TRICYCLIC PYRI DO-CARBOXAM IDE DERIVATIVES AS ROCK INHIBITORS
CROSS REFERENCE TO RELATED APPLICATIONS
This application is entitled to priority pursuant to 35 U.S. C. § 119(e) to U.S. provisional patent application No. 61/842,084, filed on July 2, 2013, which is incorporated herein in its entirety.
FIELD OF THE INVENTION
The present invention relates to novel tricyclic amine derivatives, compositions containing them, and methods of using them, for example, for the treatment or prophylaxis of disorders associated with aberrant Rho kinase activity.
BACKGROUND OF THE INVENTION
Rho-Kinase (ROCK) is a member of the serine-threonine protein kinase family. ROCK exists in two isoforms, ROCK1 and ROCK2 (Ishizaki, T. et al, EMBO J. ,
15: 1885-1893 (1996)). ROCK has been identified as an effector molecule of RhoA, a small GTP-binding protein (G protein) that plays a key role in multiple cellular signaling pathways. ROCK and RhoA are ubiquitously expressed across tissues. The RhoA/ROCK signaling pathway is involved in a number of cellular functions, such as actin organization, cell adhesion, cell migration, and cytokinesis (Riento, K. et al, Nat. Rev. Mol. Cell Biol, 4:446-456 (2003)). It is also directly involved in regulating smooth muscle contraction (Somlyo, A.P., Nature, 389:908-911 (1997)). Upon activation of its receptor, RhoA is activated, and, in turn, it activates ROCK. Activated ROCK phosphorylates the myosin-binding subunit of myosin light chain phosphatase, which inhibits activity of the phosphatase and leads to contraction. Contraction of the smooth muscle in the vasculature increases blood pressure, leading to hypertension.
There is considerable evidence in the literature that the Rho A/ROCK signaling pathway plays an important role in signal transduction initiated by several vasoactive factors, for example angiotensin II (Yamakawa, T. et al, Hypertension, 35:313-318 (2000)), urotension II (Sauzeau, V. et al, Circ. Res., 88: 1 102-1104 (2001)), endothelin-1 (Tangkijvanich, P. et al, Hepatology, 33 :74-80 (2001)), serotonin (Shimokawa, H., Jpn. Circ. J., 64: 1-12 (2000)), norepinephrine (Martinez, M.C. et al, Am. J. Physiol,
279:H1228-H1238 (2000)) and platelet-derived growth factor (PDGF) (Kishi, H. et al, J. Biochem., 128:719-722 (2000)). Many of these factors are implicated in the pathogenesis of cardiovascular disease.
Additional studies in the literature, some using the known ROCK inhibitors fasudil (Asano, T. et al, J. Pharmacol. Exp. Ther., 241 : 1033-1040 (1987) or Y-27632 (Uehata, M. et al., Nature, 389:990-994 (1997)) further illustrate the link between ROCK and cardiovascular disease. For example, ROCK expression and activity have been shown to be elevated in spontaneously hypertensive rats, suggesting a link to the development of hypertension in these animals (Mukai, Y. et al, FASEB J., 15: 1062-1064 (2001)). The ROCK inhibitor Y-27632 (Uehata, M. et al, Nature, ibid.) was shown to significantly decrease blood pressure in three rat models of hypertension, including the spontaneously hypertensive rat, renal hypertensive rat and deoxycortone acetate salt hypertensive rat models, while having only a minor effect on blood pressure in control rats. This reinforces the link between ROCK and hypertension.
Other studies suggest a link between ROCK and atherosclerosis. For example, gene transfer of a dominant negative form of ROCK suppressed neointimal formation following balloon injury in porcine femoral arteries (Eto, Y. et al, Am. J. Physiol. Heart Circ. Physiol, 278:H1744-H1750 (2000)). In a similar model, ROCK inhibitor Y-27632 also inhibited neointimal formation in rats (Sawada, N. et al, Circulation, 101 :2030-2033 (2000)). In a porcine model of IL- 1 beta- induced coronary stenosis, long term treatment with the ROCK inhibitor fasudil was shown to progressively reduce coronary stenosis, as well as promote a regression of coronary constrictive remodeling (Shimokawa, H. et al, Cardiovasc. Res., 51: 169-177 (2001)).
Additional investigations suggest that a ROCK inhibitor would be useful in treating other cardiovascular diseases. For example, in a rat stroke model, fasudil was shown to reduce both the infarct size and neurologic deficit (Toshima, Y., Stroke, 31:2245-2250 (2000)). The ROCK inhibitor Y-27632 was shown to improve ventricular hypertrophy, fibrosis and function in a model of congestive heart failure in Dahl salt- sensitive rats (Kobayashi, N. et al, Cardiovasc. Res., 55:757-767 (2002)).
Other animal or clinical studies have implicated ROCK in additional diseases including coronary vasospasm (Shimokawa, H. et al, Cardiovasc. Res., 43: 1029-1039 (1999)), cerebral vasospasm (Sato, M. et al, Circ. Res., 87: 195-200 (2000)),
ischemia/reperfusion injury (Yada, T. et al, J. Am. Coll. Cardiol, 45:599-607 (2005)), pulmonary hypertension (Fukumoto, Y. et al, Heart, 91 :391-392 (2005)), angina (Shimokawa, H. et al, J. Cardiovasc. Pharmacol, 39:319-327 (2002)), renal disease (Satoh, S. et al, Eur. J. Pharmacol, 455: 169-174 (2002)) and erectile dysfunction (Gonzalez-Cadavid, N.F. et al., Endocrine, 23: 167-176 (2004)).
In another study, it has been demonstrated that inhibition of the RhoA/ROCK signaling pathway allows formation of multiple competing lamellipodia that disrupt the productive migration of monocytes (Worthylake, R.A. et al, J. Biol. Chem., 278: 13578- 13584 (2003)). It has also been reported that small molecule inhibitors of Rho Kinase are capable of inhibiting MCP-1 mediated chemotaxis in vitro (Iijima, FL, Bioorg. Med.
Chem., 15: 1022-1033 (2007)). Due to the dependence of immune cell migration upon the RhoA/ROCK signaling pathway one would anticipate inhibition of Rho Kinase should also provide benefit for diseases such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease.
The above studies provide evidence for a link between ROCK and cardiovascular diseases including hypertension, atherosclerosis, restenosis, stroke, heart failure, coronary vasospasm, cerebral vasospasm, ischemia/reperfusion injury, pulmonary hypertension and angina, as well as renal disease and erectile dysfunction. Given the demonstrated effect of ROCK on smooth muscle, ROCK inhibitors may also be useful in other diseases involving smooth muscle hyper-reactivity, including asthma and glaucoma (Shimokawa, H. et al, Arterioscler. Thromb. Vase. Biol, 25: 1767-1775 (2005)). Furthermore, Rho- kinase has been indicated as a drug target for the treatment of various other diseases, including airway inflammation and hyperresponsiveness (Henry, P.J. et al., Pulm.
Pharmacol. Ther., 18:67-74 (2005)), cancer (Rattan, R. et al, J. Neurosci. Res., 83:243- 55 (2006); Lepley, D. et al, Cancer Res., 65:3788-3795 (2005)), fibrotic diseases (Jiang, C. et al., Int. J. Mol. Sci., 13:8293-8307 (2012); Zhou, L. et al, Am. J. Nephrol, 34:468- 475 (2011)), as well as neurological disorders, such as spinal-cord injury, Alzheimer disease, multiple sclerosis, stroke and neuropathic pain (Mueller, B.K. et al, Nat. Rev. Drug Disc, 4:387-398 (2005); Sun, X. et al, J. Neuroimmunol. , 180: 126-134 (2006)).
There remains an unmet medical need for new drugs to treat cardiovascular disease. In the 2012 update of Heart Disease and Stroke Statistics from the American Heart Association (Circulation, 125:e2-e220 (2012)), it was reported that cardiovascular
disease accounted for 32.8% of all deaths in the U.S., with coronary heart disease accounting for ~1 in 6 deaths overall in the U.S. Contributing to these numbers, it was found that -33.5% of the adult U.S. population was hypertensive, and it was estimated that in 2010 ~6.6 million U.S. adults would have heart failure. Therefore, despite the number of medications available to treat cardiovascular diseases (CVD), including diuretics, beta blockers, angiotensin converting enzyme inhibitors, angiotensin blockers and calcium channel blockers, CVD remains poorly controlled or resistant to current medication for many patients.
Although there are many reports of ROCK inhibitors under investigation (see, for example, U.S. Publication No. 2008/0275062 Al), fasudil is the only marketed ROCK inhibitor at this time. An i.v. formulation was approved in Japan for treatment of cerebral vasospasm. There remains a need for new therapeutics, including ROCK inhibitors, for the treatment of cardiovascular diseases, cancer, neurological diseases, renal diseases, fibrotic diseases, bronchial asthma, erectile dysfunction, and glaucoma.
SUMMARY OF THE INVENTION
The present invention provides novel tricyclic amine derivatives including stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof, which are useful as selective inhibitors of Rho kinases.
The present invention also provides processes and intermediates for making the compounds of the present invention.
The present invention also provides pharmaceutical compositions comprising a pharmaceutically acceptable carrier and at least one of the compounds of the present invention or stereoisomers, tautomers, pharmaceutically acceptable salts, or solvates thereof.
The compounds of the invention may be used in the treatment and/or prophylaxis of conditions associated with aberrant ROCK activity.
The compounds of the present invention may be used in therapy.
The compounds of the present invention may be used for the manufacture of a medicament for the treatment and/or prophylaxis of a condition associated with aberrant ROCK activity.
In another aspect, the present invention is directed to a method of treating a cardiovascular or related disease which method comprises administering to a patient in need of such treatment a compound of the present invention as described above.
Examples of such diseases that may be treated include, for example, hypertension, atherosclerosis, restenosis, stroke, heart failure, renal failure, coronary artery disease, peripheral artery disease, coronary vasospasm, cerebral vasospasm, ischemia/reperfusion injury, pulmonary hypertension, angina, erectile dysfunction and renal disease.
In another aspect, the present invention is directed to a method of treating diseases involving smooth muscle hyper reactivity including asthma, erectile dysfunction and glaucoma, which method comprises administering to a patient in need of such treatment a compound of the present invention as described above.
In another aspect, the present invention is directed to a method of treating diseases mediated at least partially by Rho kinase including fibrotic diseases, oncology, spinal- cord injury, Alzheimer's disease, multiple sclerosis, stroke, neuropathic pain, rheumatoid arthritis, psoriasis and inflammatory bowel disease, which method comprises
administering to a patient in need of such treatment a compound of the present invention as described above.
In yet additional aspects, the present invention is directed at pharmaceutical compositions comprising the above-mentioned compounds, processes for preparing the above-mentioned compounds and intermediates used in these processes.
The compounds of the invention can be used alone, in combination with other compounds of the present invention, or in combination with one or more, preferably one to two other agent(s).
These and other features of the invention will be set forth in expanded form as the disclosure continues.
DETAILED DESCRIPTION OF THE INVENTION
I. COMPOUNDS OF THE INVENTION
In one aspect, the present invention provides, inter alia, compounds of Formula
(I):
or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ai, A2, and A3 are independently selected from N and CRi; provided no more than one Ai, A2, and A3 is N;
B is independently selected from -(CR3R4)mCR3R4-, -(CR3R4)nO(CR3R4)m-,
-(CR3R4)„C(0)(CR3R4)m-, -(CR3R4)mNRa(CR3R4)„-, -(CR3R4)mS(0)p(CR3R4)„-, -(CR3R4)mNRaS(0)p(CR3R4)n-, -(CR3R4)mS(0)pNRa(CR3R4)n-,
-(CR3R4)mC(0)0(CR3R4)„-, -(CR3R4)mC(0)NRa(CR3R4)„-,
-(CR3R4)mNRaC(0)(CR3R4)„-, and (CR3R4)mOC(0)(CR3R4)„-;
L is independently selected from -(CR6R?)q-, -(CR6R7)q R5(CR6R7)q-, and
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OC1-4 alkyl
substituted with 0-3 Re, C1-4 alkyl substituted with 0-3 Re, -(CH2)rORb,
(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa, -(CH2)rC(=0)NRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, (CH2)rCN, -(CH2)rNRaC(=0)Rb,
-(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa,
-(CH2)rC(=0)ORb, -(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa,
-(CH2)rNRaS(0)pRc, (CH2)r-C3_6 carbocyclyl substituted with 0-3 Re, and
-(CH2)r-heterocyclyl substituted with 0-3 Re;
R3 and R4 are independently selected from H, F, OH, CN, NRaRa, C1-4 alkyl substituted with 0-3 Re, C2_4 alkenyl substituted with 0-3 Re, C2_4 alkynyl substituted with 0-3 Re, -(CH2)rORb, (CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH^NR^,
-(CH2)rC(=0)NRaRa, -(CH2)rC(=0)(CH2)rNRaRa, (CH2)rCN, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa,
-(CH2)rC(=0)ORb, -(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa,
-(CH2)rNRaS(0)pRc, (CH2)r-C3_6 carbocyclyl substituted with 0-3 Re, and
-(CH2)r-heterocyclyl substituted with 0-3 Re;
R5 is independently selected from H, C1-4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN, -NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
Re and R7 are independently selected from H,
substituted with 0-4 R
e,
-(CH2)rORb, -(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
alternatively, R6 and R7 together with the carbon atom to which they are both attached form a cycloalkyl, or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent 5 groups form a cycloalkyl, or heterocycle substituted with
Rs is selected from C3_iocarbocyclyl and heterocyclyl, each substituted with 0-5 R9;
R
9 is independently selected from F, CI, Br,
substituted with 0-5 R
e, C
2_4alkenyl substituted with 0-5 Re, C
2_4alkynyl substituted with 0-5 R
e, nitro,
-(CHRd)rS(<¾Rc, -(CHRd)rS(<¾NRaRa, -(CHRd)rNRaS(0)pRc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)r OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from C e alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
R
d, at each occurrence, is independently selected from H and Ci_
4alkyl substituted with R
e, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C2-6 alkenyl, C2-6 alkynyl, -(CH
2)
r-C3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci-
6 alkyl, -(CH
2)
rOCi-
5 alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)
pNR
fR
f, -NR
fR
fS(0)
pCi_
4alkyl, and S(0)
pCi_
4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
m and n, at each occurrence, are independently selected from zero, 1, and 2; provided m + n < 2;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3; provided when two q variables appear in the same term, q + q < 3;
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4;
provided when Ai is CRi, A3 is N, and B is -CH2CH2, Ri is not -NH-substituted phenyl.
In another aspect, the present invention provides compounds of Formula (II):
or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
B is independently selected from -(CR3R4)mCR3R4-, -(CR3R4)nC(0)(CR3R4)m-,
-(CR3R4)„0(CR3R4)m-, -(CR3R4)mNRa(CR3R4)„-, -(CR3R4)mS(0)p(CR3R4)„-, -(CR3R4)mNRaS(0)p(CR3R4)„-, -(CR3R4)mS(0)pNRa(CR3R4)„-,
-(CR3R4)mC(0)0(CR3R4)„-, -(CR3R4)mC(0)NRa (CR3R4V,
-(CR3R4)mNRaC(0)(CR3R4)„, and -(CR3R4)mOC(0)(CR3R4)„-;
other variables are as defined in Formula (I) above.
(III)
or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
L is independently selected from -(CR6R?)q-, -(CR6R7)q R5(CR6R7)q-, and
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OC1-4 alkyl
substituted with 0-3 Re, C1-4 alkyl substituted with 0-3 Re, and -(CH2)rORb;
R3 and R4 are independently selected from H, F, OH, CN, C1-4 alkyl substituted with 0-3 Re, C2-4 alkenyl substituted with 0-3 Re, and C2-4 alkynyl substituted with 0-3 Re;
R5 is independently selected from H, C1-4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN, -NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, -(CH2)r-C3_6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
Re and R7 are independently selected substituted with 0-4 Re,
-(CH
2)rOR
b, -(CH
2)
rS(0)pRc,
(CH
2)
rNR
aR
a,
-(CH
2)
rC(=0)(CH
2)
rNR
aR
a, -(CH
2)
rNR
aC(=0)R
b, -(CH
2)
rNR
aC(=0)OR
b, -(CH
2)
rOC(=0)NR
aR
a, -(CH
2)
rNR
aC(=0)NR
aR
a, -(CH
2)
rC(=0)OR
b,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
alternatively, R6 and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent 5 groups form a cycloalkyl or heterocycle substituted with 0-5
Re;
Rs is selected from aryl, C3_
6cycloalkyl, and heterocyclyl, each substituted with 0-5 R
9; R
9 is independently selected from F, CI, Br,
substituted with 0-5 R
e, C
2_
4alkenyl substituted with 0-5 Re, C
2-4alkynyl substituted with 0-5 R
e, =0, nitro,
-(CHRd)rS(<¾Rc, -(CHRd)rS(<¾NRaRa, -(CHRd)rNRaS(<¾Rc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)r OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and
S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re; Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2_6 alkenyl substituted with 0-5 Re, C2_6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2_6alkenyl substituted with 0-5 Re, C2_6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Rd, at each occurrence, is independently selected from H and Ci-4alkyl substituted with
Re, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C2_6 alkenyl, C2_6 alkynyl, -(CH2)r-C3_io carbocyclyl, -(CH2)r-heterocyclyl, F, CI, Br, CN, N02, =0, C02H, C02Ci_6 alkyl, -(CH2)rOCi_5 alkyl, -(CH2)rOH, -(CH2)rNRfRf, -(CH2)rNRfRfC(=0) Ci_4alkyl, -C(=0)NRfRf, -C(=0)Rf, S(0)pNRfRf, NRfRfS(0)p Ci_4alkyl, and S(0)pCi_4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3; and
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4. In another aspect, the present invention provides compounds of Formula (III), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
L is independently selected from -(CR6R7)q-, -NR5(CR6R7)q-, and -0(CR6R?)q-;
Ri and R2 are independently selected from H, F, CI, Br, OH, CN, NRaRa, -OCi_4 alkyl substituted with 0-3 Re, and Ci_4 alkyl substituted with 0-3 Re;
R3 is independently selected from H, F and C1-4 alkyl substituted with 0-3 Re;
R5 is independently selected from H, Ci_4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN, -NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
Re and R7 are independently selected from H, Ci_4alkyl substituted with 0-4 Re,
-(CH2)rORb, -(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6
carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3
Re;
alternatively, R6 and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent ¾ groups form a cycloalkyl or heterocycle substituted with 0-5
Re;
Rs is selected from phenyl and heteroaryl, each substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, Ci-4alkyl substituted with 0-5 Re, C2-4alkenyl substituted with 0-5 Re, C2-4alkynyl substituted with 0-5 Re, nitro,
-(CHRd SCO)^, -(CHRd)rS(<¾NRaRa, -(CHRd)rNRaS(0)pRc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)r OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRa)r-aryl, and -(CHR<i)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2_6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Ra, at each occurrence, is independently selected from H and Ci-4alkyl substituted with
R
e, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C
2_6 alkenyl, C
2_6 alkynyl, -(CH
2)
r-C3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci_
6 alkyl, -(CH
2)
rOCi_
: alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)pNR
fRf, NR
fRfS(0)p Ci_
4alkyl, and S(0)
pCi_
4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1 and 2; and
r, at each occurrence, is independently selected from zero, 1 , 2, 3, and 4;
other variables are as defined in Formula (III) above.
In another aspect, the present invention provides compounds of Formula (III), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
L is -(CR6R7)q-;
Ri and R2 are H;
R3 is independently selected from H and Me;
R5 is H;
Re and R7 are independently selected from H, Ci-4alkyl substituted with 0-4 Re,
-(CH2)rORb, -(CH2)rS(0)pRe, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRe, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3
Re;
alternatively, R6 and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent ¾ groups form a cycloalkyl or heterocycle substituted with 0-5
R,
Rg is independently selected from F, CI, Br, Ci-4alkyl substituted with 0-5 Re, C2-4alkenyl substituted with 0-5 Re, C2-4alkynyl substituted with 0-5 Re, nitro,
-(CHRd)rS(<¾Rc, -(CHRd)rS(0)pNRaRa, -(CHRd)rNRaS(0)pRc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)rOC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent Rg groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci-6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Ra, at each occurrence, is independently selected from H and Ci_4alkyl substituted with
R
e, at each occurrence, is independently selected from Ci_6 alkyl (optionally substituted with F, CI, Br, and OH), C
2_6 alkenyl, C
2_6 alkynyl, -(CH
2)
r-C
3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci_
6 alkyl, -(CH
2)
rOCi_
5 alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)
pNR
fR
f, NR
fR
fS(0)
pCi_
4alkyl, and S(0)
pCi_
4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1 and 2; and
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4;
other variables are as defined in Formula (III) above.
In another aspect, the present invention provides compounds of Formula (III), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Re and R7 are independently selected from H and
substituted with 0-4 R
e;
R
9 is independently selected from F, CI, Br,
substituted with 0-5 R
e, C2-
4alkenyl substituted with 0-5 Re, nitro, -(CHRd)
rS(0)
pR
c, -(CHRd)
rS(<¾NR
aR
a,
-(CHRd)rNRaS(<¾Rc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa,
-(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb,
-(CHRd)rC(=0)Rb, -(CHRd)rOC(=0)Rb, -(CHRd)rC(=0)NRaRa,
-(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl, -(CHRd)r-aryl, and
-(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci-6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Rd, at each occurrence, is independently selected from H and Ci-4alkyl substituted with 0-5 Re;
R
e, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C
2_6 alkenyl, C
2_6 alkynyl, -(CH
2)
r-C3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci_
6 alkyl, -(CH
2)
rOCi_
: alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)
pNR
fR
f, NR
fR
fS(0)
pCi_
4alkyl, and S(0)
pCi_
4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1 and 2; and
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4;
other variables are as defined in Formula (III) above.
In another aspect, the present invention provides compounds of Formula (IV):
(IV)
or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OCi_4 alkyl
substituted with 0-3 Re, Ci_4 alkyl substituted with 0-3 Re, and -(CH2)rORb;
R3 and R4 are independently selected from H, F, OH, CN, C1-4 alkyl substituted with 0-3 Re, C2_4 alkenyl substituted with 0-3 Re, and C2_4 alkynyl substituted with 0-3 Re; R5 is independently selected from H, Ci_4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN,
-NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
Re and R7 are independently selected from H,
substituted with 0-4 R
e,
-(CH2)rORb, -(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3
Re;
alternatively, R6 and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent 5 groups form a cycloalkyl or heterocycle substituted with 0-5
Re;
Rs is selected from aryl, C3_6cycloalkyl, and heterocyclyl, each substituted with 0-5 R9;
R
9 is independently selected from F, CI, Br,
substituted with 0-5 R
e, C
2_
4alkenyl substituted with 0-5 Re, C
2_
4alkynyl substituted with 0-5 R
e, =0, nitro,
-(CHRd)rS(<¾Rc, -(CHRd)rS(<¾NRaRa, -(CHRd)rNRaS(<¾Rc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)r OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2_6 alkenyl substituted with 0-5 Re, C2_6 alkynyl substituted with 0-5 Re,
-(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from C e alkyl substituted with 0-5 Re,
C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Rd, at each occurrence, is independently selected from H and Ci_4alkyl substituted with
R
e, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C2-6 alkenyl, C2-6 alkynyl, -(CH
2)
r-C3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci_
6 alkyl, -(CH
2)
rOCi_
5 alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)pNR
fRf, NRfRfS(0)pCi-
4alkyl, and S(0)
pCi-
4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3; and
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4. In another aspect, the present invention provides compounds of Formula (IV), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ri and R2 are independently selected from H, F, CI, Br, OH, CN, NRaRa, -OCi_4 alkyl substituted with 0-3 Re, and Ci_4 alkyl substituted with 0-3 Re;
R3 is independently selected from H and Ci_4 alkyl substituted with 0-3 Re;
R4 IS H;
R5 is independently selected from H and Ci_4 alkyl;
¾ and R7 are independently selected from H, Ci_4alkyl substituted with 0-4 Re, and aryl;
Rs is selected from aryl, C
3_
6cycloalkyl, and heterocyclyl, each substituted with 0-5 R
9; R
9 is independently selected from F, CI, Br, Ci_
4alkyl substituted with 0-5 R
e, C2-
4alkenyl substituted with 0-5 R
e, C2-
4alkynyl substituted with 0-5 R
e, =0, nitro,
-(CHRd)
rS(0)pNR
aR
a, -(CHR
d)
rNR
aS(0)
pR
c, -(CHR
d)
rOR
b,
-(CHRd)rCN, -(CHRd)
rNR
aR
a, -(CHR
d)
rNR
aC(=0)R
b, -(CHR
d)
rNR
aC(=0)NR
aR
a, -(CHR
d)
rC(=0)OR
b, -(CHR
d)
rC(=0)R
b, -(CHRd)
rOC(=0)R
b,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2_6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Ra, at each occurrence, is independently selected from H and Ci_4alkyl substituted with
R
e, at each occurrence, is independently selected from Ci_6 alkyl (optionally substituted with F, CI, Br, and OH), C
2_6 alkenyl, C
2_6 alkynyl, -(CH
2)
r-C
3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci_
6 alkyl, -(CH
2)
rOCi_
5 alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)
pNR
fR
f, NR
fR
fS(0)
pCi_
4alkyl, and S(0)
pCi_
4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1 and 2; and
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4.
In another aspect, the present invention provides compounds of Formula (V):
(V)
or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OCi_4 alkyl
substituted with 0-3 Re, Ci-4 alkyl substituted with 0-3 Re, and -(CH2)rORb;
R3 and R4 are independently selected from H, F, OH, CN, Ci_4 alkyl substituted with 0-3 Re, C2-4 alkenyl substituted with 0-3 Re, and C2-4 alkynyl substituted with 0-3 Re;
R5 is independently selected from H, Ci_4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN, -NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
Re and R7 are independently selected from H, Ci-4alkyl substituted with 0-4 Re,
-(CH2)rORb, -(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3
Re;
alternatively, Re and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent ¾ groups form a cycloalkyl or heterocycle substituted with 0-5
Re;
Rs is selected from aryl, C3_6cycloalkyl, and heterocyclyl, each substituted with 0-5 Rg;
Rg is independently selected from F, CI, Br, Ci-4alkyl substituted with 0-5 Re, C2-4alkenyl substituted with 0-5 Re, C2-4alkynyl substituted with 0-5 Re, =0, nitro,
-(CHRd)rS(<¾Rc, -(CHRd)rS(<¾NRaRa, -(CHRd)rNRaS(0)pRc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)r OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent Rg groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci-6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2_6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Ra, at each occurrence, is independently selected from H and Ci-4alkyl substituted with
R
e, at each occurrence, is independently selected from Ci_6 alkyl (optionally substituted with F, CI, Br, and OH), C
2_6 alkenyl, C
2_6 alkynyl, -(CH
2)
r-C
3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci_
6 alkyl, -(CH
2)
rOCi_
5 alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)
pNR
fR
f, NR
fR
fS(0)
pCi_
4alkyl, and S(0)
pCi_
4alkyl;
R
f, at each occurrence, is independently selected from H, F, CI, Br, Ci-
5alkyl, and C
3-6 cycloalkyl; or R
f and R
f together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3; and
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4.
In another aspect, the present invention provides compounds of Formula (la):
(la)
or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
B is independently selected from -CR3R4O-, -OCR3R4-, and -NRa-;
L is independently selected from -(CR6R7)q-, R5(CR6R7)q-, and -0(CR6R?)q-;
provided when B is -NRa-, L is -(CR6R7)q-;
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OC1-4 alkyl
substituted with 0-3 Re, C1-4 alkyl substituted with 0-3 Re, and -(CH2)rORb; R3 and R4 are independently selected from H and Ci_4 alkyl;
R5 is independently selected from H and C1-4 alkyl;
R6 and R7 are independently selected from H, Ci_4alkyl substituted with 0-4 Re,
-(CH2)rORb, -(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3
Re;
Rs is selected from aryl, bicyclic carbocyclyl, and heteroaryl, each substituted with 0-5 R9;
Rg is independently selected from F, CI, Br, Ci-4alkyl substituted with 0-5 Re, C2-4alkenyl substituted with 0-5 Re, C2-4alkynyl substituted with 0-5 Re, nitro,
-(CHRd)rS(<¾Rc, -(CHRd)rS(0)pNRaRa, -(CHRd)rNRaS(0)pRc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)r OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent Rg groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci-6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from C e alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Ra, at each occurrence, is independently selected from H and Ci_4alkyl substituted with
Re, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C2_6 alkenyl, C2_6 alkynyl, -(CH2)r-C3_io carbocyclyl substituted with Rf, -(CH2)r-heterocyclyl substituted with Rf, F, CI, Br, CN, N02, =0, C02H, C02d_6 alkyl, -(CH2)rOd_5 alkyl, -(CH2)rOH, -(CH2)rNRfRf, -(CH2)rNRfRfC(=0) Ci_4alkyl, -C(=0)NRfRf, -C(=0)Rf, S(0)pNRfRf, NRfRfS(0)p Ci_4alkyl, and S(0)pCi_4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, CN, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3;
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4.
In another aspect, the present invention provides compounds of Formula (II), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
B is -NRa-;
L is -(CH2)q;
Rs is phenyl substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, and CN; and
q, at each occurrence, is independently selected from 1 and 2;
other variables are as defined in Formula (la) above.
In another aspect, the present invention provides compounds of Formula (III), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
L is independently selected from -(CR6R7)q-, NR5(CR6R?)q-, and -0(CR6R?)q-;
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OC1-4 alkyl
substituted with 0-3 Re, C1-4 alkyl substituted with 0-3 Re, and -(CH2)rORb;
R3 and R4 are independently selected from H, and Ci_4 alkyl;
R5 is independently selected from H and Ci_4 alkyl;
Re and R7 are independently selected from H, Ci_4alkyl, OR,, NRaRa, and aryl;
Rs is selected from phenyl, bicyclic carbocyclyl, and heteroaryl, each substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, Ci_4alkyl substituted with 0-5 Re, C2-4alkenyl substituted with 0-5 Re, C2-4alkynyl substituted with 0-5 Re, nitro,
-(CHRd)rS(<¾Rc, -(CHRd)rS(<¾NRaRa, -(CHRd)rNRaS(<¾Rc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa,
-(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)r OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re,
-(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
R<i, at each occurrence, is independently selected from H and Ci_4alkyl substituted with
Re, at each occurrence, is independently selected from Ci_6 alkyl (optionally substituted with F, CI, Br, and OH), C2-6 alkenyl, C2-6 alkynyl, -(CH2)r-C3_io carbocyclyl substituted with Rf, -(CH2)r-heterocyclyl substituted with Rf, F, CI, Br, CN, N02,
=0, C02H, CO2C1-6 alkyl, -(CH2)rOCi-5 alkyl, -(CH2)rOH, -(CH2)rNRfRf, -(CH2)rNRfRfC(=0) Ci_4alkyl, -C(=0)NRfRf, -C(=0)Rf, S(0)pNRfRf,
NRfRfS(0)pCi_4alkyl, and S(0)pCi_4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, CN, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3;
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4; and other variables are as defined in Formula (la) above.
In another aspect, the present invention provides compounds of Formula (III), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
L is independently selected from -(CR6 7)q-, -NR5(CR6R7)q-, and -0(CR6R?)q-;
Ri and R2 are independently selected from H, F, CI, Br, OH, CN, NRaRa, -OCi_4 alkyl substituted with 0-3 Re, and Ci_4 alkyl substituted with 0-3 Re;
R3 is independently selected from H and Ci_4 alkyl substituted with 0-3 Re;
R5 is independently selected from H and Ci_4 alkyl;
Re and R7 are independently selected from H, Ci_4alkyl, OR,, NRaRa, and aryl;
Rs is phenyl substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, Ci_4alkyl substituted with 0-5 Re, C2-4alkenyl substituted with 0-5 Re, C2-4alkynyl substituted with 0-5 Re, nitro,
-(CHRd)rS(0)pRc, -(CHRd)rS(0)pNRaRa, -(CHRd)rNRaS(0)pRc, -(CHRd)rORb, -(CHRd)rCN, -(CHRd)rNRaRa, -(CHRd)rNRaC(=0)Rb, -(CHRd)rNRaC(=0)NRaRa, -(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, -(CHRd)rOC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2_6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Rj, at each occurrence, is independently selected from H and Ci_
4alkyl substituted with
R
e, at each occurrence, is independently selected from Ci_6 alkyl (optionally substituted with F, CI, Br, and OH), C2-6 alkenyl, C2-6 alkynyl, -(CH
2)
r-C3_io carbocyclyl substituted with R
f, -(CH
2)
r-heterocyclyl substituted with R
f, F, CI, Br, CN, NO2, =0, C0
2H, C0
2d_6 alkyl, -(CH
2)
rOd_
5 alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)
pNR
fR
f, NR
fR
fS(0)
p
Ci_4alkyl, and S(0)pCi_4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, CN, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1 and 2;
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4; and
other variables are as defined in Formula (III) above. In another aspect, the present invention provides compounds of Formula (III), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
L is -(CR6R7)q-;
Ri and R2 are H;
R3 is independently selected from H and Me;
R5 is H;
Re and R7 are independently selected from H, Ci_4alkyl, OH, NH2, and aryl;
R9 is independently selected from F, CI, Br, Ci_4alkyl substituted with 0-5 Re, -S(0)pRc,
-S(0)pNRaRa, -NRaS(0)pRc, -ORb, -CN, -NRaRa, -NRaC(=0)Rb, -C(=0)ORb, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl, -(CHRd)r-aryl, and
-(CHRa)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, Ci_6 alkyl substituted with 0-5
Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, C e alkyl substituted with 0-5 Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from C e alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Rd, at each occurrence, is independently selected from H and C1-4alkyl substituted with
Re, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C2-6 alkenyl, C2-6 alkynyl, =0, -(CH2)r-C3_io carbocyclyl substituted with Rf, and -(CEbyheterocyclyl substituted with Rf, F, CI, Br, CN, N02, =0, C02H;
Rf, at each occurrence, is independently selected from H, F, CI, Br, CN, Ci-salkyl, and C3-6 cycloalkyl;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1 and 2;
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4;
other variables are as defined in Formula (III) above.
In another aspect, the present invention provides compounds of Formula (III), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Rs is heteroaryl substituted with 0-5 R9 wherein said heteroaryl is selected from pyridyl, pyrimidinyl, pyrazinyl, thiazolyl, thiadiazolyl, furanyl, imidazolyl, tetrazolyl, pyrrolyl, benzoimidazolyl, and benzodioxolanyl;
R
9 is independently selected from F, CI, Br,
aryl, and heteroaryl;
q, at each occurrence, is independently selected from zero, 1 and 2;
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4;
other variables are as defined in Formula (III) above.
In another aspect, the present invention provides compounds of Formula (IV), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OCi_4 alkyl
substituted with 0-3 Re, Ci_4 alkyl substituted with 0-3 Re, and -(CH2)rORb;
R3 and R4 are independently selected from H, F, OH, CN, and Ci_4 alkyl substituted with 0-3 Re, C2-4 alkenyl substituted with 0-3 Re, and C2_4 alkynyl substituted with 0-3
Re;
R5 is independently selected from H, Ci_4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN, -NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
¾ and R7 are independently selected from H, Ci_4alkyl substituted with 0-4 Re,
-(CH2)rORb, -( Η2)Γ8(0^, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH
2)
rS(0)
pNR
aR
a, -(CH
2)
rNR
aS(0)
pNR
aR
a,
(CH
2)
r-C
3-
6 carbocyclyl substituted with 0-3 R
e, and -(CH
2)
r-heterocyclyl substituted with 0-3
Re;
alternatively, Re and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent ¾ groups form a cycloalkyl or heterocycle substituted with 0-5
Re;
Rs is selected from aryl and heteroaryl, each substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, Ci_4alkyl substituted with 0-5 Re, C2_4alkenyl substituted with 0-5 Re, C2_4alkynyl substituted with 0-5 Re, nitro,
-(CHR
d)
rS(<¾NR
aR
a, -(CHR
d)
rNR
aS(0)
pR
c, -(CHR
d)
rOR
b, -(CHRd)
rCN, -(CHR
<i)
rNR
aR
a, -(CHR
d)
rNR
aC(=0)R
b, -(CHR
d)
rNR
aC(=0)NR
aR
a, -(CHR
d)
rC(=0)OR
b, -(CHR
d)
rC(=0)R
b, -(CHR
d)
rOC(=0)R
b,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRa)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, C e alkyl substituted with 0-5
Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, C e alkyl substituted with 0-5
Re, C2-6 alkenyl substituted with 0-5 Re, C2-6 alkynyl substituted with 0-5 Re,
-(CH2)r-C3-iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from C e alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Rd, at each occurrence, is independently selected from H and Ci_4alkyl substituted with
Re, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C2-6 alkenyl, C2-6 alkynyl, -(CH2)r-C3_io carbocyclyl,
-(CH2)r-heterocyclyl, F, CI, Br, CN, N02, =0, C02H, C02Ci-6 alkyl, -(CH2)rOCi-5 alkyl, -(CH2)rOH, -(CH2)rNRfRf, -(CH2)rNRfRfC(=0) Ci_4alkyl, -C(=0)NRfRf, -C(=0)Rf, S(0)pNRfRf, NRfRfS(0)p Ci_4alkyl, and S(0)pCi_4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3;
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4; and
other variables are as defined in Formula (la) above.
In another aspect, the present invention provides compounds of Formula (IV), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ri and R2 are independently selected from H;
R3 is independently selected from H and C1-4 alkyl substituted with 0-3 Re;
R4 IS H;
R5 is independently selected from H and C1-4 alkyl;
Re and R7 are independently selected from H, Ci-4alkyl, and aryl;
Rs is selected from phenyl and heteroaryl each substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, Ci-4alkyl substituted with 0-5 Re, and OR,; Rb, at each occurrence, is independently selected from H and C e alkyl;
q, at each occurrence, is independently selected from zero, 1 and 2; and
other variables are as defined in Formula (IV) above. In another aspect, the present invention provides compounds of Formula (V), or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OCi_4 alkyl
substituted with 0-3 Re, C1-4 alkyl substituted with 0-3 Re, and -(CH2)rORb;
R3 and R4 are independently selected from H, F, OH, CN, C1-4 alkyl substituted with 0-3 Re, C2-4 alkenyl substituted with 0-3 Re, and C2-4 alkynyl substituted with 0-3 Re; R5 is independently selected from H, C1-4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN, -NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
Re and R7 are independently selected from H, Ci_4alkyl substituted with 0-4 Re,
-(CH2)rORb, -(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6
carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3
Re;
alternatively, R6 and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent ¾ groups form a cycloalkyl or heterocycle substituted with 0-5
Re;
Rs is selected from aryl substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, and Ci-4alkyl;
q, at each occurrence, is independently selected from zero, 1, and 2; and
other variables are as defined in Formula (la) above.
In another aspect, the present invention provides compounds of Formula (VI):
or stereoisomers, tautomers, pharmaceutically acceptable salts, solvates, or prodrugs thereof, wherein
Ri and R2 are independently selected from H, F, CI, Br, CN, NRaRa, -OCi_4 alkyl
substituted with 0-3 Re, C1-4 alkyl substituted with 0-3 Re, and -(CH2)rORb;
R3 and R4 are independently selected from H, F, OH, CN, and Ci_4 alkyl substituted with 0-3 Re, C2-4 alkenyl substituted with 0-3 Re, and C2-4 alkynyl substituted with 0-3
Re;
R5 is independently selected from H, Ci_4 alkyl optionally substituted with F, CI, Br, CN, -ORb, -S(0)pRc, -C(=0)Rb, -NRaRa, -C(=0)NRaRa, -C(=0)(CH2)rNRaRa, CN, -NRaC(=0)Rb, -NRaC(=0)ORb, -OC(=0)NRaRa, -NRaC(=0)NRaRa, -C(=0)ORb, -S(0)pNRaRa, -NRaS(0)pNRaRa, -NRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3 Re;
¾ and R7 are independently selected from H, Ci-4alkyl substituted with 0-4 Re,
-(CH2)rORb, -(CH2)rS(0)pRc, -(CH2)rC(=0)Rb, -(CH2)rNRaRa,
-(CH2)rC(=0)(CH2)rNRaRa, -(CH2)rNRaC(=0)Rb, -(CH2)rNRaC(=0)ORb, -(CH2)rOC(=0)NRaRa, -(CH2)rNRaC(=0)NRaRa, -(CH2)rC(=0)ORb,
-(CH2)rS(0)pNRaRa, -(CH2)rNRaS(0)pNRaRa, -(CH2)rNRaS(0)pRc, (CH2)r-C3-6 carbocyclyl substituted with 0-3 Re, and -(CH2)r-heterocyclyl substituted with 0-3
Re;
alternatively, R6 and R7 together with the carbon atom to which they are both attached form a cycloalkyl or heterocycle substituted with 0-5 Re; alternatively, when q is 2 or 3, two adjacent ¾ groups form a cycloalkyl or heterocycle substituted with 0-5
Re;
Re is selected from aryl and heteroaryl, each substituted with 0-5 R9;
R9 is independently selected from F, CI, Br, Ci-4alkyl substituted with 0-5 Re, C2_4alkenyl substituted with 0-5 Re, C2_4alkynyl substituted with 0-5 Re, nitro,
-(CHR
d)
rS(<¾Re, -(CHR
d)
rS(<¾NR
aR
a, -(CHR
d)
rNR
aS(0)
pR
c, -(CHR
d)
rOR
b,
-(CHRd)rC(=0)ORb, -(CHRd)rC(=0)Rb, - CHR^ OC(=0)Rb,
-(CHRd)rC(=0)NRaRa, -(CHRd)r-cycloalkyl, -(CHRd)r-heterocyclyl,
-(CHRd)r-aryl, and -(CHRd)r-heteroaryl, wherein said alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is substituted with 0-4 Re;
alternatively, two adjacent R9 groups are combined to form a carbocyclic or heterocyclic ring comprising carbon atoms and 1-3 hetero atoms selected from N, O, and S(0)p, wherein the carbocyclic and heterocyclic rings are substituted with 0-4 Re;
Ra, at each occurrence, is independently selected from H, C e alkyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re; or Ra and Ra together with the nitrogen atom to which they are both attached form a heterocyclic ring substituted with 0-5 Re;
Rb, at each occurrence, is independently selected from H, C e alkyl substituted with 0-5 Re, C2_6 alkenyl substituted with 0-5 Re, C2_6 alkynyl substituted with 0-5 Re, -(CH2)r-C3_iocarbocyclyl substituted with 0-5 Re, and -(CH2)r-heterocyclyl substituted with 0-5 Re;
Rc, at each occurrence, is independently selected from Ci_6 alkyl substituted with 0-5 Re, C2-6alkenyl substituted with 0-5 Re, C2-6alkynyl substituted with 0-5 Re,
C3_6carbocyclyl, and heterocyclyl;
Rd, at each occurrence, is independently selected from H and Ci_4alkyl substituted with
R
e, at each occurrence, is independently selected from C e alkyl (optionally substituted with F, CI, Br, and OH), C2-6 alkenyl, C2-6 alkynyl, -(CH
2)
r-C3_io carbocyclyl, -(CH
2)
r-heterocyclyl, F, CI, Br, CN, N0
2, =0, C0
2H, C0
2Ci_
6 alkyl, -(CH
2)
rOCi_
5 alkyl, -(CH
2)
rOH, -(CH
2)
rNR
fR
f,
-C(=0)NR
fR
f, -C(=0)R
f, S(0)
pNR
fR
f, NR
fR
fS(0)
pCi_
4alkyl, and S(0)
pCi_
4alkyl;
Rf, at each occurrence, is independently selected from H, F, CI, Br, Ci-salkyl, and C3-6 cycloalkyl; or Rf and Rf together with the nitrogen atom to which they are both attached form a heterocyclic ring;
p, at each occurrence, is independently selected from zero, 1, and 2;
q, at each occurrence, is independently selected from zero, 1, 2, and 3; and
r, at each occurrence, is independently selected from zero, 1, 2, 3, and 4.
In another aspect, the present invention provides a compound selected from the exemplified examples or a stereoisomer, a tautomer, a pharmaceutically acceptable salt, or a solvate thereof.
In another aspect, the present invention provides a compound selected from any subset list of compounds within the scope of the exemplified examples or a stereoisomer, a tautomer, a pharmaceutically acceptable salt, or a solvate thereof.
In another embodiment, the present invention provides compounds with ROCK2 IC50 values < 10 μΜ.
In another embodiment, the present invention provides compounds with ROCK2 IC50 values < 1 μΜ.
In another embodiment, the present invention provides compounds with ROCK2 IC50 values < 0.1 μΜ.
In another embodiment, the present invention provides compounds with ROCK2
IC50 values < 0.05 μΜ.
In another embodiment, the present invention provides compounds with ROCK2 IC50 values < 0.01 μΜ.
II. OTHER EMBODIMENTS OF THE INVENTION
In another embodiment, the present invention provides a composition comprising at least one of the compounds of the present invention or a stereoisomer, a tautomer, a pharmaceutically acceptable salt, or a solvate thereof.
In another embodiment, the present invention provides a pharmaceutical composition comprising a pharmaceutically acceptable carrier and at least one of the compounds of the present invention or a stereoisomer, a tautomer, a pharmaceutically acceptable salt, or a solvate, thereof.
In another embodiment, the present invention provides a pharmaceutical composition, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer, a tautomer, a pharmaceutically acceptable salt, or a solvate thereof.
In another embodiment, the present invention provides a process for making a compound of the present invention.
In another embodiment, the present invention provides an intermediate for making a compound of the present invention.
In another embodiment, the present invention provides a pharmaceutical composition further comprising additional therapeutic agent(s).
In another embodiment, the present invention provides a method for the treatment and/or prophylaxis of a condition associated with aberrant ROCK activity comprising administering to a patient in need of such treatment and/or prophylaxis a therapeutically effective amount of at least one of the compounds of the present invention or a stereoisomer, a tautomer, a pharmaceutically acceptable salt, or a solvate thereof. As used herein, the term "patient" encompasses all mammalian species.
As used herein, "treating" or "treatment" cover the treatment of a disease-state in a mammal, particularly in a human, and include: (a) inhibiting the disease-state, i.e., arresting it development; and/or (b) relieving the disease-state, i.e., causing regression of the disease state.
As used herein, "prophylaxis" or "prevention" cover the preventive treatment of a subclinical disease-state in a mammal, particularly in a human, aimed at reducing the probability of the occurrence of a clinical disease-state. Patients are selected for preventative therapy based on factors that are known to increase risk of suffering a clinical disease state compared to the general population. "Prophylaxis" therapies can be divided into (a) primary prevention and (b) secondary prevention. Primary prevention is defined as treatment in a patient that has not yet presented with a clinical disease state, whereas secondary prevention is defined as preventing a second occurrence of the same or similar clinical disease state. In another embodiment, the present invention provides a combined preparation of a compound of the present invention and additional therapeutic agent(s) for simultaneous, separate or sequential use in therapy.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. This invention encompasses all combinations of preferred aspects of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment or embodiments to describe additional embodiments. It is also to be understood that each individual element of the embodiments is its own independent embodiment. Furthermore, any element of an embodiment is meant to be combined with any and all other elements from any embodiment to describe an additional embodiment.
III. CHEMISTRY
Throughout the specification and the appended claims, a given chemical formula or name shall encompass all stereo and optical isomers and racemates thereof where such isomers exist. Unless otherwise indicated, all chiral (enantiomeric and diastereomeric) and racemic forms are within the scope of the invention. Many geometric isomers of C=C double bonds, C=N double bonds, ring systems, and the like can also be present in the compounds, and all such stable isomers are contemplated in the present invention. Cis- and trans- (or E- and Z-) geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms. The present compounds can be isolated in optically active or racemic forms. Optically active forms may be prepared by resolution of racemic forms or by synthesis from optically active starting materials. All processes used to prepare compounds of the
present invention and intermediates made therein are considered to be part of the present invention. When enantiomeric or diastereomeric products are prepared, they may be separated by conventional methods, for example, by chromatography or fractional crystallization. Depending on the process conditions the end products of the present invention are obtained either in free (neutral) or salt form. Both the free form and the salts of these end products are within the scope of the invention. If so desired, one form of a compound may be converted into another form. A free base or acid may be converted into a salt; a salt may be converted into the free compound or another salt; a mixture of isomeric compounds of the present invention may be separated into the individual isomers. Compounds of the present invention, free form and salts thereof, may exist in multiple tautomeric forms, in which hydrogen atoms are transposed to other parts of the molecules and the chemical bonds between the atoms of the molecules are consequently rearranged. It should be understood that all tautomeric forms, insofar as they may exist, are included within the invention.
The term "stereoisomer" refers to isomers of identical constitution that differ in the arrangement of their atoms in space. Enantiomers and diastereomers are examples of stereoisomers. The term "enantiomer" refers to one of a pair of molecular species that are mirror images of each other and are not superimposable. The term "diastereomer" refers to stereoisomers that are not mirror images. The term "racemate" or "racemic mixture" refers to a composition composed of equimolar quantities of two enantiomeric species, wherein the composition is devoid of optical activity.
The symbols "R" and "S" represent the configuration of substituents around a chiral carbon atom(s). The isomeric descriptors "R" and "S" are used as described herein for indicating atom configuration(s) relative to a core molecule and are intended to be used as defined in the literature (IUPAC Recommendations 1996, Pure and Applied Chemistry, 68:2193-2222 (1996)).
The term "chiral" refers to the structural characteristic of a molecule that makes it impossible to superimpose it on its mirror image. The term "homochiral" refers to a state of enantiomeric purity. The term "optical activity" refers to the degree to which a homochiral molecule or nonracemic mixture of chiral molecules rotates a plane of polarized light.
As used herein, the term "alkyl" or "alkylene" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms. For example, "Ci to C10 alkyl" or "Ci_io alkyl" (or alkylene), is intended to include Ci, C2, C3, C4, C5, Ce, C7, C8, C9, and C10 alkyl groups. Additionally, for example, "Ci to Ce alkyl" or "Ci-Ce alkyl" denotes alkyl having 1 to 6 carbon atoms. Alkyl group can be unsubstituted or substituted with at least one hydrogen being replaced by another chemical group. Example alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (e.g., n-propyl and isopropyl), butyl (e.g., n-butyl, isobutyl, t- butyl), and pentyl (e.g., n-pentyl, isopentyl, neopentyl).
"Alkenyl" or "alkenylene" is intended to include hydrocarbon chains of either straight or branched configuration having the specified number of carbon atoms and one or more, preferably one to two, carbon-carbon double bonds that may occur in any stable point along the chain. For example, "C2 to Ce alkenyl" or "C2-6 alkenyl" (or alkenylene), is intended to include C2, C3, C4, C5, and Ce alkenyl groups. Examples of alkenyl include, but are not limited to, ethenyl, 1-propenyl, 2-propenyl, 2-butenyl, 3-butenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 2-methyl-2- propenyl, and 4-methyl-3-pentenyl.
"Alkynyl" or "alkynylene" is intended to include hydrocarbon chains of either straight or branched configuration having one or more, preferably one to three, carbon- carbon triple bonds that may occur in any stable point along the chain. For example, "C2 to Ce alkynyl" or "C2-6 alkynyl" (or alkynylene), is intended to include C2, C3, C4, C5, and Ce alkynyl groups; such as ethynyl, propynyl, butynyl, pentynyl, and hexynyl.
The term "alkoxy" or "alkyloxy" refers to an -O-alkyl group. "Ci to Ce alkoxy" or "Ci-6 alkoxy" (or alkyloxy), is intended to include Ci, C2, C3, C4, C5, and Ce alkoxy groups. Example alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (e.g., n-propoxy and isopropoxy), and ?-butoxy. Similarly, "alkylthio" or "thioalkoxy" represents an alkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge; for example methyl-S- and ethyl-S-.
"Halo" or "halogen" includes fluoro (F), chloro (CI), bromo (Br), and iodo (I). "Haloalkyl" is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more halogens. Examples of haloalkyl include, but are not limited to, fluoromethyl,
difluoromethyl, trifluoromethyl, trichloromethyl, pentafluoroethyl, pentachloroethyl, 2,2,2-trifluoroethyl, heptafluoropropyl, and heptachloropropyl. Examples ofhaloalkyl also include "fluoroalkyl" that is intended to include both branched and straight-chain saturated aliphatic hydrocarbon groups having the specified number of carbon atoms, substituted with 1 or more fluorine atoms.
"Haloalkoxy" or "haloalkyloxy" represents a haloalkyl group as defined above with the indicated number of carbon atoms attached through an oxygen bridge. For example, "Ci to Ce haloalkoxy" or "C e haloalkoxy", is intended to include Ci, C2, C3, C4, C5, and Ce haloalkoxy groups. Examples of haloalkoxy include, but are not limited to, trifluoromethoxy, 2,2,2-trifluoroethoxy, and pentafluorothoxy. Similarly, "haloalkylthio" or "thiohaloalkoxy" represents a haloalkyl group as defined above with the indicated number of carbon atoms attached through a sulphur bridge; for example trifluoromethyl- S-, and pentafluoroethyl-S-.
The term "cycloalkyl" refers to cyclized alkyl groups, including mono-, bi- or poly-cyclic ring systems. "C3 to C7 cycloalkyl" or "C3-7 cycloalkyl" is intended to include C3, C4, C5, Ce, and C7 cycloalkyl groups. Example cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and norbornyl. Branched cycloalkyl groups such as 1 -methylcyclopropyl and 2-methylcyclopropyl are included in the definition of "cycloalkyl".
As used herein, "carbocycle", "carbocyclyl" or "carbocyclic residue" is intended to mean any stable 3-, 4-, 5-, 6-, 7-, or 8-membered monocyclic or bicyclic or 7-, 8-, 9-, 10-, 1 1-, 12-, or 13-membered bicyclic or tricyclic hydrocarbon ring, any of which may be saturated, partially unsaturated, unsaturated or aromatic. Examples of such carbocycles include, but are not limited to, cyclopropyl, cyclobutyl, cyclobutenyl, cyclopentyl, cyclopentenyl, cyclohexyl, cycloheptenyl, cycloheptyl, cycloheptenyl, adamantyl, cyclooctyl, cyclooctenyl, cyclooctadienyl, [3.3.0]bicyclooctane,
[4.3.0]bicyclononane, [4.4.0]bicyclodecane (decalin), [2.2.2]bicyclooctane, fluorenyl, phenyl, naphthyl, indanyl, adamantyl, anthracenyl, and tetrahydronaphthyl (tetralin). As shown above, bridged rings are also included in the definition of carbocycle (e.g.,
[2.2.2]bicyclooctane). Preferred carbocycles, unless otherwise specified, are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, and indanyl. When the term "carbocyclyl" is used, it is intended to include "aryl". A bridged ring occurs when one or more carbon
atoms link two non-adjacent carbon atoms. Preferred bridges are one or two carbon atoms. It is noted that a bridge always converts a monocyclic ring into a tricyclic ring. When a ring is bridged, the substituents recited for the ring may also be present on the bridge.
As used herein, the term "bicyclic carbocyclyl" or "bicyclic carbocyclic group" is intended to mean a stable 9- or 10-membered carbocyclic ring system that contains two fused rings and consists of carbon atoms. Of the two fused rings, one ring is a benzo ring fused to a second ring; and the second ring is a 5- or 6-membered carbon ring which is saturated, partially unsaturated, or unsaturated. The bicyclic carbocyclic group may be attached to its pendant group at any carbon atom which results in a stable structure. The bicyclic carbocyclic group described herein may be substituted on any carbon if the resulting compound is stable. Examples of a bicyclic carbocyclic group are, but not limited to, naphthyl, 1,2-dihydronaphthyl, 1,2,3,4-tetrahydronaphthyl, and indanyl.
"Aryl" groups refer to monocyclic or polycyclic aromatic hydrocarbons, including, for example, phenyl, naphthyl, and phenanthranyl. Aryl moieties are well known and described, for example, in Lewis, R.J., ed., Hawley's Condensed Chemical Dictionary, 13th Edition, John Wiley & Sons, Inc., New York (1997). "Ce or C10 aryl" or "C6-10 aryl" refers to phenyl and naphthyl. Unless otherwise specified, "aryl", "Ce or C10 aryl" or "Οβ-ιο aryl" or "aromatic residue" may be unsubstituted or substituted with 1 to 5 groups, preferably 1 to 3 groups, OH, OCH3, CI, F, Br, I, CN, N02, NH2, N(CH3)H,
N(CH3)2, CF3, OCF3, C(=0)CH3, SCH3, S(=0)CH3, S(=0)2CH3, CH3, CH2CH3, C02H, and C02CH3.
The term "benzyl", as used herein, refers to a methyl group on which one of the hydrogen atoms is replaced by a phenyl group, wherein said phenyl group may optionally be substituted with 1 to 5 groups, preferably 1 to 3 groups, OH, OCH3, CI, F, Br, I, CN, N02, NH2, N(CH3)H, N(CH3)2, CF3, OCF3, C(=0)CH3, SCH3, S(=0)CH3, S(=0)2CH3, CH3, CH2CH3, C02H, and C02CH3.
As used herein, the term "heterocycle", "heterocyclyl", or "heterocyclic ring" is intended to mean a stable 3-, 4-, 5-, 6-, or 7-membered monocyclic or bicyclic or 7-, 8-, 9-, 10-, 1 1-, 12-, 13-, or 14-membered polycyclic heterocyclic ring that is saturated, partially unsaturated, or fully unsaturated, and that contains carbon atoms and 1, 2, 3 or 4 heteroatoms independently selected from the group consisting of N, O and S; and
including any poly cyclic group in which any of the above-defined heterocyclic rings is fused to a benzene ring. The nitrogen and sulfur heteroatoms may optionally be oxidized (i.e., N→0 and S(0)p, wherein p is 0, 1 or 2). The nitrogen atom may be substituted or unsubstituted (i.e., N or NR wherein R is H or another substituent, if defined). The heterocyclic ring may be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure. The heterocyclic rings described herein may be substituted on carbon or on a nitrogen atom if the resulting compound is stable. A nitrogen in the heterocycle may optionally be quaternized. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. It is preferred that the total number of S and O atoms in the heterocycle is not more than 1. When the term "heterocycle" is used, it is intended to include heteroaryl.
Examples of heterocycles include, but are not limited to, acridinyl, azetidinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzoxazolinyl, benzthiazolyl, benztriazolyl, benztetrazolyl,
benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H, 6H- 1,5,2- dithiazinyl, dihydrofuro[2,3-£]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, lH-indazolyl, imidazolopyridinyl, indolenyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isatinoyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl, isothiazolyl, isothiazolopyridinyl, isoxazolyl, isoxazolopyridinyl, methylenedioxyphenyl, morpholinyl, naphthyridinyl,
octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5- oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolopyridinyl,
oxazolidinylperimidinyl, oxindolyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pteridinyl, purinyl, pyranyl, pyrazinyl, pyrazolidinyl, pyrazolinyl, pyrazolopyridinyl, pyrazolyl, pyridazinyl, pyridooxazolyl, pyridoimidazolyl, pyridothiazolyl, pyridinyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2- pyrrolidonyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrazolyl, tetrahydrofuranyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, 6H-l,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-
thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thiazolyl, thienyl, thiazolopyridinyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3 -triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, and xanthenyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.
Examples of 5- to 10-membered heterocycles include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, piperidinyl, imidazolyl, imidazolidinyl, indolyl, tetrazolyl, isoxazolyl, morpholinyl, oxazolyl, oxadiazolyl, oxazolidinyl, tetrahydrofuranyl, thiadiazinyl, thiadiazolyl, thiazolyl, triazinyl, triazolyl, benzimidazolyl, lH-indazolyl, benzofuranyl, benzothiofuranyl, benztetrazolyl, benzotriazolyl, benzisoxazolyl, benzoxazolyl, oxindolyl, benzoxazolinyl, benzthiazolyl, benzisothiazolyl, isatinoyl, isoquinolinyl, octahydroisoquinolinyl, tetrahydroisoquinolinyl, tetrahydroquinolinyl, isoxazolopyridinyl, quinazolinyl, quinolinyl, isothiazolopyridinyl, thiazolopyridinyl, oxazolopyridinyl, imidazolopyridinyl, and pyrazolopyridinyl.
Examples of 5- to 6-membered heterocycles include, but are not limited to, pyridinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, pyrazinyl, piperazinyl, piperidinyl, imidazolyl, imidazolidinyl, indolyl, tetrazolyl, isoxazolyl, morpholinyl, oxazolyl, oxadiazolyl, oxazolidinyl, tetrahydrofuranyl, thiadiazinyl, thiadiazolyl, thiazolyl, triazinyl, and triazolyl. Also included are fused ring and spiro compounds containing, for example, the above heterocycles.
As used herein, the term "bicyclic heterocycle" or "bicyclic heterocyclic group" is intended to mean a stable 9- or 10-membered heterocyclic ring system which contains two fused rings and consists of carbon atoms and 1, 2, 3, or 4 heteroatoms independently selected from the group consisting of N, O and S. Of the two fused rings, one ring is a 5- or 6-membered monocyclic aromatic ring comprising a 5-membered heteroaryl ring, a 6- membered heteroaryl ring or a benzo ring, each fused to a second ring. The second ring is a 5- or 6-membered monocyclic ring which is saturated, partially unsaturated, or unsaturated, and comprises a 5-membered heterocycle, a 6-membered heterocycle or a carbocycle (provided the first ring is not benzo when the second ring is a carbocycle).
The bicyclic heterocyclic group may be attached to its pendant group at any heteroatom or carbon atom which results in a stable structure. The bicyclic heterocyclic group described herein may be substituted on carbon or on a nitrogen atom if the
resulting compound is stable. It is preferred that when the total number of S and O atoms in the heterocycle exceeds 1, then these heteroatoms are not adjacent to one another. It is preferred that the total number of S and O atoms in the heterocycle is not more than 1.
Examples of a bicyclic heterocyclic group are, but not limited to, quinolinyl, isoquinolinyl, phthalazinyl, quinazolinyl, indolyl, isoindolyl, indolinyl, lH-indazolyl, benzimidazolyl, 1,2,3,4-tetrahydroquinolinyl, 1,2,3,4-tetrahydroisoquinolinyl, 5,6,7,8- tetrahydro-quinolinyl, 2,3-dihydro-benzofuranyl, chromanyl, 1,2,3,4-tetrahydro- quinoxalinyl, and 1,2,3,4-tetrahydro-quinazolinyl.
As used herein, the term "aromatic heterocyclic group" or "heteroaryl" is intended to mean stable monocyclic and polycyclic aromatic hydrocarbons that include at least one heteroatom ring member such as sulfur, oxygen, or nitrogen. Heteroaryl groups include, without limitation, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, furyl, quinolyl, isoquinolyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrroyl, oxazolyl, benzofuryl, benzothienyl, benzthiazolyl, isoxazolyl, pyrazolyl, triazolyl, tetrazolyl, indazolyl, 1,2,4- thiadiazolyl, isothiazolyl, purinyl, carbazolyl, benzimidazolyl, indolinyl,
benzodioxolanyl, and benzodioxane. Heteroaryl groups are substituted or unsubstituted. The nitrogen atom is substituted or unsubstituted (i.e., N or NR wherein R is H or another substituent, if defined). The nitrogen and sulfur heteroatoms may optionally be oxidized (i.e., N→0 and S(0)p, wherein p is 0, 1 or 2).
Bridged rings are also included in the definition of heterocycle. A bridged ring occurs when one or more atoms (i.e., C, O, N, or S) link two non-adjacent carbon or nitrogen atoms. Examples of bridged rings include, but are not limited to, one carbon atom, two carbon atoms, one nitrogen atom, two nitrogen atoms, and a carbon-nitrogen group. It is noted that a bridge always converts a monocyclic ring into a tricyclic ring. When a ring is bridged, the substituents recited for the ring may also be present on the bridge.
The term "counterion" is used to represent a negatively charged species such as chloride, bromide, hydroxide, acetate, and sulfate.
When a dotted ring is used within a ring structure, this indicates that the ring structure may be saturated, partially saturated or unsaturated.
As referred to herein, the term "substituted" means that at least one hydrogen atom is replaced with a non-hydrogen group, provided that normal valencies are
maintained and that the substitution results in a stable compound. When a substituent is keto (i.e., =0), then 2 hydrogens on the atom are replaced. Keto substituents are not present on aromatic moieties. When a ring system (e.g., carbocyclic or heterocyclic) is said to be substituted with a carbonyl group or a double bond, it is intended that the carbonyl group or double bond be part (i.e., within) of the ring. Ring double bonds, as used herein, are double bonds that are formed between two adjacent ring atoms (e.g., C=C, C=N, or N=N).
In cases wherein there are nitrogen atoms (e.g., amines) on compounds of the present invention, these may be converted to N-oxides by treatment with an oxidizing agent (e.g., mCPBA and/or hydrogen peroxides) to afford other compounds of this invention. Thus, shown and claimed nitrogen atoms are considered to cover both the shown nitrogen and its N-oxide (N→0) derivative.
When any variable occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its definition at every other occurrence. Thus, for example, if a group is shown to be substituted with 0-3 R groups, then said group may optionally be substituted with up to three R groups, and at each occurrence R is selected independently from the definition of R. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
When a bond to a substituent is shown to cross a bond connecting two atoms in a ring, then such substituent may be bonded to any atom on the ring. When a substituent is listed without indicating the atom in which such substituent is bonded to the rest of the compound of a given formula, then such substituent may be bonded via any atom in such substituent. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms that are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, and/or other problem or complication, commensurate with a reasonable benefit/risk ratio.
As used herein, "pharmaceutically acceptable salts" refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base
salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic groups such as amines; and alkali or organic salts of acidic groups such as carboxylic acids. The pharmaceutically acceptable salts include the conventional non-toxic salts or the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, and nitric; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic,
methanesulfonic, ethane disulfonic, oxalic, and isethionic.
The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington 's Pharmaceutical Sciences, 18th Edition, Mack Publishing Company, Easton, PA (1990), the disclosure of which is hereby incorporated by reference.
In addition, compounds of formula I may have prodrug forms. Any compound that will be converted in vivo to provide the bioactive agent (i.e., a compound of formula I) is a prodrug within the scope and spirit of the invention. Various forms of prodrugs are well known in the art. For examples of such prodrug derivatives, see:
a) Bundgaard, H., ed., Design of Prodrugs, Elsevier (1985), and Widder, K. et al, eds., Methods in Enzymology, 112:309-396, Academic Press (1985);
b) Bundgaard, H., Chapter 5, "Design and Application of Prodrugs", A Textbook of Drug Design and Development, pp. 1 13-191, Krosgaard-Larsen, P. et al, eds., Harwood Academic Publishers (1991);
c) Bundgaard, FL, Adv. Drug Deliv. Rev., 8: 1-38 (1992);
d) Bundgaard, H. et al, J. Pharm. Set, 77:285 (1988); and
e) Kakeya, N. et al, Chem. Pharm. Bull, 32:692 (1984).
Compounds containing a carboxy group can form physiologically hydrolyzable esters that serve as prodrugs by being hydrolyzed in the body to yield formula I compounds per se. Such prodrugs are preferably administered orally since hydrolysis in many instances occurs principally under the influence of the digestive enzymes.
Parenteral administration may be used where the ester per se is active, or in those instances where hydrolysis occurs in the blood. Examples of physiologically
hydrolyzable esters of compounds of formula I include Ci-6alkyl, Ci_6alkylbenzyl, 4-methoxybenzyl, indanyl, phthalyl, methoxymethyl, Ci_6 alkanoyloxy-Ci-6alkyl (e.g., acetoxymethyl, pivaloyloxymethyl or propionyloxymethyl), Ci-6alkoxycarbonyloxy- Ci_6alkyl (e.g., methoxycarbonyl-oxymethyl or ethoxycarbonyloxymethyl,
glycyloxymethyl, phenylglycyloxymethyl, (5-methyl-2-oxo- 1 ,3 -dioxolen-4-yl)-methyl), and other well known physiologically hydrolyzable esters used, for example, in the penicillin and cephalosporin arts. Such esters may be prepared by conventional techniques known in the art.
Preparation of prodrugs is well known in the art and described in, for example, King, F.D., ed., Medicinal Chemistry: Principles and Practice, The Royal Society of Chemistry, Cambridge, UK (1994); Testa, B. et al, Hydrolysis in Drug and Prodrug Metabolism. Chemistry, Biochemistry and Enzymology, VCHA and Wiley-VCH, Zurich, Switzerland (2003); Wermuth, C.G., ed., The Practice of Medicinal Chemistry, Academic Press, San Diego, CA (1999).
The present invention is intended to include all isotopes of atoms occurring in the present compounds. Isotopes include those atoms having the same atomic number but different mass numbers. By way of general example and without limitation, isotopes of hydrogen include deuterium and tritium. Deuterium has one proton and one neutron in its nucleus and that has twice the mass of ordinary hydrogen. Deuterium can be represented by symbols such as "2H" or "D". The term "deuterated" herein, by itself or used to modify a compound or group, refers to replacement of one or more hydrogen atom(s), which is attached to carbon(s), with a deuterium atom. Isotopes of carbon include 13C and 14C.
Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically-labeled reagent in place of the
non-labeled reagent otherwise employed. Such compounds have a variety of potential uses, e.g., as standards and reagents in determining the ability of a potential
pharmaceutical compound to bind to target proteins or receptors, or for imaging compounds of this invention bound to biological receptors in vivo or in vitro.
"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent. It is preferred that compounds of the present invention do not contain a N-halo, S(0)2H, or S(0)H group.
The term "solvate" means a physical association of a compound of this invention with one or more solvent molecules, whether organic or inorganic. This physical association includes hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. The solvent molecules in the solvate may be present in a regular arrangement and/or a non-ordered arrangement. The solvate may comprise either a stoichiometric or nonstoichiometric amount of the solvent molecules. "Solvate" encompasses both solution-phase and isolable solvates. Exemplary solvates include, but are not limited to, hydrates, ethanolates, methanolates, and isopropanolates. Methods of solvation are generally known in the art.
Abbreviations as used herein, are defined as follows: " 1 x" for once, "2 x" for twice, "3 x" for thrice, "°C" for degrees Celsius, "eq" for equivalent or equivalents, "g" for gram or grams, "mg" for milligram or milligrams, "L" for liter or liters, "mL" for milliliter or milliliters, " \L" for microliter or microliters, "N" for normal, "M" for molar, "mmol" for millimole or millimoles, "min" for minute or minutes, "h" for hour or hours, "rt" for room temperature, "RT" for retention time, "atm" for atmosphere, "psi" for pounds per square inch, "cone." for concentrate, "sat" or "saturated" for saturated, "MW" for molecular weight, "mp" for melting point, "ee" for enantiomeric excess, "MS" or "Mass Spec" for mass spectrometry, "ESI" for electrospray ionization mass spectroscopy, "HR" for high resolution, "HRMS" for high resolution mass spectrometry, "LCMS" for liquid chromatography mass spectrometry, "HPLC" for high pressure liquid
chromatography, "RP HPLC" for reverse phase HPLC, "TLC" or "tic" for thin layer chromatography, "NMR" for nuclear magnetic resonance spectroscopy, "nOe" for nuclear Overhauser effect spectroscopy, "lH" for proton, "δ" for delta, "s" for singlet, "d" for
doublet, "t" for triplet, "q" for quartet, "m" for multiplet, "br" for broad, "Hz" for hertz, and "α", "β", "R", "S", "E", and "Z" are stereochemical designations familiar to one skilled in the art.
Me Methyl
Et Ethyl
Pr Propyl
z'-Pr Isopropyl
Bu Butyl
z'-Bu Isobutyl
z-Bu terz-butyl
Ph Phenyl
Bn Benzyl
Boc terz-butyloxycarbonyl
AcOH or HO Ac acetic acid
AICI3 aluminum chloride
AIBN Azobisisobutyronitrile
BBr3 boron tribromide
BCI3 boron trichloride
BEMP 2-ter?-butylimino-2-diethylamino- 1 ,3-dimethylperhydro- 1 , diazaphosphorine
BOP reagent benzotriazol- l-yloxytris(dimethylamino)phosphonium
hexafluorophosphate
Burgess reagent 1 -methoxy-N-triethylammoniosulfonyl-methanimidate
CBz Carbobenzyloxy
CH2CI2 Dichloromethane
CH3CN or ACN Acetonitrile
CDCI3 deutero-chloroform
CHCI3 Chloroform
mCPBA or m-CPBA meto-chloroperbenzoic acid
CS2CO3 cesium carbonate
Cu(OAc)2 copper (II) acetate
Cy2 Me N-cyclohexyl-N-methylcyclohexanamine
DBU l ,8-diazabicyclo[5.4.0]undec-7-ene
DCE 1 ,2 dichloroethane
DCM dichloromethane
DEA diethylamine
Dess-Martin 1, 1 , 1 -tris(acetyloxy)- 1 , 1 -dihydro- 1 ,2-beniziodoxol-3 -( 1 H)-one
DIC or DIPCDI diisopropylcarbodiimide
DIEA, DIPEA or diisopropylethylamine
Hunig's base
DMAP 4-dimethylaminopyridine
DME 1 ,2-dimethoxyethane
DMF dimethyl formamide
DMSO dimethyl sulfoxide
cDNA complimentary DNA
Dppp (R)-(+)- 1 ,2-bis(diphenylphosphino)propane
DuPhos (+)- l,2-bis((2S,5S)-2,5-diethylphospholano)benzene
EDC N-(3 -dimthylaminopropyl)-N'-ethylcarbodiimide
EDCI N-(3 -dimthylaminopropyl)-N'-ethylcarbodiimide hydrochloride
EDTA ethylenediaminetetraacetic acid
(S,S EtDuPhosRh(T) (+)- l ,2-bis((2S,5S)-2,5-diethylphospholano)benzene(l,5- cyclooctadiene)rhodium(I) trifluoromethanesulfonate
Et3N or TEA triethylamine
EtOAc ethyl acetate
Et20 diethyl ether
EtOH Ethanol
GMF glass microfiber filter
Grubbs (II) (l ,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro
(phenylmethylene)(triycyclohexylphosphine)ruthenium
HC1 hydrochloric acid
HATU 0-(7-azabenzotriazol- 1 -yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
HEPES 4-(2-hydroxyethyl)piperaxine- l-ethanesulfonic acid
Hex Hexane
HOBt or HOBT 1 -hydroxybenzotriazole
H2S04 sulfuric acid
K2C03 potassium carbonate
KOAc potassium acetate
K3P04 potassium phosphate
LAH lithium aluminum hydride
LG leaving group
LiOH lithium hydroxide
MeOH Methanol
MgS04 magnesium sulfate
MsOH or MSA methylsulfonic acid
NaCl sodium chloride
NaH sodium hydride
NaHC03 sodium bicarbonate
Na2C03 sodium carbonate
NaOH sodium hydroxide
Na2S03 sodium sulfite
Na2S04 sodium sulfate
NBS N-bromosuccinimide
NCS N-chlorosuccinimide
NH3 Ammonia
NH4C1 ammonium chloride
NH4OH ammonium hydroxide
OTf triflate or trifluoromethanesulfonate
Pd2(dba)3 tris(dibenzylideneacetone)dipalladium(0)
Pd(OAc)2 palladium(II) acetate
Pd/C palladium on carbon
Pd(dppf)Cl2 [l, -bis(diphenylphosphino)-ferrocene]dichloropalladium(II)
Ph3PCl2 triphenylphosphine dichloride
PG protecting group
POCl3 phosphorus oxychloride
i-PrOH or IPA isopropanol
PS polystyrene
PyBOP benzotriazol- 1 -yl-oxytripyrrolidinophosphonium
hexafluorophosphate
SEM-C1 2-(trimethysilyl)ethoxymethyl chloride
S1O2 silica oxide
SnCl2 tin(II) chloride
TBAF tetra-w-butylammonium fluoride
TBAI tetra-M-butylammonium iodide
TEA triethylamine
TFA trifluoroacetic acid
THF tetrahydrofuran
TMSCHN2 trimethylsilyldiazomethane
T3P propane phosphonic acid anhydride
TRIS tris (hydroxymethyl) aminomethane
The compounds of the present invention can be prepared in a number of ways known to one skilled in the art of organic synthesis. IV. BIOLOGY
In Vitro Assays
The effectiveness of compounds of the present invention as ROCK inhibitors can be determined in a 30 μϊ^ assay containing 20 mM HEPES, pH 7.5, 20 mM MgCi2, 0.015% Brij-35, 4 mM DTT, 5 μΜ ATP and 1.5 μΜ peptide substrate (FITC-AHA- AKRRRLSSLRA-OH). Compounds were dissolved in DMSO so that the final concentration of DMSO was < 2%, and the reaction was initiated with Rho kinase variants. After incubation, the reaction was terminated by the addition of EDTA and the phosphorylated and non-phosphorylated peptides separated using a LABCHIP® 3000 Reader (Caliper Life Sciences). Controls consisted of assays that did not contain compound, and backgrounds consisted of assays that contained enzyme and substrate but had EDTA from the beginning of the reaction to inhibit kinase activity. Compounds were tested in dose-response format, and the inhibition of kinase activity was calculated at each
concentration of compound. The inhibition data were fit using a curve-fitting program to determine the IC50; i.e., the concentration of compound required to inhibit 50% of kinase activity.
Representative Examples were tested in the ROCK assay described above and found having ROCK inhibitory activity. A range of ROCK inhibitory activity (IC50 values) of < 50 μΜ (50000 nM) was observed. Table A below lists the ROCK2 IC50 values measured for the following examples.
Table A
Example Number ROCK2 IC
50 (nM)
1-22 159
1-23 368
1-24 11.1
1-25 295
1-26 38.7
1-27 60.8
1-28 3440
1-29 2050
1-30 2940
1-31 497
1-32 682
1-33 367
1-34 207
1-35 434
1-36 204
1-37 323
1-38 847
1-39 644
1-40 500
1-41 2760
1-42 287
1-43 2190
1-44 1450
1-45 1980
1-46 51.2
1-47 56.2
1-48 992
1-49 1250
1-50 4810
1-51 1150
Example Number ROCK2 IC50 (nM)
1-52 3560
1-53 4500
1-54 2560
1-55 3250
1-56 626
1-57 1140
1-58 111
1-59 3820
1-60 40.4
1-61 4720
1-62 43.6
1-63 2370
1-64 2960
1-65 1220
1-66 2590
1-67 471
1-68 362
1-69 1080
1-70 1130
1-71 316
1-72 58.7
1-73 619
II- 1 387
II-2 557
II-3 189
II-4 2370
II-5 1420
II-6 1610
II-7 233
II-8 910
Example Number ROCK2 IC50 (nM)
II-9 971
11-10 248
11-1 1 2240
11-12 685
III-l 1130
III-2 1090
III-3 2810
III-4 133
III-5 3730
III-6 4080
IV- 1 50.9
IV-2 46.3
IV-3 21.0
IV-4 9.50
IV-5 383
V. PHARMACEUTICAL COMPOSITIONS, FORMULATIONS AND
COMBINATIONS
The compounds of this invention can be administered in such oral dosage forms as tablets, capsules (each of which includes sustained release or timed release formulations), pills, powders, granules, elixirs, tinctures, suspensions, syrups, and emulsions. They may also be administered in intravenous (bolus or infusion), intraperitoneal, subcutaneous, or intramuscular form, all using dosage forms well known to those of ordinary skill in the pharmaceutical arts. They can be administered alone, but generally will be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
The term "pharmaceutical composition" means a composition comprising a compound of the invention in combination with at least one additional pharmaceutically acceptable carrier. A "pharmaceutically acceptable carrier" refers to media generally accepted in the art for the delivery of biologically active agents to animals, in particular, mammals, including, i.e., adjuvant, excipient or vehicle, such as diluents, preserving
agents, fillers, flow regulating agents, disintegrating agents, wetting agents, emulsifying agents, suspending agents, sweetening agents, flavoring agents, perfuming agents, antibacterial agents, antifungal agents, lubricating agents and dispensing agents, depending on the nature of the mode of administration and dosage forms.
Pharmaceutically acceptable carriers are formulated according to a number of factors well within the purview of those of ordinary skill in the art. These include, without limitation: the type and nature of the active agent being formulated; the patient to which the agent- containing composition is to be administered; the intended route of administration of the composition; and the therapeutic indication being targeted. Pharmaceutically acceptable carriers include both aqueous and non-aqueous liquid media, as well as a variety of solid and semi-solid dosage forms. Such carriers can include a number of different ingredients and additives in addition to the active agent, such additional ingredients being included in the formulation for a variety of reasons, e.g., stabilization of the active agent, binders, etc., well known to those of ordinary skill in the art. Descriptions of suitable
pharmaceutically acceptable carriers, and factors involved in their selection, are found in a variety of readily available sources such as, for example, Remington 's Pharmaceutical Sciences, 18th Edition (1990).
The dosage regimen for the compounds of the present invention will, of course, vary depending upon known factors, such as the pharmacodynamic characteristics of the particular agent and its mode and route of administration; the species, age, sex, health, medical condition, and weight of the recipient; the nature and extent of the symptoms; the kind of concurrent treatment; the frequency of treatment; the route of administration, the renal and hepatic function of the patient, and the effect desired. A physician or veterinarian can determine and prescribe the effective amount of the drug required to prevent, counter, or arrest the progress of the disorder.
By way of general guidance, the daily oral dosage of each active ingredient, when used for the indicated effects, will range between about 0.001 to about 1000 mg/kg of body weight, preferably between about 0.01 to about 100 mg/kg of body weight per day, and most preferably between about 0.1 to about 20 mg/kg/day. Intravenously, the most preferred doses will range from about 0.001 to about 10 mg/kg/minute during a constant rate infusion. Compounds of this invention may be administered in a single daily dose, or
the total daily dosage may be administered in divided doses of two, three, or four times daily.
Compounds of this invention can also be administered by parenteral
administration (e.g., intra-venous, intra-arterial, intramuscularly, or subcutaneously. When administered intra-venous or intra-arterial, the dose can be given continuously or intermittent. Furthermore, formulation can be developed for intramuscularly and subcutaneous delivery that ensure a gradual release of the active pharmaceutical ingredient.
Compounds of this invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal routes, using transdermal skin patches. When administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
The compounds are typically administered in admixture with suitable pharmaceutical diluents, excipients, or carriers (collectively referred to herein as pharmaceutical carriers) suitably selected with respect to the intended form of administration, e.g., oral tablets, capsules, elixirs, and syrups, and consistent with conventional pharmaceutical practices.
For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, starch, sucrose, glucose, methyl cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, mannitol, sorbitol and the like; for oral administration in liquid form, the oral drug components can be combined with any oral, non-toxic, pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like. Moreover, when desired or necessary, suitable binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate,
carboxymethylcellulose, polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
The compounds of the present invention can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.
Compounds of the present invention may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinylpyrrolidone, pyran copolymer, polyhydroxypropylmethacrylamide-phenol,
polyhydroxyethylaspartamidephenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the compounds of the present invention may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polyglycolic acid, copolymers of polylactic and polyglycolic acid, polyepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacylates, and crosslinked or amphipathic block copolymers of hydrogels.
Dosage forms (pharmaceutical compositions) suitable for administration may contain from about 1 milligram to about 1000 milligrams of active ingredient per dosage unit. In these pharmaceutical compositions the active ingredient will ordinarily be present in an amount of about 0.1 -95% by weight based on the total weight of the composition.
Gelatin capsules may contain the active ingredient and powdered carriers, such as lactose, starch, cellulose derivatives, magnesium stearate, stearic acid, and the like.
Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of hours. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.
Liquid dosage forms for oral administration can contain coloring and flavoring to increase patient acceptance.
In general, water, a suitable oil, saline, aqueous dextrose (glucose), and related sugar solutions and glycols such as propylene glycol or polyethylene glycols are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, buffer substances. Antioxidizing agents such as sodium bisulfite, sodium sulfite, or
ascorbic acid, either alone or combined, are suitable stabilizing agents. Also used are citric acid and its salts and sodium EDTA. In addition, parenteral solutions can contain preservatives, such as benzalkonium chloride, methyl-or propyl-paraben, and
chlorobutanol.
The compounds of the present invention can be administered alone or in combination with one or more additional therapeutic agents. By "administered in combination" or "combination therapy" it is meant that the compound of the present invention and one or more additional therapeutic agents are administered concurrently to the mammal being treated. When administered in combination, each component may be administered at the same time or sequentially in any order at different points in time.
Thus, each component may be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.
The compounds of the present invention are also useful as standard or reference compounds, for example as a quality standard or control, in tests or assays involving the inhibition of ROCK. Such compounds may be provided in a commercial kit, for example, for use in pharmaceutical research involving ROCK. For example, a compound of the present invention could be used as a reference in an assay to compare its known activity to a compound with an unknown activity. This would ensure the experimentor that the assay was being performed properly and provide a basis for comparison, especially if the test compound was a derivative of the reference compound. When developing new assays or protocols, compounds according to the present invention could be used to test their effectiveness.
The present invention also encompasses an article of manufacture. As used herein, article of manufacture is intended to include, but not be limited to, kits and packages. The article of manufacture of the present invention, comprises: (a) a first container; (b) a pharmaceutical composition located within the first container, wherein the composition, comprises: a first therapeutic agent, comprising: a compound of the present invention or a pharmaceutically acceptable salt form thereof; and, (c) a package insert stating that the pharmaceutical composition can be used for the treatment of a cardiovascular and/or inflammatory disorder (as defined previously). In another embodiment, the package insert states that the pharmaceutical composition can be used in combination (as defined previously) with a second therapeutic agent to treat cardiovascular and/or inflammatory
disorder. The article of manufacture can further comprise: (d) a second container, wherein components (a) and (b) are located within the second container and component (c) is located within or outside of the second container. Located within the first and second containers means that the respective container holds the item within its boundaries.
The first container is a receptacle used to hold a pharmaceutical composition. This container can be for manufacturing, storing, shipping, and/or individual/bulk selling. First container is intended to cover a bottle, jar, vial, flask, syringe, tube (e.g., for a cream preparation), or any other container used to manufacture, hold, store, or distribute a pharmaceutical product.
The second container is one used to hold the first container and, optionally, the package insert. Examples of the second container include, but are not limited to, boxes (e.g., cardboard or plastic), crates, cartons, bags (e.g., paper or plastic bags), pouches, and sacks. The package insert can be physically attached to the outside of the first container via tape, glue, staple, or another method of attachment, or it can rest inside the second container without any physical means of attachment to the first container. Alternatively, the package insert is located on the outside of the second container. When located on the outside of the second container, it is preferable that the package insert is physically attached via tape, glue, staple, or another method of attachment. Alternatively, it can be adjacent to or touching the outside of the second container without being physically attached.
The package insert is a label, tag, marker, etc. that recites information relating to the pharmaceutical composition located within the first container. The information recited will usually be determined by the regulatory agency governing the area in which the article of manufacture is to be sold (e.g., the United States Food and Drug
Administration). Preferably, the package insert specifically recites the indications for which the pharmaceutical composition has been approved. The package insert may be made of any material on which a person can read information contained therein or thereon. Preferably, the package insert is a printable material (e.g., paper, plastic, cardboard, foil, adhesive-backed paper or plastic, etc.) on which the desired information has been formed (e.g., printed or applied).
Other features of the invention will become apparent in the course of the following descriptions of exemplary embodiments that are given for illustration of the
invention and are not intended to be limiting thereof. The following Examples have been prepared, isolated and characterized using the methods disclosed herein.
VI. GENERAL SYNTHESIS INCLUDING SCHEMES
The compounds of the present invention may be synthesized by many methods available to those skilled in the art of organic chemistry (Maffrand, J.P. et al,
Heterocycles, 16(l):35-37 (1981)). General synthetic schemes for preparing compounds of the present invention are described below. These schemes are illustrative and are not meant to limit the possible techniques one skilled in the art may use to prepare the compounds disclosed herein. Different methods to prepare the compounds of the present invention will be evident to those skilled in the art. Additionally, the various steps in the synthesis may be performed in an alternate sequence in order to give the desired compound or compounds.
Examples of compounds of the present invention prepared by methods described in the general schemes are given in the intermediates and examples section set out hereinafter. Preparation of homochiral examples may be carried out by techniques known to one skilled in the art. For example, homochiral compounds may be prepared by separation of racemic products by chiral phase preparative HPLC. Alternatively, the example compounds may be prepared by methods known to give enantiomerically enriched products. These include, but are not limited to, the incorporation of chiral auxiliary functionalities into racemic intermediates which serve to control the diastereoselectivity of transformations, providing enantio-enriched products upon cleavage of the chiral auxiliary.
The compounds of the present invention can be prepared in a number of ways known to one skilled in the art of organic synthesis. The compounds of the present invention can be synthesized using the methods described below, together with synthetic methods known in the art of synthetic organic chemistry, or by variations thereon as appreciated by those skilled in the art. Preferred methods include, but are not limited to, those described below. The reactions are performed in a solvent or solvent mixture appropriate to the reagents and materials employed and suitable for the transformations being affected. It will be understood by those skilled in the art of organic synthesis that the functionality present on the molecule should be consistent with the transformations
proposed. This will sometimes require a judgment to modify the order of the synthetic steps or to select one particular process scheme over another in order to obtain a desired compound of the invention.
It will also be recognized that another major consideration in the planning of any synthetic route in this field is the judicious choice of the protecting group used for protection of the reactive functional groups present in the compounds described in this invention. An authoritative account describing the many alternatives to the trained practitioner is Greene et al. (Protective Groups in Organic Synthesis, 4th Edition, Wiley- Interscience (2006)).
1g 1h
Compounds of this invention with the structures of If, lg and lh can be prepared as shown in Scheme 1. Suzuki-Miyaura coupling between 4-halopyridine derivative la and methoxy aniline boronic acid or boronate lb, in the presence of a base such as
K3PO4, and a Pd catalyst such as PdCi2(dppf), affords intermediate lc. Aldehyde lc is either reduced using a reducing reagent such as NaBH4, or treated with an alkyl metal reagent such as a Grignard's reagent, to afford alcohol Id. Ring closure of Id by the treatment with a strong acid, such as HBr, affords tricyclic aniline common intermediate
le. Amide formation affords target If by coupling intermediate le with an appropriate carboxylic acid in the presence of a coupling reagent, such as HATU, EDC or T3P, and a base such as DIEA. Urea formation of intermediate le with an appropriate amine affords target lg under conditions such as treating le with phosgene, or CD I, at the presence of a base such as TEA, to form isocyanate, which reacts with an appropriate amine. When intermediate le is treated with an appropriate chloroformate in the presence of a base such as TEA, target lh can be afforded.
Scheme 2
2c 1e
Alternatively, common intermediate le could be prepared as shown in Scheme 2. Suzuki-Miyaura coupling between 4-halopyridine derivative la and fluorophenyl boronic acid or boronate 2a, in the presence of a base such as K3PO4, and a Pd catalyst such as PdCl2(dppf), affords intermediate 2b. Aldehyde 2b is either reduced using a reducing reagent such as NaBH4, or treated with an alkyl metal reagent such as a Grignard's reagent, to afford alcohol 2c. Ring closure of Id by treatment with a base, such as NaH, CS2CO3, etc, followed by removal of protecting group such as Boc group using TFA, affords the tricyclic common intermediate le.
Scheme 3
3f 3g 3h
Compounds of this invention with the structure of 3f, 3g and 3h could be prepared as shown in Scheme 3. Suzuki-Miyaura coupling between 4-pyridine boronic acid or boronate derivative 3a and bromobenzaldehyde derivative 3b, or other appropriate
Suzuki coupling partners, in the presence of a base such as K3PO4, and a Pd catalyst such as PdCl2(dppf), affords intermediate 3c. Aldehyde 3c is either reduced using a reducing reagent such as NaBH4, or treated with an alkyl metal reagent such as a Grignard's reagent, to afford alcohol 3d. Ring closure of 3d by treatment with a base, such as NaH, CS2CO3, etc, followed by removal of protecting group such as Boc by treating with TFA, affords the tricyclic common intermediate 3e. Amide formation affords target 3f by coupling intermediate 3e with an appropriate carboxylic acid in the presence of a coupling reagent, such as HATU, EDC or T3P, and a base such as DIEA. Urea formation of intermediate 3e with an appropriate amine affords target 3g under conditions such as treating 3e with phosgene, or CDI, at the presence of a base such as TEA, to form isocyanate, which reacts with an appropriate amine. When intermediate 3e is treated with
an appropriate chloroformate in the presence of a base such as TEA, target 3h can be afforded.
Scheme 4
4h 4i 4j
Compounds of this invention with the structure of 4h, 4i and 4j could be prepared as shown in Scheme 4. Aldehyde 4a is either reduced using a reducing reagent such as NaBH4, or treated with an alkyl metal reagent such as a Grignard's reagent, to afford alcohol 4b. The alcohol is protected using a protecting group such as TBS to give 4c, which is then converted to boronic acid or boronate 4d under Miyaura condition. Suzuki- Miyaura coupling between 4d and chloropyrimidine derivative 4e, in the presence of a base such as K3P04, and a Pd catalyst such as Pd(PPh3)4, affords intermediate 4f.
Removal of the TBS protecting group and closure of the ring by treating 4f with TBAF followed by removal of protecting group such as Boc by treating with TFA, affords common intermediate 4g. Amide, urea and carbamate formation affords target 4h, 4i and 4j.
5a 5b 5c
5f 5g
Compounds of this invention with the structure of 5e, 5f and 5g could be prepared as shown in Scheme 5. Suzuki-Miyaura coupling between 5a and 5b, in the presence of a base such as K3PO4, and a Pd catalyst such as Pd(PPh3)4, affords intermediate 5c.
Removal of the protecting group such Boc by treating with an acid such as TFA, affords common intermediate 5d. Amide, urea and carbamate formation affords target 5e, 5f and 5g-
Scheme 6
Compounds of this invention with the structure of 6g, 6h and 6i could be prepared as shown in Scheme 6. Suzuki-Miyaura coupling between 6a and 6b, in the presence of a base such as K3PO4, and a Pd catalyst such as Pd(PPh3)4, affords intermediate 6c. Amide formation affords 6d by coupling intermediate 6c with an appropriate amine in the presence of a coupling reagent, such as HATU, EDC or T3P, and a base such as DIEA. Ring closure by treating 6d with a base such as NaH, affords 6e. Removal of the protecting group such Boc by treating with an acid such as TFA, affords common intermediate 6f. Amide, urea and carbamate formation affords target 6g, 6h and 6i.
Purification of intermediates and final products was carried out via either normal or reverse phase chromatography. Normal phase chromatography was carried out using prepacked S1O2 cartridges eluting with either gradients of hexanes and EtOAc or DCM and MeOH unless otherwise indicated. Reverse phase preparative HPLC was carried out using CI 8 columns eluting with gradients of Solvent A (90% H20, 10% MeOH, 0.1%
TFA) and Solvent B (10% H20, 90% MeOH, 0.1% TFA, UV 220 nm) or with gradients of Solvent A (90% H20, 10% ACN, 0.1% TFA) and Solvent B (10% H20, 90% ACN, 0.1% TFA, UV 220 nm) or with gradients of Solvent A (98% H20, 2% ACN, 0.05% TFA) and Solvent B (98% ACN, 2% H20, 0.05% TFA, UV 220 nm) (or) SunFire Prep C18 OBD 5μ 30x100mm, 25 min gradient from 0-100% B. A = H20/ACN/TFA
90: 10:0.1. B = ACN/H20/TFA 90: 10:0.1 (or) Waters XBridge C18, 19 x 200 mm, 5-μιη particles; Guard Column: Waters XBridge CI 8, 19 x 10 mm, 5-μιη particles; Solvent A: water with 20-mM ammonium acetate; Solvent B: 95:5 acetonitrile:water with 20-mM ammonium acetate; Gradient: 25-65% B over 20 minutes, then a 5-minute hold at 100% B; Flow: 20 mL/min or with gradients of Solvent A (5:95 acetonitrile:water with 0.1% formic acid) and Solvent B (95:5 acetonitrile:water with 0.1% formic acid).
Unless otherwise stated, analysis of final products was carried out by reverse phase analytical HPLC.
Method A: SunFire C18 column (3.5 μιη C18, 3.0 x 150 mm). Gradient elution
(1.0 mL/min) from 10-100% Solvent B over 10 min and then 100% Solvent B for 5 min was used. Solvent A is (95% water, 5% acetonitrile, 0.05% TFA) and Solvent B is (5% water, 95% acetonitrile, 0.05% TFA, UV 254 nm).
Method B: XBridge Phenyl column (3.5 μιη C18, 3.0 x 150 mm). Gradient elution (1.0 mL/min) from 10-100% Solvent B over 10 min and then 100% Solvent B for
5 min was used. Solvent A is (95% water, 5% acetonitrile, 0.05% TFA) and Solvent B is
(5% water, 95% acetonitrile, 0.05% TFA, UV 254 nm).
Method C: Waters BEH C18, 2.1 x 50 mm, 1.7-μιη particles; Mobile Phase A:
5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile:water with 10 mM ammonium acetate; Temperature: 40 °C; Gradient: 0.5 min hold at 0%B, 0-100% B over 4 minutes, then a 0.5-minute hold at 100% B; Flow: 1 mL/min.
Method D: Waters BEH C18, 2.1 x 50 mm, 1.7-μιη particles; Mobile Phase A: 5:95 methanohwater with 10 mM ammonium acetate; Mobile Phase B: 95:5
methanohwater with 10 mM ammonium acetate; Temperature: 40 °C; Gradient: 0.5 min hold at 0%B, 0-100% B over 4 minutes, then a 0.5-minute hold at 100% B; Flow: 0.5 mL/min.
Method E: Waters BEH C18, 2.1 x 50 mm, 1.7-μιη particles; Mobile Phase A: 5:95 acetonitrile:water with 0.05% TFA; Mobile Phase B: 95:5 acetonitrile:water with 0.05% TFA; Temperature: 50 °C; Gradient: 0-100% B over 3 minutes; Flow: 1.1 1 mL/min.
Method F: Waters BEH CI 8, 2.1 x 50 mm, 1.7-μιη particles; Mobile Phase A:
5:95 acetonitrile:water with 10 mM ammonium acetate; Mobile Phase B: 95:5 acetonitrile: water with 10 mM ammonium acetate; Temperature: 50 °C; Gradient: 0- 100% B over 3 minutes; Flow: 1.1 1 mL/min.
Method G: Ascentis Express CI 8 (2.7 μιη, 4.6 x 50 mm). Gradient elution (4.0 mL/min) from 0-100% Solvent B over 4 min. Solvent A is (95% water, 5% acetonitrile, 10 mM NH4OAc) and Solvent B is (5% water, 95% acetonitrile, 10 mM NH4OAc, UV 220 nm).
Method H: Ascentis Express CI 8 (2.7 μιη, 4.6 x 50 mm). Gradient elution (4.0 mL/min) from 0-100% Solvent B over 4 min. Solvent A is (95% water, 5% acetonitrile, 0.1% TFA) and Solvent B is (5% water, 95% acetonitrile, 0.1% TFA, UV 220 nm).
Intermediate 1 : 5H-Chromeno[3,4-c]pyridin-8-amine
Intermediate la:
To a stirred solution of 4-bromo-3-methoxyaniline (50 g, 247 mmol) in THF (1.5 L) were added B0C
2O (69 mL, 297 mmol) and TEA (45 mL, 322 mmol). The reaction mixture was refluxed for 12 h. The solvent was removed and the residue was taken in ethyl acetate. It was washed with water and brine, and then dried over sodium sulfate and concentrated. The crude mixture was purified by normal phase chromatography to give Intermediate la as white solid (60.0 g, 78%). LC-MS (ESI) m/z: 301.0 [M-H]
"; ¾ NMR (400MHz, DMSO-d
6) δ 9.48 (s, 1H), 7.40 (d, J=8.4 Hz, 1H), 7.37 (d, J=2.0 Hz, 1H), 6.96 (dd, J=8.4, 2.0 Hz, 1H), 3.79 (s, 3H), 1.48 (s, 9H).
Intermediate lb: tert-Butyl (3-methoxy-4-(4,4,5,5-tetramethyl-l,3,2-dioxaborolan-2- yl)phenyl)carbamate
To a stirred solution of la (25 g, 83 mmol) in DMF (750 mL) were added KOAc
(24.36 g, 248 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'4oi(l,3,2-dioxaborolane) (31.5 g, 124 mmol) and PdCi2(dppf)-CH2Ci2 adduct (6.76 g, 8.27 mmol). The reaction was heated at 100 °C for 12 h. The DMF was removed and the residue was taken in ethyl acetate. It was washed with water and brine, dried over sodium sulfate and concentrated. The crude mixture was purified by normal phase chromatography to provide Intermediate lb as white solid (15.0 g, 48%). XH NMR (400MHz, DMSO-d6) δ 9.45 (s, 1H), 7.41 (d, J=8.0 Hz, 1H), 7.17 (d, J=1.6 Hz, 1H), 7.00 (dd, J=8.0, 1.6 Hz, 1H), 3.68 (s, 3H), 1.48 (s, 9H), 1.24 (s, 12H).
To a stirred solution of lb (15.54 g, 44.5 mmol) in 1,4-dioxane (450 mL) and ¾0 (75mL) were added 4-chloronicotinaldehyde (6.0 g, 42.4 mmol), K3PO4 (36.0 g, 170 mmol), and PdCl2(dppf)-CH2Cl2 adduct (2.77 g, 3.39 mmol). The reaction mixture was heated at 100 °C for lhr under nitrogen. The reaction mixture was extracted with ethyl acetate. The combined organic layer was washed with water and brine, dried over sodium sulfate and then concentrated. Purification by normal phase chromatography provided Intermediate lc as yellow solid (12.0 g, 84%). LC-MS (ESI) m/z: 329.2 [M+H]+; ¾ NMR (400MHz, DMSO-d6) δ 9.75 (d, J=0.4 Hz, 1H), 9.63 (s, 1H), 8.89 (s, 1H), 8,79 (d, J=6.8 Hz, 1H), 7.43-7.40 (m, 2H), 7.29 (d, J=l 1.2 Hz, 1H), 7.20 (dd, J=11.2, 2.4 Hz, 1H), 3.67 (s, 3H), 1.50 (s, 9H).
Intermediate Id: tert-Butyl (4-(3-(hydroxymethyl)pyridin-4-yl)-3-methoxyphenyl) carbama
To a stirred solution of lc (30 g, 91 mmol) in MeOH (500 mL) was added NaBH4 (4.15 g, 110 mmol) at 0 °C under N2. The reaction was stirred at rt for lhr. The reaction was quenched with water (150mL) and methanol was removed. The residue was extracted with ethyl acetate (2x200 mL). The combined organic phase was washed with water and brine, dried over sodium sulfate and concentrated. The crude solid was further washed with hot 50% ethyl acetate in petroleum ether (50 mL) to provide Intermediate 1 d as off-white solid (30 g, 98%). LC-MS (ESI) m/z: 329.2 [M-H]"; XH NMR (400MHz, DMSO-d6) δ 9.45 (s, 1H), 8.67 (d, J=0.4 Hz, 1H), 8.43 (d, J=6.4 Hz, 1H), 7.38 (d, J=1.6 Hz, 1H), 7.12-7.03 (m, 3H), 5.14 (t, J=7.2 Hz, 1H), 4.03 (d, J=7.6 Hz, 1H), 3.68 (s, 3H), 1.50 (s, 9H). Intermediate -Chromeno[3,4-c]pyridin-8-amine
A suspension of Id (30 g, 91 mmol) in HBr (63% in water, 8.0 mL, 91 mmol) was heated at 100 °C overnight. The reaction mixture was concentrated. The residue was dissolved in water and it was basified with sodium hydroxide solution and then extracted with DCM (2x300 mL). The combined organic layer was washed with water and brine, dried over sodium sulfate and concentrated. The crude solid was washed with 20% of ethyl acetate in petroleum ether and then dried to give Intermediate 1 as yellow solid (15 g, 83%). LC-MS (ESI) m/z: 199.1 [M+H]
+; ¾ NMR (400MHz, DMSO-d
6) δ 8.40 (d, J=6.8 Hz, 1H), 8.31 (m, 1H), 7.57 (d, J=11.2 Hz, 1H), 7.50 (d, J=6.8 Hz, 1H), 6.33 (dd, J=11.2, 2.8 Hz, 1H), 6.14 (d, J=2.8 Hz, 1H), 5.72 (s, 2H), 5.06 (s, 2H).
Example I-l : 2-(2-Chlorophenyl)-N-(5H-chromeno[3,4-c]pyridin-8-yl)acetamide
A vial containing Intermediate 1 (70 mg, 0.353 mmol) were added DIEA (0.185 mL, 1.059 mmol), 2-(2-chlorophenyl)acetic acid (60.2 mg, 0.353 mmol) and T3P (50% in EtOAc, 0.589 mL, 0.989 mmol). The reaction was stirred at rt for 4 h. Purification by reverse phase chromatography afforded white solid of Example I-l as TFA salt (143 mg, 87%). LC-MS (ESI) m/z: 351.0/353.0[M+H]+; 'H NMR (400MHZ, CD3OD) δ 7.11 (d, J=6.3 Hz, 1H), 7.07 (s, 1H), 6.66 (d, J=6.3 Hz, 1H), 6.48 (d, J=8.8 Hz, 1H), 6.02 (d, J=2.0 Hz, 1H), 5.92 - 5.83 (m, 3H), 5.80 - 5.75 (m, 2H), 3.80 (s, 2H), 2.40 (s, 2H); Analytical HPLC RT A: 5.31 min, B: 5.79 min.
The compounds listed in Table I were prepared following the same procedures as described for Example I- 1.
-l : N-(5H-Chromeno[3,4-c]pyridin-8-yl)indoline-l-carboxamide
To a cooled solution (0 °C) of Intermediate 1 (50 mg, 0.252 mmol) in THF (2 mL) was added CDI (61.4 mg, 0.378 mmol). After stirred for 10 min, the reaction was warmed to rt and was stirred at rt for 40 min. To the reaction was added indoline (0.057 mL, 0.504 mmol) and the reaction was stirred at 50 °C for 3 h. The solvent was removed.
Purification by reverse phase chromatography afforded Example II- 1 as white solid (6.2 mg, 7%). LC-MS (ESI) m/z: 344.15[M+H]+; XH NMR (500MHz, DMSO-d6) δ 8.71 (s, IH), 8.52 (d, J=4.7 Hz, IH), 8.44 (s, IH), 7.87 (d, J=8.3 Hz, 2H), 7.71 (d, J=4.4 Hz, IH), 7.42 - 7.33 (m, 2H), 7.21 (d, J=7.4 Hz, IH), 7.14 (t, J=7.7 Hz, IH), 6.92 (t, J=7.3 Hz,
IH), 5.19 (s, 2H), 4.15 (t, J=8.4 Hz, 2H), 3.18 (t, J=8.4 Hz, 2H); Analytical HPLC RT E: 1.47 min, B: 1.74 min.
The compounds listed in Table II were prepared by following the same procedure described in Example II- 1.
- 1 : Phenyl 5H-chromeno[3,4-c]pyridin-8-ylcarbamate
To a solution of Intermediate 1 (13.8 mg, 0.069 mmol) in DCE (1 mL) were added DIEA (0.048 mL, 0.28 mmol) and phenyl chloroformate (22 mg, 0.14 mmol). The reaction vial was shaken for 3 hrs. The solvent was removed. Purification by reverse phase chromatography afforded Example III- 1 as solid (5.7 mg, 26%). LC-MS (ESI) m/z: 319.2[M+H]+; 'H NMR (500MHZ, DMSO-d6) δ 8.39 (d, J=5.2 Hz, IH), 8.30 (s, IH), 7.57 (d, J=8.2 Hz, IH), 7.51 (d, J=5.2 Hz, IH), 7.24 (t, J=7.8 Hz, IH), 7.16 (t, J=7.8 Hz, 2H), 6.78 - 6.72 (m, 3H), 6.34 (dd, J=8.5, 1.8 Hz, IH), 6.16 (d, J=1.8 Hz, IH), 5.70 (s, 2H); Analytical HPLC RT C: 2.40 min, D: 3.54 min.
The compounds listed in Table III were prepared by following the same procedure as described in Example III- 1.
Table III
Example IV- 1. 3 -(3 -Methoxyphenyl)-N-(9H-pyrido [3 ,4-b] indol-7-yl)propanamide
Example IV-1A: Methyl 3-amino-4-(3-fluoropyridin-4-yl)benzoate
Methyl 3-amino-4-bromobenzoate (4 g, 17.39 mmol), (3-fluoropyridin-4- yl)boronic acid (5.5 g, 39.0 mmol), dioxane (10 mL), water (2 mL) and potassium carbonate (8.41 g, 60.9 mmol) were taken in a dried two neck RB (25mL) and purged with nitrogen for 10 minutes. To this mixture was added PdCi2(dppf) (1.27 g, 1.74 mmol) at 50 °C. The mixture was flushed with nitrogen and heated at 80 °C for 8 h. The reaction mixture was cooled to room temperature, then was diluted with the DCM. The organic phase was washed with the water, dried over sodium sulphate. The crude compound was purified by silica gel chromatography (ethyl acetate/petroleum ether, (30-65%) to afford 2.9 g (68%) of the title compound. LC-MS (ESI) m/z: 241.0 [M+H]+; XH NMR (400 MHz, chloroform-d) δ ppm 8.60 (d, J=1.57 Hz, 1 H) 8.52 (dd, J=4.86, 1.10 Hz, 1H) 7.48 - 7.52 (m, 2 H) 7.35 - 7.39 (m, 1H) 7.19 (d, J=7.78 Hz, 1H) 3.93 (s, 3 H) 3.79 - 3.84 (m, 2 H).
Example I -1B: 9H-Pyrido[3,4-Z?]indole-7-carboxylic acid
To pyridine hydrochloride (1.5 g, 12.98 mmol) at 150 °C, was added methyl Intermediate 1A (lg, 4.06 mmol) under nitrogen atmosphere. The mixture was heated to 170 °C for 2 h, then was allowed to cool to rt. The reaction mixture was quenched with aq. NaOH and stirred for 3 h. the reaction mixture was neutralized with acetic acid and concentrated under reduced pressure. The crude mass was treated with water and the solid
was collected by filtration and dried to afford Example IB (450 mg, 52%). The material was used without further purification. LC-MS (ESI) m/z: 241.0 [M+H]+; XH NMR (400 MHz, DMSO-d6) 5 ppm 11.79 (bs, 1 H) 8.97 (s, 1 H) 8.37 (d, J=5.27 Hz, 1 H) 8.1 1 - 8.29 (m, 3 H) 7.83 (d, J=8.28 Hz, 1 H).
Example IV- -(Trimethylsilyl)ethyl 9H-pyrido[3,4-b]indol-7-ylcarbamate
To a solution of Example IB (200 mg, 0.942 mmol) in dioxane (5 mL) at rt, were added TEA (0.394 mL, 2.83 mmol) and diphenylphosphoryl azide (648 mg, 2.356 mmol). The mixture was heated at 50 °C for 2 h, then 2-(trimethylsilyl)ethanol (390 mg, 3.30 mmol) was added. The mixture was heated at 80 °C overnight. The mixture was concentrated to afford 300 mg of Example 1C, which was used in the following step without purification. LC-MS (ESI) m/z: 328.1 [M+H]+.
Example IV-1 -Pyrido[3,4-b]indol-7-amine
Example 1C (300mg, 0.916 mmol) was dissolved in Dioxane (5 mL). cone. HC1 was added and the mixture was heated at 50 °C for 2hrs. The reaction mixture was concentrated and the residue was washed with the pet. ether and diethyl ether. The solid obtained was taken to the next step without further purification to afford Example ID. LC-MS (ESI) m/z: 184.1 [M+H]+.
To a solution of Example ID (30 mg, 0.164 mmol) in DMF (1 mL), was added HATU (78 mg, 0.205 mmol). After 3 min., 3-(3-methoxyphenyl)propanoic acid (29.5 mg, 0.164 mmol) and DIPEA (0.071 mL, 0.409 mmol) were added. The mixture was stirred at rt for 3 h, then was diluted with DCM. The organic phase was washed with water, dried over sodium sulfate and concentrated. The product was purified by preparative HPLC to afford Example 1 (3 mg, 5% yield). LC-MS (ESI) m/z: 346.2 [M+H]+; 'H NMR (400 MHz, DMSO-d6) δ ppm 11.83 (s, 1 H) 10.22 (s, 1 H) 8.93 (s, 1 H) 8.37 (d, J=5.46 Hz, 1 H) 8.25 (d, J=1.38 Hz, 1 H) 8.18 - 8.22 (m, 2 H) 7.30 (dd, J=8.63, 1.79 Hz, 1 H) 7.21 (t, J=8.09 Hz, 1 H) 6.84 - 6.88 (m, 2 H) 6.77 (ddd, J=8.25, 2.51, 0.85 Hz, 1 H) 3.74 (s, 3 H) 2.91 - 2.97 (m, 2 H) 2.68 - 2.74 (m, 2 H); HPLC RT method G: 1.61 min., method H: 1.97 min.
Example IV-2: 2-(3-Chlorophenyl)-N-(9H-pyrido[3,4-b]indol-7-yl)acetamide
According to the procedure for the preparation of Example IV- 1, Example ID (30 mg, 0.164 mmol) was coupled with 2-(3-chlorophenyl)acetic acid (27.9 mg, 0.164 mmol) to afford Example 2 (4 mg, 7% yield). LC-MS (ESI) m/z: 336.0 [M+H]+; ¾ NMR (400 MHz, DMSO-d6) δ ppm 11.56 (s, 1 H) 10.43 (s, 1 H) 8.83 (d, J=0.75 Hz, 1 H) 8.31 (d, J=5.27 Hz, 1 H) 8.11 - 8.17 (m, 2 H) 8.02 (d, J=5.33 Hz, 1 H) 7.46 (t, J=1.57 Hz, 1 H) 7.32 - 7.42 (m, 3H) 7.30 (dd, J=8.66, 1.69 Hz, 1 H) 3.75 (s, 2 H); HPLC RT method G: 1.67 min., method H: 2.05 min.
Example IV-3 : 2-(3-Fluorophenyl)-N-(9H-pyrido[3,4-b]indol-7-yl)acetamide
According to the procedure for the preparation of Example IV- 1, Example ID (30 mg, 0.164 mmol) was coupled with 2-(3-fluorophenyl)acetic acid (25.2 mg, 0.164 mmol) to afford Example 3 (7 mg, 13% yield). LC-MS (ESI) m/z: 320.0 [M+H]+; XH NMR (400 MHz, DMSO-d6) δ ppm 12.50 (s, 1 H) 10.68 (s, 1 H) 9.17 (s, 1 H) 8.60 (d, J=6.15 Hz, 1 H) 8.52 (d, J=6.15 Hz, 1 H) 8.41 (d, J=8.66 Hz, 1 H) 8.37 (d, J=1.38 Hz, 1 H) 7.44 (dd, J=8.78, 1.76 Hz, 1 H) 7.37 - 7.42 (m, 1 H) 7.20 - 7.25 (m, 2 H) 7.09 - 7.15 (m, 1 H) 3.80 (s, 2 H).; HPLC RT method G: 1.53 min., method H: 1.89 min.
According to the procedure for the preparation of Example IV- 1, Example ID (30 mg, 0.164 mmol) was coupled with 2-phenylacetic acid (22.3 mg, 0.164 mmol) to afford Example 4 (4 mg, 8% yield). LC-MS (ESI) m/z: 302.2 [M+H]+; ¾ NMR (400 MHz, DMSO-d6) 5 ppm 11.57 (s, 1 H) 10.41 (s, 1 H) 8.83 (s, 1 H) 8.31 (d, J=5.27 Hz, 1 H) 8.16 (d, J=1.51 Hz, 1 H) 8.14 (d, J=8.53 Hz, 1 H) 8.02 (d, J=5.21 Hz, 1 H) 7.24 - 7.41 (m, 6 H) 3.70 - 3.73 (m, 2 H); HPLC RT method M: 1.47 min., method N: 1.83 min.
Example IV-5: 2-(3-Cyanophenyl)-N-(9H-pyrido[3,4-b]indol-7-yl)acetamide
According to the procedure for the preparation of Example IV- 1, Example ID (30 mg, 0.164 mmol) was coupled with 2-(3-cyanophenyl)acetic acid (26.4 mg, 0.164 mmol) to afford Example 5 (7 mg, 13% yield). LC-MS (ESI) m/z: 327.0 [M+H]+; XH NMR (400
MHz, DMSO-d6) δ ppm 12.47 (s, 1 H) 10.70 (s, 1 H) 9.16 (s, 1 H) 8.57 - 8.61 (m, 1 H) 8.52 (d, J=6.02 Hz, 1 H) 8.41 (d, J=8.72 Hz, 1 H) 8.35 (d, J=1.44 Hz, 1 H) 7.82 - 7.85 (m, 1 H) 7.69 - 7.79 (m, 2 H) 7.55 - 7.62 (m, 1 H) 7.44 (dd, J=8.75, 1.79 Hz, 1 H) 3.87 (s, 2 H); HPLC RT method G: 1.42 min., method H: 1.75 min.