio CaO / MgO is 2 to 20.
  9.  歪点が700℃以上であることを特徴とする請求項1~8の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 8, which has a strain point of 700 ° C or higher.
  10.  ヤング率が75GPa以上であることを特徴とする請求項1~9の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 9, wherein Young's modulus is 75 GPa or more.
  11.  比ヤング率が30GPa/(g/cm3)以上であることを特徴とする請求項1~10の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 10, wherein the specific Young's modulus is 30 GPa / (g / cm 3 ) or more.
  12.  平板形状であり、液晶ディスプレイに用いることを特徴とする請求項1~11の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 11, which has a flat plate shape and is used for a liquid crystal display.
  13.  平板形状であり、OLEDディスプレイに用いることを特徴とする請求項1~11の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 11, which has a flat plate shape and is used for an OLED display.
  14.  平板形状であり、酸化物TFT駆動のディスプレイに用いることを特徴とする請求項1~13の何れか1項に記載のガラス。 The glass according to any one of claims 1 to 13, which has a flat plate shape and is used for an oxide TFT drive display.
PCT/JP2014/067889 2013-07-11 2014-07-04 Glass WO2015005235A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/901,248 US10173922B2 (en) 2013-07-11 2014-07-04 Glass
KR1020157020091A KR102265030B1 (en) 2013-07-11 2014-07-04 Glass
CN201480022055.0A CN105121374A (en) 2013-07-11 2014-07-04 Glass
KR1020217001728A KR102359866B1 (en) 2013-07-11 2014-07-04 Glass
KR1020227003656A KR102646604B1 (en) 2013-07-11 2014-07-04 Glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-145271 2013-07-11
JP2013145271 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015005235A1 true WO2015005235A1 (en) 2015-01-15

Family

ID=52279919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067889 WO2015005235A1 (en) 2013-07-11 2014-07-04 Glass

Country Status (6)

Country Link
US (1) US10173922B2 (en)
JP (1) JP6365826B2 (en)
KR (3) KR102646604B1 (en)
CN (3) CN109942196A (en)
TW (1) TWI622565B (en)
WO (1) WO2015005235A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406303A (en) * 2015-06-02 2017-11-28 日本电气硝子株式会社 Glass
CN107406300A (en) * 2015-04-03 2017-11-28 日本电气硝子株式会社 Glass
CN107615120A (en) * 2015-06-24 2018-01-19 日本电气硝子株式会社 Light guide plate
JPWO2016185863A1 (en) * 2015-05-15 2018-03-01 日本電気硝子株式会社 Method for producing tempered glass plate, tempered glass plate and tempered glass plate

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555725B (en) * 2013-09-20 2020-04-14 Agc株式会社 Alkali-free glass
EP3215473A1 (en) * 2014-11-05 2017-09-13 Corning Incorporated Glass articles with non-planar features and alkali-free glass elements
JP6742593B2 (en) * 2015-01-05 2020-08-19 日本電気硝子株式会社 Method for manufacturing supporting glass substrate and method for manufacturing laminated body
US10717670B2 (en) * 2015-02-10 2020-07-21 Nippon Sheet Glass Company, Limited Glass for laser processing and method for producing perforated glass using same
TWI714698B (en) * 2016-01-12 2021-01-01 日商日本電氣硝子股份有限公司 glass
CN105731790B (en) * 2016-03-18 2018-12-25 芜湖东旭光电装备技术有限公司 A kind of alkali-free alumina silicate glass composition, alkali-free alumina silicate glass and its preparation method and application
JPWO2018116953A1 (en) * 2016-12-20 2019-10-24 日本電気硝子株式会社 Glass
WO2018123675A1 (en) * 2016-12-28 2018-07-05 日本電気硝子株式会社 Glass
US12109780B2 (en) 2017-04-27 2024-10-08 Nippon Electric Glass Co., Ltd. Carrier glass and method for producing same
BR112020020518A2 (en) 2018-04-09 2021-01-19 Nippon Sheet Glass Company, Limited GLASS FIBER AND METHOD OF MANUFACTURING THE SAME
CN108483900A (en) * 2018-06-05 2018-09-04 中建材蚌埠玻璃工业设计研究院有限公司 One kind being suitable for the molding low-phosphorous alkali-free glass batch of float glass process
CN108467197A (en) * 2018-06-05 2018-08-31 中建材蚌埠玻璃工业设计研究院有限公司 One kind being suitable for the molding alkali-free glass batch of float glass process
JP7389400B2 (en) * 2018-10-15 2023-11-30 日本電気硝子株式会社 Alkali-free glass plate
JP7478340B2 (en) * 2018-10-17 2024-05-07 日本電気硝子株式会社 Alkaline-free glass plate
CN109485260B (en) * 2018-12-12 2022-02-22 张家界永兴玻璃有限公司 Energy-saving environment-friendly glass ceramic
CN109650720B (en) * 2019-01-14 2021-09-03 宁波行殊新能源科技有限公司 Mobile terminal glass back cover substrate and production method thereof
CN114450257A (en) * 2019-09-24 2022-05-06 日本电气硝子株式会社 Glass for semiconductor element coating and semiconductor coating material using the same
CN111592220A (en) * 2020-05-12 2020-08-28 广州鑫泓设备设计有限公司 Artwork protective glass and preparation process thereof
CN112174521A (en) * 2020-10-30 2021-01-05 中南大学 Alkali-free boroaluminosilicate glass for TFT-LCD substrate and preparation method thereof
CN115784616A (en) * 2022-11-15 2023-03-14 常熟佳合显示科技有限公司 MAS microcrystalline glass and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003240A (en) * 2000-06-19 2002-01-09 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display
JP2012082130A (en) * 2010-10-06 2012-04-26 Corning Inc Alkali-free glass composition having high thermal and chemical stability
JP2012184146A (en) * 2011-03-08 2012-09-27 Nippon Electric Glass Co Ltd Alkali-free glass
JP2014118313A (en) * 2012-12-14 2014-06-30 Nippon Electric Glass Co Ltd Glass and glass substrate

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096857A (en) * 1990-10-22 1992-03-17 E. I. Du Pont De Nemours And Company Chemically stabilized cristobalite
US6169047B1 (en) * 1994-11-30 2001-01-02 Asahi Glass Company Ltd. Alkali-free glass and flat panel display
JP2990379B2 (en) * 1995-09-28 1999-12-13 日本電気硝子株式会社 Alkali-free glass substrate
DE19916296C1 (en) * 1999-04-12 2001-01-18 Schott Glas Alkali-free aluminoborosilicate glass and its use
DE10000839C1 (en) * 2000-01-12 2001-05-10 Schott Glas Alkali-free aluminoborosilicate glass used as substrate glass in displays and in thin layer photovoltaics contains oxides of silicon, boron, aluminum, magnesium, calcium, strontium, barium and zinc
DE10000838B4 (en) * 2000-01-12 2005-03-17 Schott Ag Alkali-free aluminoborosilicate glass and its uses
DE10064804C2 (en) * 2000-12-22 2003-03-20 Schott Glas Alkali-free aluminoborosilicate glasses and their use
JP2002293571A (en) * 2001-03-30 2002-10-09 Nippon Electric Glass Co Ltd Glass for illumination
JP2003183051A (en) * 2001-12-14 2003-07-03 Nippon Electric Glass Co Ltd Crystallized glass article and method of manufacturing it
JP2004182510A (en) * 2002-12-02 2004-07-02 Asahi Glass Co Ltd Glass frit mixture, method of manufacturing electronic circuit board, and electronic circuit board
JP5808069B2 (en) * 2007-02-16 2015-11-10 日本電気硝子株式会社 Glass substrate for solar cell
JP5435394B2 (en) * 2007-06-08 2014-03-05 日本電気硝子株式会社 Tempered glass substrate and manufacturing method thereof
DE102008056323B8 (en) * 2007-11-21 2019-01-03 Schott Ag Use of alkali-free aluminoborosilicate glasses for lamps with external or internal contact
RU2010154445A (en) * 2008-05-30 2012-07-10 Фостер Вилер Энергия Ой (Fi) METHOD AND SYSTEM FOR ENERGY GENERATION BY BURNING IN PURE OXYGEN
DE102008041238A1 (en) * 2008-08-13 2010-02-25 Koenig & Bauer Aktiengesellschaft Printing unit of a printing press
JP5537144B2 (en) * 2009-12-16 2014-07-02 AvanStrate株式会社 Glass composition and glass substrate for flat panel display using the same
JP5751439B2 (en) * 2010-08-17 2015-07-22 日本電気硝子株式会社 Alkali-free glass
JP5874304B2 (en) * 2010-11-02 2016-03-02 日本電気硝子株式会社 Alkali-free glass
JP5935304B2 (en) 2010-12-27 2016-06-15 日本電気硝子株式会社 Crystallized glass
KR101927555B1 (en) * 2011-01-25 2018-12-10 코닝 인코포레이티드 Glass compositions having high thermal and chemical stability
US8785336B2 (en) * 2011-03-14 2014-07-22 Nippon Electric Glass Co., Ltd. Alkali-free glass
CN107253822A (en) * 2011-03-31 2017-10-17 安瀚视特控股株式会社 The manufacture method of glass substrate
JP5935471B2 (en) * 2011-04-25 2016-06-15 日本電気硝子株式会社 LCD lens
CN103080031B (en) * 2011-07-01 2015-12-09 安瀚视特控股株式会社 Glass substrate for planar display and manufacture method thereof
US9162919B2 (en) * 2012-02-28 2015-10-20 Corning Incorporated High strain point aluminosilicate glasses
KR101872576B1 (en) * 2012-12-21 2018-06-28 코닝 인코포레이티드 Glass with Improved Total Pitch stability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003240A (en) * 2000-06-19 2002-01-09 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display
JP2012082130A (en) * 2010-10-06 2012-04-26 Corning Inc Alkali-free glass composition having high thermal and chemical stability
JP2012184146A (en) * 2011-03-08 2012-09-27 Nippon Electric Glass Co Ltd Alkali-free glass
JP2014118313A (en) * 2012-12-14 2014-06-30 Nippon Electric Glass Co Ltd Glass and glass substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406300A (en) * 2015-04-03 2017-11-28 日本电气硝子株式会社 Glass
JPWO2016185863A1 (en) * 2015-05-15 2018-03-01 日本電気硝子株式会社 Method for producing tempered glass plate, tempered glass plate and tempered glass plate
CN107406303A (en) * 2015-06-02 2017-11-28 日本电气硝子株式会社 Glass
KR20180015611A (en) * 2015-06-02 2018-02-13 니폰 덴키 가라스 가부시키가이샤 Glass
KR102706625B1 (en) * 2015-06-02 2024-09-13 니폰 덴키 가라스 가부시키가이샤 glass
CN107615120A (en) * 2015-06-24 2018-01-19 日本电气硝子株式会社 Light guide plate

Also Published As

Publication number Publication date
CN112939453A (en) 2021-06-11
KR102646604B1 (en) 2024-03-13
JP6365826B2 (en) 2018-08-01
TW201520181A (en) 2015-06-01
KR102359866B1 (en) 2022-02-08
US20160368815A1 (en) 2016-12-22
TWI622565B (en) 2018-05-01
KR20160030067A (en) 2016-03-16
KR102265030B1 (en) 2021-06-15
CN105121374A (en) 2015-12-02
JP2015034122A (en) 2015-02-19
US10173922B2 (en) 2019-01-08
KR20220021022A (en) 2022-02-21
KR20210009447A (en) 2021-01-26
CN109942196A (en) 2019-06-28

Similar Documents

Publication Publication Date Title
JP6365826B2 (en) Glass
JP6037117B2 (en) Glass and glass substrate
JP6801651B2 (en) Glass
JP7004488B2 (en) Glass substrate
JP6532218B2 (en) Glass
TW201335096A (en) Alkali free glass
JP6770984B2 (en) Glass and glass substrate
JP6323730B2 (en) Glass and glass substrate
JP6709519B2 (en) Glass and glass substrate
JP6955522B2 (en) Glass and glass substrate
JP6354943B2 (en) Glass
WO2018186143A1 (en) Glass substrate
JP6172481B2 (en) Glass substrate and manufacturing method thereof
WO2020189337A1 (en) Glass substrate
WO2020255625A1 (en) Method for producing glass substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022055.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157020091

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14901248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823028

Country of ref document: EP

Kind code of ref document: A1