WO2015004688A1 - Procédé et appareil d'extraction de nombres aléatoires vrais de structures spatiales complexes - Google Patents

Procédé et appareil d'extraction de nombres aléatoires vrais de structures spatiales complexes Download PDF

Info

Publication number
WO2015004688A1
WO2015004688A1 PCT/IT2013/000194 IT2013000194W WO2015004688A1 WO 2015004688 A1 WO2015004688 A1 WO 2015004688A1 IT 2013000194 W IT2013000194 W IT 2013000194W WO 2015004688 A1 WO2015004688 A1 WO 2015004688A1
Authority
WO
WIPO (PCT)
Prior art keywords
binary
accordance
array
bias
minimizes
Prior art date
Application number
PCT/IT2013/000194
Other languages
English (en)
Inventor
Paolo Villoresi
Giuseppe VALLONE
Davide Giacomo MARANGON
Original Assignee
Universita 'degli Studi Di Padova
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universita 'degli Studi Di Padova filed Critical Universita 'degli Studi Di Padova
Priority to PCT/IT2013/000194 priority Critical patent/WO2015004688A1/fr
Publication of WO2015004688A1 publication Critical patent/WO2015004688A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/58Random or pseudo-random number generators
    • G06F7/588Random number generators, i.e. based on natural stochastic processes

Definitions

  • the present invention relates to random number generation. More specifically this invention relates to the generation of random numbers with genuine statistical properties being effectively extracted from a high entropic physical process.
  • I Information Technology
  • MonteCarlo methods MonteCarlo methods
  • gambling games lotteries, slot machines, etc.
  • TRNG True Random Number Generator
  • TRNGs based on Classical Physics processes
  • TRNGs based on Quantum Physics processes
  • Generators belonging to the first class typically employ highly chaotic processes: voltage oscillations in resistors due to thermal noise; phase oscillations inside laser cavities, "chaotic maps" implemented inside programmable electronic processors.
  • Quantum Random Number Generators exploit the intrinsic randomness of those so-called “microscopically" systems: detection of single photons emitted by attenuated sources of light, detection of entangled photons, detection of photons emitted by decaying instable radioactive nuclei, sampling of current noise generated by the quadratures of the electromagnetic field.
  • TRNGs are challenged by issues of both theoretical origin as well as about their implementation.
  • the physical process used in the actual embodiment may have details which are hard to describe or not fully known.
  • the random source cannot span for all the possible states of the system. Practically this means that the generator, during its evolution, may reach periodic orbits in the space of phases, such that the output of the generator becomes completely predictable.
  • the source of noise is "weak" in the sense that it is sensitive to external factors.
  • a drift in device temperature may cause shifting of reference values for generators which sample the thermal noise of resistors.
  • Another example is dead time of photon detectors which does not allow to sample the arrival time of two photons close in time.
  • the present invention does not present the issues which affects other TRNGs, because the present method rely on a ultra-chaotic and macroscopical process:
  • the present random number generator produces random bits by exploiting the detection and the elaboration of a laser beam wave-front distortions induced by a turbulent medium: here a detailed description will follow with reference to the accompanying drawings.
  • the preferred embodiment of this invention consists of: a transmitting unit (transmitter) which emits optical radiation; an optical link and turbulent medium the radiation propagates across; a receiving unit (receiver) which detects the radiation intensity distribution over a suitable area; a digital unit for the elaboration of the detected signal and the extraction of random numbers from it.
  • the main component of the transmitter is a LASER (FIG. 1) 1 which emits coherent radiation 2.
  • the LASER beam works as a probe for capturing the chaotic dynamic of the atmosphere.
  • the LASER is operated in a continuous wave (CW) mode.
  • the LASER can be operated in pulsed mode.
  • the wavelength of the LASER employed must be such that the electromagnetic field emitted can interact with the refractive index of the medium through the beam propagates across.
  • An appropriate optical apparatus 3 is set to focus the LASER beam to the receiver 4. More generally, this optical apparatus can comprise also technical solutions necessary to keep the transmitter aimed on the receiver unit (such as stepped motors controlled by a feedback system) and to minimize those physical effects which are not directly used for the generation of the numbers.
  • the optical setup can be designed for reducing the intrinsic geometrical distortions a beam suffers while propagating through free space such as the inherent spreading consequence of the spatial dependence of the wave-equation solutions in vacuum.
  • the medium between the transmitter and the receiver in is the terrestrial atmosphere 5.
  • an optical transparent medium characterized by a non-linear and chaotic dynamic can be used instead of the terrestrial atmosphere. Variations in the Earth surface temperature induces the motion of air masses. This physical system obey to non- linear dynamic which is practically unfeasible to be solved analytically. Statistical models were then introduced to approximate the behavior of the atmosphere. To describe the optical effects caused by the atmosphere, one can consider a collection of turbulent eddies 6 which have a continuous spectrum of sizes 78 9. According to the Kolmogorov model of the atmosphere, the energy of the larger eddies is transferred to the smaller ones and dissipated by viscosity.
  • the frame rate of the acquisition must be set in order that consecutive frames are not correlated.
  • a thick layer of random medium comprised between the transmitter and the receiver, allows to increase the frame rate of acquired images.
  • the captured frames are then sent to a computer 17 or some other kind of image processing unit which elaborate them in order to extract randomness.
  • the digital/electronic elaboration technique applies on every acquired frame (FIG. 3) 18 with the speckle patterns a grid 19 formed by N cells (FIG. 4) 20. Every cell must have the same area and the grid must cover only the region of the frame where the image of the pupil is given.
  • the cells are associated to the pixels of the image: a pixel a cell. However the cells can be formed by joining together more pixels, or by taking fractional areas of the pixels.
  • To every cell an unique numerical index / ' 6 ⁇ 1, ...,N ⁇ 21 is associated consecutively: in this way every cell is tagged univocally from 1 to N, where N is the total number of cells.
  • This step consists of evaluating the "centers of mass", the so-called first moments or centroids, of the spots composing the speckle pattern.
  • Typical algorithms for image analysis which allow to compute several digital moments can be employed. More precisely, given E the number of bits used by the acquisition software to encode the intensity (colour) levels of monochromatic light on the active *n (FIG.
  • the intensity of the speckles can be consi dered as a two variables function I(x f y) where x e ⁇ 0, ...m ⁇ e y E ⁇ 0, n] and l x,y) E ⁇ 0, 2 s — 1 ⁇ .
  • centroids of the speckles are evaluated.
  • the coordinates of the centroids are then compared with the reference grid of the frames (FIG. 6) 31 32
  • the electronic and/or digital system which generates the random number / has also the possibility to store and transmits the numbers.
  • the system then converts f in its binary conversion Hf).
  • the method and the apparatus presented allow to generate true random numbers with a high content of entropy.
  • the turbulent process is indeed ruled by a hyper chaotic dynamic whose initial conditions are unfeasible (practically impossible) to know. In this way it is not possible to compute the evolution of the system and how the wavefront of the beam would be corrupted by the variations of the refractive index of the air.
  • the analysis which is performed on the geometrical features of the acquired complex spatial patterns allow then to identify as a random variable, the possible arrangements of these features inside the grid
  • the Physics of the process can be regarding as choosing one of the possible configurations. These equiprobable configurations are the enumerated and converted in bits by a procedure which does not introduce bias.
  • bits produced in this way are then able to pass the most stringent tests of randomness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

La présente invention concerne un procédé et un appareil de génération de nombres aléatoires vrais. Le procédé consiste à acquérir des images de structures spatiales complexes, à exploiter leurs caractéristiques géométriques pour dériver une série binaire, à associer une valeur entière univoque à chaque série binaire et à extraire une séquence binaire non polarisée de chaque valeur. L'invention concerne également un appareil qui génère des structures spatiales complexes par émission d'un faisceau de lumière à travers un milieu aléatoire, tel que l'atmosphère terrestre. Les images du profil d'intensité présentant une distorsion sont ensuite élaborées par le biais d'une unité de traitement qui analyse les caractéristiques géométriques et dérive une série binaire pour chaque image. Une chaîne de bits non polarisés est ensuite extraite de chaque série binaire par application d'une procédure de codage optimal. Les nombres extraits au moyen de cette approche ne sont pas affectés par les anomalies classiques, telles qu'une polarisation et des corrélations, introduites par des instabilités matérielles qui affectent des générateurs sur la base d'effets physiques microscopiquement.
PCT/IT2013/000194 2013-07-10 2013-07-10 Procédé et appareil d'extraction de nombres aléatoires vrais de structures spatiales complexes WO2015004688A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IT2013/000194 WO2015004688A1 (fr) 2013-07-10 2013-07-10 Procédé et appareil d'extraction de nombres aléatoires vrais de structures spatiales complexes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IT2013/000194 WO2015004688A1 (fr) 2013-07-10 2013-07-10 Procédé et appareil d'extraction de nombres aléatoires vrais de structures spatiales complexes

Publications (1)

Publication Number Publication Date
WO2015004688A1 true WO2015004688A1 (fr) 2015-01-15

Family

ID=49213024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2013/000194 WO2015004688A1 (fr) 2013-07-10 2013-07-10 Procédé et appareil d'extraction de nombres aléatoires vrais de structures spatiales complexes

Country Status (1)

Country Link
WO (1) WO2015004688A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596892A (zh) * 2020-05-11 2020-08-28 南京西觉硕信息科技有限公司 一种软随机数发生方法及发生器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887459A2 (fr) * 2004-10-15 2008-02-13 Nxp B.V. Circuit intégré à générateur de vrais nombres aléatoires
WO2013003943A1 (fr) * 2011-07-07 2013-01-10 Muise Joseph Gerard Procédé de mise en oeuvre d'un générateur portatif de nombres purement aléatoires sur la base de la microstructure et du bruit présent dans des images numériques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887459A2 (fr) * 2004-10-15 2008-02-13 Nxp B.V. Circuit intégré à générateur de vrais nombres aléatoires
WO2013003943A1 (fr) * 2011-07-07 2013-01-10 Muise Joseph Gerard Procédé de mise en oeuvre d'un générateur portatif de nombres purement aléatoires sur la base de la microstructure et du bruit présent dans des images numériques

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AA KORIÄ B: "On the entropy of keys derived from laser speckle; statistical properties of Gabor-transformed speckle", JOURNAL OF OPTICS. A, PURE AND APPLIED OPTICS, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL, GB, vol. 10, no. 5, 1 May 2008 (2008-05-01), pages 55304, XP020138051, ISSN: 1464-4258 *
P. ELIAS: "Efficient construction of an unbiased random sequence", THE ANNALS OF MATHEMATICAL STATISTICS, vol. 43, no. 3, 1972, pages 865 - 870
ROARKE HORSTMEYER ET AL: "Markov speckle for efficient random bit generation", OPTICS EXPRESS, VOL. 20,. NO. 24, 19 November 2012 (2012-11-19), pages 1 - 17, XP055107622, Retrieved from the Internet <URL:http://www.opticsinfobase.org/view_article.cfm?gotourl=http%3A%2F%2Fwww.opticsinfobase.org%2FDirectPDFAccess%2FB403B801-0D4F-6518-466EE595D91BF677_245420%2Foe-20-24-26394.pdf%3Fda%3D1%26id%3D245420%26seq%3D0%26mobile%3Dno&org=> [retrieved on 20140313] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596892A (zh) * 2020-05-11 2020-08-28 南京西觉硕信息科技有限公司 一种软随机数发生方法及发生器
CN111596892B (zh) * 2020-05-11 2023-06-23 南京西觉硕信息科技有限公司 一种软随机数发生方法及发生器

Similar Documents

Publication Publication Date Title
US11256477B2 (en) Amplifying, generating, or certifying randomness
CN103793198B (zh) 基于放大真空态的量子随机数发生器及方法
Marangon et al. Random bits, true and unbiased, from atmospheric turbulence
KR101975125B1 (ko) 진성 난수 발생기
US10990663B2 (en) Key generation from an imaging sensor
US10652033B2 (en) Synthetic physically unclonable function derived from an imaging sensor
Wang et al. Robust quantum random number generator based on avalanche photodiodes
Park et al. QEC: A quantum entropy chip and its applications
Balygin et al. A quantum random number generator based on the 100-Mbit/s Poisson photocount statistics
Stucki et al. Towards a high-speed quantum random number generator
Balygin et al. Implementation of a quantum random number generator based on the optimal clustering of photocounts
Shafi et al. Multi-bit quantum random number generator from path-entangled single photons
Arbekov et al. Extraction of quantum randomness
WO2015004688A1 (fr) Procédé et appareil d&#39;extraction de nombres aléatoires vrais de structures spatiales complexes
JP2018506100A (ja) 材料試料に存在する物理的変動を用いて乱数を生成するためのシステム及び方法
WO2010033013A2 (fr) Procédé et appareil permettant de générer par mécanique quantique un nombre aléatoire
Balygin et al. Quantum random number generator based on ‘Fermi–Dirac’statistics of photocounts of faint laser pulses with a 75 Mbit s− 1 rate
Ismail et al. Image encryption based on double-humped and delayed logistic maps for biomedical applications
Zheng et al. Stationary randomness of quantum cryptographic sequences on variant maps
US20190354696A1 (en) Computational optical physical unclonable function
Iavich et al. Novel Quantum Random Number Generator with the Improved Certification Method
Peloso et al. Statistical tests of randomness on quantum keys distributed through a free-space channel coupled to daylight noise
KR20230075077A (ko) 멀티비트 난수생성장치
Jóźwiak et al. Randomness Testing of the Random Number Generators Using Dieharder Tool
Ross et al. New simulation of QSO X-ray heating during the Cosmic Dawn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763319

Country of ref document: EP

Kind code of ref document: A1