WO2015005000A1 - Float-glass ribbon, float-glass sheet, and method for manufacturing float-glass sheet - Google Patents

Float-glass ribbon, float-glass sheet, and method for manufacturing float-glass sheet Download PDF

Info

Publication number
WO2015005000A1
WO2015005000A1 PCT/JP2014/063490 JP2014063490W WO2015005000A1 WO 2015005000 A1 WO2015005000 A1 WO 2015005000A1 JP 2014063490 W JP2014063490 W JP 2014063490W WO 2015005000 A1 WO2015005000 A1 WO 2015005000A1
Authority
WO
WIPO (PCT)
Prior art keywords
width direction
float glass
plate
glass ribbon
intermediate region
Prior art date
Application number
PCT/JP2014/063490
Other languages
French (fr)
Japanese (ja)
Inventor
白石 喜裕
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480031183.1A priority Critical patent/CN105246844B/en
Priority to KR1020157031214A priority patent/KR102153285B1/en
Publication of WO2015005000A1 publication Critical patent/WO2015005000A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • C03B18/22Controlling or regulating the temperature of the atmosphere above the float tank
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers

Definitions

  • the present invention relates to a float glass ribbon, a float glass plate, and a method for producing a float glass plate.
  • the manufacturing method of a float glass plate includes a molding step of forming a float glass ribbon by flowing a molten glass ribbon on a molten metal in a bathtub, and cutting for producing a float glass plate by cutting the float glass ribbon. (For example, refer patent document 1).
  • the molten glass ribbon having a thickness smaller than the equilibrium thickness tends to shrink in the width direction perpendicular to the flow direction. Therefore, in order to keep the thickness of the molten glass ribbon at a desired thickness, a top roll that applies tension to the molten glass ribbon in the width direction is used.
  • the top roll is used in pairs and presses both side edges of the molten glass ribbon on the molten metal.
  • a plurality of pairs of top rolls are disposed at intervals along the flow direction of the molten glass ribbon.
  • the top roll has a rotating member in contact with the molten glass ribbon at the tip. As the rotating member rotates, the molten glass ribbon is sent out in a predetermined direction.
  • the molten glass ribbon gradually cools and hardens while flowing in a predetermined direction.
  • the pair of top rolls applies tension to the molten glass ribbon in the width direction by pressing both side edges of the molten glass ribbon on the molten metal. For this reason, the glass tends to be stretched toward the inner side in the width direction, and the thickness of the glass tends to be thinner toward the inner side in the width direction.
  • the molten glass ribbon shrinks slightly in the width direction. At this time, if the molten glass ribbon has a thin part, stress concentrates on the thin part. And a thin part has a low rigidity, and a wave-like deformation is likely to occur.
  • the present invention has been made in view of the above problems, and has as its main object to provide a float glass ribbon or the like that suppresses wavy deformation in the molding process.
  • the width is 800 mm or more, and the average thickness of the intermediate region between the position 400 mm inward in the width direction from one end in the width direction and the position 400 mm inward in the width direction from the other end in the width direction is 0.25 mm or less.
  • a float glass ribbon, A float glass ribbon is provided in which the thickness distribution in the width direction of the intermediate region satisfies the following formula.
  • a float glass ribbon that suppresses wavy deformation in the molding process.
  • FIG. 5 It is a figure which shows plate thickness distribution of the float glass plate by Test Example 5. It is a projection pattern formed on the surface of the sample cut out from the center area
  • the “width direction” means a direction orthogonal to the flow direction of the molten glass ribbon in the forming step.
  • FIG. 1 is a cross-sectional view showing a main part of a float glass sheet manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a lower structure of the float glass sheet manufacturing apparatus of FIG.
  • the float glass plate manufacturing apparatus 10 forms a plate-like float glass ribbon 14 by causing the molten glass ribbon 12 to flow on the molten metal 11 in the bathtub 20.
  • the molten glass ribbon 12 is gradually cooled and hardened while flowing in the X direction (see FIG. 2), and becomes a float glass ribbon 14.
  • the float glass ribbon 14 is pulled up from the molten metal 11 in the downstream region and sent to a slow cooling furnace.
  • the float glass plate manufacturing apparatus 10 cuts the float glass ribbon 14 that has been slowly cooled in the slow cooling furnace to produce a float glass plate 16 (see FIG. 4).
  • the float glass plate 16 is obtained by cutting out both thick side edges (so-called ears) of the float glass ribbon 14.
  • the float glass sheet manufacturing apparatus 10 includes a bathtub 20 that houses the molten metal 11, a ceiling 22 that is provided above the bathtub 20, and a side wall 24 that blocks a gap between the bathtub 20 and the ceiling 22, A top roll 40 that applies tension in the width direction to the molten glass ribbon 12 on the molten metal 11 is provided.
  • the bathtub 20 accommodates the molten metal 11.
  • molten metal 11 for example, molten tin is used.
  • a molten tin alloy or the like can also be used, and the molten metal 11 only needs to be able to float the molten glass ribbon 12.
  • a gas supply path 32 is provided in the ceiling 22, and a heater 34 as a heating source is inserted into the gas supply path 32.
  • the gas supply path 32 supplies reducing gas to the space above the molten metal 11 to prevent oxidation of the molten metal 11.
  • the reducing gas includes, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas.
  • the heater 34 is provided above the molten metal 11 and the molten glass ribbon 12, and a plurality of heaters 34 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the molten glass ribbon 12.
  • the output of the heater 34 is controlled so that the temperature of the molten glass ribbon 12 becomes lower from the upstream side toward the downstream side.
  • the top rolls 40 are used in pairs, pressing both side edges of the molten glass ribbon 12 on the molten metal 11 and applying tension to the molten glass ribbon 12 in the width direction.
  • a plurality of pairs of top rolls 40 are disposed at intervals along the flow direction of the molten glass ribbon 12.
  • the top roll 40 has a rotating member in contact with the molten glass ribbon 12 at the tip. As the rotating member rotates, the molten glass ribbon 12 is sent out in a predetermined direction.
  • the molten glass ribbon 12 gradually cools and hardens while flowing in a predetermined direction.
  • the float glass plate manufacturing method includes a forming step of forming the float glass ribbon 14 by causing the molten glass ribbon 12 to flow on the molten metal 11 in the bathtub 20, and the float glass ribbon 14 by cutting the float glass ribbon 14. And a cutting step for producing 16.
  • the width of the molten glass ribbon 12 on the molten metal 11 in the forming process so that the plate thickness distribution in the width direction of the float glass ribbon 14 (detailed below, the intermediate region 15) satisfies the formula described below.
  • the temperature distribution in the direction (Y direction) is adjusted. This adjustment is performed, for example, by independently controlling the outputs of the plurality of heaters 34 arranged in the width direction of the molten glass ribbon 12.
  • the lower the temperature of the molten glass ribbon the higher the viscosity of the molten glass ribbon, and the molten glass ribbon is less likely to be stretched and the thickness of the molten glass ribbon is less likely to be reduced. Therefore, by applying tension in the width direction to the molten glass ribbon 12 using the top roll 40, and adjusting the temperature distribution in the width direction of the molten glass ribbon 12, a desired plate thickness distribution can be obtained.
  • the float method is suitable for adjusting the plate thickness distribution. In the float process, the molten glass ribbon 12 has a long forming region, and the cooling rate of the molten glass ribbon 12 is slow. Therefore, the temperature distribution of the molten glass ribbon 12 is easy to adjust.
  • a heater for heating the molten glass ribbon 12 is used for adjusting the temperature distribution in the width direction of the molten glass ribbon 12, but a cooler for cooling the molten glass ribbon 12 may be used. Both coolers may be used.
  • FIG. 3 is a cross-sectional view showing a float glass ribbon according to an embodiment of the present invention.
  • the unevenness of the plate thickness is exaggerated for convenience of explanation.
  • Both main surfaces of the float glass ribbon 14 may be unpolished surfaces. That is, one main surface of the float glass ribbon 14 may be a surface in contact with the inert gas in the molding process. Further, the other main surface of the float glass ribbon 14 may be a surface in contact with the molten metal 11 in the forming process.
  • the various dimensions of the float glass ribbon 14 can be measured at room temperature before the cutting process.
  • a laser displacement meter can be used to measure the thickness of the float glass ribbon 14.
  • the laser displacement meter measures the plate thickness of the float glass ribbon 14 by receiving reflected light from both main surfaces of the float glass ribbon 14.
  • the width of the float glass ribbon 14 is 800 mm or more, preferably 2000 mm or more, more preferably 2500 mm or more.
  • a region between a position 400 mm inward in the width direction from one end in the width direction of the float glass ribbon 14 and a position 400 mm inward in the width direction from the other end in the width direction of the float glass ribbon 14 is referred to as an intermediate region 15.
  • region 15 of the float glass ribbon 14 is called an outer area
  • the outer region is in contact with the top roll 40, and the intermediate region 15 is not in contact with the top roll 40.
  • the outer region is thicker than the intermediate region 15 to which tension is applied by the top roll 40.
  • the average plate thickness of the intermediate region 15 is 0.25 mm or less, preferably 0.15 mm or less, more preferably 0.1 mm or less.
  • the average plate thickness of the intermediate region 15 is preferably 0.03 mm or more, and more preferably 0.05 mm or more.
  • the average plate thickness of the intermediate region 15 is an average value of plate thicknesses measured at a pitch of 50 mm in the width direction.
  • the plate thickness distribution in the width direction (Y direction) of the intermediate region 15 satisfies the following formula.
  • T0 ⁇ T1 T0 ⁇ T2 T0 Thickness T1 of the center of the intermediate region 15 in the width direction; 0.4 ⁇ W inward in the width direction from one end in the width direction of the intermediate region 15 (a position 400 mm inward in the width direction from one end in the width direction of the float glass ribbon 14)
  • the minimum thickness T2 of the first region 15L within a distance of 0.4 mm inward in the width direction from the other end in the width direction of the intermediate region 15 (a position 400 mm inward in the width direction from the other end in the width direction of the float glass ribbon 14).
  • the minimum plate thickness W of the second region 15R within a distance of ⁇ W; the width of the intermediate region 15 Note that the plate thickness distribution in the X direction of the intermediate region 15 is almost uniform.
  • the plate thickness distribution in the width direction of the intermediate region 15 uses a result obtained by smoothing a result measured at a 25 mm pitch using a laser displacement meter by a 5-point moving average method in order to remove noise.
  • the intermediate region 15 may have a symmetrical shape with the center in the width direction as the center, and T1 and T2 may have the same value. Further, at least one of T1 and T2 (both in the present embodiment) may be the minimum plate thickness in the entire width direction of the intermediate region 15.
  • the thin portion of the molten glass ribbon 12 on the molten metal 11 is not unevenly distributed in the center in the width direction. Therefore, the stress that can cause the wave-like deformation in the molding process can be dispersed, and the float glass ribbon 14 that suppresses the wave-like deformation in the molding process is obtained.
  • the thickness distribution in the width direction of the intermediate region 15 satisfies the following formula. T0> T1 T0> T2 If the expressions “T0> T1” and “T0> T2” are satisfied, the molten glass ribbon 12 on the molten metal 11 has a thick center in the width direction and a highly rigid portion exists in the center in the width direction. 12 is hard to shrink in the width direction. Therefore, the wavy deformation in the molding process can be further suppressed.
  • the portions having a thinner plate thickness than the center in the width direction are present on both the left and right sides of the center in the width direction of the molten glass ribbon 12 on the molten metal 11. is there.
  • the presence of a plurality of thin portions can surely disperse the stress that can cause the wave-like deformation, and can surely suppress the wave-like deformation.
  • a difference ⁇ T1 between T0 and T1 (a value obtained by subtracting T1 from T0) and a difference ⁇ T2 between T0 and T2 (a value obtained by subtracting T2 from T0) are each preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more. It is. ⁇ T1 and ⁇ T2 are each preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, from the viewpoint of flatness of the float glass plate 16.
  • the intermediate region 15 may have a thick plate portion and a thin plate portion alternately along the width direction, and a plurality of thin plate portions spaced apart in the width direction. .
  • the intermediate region 15 includes a thick part 15 a, a thin part 15 b, a thick part 15 c, and a plate thickness from the left to the right in FIG. 3.
  • the thin portion 15d and the thick portion 15e are in this order.
  • the plurality of thin portions 15b and 15d only need to be thinner than the adjacent thick portions, and may have the same thickness or different thicknesses. Since a plurality of thin portions, that is, constricted portions are present at intervals in the width direction, stress that can cause wavy deformation can be reliably dispersed, and wavy deformation can be reliably suppressed.
  • region 15 of this embodiment has two thin parts with the space
  • region 15 of this embodiment changes continuously in the width direction, the intermediate
  • the float glass ribbon 14 may have a thicker portion than the thinnest portion in the region excluding the center in the width direction.
  • FIG. 4 is a cross-sectional view showing a float glass plate according to an embodiment of the present invention.
  • the uneven thickness is exaggerated for convenience of explanation.
  • Both main surfaces of the float glass plate 16 may be unpolished surfaces. That is, one main surface of the float glass plate 16 may be a surface in contact with the inert gas in the molding process. Further, the other main surface of the float glass plate 16 may be a surface in contact with the molten metal 11 in the forming process.
  • the various dimensions of the float glass plate 16 can be measured at room temperature before the cutting process.
  • a laser displacement meter can be used to measure the thickness of the float glass plate 16.
  • the laser displacement meter measures the thickness of the float glass plate 16 by receiving reflected light from both main surfaces of the float glass plate 16.
  • the float glass plate 16 is produced by cutting off both side edges of the float glass ribbon 14.
  • the float glass plate 16 is produced by cutting the float glass ribbon 14 along its width direction. This cutting may be performed either before or after excision of both side edges of the float glass ribbon 14.
  • the float glass plate 16 can be obtained by cutting the float glass ribbon 14 at a position 400 mm inward in the width direction from both ends in the width direction.
  • the plate thickness distribution of the float glass plate 16 and the plate thickness distribution of the intermediate region 15 of the float glass ribbon 14 are substantially the same.
  • the float glass plate 16 of the present embodiment can be obtained by cutting the float glass ribbon 14 from the both ends in the width direction at positions separated by 400 mm inward in the width direction, but the cutting position is not particularly limited. If both side edges of the float glass ribbon 14 are cut off, the plate thickness distribution of the float glass plate 16 and the plate thickness distribution of the intermediate region 15 of the float glass ribbon 14 are substantially the same.
  • the thickness is 0.25 mm or less, preferably 0.15 mm or less, more preferably 0.1 mm or less.
  • the average thickness of the float glass plate 16 is preferably 0.03 mm or more, and more preferably 0.05 mm or more.
  • the average plate thickness of the float glass plate is the same value as the average plate thickness of the intermediate region of the float glass ribbon before becoming the float glass plate.
  • the plate thickness distribution in the width direction (Y direction) of the float glass plate 16 satisfies the following formula. T0 ′ ⁇ T1 ′ T0 ′ ⁇ T2 ′ T0 ′; plate thickness T1 ′ at the center in the width direction of the float glass plate 16; minimum plate thickness T2 ′ of the first region 16L having a distance within 0.4 ⁇ W ′ from one end in the width direction to the inside in the width direction The minimum thickness W ′ of the second region 16R within a distance of 0.4 ⁇ W ′ from the other widthwise end of the float glass plate 16 within the width direction; the width of the float glass plate 16; The thickness distribution in the direction is almost uniform.
  • the plate thickness distribution in the width direction of the float glass plate 16 uses a result obtained by smoothing a result measured at a 25 mm pitch using a laser displacement meter by a 5-point moving average method in order to remove noise.
  • the width direction (Y direction) of the float glass plate 16 means the width direction (Y direction) orthogonal to the flow direction (X direction) of the molten glass ribbon 12 in the forming step.
  • the float glass plate 16 may have a symmetrical shape about the width direction center, and T1 ′ and T2 ′ may have the same value. Further, at least one of T1 ′ and T2 ′ (both in the present embodiment) may be the minimum plate thickness in the entire width direction of the float glass plate 16.
  • the thin portion of the plate thickness on the molten metal 11 in the width direction is not unevenly distributed. Therefore, the stress that can cause the wave-like deformation in the molding process can be dispersed, and the float glass ribbon 14 that suppresses the wave-like deformation in the molding process is obtained, and the high-quality float glass plate 16 is obtained.
  • the plate thickness distribution in the width direction of the float glass plate 16 more preferably satisfies the following formula. T0 '>T1' T0 '>T2' If the expressions “T0 ′> T1 ′” and “T0 ′> T2 ′” are satisfied, the molten glass ribbon 12 on the molten metal 11 has a thick center in the width direction and a highly rigid portion exists in the center in the width direction. The molten glass ribbon 12 is difficult to shrink in the width direction. Therefore, the wavy deformation in the molding process can be further suppressed.
  • the thickness of the molten glass ribbon 12 on the molten metal 11 on the left and right sides of the center in the width direction is larger than the center in the width direction.
  • There are thin parts. The presence of a plurality of thin portions can surely disperse the stress that can cause the wave-like deformation, and can surely suppress the wave-like deformation.
  • the difference ⁇ T1 ′ between T0 ′ and T1 ′ (value obtained by subtracting T1 ′ from T0 ′) and the difference ⁇ T2 ′ between T0 ′ and T2 ′ (value obtained by subtracting T2 ′ from T0 ′) are preferably It is 2 ⁇ m or more, more preferably 5 ⁇ m or more.
  • ⁇ T1 ′ and ⁇ T2 ′ are each preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, from the viewpoint of flatness of the float glass plate 16.
  • the float glass plate 16 has thick portions and thin portions that are alternately arranged along the width direction, and a plurality of thin portions that are spaced apart in the width direction. Good. Specifically, as shown in FIG. 4, for example, the float glass plate 16 includes a thick portion 16a, a thin portion 16b, a thick portion 16c, a plate, A thin portion 16d and a thick plate portion 16e are provided in this order. The plurality of thin portions 16b and 16d only need to be thinner than the adjacent thick portions, and may have the same thickness or different thicknesses.
  • the stress that can cause the wavy deformation of the molten glass ribbon 12 can be reliably dispersed in the forming process, and the wavy deformation is ensured. Can be suppressed.
  • the float glass plate 16 of this embodiment has two thin-thick portions at intervals in the width direction, it may have three or more.
  • board thickness of the float glass plate 16 of this embodiment changes continuously in the width direction, the float glass plate 16 may have a part from which plate
  • the float glass plate 16 may have a thicker portion than the thinnest portion in the region excluding the center in the width direction.
  • the use of the float glass plate 16 is not particularly limited, and examples thereof include display devices such as liquid crystal panels and organic EL panels, and electronic devices such as solar cells.
  • the float glass plate 16 is used as a substrate for an electronic device, for example.
  • the float glass plate 16 having an average plate thickness of 0.25 mm or less has flexibility, it can be stored, transported, used, and the like by being wound around the winding core into a glass roll.
  • the glass roll is suitable for manufacturing an electronic device by a roll-to-roll method, and is used as, for example, a substrate for an electronic device. Elements and the like are patterned on the flat glass drawn from the glass roll.
  • a float glass ribbon having a width of 2600 mm and an average plate thickness of about 0.1 mm in the middle region was formed by flowing the molten glass ribbon on molten tin, and the formed float glass ribbon was cut.
  • a float glass plate was produced.
  • a float glass ribbon was molded using the same molding conditions except for the temperature distribution in the width direction of the molten glass ribbon on molten tin.
  • the thickness distribution in the width direction of the obtained float glass plate is shown in FIGS. 5 to 9, the distance in the width direction from one end in the width direction of the float glass plate when the width of the float glass plate is 100% is taken on the horizontal axis, and the plate thickness is taken on the vertical axis.
  • the first region, the second region, and the region between the first region and the second region in each float glass plate were each 300 mm long and horizontal.
  • a 300 mm sample was cut out.
  • the sample was placed on a black surface plate, a tetragonal lattice pattern placed between the sample and the light source was projected onto the sample surface, and the projection pattern formed on the sample surface was photographed. From the presence or absence of distortion of the projection pattern, the presence or absence of wavy deformation in the molding process can be determined.
  • the tetragonal lattice pattern was created by pasting a plurality of colored translucent tapes onto a white translucent board.
  • Table 1 shows the evaluation results.
  • “A” represents that the projection pattern formed on the surface of the sample has almost no distortion and almost no wavy deformation in the molding process.
  • “B” represents that the projection pattern formed on the surface of the sample is distorted and has a wave-like deformation in the molding process.
  • FIG. 10 is a projection pattern formed on the surface of a sample cut out from the central region of the float glass plate of Test Example 1.
  • FIG. 11 is a projection pattern formed on the surface of a sample cut out from the central region of the float glass plate of Test Example 5.
  • the float glass plate 16 of the above-described embodiment has both main surfaces unpolished, at least one main surface may be polished.
  • the polishing process is performed after the cutting process.
  • the polishing method may be a general method. In the case of polishing for the purpose of reducing the surface roughness, ⁇ T1 ′ and ⁇ T2 ′ are hardly changed by polishing, although it depends on the polishing conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

A float-glass ribbon having a width of at least 800 mm, and an average sheet thickness of 0.25 mm or less in an intermediate region thereof between a position 400 mm inward in the width direction from one width-direction end thereof, and a position 400 mm inward in the width direction from the other width-direction end thereof, the sheet thickness distribution in the width direction satisfying the expressions T0 ≥ T1 and T0 ≥ T2, where T0 is the sheet thickness at the width-direction center of the intermediate region, T1 is the minimum sheet thickness of a first region at a distance of 0.4 × W or less inward in the width direction from one width-direction end of the intermediate region, T2 is the minimum sheet thickness of a second region at a distance of 0.4 × W or less inward in the width direction from the other width-direction end of the intermediate region, and W is the width of the intermediate region.

Description

フロートガラスリボン、フロートガラス板、およびフロートガラス板の製造方法Float glass ribbon, float glass plate, and method for producing float glass plate
 本発明は、フロートガラスリボン、フロートガラス板、およびフロートガラス板の製造方法に関する。 The present invention relates to a float glass ribbon, a float glass plate, and a method for producing a float glass plate.
 フロートガラス板の製造方法は、浴槽内の溶融金属上において溶融ガラスリボンを流動させて、板状のフロートガラスリボンを成形する成形工程と、フロートガラスリボンを切断してフロートガラス板を作製する切断工程とを有する(例えば、特許文献1参照)。 The manufacturing method of a float glass plate includes a molding step of forming a float glass ribbon by flowing a molten glass ribbon on a molten metal in a bathtub, and cutting for producing a float glass plate by cutting the float glass ribbon. (For example, refer patent document 1).
 成形工程において、平衡厚さよりも厚さの薄い溶融ガラスリボンは流動方向と直交する幅方向に縮もうとする。そこで、溶融ガラスリボンの厚さを所望の厚さに保つため、溶融ガラスリボンに対し幅方向に張力を加えるトップロールが用いられる。 In the molding process, the molten glass ribbon having a thickness smaller than the equilibrium thickness tends to shrink in the width direction perpendicular to the flow direction. Therefore, in order to keep the thickness of the molten glass ribbon at a desired thickness, a top roll that applies tension to the molten glass ribbon in the width direction is used.
 トップロールは、対で用いられ、溶融金属上の溶融ガラスリボンの両側縁部を押さえる。複数対のトップロールが、溶融ガラスリボンの流動方向に沿って間隔をおいて配設される。 The top roll is used in pairs and presses both side edges of the molten glass ribbon on the molten metal. A plurality of pairs of top rolls are disposed at intervals along the flow direction of the molten glass ribbon.
 トップロールは、溶融ガラスリボンと接触する回転部材を先端部に有する。回転部材が回転することによって、溶融ガラスリボンが所定方向に送り出される。 The top roll has a rotating member in contact with the molten glass ribbon at the tip. As the rotating member rotates, the molten glass ribbon is sent out in a predetermined direction.
 複数対のトップロールによって張力が加えられる間に、溶融ガラスリボンは所定方向に流動しながら、徐々に冷却され固くなる。 While the tension is applied by a plurality of pairs of top rolls, the molten glass ribbon gradually cools and hardens while flowing in a predetermined direction.
日本国特開2008-239370号公報Japanese Unexamined Patent Publication No. 2008-239370
 1対のトップロールは、溶融金属上の溶融ガラスリボンの両側縁部を押さえることで、溶融ガラスリボンに対して幅方向に張力を加える。そのため、幅方向内側ほどガラスが引き伸ばされやすく、幅方向内側ほどガラスの板厚が薄い傾向があった。 The pair of top rolls applies tension to the molten glass ribbon in the width direction by pressing both side edges of the molten glass ribbon on the molten metal. For this reason, the glass tends to be stretched toward the inner side in the width direction, and the thickness of the glass tends to be thinner toward the inner side in the width direction.
 複数対のトップロールによる張力の印加が解除された後、溶融ガラスリボンが幅方向に若干縮む。このとき、溶融ガラスリボンに板厚の薄い部分があると、板厚の薄い部分に応力が集中する。そして、板厚の薄い部分は、剛性が低く、波状の変形が発生しやすい。 ¡After the application of tension by multiple pairs of top rolls is released, the molten glass ribbon shrinks slightly in the width direction. At this time, if the molten glass ribbon has a thin part, stress concentrates on the thin part. And a thin part has a low rigidity, and a wave-like deformation is likely to occur.
 この問題は、平均板厚が0.25mm以下のフロートガラス板を製造する場合に顕著であった。溶融ガラスリボンの幅方向中心の板厚が薄いためである。 This problem was remarkable when a float glass plate having an average plate thickness of 0.25 mm or less was produced. This is because the thickness of the center of the molten glass ribbon in the width direction is thin.
 本発明は、上記課題に鑑みてなされたものであって、成形工程における波状の変形を抑制したフロートガラスリボンなどの提供を主な目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide a float glass ribbon or the like that suppresses wavy deformation in the molding process.
 上記課題を解決するため、本発明の一態様によれば、
 幅が800mm以上であり、幅方向一端から幅方向内側に400mm離れた位置と、幅方向他端から幅方向内側に400mm離れた位置との間の中間領域の平均板厚が0.25mm以下であるフロートガラスリボンであって、
 前記中間領域の幅方向における板厚分布が下記の式を満たす、フロートガラスリボンを提供する。
T0≧T1
T0≧T2
T0;前記中間領域の幅方向中心の板厚
T1;前記中間領域の幅方向一端から幅方向内側に0.4×W以内の距離の第1領域の最小板厚
T2;前記中間領域の幅方向他端から幅方向内側に0.4×W以内の距離の第2領域の最小板厚
W;前記中間領域の幅
In order to solve the above problems, according to one aspect of the present invention,
The width is 800 mm or more, and the average thickness of the intermediate region between the position 400 mm inward in the width direction from one end in the width direction and the position 400 mm inward in the width direction from the other end in the width direction is 0.25 mm or less. A float glass ribbon,
A float glass ribbon is provided in which the thickness distribution in the width direction of the intermediate region satisfies the following formula.
T0 ≧ T1
T0 ≧ T2
T0; plate thickness T1 at the center of the intermediate region in the width direction; minimum plate thickness T2 of the first region at a distance within 0.4 × W from one end in the width direction of the intermediate region; width direction of the intermediate region Minimum thickness W of the second region having a distance of 0.4 × W or less inward in the width direction from the other end; width of the intermediate region
 本発明の一態様によれば、成形工程における波状の変形を抑制したフロートガラスリボンが提供される。 According to one aspect of the present invention, there is provided a float glass ribbon that suppresses wavy deformation in the molding process.
本発明の一実施形態によるフロートガラス板製造装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the float glass plate manufacturing apparatus by one Embodiment of this invention. 図1のフロートガラス板製造装置の下部構造を示す平面図である。It is a top view which shows the lower structure of the float glass plate manufacturing apparatus of FIG. 本発明の一実施形態によるフロートガラスリボンを示す断面図である。It is sectional drawing which shows the float glass ribbon by one Embodiment of this invention. 本発明の一実施形態によるフロートガラス板を示す断面図である。It is sectional drawing which shows the float glass plate by one Embodiment of this invention. 試験例1によるフロートガラス板の板厚分布を示す図である。It is a figure which shows plate thickness distribution of the float glass plate by the test example 1. FIG. 試験例2によるフロートガラス板の板厚分布を示す図である。It is a figure which shows plate thickness distribution of the float glass plate by the test example 2. FIG. 試験例3によるフロートガラス板の板厚分布を示す図である。It is a figure which shows plate thickness distribution of the float glass plate by Test Example 3. 試験例4によるフロートガラス板の板厚分布を示す図である。It is a figure which shows plate | board thickness distribution of the float glass plate by Test Example 4. 試験例5によるフロートガラス板の板厚分布を示す図である。It is a figure which shows plate thickness distribution of the float glass plate by Test Example 5. 試験例1のフロートガラス板の中央領域から切り出したサンプルの表面に形成される投影パターンである。It is a projection pattern formed on the surface of the sample cut out from the center area | region of the float glass plate of the test example 1. FIG. 試験例5のフロートガラス板の中央領域から切り出したサンプルの表面に形成される投影パターンである。It is a projection pattern formed on the surface of the sample cut out from the center area | region of the float glass plate of the test example 5. FIG.
 以下、本発明を実施するための形態について図面を参照して説明する。尚、各図面において、同一のまたは対応する構成には同一の又は対応する符号を付して説明を省略する。また、「幅方向」とは、成形工程における溶融ガラスリボンの流動方向と直交する方向を意味する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. The “width direction” means a direction orthogonal to the flow direction of the molten glass ribbon in the forming step.
 図1は、本発明の一実施形態によるフロートガラス板製造装置の要部を示す断面図である。図2は、図1のフロートガラス板製造装置の下部構造を示す平面図である。 FIG. 1 is a cross-sectional view showing a main part of a float glass sheet manufacturing apparatus according to an embodiment of the present invention. FIG. 2 is a plan view showing a lower structure of the float glass sheet manufacturing apparatus of FIG.
 フロートガラス板製造装置10は、浴槽20内の溶融金属11上において溶融ガラスリボン12を流動させて板状のフロートガラスリボン14を成形する。溶融ガラスリボン12は、X方向(図2参照)に流動しながら徐々に冷却され固くなり、フロートガラスリボン14となる。フロートガラスリボン14は、下流域において溶融金属11から引き上げられ、徐冷炉に送られる。 The float glass plate manufacturing apparatus 10 forms a plate-like float glass ribbon 14 by causing the molten glass ribbon 12 to flow on the molten metal 11 in the bathtub 20. The molten glass ribbon 12 is gradually cooled and hardened while flowing in the X direction (see FIG. 2), and becomes a float glass ribbon 14. The float glass ribbon 14 is pulled up from the molten metal 11 in the downstream region and sent to a slow cooling furnace.
 フロートガラス板製造装置10は、徐冷炉内において徐冷されたフロートガラスリボン14を切断してフロートガラス板16(図4参照)を作製する。フロートガラス板16は、フロートガラスリボン14のうち、肉厚の両側縁部(いわゆる耳部)を切除して得られる。 The float glass plate manufacturing apparatus 10 cuts the float glass ribbon 14 that has been slowly cooled in the slow cooling furnace to produce a float glass plate 16 (see FIG. 4). The float glass plate 16 is obtained by cutting out both thick side edges (so-called ears) of the float glass ribbon 14.
 フロートガラス板製造装置10は、図1に示すように、溶融金属11を収容する浴槽20、浴槽20の上方に設けられる天井22、および浴槽20と天井22との間の隙間を塞ぐ側壁24、溶融金属11上の溶融ガラスリボン12に対して幅方向に張力を加えるトップロール40などを備える。 As shown in FIG. 1, the float glass sheet manufacturing apparatus 10 includes a bathtub 20 that houses the molten metal 11, a ceiling 22 that is provided above the bathtub 20, and a side wall 24 that blocks a gap between the bathtub 20 and the ceiling 22, A top roll 40 that applies tension in the width direction to the molten glass ribbon 12 on the molten metal 11 is provided.
 浴槽20は、溶融金属11を収容する。溶融金属11としては、例えば溶融スズが用いられる。溶融スズの他に、溶融スズ合金なども使用可能であり、溶融金属11は溶融ガラスリボン12を浮かばせることができるものであればよい。 The bathtub 20 accommodates the molten metal 11. As the molten metal 11, for example, molten tin is used. In addition to molten tin, a molten tin alloy or the like can also be used, and the molten metal 11 only needs to be able to float the molten glass ribbon 12.
 天井22にはガス供給路32が設けられ、ガス供給路32には、加熱源としてのヒータ34が挿通される。 A gas supply path 32 is provided in the ceiling 22, and a heater 34 as a heating source is inserted into the gas supply path 32.
 ガス供給路32は、溶融金属11の上方空間に還元性ガスを供給し、溶融金属11の酸化を防止する。還元性ガスは、例えば、水素ガスを1~15体積%、窒素ガスを85~99体積%含む。 The gas supply path 32 supplies reducing gas to the space above the molten metal 11 to prevent oxidation of the molten metal 11. The reducing gas includes, for example, 1 to 15% by volume of hydrogen gas and 85 to 99% by volume of nitrogen gas.
 ヒータ34は、溶融金属11および溶融ガラスリボン12の上方に設けられ、溶融ガラスリボン12の流動方向(X方向)および幅方向(Y方向)に間隔をおいて複数設けられる。ヒータ34の出力は、上流側から下流側に向かうほど溶融ガラスリボン12の温度が低くなるように制御される。 The heater 34 is provided above the molten metal 11 and the molten glass ribbon 12, and a plurality of heaters 34 are provided at intervals in the flow direction (X direction) and the width direction (Y direction) of the molten glass ribbon 12. The output of the heater 34 is controlled so that the temperature of the molten glass ribbon 12 becomes lower from the upstream side toward the downstream side.
 トップロール40は、図2に示すように、対で用いられ、溶融金属11上の溶融ガラスリボン12の両側縁部を押さえ、溶融ガラスリボン12に対して幅方向に張力を加える。複数対のトップロール40が、溶融ガラスリボン12の流動方向に沿って間隔をおいて配設される。 As shown in FIG. 2, the top rolls 40 are used in pairs, pressing both side edges of the molten glass ribbon 12 on the molten metal 11 and applying tension to the molten glass ribbon 12 in the width direction. A plurality of pairs of top rolls 40 are disposed at intervals along the flow direction of the molten glass ribbon 12.
 トップロール40は、溶融ガラスリボン12と接触する回転部材を先端部に有する。回転部材が回転することによって、溶融ガラスリボン12が所定方向に送り出される。 The top roll 40 has a rotating member in contact with the molten glass ribbon 12 at the tip. As the rotating member rotates, the molten glass ribbon 12 is sent out in a predetermined direction.
 複数対のトップロール40によって張力が加えられる間に、溶融ガラスリボン12は所定方向に流動しながら、徐々に冷却され固くなる。 While the tension is applied by the plurality of pairs of top rolls 40, the molten glass ribbon 12 gradually cools and hardens while flowing in a predetermined direction.
 フロートガラス板製造方法は、浴槽20内の溶融金属11上において溶融ガラスリボン12を流動させて、板状のフロートガラスリボン14を成形する成形工程と、フロートガラスリボン14を切断してフロートガラス板16を作製する切断工程とを有する。 The float glass plate manufacturing method includes a forming step of forming the float glass ribbon 14 by causing the molten glass ribbon 12 to flow on the molten metal 11 in the bathtub 20, and the float glass ribbon 14 by cutting the float glass ribbon 14. And a cutting step for producing 16.
 本実施形態においては、フロートガラスリボン14(詳細には後述の中間領域15)の幅方向における板厚分布が後述の式を満たすように、成形工程において溶融金属11上の溶融ガラスリボン12の幅方向(Y方向)における温度分布を調整する。この調整は、例えば溶融ガラスリボン12の幅方向に並ぶ複数のヒータ34の出力を独立に制御することで行われる。 In the present embodiment, the width of the molten glass ribbon 12 on the molten metal 11 in the forming process so that the plate thickness distribution in the width direction of the float glass ribbon 14 (detailed below, the intermediate region 15) satisfies the formula described below. The temperature distribution in the direction (Y direction) is adjusted. This adjustment is performed, for example, by independently controlling the outputs of the plurality of heaters 34 arranged in the width direction of the molten glass ribbon 12.
 一般的に、溶融ガラスリボンの温度が低いほど、溶融ガラスリボンの粘性が高く、溶融ガラスリボンが引き伸ばされにくく、溶融ガラスリボンの厚さが薄くなりにくい。よって、トップロール40を用いて溶融ガラスリボン12に対して幅方向に張力を加える共に、溶融ガラスリボン12の幅方向における温度分布を調整することで、所望の板厚分布が得られる。このような板厚分布の調整にフロート法は適している。フロート法は、溶融ガラスリボン12の成形領域が長く、溶融ガラスリボン12の冷却速度が緩やかであるため、溶融ガラスリボン12の温度分布が調製しやすい。 Generally, the lower the temperature of the molten glass ribbon, the higher the viscosity of the molten glass ribbon, and the molten glass ribbon is less likely to be stretched and the thickness of the molten glass ribbon is less likely to be reduced. Therefore, by applying tension in the width direction to the molten glass ribbon 12 using the top roll 40, and adjusting the temperature distribution in the width direction of the molten glass ribbon 12, a desired plate thickness distribution can be obtained. The float method is suitable for adjusting the plate thickness distribution. In the float process, the molten glass ribbon 12 has a long forming region, and the cooling rate of the molten glass ribbon 12 is slow. Therefore, the temperature distribution of the molten glass ribbon 12 is easy to adjust.
 尚、本実施形態においては、溶融ガラスリボン12の幅方向における温度分布の調整に、溶融ガラスリボン12を加熱するヒータを用いるが、溶融ガラスリボン12を冷却するクーラを用いてもよく、ヒータとクーラの両方を用いてもよい。 In the present embodiment, a heater for heating the molten glass ribbon 12 is used for adjusting the temperature distribution in the width direction of the molten glass ribbon 12, but a cooler for cooling the molten glass ribbon 12 may be used. Both coolers may be used.
 図3は、本発明の一実施形態によるフロートガラスリボンを示す断面図である。図3において、説明の都合上、板厚のムラを誇張して示す。 FIG. 3 is a cross-sectional view showing a float glass ribbon according to an embodiment of the present invention. In FIG. 3, the unevenness of the plate thickness is exaggerated for convenience of explanation.
 フロートガラスリボン14の両主面は、未研磨の面であってよい。つまり、フロートガラスリボン14の一方の主面は、成形工程において不活性ガスと接触した面であってよい。また、フロートガラスリボン14の他方の主面は、成形工程において溶融金属11と接触した面であってよい。 Both main surfaces of the float glass ribbon 14 may be unpolished surfaces. That is, one main surface of the float glass ribbon 14 may be a surface in contact with the inert gas in the molding process. Further, the other main surface of the float glass ribbon 14 may be a surface in contact with the molten metal 11 in the forming process.
 フロートガラスリボン14の各種寸法は、切断工程の前に、室温において測定できる。フロートガラスリボン14の板厚の測定には、レーザ変位計を用いることができる。レーザ変位計は、フロートガラスリボン14の両主面からの反射光を受光することにより、フロートガラスリボン14の板厚を測定する。 The various dimensions of the float glass ribbon 14 can be measured at room temperature before the cutting process. A laser displacement meter can be used to measure the thickness of the float glass ribbon 14. The laser displacement meter measures the plate thickness of the float glass ribbon 14 by receiving reflected light from both main surfaces of the float glass ribbon 14.
 フロートガラスリボン14の幅は、800mm以上であり、好ましくは2000mm以上、より好ましくは2500mm以上である。 The width of the float glass ribbon 14 is 800 mm or more, preferably 2000 mm or more, more preferably 2500 mm or more.
 フロートガラスリボン14の幅方向一端から幅方向内側に400mm離れた位置と、フロートガラスリボン14の幅方向他端から幅方向内側に400mm離れた位置との間の領域を中間領域15と称する。また、フロートガラスリボン14の中間領域15よりも幅方向外側の領域を外側領域と称する。 A region between a position 400 mm inward in the width direction from one end in the width direction of the float glass ribbon 14 and a position 400 mm inward in the width direction from the other end in the width direction of the float glass ribbon 14 is referred to as an intermediate region 15. Moreover, the area | region outside the width direction rather than the intermediate | middle area | region 15 of the float glass ribbon 14 is called an outer area | region.
 外側領域はトップロール40と接触し、中間領域15はトップロール40と接触しない。外側領域は、トップロール40によって張力を印加される中間領域15よりも肉厚になる。 The outer region is in contact with the top roll 40, and the intermediate region 15 is not in contact with the top roll 40. The outer region is thicker than the intermediate region 15 to which tension is applied by the top roll 40.
 中間領域15の平均板厚は、0.25mm以下であり、好ましくは0.15mm以下であり、より好ましくは0.1mm以下である。また、中間領域15の平均板厚は、好ましくは0.03mm以上であり、より好ましくは0.05mm以上である。中間領域15の平均板厚は、幅方向に50mmピッチで測定した板厚の平均値である。 The average plate thickness of the intermediate region 15 is 0.25 mm or less, preferably 0.15 mm or less, more preferably 0.1 mm or less. The average plate thickness of the intermediate region 15 is preferably 0.03 mm or more, and more preferably 0.05 mm or more. The average plate thickness of the intermediate region 15 is an average value of plate thicknesses measured at a pitch of 50 mm in the width direction.
 中間領域15の幅方向(Y方向)における板厚分布は、下記の式を満たす。
T0≧T1
T0≧T2
T0;中間領域15の幅方向中心の板厚
T1;中間領域15の幅方向一端(フロートガラスリボン14の幅方向一端から幅方向内側に400mm離れた位置)から幅方向内側に0.4×W以内の距離の第1領域15Lの最小板厚
T2;中間領域15の幅方向他端(フロートガラスリボン14の幅方向他端から幅方向内側に400mm離れた位置)から幅方向内側に0.4×W以内の距離の第2領域15Rの最小板厚
W;中間領域15の幅
 尚、中間領域15のX方向における板厚分布はほとんど均一である。
The plate thickness distribution in the width direction (Y direction) of the intermediate region 15 satisfies the following formula.
T0 ≧ T1
T0 ≧ T2
T0: Thickness T1 of the center of the intermediate region 15 in the width direction; 0.4 × W inward in the width direction from one end in the width direction of the intermediate region 15 (a position 400 mm inward in the width direction from one end in the width direction of the float glass ribbon 14) The minimum thickness T2 of the first region 15L within a distance of 0.4 mm inward in the width direction from the other end in the width direction of the intermediate region 15 (a position 400 mm inward in the width direction from the other end in the width direction of the float glass ribbon 14). The minimum plate thickness W of the second region 15R within a distance of × W; the width of the intermediate region 15 Note that the plate thickness distribution in the X direction of the intermediate region 15 is almost uniform.
 中間領域15の幅方向における板厚分布は、ノイズを除去するため、レーザ変位計を用いて25mmピッチで測定した結果を5点移動平均法によって平滑化したものを用いる。 The plate thickness distribution in the width direction of the intermediate region 15 uses a result obtained by smoothing a result measured at a 25 mm pitch using a laser displacement meter by a 5-point moving average method in order to remove noise.
 中間領域15は、幅方向中心を中心として左右対称な形状を有してよく、T1とT2とは同じ値であってよい。また、T1およびT2の少なくとも一方(本実施形態においては両方)は、中間領域15の幅方向全体における最小板厚であってよい。 The intermediate region 15 may have a symmetrical shape with the center in the width direction as the center, and T1 and T2 may have the same value. Further, at least one of T1 and T2 (both in the present embodiment) may be the minimum plate thickness in the entire width direction of the intermediate region 15.
 「T0≧T1」および「T0≧T2」の式が成立すれば、溶融金属11上の溶融ガラスリボン12の幅方向中心に板厚の薄い部分が偏在しない。そのため、成形工程において波状の変形を発生させうる応力が分散でき、成形工程における波状の変形を抑制したフロートガラスリボン14が得られる。 If the formulas “T0 ≧ T1” and “T0 ≧ T2” are satisfied, the thin portion of the molten glass ribbon 12 on the molten metal 11 is not unevenly distributed in the center in the width direction. Therefore, the stress that can cause the wave-like deformation in the molding process can be dispersed, and the float glass ribbon 14 that suppresses the wave-like deformation in the molding process is obtained.
 中間領域15の幅方向における板厚分布は、下記の式を満たすことがより好ましい。
T0>T1
T0>T2
 「T0>T1」および「T0>T2」の式が成立すれば、溶融金属11上の溶融ガラスリボン12の幅方向中心が厚く、剛性の高い部分が幅方向中心に存在するので、溶融ガラスリボン12が幅方向に縮みにくい。よって、成形工程における波状の変形がより抑制できる。
More preferably, the thickness distribution in the width direction of the intermediate region 15 satisfies the following formula.
T0> T1
T0> T2
If the expressions “T0> T1” and “T0> T2” are satisfied, the molten glass ribbon 12 on the molten metal 11 has a thick center in the width direction and a highly rigid portion exists in the center in the width direction. 12 is hard to shrink in the width direction. Therefore, the wavy deformation in the molding process can be further suppressed.
 また、「T0>T1」および「T0>T2」の式が成立すれば、溶融金属11上の溶融ガラスリボン12の幅方向中心の左右両側に、その幅方向中心よりも板厚の薄い部分がある。板厚の薄い部分が複数存在することによって、波状の変形を発生させうる応力が確実に分散でき、波状の変形が確実に抑制できる。 Further, if the expressions “T0> T1” and “T0> T2” are satisfied, the portions having a thinner plate thickness than the center in the width direction are present on both the left and right sides of the center in the width direction of the molten glass ribbon 12 on the molten metal 11. is there. The presence of a plurality of thin portions can surely disperse the stress that can cause the wave-like deformation, and can surely suppress the wave-like deformation.
 T0とT1との差ΔT1(T0からT1を減算した値)、およびT0とT2との差ΔT2(T0からT2を減算した値)は、それぞれ、好ましくは2μm以上であり、より好ましくは5μm以上である。ΔT1およびΔT2は、フロートガラス板16の平坦性の観点から、それぞれ、好ましくは15μm以下であり、より好ましくは10μm以下である。 A difference ΔT1 between T0 and T1 (a value obtained by subtracting T1 from T0) and a difference ΔT2 between T0 and T2 (a value obtained by subtracting T2 from T0) are each preferably 2 μm or more, more preferably 5 μm or more. It is. ΔT1 and ΔT2 are each preferably 15 μm or less, more preferably 10 μm or less, from the viewpoint of flatness of the float glass plate 16.
 このように、中間領域15は、板厚の厚い部分と板厚の薄い部分とを幅方向に沿って交互に有し、板厚の薄い部分を幅方向に間隔をおいて複数有してよい。具体的には、例えば図3に示すように、中間領域15は、図3中左側から右方向に、板厚の厚い部分15a、板厚の薄い部分15b、板厚の厚い部分15c、板厚の薄い部分15d、板厚の厚い部分15eをこの順で有する。複数の板厚の薄い部分15b、15dは、それぞれの両隣の板厚の厚い部分よりも薄ければよく、同じ厚さでも異なる厚さでもよい。板厚の薄い部分、つまり、くびれ部分が幅方向に間隔をおいて複数存在するので、波状の変形を発生させうる応力が確実に分散でき、波状の変形が確実に抑制できる。 As described above, the intermediate region 15 may have a thick plate portion and a thin plate portion alternately along the width direction, and a plurality of thin plate portions spaced apart in the width direction. . Specifically, for example, as shown in FIG. 3, the intermediate region 15 includes a thick part 15 a, a thin part 15 b, a thick part 15 c, and a plate thickness from the left to the right in FIG. 3. The thin portion 15d and the thick portion 15e are in this order. The plurality of thin portions 15b and 15d only need to be thinner than the adjacent thick portions, and may have the same thickness or different thicknesses. Since a plurality of thin portions, that is, constricted portions are present at intervals in the width direction, stress that can cause wavy deformation can be reliably dispersed, and wavy deformation can be reliably suppressed.
 尚、本実施形態の中間領域15は、板厚の薄い部分を幅方向に間隔をおいて2つ有するが、3つ以上有してもよい。また、本実施形態の中間領域15の板厚は幅方向に連続的に変化するが、中間領域15は板厚が幅方向に変化しない部分を有してもよい。 In addition, although the intermediate | middle area | region 15 of this embodiment has two thin parts with the space | interval in the width direction, you may have three or more. Moreover, although the plate | board thickness of the intermediate | middle area | region 15 of this embodiment changes continuously in the width direction, the intermediate | middle area | region 15 may have a part from which plate | board thickness does not change in the width direction.
 フロートガラスリボン14は、幅方向中心を除く領域に、最も薄い部分よりも厚い部分を有してよい。 The float glass ribbon 14 may have a thicker portion than the thinnest portion in the region excluding the center in the width direction.
 図4は、本発明の一実施形態によるフロートガラス板を示す断面図である。図4において、説明の都合上、板厚のムラを誇張して示す。 FIG. 4 is a cross-sectional view showing a float glass plate according to an embodiment of the present invention. In FIG. 4, the uneven thickness is exaggerated for convenience of explanation.
 フロートガラス板16の両主面は、未研磨の面であってよい。つまり、フロートガラス板16の一方の主面は、成形工程において不活性ガスと接触した面であってよい。また、フロートガラス板16の他方の主面は、成形工程において溶融金属11と接触した面であってよい。 Both main surfaces of the float glass plate 16 may be unpolished surfaces. That is, one main surface of the float glass plate 16 may be a surface in contact with the inert gas in the molding process. Further, the other main surface of the float glass plate 16 may be a surface in contact with the molten metal 11 in the forming process.
 フロートガラス板16の各種寸法は、切断工程の前に、室温において測定できる。フロートガラス板16の板厚の測定には、レーザ変位計を用いることができる。レーザ変位計は、フロートガラス板16の両主面からの反射光を受光することにより、フロートガラス板16の板厚を測定する。 The various dimensions of the float glass plate 16 can be measured at room temperature before the cutting process. A laser displacement meter can be used to measure the thickness of the float glass plate 16. The laser displacement meter measures the thickness of the float glass plate 16 by receiving reflected light from both main surfaces of the float glass plate 16.
 フロートガラス板16は、フロートガラスリボン14の両側縁部を切除して作製される。また、フロートガラス板16は、フロートガラスリボン14をその幅方向に沿って切断して作製される。この切断は、フロートガラスリボン14の両側縁部の切除の前、後のいずれに行われてもよい。例えば、フロートガラス板16は、フロートガラスリボン14をその幅方向両端からそれぞれ幅方向内側に400mm離れた位置で切断することにより得られる。フロートガラス板16の板厚分布と、フロートガラスリボン14の中間領域15の板厚分布とは略同じである。 The float glass plate 16 is produced by cutting off both side edges of the float glass ribbon 14. The float glass plate 16 is produced by cutting the float glass ribbon 14 along its width direction. This cutting may be performed either before or after excision of both side edges of the float glass ribbon 14. For example, the float glass plate 16 can be obtained by cutting the float glass ribbon 14 at a position 400 mm inward in the width direction from both ends in the width direction. The plate thickness distribution of the float glass plate 16 and the plate thickness distribution of the intermediate region 15 of the float glass ribbon 14 are substantially the same.
 尚、本実施形態のフロートガラス板16は、フロートガラスリボン14をその幅方向両端からそれぞれ幅方向内側に400mm離れた位置で切断することにより得られるが、その切断位置は特に限定されない。フロートガラスリボン14の両側縁部が切除されていれば、フロートガラス板16の板厚分布と、フロートガラスリボン14の中間領域15の板厚分布とは略同じである
 フロートガラス板16の平均板厚は、0.25mm以下であり、好ましくは0.15mm以下であり、より好ましくは0.1mm以下である。また、フロートガラス板16の平均板厚は、好ましくは0.03mm以上であり、より好ましくは0.05mm以上である。ここで、フロートガラス板の平均板厚とは、フロートガラス板になる前のフロートガラスリボンの中間領域の平均板厚と同様の値である。
The float glass plate 16 of the present embodiment can be obtained by cutting the float glass ribbon 14 from the both ends in the width direction at positions separated by 400 mm inward in the width direction, but the cutting position is not particularly limited. If both side edges of the float glass ribbon 14 are cut off, the plate thickness distribution of the float glass plate 16 and the plate thickness distribution of the intermediate region 15 of the float glass ribbon 14 are substantially the same. The thickness is 0.25 mm or less, preferably 0.15 mm or less, more preferably 0.1 mm or less. Further, the average thickness of the float glass plate 16 is preferably 0.03 mm or more, and more preferably 0.05 mm or more. Here, the average plate thickness of the float glass plate is the same value as the average plate thickness of the intermediate region of the float glass ribbon before becoming the float glass plate.
 フロートガラス板16の幅方向(Y方向)における板厚分布は、下記の式を満たす。
T0´≧T1´
T0´≧T2´
T0´;フロートガラス板16の幅方向中心の板厚
T1´;フロートガラス板16の幅方向一端から幅方向内側に0.4×W´以内の距離の第1領域16Lの最小板厚
T2´;フロートガラス板16の幅方向他端から幅方向内側に0.4×W´以内の距離の第2領域16Rの最小板厚
W´;フロートガラス板16の幅
 尚、フロートガラス板16のX方向における板厚分布はほとんど均一である。
The plate thickness distribution in the width direction (Y direction) of the float glass plate 16 satisfies the following formula.
T0 ′ ≧ T1 ′
T0 ′ ≧ T2 ′
T0 ′; plate thickness T1 ′ at the center in the width direction of the float glass plate 16; minimum plate thickness T2 ′ of the first region 16L having a distance within 0.4 × W ′ from one end in the width direction to the inside in the width direction The minimum thickness W ′ of the second region 16R within a distance of 0.4 × W ′ from the other widthwise end of the float glass plate 16 within the width direction; the width of the float glass plate 16; The thickness distribution in the direction is almost uniform.
 フロートガラス板16の幅方向における板厚分布は、ノイズを除去するため、レーザ変位計を用いて25mmピッチで測定した結果を5点移動平均法によって平滑化したものを用いる。 The plate thickness distribution in the width direction of the float glass plate 16 uses a result obtained by smoothing a result measured at a 25 mm pitch using a laser displacement meter by a 5-point moving average method in order to remove noise.
 フロートガラス板16の幅方向(Y方向)は、成形工程における溶融ガラスリボン12の流動方向(X方向)と直交する幅方向(Y方向)を意味する。フロートガラス板16の筋目又は断面を調べれば、成形工程における溶融ガラスリボン12の流動方向がわかる。 The width direction (Y direction) of the float glass plate 16 means the width direction (Y direction) orthogonal to the flow direction (X direction) of the molten glass ribbon 12 in the forming step. By examining the streaks or cross section of the float glass plate 16, the flow direction of the molten glass ribbon 12 in the molding process can be determined.
 フロートガラス板16は、幅方向中心を中心として左右対称な形状を有してよく、T1´とT2´とは同じ値であってよい。また、T1´およびT2´の少なくとも一方(本実施形態においては両方)は、フロートガラス板16の幅方向全体における最小板厚であってよい。 The float glass plate 16 may have a symmetrical shape about the width direction center, and T1 ′ and T2 ′ may have the same value. Further, at least one of T1 ′ and T2 ′ (both in the present embodiment) may be the minimum plate thickness in the entire width direction of the float glass plate 16.
 「T0´≧T1´」および「T0´≧T2´」の式が成立すれば、溶融金属11上の溶融ガラスリボン12の幅方向中心に板厚の薄い部分が偏在しない。そのため、成形工程において波状の変形を発生させうる応力が分散でき、成形工程における波状の変形を抑制したフロートガラスリボン14が得られ、品質の良いフロートガラス板16が得られる。 If the formulas “T0 ′ ≧ T1 ′” and “T0 ′ ≧ T2 ′” are satisfied, the thin portion of the plate thickness on the molten metal 11 in the width direction is not unevenly distributed. Therefore, the stress that can cause the wave-like deformation in the molding process can be dispersed, and the float glass ribbon 14 that suppresses the wave-like deformation in the molding process is obtained, and the high-quality float glass plate 16 is obtained.
 フロートガラス板16の幅方向における板厚分布は、下記の式を満たすことがより好ましい。
T0´>T1´
T0´>T2´
 「T0´>T1´」および「T0´>T2´」の式が成立すれば、溶融金属11上の溶融ガラスリボン12の幅方向中心が厚く、剛性の高い部分が幅方向中心に存在するので、溶融ガラスリボン12が幅方向に縮みにくい。よって、成形工程における波状の変形がより抑制できる。
The plate thickness distribution in the width direction of the float glass plate 16 more preferably satisfies the following formula.
T0 '>T1'
T0 '>T2'
If the expressions “T0 ′> T1 ′” and “T0 ′> T2 ′” are satisfied, the molten glass ribbon 12 on the molten metal 11 has a thick center in the width direction and a highly rigid portion exists in the center in the width direction. The molten glass ribbon 12 is difficult to shrink in the width direction. Therefore, the wavy deformation in the molding process can be further suppressed.
 また、「T0´>T1´」および「T0´>T2´」の式が成立すれば、溶融金属11上の溶融ガラスリボン12の幅方向中心の左右両側に、その幅方向中心よりも板厚の薄い部分がある。板厚の薄い部分が複数存在することによって、波状の変形を発生させうる応力が確実に分散でき、波状の変形が確実に抑制できる。 Further, if the expressions “T0 ′> T1 ′” and “T0 ′> T2 ′” are satisfied, the thickness of the molten glass ribbon 12 on the molten metal 11 on the left and right sides of the center in the width direction is larger than the center in the width direction. There are thin parts. The presence of a plurality of thin portions can surely disperse the stress that can cause the wave-like deformation, and can surely suppress the wave-like deformation.
 T0´とT1´との差ΔT1´(T0´からT1´を減じた値)、およびT0´とT2´との差ΔT2´(T0´からT2´を減じた値)は、それぞれ、好ましくは2μm以上であり、より好ましくは5μm以上である。ΔT1´およびΔT2´は、フロートガラス板16の平坦性の観点から、それぞれ、好ましくは15μm以下であり、より好ましくは10μm以下である。 The difference ΔT1 ′ between T0 ′ and T1 ′ (value obtained by subtracting T1 ′ from T0 ′) and the difference ΔT2 ′ between T0 ′ and T2 ′ (value obtained by subtracting T2 ′ from T0 ′) are preferably It is 2 μm or more, more preferably 5 μm or more. ΔT1 ′ and ΔT2 ′ are each preferably 15 μm or less, more preferably 10 μm or less, from the viewpoint of flatness of the float glass plate 16.
 このように、フロートガラス板16は、板厚の厚い部分と板厚の薄い部分とを幅方向に沿って交互に有し、板厚の薄い部分を幅方向に間隔をおいて複数有してよい。具体的には、例えば図4に示すように、フロートガラス板16は、図4中左側から右方向に、板厚の厚い部分16a、板厚の薄い部分16b、板厚の厚い部分16c、板厚の薄い部分16d、板厚の厚い部分16eをこの順で有する。複数の板厚の薄い部分16b、16dは、それぞれの両隣の板厚の厚い部分よりも薄ければよく、同じ厚さでも異なる厚さでもよい。板厚の薄い部分、つまり、くびれ部分が幅方向に間隔をおいて複数存在するので、成形工程において溶融ガラスリボン12の波状の変形を発生させうる応力が確実に分散でき、波状の変形が確実に抑制できる。 As described above, the float glass plate 16 has thick portions and thin portions that are alternately arranged along the width direction, and a plurality of thin portions that are spaced apart in the width direction. Good. Specifically, as shown in FIG. 4, for example, the float glass plate 16 includes a thick portion 16a, a thin portion 16b, a thick portion 16c, a plate, A thin portion 16d and a thick plate portion 16e are provided in this order. The plurality of thin portions 16b and 16d only need to be thinner than the adjacent thick portions, and may have the same thickness or different thicknesses. Since there are a plurality of thin portions, that is, constricted portions at intervals in the width direction, the stress that can cause the wavy deformation of the molten glass ribbon 12 can be reliably dispersed in the forming process, and the wavy deformation is ensured. Can be suppressed.
 尚、本実施形態のフロートガラス板16は、板厚の薄い部分を幅方向に間隔をおいて2つ有するが、3つ以上有してもよい。また、本実施形態のフロートガラス板16の板厚は幅方向に連続的に変化するが、フロートガラス板16は板厚が幅方向に変化しない部分を有してもよい。 In addition, although the float glass plate 16 of this embodiment has two thin-thick portions at intervals in the width direction, it may have three or more. Moreover, although the plate | board thickness of the float glass plate 16 of this embodiment changes continuously in the width direction, the float glass plate 16 may have a part from which plate | board thickness does not change in the width direction.
 フロートガラス板16は、幅方向中心を除く領域に、最も薄い部分よりも厚い部分を有してよい。 The float glass plate 16 may have a thicker portion than the thinnest portion in the region excluding the center in the width direction.
 フロートガラス板16の用途は、特に限定されないが、例えば液晶パネルや有機ELパネルなどの表示パネル、太陽電池などの電子デバイスが挙げられる。フロートガラス板16は、例えば電子デバイス用の基板として用いられる。 The use of the float glass plate 16 is not particularly limited, and examples thereof include display devices such as liquid crystal panels and organic EL panels, and electronic devices such as solar cells. The float glass plate 16 is used as a substrate for an electronic device, for example.
 平均板厚が0.25mm以下のフロートガラス板16は、フレキシブル性を有するため、巻芯の周りに渦巻き状に巻回することによって、ガラスロールにして、保管、搬送、使用等することもできる。ガラスロールは、ロール・ツー・ロール方式による電子デバイスの製造に適しており、例えば電子デバイス用の基板として用いられる。ガラスロールから引き出された平坦なガラスの上に素子などがパターン形成される。 Since the float glass plate 16 having an average plate thickness of 0.25 mm or less has flexibility, it can be stored, transported, used, and the like by being wound around the winding core into a glass roll. . The glass roll is suitable for manufacturing an electronic device by a roll-to-roll method, and is used as, for example, a substrate for an electronic device. Elements and the like are patterned on the flat glass drawn from the glass roll.
 試験例1~5においては、溶融スズ上において溶融ガラスリボンを流動させることにより幅2600mm、中間領域の平均板厚約0.1mmのフロートガラスリボンを成形し、成形したフロートガラスリボンを切断してフロートガラス板を製造した。フロートガラス板は、フロートガラスリボンをその幅方向両端から400mmの位置において切断し、切断した位置よりも外側の領域を切除したものである。従って、フロートガラス板は、フロートガラスリボンの中間領域と同じものである。よって、「T0´=T0」、「T1´=T1」および「T2´=T2」の式が成立する。 In Test Examples 1 to 5, a float glass ribbon having a width of 2600 mm and an average plate thickness of about 0.1 mm in the middle region was formed by flowing the molten glass ribbon on molten tin, and the formed float glass ribbon was cut. A float glass plate was produced. A float glass plate cut | disconnects the float glass ribbon in the position of 400 mm from the width direction both ends, and excised the area | region outside the cut | disconnected position. Thus, the float glass plate is the same as the middle region of the float glass ribbon. Therefore, the expressions “T0 ′ = T0”, “T1 ′ = T1”, and “T2 ′ = T2” are established.
 試験例1~5においては、溶融スズ上の溶融ガラスリボンの幅方向における温度分布以外、同じ成形条件を用いてフロートガラスリボンを成形した。得られたフロートガラス板の幅方向における板厚分布を図5~9に示す。図5~9において、フロートガラス板の幅を100%としたときのフロートガラス板の幅方向一端からの幅方向における距離を横軸に、板厚を縦軸にとる。 In Test Examples 1 to 5, a float glass ribbon was molded using the same molding conditions except for the temperature distribution in the width direction of the molten glass ribbon on molten tin. The thickness distribution in the width direction of the obtained float glass plate is shown in FIGS. 5 to 9, the distance in the width direction from one end in the width direction of the float glass plate when the width of the float glass plate is 100% is taken on the horizontal axis, and the plate thickness is taken on the vertical axis.
 図5~9から明らかなように、試験例1~4においては「T0´≧T1´」および「T0´≧T2´」の式が成立するのに対し、試験例5においてはこれらの式が成立しない。試験例5のフロートガラス板の板厚は、図9に示すように幅方向内側に向かうほど小さくなり、幅方向中心において最小値となる。 As is clear from FIGS. 5 to 9, in Test Examples 1 to 4, the expressions “T0 ′ ≧ T1 ′” and “T0 ′ ≧ T2 ′” are satisfied, whereas in Test Example 5, these expressions are Not satisfied. As shown in FIG. 9, the thickness of the float glass plate of Test Example 5 decreases toward the inner side in the width direction, and becomes a minimum value at the center in the width direction.
 試験例1~5の成形工程における波状の変形の有無を調べるため、各フロートガラス板における第1領域、第2領域、および第1領域と第2領域との間の領域からそれぞれ縦300mm、横300mmのサンプルを切り出した。サンプルを黒い定盤の上に載せ、サンプルと光源との間に設置した四方格子状のパターンをサンプルの表面に投影し、サンプルの表面に形成される投影パターンを撮影した。投影パターンの歪みの有無から、成形工程における波状の変形の有無が分かる。ここで、四方格子状のパターンは、複数種類の色つきの半透明のテープを白い半透明のボードに貼って作成した。 In order to investigate the presence or absence of wavy deformation in the forming steps of Test Examples 1 to 5, the first region, the second region, and the region between the first region and the second region in each float glass plate were each 300 mm long and horizontal. A 300 mm sample was cut out. The sample was placed on a black surface plate, a tetragonal lattice pattern placed between the sample and the light source was projected onto the sample surface, and the projection pattern formed on the sample surface was photographed. From the presence or absence of distortion of the projection pattern, the presence or absence of wavy deformation in the molding process can be determined. Here, the tetragonal lattice pattern was created by pasting a plurality of colored translucent tapes onto a white translucent board.
 評価の結果を表1に示す。表1において、「A」はサンプル表面に形成される投影パターンに歪みがほとんど無く、成形工程における波状の変形がほとんど無いことを表す。また、「B」はサンプル表面に形成される投影パターンに歪みが有り、成形工程における波状の変形が有ることを表す。図10は、試験例1のフロートガラス板の中央領域から切り出したサンプルの表面に形成される投影パターンである。図11は、試験例5のフロートガラス板の中央領域から切り出したサンプルの表面に形成される投影パターンである。 Table 1 shows the evaluation results. In Table 1, “A” represents that the projection pattern formed on the surface of the sample has almost no distortion and almost no wavy deformation in the molding process. “B” represents that the projection pattern formed on the surface of the sample is distorted and has a wave-like deformation in the molding process. FIG. 10 is a projection pattern formed on the surface of a sample cut out from the central region of the float glass plate of Test Example 1. FIG. 11 is a projection pattern formed on the surface of a sample cut out from the central region of the float glass plate of Test Example 5.
Figure JPOXMLDOC01-appb-T000001
 表1、図10、および図11から明らかなように、試験例1~4においては「T0´≧T1´」および「T0´≧T2´」の式が成立するため、成形工程における波状の変形が認められなかった。一方、試験例5においては、「T0´≧T1´」および「T0´≧T2´」の式が両方とも成立せず、成形工程における波状の変形が認められた。波状の変形は、板厚が薄く、剛性の低い中央領域において顕著であった。
Figure JPOXMLDOC01-appb-T000001
As is apparent from Table 1, FIG. 10, and FIG. 11, in Test Examples 1 to 4, since the expressions “T0 ′ ≧ T1 ′” and “T0 ′ ≧ T2 ′” are satisfied, the wavy deformation in the molding process Was not recognized. On the other hand, in Test Example 5, both the expressions “T0 ′ ≧ T1 ′” and “T0 ′ ≧ T2 ′” were not satisfied, and a wave-like deformation in the molding process was recognized. The wavy deformation was remarkable in the central region where the plate thickness was thin and the rigidity was low.
 以上、フロートガラスリボン、フロートガラス板、およびフロートガラス板の製造方法の実施形態等について説明したが、本発明は上記実施形態等に限定されることはなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 As mentioned above, although the embodiment etc. of the manufacturing method of the float glass ribbon, the float glass plate, and the float glass plate were described, the present invention is not limited to the above embodiment etc., and the present invention described in the claims Various modifications and improvements can be made within the scope of the invention.
 例えば、上記実施形態のフロートガラス板16は、両主面が未研磨のものであるが、少なくとも一方の主面が研磨されたものでもよい。研磨工程は、切断工程後に行われる。研磨方法は、一般的な方法であってよい。表面粗さを低減させる目的の研磨の場合には、研磨条件にもよるが、研磨によってΔT1´およびΔT2´はほとんど変化しない。 For example, although the float glass plate 16 of the above-described embodiment has both main surfaces unpolished, at least one main surface may be polished. The polishing process is performed after the cutting process. The polishing method may be a general method. In the case of polishing for the purpose of reducing the surface roughness, ΔT1 ′ and ΔT2 ′ are hardly changed by polishing, although it depends on the polishing conditions.
 本出願は、2013年7月8日に日本国特許庁に出願された特願2013-142401号に基づく優先権を主張するものであり、特願2013-142401号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2013-142401 filed with the Japan Patent Office on July 8, 2013. The entire contents of Japanese Patent Application No. 2013-142401 are incorporated herein by reference. To do.
10 フロートガラス板製造装置
11 溶融金属
12 溶融ガラスリボン
14 フロートガラスリボン
15 中間領域
15L 第1領域
15R 第2領域
16 フロートガラス板
16L 第1領域
16R 第2領域
20 浴槽
22 天井
24 側壁
32 ガス供給路
34 ヒータ
40 トップロール
DESCRIPTION OF SYMBOLS 10 Float glass plate manufacturing apparatus 11 Molten metal 12 Molten glass ribbon 14 Float glass ribbon 15 Middle area | region 15L 1st area | region 15R 2nd area | region 16 Float glass plate 16L 1st area | region 16R 2nd area | region 20 Bathtub 22 Ceiling 24 Side wall 32 Gas supply path 34 Heater 40 Top roll

Claims (13)

  1.  幅が800mm以上であり、幅方向一端から幅方向内側に400mm離れた位置と、幅方向他端から幅方向内側に400mm離れた位置との間の中間領域の平均板厚が0.25mm以下であるフロートガラスリボンであって、
     前記中間領域の幅方向における板厚分布が下記の式を満たす、フロートガラスリボン。
    T0≧T1
    T0≧T2
    T0;前記中間領域の幅方向中心の板厚
    T1;前記中間領域の幅方向一端から幅方向内側に0.4×W以内の距離の第1領域の最小板厚
    T2;前記中間領域の幅方向他端から幅方向内側に0.4×W以内の距離の第2領域の最小板厚
    W;前記中間領域の幅
    The width is 800 mm or more, and the average thickness of the intermediate region between the position 400 mm inward in the width direction from one end in the width direction and the position 400 mm inward in the width direction from the other end in the width direction is 0.25 mm or less. A float glass ribbon,
    A float glass ribbon in which the thickness distribution in the width direction of the intermediate region satisfies the following formula.
    T0 ≧ T1
    T0 ≧ T2
    T0; plate thickness T1 at the center of the intermediate region in the width direction; minimum plate thickness T2 of the first region at a distance within 0.4 × W from one end in the width direction of the intermediate region; width direction of the intermediate region Minimum thickness W of the second region having a distance of 0.4 × W or less inward in the width direction from the other end; width of the intermediate region
  2.  前記中間領域の幅方向における板厚分布が下記の式を満たす、請求項1に記載のフロートガラスリボン。
    T0>T1
    T0>T2
    The float glass ribbon according to claim 1, wherein a plate thickness distribution in the width direction of the intermediate region satisfies the following formula.
    T0> T1
    T0> T2
  3.  前記中間領域は、くびれ部分を前記幅方向に間隔をおいて3つ以上有する、請求項1または2に記載のフロートガラスリボン。 The float glass ribbon according to claim 1 or 2, wherein the intermediate region has three or more constricted portions spaced apart in the width direction.
  4.  平均板厚が0.25mm以下のフロートガラス板であって、
     前記フロートガラス板の幅方向における板厚分布が下記の式を満たす、フロートガラス板。
    T0´≧T1´
    T0´≧T2´
    T0´;フロートガラス板の幅方向中心の板厚
    T1´;フロートガラス板の幅方向一端から幅方向内側に0.4×W´以内の距離の第1領域の最小板厚
    T2´;フロートガラス板の幅方向他端から幅方向内側に0.4×W´以内の距離の第2領域の最小板厚
    W´;フロートガラス板の幅
    A float glass plate having an average plate thickness of 0.25 mm or less,
    A float glass plate in which a thickness distribution in the width direction of the float glass plate satisfies the following formula.
    T0 ′ ≧ T1 ′
    T0 ′ ≧ T2 ′
    T0 ′; thickness T1 ′ of the center of the float glass plate in the width direction; minimum thickness T2 ′ of the first region at a distance within 0.4 × W ′ from one end in the width direction of the float glass plate; float glass Minimum thickness W ′ of the second region at a distance within 0.4 × W ′ from the other end in the width direction of the plate in the width direction; width of the float glass plate
  5.  前記フロートガラス板の幅方向における板厚分布が下記の式を満たす、請求項4に記載のフロートガラス板。
    T0´>T1´
    T0´>T2´
    The float glass plate of Claim 4 with which the plate | board thickness distribution in the width direction of the said float glass plate satisfy | fills the following formula | equation.
    T0 '>T1'
    T0 '>T2'
  6.  前記フロートガラス板は、くびれ部分を前記幅方向に間隔をおいて3つ以上有する、請求項4または5に記載のフロートガラス板。 The float glass plate according to claim 4 or 5, wherein the float glass plate has three or more constricted portions at intervals in the width direction.
  7.  前記フロートガラス板は、幅方向中心を除く領域に、最も薄い部分よりも厚い部分を有する、請求項4~6のいずれか一項に記載のフロートガラス板。 The float glass plate according to any one of claims 4 to 6, wherein the float glass plate has a thicker portion than a thinnest portion in a region excluding the center in the width direction.
  8.  前記フロートガラス板は、渦巻き状に巻回されたガラスロール状である、請求項4~7のいずれか一項に記載のフロートガラス板。 The float glass plate according to any one of claims 4 to 7, wherein the float glass plate is in the form of a glass roll wound in a spiral shape.
  9.  浴槽内の溶融金属上において溶融ガラスリボンを流動させることにより、幅が800mm以上であって、且つ、幅方向一端から幅方向内側に400mm離れた位置と、幅方向他端から幅方向内側に400mm離れた位置との間の中間領域の平均板厚が0.25mm以下である板状のフロートガラスリボンを成形する成形工程と、
     前記フロートガラスリボンを切断してフロートガラス板を作製する切断工程とを有し、
     前記中間領域の幅方向における板厚分布が下記の式を満たすように、前記成形工程において前記溶融金属上の前記溶融ガラスリボンの幅方向における温度分布を調整する、フロートガラス板の製造方法。
    T0≧T1
    T0≧T2
    T0;前記中間領域の幅方向中心の板厚
    T1;前記中間領域の幅方向一端から幅方向内側に0.4×W以内の距離の第1領域の最小板厚
    T2;前記中間領域の幅方向他端から幅方向内側に0.4×W以内の距離の第2領域の最小板厚
    W;前記中間領域の幅
    By flowing the molten glass ribbon on the molten metal in the bath, the width is 800 mm or more, and the position is 400 mm inward in the width direction from one end in the width direction, and 400 mm inward in the width direction from the other end in the width direction. A forming step of forming a plate-like float glass ribbon having an average plate thickness of 0.25 mm or less in an intermediate region between the separated positions;
    Cutting the float glass ribbon to produce a float glass plate,
    A method for producing a float glass sheet, wherein the temperature distribution in the width direction of the molten glass ribbon on the molten metal is adjusted in the forming step so that the sheet thickness distribution in the width direction of the intermediate region satisfies the following formula.
    T0 ≧ T1
    T0 ≧ T2
    T0; plate thickness T1 at the center of the intermediate region in the width direction; minimum plate thickness T2 of the first region at a distance within 0.4 × W from one end in the width direction of the intermediate region; width direction of the intermediate region Minimum thickness W of the second region having a distance of 0.4 × W or less inward in the width direction from the other end; width of the intermediate region
  10.  前記中間領域の幅方向における板厚分布が下記の式を満たすように、前記成形工程において前記溶融金属上の前記溶融ガラスリボンの幅方向における温度分布を調整する、請求項9に記載のフロートガラス板の製造方法。
    T0>T1
    T0>T2
    The float glass according to claim 9, wherein the temperature distribution in the width direction of the molten glass ribbon on the molten metal is adjusted in the forming step so that the plate thickness distribution in the width direction of the intermediate region satisfies the following formula. A manufacturing method of a board.
    T0> T1
    T0> T2
  11.  前記成形工程の前記温度分布の調整は、前記溶融ガラスリボンの幅方向に並ぶ複数のヒータの出力を独立に制御する、請求項9または10に記載のフロートガラス板の製造方法。 The method for manufacturing a float glass sheet according to claim 9 or 10, wherein the adjustment of the temperature distribution in the forming step independently controls outputs of a plurality of heaters arranged in a width direction of the molten glass ribbon.
  12.  前記成形工程の前記温度分布の調整は、前記溶融ガラスリボンの幅方向に張力を加えると共に行う、請求項9~11のいずれか一項に記載のフロートガラス板の製造方法。 The method for producing a float glass sheet according to any one of claims 9 to 11, wherein the adjustment of the temperature distribution in the forming step is performed while applying tension in the width direction of the molten glass ribbon.
  13.  前記成形工程の前記温度分布の調整は、ヒータとクーラの両方を用いる、請求項9~12のいずれか一項に記載のフロートガラス板の製造方法。 The method for producing a float glass sheet according to any one of claims 9 to 12, wherein both the heater and the cooler are used for adjusting the temperature distribution in the forming step.
PCT/JP2014/063490 2013-07-08 2014-05-21 Float-glass ribbon, float-glass sheet, and method for manufacturing float-glass sheet WO2015005000A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480031183.1A CN105246844B (en) 2013-07-08 2014-05-21 The manufacture method of float glass belt, float glass plate and float glass plate
KR1020157031214A KR102153285B1 (en) 2013-07-08 2014-05-21 Float-glass ribbon, float-glass sheet, and method for manufacturing float-glass sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-142401 2013-07-08
JP2013142401A JP2016164098A (en) 2013-07-08 2013-07-08 Float glass ribbon, float glass plate and method for manufacturing float glass plate

Publications (1)

Publication Number Publication Date
WO2015005000A1 true WO2015005000A1 (en) 2015-01-15

Family

ID=52279695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063490 WO2015005000A1 (en) 2013-07-08 2014-05-21 Float-glass ribbon, float-glass sheet, and method for manufacturing float-glass sheet

Country Status (5)

Country Link
JP (1) JP2016164098A (en)
KR (1) KR102153285B1 (en)
CN (1) CN105246844B (en)
TW (1) TW201502091A (en)
WO (1) WO2015005000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117650A1 (en) * 2015-01-21 2016-07-28 旭硝子株式会社 Plate glass production method, plate glass, and laminated glass production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107913A (en) * 2007-11-01 2009-05-21 Central Glass Co Ltd Method for manufacturing float plate glass
JP2012128929A (en) * 2010-12-17 2012-07-05 Asahi Glass Co Ltd Manufacturing method of glass substrate for magnetic disk

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239370A (en) 2007-03-26 2008-10-09 Asahi Glass Co Ltd Method for producing plate glass by floating process
JP2009107914A (en) * 2007-11-01 2009-05-21 Central Glass Co Ltd Process for producing float plate glass
CN102617018A (en) * 2011-01-30 2012-08-01 旭硝子株式会社 Method for manufacturing float plate glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009107913A (en) * 2007-11-01 2009-05-21 Central Glass Co Ltd Method for manufacturing float plate glass
JP2012128929A (en) * 2010-12-17 2012-07-05 Asahi Glass Co Ltd Manufacturing method of glass substrate for magnetic disk

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117650A1 (en) * 2015-01-21 2016-07-28 旭硝子株式会社 Plate glass production method, plate glass, and laminated glass production method
CN107207312A (en) * 2015-01-21 2017-09-26 旭硝子株式会社 Manufacture method, plate glass, the manufacture method of laminated glass of plate glass
JPWO2016117650A1 (en) * 2015-01-21 2017-11-24 旭硝子株式会社 Manufacturing method of plate glass, manufacturing method of plate glass and laminated glass
EP3248949A4 (en) * 2015-01-21 2018-10-24 AGC Inc. Plate glass production method, plate glass, and laminated glass production method
US10633277B2 (en) 2015-01-21 2020-04-28 AGC Inc. Plate glass production method, plate glass, and laminated glass production method
JP2020075860A (en) * 2015-01-21 2020-05-21 Agc株式会社 Glass laminate
US11180405B2 (en) 2015-01-21 2021-11-23 AGC Inc. Plate glass production method, plate glass, and laminated glass production method

Also Published As

Publication number Publication date
KR102153285B1 (en) 2020-09-08
TW201502091A (en) 2015-01-16
CN105246844A (en) 2016-01-13
CN105246844B (en) 2017-10-13
KR20160030079A (en) 2016-03-16
JP2016164098A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
TWI520917B (en) Glass substrate manufacturing method and glass substrate
JP5418228B2 (en) Sheet glass manufacturing method
WO2011102175A1 (en) Manufacturing method for glass film and manufacturing device therefor
US8037716B2 (en) Thermal control of the bead portion of a glass ribbon
JP5709032B2 (en) Manufacturing method of glass film
JP2007112665A (en) Heating apparatus for liquid crystal sheet glass, furnace for liquid crystal sheet glass, and method of manufacturing liquid crystal sheet glass
JP5994992B2 (en) Sheet glass manufacturing apparatus and sheet glass manufacturing method
JP2011225386A (en) Float glass manufacturing apparatus and float glass manufacturing method
JP5241223B2 (en) Glass plate manufacturing method and manufacturing equipment
WO2015005000A1 (en) Float-glass ribbon, float-glass sheet, and method for manufacturing float-glass sheet
CN107001098B (en) Method and apparatus for reducing sheet width attenuation of sheet glass
JP4032413B2 (en) GLASS SUBSTRATE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
US20160004117A1 (en) Curvature-adjustable backplane and liquid crystal display device having same
JP2020173291A (en) Glass blank for head-up display glass, manufacturing method therefor, and manufacturing method for head-up display glass
WO2022088585A1 (en) Amorphous nanocrystalline alloy strip and manufacturing method therefor
WO2011136149A1 (en) Production method for glass plate and glass plate
CN116368104A (en) Glass substrate and method for manufacturing electronic device
JP2012167014A (en) Method and equipment for producing glass plate
JP2021095312A (en) Method for manufacturing glass plate
JP2019059665A (en) Glass roll
CN104364206B (en) The manufacture method of chemical enhanced float glass
CN102617018A (en) Method for manufacturing float plate glass
TW201721253A (en) Light source module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031214

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14823611

Country of ref document: EP

Kind code of ref document: A1