WO2015005090A1 - Gas-tight terminal fixing structure for gas compressor - Google Patents

Gas-tight terminal fixing structure for gas compressor Download PDF

Info

Publication number
WO2015005090A1
WO2015005090A1 PCT/JP2014/066297 JP2014066297W WO2015005090A1 WO 2015005090 A1 WO2015005090 A1 WO 2015005090A1 JP 2014066297 W JP2014066297 W JP 2014066297W WO 2015005090 A1 WO2015005090 A1 WO 2015005090A1
Authority
WO
WIPO (PCT)
Prior art keywords
retaining ring
terminal
gas
airtight terminal
arm
Prior art date
Application number
PCT/JP2014/066297
Other languages
French (fr)
Japanese (ja)
Inventor
勝義 河内
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2015005090A1 publication Critical patent/WO2015005090A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • F16B21/18Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details
    • F16B21/183Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details internal, i.e. with spreading action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/16Fastening of connecting parts to base or case; Insulating connecting parts from base or case
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5202Sealing means between parts of housing or between housing part and a wall, e.g. sealing rings

Definitions

  • the present invention relates to an airtight terminal fixing structure of a gas compressor driven by an electric motor.
  • a vehicle such as an automobile is provided with an air conditioner for adjusting the temperature in the passenger compartment.
  • an air conditioner has a loop-like refrigerant cycle in which refrigerant (cooling medium) is circulated, and this refrigerant cycle is provided with an evaporator, a gas compressor, a condenser, and an expansion valve in this order.
  • the gas compressor of the air conditioner compresses the gaseous refrigerant (refrigerant gas) evaporated by the evaporator into a high-pressure refrigerant gas and sends it to the condenser.
  • a gas compressor of a vehicle air conditioner generally obtains a driving force from an internal combustion engine (engine) via an electromagnetic clutch, but is integrated in an EV (electric vehicle), a hybrid vehicle, or the like.
  • the driving force is obtained from the electric motor.
  • a compression mechanism section (compressor section) and an electric motor are provided in a housing.
  • the electric motor has an inverter section for controlling the rotation speed of the electric motor, and an airtight terminal.
  • the airtight terminal is fixed to the inner wall surface of the mounting opening formed in the housing by two C-shaped retaining rings so as not to come off.
  • Patent Document 1 since two C-shaped retaining rings are required to fix one airtight terminal, it is necessary to perform assembly work of the retaining rings twice, and workability is poor.
  • the present invention has been made in view of the above circumstances, can be assembled with a retaining ring for fixing the hermetic terminal with good workability, and holding force near the center of the long side of the hermetic terminal by the retaining ring.
  • An object is to provide an airtight terminal fixing structure of a gas compressor that can be improved.
  • the invention drives a compression mechanism unit that compresses a medium supplied from the outside into a housing and discharges a high-pressure medium to the outside, and drives the compression mechanism unit.
  • a gas compressor comprising: an electric motor; a motor control unit that controls driving of the electric motor; and an airtight terminal that is disposed in the mounting opening and electrically connects the electric motor and the motor control unit.
  • the airtight terminal includes a flat terminal body formed by a pair of opposing linear long sides and curved short sides continuous from both ends of the long sides, and the terminal body And a retaining ring in a concave groove formed on the inner wall surface of the mounting opening with respect to the airtight terminal disposed on the protruding portion formed in the mounting opening.
  • a bending portion that is narrower than the width of the arm portion and elastically deformable, and elastically deforms the bending portion of the retaining ring to displace the arm portions inwardly.
  • the outer peripheral side of the retaining ring is engaged with the groove portion, the short side portion on one side of the airtight terminal is held by the curved portion, and each length of the airtight terminal is held by each arm portion. It is characterized by holding the sides.
  • the invention according to claim 2 is characterized in that the curved portion of the retaining ring is formed narrower than the width of the arm portion over the entire outer peripheral surface thereof.
  • the invention according to claim 3 is characterized in that a jig insertion part into which a jig for displacing each arm part inward is formed in each arm part of the retaining ring. .
  • the jig insertion portion is located on a side opposite to the curved portion with respect to the intermediate portion of each arm portion, and the outer periphery side of the retaining ring is engaged with the groove portion. It is characterized by being formed at a position where it does not interfere with the terminal.
  • the hermetic terminal holding structure of the gas compressor according to the present invention the hermetic terminal can be easily held (fixed) in the mounting opening by one assembling operation using one retaining ring. Therefore, the work time is shortened and workability can be improved as compared with the assembly work of fixing the airtight terminal using two C-shaped retaining rings as in the prior art.
  • the long side of the hermetic terminal is used to fix the curved short side of the hermetic terminal with the two C-shaped retaining rings.
  • the holding force near the center is weak, and there is a possibility that a sealing failure may occur due to the pressure of the refrigerant supplied (intake) into the housing.
  • the holding force can be improved by securely holding the entire straight long side.
  • FIG. 1 is a longitudinal sectional view showing a gas compressor (vane rotary type gas compressor) according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1.
  • the perspective view which shows the retaining ring in embodiment of this invention.
  • the top view which shows the airtight terminal holding structure in embodiment of this invention.
  • FIG. 1 is a longitudinal sectional view showing a vane rotary type gas compressor (hereinafter referred to as “compressor”) as a gas compressor according to an embodiment of the present invention, and FIG. 2 is taken along line AA in FIG. FIG.
  • the compressor of this embodiment is an electric compressor incorporating an electric motor.
  • the illustrated compressor 1 is configured as a part of an air conditioning system (hereinafter referred to as an “air conditioning system”) that performs cooling by using the heat of vaporization of a cooling medium, for example, and is a condensing component that is another component of the air conditioning system It is provided on the circulation path of the cooling medium together with a condenser, an expansion valve, an evaporator, etc. (all not shown).
  • an air conditioning system the air conditioning apparatus for adjusting the temperature in the vehicle interior of a vehicle (automobile etc.) is mentioned, for example.
  • the compressor 1 compresses a refrigerant gas as a gaseous cooling medium taken from the evaporator of the air conditioning system, and supplies the compressed refrigerant gas to the condenser of the air conditioning system.
  • the condenser liquefies the compressed refrigerant gas and sends it to the expansion valve as a high-pressure liquid refrigerant.
  • the high-pressure and liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator.
  • the low-pressure liquid refrigerant absorbs heat from ambient air and vaporizes in the evaporator, and cools the air around the evaporator by heat exchange with the heat of vaporization.
  • the compressor 1 includes a housing 4 in which an electric motor 2 and a compression mechanism 3 are housed, and an inverter case 6 in which an inverter unit 5 serving as a motor control unit is housed with a plurality of bolts (not shown). Are joined and integrated.
  • the housing 4 and the inverter case 6 are partitioned by a partition 7 so that the refrigerant gas sucked (supplied) into the housing 4 does not leak into the inverter case 6.
  • the compression mechanism 3 is fixed in the housing 4 by a plurality of bolts 8.
  • the suction chamber 9 on the side of the electric motor 2 in the housing 4 is formed with a suction port (not shown) for introducing a low-pressure refrigerant gas into the suction chamber 9 from an evaporator (not shown) of the air conditioning system.
  • a discharge port (not illustrated) that discharges high-pressure refrigerant gas obtained by the compression mechanism section 3 described later to a condenser (not illustrated) of the air conditioning system. ) Is formed.
  • the electric motor 2 is a drive source that drives the compression mechanism unit 3, and the rotation shaft (shaft) 11 of the electric motor 2 is fitted in the central through hole of the rotor 12 of the compression mechanism unit 3.
  • the electric motor 2 is, for example, a well-known three-phase synchronous motor, and the rotation speed is controlled by the inverter unit 5.
  • the rotating shaft 11 is rotatably supported by the bearing.
  • the inverter unit 5 converts DC power supplied from an external battery into three-phase AC power and supplies it to the electric motor 2, and changes the number of revolutions of the electric motor 2 in accordance with the operating status of an air conditioning system (not shown). Control.
  • the inverter unit 5 and the electric motor 2 are electrically connected via an airtight terminal 50 (see FIG. 3).
  • the airtight terminal 50 is disposed in a mounting opening 6a formed between the partition plate 7 in the inverter case 6 and the airtight terminal 50 is connected to the inverter case 6 side by the pressure of the refrigerant gas sucked into the housing 4 (see FIG. 1 is held (fixed) by a retaining ring 60 so as not to come off.
  • the details of the airtight terminal holding structure by the retaining ring 60 which is a feature of the present invention, will be described later.
  • the compression mechanism section 3 has a contour shape surrounding the rotary shaft 11 of the electric motor 2, a substantially cylindrical rotor 12 that rotates integrally with the rotary shaft 11, and the rotor 12 from the outside of the outer peripheral surface 12 a.
  • a cylinder 13 having an inner peripheral surface 13a, five plate-like vanes 14 provided so as to protrude from the outer peripheral surface 12a of the rotor 12 toward the inner peripheral surface 13a of the cylinder 13, and both ends of the rotor 12 and the cylinder 13 2 side blocks (front side block 15 and rear side block 16).
  • seal members such as O-rings are installed over the entire periphery of the outer peripheral surface, and a suction chamber 9 formed in the housing 4 on the front side block 15 side.
  • the discharge chamber 10 formed in the housing 4 on the rear side block 16 side is airtightly partitioned.
  • An oil separator 17 is attached to the outer surface of the rear side block 16 so as to be positioned in the discharge chamber 10.
  • a single cylinder chamber 18 is formed between the inner peripheral surface 13a of the cylinder 13, the outer peripheral surface 12a of the rotor 12, and both side blocks 15 and 16 (see FIG. 1). .
  • the inner peripheral surface 13a of the cylinder 13 and the outer peripheral surface 12a of the rotor 12 are only one place (proximal portion 19 in FIG. 2) within a range of one rotation (angle 360 degrees) around the axis of the rotating shaft 11.
  • the contour shape of the inner peripheral surface 13a of the cylinder 13 is set so as to be in close contact (closest to each other), whereby the cylinder chamber 18 forms a single substantially crescent-shaped space.
  • the proximity portion 19 which is the region where the inner peripheral surface 13 a of the cylinder 13 and the outer peripheral surface 12 a of the rotor 12 are closest, is the same as the inner peripheral surface 13 a of the cylinder 13.
  • the vane 14 is slidably fitted in a vane groove 21 formed in the rotor 12, and protrudes outward from the outer peripheral surface 12 a of the rotor 12 by back pressure due to refrigerating machine oil supplied to the vane groove 21.
  • the vane 14 divides the single cylinder chamber 18 into a plurality of compression chambers 22, and one compression chamber 22 is formed by the two vanes 14 that move back and forth along the rotation direction W of the rotor 12. The Therefore, in the present embodiment in which five vanes 14 are installed around the rotating shaft 11 at an equal angular interval of 72 degrees, five compression chambers 22 are formed.
  • a suction hole 23 that is formed in the front side block 15 and communicates with the suction chamber 9 faces the portion on the downstream side in the rotation direction of the rotor 12 with respect to the proximity portion 19 of the cylinder chamber 18.
  • the first discharge hole 24a and the first discharge hole 24a are arranged along the circumferential direction of the inner peripheral surface 13a.
  • Two discharge holes 24b are formed.
  • the first discharge hole 24 a is closer to the proximity portion 19 along the rotation direction W of the rotor 12, and is located upstream of the first discharge port 24 a along the rotation direction W of the rotor 12.
  • Two discharge holes 24b are formed.
  • the first and second discharge holes 24a and 24b communicate with discharge chambers 25a and 25b as spaces formed between the outer peripheral surface of the cylinder 13 and the inner peripheral surface of the housing 4, respectively. Further, the discharge passages 26a and 26b communicating with the rear side block 16 between the discharge chambers 25a and 25b and the oil separation portion 17 attached to the outer surface of the rear side block 16 (surface facing the discharge chamber 10). Is formed.
  • the cylinder 12 On the upstream side in the rotational direction of the rotor 12 with respect to the remote portion 20 of the cylinder chamber 18, the cylinder 12 is rapidly increased so that the interval between the inner peripheral surface 13 a of the cylinder 13 and the outer peripheral surface 12 a of the rotor 12 increases from a small state.
  • the contour shape of the inner peripheral surface 12 a is set, and in the angle range including the remote portion 20, the volume of the compression chamber 22 increases with the rotation of the rotor 12 in the rotation direction W, and the compression chamber 22 passes through the suction hole 23. This is a stroke (suction stroke) in which the low-pressure refrigerant gas G1 is sucked.
  • the cylinder 13 is arranged such that the distance between the inner peripheral surface 13a of the cylinder 13 and the outer peripheral surface 12a of the rotor 12 gradually decreases toward the downstream side in the rotation direction of the rotor 12 with respect to the remote portion 20 of the cylinder chamber 18.
  • a contour shape of the inner peripheral surface 13a is set, and in this range, the volume of the compression chamber 22 decreases with the rotation of the rotor 12, and the stroke in which the refrigerant gas in the compression chamber 22 is compressed (compression stroke) Become.
  • the high-pressure refrigerant gas G2 becomes a stroke (discharge stroke) discharged into the first discharge holes 24a (or the first and second discharge holes 24a and 24b).
  • the refrigerant gas suction stroke, compression stroke, and discharge stroke are performed for one cycle during one rotation of the rotor 12, and the low pressure suctioned from the suction chamber 9 is performed.
  • the refrigerant gas is set to a high pressure and discharged from the first discharge holes 24a (or the first and second discharge holes 24a and 24b).
  • a discharge valve 27 and a valve support 28 are installed around the second discharge hole 24b.
  • the discharge valve 27 is elastically deformed so as to warp toward the discharge chamber 25b when the pressure of the refrigerant gas in the compression chamber 22 in the compression stroke becomes equal to or higher than a predetermined discharge pressure, and opens the second discharge hole 24b.
  • the second discharge hole 24b is closed by an elastic force.
  • the valve support 28 prevents the discharge valve 27 from excessively warping toward the discharge chamber 25b.
  • the first discharge hole 24a is not provided with these discharge valves and valve supports, and is always open.
  • the pressure of the refrigerant gas in the compression chamber 22 is a predetermined discharge.
  • the second discharge hole 24b remains closed by the discharge valve 27, and the refrigerant gas that has reached a predetermined discharge pressure by the subsequent compression is discharged from the first discharge hole 24a.
  • the pressure of the refrigerant gas in the compression chamber 22 is set at a predetermined discharge rate.
  • the discharge valve 27 is warped and the second discharge hole 24b is opened. Therefore, in this case, the refrigerant gas is discharged from the first and second discharge holes 24a and 24b.
  • the oil separator 17 separates the refrigeration oil mixed with the refrigerant gas (the vane back pressure oil leaked from the vane groove 21 formed in the rotor 12 into the cylinder chamber 18 (compression chamber 22)) from the refrigerant gas.
  • the high-pressure refrigerant gas discharged through the first and second discharge holes 24a and 24b and introduced through the discharge chambers 25a and 25b and the discharge passages 26a and 26b is spirally swirled to refrigerating machine oil. It is configured to centrifuge.
  • the refrigerating machine oil R (refer FIG. 1) isolate
  • the refrigerating machine oil accumulated at the bottom of the discharge chamber 10 is supplied through the oil passage 16a formed in the rear side block 16 and the Sarai grooves 30 and 31 which are recesses for supplying back pressure, and the rear side block due to the high pressure atmosphere in the discharge chamber 10.
  • the grooves are supplied to the vane grooves 21 of the rotor 12 through the grooves 34 and 35, respectively, and become back pressure that causes the vanes 14 to protrude outward.
  • an airtight terminal 50 for electrically connecting the inverter unit 5 and the electric motor 2 is provided in the attachment opening 6 a having an oval hole formed in the inverter case 6. It has been.
  • the electric motor is located below the attachment opening 6a.
  • the airtight terminal 50 includes a flat terminal body 51 and three electrode terminals 52 a, 52 b, and 52 c made of a conductive member fitted through the terminal body 51.
  • the outer peripheral portion of the electric motor (lower side in FIG. 3) is disposed in a protruding portion 6b formed in the mounting opening 6a.
  • the terminal body 51 is formed in an oval shape, and has a pair of linear long side portions 51a facing each other and a pair of curved short side portions 51b continuous from both ends of the long side portion 51a. Yes.
  • An O-ring 53 is interposed between the protrusion 6b of the mounting opening 6a and the outer periphery of the terminal body 51 in order to maintain airtightness.
  • the three electrode terminals 52a, 52b, and 52c correspond to the three-phase electric motor 2, and the terminal section (not shown) on the inverter section 5 side and the electric motor 2 are connected to the electrode terminals 52a, 52b, and 52c.
  • the side terminal portions 2a, 2b, 2c are electrically connected.
  • the outer peripheral portion of the terminal body 51 on the inverter portion 5 side (upper side in FIG. 3) is connected to the inverter portion 5 side (FIG. 3) by a retaining ring 60 engaged with a concave inner peripheral groove portion 6c formed in the mounting opening 6a. It is locked (fixed) so as not to come off.
  • a flat retaining ring 60 made of a metal material connects a pair of arm portions 60a and 60b extending linearly and one end of the arm portions 60a and 60b. And an arc-shaped curved portion 60c that is elastically deformable and formed integrally therewith. Note that the retaining ring 60 shown in FIG. 4 is in a state of being engaged with the inner peripheral groove 6c of the attachment opening 6a, and the pair of arms 60a and 60b are in a substantially parallel state. FIG. 5 shows the retaining ring 60 before engaging with the inner circumferential groove 6c, and the pair of arm portions 60a and 60b are opened outward.
  • the intermediate portions along the longitudinal direction of the arm portions 60a and 60b have projecting portions 60d and 60e projecting inward, and jig holes 60f and 60g are formed in the projecting portions 60d and 60e.
  • the ends of the arm portions 60a, 60b opposite to the curved portion 60c are slightly inwardly aligned with the curved shape of the inner wall surface of the mounting opening 6a (inner circumferential groove portion 6c). It is curved.
  • the jig holes 60f and 60g are opposite to the curved portion 60c with respect to the intermediate portions of the arm portions 60a and 60b, and when the retaining ring 60 is attached to the attachment opening 6a (inner peripheral groove portion 6c), the electrode terminal 52a. , 52b, 52c are formed at positions that do not interfere with each other.
  • the jig holes 60f and 60g are positioned between the electrode terminal 52b and the electrode terminal 52c.
  • the curved portion 60c is curved corresponding to the curved shape of the inner wall surface of the mounting opening 6a (inner circumferential groove 6c). Further, the outer peripheral surface side of the bending portion 60c is formed so as to have a step in the vicinity of the ends of the integrally formed arm portions 60a and 60b so that the radial width is reduced, and the bending portion 60c is small. It is designed to be easily elastically deformed by force.
  • the radial direction of the bending portion 60c is reduced.
  • the width t1 is smaller than the width t2 of the arm portions 60a and 60b.
  • the width t1 of the curved portion 60c is about 60% of the width t2 of the arm portions 60a and 60b.
  • the retaining ring 60 shown by the solid line in FIG. 5 is in a state before being engaged with the inner circumferential groove 6c of the mounting opening 6a, and the bending portion 60c is not elastically deformed in the inner direction, and the arm portion 60a and 60b are open at a predetermined angle.
  • this airtight terminal 50 with the retaining ring 60 with respect to the airtight terminal 50 arrange
  • the tip protrusions of the mounting jig (not shown) are inserted into the jig holes 60f and 60g, and the arm portion 60a. , 60b can be reduced in force when displaced inward.
  • the retaining ring 60 is placed on the airtight terminal 50 (terminal body 51), and the curved portion 60c side of the retaining ring 60 is pushed into one curved side of the inner circumferential groove portion 6c of the mounting opening 6a. Then, by removing the attachment jig (not shown) from the jig holes 60f and 60g, the curved portion 60c is elastically deformed outward as shown in FIGS. 3 and 4, and the outer surface side of the arm portions 60a and 60b is attached. Engaged with the inner peripheral groove 6c of the opening 6a in a biased state.
  • the airtight terminal 50 (terminal body 51) is held against the projecting portion 6b of the mounting opening 6a by the arms 60a, 60b and the curved portion 60c of the retaining ring 60 engaged with the inner circumferential groove 6c. (Fixed). Since the O-ring 53 is interposed between the airtight terminal 50 (terminal body 51) and the protruding portion 6b, the airtight terminal 50 (terminal body 51) is held in the mounting opening 6a with good airtightness. .
  • the airtight terminal holding structure by the retaining ring 60 the airtight terminal 50 can be easily retained (fixed) in the mounting opening 6a by one assembling operation using one retaining ring 60. it can. Therefore, the work time is shortened and workability can be improved as compared with the assembly work of fixing the airtight terminal using two C-shaped retaining rings as in the prior art.
  • the radial width of the curved portion 60c of the retaining ring 60 is smaller than the width of the arm portions 60a and 60b, the tip protrusions of the mounting jig (not shown) are inserted into the jig holes 60f and 60g.
  • the force when displacing the arms 60a and 60b in the inner direction can be reduced, and the workability during the assembly work can be further improved.
  • the long side of the hermetic terminal is used to fix the curved short side of the hermetic terminal with the two C-shaped retaining rings.
  • the holding force in the vicinity of the center becomes weak, and a seal failure may occur due to the pressure of the refrigerant gas supplied (sucked) into the housing.
  • the entire linear long side of the airtight terminal 50 is securely held by the linear arms 60a and 60b opposed to the retaining ring 60, thereby causing a sealing failure. There is no.
  • the said embodiment was provided with the vane rotary type compression mechanism part, if it is an electric compressor provided with the electric motor of the structure which fixes an airtight terminal with a retaining ring, it can also be set as the compression mechanism part of another system. Is possible.

Abstract

Provided is a gas-tight terminal holding structure for a gas compressor with which a retaining ring for fixing a gas-tight terminal can be assembled with good workability, and with which it is possible to increase the force for holding, by the retaining ring, the vicinity of the central section on the long sides of the gas-tight terminal. A retaining ring (60) comprises: a pair of arm parts (60a, 60b) extending in straight lines so as to oppose one another; and an elastically deformable curved part (60c) that has a narrower width than the width of the arm part (60a, 60b). The outer periphery side of the retaining ring (60) is engaged in an inner periphery groove part (6c) in an attachment opening (6a) in a state where the curved part (60c) of the retaining ring (60) is elastically deformed and the arm parts (60a, 60b) are displaced inwardly; the curved part (60c) of the retaining ring (60) holds a short side part (51b) on one side of the gas-tight terminal (50); and the arm parts (60a, 60b) hold respective straight-line-shaped long side parts (51a) of the gas-tight terminal (50) that oppose one another.

Description

気体圧縮機の気密端子固定構造Air compressor terminal fixing structure of gas compressor
 本発明は、電動モータによって駆動される気体圧縮機の気密端子固定構造に関する。 The present invention relates to an airtight terminal fixing structure of a gas compressor driven by an electric motor.
 例えば、自動車などの車両には、車室内の温度調整を行うための空調装置が設けられている。このような空調装置は、冷媒(冷却媒体)を循環させるようにしたループ状の冷媒サイクルを有しており、この冷媒サイクルは、蒸発器、気体圧縮機、凝縮器、膨張弁が順に設けられている。前記空調装置の気体圧縮機は、蒸発器で蒸発されたガス状の冷媒(冷媒ガス)を圧縮して高圧の冷媒ガスとし、凝縮器へ送出するものである。 For example, a vehicle such as an automobile is provided with an air conditioner for adjusting the temperature in the passenger compartment. Such an air conditioner has a loop-like refrigerant cycle in which refrigerant (cooling medium) is circulated, and this refrigerant cycle is provided with an evaporator, a gas compressor, a condenser, and an expansion valve in this order. ing. The gas compressor of the air conditioner compresses the gaseous refrigerant (refrigerant gas) evaporated by the evaporator into a high-pressure refrigerant gas and sends it to the condenser.
 ところで、車両用空調装置の気体圧縮機は、一般に内燃機関(エンジン)から電磁クラッチを介して駆動力を得ているが、EV(電気自動車)やハイブリット自動車などでは、一体的に内蔵されている電動モータから駆動力を得ている。 By the way, a gas compressor of a vehicle air conditioner generally obtains a driving force from an internal combustion engine (engine) via an electromagnetic clutch, but is integrated in an EV (electric vehicle), a hybrid vehicle, or the like. The driving force is obtained from the electric motor.
 電動モータを有する気体圧縮機では、ハウジング内に圧縮機構部(コンプレッサ部)と電動モータが設けられており、電動モータには該電動モータの回転数を制御するためのインバータ部が、気密端子が介して電気的に接続されている(例えば、特許文献1参照)。 In a gas compressor having an electric motor, a compression mechanism section (compressor section) and an electric motor are provided in a housing. The electric motor has an inverter section for controlling the rotation speed of the electric motor, and an airtight terminal. (See, for example, Patent Document 1).
 前記気密端子は、ハウジングに形成された取付開口部の内壁面に2個のC型状の止め輪によって抜けないように固定されている。 The airtight terminal is fixed to the inner wall surface of the mounting opening formed in the housing by two C-shaped retaining rings so as not to come off.
特開2007-128756号公報JP 2007-128756 A
 ところで、特許文献1では、1つの気密端子を固定するのに2個のC型状の止め輪が必要であるので、止め輪の組み付け作業を2回行う必要があり、作業性が悪かった。 By the way, in Patent Document 1, since two C-shaped retaining rings are required to fix one airtight terminal, it is necessary to perform assembly work of the retaining rings twice, and workability is poor.
 また、気密端子の電動モータ側の面には、ハウジング内に供給される冷媒ガスの圧力がかかっている。このため、特許文献1のように、気密端子の対向する曲面状の短辺側をC型状の止め輪で固定している構造では、この止め輪による気密端子の長辺側中央付近の保持力が弱いものとなる。 Moreover, the pressure of the refrigerant gas supplied into the housing is applied to the surface of the airtight terminal on the electric motor side. For this reason, as in Patent Document 1, in the structure in which the short side of the curved surface facing the hermetic terminal is fixed with a C-shaped retaining ring, the retaining ring holds the vicinity of the center of the long side of the hermetic terminal. Power is weak.
 そこで、本発明は上記事情に鑑みなされたものであって、気密端子を固定する止め輪の組み付けを作業性よく行うことができ、また、止め輪による気密端子の長辺側中央付近の保持力向上を図ることができる気体圧縮機の気密端子固定構造を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, can be assembled with a retaining ring for fixing the hermetic terminal with good workability, and holding force near the center of the long side of the hermetic terminal by the retaining ring. An object is to provide an airtight terminal fixing structure of a gas compressor that can be improved.
 前記課題を解決するために、請求項1に記載の発明は、ハウジング内に外部から供給される媒体を圧縮して高圧の媒体を外部に吐出させる圧縮機構部と、前記圧縮機構部を駆動する電動モータと、前記電動モータの駆動を制御するモータ制御部と、取付開口部内に配置され、前記電動モータと前記モータ制御部とを電気的に接続するための気密端子とを備えた気体圧縮機において、前記気密端子は、対向する一対の直線状の長辺部と該長辺部の両端側から連続する曲面状の短辺部とで形成された扁平状の端子本体と、前記端子本体の両面側に突出するように設けた電極端子とを有し、前記取付開口部内に形成した突出部に配置した前記気密端子に対し、前記取付開口部の内壁面に形成した凹状の溝部に止め輪の外周側を係合して、前記止め輪で前記気密端子を前記取付開口部内に保持する気体圧縮機の気密端子保持構造であって、前記止め輪は、直線状に延在した一対のアーム部と、前記各アーム部の一端同士を連結するように一体に形成され、前記アーム部の幅よりも幅狭で弾性変形可能な湾曲部とを有し、前記止め輪の前記湾曲部を弾性変形させて前記各アーム部を内側方向に変位させた状態で、前記止め輪の外周側を前記溝部に係合させ、前記湾曲部で前記気密端子の一方側の前記短辺部を保持するとともに、前記各アーム部で前記気密端子の各長辺部を保持することを特徴としている。 In order to solve the above problems, the invention according to claim 1 drives a compression mechanism unit that compresses a medium supplied from the outside into a housing and discharges a high-pressure medium to the outside, and drives the compression mechanism unit. A gas compressor comprising: an electric motor; a motor control unit that controls driving of the electric motor; and an airtight terminal that is disposed in the mounting opening and electrically connects the electric motor and the motor control unit. The airtight terminal includes a flat terminal body formed by a pair of opposing linear long sides and curved short sides continuous from both ends of the long sides, and the terminal body And a retaining ring in a concave groove formed on the inner wall surface of the mounting opening with respect to the airtight terminal disposed on the protruding portion formed in the mounting opening. Engaging the outer peripheral side of the A gas compressor hermetic terminal holding structure for holding the hermetic terminal in the mounting opening, wherein the retaining ring connects a pair of linearly extending arm portions and one end of each of the arm portions. And a bending portion that is narrower than the width of the arm portion and elastically deformable, and elastically deforms the bending portion of the retaining ring to displace the arm portions inwardly. In this state, the outer peripheral side of the retaining ring is engaged with the groove portion, the short side portion on one side of the airtight terminal is held by the curved portion, and each length of the airtight terminal is held by each arm portion. It is characterized by holding the sides.
 請求項2に記載の発明は、前記止め輪の前記湾曲部はその外側周面全域にわたって前記アーム部の幅よりも幅狭に形成されていることを特徴としている。 The invention according to claim 2 is characterized in that the curved portion of the retaining ring is formed narrower than the width of the arm portion over the entire outer peripheral surface thereof.
 請求項3に記載の発明は、前記止め輪の前記各アーム部には、前記各アーム部を内側方向へ変位させるための冶具が挿入される冶具挿入部が形成されていることを特徴としている。 The invention according to claim 3 is characterized in that a jig insertion part into which a jig for displacing each arm part inward is formed in each arm part of the retaining ring. .
 請求項4に記載の発明は、前記冶具挿入部は前記各アーム部の中間部よりも前記湾曲部と反対側で、かつ前記止め輪の外周側を前記溝部に係合させたときに前記電極端子と干渉しない位置に形成されていることを特徴としている。 According to a fourth aspect of the present invention, the jig insertion portion is located on a side opposite to the curved portion with respect to the intermediate portion of each arm portion, and the outer periphery side of the retaining ring is engaged with the groove portion. It is characterized by being formed at a position where it does not interfere with the terminal.
 本発明に係る気体圧縮機の気密端子保持構造によれば、1個の止め輪を用いて1回の組み付け作業で、気密端子を取付開口部に容易に保持(固定)することができる。よって、従来のように2個のC型状の止め輪を用いて気密端子を固定する組み付け作業に比べて、作業時間が短縮され作業性の向上を図ることができる。 According to the hermetic terminal holding structure of the gas compressor according to the present invention, the hermetic terminal can be easily held (fixed) in the mounting opening by one assembling operation using one retaining ring. Therefore, the work time is shortened and workability can be improved as compared with the assembly work of fixing the airtight terminal using two C-shaped retaining rings as in the prior art.
 また、従来のように2個のC型状の止め輪を用いる場合、2個のC型状の止め輪で気密端子の曲面状の短辺側を固定するために、気密端子の長辺側中央付近の保持力が弱いものとなり、ハウジング内に供給(吸入)される冷媒の圧力によってシール不良が発生するおそれがあるが、本発明では、止め輪の対向する直線状のアーム部で気密端子の直線状の長辺側全体を確実に保持することによって、保持力向上を図ることができる。 In addition, when two C-shaped retaining rings are used as in the prior art, the long side of the hermetic terminal is used to fix the curved short side of the hermetic terminal with the two C-shaped retaining rings. The holding force near the center is weak, and there is a possibility that a sealing failure may occur due to the pressure of the refrigerant supplied (intake) into the housing. The holding force can be improved by securely holding the entire straight long side.
本発明の実施形態に係る気体圧縮機(ベーンロータリー型の気体圧縮機)を示す縦断面図。1 is a longitudinal sectional view showing a gas compressor (vane rotary type gas compressor) according to an embodiment of the present invention. 図1のA-A線断面図。FIG. 2 is a sectional view taken along line AA in FIG. 1. 本発明の実施形態における止め輪を示す斜視図。The perspective view which shows the retaining ring in embodiment of this invention. 本発明の実施形態における気密端子保持構造を示す平面図。The top view which shows the airtight terminal holding structure in embodiment of this invention. 本発明の実施形態における止め輪を示す図。The figure which shows the retaining ring in embodiment of this invention.
 以下、本発明を図示の実施形態に基づいて説明する。図1は、本発明の実施形態に係る気体圧縮機としてのベーンロータリー型の気体圧縮機(以下、「コンプレッサ」という)を示す縦断面図、図2は、図1におけるA-A線に沿った横断面を示す図である。なお、本実施形態のコンプレッサは、電動モータを内蔵している電動コンプレッサである。 Hereinafter, the present invention will be described based on the illustrated embodiment. FIG. 1 is a longitudinal sectional view showing a vane rotary type gas compressor (hereinafter referred to as “compressor”) as a gas compressor according to an embodiment of the present invention, and FIG. 2 is taken along line AA in FIG. FIG. In addition, the compressor of this embodiment is an electric compressor incorporating an electric motor.
(コンプレッサの全体構成、動作)
 図示のコンプレッサ1は、例えば、冷却媒体の気化熱を利用して冷却を行なう空気調和システム(以下、「空調システム」という)の一部として構成され、この空調システムの他の構成要素である凝縮器、膨張弁、蒸発器等(いずれも図示を省略する)とともに冷却媒体の循環経路上に設けられている。なお、このような空調システムとしては、例えば、車両(自動車など)の車室内の温度調整を行うための空調装置が挙げられる。
(Overall configuration and operation of compressor)
The illustrated compressor 1 is configured as a part of an air conditioning system (hereinafter referred to as an “air conditioning system”) that performs cooling by using the heat of vaporization of a cooling medium, for example, and is a condensing component that is another component of the air conditioning system It is provided on the circulation path of the cooling medium together with a condenser, an expansion valve, an evaporator, etc. (all not shown). In addition, as such an air conditioning system, the air conditioning apparatus for adjusting the temperature in the vehicle interior of a vehicle (automobile etc.) is mentioned, for example.
 コンプレッサ1は、空調システムの蒸発器から取り入れた気体状の冷却媒体としての冷媒ガスを圧縮し、この圧縮された冷媒ガスを空調システムの凝縮器に供給する。凝縮器は圧縮された冷媒ガスを液化させ、高圧で液状の冷媒として膨張弁に送出する。そして、高圧で液状の冷媒は、膨張弁で低圧化され、蒸発器に送出される。低圧の液状冷媒は、蒸発器において周囲の空気から吸熱して気化し、この気化熱との熱交換により蒸発器周囲の空気を冷却する。 The compressor 1 compresses a refrigerant gas as a gaseous cooling medium taken from the evaporator of the air conditioning system, and supplies the compressed refrigerant gas to the condenser of the air conditioning system. The condenser liquefies the compressed refrigerant gas and sends it to the expansion valve as a high-pressure liquid refrigerant. The high-pressure and liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator. The low-pressure liquid refrigerant absorbs heat from ambient air and vaporizes in the evaporator, and cools the air around the evaporator by heat exchange with the heat of vaporization.
 コンプレッサ1は、図1に示すように、電動モータ2と圧縮機構部3を内部に収納したハウジング4に、モータ制御部としてのインバータ部5を収納したインバータケース6が複数のボルト(不図示)によって接合されて一体化されている。ハウジング4とインバータケース6との間は仕切り部7によって仕切られており、インバータケース6内にハウジング4内に吸入(供給)される冷媒ガスが漏れないようにしている。圧縮機構部3は、ハウジング4内に複数のボルト8によって固定されている。 As shown in FIG. 1, the compressor 1 includes a housing 4 in which an electric motor 2 and a compression mechanism 3 are housed, and an inverter case 6 in which an inverter unit 5 serving as a motor control unit is housed with a plurality of bolts (not shown). Are joined and integrated. The housing 4 and the inverter case 6 are partitioned by a partition 7 so that the refrigerant gas sucked (supplied) into the housing 4 does not leak into the inverter case 6. The compression mechanism 3 is fixed in the housing 4 by a plurality of bolts 8.
 ハウジング4内の電動モータ2側の吸入室9には、空調システムの蒸発器(不図示)から低圧の冷媒ガスを該吸入室9に導入する吸入ポート(不図示)が形成されている。一方、ハウジング4内の圧縮機構部3側の吐出室10には、後述する圧縮機構部3で得られた高圧の冷媒ガスを空調システムの凝縮器(不図示)に吐出する吐出ポート(不図示)が形成されている。 The suction chamber 9 on the side of the electric motor 2 in the housing 4 is formed with a suction port (not shown) for introducing a low-pressure refrigerant gas into the suction chamber 9 from an evaporator (not shown) of the air conditioning system. On the other hand, in the discharge chamber 10 on the compression mechanism section 3 side in the housing 4, a discharge port (not illustrated) that discharges high-pressure refrigerant gas obtained by the compression mechanism section 3 described later to a condenser (not illustrated) of the air conditioning system. ) Is formed.
 電動モータ2は、圧縮機構部3を駆動する駆動源であり、電動モータ2の回転軸(シャフト)11が、圧縮機構部3のロータ12の中心貫通孔に嵌合されている。電動モータ2は、例えば周知の3相同期モータであり、インバータ部5によって回転数制御される。回転軸11は、軸受に回転可能に支持されている。 The electric motor 2 is a drive source that drives the compression mechanism unit 3, and the rotation shaft (shaft) 11 of the electric motor 2 is fitted in the central through hole of the rotor 12 of the compression mechanism unit 3. The electric motor 2 is, for example, a well-known three-phase synchronous motor, and the rotation speed is controlled by the inverter unit 5. The rotating shaft 11 is rotatably supported by the bearing.
 インバータ部5は、外部のバッテリから供給される直流電力を三相交流電力に変換して電動モータ2に供給するととともに、電動モータ2の回転数を空調システム(不図示)の運転状況に応じて制御する。インバータ部5と電動モータ2は、気密端子50(図3参照)を介して電気的に接続されている。気密端子50は、インバータケース6内の仕切り板7との間に形成された取付開口部6aに配置され、ハウジング4に吸入される冷媒ガスの圧力によって、気密端子50がインバータケース6側(図1の左側)に抜けないように止め輪60で保持(固定)されている。本発明の特徴である止め輪60による気密端子保持構造の詳細については後述する。 The inverter unit 5 converts DC power supplied from an external battery into three-phase AC power and supplies it to the electric motor 2, and changes the number of revolutions of the electric motor 2 in accordance with the operating status of an air conditioning system (not shown). Control. The inverter unit 5 and the electric motor 2 are electrically connected via an airtight terminal 50 (see FIG. 3). The airtight terminal 50 is disposed in a mounting opening 6a formed between the partition plate 7 in the inverter case 6 and the airtight terminal 50 is connected to the inverter case 6 side by the pressure of the refrigerant gas sucked into the housing 4 (see FIG. 1 is held (fixed) by a retaining ring 60 so as not to come off. The details of the airtight terminal holding structure by the retaining ring 60, which is a feature of the present invention, will be described later.
 圧縮機構部3は、電動モータ2の前記回転軸11と、該回転軸11と一体的に回転する略円柱状のロータ12と、このロータ12をその外周面12aの外方から取り囲む輪郭形状の内周面13aを有するシリンダ13と、ロータ12の外周面12aからシリンダ13の内周面13aに向けて突出自在に設けられた5枚の板状のベーン14と、ロータ12及びシリンダ13の両端を塞ぐ2つのサイドブロック(フロントサイドブロック15、リヤサイドブロック16)とを備えている。 The compression mechanism section 3 has a contour shape surrounding the rotary shaft 11 of the electric motor 2, a substantially cylindrical rotor 12 that rotates integrally with the rotary shaft 11, and the rotor 12 from the outside of the outer peripheral surface 12 a. A cylinder 13 having an inner peripheral surface 13a, five plate-like vanes 14 provided so as to protrude from the outer peripheral surface 12a of the rotor 12 toward the inner peripheral surface 13a of the cylinder 13, and both ends of the rotor 12 and the cylinder 13 2 side blocks (front side block 15 and rear side block 16).
 フロントサイドブロック15とリヤサイドブロック16の外周面には、それぞれOリング等のシール部材が外周面の全周にわたって設置されており、フロントサイドブロック15側のハウジング4内に形成された吸入室9と、リヤサイドブロック16側のハウジング4内に形成された吐出室10との間を気密性よく仕切っている。リヤサイドブロック16の外面には、油分離部17が吐出室10内に位置するようにして取付けられている。 On the outer peripheral surfaces of the front side block 15 and the rear side block 16, seal members such as O-rings are installed over the entire periphery of the outer peripheral surface, and a suction chamber 9 formed in the housing 4 on the front side block 15 side. The discharge chamber 10 formed in the housing 4 on the rear side block 16 side is airtightly partitioned. An oil separator 17 is attached to the outer surface of the rear side block 16 so as to be positioned in the discharge chamber 10.
 図2に示すように、シリンダ13の内周面13aとロータ12の外周面12aと両サイドブロック15,16(図1参照)との間には、単一のシリンダ室18が形成されている。 As shown in FIG. 2, a single cylinder chamber 18 is formed between the inner peripheral surface 13a of the cylinder 13, the outer peripheral surface 12a of the rotor 12, and both side blocks 15 and 16 (see FIG. 1). .
 具体的には、シリンダ13の内周面13aとロータ12の外周面12aとが、回転軸11の軸回りの1周(角度360度)の範囲で1箇所(図2の近接部19)だけ略接(最近接)するように、シリンダ13の内周面13aの輪郭形状が設定されていて、これにより、シリンダ室18は単一の略三日月形状の空間を形成している。 Specifically, the inner peripheral surface 13a of the cylinder 13 and the outer peripheral surface 12a of the rotor 12 are only one place (proximal portion 19 in FIG. 2) within a range of one rotation (angle 360 degrees) around the axis of the rotating shaft 11. The contour shape of the inner peripheral surface 13a of the cylinder 13 is set so as to be in close contact (closest to each other), whereby the cylinder chamber 18 forms a single substantially crescent-shaped space.
 なお、シリンダ13の内周面13aの輪郭形状のうち、シリンダ13の内周面13aとロータ12の外周面12aとが最も近接した領域である近接部19は、シリンダ13の内周面13aとロータ12の外周面12aとが最も離れた領域である遠隔部20から、本実施形態ではロータ12の回転方向W(図2において時計回り方向)に沿って下流側に角度270度程度離れた位置に設定されている。 Of the contour shape of the inner peripheral surface 13 a of the cylinder 13, the proximity portion 19, which is the region where the inner peripheral surface 13 a of the cylinder 13 and the outer peripheral surface 12 a of the rotor 12 are closest, is the same as the inner peripheral surface 13 a of the cylinder 13. In this embodiment, a position that is separated from the remote portion 20 that is the region farthest from the outer peripheral surface 12a of the rotor 12 downstream by an angle of about 270 degrees along the rotation direction W (clockwise direction in FIG. 2) of the rotor 12. Is set to
 ベーン14は、ロータ12に形成されたベーン溝21に摺動自在に嵌め込まれていて、ベーン溝21に供給される冷凍機油による背圧により、ロータ12の外周面12aから外方に突出する。また、ベーン14は、単一のシリンダ室18を複数の圧縮室22に区画するものであり、ロータ12の回転方向Wに沿って相前後する2つのベーン14によって1つの圧縮室22が形成される。従って、5枚のベーン14が回転軸11回りに角度72度の等角度間隔で設置された本実施形態においては、5つの圧縮室22が形成される。 The vane 14 is slidably fitted in a vane groove 21 formed in the rotor 12, and protrudes outward from the outer peripheral surface 12 a of the rotor 12 by back pressure due to refrigerating machine oil supplied to the vane groove 21. The vane 14 divides the single cylinder chamber 18 into a plurality of compression chambers 22, and one compression chamber 22 is formed by the two vanes 14 that move back and forth along the rotation direction W of the rotor 12. The Therefore, in the present embodiment in which five vanes 14 are installed around the rotating shaft 11 at an equal angular interval of 72 degrees, five compression chambers 22 are formed.
 シリンダ室18の近接部19に対してロータ12の回転方向下流側の部分には、フロントサイドブロック15に形成された、吸入室9に通じる吸入孔23が臨んでいる。 A suction hole 23 that is formed in the front side block 15 and communicates with the suction chamber 9 faces the portion on the downstream side in the rotation direction of the rotor 12 with respect to the proximity portion 19 of the cylinder chamber 18.
 一方、シリンダ室18の近接部19に対してロータ12の回転方向上流側の、シリンダ13の内周面13aには、その内周面13aの周方向に沿って第1の吐出孔24aと第2の吐出孔24bが形成されている。なお、ロータ12の回転方向Wに沿って近接部19により近接している方が第1の吐出孔24aであり、ロータ12の回転方向Wに沿って第1の吐出口24aの上流側に第2の吐出孔24bが形成されている。 On the other hand, on the inner peripheral surface 13a of the cylinder 13 on the upstream side in the rotation direction of the rotor 12 with respect to the proximity portion 19 of the cylinder chamber 18, the first discharge hole 24a and the first discharge hole 24a are arranged along the circumferential direction of the inner peripheral surface 13a. Two discharge holes 24b are formed. The first discharge hole 24 a is closer to the proximity portion 19 along the rotation direction W of the rotor 12, and is located upstream of the first discharge port 24 a along the rotation direction W of the rotor 12. Two discharge holes 24b are formed.
 第1、第2の各吐出孔24a,24bは、シリンダ13の外周面側にハウジング4の内周面との間に形成された空間としての吐出チャンバ25a,25bにそれぞれ連通している。また、リヤサイドブロック16には、各吐出チャンバ25a,25bとリヤサイドブロック16の外面(吐出室10に向いた面)に取付けられた油分離部17との間を連通している吐出路26a,26bが形成されている。 The first and second discharge holes 24a and 24b communicate with discharge chambers 25a and 25b as spaces formed between the outer peripheral surface of the cylinder 13 and the inner peripheral surface of the housing 4, respectively. Further, the discharge passages 26a and 26b communicating with the rear side block 16 between the discharge chambers 25a and 25b and the oil separation portion 17 attached to the outer surface of the rear side block 16 (surface facing the discharge chamber 10). Is formed.
 シリンダ室18の遠隔部20に対してロータ12の回転方向上流側では、シリンダ13の内周面13aとロータ12の外周面12aとの間隔が小さい状態から急激に大きくなるように、シリンダ12の内周面12aの輪郭形状が設定されていて、遠隔部20を含んだ角度範囲ではロータ12の回転方向Wへの回転に伴って圧縮室22の容積が拡大して吸入孔23を通じて圧縮室22内に低圧の冷媒ガスG1が吸入される行程(吸入行程)となる。 On the upstream side in the rotational direction of the rotor 12 with respect to the remote portion 20 of the cylinder chamber 18, the cylinder 12 is rapidly increased so that the interval between the inner peripheral surface 13 a of the cylinder 13 and the outer peripheral surface 12 a of the rotor 12 increases from a small state. The contour shape of the inner peripheral surface 12 a is set, and in the angle range including the remote portion 20, the volume of the compression chamber 22 increases with the rotation of the rotor 12 in the rotation direction W, and the compression chamber 22 passes through the suction hole 23. This is a stroke (suction stroke) in which the low-pressure refrigerant gas G1 is sucked.
 次いで、シリンダ室18の遠隔部20に対してロータ12の回転方向下流側に向かって、シリンダ13の内周面13aとロータ12の外周面12aとの間隔が徐々に小さくなるように、シリンダ13の内周面13aの輪郭形状が設定されていて、その範囲ではロータ12の回転に伴って圧縮室22の容積が減少し、圧縮室22内の冷媒ガスが圧縮される行程(圧縮行程)となる。 Next, the cylinder 13 is arranged such that the distance between the inner peripheral surface 13a of the cylinder 13 and the outer peripheral surface 12a of the rotor 12 gradually decreases toward the downstream side in the rotation direction of the rotor 12 with respect to the remote portion 20 of the cylinder chamber 18. A contour shape of the inner peripheral surface 13a is set, and in this range, the volume of the compression chamber 22 decreases with the rotation of the rotor 12, and the stroke in which the refrigerant gas in the compression chamber 22 is compressed (compression stroke) Become.
 そして、ロータ12の回転にともなってシリンダ13の内周面13aとロータ12の外周面12aとの間隔がさらに小さくなることで冷媒ガスの圧縮がさらに進み、冷媒ガスの圧力が吐出圧力に達すると、高圧の冷媒ガスG2は第1の吐出孔24a(又は第1、第2の各吐出孔24a,24b)に吐出される行程(吐出行程)となる。 As the rotor 12 rotates, the gap between the inner peripheral surface 13a of the cylinder 13 and the outer peripheral surface 12a of the rotor 12 is further reduced, so that the compression of the refrigerant gas further proceeds, and the pressure of the refrigerant gas reaches the discharge pressure. The high-pressure refrigerant gas G2 becomes a stroke (discharge stroke) discharged into the first discharge holes 24a (or the first and second discharge holes 24a and 24b).
 このように、このコンプレッサ1(圧縮機構部3)では、ロータ12の1回転の間に、冷媒ガスの吸入行程、圧縮行程、吐出行程を1サイクル行って、吸入室9から吸入された低圧の冷媒ガスを高圧にして、第1の吐出孔24a(又は第1、第2の各吐出孔24a,24b)から吐出させる。 As described above, in the compressor 1 (compression mechanism unit 3), the refrigerant gas suction stroke, compression stroke, and discharge stroke are performed for one cycle during one rotation of the rotor 12, and the low pressure suctioned from the suction chamber 9 is performed. The refrigerant gas is set to a high pressure and discharged from the first discharge holes 24a (or the first and second discharge holes 24a and 24b).
 また、前記第2の吐出孔24bの周囲には、吐出弁27と弁サポート28が設置されている。吐出弁27は、前記圧縮行程における圧縮室22内の冷媒ガスの圧力が所定の吐出圧力以上になると吐出チャンバ25b側に反るように弾性変形して第2の吐出孔24bを開き、冷媒ガスの圧力が前記所定の吐出圧力に達していないときは弾性力により第2の吐出孔24bを閉じる。弁サポート28は、吐出弁27が吐出チャンバ25b側に過度に反るのを防止する。なお、第1の吐出孔24aには、これらの吐出弁と弁サポートは設けられておらず、常に開いている。 In addition, a discharge valve 27 and a valve support 28 are installed around the second discharge hole 24b. The discharge valve 27 is elastically deformed so as to warp toward the discharge chamber 25b when the pressure of the refrigerant gas in the compression chamber 22 in the compression stroke becomes equal to or higher than a predetermined discharge pressure, and opens the second discharge hole 24b. When the pressure does not reach the predetermined discharge pressure, the second discharge hole 24b is closed by an elastic force. The valve support 28 prevents the discharge valve 27 from excessively warping toward the discharge chamber 25b. The first discharge hole 24a is not provided with these discharge valves and valve supports, and is always open.
 よって、圧縮室22を形成する2つのベーン14のうちのロータ回転方向に沿って前側のベーンが第2の吐出孔24bにさしかかるときに、この圧縮室22内の冷媒ガスの圧力が所定の吐出圧力に達していない場合、第2の吐出孔24bは吐出弁27で閉じたままであり、その後の圧縮で所定の吐出圧力に達した冷媒ガスは第1の吐出孔24aから吐出される。 Therefore, when the vane on the front side of the two vanes 14 forming the compression chamber 22 reaches the second discharge hole 24b along the rotor rotation direction, the pressure of the refrigerant gas in the compression chamber 22 is a predetermined discharge. When the pressure has not been reached, the second discharge hole 24b remains closed by the discharge valve 27, and the refrigerant gas that has reached a predetermined discharge pressure by the subsequent compression is discharged from the first discharge hole 24a.
 また、圧縮室22を形成する2つのベーン14のうちのロータ回転方向に沿って前側のベーンが第2の吐出孔24bにさしかかるときに、この圧縮室22内の冷媒ガスの圧力が所定の吐出圧力に達している場合には、吐出弁27が反って第2の吐出孔24bが開く。よって、この場合には、第1、第2の各吐出孔24a,24bから冷媒ガスが吐出される。 Further, when the front vane of the two vanes 14 forming the compression chamber 22 reaches the second discharge hole 24b along the rotor rotation direction, the pressure of the refrigerant gas in the compression chamber 22 is set at a predetermined discharge rate. When the pressure is reached, the discharge valve 27 is warped and the second discharge hole 24b is opened. Therefore, in this case, the refrigerant gas is discharged from the first and second discharge holes 24a and 24b.
 油分離部17は、冷媒ガスと混ざった冷凍機油(ロータ12に形成されたベーン溝21からシリンダ室18(圧縮室22)に漏れたベーン背圧用の油)を冷媒ガスから分離するものであり、第1、第2の吐出孔24a,24bに吐出されて、吐出チャンバ25a,25b、吐出路26a,26bを通って導入された高圧の冷媒ガスを、螺旋状に旋回させることで冷凍機油を遠心分離するように構成されている。 The oil separator 17 separates the refrigeration oil mixed with the refrigerant gas (the vane back pressure oil leaked from the vane groove 21 formed in the rotor 12 into the cylinder chamber 18 (compression chamber 22)) from the refrigerant gas. The high-pressure refrigerant gas discharged through the first and second discharge holes 24a and 24b and introduced through the discharge chambers 25a and 25b and the discharge passages 26a and 26b is spirally swirled to refrigerating machine oil. It is configured to centrifuge.
 そして、油分離部17内で冷媒ガスから分離された冷凍機油R(図1参照)は吐出室10の底部に溜まり、冷凍機油Rが分離された後の高圧の冷媒ガスは、吐出室10の吐出ポート(不図示)を通って凝縮器(不図示)に吐出される。 And the refrigerating machine oil R (refer FIG. 1) isolate | separated from the refrigerant gas in the oil separation part 17 accumulates in the bottom part of the discharge chamber 10, and the high-pressure refrigerant gas after the refrigerating machine oil R is separated is the discharge chamber 10 It is discharged to a condenser (not shown) through a discharge port (not shown).
 吐出室10の底部に溜められた冷凍機油は、吐出室10の高圧雰囲気により、リヤサイドブロック16に形成された油路16a及び背圧供給用の凹部であるサライ溝30,31を通じて、並びにリヤサイドブロック16に形成された油路16a,16b、シリンダ13に形成された油路32、フロントサイドブロック15に形成された油路33及びフロントサイドブロック15に形成された背圧供給用の凹部であるサライ溝34,35を通じて、それぞれロータ12のベーン溝21に供給され、ベーン14を外方に突出させる背圧となる。 The refrigerating machine oil accumulated at the bottom of the discharge chamber 10 is supplied through the oil passage 16a formed in the rear side block 16 and the Sarai grooves 30 and 31 which are recesses for supplying back pressure, and the rear side block due to the high pressure atmosphere in the discharge chamber 10. The oil passages 16 a and 16 b formed in 16, the oil passage 32 formed in the cylinder 13, the oil passage 33 formed in the front side block 15, and a salai that is a back pressure supply recess formed in the front side block 15. The grooves are supplied to the vane grooves 21 of the rotor 12 through the grooves 34 and 35, respectively, and become back pressure that causes the vanes 14 to protrude outward.
(気密端子50の構成)
 図1、図3に示すように、インバータケース6に形成された長円孔状の取付開口部6aには、インバータ部5と電動モータ2とを電気的に接続するための気密端子50が設けられている。なお、図3では、取付開口部6aの下側に電動モータが位置している。
(Configuration of airtight terminal 50)
As shown in FIGS. 1 and 3, an airtight terminal 50 for electrically connecting the inverter unit 5 and the electric motor 2 is provided in the attachment opening 6 a having an oval hole formed in the inverter case 6. It has been. In FIG. 3, the electric motor is located below the attachment opening 6a.
 図3に示すように、気密端子50は、扁平状の端子本体51と、端子本体51に嵌通された導電部材からなる3個の電極端子52a,52b,52cを備えており、端子本体51の電動モータ(図3の下側)の外周部は、取付開口部6aに形成した突出部6bに配置されている。端子本体51は、長円形状に形成されており、対向する一対の直線状の長辺部51aと該長辺部51aの両端部から連続する一対の曲面状の短辺部51bを有している。 As shown in FIG. 3, the airtight terminal 50 includes a flat terminal body 51 and three electrode terminals 52 a, 52 b, and 52 c made of a conductive member fitted through the terminal body 51. The outer peripheral portion of the electric motor (lower side in FIG. 3) is disposed in a protruding portion 6b formed in the mounting opening 6a. The terminal body 51 is formed in an oval shape, and has a pair of linear long side portions 51a facing each other and a pair of curved short side portions 51b continuous from both ends of the long side portion 51a. Yes.
 取付開口部6aの突出部6bと端子本体51の外周部との間には、気密性を保持するためにOリング53が介装されている。3個の電極端子52a,52b,52cは、3相の電動モータ2に対応しており、各電極端子52a,52b,52cを介してインバータ部5側の端子部(不図示)と電動モータ2側の端子部2a,2b,2cが電気的に接続されている。 An O-ring 53 is interposed between the protrusion 6b of the mounting opening 6a and the outer periphery of the terminal body 51 in order to maintain airtightness. The three electrode terminals 52a, 52b, and 52c correspond to the three-phase electric motor 2, and the terminal section (not shown) on the inverter section 5 side and the electric motor 2 are connected to the electrode terminals 52a, 52b, and 52c. The side terminal portions 2a, 2b, 2c are electrically connected.
 また、端子本体51のインバータ部5側(図3の上側)の外周部は、取付開口部6aに形成された凹状の内周溝部6cに係合した止め輪60によってインバータ部5側(図3の上側)に抜けないように係止(固定)されている。 Further, the outer peripheral portion of the terminal body 51 on the inverter portion 5 side (upper side in FIG. 3) is connected to the inverter portion 5 side (FIG. 3) by a retaining ring 60 engaged with a concave inner peripheral groove portion 6c formed in the mounting opening 6a. It is locked (fixed) so as not to come off.
(止め輪60の構成)
 図4、図5に示すように、金属製材料からなる扁平状の止め輪60は、直線状に延在した一対のアーム部60a,60bと、アーム部60a,60bの一端同士を連結するように一体に形成された弾性変形可能な円弧状の湾曲部60cとを有している。なお、図4に示した止め輪60は、取付開口部6aの内周溝部6cに係合した状態であり、一対のアーム部60a,60bは略平行状態となっている。図5は、内周溝部6cに係合する前の止め輪60であり、一対のアーム部60a,60bは外方向に開いている。
(Configuration of retaining ring 60)
As shown in FIGS. 4 and 5, a flat retaining ring 60 made of a metal material connects a pair of arm portions 60a and 60b extending linearly and one end of the arm portions 60a and 60b. And an arc-shaped curved portion 60c that is elastically deformable and formed integrally therewith. Note that the retaining ring 60 shown in FIG. 4 is in a state of being engaged with the inner peripheral groove 6c of the attachment opening 6a, and the pair of arms 60a and 60b are in a substantially parallel state. FIG. 5 shows the retaining ring 60 before engaging with the inner circumferential groove 6c, and the pair of arm portions 60a and 60b are opened outward.
 アーム部60a,60bの長手方向に沿った中間部には、内側に突出した突出部60d,60eを有し、各突出部60d,60eには冶具孔60f,60gが形成されている。また、アーム部60a,60bの湾曲部60cと反対側(図4、図5の下側)端部は、取付開口部6a(内周溝部6c)の内壁面の湾曲形状に合わせて内側に少し湾曲している。 The intermediate portions along the longitudinal direction of the arm portions 60a and 60b have projecting portions 60d and 60e projecting inward, and jig holes 60f and 60g are formed in the projecting portions 60d and 60e. Also, the ends of the arm portions 60a, 60b opposite to the curved portion 60c (the lower side in FIGS. 4 and 5) are slightly inwardly aligned with the curved shape of the inner wall surface of the mounting opening 6a (inner circumferential groove portion 6c). It is curved.
 なお、冶具孔60f,60gは、各アーム部60a,60bの中間部よりも湾曲部60cと反対側で、かつ止め輪60を取付開口部6a(内周溝部6c)に取り付けた時に電極端子52a,52b,52cと干渉しない位置に形成されている。本実施形態では、冶具孔60f,60gを電極端子52bと電極端子52cとの間に位置するようにしている。 The jig holes 60f and 60g are opposite to the curved portion 60c with respect to the intermediate portions of the arm portions 60a and 60b, and when the retaining ring 60 is attached to the attachment opening 6a (inner peripheral groove portion 6c), the electrode terminal 52a. , 52b, 52c are formed at positions that do not interfere with each other. In the present embodiment, the jig holes 60f and 60g are positioned between the electrode terminal 52b and the electrode terminal 52c.
 湾曲部60cは、取付開口部6a(内周溝部6c)の内壁面の湾曲形状に対応して湾曲している。また、湾曲部60cの外周面側は、一体に形成されているアーム部60a,60bの端部付近から段差を設けて径方向の幅が小さくなるように形成されており、湾曲部60cが小さい力で弾性変形し易いようにしている。 The curved portion 60c is curved corresponding to the curved shape of the inner wall surface of the mounting opening 6a (inner circumferential groove 6c). Further, the outer peripheral surface side of the bending portion 60c is formed so as to have a step in the vicinity of the ends of the integrally formed arm portions 60a and 60b so that the radial width is reduced, and the bending portion 60c is small. It is designed to be easily elastically deformed by force.
 即ち、図5に示すように、アーム部60a,60bの端部付近から段差部60hを設けて、湾曲部60cの外周面側全域の肉厚を薄くすることで、湾曲部60cの径方向の幅t1をアーム部60a,60bの幅t2よりも小さくしている。例えば、湾曲部60cの幅t1は、アーム部60a,60bの幅t2に対して約6割程度である。なお、図5の実線で示した止め輪60は、取付開口部6aの内周溝部6cに係合する前の状態であり、湾曲部60cに内側方向への弾性変形が生じていなく、アーム部60a,60bが所定角度に開いている状態である。 That is, as shown in FIG. 5, by providing a stepped portion 60h from the vicinity of the ends of the arm portions 60a and 60b and reducing the thickness of the entire outer peripheral surface side of the bending portion 60c, the radial direction of the bending portion 60c is reduced. The width t1 is smaller than the width t2 of the arm portions 60a and 60b. For example, the width t1 of the curved portion 60c is about 60% of the width t2 of the arm portions 60a and 60b. The retaining ring 60 shown by the solid line in FIG. 5 is in a state before being engaged with the inner circumferential groove 6c of the mounting opening 6a, and the bending portion 60c is not elastically deformed in the inner direction, and the arm portion 60a and 60b are open at a predetermined angle.
 そして、取付開口部6aの突出部6bに配置された気密端子50に対して、この気密端子50を止め輪60で保持(固定)するには、図5に示した止め輪60の冶具孔60f,60gに取付冶具(不図示)の先端突起部を挿入して、湾曲部60cが内側に弾性変形するように力を加えることで、アーム部60a,60bを内側方向へ変位させる(2点鎖線で示した状態)。この際、湾曲部60cの径方向の幅をアーム部60a,60bの幅よりも小さくしているで、取付冶具(不図示)の先端突起部を冶具孔60f,60gに挿入してアーム部60a,60bを内側方向へ変位させるときの力を低減することができる。 And in order to hold | maintain (fix) this airtight terminal 50 with the retaining ring 60 with respect to the airtight terminal 50 arrange | positioned at the protrusion part 6b of the attachment opening part 6a, the jig hole 60f of the retaining ring 60 shown in FIG. , 60g, by inserting a tip protrusion of an attachment jig (not shown) and applying a force so that the bending portion 60c is elastically deformed inward, thereby displacing the arm portions 60a, 60b inward (two-dot chain line). The state shown in). At this time, since the radial width of the curved portion 60c is made smaller than the width of the arm portions 60a and 60b, the tip protrusions of the mounting jig (not shown) are inserted into the jig holes 60f and 60g, and the arm portion 60a. , 60b can be reduced in force when displaced inward.
 そして、この状態で止め輪60を気密端子50(端子本体51)上に載置して、止め輪60の湾曲部60c側を取付開口部6aの内周溝部6cの一方の湾曲側に押し込む。そして、取付冶具(不図示)を冶具孔60f,60gから外すことで、図3、図4に示したように、湾曲部60cが外側方向へ弾性変形し、アーム部60a,60bの外面側が取付開口部6aの内周溝部6cに付勢された状態で係合される。 In this state, the retaining ring 60 is placed on the airtight terminal 50 (terminal body 51), and the curved portion 60c side of the retaining ring 60 is pushed into one curved side of the inner circumferential groove portion 6c of the mounting opening 6a. Then, by removing the attachment jig (not shown) from the jig holes 60f and 60g, the curved portion 60c is elastically deformed outward as shown in FIGS. 3 and 4, and the outer surface side of the arm portions 60a and 60b is attached. Engaged with the inner peripheral groove 6c of the opening 6a in a biased state.
 これにより、内周溝部6cに係合された止め輪60のアーム部60a,60b及び湾曲部60cで、気密端子50(端子本体51)を取付開口部6aの突出部6bに押し付けるようして保持(固定)する。なお、気密端子50(端子本体51)と突出部6bとの間にはOリング53が介装されているので、気密端子50(端子本体51)は取付開口部6aに気密性よく保持される。 As a result, the airtight terminal 50 (terminal body 51) is held against the projecting portion 6b of the mounting opening 6a by the arms 60a, 60b and the curved portion 60c of the retaining ring 60 engaged with the inner circumferential groove 6c. (Fixed). Since the O-ring 53 is interposed between the airtight terminal 50 (terminal body 51) and the protruding portion 6b, the airtight terminal 50 (terminal body 51) is held in the mounting opening 6a with good airtightness. .
 このように、止め輪60による気密端子保持構造によれば、1個の止め輪60を用いて1回の組み付け作業で、気密端子50を取付開口部6aに容易に保持(固定)することができる。よって、従来のように2個のC型状の止め輪を用いて気密端子を固定する組み付け作業に比べて、作業時間が短縮され作業性の向上を図ることができる。 Thus, according to the airtight terminal holding structure by the retaining ring 60, the airtight terminal 50 can be easily retained (fixed) in the mounting opening 6a by one assembling operation using one retaining ring 60. it can. Therefore, the work time is shortened and workability can be improved as compared with the assembly work of fixing the airtight terminal using two C-shaped retaining rings as in the prior art.
 更に、止め輪60の湾曲部60cの径方向の幅を、アーム部60a,60bの幅よりも小さくしているで、取付冶具(不図示)の先端突起部を冶具孔60f,60gに挿入してアーム部60a,60bを内側方向へ変位させるときの力を低減でき、組み付け作業時の作業性をより高めることができる。 Further, since the radial width of the curved portion 60c of the retaining ring 60 is smaller than the width of the arm portions 60a and 60b, the tip protrusions of the mounting jig (not shown) are inserted into the jig holes 60f and 60g. Thus, the force when displacing the arms 60a and 60b in the inner direction can be reduced, and the workability during the assembly work can be further improved.
 また、従来のように2個のC型状の止め輪を用いる場合、2個のC型状の止め輪で気密端子の曲面状の短辺側を固定するために、気密端子の長辺側中央付近の保持力が弱いものとなり、ハウジング内に供給(吸入)される冷媒ガスの圧力によってシール不良が発生するおそれがある。これに対して、本実施形態では、止め輪60の対向する直線状のアーム部60a,60bで気密端子50の直線状の長辺側全体を確実に保持することによって、シール不良が発生することはない。 In addition, when two C-shaped retaining rings are used as in the prior art, the long side of the hermetic terminal is used to fix the curved short side of the hermetic terminal with the two C-shaped retaining rings. The holding force in the vicinity of the center becomes weak, and a seal failure may occur due to the pressure of the refrigerant gas supplied (sucked) into the housing. On the other hand, in the present embodiment, the entire linear long side of the airtight terminal 50 is securely held by the linear arms 60a and 60b opposed to the retaining ring 60, thereby causing a sealing failure. There is no.
 なお、前記実施形態はベーンロータリー型の圧縮機構部を備えていたが、気密端子を止め輪で固定する構造の電動モータを備えた電動コンプレッサであれば他の方式の圧縮機構部とすることも可能である。 In addition, although the said embodiment was provided with the vane rotary type compression mechanism part, if it is an electric compressor provided with the electric motor of the structure which fixes an airtight terminal with a retaining ring, it can also be set as the compression mechanism part of another system. Is possible.
関連出願の相互参照Cross-reference of related applications
 本願は、2013年7月8日に日本国特許庁に出願された特願2013-142656号に基づく優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-142656 filed with the Japan Patent Office on July 8, 2013, the entire disclosure of which is fully incorporated herein by reference.

Claims (4)

  1.  ハウジング内に外部から供給される媒体を圧縮して高圧の媒体を外部に吐出させる圧縮機構部と、前記圧縮機構部を駆動する電動モータと、前記電動モータの駆動を制御するモータ制御部と、取付開口部内に配置され、前記電動モータと前記モータ制御部とを電気的に接続するための気密端子とを備えた気体圧縮機において、
     前記気密端子は、対向する一対の直線状の長辺部と該長辺部の両端側から連続する曲面状の短辺部とで形成された扁平状の端子本体と、前記端子本体の両面側に突出するように設けた電極端子とを有し、
     前記取付開口部内に形成した突出部に配置した前記気密端子に対し、前記取付開口部の内壁面に形成した凹状の溝部に止め輪の外周側を係合して、前記止め輪で前記気密端子を前記取付開口部内に保持する気体圧縮機の気密端子保持構造であって、
     前記止め輪は、直線状に延在した一対のアーム部と、
     前記各アーム部の一端同士を連結するように一体に形成され、前記アーム部の幅よりも幅狭で弾性変形可能な湾曲部とを有し、
     前記止め輪の前記湾曲部を弾性変形させて前記各アーム部を内側方向に変位させた状態で、前記止め輪の外周側を前記溝部に係合させ、
     前記湾曲部で前記気密端子の一方側の前記短辺部を保持するとともに、前記各アーム部で前記気密端子の各長辺部を保持することを特徴とする気体圧縮機の気密端子保持構造。
    A compression mechanism that compresses a medium supplied from the outside into the housing and discharges a high-pressure medium to the outside; an electric motor that drives the compression mechanism; and a motor controller that controls the driving of the electric motor; In the gas compressor that is disposed in the mounting opening and includes an airtight terminal for electrically connecting the electric motor and the motor control unit,
    The hermetic terminal includes a flat terminal body formed by a pair of opposing linear long sides and a curved short side continuous from both ends of the long sides, and both sides of the terminal body An electrode terminal provided so as to protrude to
    An outer peripheral side of a retaining ring is engaged with a concave groove formed on an inner wall surface of the mounting opening with respect to the hermetic terminal disposed on the projecting portion formed in the mounting opening, and the airtight terminal is engaged with the retaining ring. An airtight terminal holding structure of a gas compressor for holding the inside of the mounting opening,
    The retaining ring includes a pair of arm portions extending linearly;
    The arm portions are integrally formed so as to connect one end of each arm portion, and have a bending portion that is narrower than the width of the arm portion and elastically deformable,
    With the curved part of the retaining ring elastically deformed and the arms being displaced inward, the outer peripheral side of the retaining ring is engaged with the groove part,
    An airtight terminal holding structure for a gas compressor, wherein the curved portion holds the short side portion on one side of the airtight terminal, and each arm portion holds each long side portion of the airtight terminal.
  2.  前記止め輪の前記湾曲部は、その外側周面全域にわたって前記アーム部の幅よりも幅狭に形成されていることを特徴とする請求項1に記載の気体圧縮機の気密端子保持構造。 2. The airtight terminal holding structure for a gas compressor according to claim 1, wherein the curved portion of the retaining ring is formed to be narrower than the width of the arm portion over the entire outer peripheral surface thereof.
  3.  前記止め輪の前記各アーム部には、前記各アーム部を内側方向へ変位させるための冶具が挿入される冶具挿入部が形成されていることを特徴とする請求項1又は2に記載の気体圧縮機の気密端子保持構造。 3. The gas according to claim 1, wherein a jig insertion portion into which a jig for displacing each arm portion in an inward direction is inserted is formed in each arm portion of the retaining ring. 4. Airtight terminal holding structure of the compressor.
  4.  前記冶具挿入部は、前記各アーム部の中間部よりも前記湾曲部と反対側で、かつ前記止め輪の外周側を前記溝部に係合させたときに前記電極端子と干渉しない位置に形成されていることを特徴とする請求項3に記載の気体圧縮機の気密端子保持構造。 The jig insertion portion is formed at a position opposite to the bending portion with respect to the intermediate portion of each arm portion, and at a position that does not interfere with the electrode terminal when the outer peripheral side of the retaining ring is engaged with the groove portion. The airtight terminal holding structure for a gas compressor according to claim 3, wherein the airtight terminal holding structure is provided.
PCT/JP2014/066297 2013-07-08 2014-06-19 Gas-tight terminal fixing structure for gas compressor WO2015005090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142656A JP2015015215A (en) 2013-07-08 2013-07-08 Airtight terminal fixing structure of gas compressor
JP2013-142656 2013-07-08

Publications (1)

Publication Number Publication Date
WO2015005090A1 true WO2015005090A1 (en) 2015-01-15

Family

ID=52279776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066297 WO2015005090A1 (en) 2013-07-08 2014-06-19 Gas-tight terminal fixing structure for gas compressor

Country Status (2)

Country Link
JP (1) JP2015015215A (en)
WO (1) WO2015005090A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140878A1 (en) * 2020-01-10 2021-07-15 川崎重工業株式会社 Hermetic terminal and tank valve device including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324828A (en) * 2003-04-28 2004-11-18 Press Kogyo Co Ltd Snap ring
JP2007128756A (en) * 2005-11-04 2007-05-24 Toyota Industries Corp Member fastening structure and electric compressor having its member fastening structure
JP2008164164A (en) * 2006-12-06 2008-07-17 Smc Corp Retaining ring to be used for fluid pressure cylinder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324828A (en) * 2003-04-28 2004-11-18 Press Kogyo Co Ltd Snap ring
JP2007128756A (en) * 2005-11-04 2007-05-24 Toyota Industries Corp Member fastening structure and electric compressor having its member fastening structure
JP2008164164A (en) * 2006-12-06 2008-07-17 Smc Corp Retaining ring to be used for fluid pressure cylinder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140878A1 (en) * 2020-01-10 2021-07-15 川崎重工業株式会社 Hermetic terminal and tank valve device including same
JP2021111509A (en) * 2020-01-10 2021-08-02 川崎重工業株式会社 Airtight terminal and tank valve device including the same
CN114830443A (en) * 2020-01-10 2022-07-29 川崎重工业株式会社 Hermetic terminal and can valve device provided with hermetic terminal

Also Published As

Publication number Publication date
JP2015015215A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
US10502212B2 (en) Motor-operated compressor
JP4983714B2 (en) Electric compressor
EP2325488A1 (en) Electric compressor
WO2013077388A1 (en) Gas compressor
US8956129B2 (en) Electric compressor
WO2013172144A1 (en) Gas compressor
JP2006274972A (en) Scroll fluid machine
KR101800512B1 (en) Motor-driven compressor
US9771936B2 (en) Gas compressor
JP5913199B2 (en) Gas compressor
WO2015005090A1 (en) Gas-tight terminal fixing structure for gas compressor
JP2002339865A (en) Compressor for vehicular air conditioning and air conditioner provided with the same
US20140017104A1 (en) Scroll expander
JP5963544B2 (en) Gas compressor
EP3550146B1 (en) Compressor system
US10253773B2 (en) Attachment structure for compressor
JP2016023561A (en) Gas compressor
JP2014218985A (en) Gas compressor
WO2013157328A1 (en) Gas compressor
JP2015021453A (en) Gas compressor
KR20230101528A (en) Electric compressor
JP6076861B2 (en) Gas compressor
JP2003254272A (en) Rotary compressor
JP2015090135A (en) Gas compressor
JP2016176445A (en) Gas compressor and method for manufacturing gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822417

Country of ref document: EP

Kind code of ref document: A1