WO2015005186A1 - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
WO2015005186A1
WO2015005186A1 PCT/JP2014/067610 JP2014067610W WO2015005186A1 WO 2015005186 A1 WO2015005186 A1 WO 2015005186A1 JP 2014067610 W JP2014067610 W JP 2014067610W WO 2015005186 A1 WO2015005186 A1 WO 2015005186A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
draw liquid
supply unit
anaerobic treatment
Prior art date
Application number
PCT/JP2014/067610
Other languages
French (fr)
Japanese (ja)
Inventor
長谷川 進
三浦 雅彦
島田 光重
草介 小野田
秀人 松山
太郎 三好
政宏 安川
智輝 高橋
Original Assignee
株式会社神鋼環境ソリューション
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション, 国立大学法人神戸大学 filed Critical 株式会社神鋼環境ソリューション
Publication of WO2015005186A1 publication Critical patent/WO2015005186A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2688Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the water treatment apparatus 1 is configured such that water to be treated containing organic matter is subjected to anaerobic treatment.
  • the water treatment apparatus 1 includes an anaerobic treatment tank 2 that is supplied with treated water and is anaerobically treated, and a BOD adjustment unit 3 that adjusts the BOD of the treated water supplied to the anaerobic treatment tank 2.
  • a sludge separation unit 4 for separating sludge from the water to be treated discharged from the anaerobic treatment tank 2.
  • the drawing liquid is discharged from the drawing liquid supply unit 300e when the drawing liquid overflows, but the invention is not limited to this, and the drawing liquid supply unit 300e discharges the drawing liquid.
  • a portion 32e may be provided, and the draw liquid may be discharged from the draw liquid discharge portion 32e.
  • the concentrator 301b is configured by arranging a plurality of draw liquid supply units 301e so as to penetrate the treated water supply unit 301d.
  • the draw liquid supply unit 301e has a tubular shape extending in one direction.
  • the draw liquid supply part 301e is formed using the semipermeable membrane 3c in the area located in the internal space of the treated water supply part 301d, and the draw liquid introduction part 31e and the draw liquid discharge part are formed in the area outside the internal space. 32e is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

A water treatment method provided with an anaerobic treatment step for anaerobically treating water to be treated containing organic matter is characterized by being further provided with a concentration step for concentrating the water to be treated before the anaerobic treatment by bringing a draw solution formed to produce osmotic pressure by penetration of moisture from the water to be treated through a semipermeable membrane and the water to be processed into contact with each other with the semipermeable membrane therebetween, and supplying the water to be treated after the concentration step to the anaerobic treatment step to perform the anaerobic treatment.

Description

水処理方法、および、水処理装置Water treatment method and water treatment apparatus 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2013-142998号に基づく優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-142998 and is incorporated herein by reference.
 本発明は、有機物を含有する被処理水を嫌気処理する水処理方法および水処理装置に関する。 The present invention relates to a water treatment method and a water treatment apparatus for anaerobically treating water to be treated containing organic matter.
 下水、河川水又は海水等の有機物を含有する被処理水を処理する水処理方法として、種々の方法が提案されている。例えば、好気的な活性汚泥法では、被処理水が活性汚泥と混合されることで、活性汚泥中の好気性微生物の作用によって、被処理水中の有機物は、好気的に分解され、主に二酸化炭素等として除去される。このため、斯かる活性汚泥法では、活性汚泥中の微生物の活性を維持するために、被処理水と活性汚泥とが混合された混合水の曝気が行われている。 Various methods have been proposed as water treatment methods for treating treated water containing organic substances such as sewage, river water, and seawater. For example, in the aerobic activated sludge method, the water to be treated is mixed with the activated sludge, so that the organic matter in the treated water is aerobically decomposed by the action of aerobic microorganisms in the activated sludge. To be removed as carbon dioxide. For this reason, in such an activated sludge method, in order to maintain the activity of microorganisms in the activated sludge, aeration of mixed water in which treated water and activated sludge are mixed is performed.
 また、食品加工工場、パルプ工場等の工場廃水のように、有機物の含有量が比較的多く、好気的な活性汚泥法による処理に適さない被処理水に対しては、嫌気処理を行う方法が提案されている。斯かる方法では、嫌気性細菌を含有する汚泥と被処理水とが混合されることで、斯かる汚泥中の嫌気性細菌の作用によって、被処理水中の有機物は、嫌気的に分解され、主にメタンガス等として除去される。このような嫌気処理では、有機物が分解される間、被処理水と汚泥とが混合された混合水の曝気は、通常、行われない。 Also, anaerobic treatment is applied to water to be treated that is relatively unsuitable for treatment by the aerobic activated sludge method, such as wastewater from factories such as food processing plants and pulp factories. Has been proposed. In such a method, the sludge containing anaerobic bacteria and the water to be treated are mixed, so that the organic matter in the water to be treated is decomposed anaerobically by the action of the anaerobic bacteria in the sludge. It is removed as methane gas. In such anaerobic treatment, aeration of mixed water in which treated water and sludge are mixed is usually not performed while organic matter is decomposed.
 ところで、上記のような水処理とは別に、近年、飲料水の確保等を目的として、海水を淡水化する技術が提案されている。例えば、半透膜を介して海水と接触した際に浸透圧によって海水からの水分の浸透を受けるように構成されたドロー液(draw液)を用い、斯かるドロー液と海水とを半透膜を介して接触させることで、海水から水分をドロー液側に引き抜き、海水からの水分を含有したドロー液から水分を分離することで淡水を得る方法が提案されている(特許文献1参照)。 Incidentally, in addition to the above water treatment, in recent years, a technique for desalinating seawater has been proposed for the purpose of securing drinking water and the like. For example, a draw liquid configured to receive permeation of water from seawater by osmotic pressure when it comes into contact with seawater through a semipermeable membrane, and the draw liquid and seawater are separated from the semipermeable membrane. A method has been proposed in which fresh water is obtained by drawing water from the seawater to the draw liquid side and separating the water from the draw liquid containing the water from the seawater (see Patent Document 1).
日本国特開2012-183492号公報Japanese Unexamined Patent Publication No. 2012-183492
 しかしながら、上述した好気的な活性汚泥法では、曝気を行う際にブロア等の設備が必要となるため、それを稼動させるための動力が必要となり、エネルギーの消費が比較的大きい。一方、嫌気処理では、活性汚泥法のような曝気を必要としないため、エネルギーの消費を少なくすることができるが、有機物の含有量が少ない(即ち、BODが低い)被処理水に対しては、嫌気性細菌の活性が不安定になるため、適用し難い。仮に、適用した場合であっても、メタンガスとしてのエネルギーの回収率が低く、実用的ではない。 However, since the aerobic activated sludge method described above requires equipment such as a blower when aeration is performed, power is required to operate it, and energy consumption is relatively large. On the other hand, anaerobic treatment does not require aeration as in the activated sludge method, so that energy consumption can be reduced, but for treated water with low organic matter content (ie, low BOD). It is difficult to apply because the activity of anaerobic bacteria becomes unstable. Even if it is applied, the energy recovery rate as methane gas is low, which is not practical.
 そこで、本発明は、有機物の含有量が少ない(即ち、BODが低い)被処理水に対しても、嫌気処理を適用することができると共にメタンガスを効率的に回収することができる水処理方法、および、水処理装置を提供することを課題とする。 Therefore, the present invention is a water treatment method that can apply anaerobic treatment to treated water with low organic matter content (that is, low BOD) and efficiently recover methane gas, Another object is to provide a water treatment device.
 本発明に係る水処理方法は、有機物を含有する被処理水を処理する水処理方法であって、半透膜を介して浸透圧よって被処理水から水分が浸透するように構成されたドロー液と被処理水とを半透膜を介して接触させて被処理水の濃縮を行う濃縮工程と、該濃縮工程後の被処理水の嫌気処理を行う嫌気処理工程とを行うことを特徴とする。 A water treatment method according to the present invention is a water treatment method for treating water to be treated containing an organic substance, and is configured such that moisture is permeated from the water to be treated by osmotic pressure through a semipermeable membrane. And a water to be treated are brought into contact with each other through a semipermeable membrane, and a concentration step for concentrating the water to be treated and an anaerobic treatment step for performing an anaerobic treatment of the water to be treated after the concentration step are performed. .
 前記ドロー液は、海水、又は、磁性体微粒子を含有する液体を含むことが好ましい。 The draw liquid preferably contains seawater or a liquid containing magnetic fine particles.
 本発明に係る水処理装置は、有機物を含有する被処理水を処理する水処理装置であって、被処理水の濃縮を行う濃縮装置と、該濃縮装置で濃縮された被処理水の嫌気処理を行う嫌気処理槽とを備え、濃縮装置は、半透膜を介して浸透圧によって被処理水から水分が浸透するように構成されたドロー液が供給されるドロー液供給部と被処理水が供給される被処理水供給部とを備えると共に被処理水供給部に供給された被処理水とドロー液供給部に供給されたドロー液とが半透膜を介して接触するように構成されることを特徴とする。 A water treatment apparatus according to the present invention is a water treatment apparatus for treating water to be treated containing an organic substance, a concentration apparatus for concentrating the water to be treated, and an anaerobic treatment of the water to be treated that has been concentrated by the concentration apparatus. An anaerobic treatment tank for performing the treatment, and the concentrating device includes a draw liquid supply unit to which a draw liquid configured to allow moisture to permeate from the treated water by osmotic pressure through the semipermeable membrane and the treated water A treated water supply unit that is supplied, and configured so that the treated water supplied to the treated water supply unit and the draw liquid supplied to the draw liquid supply unit are in contact with each other through the semipermeable membrane. It is characterized by that.
 前記ドロー液は、海水、又は、磁性体微粒子を含有する液体を含むことが好ましい。 The draw liquid preferably contains seawater or a liquid containing magnetic fine particles.
第一実施形態に係る水処理装置を示した概略図。Schematic which showed the water treatment apparatus which concerns on 1st embodiment. 同本実施形態に係る水処理装置の濃縮装置を示した模式図。The schematic diagram which showed the concentration apparatus of the water treatment apparatus which concerns on the same embodiment. 第二実施形態に係る水処理装置の濃縮装置を示した模式図。The schematic diagram which showed the concentration apparatus of the water treatment apparatus which concerns on 2nd embodiment. 他の実施形態に係る水処理装置の濃縮装置を示した模式図。The schematic diagram which showed the concentration apparatus of the water treatment apparatus which concerns on other embodiment. 更に他の実施形態に係る水処理装置を示した概略図。Furthermore, the schematic which showed the water treatment apparatus which concerns on other embodiment.
<第一実施形態>
 以下、本発明の第一実施形態について図1および2を参照しながら説明する。なお、以下の図面において同一又は相当する部分には同一の参照符号を付しその説明は繰り返さない。
<First embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.
 本実施形態に係る水処理装置1は、有機物を含有する被処理水が嫌気処理されるように構成される。具体的には、水処理装置1は、被処理水が供給されて嫌気処理される嫌気処理槽2と、該嫌気処理槽2に供給される被処理水のBODを調整するBOD調整部3と、嫌気処理槽2から排出される被処理水から汚泥を分離する汚泥分離部4とを備える。 The water treatment apparatus 1 according to the present embodiment is configured such that water to be treated containing organic matter is subjected to anaerobic treatment. Specifically, the water treatment apparatus 1 includes an anaerobic treatment tank 2 that is supplied with treated water and is anaerobically treated, and a BOD adjustment unit 3 that adjusts the BOD of the treated water supplied to the anaerobic treatment tank 2. And a sludge separation unit 4 for separating sludge from the water to be treated discharged from the anaerobic treatment tank 2.
 被処理水としては、特に限定されるものではないが、下水、河川水、海水等の比較的有機物の含有量が低い(即ち、BODが低い)ものが適用される。具体的には、被処理水のBODとしては、1000mg/L以上であってもよく、更には1000mg/L未満であってもよく、更には200mg/L以下であってもよい。 The water to be treated is not particularly limited, but water having a relatively low content of organic matter (ie, low BOD) such as sewage, river water, seawater, etc. is applied. Specifically, the BOD of the water to be treated may be 1000 mg / L or more, may be less than 1000 mg / L, and may be 200 mg / L or less.
 嫌気処理槽2としては、特に限定されるものではなく、例えば、メタン発酵法によって被処理水中の有機物を分解可能に構成される。嫌気処理槽2は、有機物を嫌気的に分解する嫌気性細菌を含有する汚泥(以下、嫌気性汚泥とも記す)が内部に供給されており、BOD調整部3で調整された被処理水が内部に供給されることで、被処理水と嫌気性汚泥とが混合されて混合液が形成されるように構成される。嫌気処理槽2に供給される被処理水のBODとしては、特に限定されるものではなく、1000mg/L以上であることが好ましく、2000mg/L以上であることがより好ましい。 The anaerobic treatment tank 2 is not particularly limited. For example, the anaerobic treatment tank 2 is configured to be capable of decomposing organic matter in the water to be treated by a methane fermentation method. The anaerobic treatment tank 2 is supplied with sludge containing anaerobic bacteria that decomposes organic matter anaerobically (hereinafter also referred to as anaerobic sludge). In other words, the water to be treated and the anaerobic sludge are mixed to form a mixed solution. The BOD to be treated supplied to the anaerobic treatment tank 2 is not particularly limited and is preferably 1000 mg / L or more, more preferably 2000 mg / L or more.
 BOD調整部3は、嫌気処理槽2に供給される前の被処理水が所定のBODとなるように被処理水を濃縮可能に構成される。具体的には、BOD調整部3は、被処理水(原水)に含有される夾雑物を除去する前処理部3aと、被処理水の濃縮を行う濃縮装置3bとから構成される。前処理部3aでは、夾雑物の除去と共に、被処理水の温度、pH、流量等の調節が行われてもよく、嫌気処理槽2での有機物の分解に必要な栄養成分が被処理水に添加されてもよい。添加される栄養分としては、例えばニッケルやコバルトのような微量必須金属類が挙げられる。 The BOD adjustment unit 3 is configured to be able to concentrate the water to be treated so that the water to be treated before being supplied to the anaerobic treatment tank 2 becomes a predetermined BOD. Specifically, the BOD adjustment unit 3 includes a pretreatment unit 3a that removes impurities contained in the water to be treated (raw water) and a concentrator 3b that concentrates the water to be treated. In the pretreatment unit 3a, the temperature, pH, flow rate, and the like of the water to be treated may be adjusted along with the removal of impurities, and the nutrient components necessary for the decomposition of the organic matter in the anaerobic treatment tank 2 are contained in the water to be treated. It may be added. Examples of added nutrients include trace essential metals such as nickel and cobalt.
 濃縮装置3bは、図2に示すように、半透膜3cで仕切られた内部空間を備える。これにより、濃縮装置3bは、被処理水が供給される内部空間を有する被処理水供給部3dと、半透膜3cを介して浸透圧によって被処理水から水分が浸透するように構成されたドロー液が供給される内部空間を有するドロー液供給部3eとを備える。そして、濃縮装置3bは、供給される被処理水とドロー液とが半透膜3cを介して接触するように構成される。つまり、本実施形態の濃縮装置3bは、被処理水供給部3dの内部空間とドロー液供給部3eの内部空間とが半透膜3cを介して併設されるように構成される(槽外型)。半透膜3cとしては、特に限定されるものではなく、一般的な正浸透膜や逆浸透膜を用いることができる。 As shown in FIG. 2, the concentrating device 3b includes an internal space partitioned by a semipermeable membrane 3c. Thereby, the concentration apparatus 3b was comprised so that a water | moisture content might permeate | transmit from a to-be-processed water by osmotic pressure through the to-be-processed water supply part 3d which has an internal space to which to-be-processed water is supplied, and the semipermeable membrane 3c. And a draw liquid supply unit 3e having an internal space to which the draw liquid is supplied. And the concentration apparatus 3b is comprised so that the to-be-processed water and draw liquid which are supplied may contact via the semipermeable membrane 3c. That is, the concentrating device 3b of this embodiment is configured such that the internal space of the treated water supply unit 3d and the internal space of the draw liquid supply unit 3e are provided side by side through the semipermeable membrane 3c (outside tank type ). The semipermeable membrane 3c is not particularly limited, and a general forward osmosis membrane or reverse osmosis membrane can be used.
 被処理水供給部3dは、嫌気処理槽2と流体的に連結される。具体的には、被処理水供給部3dは、前処理部3aに流体的に連結されて被処理水供給部3d内へ被処理水を導入する被処理水導入部31dと、嫌気処理槽2に流体的に連結されて被処理水供給部3d内から被処理水を排出する被処理水排出部32dとを備える。 The treated water supply unit 3d is fluidly connected to the anaerobic treatment tank 2. Specifically, the treated water supply unit 3d includes a treated water introduction unit 31d that is fluidly connected to the pretreatment unit 3a and introduces treated water into the treated water supply unit 3d, and an anaerobic treatment tank 2. And a to-be-treated water discharge part 32d for discharging the to-be-treated water from the inside of the to-be-treated water supply part 3d.
 ドロー液供給部3eは、ドロー液の供給源と流体的に連結されてドロー液供給部3e内へドロー液を導入するドロー液導入部31eと、ドロー液の排出先に流体的に連結されてドロー液供給部3e内からドロー液を排出するドロー液排出部32eとを備える。 The draw liquid supply unit 3e is fluidly connected to a draw liquid supply source to introduce the draw liquid into the draw liquid supply unit 3e, and is fluidly connected to a discharge destination of the draw liquid. And a draw liquid discharge part 32e for discharging the draw liquid from the draw liquid supply part 3e.
 ドロー液としては、特に限定されるものではなく、本実施形態では、海水が用いられる。つまり、本実施形態では、ドロー液の供給源および排出先としては、海洋Sを使用することができる。 The draw liquid is not particularly limited, and seawater is used in this embodiment. That is, in this embodiment, the ocean S can be used as the supply source and the discharge destination of the draw liquid.
 汚泥分離部4は、嫌気処理槽2で処理された被処理水から嫌気性汚泥を分離可能に構成される。具体的には、嫌気処理槽2から排出される被処理水には、嫌気処理槽2から流出した嫌気性汚泥が含有されるため、汚泥分離部4は、嫌気処理水から嫌気性汚泥を分離すると共に、分離した嫌気性汚泥を嫌気処理槽2へ返送可能に構成される。 The sludge separation unit 4 is configured to be able to separate the anaerobic sludge from the treated water treated in the anaerobic treatment tank 2. Specifically, since the treated water discharged from the anaerobic treatment tank 2 contains anaerobic sludge that has flowed out of the anaerobic treatment tank 2, the sludge separation unit 4 separates the anaerobic sludge from the anaerobic treated water. In addition, the separated anaerobic sludge can be returned to the anaerobic treatment tank 2.
 次に、上記のように構成される水処理装置1を用いて被処理水を処理する方法について説明する。 Next, a method for treating water to be treated using the water treatment apparatus 1 configured as described above will be described.
 被処理水(原水)は、前処理部3aに供給されて夾雑物が除去される。また、被処理水は、必要に応じて、前処理部3aで温度、pH、流量等の調節が行われ、これによりファウリングを抑制することができる。前処理部3aで処理された被処理水は、濃縮装置3b(具体的には、被処理水供給部3d)へ供給される。これに伴い、ドロー液供給部3eには、ドロー液として海水が供給される。 The treated water (raw water) is supplied to the pretreatment unit 3a to remove impurities. In addition, the water to be treated is adjusted in temperature, pH, flow rate, and the like in the pretreatment unit 3a as necessary, thereby suppressing fouling. The treated water treated by the pretreatment unit 3a is supplied to the concentrating device 3b (specifically, the treated water supply unit 3d). Along with this, seawater is supplied as the draw liquid to the draw liquid supply unit 3e.
 このように、被処理水供給部3dに被処理水が供給され、ドロー液供給部3eにドロー液が供給されることで、濃縮装置3b内で被処理水と海水とが半透膜3cを介して接触した状態になると共に、浸透圧によって被処理水の水分が半透膜3cを透過して海水側に浸透(正浸透)する。これにより、被処理水供給部3d内で、被処理水が濃縮されて被処理水のBODが上昇する(濃縮工程)。一方、ドロー液供給部3e内では、被処理水からの水分の浸透を受けて海水が希釈される。 In this way, the water to be treated is supplied to the treated water supply unit 3d and the draw liquid is supplied to the draw liquid supply unit 3e, so that the water to be treated and seawater in the concentrator 3b pass through the semipermeable membrane 3c. The water to be treated permeates through the semipermeable membrane 3c and permeates into the seawater side (forward osmosis). Thereby, in the to-be-processed water supply part 3d, to-be-processed water is concentrated and BOD of to-be-processed water rises (concentration process). On the other hand, in the draw liquid supply unit 3e, seawater is diluted by receiving moisture permeation from the water to be treated.
 本実施形態では、被処理水排出部32dおよびドロー液排出部32eが半透膜3cの近傍に設けられ、被処理水とドロー液とが濃縮装置3bへ適度な流量で供給されることで、半透膜3cの近傍の被処理水(即ち、濃縮された被処理水)および海水(即ち、希釈された海水)が迅速に濃縮装置3bの外側に排出される。これにより、被処理水および海水が半透膜3cの近傍で滞留し、浸透効率が低下するのが防止される。 In this embodiment, the to-be-processed water discharge part 32d and the draw liquid discharge part 32e are provided in the vicinity of the semipermeable membrane 3c, and the to-be-processed water and the draw liquid are supplied at an appropriate flow rate to the concentrator 3b. Water to be treated (ie, concentrated water to be treated) and seawater (ie, diluted seawater) in the vicinity of the semipermeable membrane 3c are quickly discharged to the outside of the concentration device 3b. Thereby, it is prevented that to-be-processed water and seawater remain in the vicinity of the semipermeable membrane 3c and the permeation efficiency is lowered.
 被処理水供給部3dから排出された被処理水は、嫌気処理槽2へ供給される。嫌気処理槽2では、濃縮装置3bでBODが調整された被処理水と嫌気性汚泥とが混合され、嫌気処理(メタン発酵)に適した条件(具体的には、pHや温度等)で維持される。これにより、被処理水中の有機物が嫌気処理されて分解され、メタンガスが生成される(嫌気処理工程)。生成したメタンガスは、被処理水から分離されて嫌気処理槽2から排出される。嫌気処理槽2から排出されたメタンガスは、回収されて燃料や原料として使用することができる。 The treated water discharged from the treated water supply unit 3d is supplied to the anaerobic treatment tank 2. In the anaerobic treatment tank 2, the water to be treated whose BOD is adjusted by the concentrator 3b and anaerobic sludge are mixed and maintained under conditions suitable for anaerobic treatment (methane fermentation, specifically, pH, temperature, etc.). Is done. Thereby, the organic substance in to-be-processed water is anaerobically treated and decomposed | disassembled, and methane gas is produced | generated (anaerobic treatment process). The generated methane gas is separated from the water to be treated and discharged from the anaerobic treatment tank 2. The methane gas discharged from the anaerobic treatment tank 2 can be recovered and used as fuel or raw material.
 一方、メタンガスが分離された被処理水(即ち、有機物が除去された被処理水)は、嫌気処理槽2から排出されて汚泥分離部4に供給される。汚泥分離部4では、被処理水から嫌気性汚泥が分離され、その少なくとも一部が嫌気処理槽2へ返送される。汚泥分離部4で嫌気性汚泥から分離された被処理水は、河川や海洋等の環境中に放出可能な水質であれば、更に水処理されることなく環境中に放出することができるが、更に所望の水質となるように水処理された後、環境中へ放出されてもよい。なお、ドロー液供給部3eから排出された海水(即ち、被処理水からの水分で希釈された海水)は、海洋Sへ放出される。 On the other hand, the water to be treated from which methane gas has been separated (that is, the water to be treated from which organic substances have been removed) is discharged from the anaerobic treatment tank 2 and supplied to the sludge separation unit 4. In the sludge separation unit 4, anaerobic sludge is separated from the water to be treated, and at least a part thereof is returned to the anaerobic treatment tank 2. The treated water separated from the anaerobic sludge in the sludge separation unit 4 can be released into the environment without further water treatment if it is water quality that can be released into the environment such as rivers and oceans. Further, the water may be discharged into the environment after being treated to have a desired water quality. The seawater discharged from the draw liquid supply unit 3e (that is, seawater diluted with water from the water to be treated) is discharged to the ocean S.
 以上のように、本発明に係る水処理方法および水処理装置によれば、有機物の含有量が少ない(即ち、BODが低い)被処理水に対しても、嫌気処理を適用することができると共にメタンガスを効率的に回収することができる。 As described above, according to the water treatment method and the water treatment apparatus according to the present invention, anaerobic treatment can be applied even to water to be treated with a small amount of organic matter (that is, low BOD). Methane gas can be efficiently recovered.
 即ち、濃縮工程では、浸透圧によって被処理水からドロー液側へ半透膜を介して水分が浸透することになる(正浸透)。これにより、逆浸透のように圧力を掛けたり、減圧したりする動力を用いることなく、被処理水の水分量を減少させて被処理水を濃縮させることができる。このため、有機物の含有量が少なく(即ち、BODが低く)嫌気処理を適用し難い被処理水であっても、濃縮してBODを高くした状態で嫌気処理工程に供給することができるため、嫌気処理を適用することができる。 That is, in the concentration step, moisture permeates through the semipermeable membrane from the treated water to the draw liquid side by osmotic pressure (forward osmosis). Thereby, the amount of water to be treated can be reduced and the water to be treated can be concentrated without using power for applying pressure or reducing pressure as in reverse osmosis. For this reason, even if the water to be treated has a low organic content (ie, low BOD) and is difficult to apply anaerobic treatment, it can be concentrated and supplied to the anaerobic treatment step in a state where the BOD is increased. Anaerobic treatment can be applied.
 つまり、従来、好気的な活性汚泥法で処理するような(即ち、嫌気処理を適用し難い)被処理水であっても、嫌気処理を適用することができるため、曝気を伴う活性汚泥法を適用するよりも動力が少なくなり、被処理水の処理におけるエネルギーの消費を抑制することができる。また、活性汚泥法では、二酸化炭素として除去されていた炭素成分をメタンガスとして回収し、燃料や原料として利用することができるため、二酸化炭素の排出を抑制することができる。 In other words, since the anaerobic treatment can be applied even to the treated water that is conventionally treated by the aerobic activated sludge method (that is, it is difficult to apply the anaerobic treatment), the activated sludge method with aeration. As a result, the power is reduced as compared with the case of applying water and energy consumption in the treatment of the water to be treated can be suppressed. Moreover, in the activated sludge method, since the carbon component removed as carbon dioxide can be recovered as methane gas and used as fuel or raw material, the emission of carbon dioxide can be suppressed.
 上記水処理装置1は、濃縮装置3bを備えることで、被処理水供給部3dに供給された被処理水と、ドロー液供給部3eに供給されたドロー液とが半透膜3cを介して接触するため、浸透圧によって被処理水からドロー液側へ半透膜3cを介して水分が浸透することになる(正浸透)。これにより、逆浸透のように圧力を掛けたり、減圧したりする動力を用いることなく、被処理水の水分量を減少させて被処理水を濃縮させることができる。そして、被処理水供給部3dと、嫌気処理槽2とが流体的に連結されることで、濃縮された被処理水が嫌気処理槽2に供給されて、嫌気処理されることになる。このため、有機物の含有量が少なく(即ち、BODが低く)嫌気処理を適用し難い被処理水であっても、濃縮してBODを高くした状態で嫌気処理槽2に供給することができるため、嫌気処理を適用することができる(嫌気処理工程)。 The water treatment device 1 includes the concentrating device 3b, so that the water to be treated supplied to the treated water supply unit 3d and the draw liquid supplied to the draw liquid supply unit 3e are passed through the semipermeable membrane 3c. Because of contact, moisture permeates from the treated water to the draw liquid side through the semipermeable membrane 3c by the osmotic pressure (forward osmosis). Thereby, the amount of water to be treated can be reduced and the water to be treated can be concentrated without using power for applying pressure or reducing pressure as in reverse osmosis. And the to-be-processed water supply part 3d and the anaerobic treatment tank 2 are fluidly connected, The concentrated to-be-processed water is supplied to the anaerobic treatment tank 2, and an anaerobic process is performed. For this reason, even if the water to be treated is low in content of organic matter (that is, BOD is low) and it is difficult to apply anaerobic treatment, it can be supplied to the anaerobic treatment tank 2 in a state where the BOD is increased by concentration. Anaerobic treatment can be applied (anaerobic treatment step).
 つまり、従来、活性汚泥法で処理するような(即ち、嫌気処理を適用し難い)被処理水であっても、嫌気処理を適用することができるため、曝気を伴う活性汚泥法を適用するよりも動力が少なくなり、被処理水の処理におけるエネルギーの消費を抑制することができる。また、活性汚泥法では二酸化炭素として除去されていた炭素成分をメタンガスとして回収し、燃料や原料として利用することができるため、二酸化炭素の排出を抑制することができる。 That is, conventionally, since the anaerobic treatment can be applied even to the treated water that is treated by the activated sludge method (that is, it is difficult to apply the anaerobic treatment), the activated sludge method with aeration is applied. However, the power is reduced and the consumption of energy in the treatment of the water to be treated can be suppressed. Moreover, since the carbon component removed as carbon dioxide in the activated sludge method can be recovered as methane gas and used as fuel or raw material, the discharge of carbon dioxide can be suppressed.
 ドロー液が海水から構成されることで、ドロー液の環境中への放出を容易に行うことができる。具体的には、ドロー液が海水である場合には、被処理水からドロー液側へは概ね水分のみが移動し、他の溶質は概ね半透膜によりドロー液側への移動が阻止され濃縮側(即ち、被処理水側)に残存する。このため、被処理水から水分が浸透したドロー液は、海水が希釈されたものとなる。このため、濃縮工程後のドロー液に対して、環境中へ排水するための処理(例えば、pH調整や不要な成分の除去等)を行う必要が無く、濃縮工程後のドロー液を直接海洋へ放出することが可能となる。 こ と Since the draw liquid is composed of seawater, the draw liquid can be easily released into the environment. Specifically, when the draw liquid is seawater, only moisture moves from the treated water to the draw liquid side, and the other solutes are generally concentrated by the semipermeable membrane to prevent movement to the draw liquid side. It remains on the side (that is, the treated water side). For this reason, the draw liquid in which moisture has permeated from the water to be treated is obtained by diluting seawater. For this reason, there is no need to perform a process for draining into the environment (for example, pH adjustment or removal of unnecessary components) on the draw liquid after the concentration process, and the draw liquid after the concentration process is directly sent to the ocean. It becomes possible to release.
 つまり、ドロー液が海水から構成されることで、被処理水から水分が浸透したドロー液は、海水が希釈されたものとなる。このため、濃縮装置3bから排出される(濃縮工程後の)ドロー液に対して、環境中へ排水するための処理(例えば、pH調整や不要な成分の除去等)を行う必要が無く、濃縮装置3bから排出される(濃縮工程後の)ドロー液を直接海洋Sへ放出することが可能となる。 That is, when the draw liquid is composed of seawater, the draw liquid in which moisture has permeated from the water to be treated is obtained by diluting seawater. For this reason, it is not necessary to perform processing for draining into the environment (for example, pH adjustment or removal of unnecessary components) with respect to the draw liquid (after the concentration step) discharged from the concentration device 3b. It becomes possible to discharge the draw liquid (after the concentration step) discharged from the apparatus 3b directly to the ocean S.
<第二実施形態>
 次に、本発明の第二実施形態について、図3を用いて説明する。第二実施形態に係る水処理方法および水処理装置1は、第一実施形態に係る水処理方法および水処理装置1と比較すると、主に濃縮装置300bの構成が異なるものである。具体的には、濃縮装置300bは、第一実施形態に係る濃縮装置3bと比較すると、主に被処理水供給部300dとドロー液供給部300eの構成が異なる。従って、以下では、第一実施形態と異なる点を中心に説明し、同一の構成に対しては同一の符号を付すこととして説明を省略する。
<Second embodiment>
Next, a second embodiment of the present invention will be described with reference to FIG. Compared with the water treatment method and the water treatment apparatus 1 according to the first embodiment, the water treatment method and the water treatment apparatus 1 according to the second embodiment mainly differ in the configuration of the concentration apparatus 300b. Specifically, the concentrating device 300b is different from the concentrating device 3b according to the first embodiment mainly in the configurations of the treated water supply unit 300d and the draw liquid supply unit 300e. Therefore, below, it demonstrates centering on a different point from 1st embodiment, and abbreviate | omits description by attaching | subjecting the same code | symbol to the same structure.
 濃縮装置300bは、ドロー液供給部300eにおけるドロー液を供給する内部空間に、被処理水供給部300dが配置されて構成される。該被処理水供給部300dは、被処理水を供給する内部空間を備え、該内部空間が半透膜3cによってドロー液供給部300eの内部空間から仕切られている。つまり、被処理水供給部300dは、少なくとも一部が半透膜3cから構成され、少なくとも半透膜3cで構成された部分がドロー液供給部300eの内部空間に位置する。なお、ドロー液供給部300eは、槽外型のようにドロー液排出部32eを備えていない。 The concentrating device 300b is configured such that the treated water supply unit 300d is disposed in the internal space for supplying the draw liquid in the draw liquid supply unit 300e. The treated water supply unit 300d includes an internal space for supplying the treated water, and the internal space is partitioned from the internal space of the draw liquid supply unit 300e by the semipermeable membrane 3c. That is, the treated water supply unit 300d is at least partially configured from the semipermeable membrane 3c, and at least the portion configured from the semipermeable membrane 3c is located in the internal space of the draw liquid supply unit 300e. The draw liquid supply unit 300e does not include the draw liquid discharge unit 32e unlike the outside tank type.
 斯かる構成の濃縮装置300bでは、ドロー液供給部300eに(具体的には、ドロー液を供給する設備Xから)ドロー液が供給されることで、被処理水供給部300d(具体的には、半透膜3cで構成された部分)がドロー液に浸漬された状態となる(浸漬型)。そして、被処理水供給部300dに被処理水が供給されることで、半透膜3cを介して被処理水とドロー液とが接触した状態となり、被処理水からドロー液への水分の浸透が生じる。斯かる構成によれば、被処理水供給部300dがドロー液内に浸漬された状態となるため、ドロー液側へ浸透した水分がドロー液供給部300e内に拡散され易い。このため、半透膜3cの近傍において被処理水側の濃度とドロー液側の濃度との差が少なくなって浸透圧が生じ難くなるのが防止される。これにより、被処理水からドロー液への水分の浸透が効率的に行われるため、被処理水の濃縮を効率的に行うことができる。なお、ドロー液供給部300e内のドロー液は、オーバーフローすることで、ドロー液供給部300e内から排出される。また、ドロー液と被処理水との半透膜3cを介した接触(言い換えれば、半透膜3cとの接触)を効率的に行うべく、攪拌装置等(図示せず)を用いてドロー液供給部300e内を撹拌して流量(ドロー液供給部300eからのドロー液の排出量)を調節してもよい。 In the concentrating device 300b having such a configuration, the draw water is supplied to the draw liquid supply unit 300e (specifically, from the equipment X that supplies the draw liquid), so that the treated water supply unit 300d (specifically, , A portion constituted by the semipermeable membrane 3c) is immersed in the draw liquid (immersion type). And by supplying the to-be-processed water to the to-be-processed water supply part 300d, it will be in the state which the to-be-processed water and the draw liquid contacted via the semipermeable membrane 3c, and the water osmosis | permeation from a to-be-processed water to a draw liquid Occurs. According to such a configuration, the to-be-treated water supply unit 300d is immersed in the draw liquid, so that moisture that has permeated into the draw liquid side is easily diffused into the draw liquid supply unit 300e. For this reason, in the vicinity of the semipermeable membrane 3c, the difference between the concentration on the treated water side and the concentration on the draw liquid side is reduced and it is prevented that the osmotic pressure does not easily occur. Thereby, since the penetration | infiltration of the water | moisture content from the to-be-processed water to a draw liquid is performed efficiently, to-be-processed water can be concentrated efficiently. The draw liquid in the draw liquid supply unit 300e is discharged from the draw liquid supply unit 300e by overflowing. Further, in order to efficiently make contact between the draw liquid and the water to be treated through the semipermeable membrane 3c (in other words, contact with the semipermeable membrane 3c), the draw liquid is used using a stirring device or the like (not shown). The inside of the supply unit 300e may be agitated to adjust the flow rate (the amount of discharge of the draw liquid from the draw liquid supply unit 300e).
 なお、本発明に係る水処理方法および水処理装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよく)、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。 In addition, the water treatment method and the water treatment apparatus according to the present invention are not limited to the above embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course, it is of course possible to arbitrarily select configurations, methods, and the like according to various modifications described below and employ them in the configurations, methods, and the like according to the above-described embodiments.
 例えば、第一実施形態の濃縮装置3bでは、被処理水とドロー液との流れる方向が並流となるように構成されているが、これに限定されるものではなく、例えば、逆流となるように構成されてもよい。具体的には、被処理水が被処理水導入部31d(又は被処理水排出部32d)から被処理水供給部3dに導入されて被処理水排出部32d(又は被処理水導入部31d)から排出されると共に、ドロー液がドロー液排出部32e(又はドロー液導入部31e)からドロー液供給部3eに導入されてドロー液導入部31e(又はドロー液排出部32e)から排出されることで、逆流となるように構成しても良い。 For example, in the concentration apparatus 3b of the first embodiment, the flow direction of the water to be treated and the draw liquid is configured to be a parallel flow, but is not limited to this, for example, a reverse flow is performed. May be configured. Specifically, the treated water is introduced from the treated water introduction part 31d (or treated water discharge part 32d) to the treated water supply part 3d, and the treated water discharge part 32d (or treated water introduction part 31d). And the draw liquid is introduced into the draw liquid supply part 3e from the draw liquid discharge part 32e (or the draw liquid introduction part 31e) and discharged from the draw liquid introduction part 31e (or the draw liquid discharge part 32e). Therefore, it may be configured to have a reverse flow.
 また、第二実施形態では、ドロー液がオーバーフローすることでドロー液供給部300eから排出されるように構成されているが、これに限定されるものではなく、ドロー液供給部300eにおいてドロー液排出部32eを備え、該ドロー液排出部32eからドロー液を排出するように構成されてもよい。 In the second embodiment, the drawing liquid is discharged from the drawing liquid supply unit 300e when the drawing liquid overflows, but the invention is not limited to this, and the drawing liquid supply unit 300e discharges the drawing liquid. A portion 32e may be provided, and the draw liquid may be discharged from the draw liquid discharge portion 32e.
 また、上記実施形態の濃縮装置3b,300bに代えて、図4に示す構成の濃縮装置301bを採用してもよい。濃縮装置301bは、上記実施形態に係る濃縮装置3b,300bと比較すると、主に被処理水供給部301dとドロー液供給部301eの構成が異なる。従って、以下では、上記実施形態と異なる点を中心に説明し、同一の構成に対しては同一の符号を付すこととして説明を省略する。 Moreover, it may replace with the concentration apparatus 3b of the said embodiment, and the concentration apparatus 301b of a structure shown in FIG. 4 may be employ | adopted. Compared with the concentration apparatuses 3b and 300b according to the above embodiment, the concentration apparatus 301b mainly differs in the configuration of the treated water supply unit 301d and the draw liquid supply unit 301e. Accordingly, the following description will be focused on differences from the above-described embodiment, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
 図4に示すように、濃縮装置301bは、複数のドロー液供給部301eが被処理水供給部301dを貫通するように配置されて構成される。ドロー液供給部301eは、一方向に伸びる管状の形状を有する。そして、ドロー液供給部301eは、被処理水供給部301dの内部空間に位置する領域が半透膜3cを用いて形成され、内部空間の外側の領域にドロー液導入部31eおよびドロー液排出部32eが形成される。 As shown in FIG. 4, the concentrator 301b is configured by arranging a plurality of draw liquid supply units 301e so as to penetrate the treated water supply unit 301d. The draw liquid supply unit 301e has a tubular shape extending in one direction. And the draw liquid supply part 301e is formed using the semipermeable membrane 3c in the area located in the internal space of the treated water supply part 301d, and the draw liquid introduction part 31e and the draw liquid discharge part are formed in the area outside the internal space. 32e is formed.
 斯かる構成の濃縮装置301bでは、ドロー液供給部301eの内部空間がドロー液によって満たされると共に、ドロー液供給部301eにおける半透膜3cで形成された領域全体が被処理水に浸漬されるように被処理水供給部301dに被処理水が供給される。これにより、被処理水とドロー液とが半透膜3cを介して接触した状態となる。 In the concentrating device 301b having such a configuration, the internal space of the draw liquid supply unit 301e is filled with the draw liquid, and the entire region formed by the semipermeable membrane 3c in the draw liquid supply unit 301e is immersed in the water to be treated. The treated water is supplied to the treated water supply unit 301d. Thereby, the to-be-processed water and the draw liquid will be in the state which contacted through the semipermeable membrane 3c.
 また、上記実施形態では、ドロー液として、海水を用いているが、浸透圧によって被処理水からの水分が浸透するように構成されたものであれば、特に限定されるものではない。例えば、ドロー液としては、溶質として、無機塩、糖、水可溶低沸点気体、磁性体微粒子、有機溶媒等の何れかを含有するものを用いることができる。ドロー液が磁性体微粒子を含有する液体から構成される場合には、ドロー液から磁力により磁性体微粒子を分離することができる。このため、濃縮工程後のドロー液に対して、磁性体微粒子を除去する工程を行うことで、環境中への放出を容易に行うことができる。更に、ドロー液として、例えば、海水と磁性体微粒子のように、海水と他の溶質を組合せてもよい。これらのドロー液を用いる場合、海水のように使用後に直接環境中へ放出することができないため、使用後のドロー液から溶質を除去することが必要となる。このため、ドロー液の溶質としては、容易に水分から分離可能なものを選択することが好ましい。斯かる場合、ドロー液から分離された溶質は、回収されて再度ドロー液の成分として使用することができる。 In the above embodiment, seawater is used as the draw liquid, but it is not particularly limited as long as it is configured so that moisture from the water to be treated permeates by osmotic pressure. For example, as the draw liquid, a liquid containing any one of an inorganic salt, a sugar, a water-soluble low-boiling gas, a magnetic fine particle, an organic solvent and the like as a solute can be used. When the draw liquid is composed of a liquid containing magnetic fine particles, the magnetic fine particles can be separated from the draw liquid by magnetic force. For this reason, discharge | release to an environment can be easily performed by performing the process which removes magnetic body fine particles with respect to the draw liquid after a concentration process. Furthermore, seawater and other solutes may be combined as the draw liquid, for example, seawater and magnetic fine particles. When these draw liquids are used, it is necessary to remove the solute from the used draw liquid since it cannot be directly released into the environment after use, like seawater. For this reason, it is preferable to select a solute of the draw liquid that can be easily separated from moisture. In such a case, the solute separated from the draw liquid can be recovered and used again as a component of the draw liquid.
 また、上記実施形態では、濃縮装置3bから排出される被処理水は、嫌気処理槽2へ供給されているが、これに限定されるものではなく、濃縮装置3bで濃縮された被処理水が、再度、濃縮されるようにしてもよい。例えば、濃縮装置3bを複数使用したり、濃縮装置3bとは異なる濃縮装置を濃縮装置3bの前後の少なくとも一方に使用したりすることで、段階的に被処理水を濃縮してもよい。 Moreover, in the said embodiment, although the to-be-processed water discharged | emitted from the concentration apparatus 3b is supplied to the anaerobic processing tank 2, it is not limited to this, The to-be-processed water concentrated with the concentration apparatus 3b is It may be concentrated again. For example, the water to be treated may be concentrated stepwise by using a plurality of concentrating devices 3b or using a concentrating device different from the concentrating device 3b on at least one of the front and rear sides of the concentrating device 3b.
 また、上記実施形態における前処理部3aとしては、特に限定されるものではないが、例えば、図5に示すように、被処理水(具体的には、下水等)から土砂など沈殿させて分離する沈砂池30aと、比重差を利用した重力沈降によって被処理水中の沈殿性有機物を分離・除去する沈殿池31aと、精密ろ過膜や限外ろ過膜を用いて被処理水の水質を調整する調整槽32aとを備えるものであってもよい。また、水処理装置1における汚泥分離部4としては、ナノ濾過膜を備えるものを用い、斯かる汚泥分離部4で嫌気処理水から嫌気性汚泥が分離されると共に、分離された嫌気性汚泥が嫌気処理槽2へ返送可能に構成されてもよい。なお、汚泥分離部4においては、ナノ濾過膜以外に精密ろ過膜や限外ろ過膜を適用してもよい。 In addition, the pretreatment unit 3a in the above embodiment is not particularly limited. For example, as shown in FIG. 5, sediment and the like are precipitated and separated from water to be treated (specifically, sewage and the like). The quality of water to be treated is adjusted using a sedimentation basin 30a, a sedimentation basin 31a that separates and removes precipitating organic substances in the water to be treated by gravity settling using a specific gravity difference, and a microfiltration membrane or an ultrafiltration membrane. You may provide the adjustment tank 32a. Moreover, as the sludge separation part 4 in the water treatment apparatus 1, while using what is equipped with a nanofiltration membrane, while anaerobic sludge is isolate | separated from anaerobic treated water in such a sludge separation part 4, the separated anaerobic sludge is You may be comprised so that return to the anaerobic treatment tank 2 is possible. In the sludge separation unit 4, a microfiltration membrane or an ultrafiltration membrane may be applied in addition to the nanofiltration membrane.
 また、水処理装置1の構成として、汚泥分離部4で嫌気性汚泥から分離された被処理水を半透膜によって濾過する最終処理部5を備えてもよい。該最終処理部5では、嫌気性汚泥が分離された被処理水と海水とが半透膜を介して接触することで、被処理水から海水側への水分の浸透が生じるように構成される。これにより、被処理水中の溶解成分が被処理水から除去される。除去された溶解成分は、嫌気処理槽2や最終処理部5へ返送されると共に、最終処理部5で処理された被処理水は、環境中へ排出される。 Further, as a configuration of the water treatment apparatus 1, a final treatment unit 5 may be provided which filters the water to be treated separated from the anaerobic sludge by the sludge separation unit 4 through a semipermeable membrane. The final treatment unit 5 is configured such that the water to be treated from which the anaerobic sludge has been separated and seawater come into contact with each other through the semipermeable membrane, so that moisture permeates from the water to be treated to the seawater side. . Thereby, the dissolved component in to-be-processed water is removed from to-be-processed water. The removed dissolved components are returned to the anaerobic treatment tank 2 and the final treatment unit 5, and the water to be treated treated in the final treatment unit 5 is discharged into the environment.
 また、上記の各実施形態における水処理装置において、嫌気処理槽2に供給される被処理水の有機物濃度の変動を抑制して嫌気処理を安定させるため、濃縮装置3bの後に、TDS計や導電率計、TOC計等を設置してもよい。例えば、TDSや導電率と有機物(CODやBOD)との相関を確認し、設定TDSや導電率を決めることで、濃い被処理水の場合は、濃縮率を低くし、薄い被処理水の場合は、濃縮率を高くする。これにより、濃縮装置3bの濃縮率を制御することができ、嫌気処理槽2へ送られる被処理水の有機物濃度を所望する濃度に保つことができる。 Moreover, in the water treatment apparatus in each of the above embodiments, in order to stabilize the anaerobic treatment by suppressing fluctuations in the organic matter concentration of the water to be treated supplied to the anaerobic treatment tank 2, a TDS meter or a conductive material is provided after the concentrator 3b. A rate meter, TOC meter, etc. may be installed. For example, by checking the correlation between TDS and conductivity and organic matter (COD and BOD), and determining the set TDS and conductivity, in the case of concentrated water to be treated, the concentration rate is lowered and the water to be treated is thin. Increases the concentration rate. Thereby, the concentration rate of the concentration apparatus 3b can be controlled, and the organic substance density | concentration of the to-be-processed water sent to the anaerobic processing tank 2 can be maintained at the desired density | concentration.
 1…水処理装置、2…嫌気処理槽、3…BOD調整部、3a…前処理部、3b,300b,301b…濃縮装置、3c…半透膜、3d,300d,301d…被処理水供給部、31d…被処理水導入部、32d…被処理水排出部、3e,300e,301e…ドロー液供給部、31e…ドロー液導入部、32e…ドロー液排出部、4…汚泥分離部、S…海洋 DESCRIPTION OF SYMBOLS 1 ... Water treatment apparatus, 2 ... Anaerobic treatment tank, 3 ... BOD adjustment part, 3a ... Pretreatment part, 3b, 300b, 301b ... Concentration apparatus, 3c ... Semipermeable membrane, 3d, 300d, 301d ... Water supply part to be treated 31d ... treated water introduction part, 32d ... treated water discharge part, 3e, 300e, 301e ... draw liquid supply part, 31e ... draw liquid introduction part, 32e ... draw liquid discharge part, 4 ... sludge separation part, S ... Ocean

Claims (4)

  1.  有機物を含有する被処理水を処理する水処理方法であって、
     半透膜を介して浸透圧よって被処理水から水分が浸透するように構成されたドロー液と被処理水とを半透膜を介して接触させて被処理水の濃縮を行う濃縮工程と、
     該濃縮工程後の被処理水の嫌気処理を行う嫌気処理工程と
    を行うことを特徴とする水処理方法。
    A water treatment method for treating water to be treated containing organic matter,
    A concentration step of concentrating the water to be treated by bringing the water to be treated and the water to be treated into contact with each other through the semipermeable membrane through the semipermeable membrane, the water being permeated from the water to be treated by osmotic pressure;
    An anaerobic treatment step of performing anaerobic treatment of water to be treated after the concentration step.
  2.  前記ドロー液は、海水、又は、磁性体微粒子を含有する液体を含むことを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein the draw liquid contains seawater or a liquid containing magnetic fine particles.
  3.  有機物を含有する被処理水を処理する水処理装置であって、
     被処理水の濃縮を行う濃縮装置と、
     該濃縮装置で濃縮された被処理水の嫌気処理を行う嫌気処理槽と
    を備え、
     濃縮装置は、半透膜を介して浸透圧によって被処理水から水分が浸透するように構成されたドロー液が供給されるドロー液供給部と被処理水が供給される被処理水供給部とを備えると共に被処理水供給部に供給された被処理水とドロー液供給部に供給されたドロー液とが半透膜を介して接触するように構成されることを特徴とする水処理装置。
    A water treatment device for treating water to be treated containing organic matter,
    A concentration device for concentration of the water to be treated;
    An anaerobic treatment tank for anaerobic treatment of the water to be treated concentrated by the concentrator,
    The concentrator includes a draw liquid supply unit to which a draw liquid is configured to permeate water from the treated water by osmotic pressure through a semipermeable membrane, and a treated water supply unit to which the treated water is supplied. The water treatment apparatus is characterized in that the water to be treated supplied to the treated water supply unit and the draw liquid supplied to the draw liquid supply unit are in contact with each other through a semipermeable membrane.
  4.  前記ドロー液は、海水、又は、磁性体微粒子を含有する液体を含むことを特徴とする請求項3に記載の水処理装置。 The water treatment apparatus according to claim 3, wherein the draw liquid includes seawater or a liquid containing magnetic fine particles.
PCT/JP2014/067610 2013-07-08 2014-07-02 Water treatment method and water treatment device WO2015005186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142998A JP2015016392A (en) 2013-07-08 2013-07-08 Water treatment method and water treatment apparatus
JP2013-142998 2013-07-08

Publications (1)

Publication Number Publication Date
WO2015005186A1 true WO2015005186A1 (en) 2015-01-15

Family

ID=52279871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067610 WO2015005186A1 (en) 2013-07-08 2014-07-02 Water treatment method and water treatment device

Country Status (2)

Country Link
JP (1) JP2015016392A (en)
WO (1) WO2015005186A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079947A1 (en) * 2017-10-23 2019-05-02 盐城衍易科技有限公司 Integrated sewage treatment device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998254B1 (en) * 2015-06-19 2016-09-28 株式会社神鋼環境ソリューション Digestion processing apparatus and digestion processing method
GB201605070D0 (en) * 2016-03-24 2016-05-11 Applied Biomimetic As Power generation process
JP6727056B2 (en) * 2016-07-25 2020-07-22 水ing株式会社 Wastewater treatment equipment and wastewater treatment method
WO2018021169A1 (en) * 2016-07-26 2018-02-01 水ing株式会社 Method and device for organic wastewater treatment
JP2018118213A (en) * 2017-01-26 2018-08-02 オルガノ株式会社 Method and apparatus for treating organic matter-containing wastewater
JP7105431B2 (en) * 2017-01-26 2022-07-25 オルガノ株式会社 Method and apparatus for treating wastewater containing organic matter
JP7181731B2 (en) * 2018-08-27 2022-12-01 国立大学法人高知大学 Wastewater treatment equipment
JP7181732B2 (en) * 2018-08-27 2022-12-01 国立大学法人高知大学 Wastewater treatment equipment and wastewater treatment method
WO2020129707A1 (en) * 2018-12-21 2020-06-25 国立大学法人高知大学 Wastewater treatment apparatus and wastewater treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236124A (en) * 2011-05-10 2012-12-06 Kobe Univ Method and apparatus for concentrating water to be treated
JP2012250200A (en) * 2011-06-06 2012-12-20 Hitachi Ltd Saline water conversion system using forward osmosis membrane
JP2014061487A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229955A (en) * 2000-02-14 2001-08-24 Toto Ltd Power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236124A (en) * 2011-05-10 2012-12-06 Kobe Univ Method and apparatus for concentrating water to be treated
JP2012250200A (en) * 2011-06-06 2012-12-20 Hitachi Ltd Saline water conversion system using forward osmosis membrane
JP2014061487A (en) * 2012-09-21 2014-04-10 Kubota Corp Water treatment method and water treatment system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KERUSHA LUTCHMIAH: "Water recovery from sewage using forward osmosis", WATER SCIENCE & TECHNOLOGY, vol. 64, no. 7, 2011, pages 1443 - 1449 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019079947A1 (en) * 2017-10-23 2019-05-02 盐城衍易科技有限公司 Integrated sewage treatment device

Also Published As

Publication number Publication date
JP2015016392A (en) 2015-01-29

Similar Documents

Publication Publication Date Title
WO2015005186A1 (en) Water treatment method and water treatment device
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
CN105540967B (en) A kind of organic wastewater minimizing, recycling processing method and processing system
CN106495396B (en) A kind of recycling treatment system and processing method of high organic matter wastewater from chemical industry with high salt
JP5764224B2 (en) Water treatment method and water treatment apparatus
JP2014061487A (en) Water treatment method and water treatment system
WO2014110429A1 (en) Water reuse system and method
WO2012102677A1 (en) Method and apparatus for recovering water from a source water
JP6727056B2 (en) Wastewater treatment equipment and wastewater treatment method
US20130206697A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
CN211311217U (en) Zero liquid discharge system
JP2015013238A (en) Water treatment system and water treatment method
US10384967B2 (en) Water treatment systems and methods
CN103663769A (en) Method for desalting sewage by using membrane separation technology
CN203360192U (en) Treatment device for difficultly degradable industrial wastewater
CN100383064C (en) High salinity waste water treatment method
JP5526093B2 (en) Seawater desalination method and seawater desalination apparatus
JPH10323674A (en) Organic matter-containing water treatment apparatus
KR20160121666A (en) Water treatment apparatus using forward osmosis membrane bioreactor and reverse osmosis process
JP5860989B2 (en) Water treatment method and water treatment apparatus
JPH07155759A (en) Waste water treating device
KR20180068518A (en) Hybrid water treatment system of new concept wastewater reuse and desalination methods for using low energy
US20130082001A1 (en) Fresh Water Generating Apparatus and Fresh Water Generating Method
Jamil et al. Usage of permeate water for treated domestic wastewater by direct capillary nanofiltration membrane in agriculture reuse
JP2016159241A (en) Membrane filtration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822927

Country of ref document: EP

Kind code of ref document: A1