WO2015000164A1 - 滤波器、通信装置及通信系统 - Google Patents

滤波器、通信装置及通信系统 Download PDF

Info

Publication number
WO2015000164A1
WO2015000164A1 PCT/CN2013/078840 CN2013078840W WO2015000164A1 WO 2015000164 A1 WO2015000164 A1 WO 2015000164A1 CN 2013078840 W CN2013078840 W CN 2013078840W WO 2015000164 A1 WO2015000164 A1 WO 2015000164A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
side plates
piston
plate
diaphragm
Prior art date
Application number
PCT/CN2013/078840
Other languages
English (en)
French (fr)
Inventor
许少峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/078840 priority Critical patent/WO2015000164A1/zh
Priority to EP13888604.9A priority patent/EP3002818B1/en
Priority to CN201380002205.7A priority patent/CN103891041B/zh
Publication of WO2015000164A1 publication Critical patent/WO2015000164A1/zh
Priority to US14/986,289 priority patent/US9979065B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters

Definitions

  • the present invention relates to the field of radio communication technologies, and in particular, to a filter, a communication device, and a communication system. Background technique
  • Microwave filter is a kind of non-consumption two-port network widely used in microwave communication, radar, electronic countermeasures and microwave measuring instruments. It is used in the system to control the frequency response of signals, so that the useful signal frequency components are almost non-attenuating. Through the filter, the transmission of the frequency component of the unwanted signal is blocked.
  • microwave filter is an important part of the communication system.
  • the performance of the system determines the quality of the whole communication system. .
  • the conventional microwave filter generally includes a rectangular waveguide 31 and at least a metal-coated diaphragm 12 vertically disposed in the rectangular waveguide 31, the diaphragm 12 being located at the input port 31a of the rectangular waveguide 31 and Between the output ports 31b and having at least one window 15, the window 15 of the diaphragm 12 forms a series of resonant units with the peripheral cavity.
  • the input port of the rectangular waveguide refers to the port of the signal input rectangular waveguide
  • the output port refers to the port of the signal output rectangular waveguide (if the rectangular waveguide in the microwave filter, the signal is the microwave signal).
  • the microwave filter usually only corresponds to a fixed operating frequency band. If the working frequency band required by the existing network changes and is incompatible with the working frequency band inherent to the microwave filter, the system can only be operated normally by replacing the adapted device. higher cost.
  • Embodiments of the present invention provide a filter, a communication device, and a communication system to reduce device cost.
  • a filter comprising:
  • the first rectangular waveguide inner cavity is divided into a plurality of chambers extending along an input and output direction of the first rectangular waveguide;
  • At least one of the first side panels is a movable side panel that is positionally adjustable relative to the diaphragm.
  • the two first side panels are movable side panels that are positionally adjustable relative to the diaphragm.
  • the at least one film having a metal surface is vertically disposed between the top plate and the bottom plate.
  • the filter further includes: two second side plates respectively located opposite to the two first side plates, and two second side plates and a top plate and The bottom plate forms a second rectangular waveguide.
  • the at least one diaphragm is disposed vertically at a central position of the second rectangular waveguide.
  • the movable side panel that can adjust the spacing relative to the diaphragm is a piston side panel.
  • the filter further includes: a piston rod connected to an outer side of each of the piston side plates, and driving each of the piston side plates and the outer side of each of the piston side plates A drive for the connected piston rod to act.
  • the filter further includes: a controller coupled to the driving device, configured to perform, according to the operating frequency band of the input filter and the operating frequency band of the stored filter, Corresponding to the position of the piston type side plates, the control drive unit drives the two piston side plates to move within the first target position range.
  • the filter further includes:
  • a detecting device for detecting a filter output power is disposed at an output end of the second rectangular waveguide; the controller is connected to the detecting device signal for when the output power of the filter is less than a set power threshold
  • the control drive drives the two piston side plates to move to the second target position Within the fence.
  • the detecting device is a detecting diode.
  • the driving device includes two stepping motors, and each stepping motor correspondingly drives a piston type side plate and a piston rod connected to the outside of the piston side plate.
  • the driving device includes a stepping motor that simultaneously drives two piston side plates and a piston rod connected to the outside of each of the piston side plates.
  • the operating frequency band of the filter when the position of the movable side panel is adjusted, the operating frequency band of the filter will change.
  • the adjustment of the working band of the filter can be realized without replacing the related equipment, and the solution greatly saves the equipment cost compared with the prior art.
  • a communication device comprising the filter of any of the preceding embodiments. Since the operating frequency band of the filter is adjustable and the equipment cost is low, the communication device also has a low equipment cost.
  • a communication system comprising the communication device according to the foregoing embodiment. Since the operating frequency band of the filter in the communication device is adjustable and the device cost is low, the communication system also has a comparison. Low equipment costs. DRAWINGS
  • FIG. 1 is a schematic perspective view of a conventional microwave filter
  • FIG. 2a is a longitudinal cross-sectional view of a first embodiment of a filter of the present invention
  • Figure 2b is a schematic longitudinal cross-sectional view showing a second embodiment of the filter of the present invention.
  • FIG. 3 is a schematic diagram of a rectangular waveguide structure and its field distribution
  • FIG. 4 is a schematic perspective view of a third embodiment of a filter according to the present invention.
  • FIG. 5 is a schematic perspective structural view of a fourth embodiment of a filter according to the present invention.
  • FIG. 6 is a schematic perspective structural view of a fifth embodiment of a filter according to the present invention.
  • Fig. 7 is a schematic diagram showing the frequency response characteristic curve of the filter when the piston side plates are at different positions. Reference mark:
  • an embodiment of the present invention provides a filter.
  • a portion of the first side plate and the top plate and the bottom plate between the two first side plates form a first rectangular waveguide, and at least one surface of the metal film is connected between the top plate and the bottom plate and the first
  • the rectangular waveguide inner cavity is divided into a plurality of chambers extending along the input and output directions of the first rectangular waveguide, and the at least one first side plate is a movable side plate which can adjust the position of the diaphragm, and the position of the movable side plate can be adjusted.
  • the adjustment of the working frequency band of the filter is realized without replacing the related equipment, and the solution greatly saves the equipment cost compared with the prior art.
  • the present invention will be further described in detail below.
  • the specific type of the filter provided in the embodiment of the present invention is not limited, and may be, for example, a microwave filter, a radio frequency filter, or the like.
  • the microwave filter is a filter that operates in a microwave frequency band (ie, 300 MHz to 300 GHz).
  • the RF filter also known as the RFI filter, is mainly used in electronic equipment with high frequency operation (effective filtering frequency from KHz to GHz) for large attenuation of high frequency interference signals generated by high frequency electronic equipment.
  • the filter of the first embodiment of the present invention includes:
  • a top plate 25, a bottom plate 26, and two first side plates 16 between the top plate 25 and the bottom plate 26, and portions of the two first side plates 16 and the top plate 25 and the bottom plate 26 between the two first side plates 16 are formed.
  • At least one membrane 12 having a metal surface is coupled between the top plate 25 and the bottom plate 26 and partitions the first rectangular waveguide cavity into a plurality of chambers extending in the input and output directions of the first rectangular waveguide;
  • the diaphragm is usually in the form of a film, and the definition of the diaphragm is also derived.
  • the diaphragm is usually made of metal, or it can be obtained by surface metallization of film sheets of other materials.
  • the diaphragm 12 divides the rectangular waveguide inner cavity into a plurality of chambers extending along the input and output directions of the first rectangular waveguide. As shown in FIG. 2a, a diaphragm divides the rectangular waveguide inner cavity into two chambers, each chamber.
  • the diaphragm divides the rectangular waveguide inner cavity into a plurality of chambers extending in the input and output directions of the first rectangular waveguide.
  • the rectangular waveguide is a regular metal waveguide made of a metal material, rectangular in cross section, and filled with an air medium. It is one of the most commonly used transmission devices in microwave technology.
  • the rectangular waveguide has a simple structure, high mechanical strength, avoids external interference and radiation loss, and has the characteristics of low conductor loss and large power capacity. In current large and medium power microwave systems, rectangular waveguides are often used as transmission lines or as microwave components.
  • Figure 3 shows a common rectangular waveguide.
  • the width 13 of the rectangular waveguide 31 is a, the narrow side 24 is b, and the input and output directions are arranged along the z-axis.
  • the orientation of the rectangular waveguide in the figure is referenced.
  • the two plates on which the wide sides 13 are located are defined as the bottom plate and the top plate, respectively, and the two plate faces where the two narrow sides 24 (parallel to the YZ face) are defined as the side plates, and along the input and output directions
  • the two end faces (parallel to the XY plane) are defined as the input end face and the output end face, respectively.
  • Fig. 3 also shows the magnetic field distribution and electric field distribution of the rectangular waveguide.
  • the power line 22 is orthogonal to the magnetic field lines 23, and the closer to the center of the wide side 13 of the rectangular waveguide, the stronger the electric field.
  • a plane parallel to the direction of the magnetic field in the rectangular waveguide is generally referred to as an H plane, and a plane parallel to the direction of the electric field is referred to as an E plane.
  • At least one membrane 12 having a metal surface is disposed vertically, That is, it is set on the E plane.
  • This type of filter is also called an E-plane waveguide filter.
  • the structure design of the E-face waveguide filter is relatively simple, and the standing wave characteristics of the filter are also more easily controlled.
  • the diaphragm 12 is provided with a plurality of windows for forming a resonant unit.
  • the diaphragm is disposed on the E surface parallel to the side plates.
  • the inner cavity size of a rectangular waveguide is one of the important factors affecting the working frequency band of the filter.
  • the present invention uses this principle to realize the frequency band adjustment of the filter.
  • the position of the movable side plate is adjusted, the operating band of the filter will change.
  • the adjustment of the working band of the filter can be realized without replacing the related equipment, and the solution greatly saves the equipment cost compared with the prior art.
  • only one of the two first side panels 16 may be a movable side panel that is positionally adjustable relative to the diaphragm 12, such that adjustment of the filter operating frequency band is achieved.
  • the two first side panels 16 are movable side panels that are positionally adjustable relative to the diaphragm 12. In this way, both first side panels 16 can be adjusted to allow the filter to achieve better port standing wave characteristics (port standing waves are a key indicator of filter performance, reflecting the filter components and other components in the system. Matching degree).
  • the second embodiment of the filter of the present invention further comprises: two second side plates 14 respectively located opposite to each other of the two first side plates 16, and two second side plates 14 and The top plate 25 and the bottom plate 26 form a second rectangular waveguide.
  • the filter of this embodiment can be added by an existing filter (for example, the filter shown in FIG. 1), and only the movable side plate is added to the rectangular waveguide of the existing filter, and the installation cost is low.
  • the structure participating in the filtering function is: a first rectangular waveguide formed by a portion of the two first side plates 16 and the top plate 25 and the bottom plate 26 between the two first side plates 16, And a diaphragm 12 disposed in the first rectangular waveguide.
  • the cavity between the first side panel 16 and the adjacent second side panel 14 provides only a moving space for the movable side panel, which does not contribute to the filtering operation.
  • the specific structural form for realizing the position adjustment of the movable side panel is not limited.
  • a plurality of sets of oppositely positioned card positions may be disposed on the top plate 25 and the bottom plate 26, and the movable side plate is clamped in one of the set of card positions, and the card of the movable side plate is replaced.
  • the position adjustment of the diaphragm 12 can be achieved by setting the position.
  • the movable side plate is a piston type side plate, so that the position adjustment of the movable side plate is more flexible and the operation is more convenient.
  • the number of the diaphragms 12 is not limited, for example, one, two, etc., and the number and specific size of the windows of each of the diaphragms 12 are not limited, and these can be accurately calculated according to the prior art according to actual needs. And simulation to come.
  • the at least one diaphragm 12 is vertically disposed at a central position of the second rectangular waveguide. In the embodiment shown in FIG.
  • the number of the diaphragms 12 is one, located at a central position of the wide side of the second rectangular waveguide, that is, the inner cavity of the second rectangular waveguide is divided into two equal-sized sub-cavities, Since the electric field at the center of the wide side of the rectangular waveguide is usually the strongest, placing the diaphragm 12 at this position allows the filter to obtain better port standing wave characteristics.
  • the top plate 25, the bottom plate 26, the first side plate 16, and the second side plate 14 are made of a metal material, preferably an aluminum material, or a copper material.
  • the driving mode is not limited.
  • the two piston sides can be manually adjusted according to the pre-calculated correspondence between the working frequency band of the filter and the position of the two piston side plates.
  • the plate can be realized by the driving device within the range of the first target position.
  • the filter further includes: a piston rod 17 connected to the outside of each of the piston side plates, and a piston rod connected to each of the piston side plates and each of the piston side plates 17 operating drive device 18.
  • the driving device 18 includes two stepping motors 19, each of which drives a piston side plate and a piston rod 17 connected to the outside of the piston side plate, as shown in FIG. Shown.
  • the driving device 18 includes a stepping motor 19 that simultaneously drives two piston side plates and a piston rod 17 connected to the outside of each of the piston side plates, so that two The piston-type side plates move to the diaphragm 12 at the same distance, so that the cavities on both sides of the diaphragm 12 are always equal, so that the filter obtains good port standing wave characteristics.
  • the filter further includes: a controller 20 connected to the driving device 18 for connecting the working frequency band of the input filter and the operating frequency band of the stored filter and the The positional relationship of the piston type side plates, the control driving device 18 drives the two piston side plates to move into the first target position range.
  • the working frequency band of the filter can meet the working requirement, and it is not necessary to accurately position the piston side plate at a certain exact position, so the embodiment is sufficient
  • the filter with the cost and adjustment precision can be designed according to the actual demand, and it is convenient to adjust.
  • the positional relationship between the operating band of the filter and the two piston side plates can be obtained in advance by simulation calculation or related test statistics according to the prior art.
  • the specific type of the controller 20 is not limited, for example, a programmable controller or the like may be selected.
  • the correspondence between the working frequency band of the filter and the position of the two piston side plates may be expressed in various forms, such as a functional relationship, corresponding Relational data lists and more.
  • the band adjustment control of the filter can be designed as an adaptive closed loop control system.
  • the filter also includes:
  • the detecting device 21 for detecting the output power of the filter is disposed at the output end of the second rectangular waveguide; the controller 20 is connected to the detecting device 21 for controlling when the output power of the filter is less than the set power threshold
  • the drive unit 18 drives the two piston side plates to move within the second target position range.
  • the second target position range corresponds to the allowable range of the output power, and when the operating frequency band of the filter changes, the output power thereof also changes accordingly. Therefore, the variation of the filter operating band can be obtained by detecting the output power of the filter.
  • the controller 20 controls the driving device 18 to adjust the movement of the two piston side plates to the second. Within the target location range.
  • the specific type of the detecting device 21 is not limited as long as the output power of the filter can be detected, and for example, it can be a detecting diode or the like.
  • the frequency band adjustment control of the filter is automatically corrected and compensated by adding a feedback link, and the adaptive frequency band adjustment is easily realized, which is beneficial to improving the control system. Accuracy and stability.
  • the frequency response characteristic curve of the microwave filter when the piston side plates are at different positions is shown in Fig. 7. It can be seen from the figure that when the position of the piston side plate is adjusted, the passband frequency response of the microwave filter changes accordingly. By continuously changing the position of the piston side plate, the frequency response of the microwave filter can be continuously adjusted. Purpose, and, the microwave filter has a better port standing wave characteristic curve 17 in each working frequency band (the figure only shows the six operating frequency bands of the microwave filter when the piston side plates are at different positions, respectively Corresponding to the frequency response characteristic curve 101 106 ).
  • the filter provided by the embodiment of the present invention may be configured to: mount a diaphragm between the top plate and the bottom plate, and a movable side plate on both sides of the diaphragm; or, in a rectangular waveguide of the existing filter, the diaphragm Side panels are attached to both sides.
  • the manufacturing process can be done manually or automatically by an electrical device through a control program.
  • An embodiment of the present invention further provides a communication apparatus, including the filter described in any of the foregoing embodiments. Since the operating band of the filter is adjustable and the equipment cost is low, the communication device also has a low equipment cost.
  • the specific type of the communication device is not limited, and may be, for example, an ODU (Outdoor Unit, ODU for short), a satellite communication device, a base station communication device, a broadcast communication device, a radio communication device, or the like.
  • ODU Outdoor Unit
  • a satellite communication device for example, a satellite communication device, a base station communication device, a broadcast communication device, a radio communication device, or the like.
  • the embodiment of the present invention further provides a communication system, including the communication device described in the foregoing embodiment. Since the working frequency band of the filter in the communication device is adjustable and the device cost is low, the communication system also has Lower equipment costs.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer. , hard disk or CD, etc., including a number of instructions to make a computer device (can be a personal computer, a server, Or a network device or the like) performs the methods described in various embodiments of the present invention.
  • a computer device can be a personal computer, a server, Or a network device or the like

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种滤波器、通信装置和通信系统,滤波器包括:顶板、底板以及位于顶板和底板之间的两个第一侧板,两个第一侧板与顶板和底板位于两个第一侧板之间的部分形成第一矩形波导;至少一个具有金属表面的膜片,至少一个具有金属表面的膜片连接于顶板和底板之间并将第一矩形波导内腔分隔为若干个沿第一矩形波导的输入输出方向延伸的腔室;其中,至少一个第一侧板为可相对膜片调节位置的活动侧板。通过调节活动侧板的位置即可实现滤波器工作频带的调整,而无需更换相关设备,相比于现有技术,本方案大大节约了设备成本。

Description

滤波器、 通信装置及通信系统 技术领域 本发明涉及无线电通信技术领域, 特别是涉及一种滤波器、 通信装置及 通信系统。 背景技术
微波滤波器是一类无耗的二端口网络, 广泛应用于微波通信、 雷达、 电 子对抗及微波测量仪器中, 在系统中用来控制信号的频率响应, 使有用的信 号频率分量几乎无衰减的通过滤波器, 而阻断无用信号频率分量的传输。
随着现代微波通信、 尤其是卫星通信和移动通信的发展, 系统对通道的 选择性越来越高, 微波滤波器作为通信系统中的重要部分, 其性能的优劣决 定了整个通信系统的质量。
如图 1所示, 现有的微波滤波器通常包括矩形波导 31和竖直设置于矩形 波导 31内的至少表面为金属的膜片 12,所述膜片 12位于矩形波导 31的输入 端口 31a和输出端口 31b之间且具有至少一个窗口 15 , 膜片 12的窗口 15与 周边腔体形成一系列的谐振单元。 其中, 矩形波导的输入端口是指信号输入 矩形波导的端口, 输出端口是指信号输出矩形波导的端口 (如为微波滤波器 中的矩形波导, 则信号为微波信号)。 该微波滤波器通常只对应固定的工作频 带, 如果现网要求的工作频带发生变更, 与微波滤波器固有的工作频带不相 适应, 则只能通过更换相适应的设备来使系统正常工作, 设备成本较高。
发明内容
本发明实施例提供了一种滤波器、 通信装置及通信系统, 以减少设备成 本。
本发明的第一方面, 提供了一种滤波器, 包括:
顶板、 底板以及位于顶板和底板之间的两个第一侧板, 所述两个第一侧 板与顶板和底板位于两个第一侧板之间的部分形成第一矩形波导; 至少一个具有金属表面的膜片, 所述至少一个具有金属表面的膜片连接 于顶板和底板之间并将所述第一矩形波导内腔分隔为若干个沿所述第一矩形 波导的输入输出方向延伸的腔室;
其中, 至少一个第一侧板为可相对膜片调节位置的活动侧板。
在第一方面的一种可能的实现方式中, 两个第一侧板均为可相对膜片调 节位置的活动侧板。
在第一方面的一种可能的实现方式中, 所述至少一个具有金属表面的膜 片竖直设置于所述顶板和底板之间。
在第一方面的一种可能的实现方式中, 所述滤波器还包括: 分别位于两 个第一侧板相背对的外侧的两个第二侧板, 两个第二侧板与顶板和底板形成 第二矩形波导。
在第一方面的一种可能的实现方式中, 所述至少一个膜片竖直设置于第 二矩形波导的中央位置。
在第一方面的一种可能的实现方式中, 所述可相对膜片调节间距的活动 侧板为活塞式侧板。
在第一方面的一种可能的实现方式中, 滤波器还包括: 每一个活塞式侧 板外侧所连接的活塞杆, 以及驱动每一个活塞式侧板和所述每一个活塞式侧 板外侧所连接的活塞杆动作的驱动装置。
在第一方面的一种可能的实现方式中, 滤波器还包括: 与所述驱动装置 信号连接的控制器, 用于根据输入的滤波器的工作频带及存储的滤波器的工 作频带与两个活塞式侧板位置的对应关系, 控制驱动装置驱动两个活塞式侧 板移动至第一目标位置范围之内。
在第一方面的一种可能的实现方式中, 滤波器还包括:
用于检测滤波器输出功率的检波装置, 设置于第二矩形波导的输出端; 所述控制器与所述检波装置信号连接, 用于当滤波器的输出功率小于设 定的功率阔值时, 控制驱动装置驱动两个活塞式侧板移动至第二目标位置范 围之内。
在第一方面的一种可能的实现方式中, 所述检波装置为检波二极管。 在第一方面的一种可能的实现方式中, 所述驱动装置包括两个步进电机, 每一个步进电机对应驱动一个活塞式侧板和所述活塞式侧板外侧所连接的活 塞杆, 或者, 所述驱动装置包括一个步进电机, 所述步进电机同时驱动两个 活塞式侧板和每一个所述活塞式侧板外侧所连接的活塞杆。
在本发明实施例技术方案中, 当调节活动侧板的位置时, 滤波器的工作 频带将发生改变。 通过调节活动侧板的位置即可实现滤波器工作频带的调整, 而无需更换相关设备, 相比于现有技术, 本方案大大节约了设备成本。
本发明的第二方面, 提供了一种通信装置, 包括前述任一实施例所述的 滤波器。 由于滤波器的工作频带可调, 设备成本较低, 因此, 通信装置也具 有较低的设备成本。
本发明的第三方面, 提供了一种通信系统, 包括前述实施例所述的通信 装置, 由于通信装置中的滤波器的工作频带可调, 设备成本较低, 因此, 该 通信系统也具有较低的设备成本。 附图说明
图 1为现有微波滤波器立体结构示意图;
图 2a为本发明滤波器第一实施例的纵截面示意图;
图 2b为本发明滤波器第二实施例的纵截面示意图;
图 3为矩形波导结构及其场分布示意图;
图 4为本发明滤波器第三实施例的立体结构示意图;
图 5为本发明滤波器第四实施例的立体结构示意图;
图 6为本发明滤波器第五实施例的立体结构示意图;
图 7为滤波器在活塞式侧板处于不同位置时的频响特性曲线示意图。 附图标记:
25-顶板 26-底板 16-第一侧板
12-膜片 14-第二侧板 17-活塞杆
18-驱动装置 19-步进电机 20-控制器
21-检波装置 13-宽边 24-窄边
22-电力线 23-磁力线 31-矩形波导
15-窗口 3 la-输入端口 31b-输出端口
101~106-频响特性曲线 107-端口驻波特性曲线 具体实施方式
为了减少滤波器的设备成本, 本发明实施例提供了一种滤波器。 该技术 方案中, 两个第一侧板与顶板和底板位于两个第一侧板之间的部分形成第一 矩形波导, 至少一个表面为金属的膜片连接于顶板和底板之间并将第一矩形 波导内腔分隔为若干个沿第一矩形波导的输入输出方向延伸的腔室, 至少一 个第一侧板为可相对膜片调节位置的活动侧板, 通过调节活动侧板的位置即 可实现滤波器工作频带的调整, 而无需更换相关设备, 相比于现有技术, 本 方案大大节约了设备成本。 为使本发明的目的、 技术方案和优点更加清楚, 以下举具体实施例对本发明作进一步详细说明。
本发明实施例所提供的滤波器的具体类型不限, 例如可以为微波滤波器、 射频滤波器等, 微波滤波器是工作在微波频段(即 300MHz-300GHz ) 的滤波 器。 射频滤波器又称射频干扰滤波器, 主要用于高频工作 (有效滤波频率从 数 KHz到 GHz以上)的电子设备中, 用于较大的衰减高频电子设备所产生的 高频干扰信号。
如图 2a所示, 本发明第一个实施例的滤波器, 包括:
顶板 25、 底板 26以及位于顶板 25和底板 26之间的两个第一侧板 16, 两个第一侧板 16与顶板 25和底板 26位于两个第一侧板 16之间的部分形成 第一矩形波导;
至少一个具有金属表面的膜片 12, 至少一个膜片 12连接于顶板 25和底 板 26之间并将第一矩形波导内腔分隔为若干个沿第一矩形波导的输入输出方 向延伸的腔室;
其中, 至少一个第一侧板 16为可相对膜片 12调节位置的活动侧板。 在滤波器的结构中, 膜片通常为薄膜状, 膜片的定义也因此而来。 膜片 通常为金属材质, 也可以为其它材质的薄膜片经表面金属化后得到。 膜片 12 将矩形波导内腔分隔为若干个沿第一矩形波导的输入输出方向延伸的腔室, 如图 2a中, 一个膜片将矩形波导内腔分隔为了 2个腔室, 每个腔室由部分顶 板、 部分底板、 膜片和一个侧板构成, 且沿第一矩形波导的输入输出方向延 伸。 由于侧板的延伸方向也和第一矩形波导的输入输出方向一致, 因此也可 认为膜片将矩形波导内腔分隔为了若干个沿第一矩形波导的输入输出方向延 伸的腔室。 具体的, 膜片的数量(如 X个)与所分隔成的腔室的数量(如 Y 个)之间满足关系式: Y=X+1 , 其中, X和 Υ均为正整数。 矩形波导是一种 由金属材料制成、截面形状为矩形、 内部填充空气介质的规则金属波导, 它是 微波技术中最常用的传输设备之一。 矩形波导的结构简单, 机械强度大, 可 避免外界干扰和辐射损耗, 并且具有导体损耗低, 功率容量大的特点。 在目 前大、 中功率的微波系统中常釆用矩形波导作为传输线或构成微波元器件。
图 3所示为常见的矩形波导, 矩形波导 31的宽边 13尺寸为 a, 窄边 24 尺寸为 b , 输入输出方向沿 z轴方向设置, 以该图中矩形波导的放置方向为参 照, 两个宽边 13所在的两个板面 (平行于 XZ面)分别定义为底板和顶板, 两个窄边 24 (平行于 YZ面 )所在的两个板面定义为侧板, 而沿输入输出方 向的两个端面 (平行于 XY面)分别定义为输入端面和输出端面。 图 3 同时 示出了矩形波导的磁场分布和电场分布, 电力线 22与磁力线 23正交, 且越 靠近矩形波导宽边 13的中央位置, 电场越强。 通常将矩形波导内与磁场方向 平行的平面称为 H面, 将与电场方向平行的平面称为 E面。
在本发明的优选实施例中, 至少一个具有金属表面的膜片 12竖直设置, 也就是设置于 E面, 该类滤波器也被称为 E面波导滤波器, E面波导滤波器 的结构设计较为简单, 并且滤波器的驻波特性也更容易得到控制。 膜片 12上 开有若干个窗口, 用于形成谐振单元。 较优的, 膜片设置于与侧板平行的 E 面。
通常, 矩形波导的内腔尺寸是影响滤波器工作频带的重要因素之一, 本 发明即是利用此原理实现滤波器的频带可调。 在本发明技术方案中, 当调节 活动侧板的位置时, 滤波器的工作频带将发生改变。 通过调节活动侧板的位 置即可实现滤波器工作频带的调整, 而无需更换相关设备, 相比于现有技术, 本方案大大节约了设备成本。
在本发明滤波器的其中一个实施例中, 两个第一侧板 16可以只有一个为 可相对膜片 12调节位置的活动侧板, 这样即可实现滤波器工作频带的调整。 但优选的, 两个第一侧板 16均为可相对膜片 12调节位置的活动侧板。 这样, 两个第一侧板 16均可以进行调节,可以使滤波器获得更好的端口驻波特性(端 口驻波是衡量滤波器性能的一个关键指标, 反映滤波器件与系统中其它部件 的匹配程度)。
如图 2b所示, 本发明滤波器的第二个实施例还包括: 分别位于两个第一 侧板 16相背对的外侧的两个第二侧板 14,两个第二侧板 14与顶板 25和底板 26形成第二矩形波导。 该实施例滤波器可由现有滤波器 (例如图 1所示的滤 波器)加装而成, 只需在现有滤波器的矩形波导内腔加装活动侧板即可, 加 装成本较低。 该实施例中, 滤波器工作时, 参与滤波功能的结构为: 两个第 一侧板 16与顶板 25和底板 26位于两个第一侧板 16之间的部分所形成的第 一矩形波导, 以及第一矩形波导内所设置的膜片 12。 第一侧板 16与相邻第二 侧板 14之间的腔体仅是为活动侧板提供移动空间, 对滤波工作并无贡献。
实现活动侧板位置调节的具体结构形式不限, 例如, 可以在顶板 25和底 板 26上设置多组位置相对的卡位, 活动侧板卡设于其中一组卡位, 更换活动 侧板的卡设位置即可实现相对膜片 12的位置调节。 优选的, 活动侧板为活塞 式侧板, 这样, 活动侧板的位置调节更加灵活, 操作也较为便利。 膜片 12的数量不限, 例如可以为一个、 两个等, 每个膜片 12所具有的 窗口的数量和具体尺寸也不限, 这些均可以根据现有技术结合实际需求, 经 过精确的计算和仿真来得出。 优选的, 所述至少一个膜片 12竖直设置于第二 矩形波导的中央位置。 在图 2b所示的实施例中, 膜片 12的数量为一个, 位 于第二矩形波导宽边的中央位置, 也就是将第二矩形波导的内腔分隔为两个 等大的子腔体, 由于矩形波导宽边中央位置的电场通常最强, 将膜片 12设置 于此位置可以使滤波器获得较好的端口驻波特性。
在本发明各实施例中, 顶板 25、 底板 26、 第一侧板 16、 第二侧板 14均 釆用金属材质, 优选为铝材, 也可以为铜材等。 当活动侧板为活塞式侧板时, 其驱动方式不限, 例如, 可以根据预先计算出的滤波器的工作频带与两个活 塞式侧板位置的对应关系列表, 手动调整两个活塞式侧板至第一目标位置范 围之内, 也可以通过驱动装置来实现。
如图 4所示的实施例, 该滤波器还包括: 每一个活塞式侧板外侧所连接 的活塞杆 17 , 以及驱动每一个活塞式侧板和每一个活塞式侧板外侧所连接的 活塞杆 17动作的驱动装置 18。 通过驱动装置 18驱动活塞式侧板运动, 可以 使活塞式侧板的位移量控制的更加精确, 使滤波器的频带调整更加准确, 并 且操作较为便利。
驱动装置 18的具体形式不限, 可以驱动两侧的活塞式侧板同步动作, 也 可以驱动两侧的活塞式侧板分别动作。 例如, 在一个实施例中, 驱动装置 18 包括两个步进电机 19 ,每一个步进电机 19对应驱动一个活塞式侧板和所述活 塞式侧板外侧所连接的活塞杆 17 , 如图 4所示。 但优选的, 驱动装置 18包括 一个步进电机 19,所述步进电机 19同时驱动两个活塞式侧板和每一个所述活 塞式侧板外侧所连接的活塞杆 17 , 这样, 可以使得两个活塞式侧板向膜片 12 移动的距离一致, 使膜片 12两侧的腔体始终等大, 从而使滤波器获得良好的 端口驻波特性。
如图 5所示, 该实施例中, 滤波器还包括: 与驱动装置 18信号连接的控 制器 20, 用于根据输入的滤波器的工作频带及存储的滤波器的工作频带与两 个活塞式侧板的位置对应关系, 控制驱动装置 18驱动两个活塞式侧板移动至 第一目标位置范围之内。
当两个活塞式侧板位于第一目标位置范围之内时, 滤波器的工作频带便 能够满足工作需求, 这时无需将活塞式侧板精确定位在某一确切位置, 因此, 该实施例充分考虑了滤波器的调节精度, 可以结合实际需求设计出成本与调 节精度相适应的滤波器, 并且调节起来较为方便。 滤波器的工作频带与两个 活塞式侧板的位置对应关系可以根据现有技术预先通过仿真计算或者相关试 验统计获得。 当需要调整滤波器的工作频带时, 只需要输入工作频带的数值 即可, 大大的简化了操作人员的操作步骤, 提高了操作效率, 并且准确度较 高。 控制器 20的具体类型不限, 例如可选用可编程控制器等等, 此外, 滤波 器的工作频带与两个活塞式侧板位置的对应关系可以表现为多种形式, 例如 函数关系式、 对应关系数据列表等等。
如图 6所示, 优选的, 可以将滤波器的频带调整控制设计为自适应的闭 环控制系统。 该滤波器还包括:
用于检测滤波器输出功率的检波装置 21 ,设置于第二矩形波导的输出端; 控制器 20与检波装置 21信号连接, 用于当滤波器的输出功率小于设定 的功率阔值时, 控制驱动装置 18驱动两个活塞式侧板移动至第二目标位置范 围之内。
该第二目标位置范围与输出功率的允许范围相对应, 当滤波器的工作频 带发生变化时, 其输出功率也会发生相应的变化。 因此, 可以通过检测滤波 器的输出功率来得到滤波器工作频带的变化情况。 当滤波器的输出功率小于 设定的功率阔值时, 表明滤波器的工作频带已变化至与需求不相适应, 这时 控制器 20控制驱动装置 18调整两个活塞式侧板移动至第二目标位置范围之 内。
检波装置 21的具体类型不限, 只要能够检测出滤波器的输出功率即可, 例如可以为检波二极管等。 该实施例通过增加反馈环节对滤波器的频带调整 控制进行自动修正和补偿, 容易实现自适应的频带调整, 有利于提高控制系 统的精确度和稳定性。
以微波滤波器为例, 微波滤波器在活塞式侧板处于不同位置时的频响特 性曲线请参照图 7 所示。 从图中可以看出, 当调整活塞式侧板的位置时, 微 波滤波器的通带频率响应随之变化, 通过连续的改变活塞式侧板的位置, 可 以达到连续调整微波滤波器频率响应的目的, 并且, 微波滤波器在各个工作 频带均具有较佳的端口驻波特性曲线 17 (该图中仅示意出了活塞式侧板处于 不同位置时,微波滤波器的六个工作频带, 分别对应频响特性曲线 101 106 )。
本发明实施例所提供的滤波器, 其制造方法可以包括: 在顶板和底板之 间安装膜片以及位于膜片两侧的活动侧板; 或者, 在现有滤波器的矩形波导 内、 膜片两侧加装活动侧板。 该制造过程可以人工完成, 也可以由电气设备 通过控制程序自动完成。
本发明实施例还提供了一种通信装置, 包括前述任一实施例所述的滤波 器。 由于滤波器的工作频带可调, 设备成本较低, 因此, 通信装置也具有较 低的设备成本。
通信装置的具体类型不限, 例如可以为 ODU ( Outdoor Unit, 室外单元, 简称 ODU )、 卫星通信装置、 基站通信装置、 广播通信装置、 电台通信装置 等等。
此外, 本发明实施例还进一步提供了一种通信系统, 包括前述实施例所 述的通信装置, 由于通信装置中的滤波器的工作频带可调, 设备成本较低, 因此, 该通信系统也具有较低的设备成本。
本发明所提供的实施例之间可以相互参考。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件, 但 很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案本 质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘 等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种滤波器, 其特征在于, 包括:
顶板 ( 25 )、 底板 ( 26 ) 以及位于顶板 ( 25 )和底板 ( 26 )之间的两个第 一侧板( 16 ), 所述两个第一侧板 ( 16 )与顶板( 25 )和底板( 26 )位于两个 第一侧板( 16)之间的部分形成第一矩形波导;
至少一个具有金属表面的膜片 (12), 所述至少一个具有金属表面的膜片 ( 12)连接于顶板(25)和底板(26)之间并将所述第一矩形波导内腔分隔 为若干个沿所述第一矩形波导的输入输出方向延伸的腔室;
其中, 至少一个第一侧板( 16) 为可相对膜片 (12)调节位置的活动侧 板。
2、 如权利要求 1所述的滤波器, 其特征在于, 两个第一侧板(16)均为 可相对膜片 (12)调节位置的活动侧板。
3、 如权利要求 1或 2所述的滤波器, 其特征在于, 所述至少一个具有金 属表面的膜片 (12) 竖直设置于所述顶板(25)和底板(26)之间。
4、 如权利要求 1至 3所述一项的滤波器, 其特征在于, 所述滤波器还包 括: 分别位于两个第一侧板(16)相背对的外侧的两个第二侧板(14), 两个 第二侧板(14) 与顶板(25)和底板(26)形成第二矩形波导。
5、 如权利要求 4所述的滤波器, 其特征在于, 所述至少一个膜片 (12) 竖直设置于第二矩形波导的中央位置。
6、 如权利要求 2至 5任一项所述的滤波器, 其特征在于, 所述可相对膜 片 ( 12)调节间距的活动侧板为活塞式侧板。
7、 如权利要求 6所述的滤波器, 其特征在于, 还包括: 每一个活塞式侧 板外侧所连接的活塞杆(17), 以及驱动每一个活塞式侧板和所述每一个活塞 式侧板外侧所连接的活塞杆(17)动作的驱动装置 (18)。
8、 如权利要求 7所述的滤波器, 其特征在于, 还包括:
与所述驱动装置(18)信号连接的控制器(20), 用于 4艮据输入的滤波器 的工作频带及存储的滤波器的工作频带与两个活塞式侧板位置的对应关系, 控制驱动装置 (18 )驱动两个活塞式侧板移动至第一目标位置范围之内。
9、 如权利要求 8所述的滤波器, 其特征在于, 还包括:
用于检测滤波器输出功率的检波装置(21 ), 设置于第二矩形波导的输出 端;
所述控制器 (20 ) 与所述检波装置 (21 )信号连接, 用于当滤波器的输 出功率小于设定的功率阔值时, 控制驱动装置 (18 )驱动两个活塞式侧板移 动至第二目标位置范围之内。
10、 如权利要求 9 所述的滤波器, 其特征在于, 所述检波装置 (21 ) 为 检波二极管。
11、 如权利要求 7至 10任一项所述的滤波器, 其特征在于, 所述驱动装 置(18 ) 包括两个步进电机(19 ), 每一个步进电机(19 )对应驱动一个活塞 式侧板和所述活塞式侧板外侧所连接的活塞杆( 17 ),或者,所述驱动装置( 18 ) 包括一个步进电机( 19 ), 所述步进电机(19 ) 同时驱动两个活塞式侧板和每 一个所述活塞式侧板外侧所连接的活塞杆 ( 17 )。
12、 一种通信装置, 其特征在于, 包括如权利要求 1~11中任一项所述的 滤波器。
13、 一种通信系统, 其特征在于, 包括如权利要求 12所述的通信装置。
PCT/CN2013/078840 2013-07-04 2013-07-04 滤波器、通信装置及通信系统 WO2015000164A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/078840 WO2015000164A1 (zh) 2013-07-04 2013-07-04 滤波器、通信装置及通信系统
EP13888604.9A EP3002818B1 (en) 2013-07-04 2013-07-04 Filter, communications apparatus, and communications system
CN201380002205.7A CN103891041B (zh) 2013-07-04 2013-07-04 滤波器、通信装置及通信系统
US14/986,289 US9979065B2 (en) 2013-07-04 2015-12-31 Filter, communications apparatus, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078840 WO2015000164A1 (zh) 2013-07-04 2013-07-04 滤波器、通信装置及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/986,289 Continuation US9979065B2 (en) 2013-07-04 2015-12-31 Filter, communications apparatus, and communications system

Publications (1)

Publication Number Publication Date
WO2015000164A1 true WO2015000164A1 (zh) 2015-01-08

Family

ID=50957871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078840 WO2015000164A1 (zh) 2013-07-04 2013-07-04 滤波器、通信装置及通信系统

Country Status (4)

Country Link
US (1) US9979065B2 (zh)
EP (1) EP3002818B1 (zh)
CN (1) CN103891041B (zh)
WO (1) WO2015000164A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236551B2 (en) 2014-10-15 2019-03-19 Telefonaktiebolaget Lm Ericsson (Publ) Electrically tuneable waveguide structure
WO2016095165A1 (zh) 2014-12-18 2016-06-23 华为技术有限公司 可调滤波器
AU2015385189A1 (en) * 2015-03-01 2017-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Waveguide E-plane filter
CN105024117A (zh) * 2015-07-30 2015-11-04 成都中微电微波技术有限公司 一种可调滤波器
CN105406157B (zh) * 2015-12-22 2019-04-02 江苏贝孚德通讯科技股份有限公司 一种膜片式可调滤波器
US10511465B2 (en) * 2016-01-15 2019-12-17 Sony Corporation Transmitter, transmission method, receiver, and reception method
CN111883890A (zh) * 2016-12-30 2020-11-03 华为技术有限公司 一种可调滤波器及可调滤波设备
US10305440B2 (en) * 2017-05-05 2019-05-28 Zte Corporation Bent E-plane all metal septum filters for wireless communication system
CN113131110B (zh) * 2021-04-17 2021-11-23 中国人民解放军国防科技大学 W波段e面波导滤波器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804484A (zh) * 2009-06-23 2012-11-28 日本电气株式会社 可调带通滤波器
CN102945993A (zh) * 2012-12-04 2013-02-27 成都赛纳赛德科技有限公司 伸缩型可调滤波器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130380A (en) * 1962-02-13 1964-04-21 Ite Circuit Breaker Ltd Adjustable waveguide filter
US3715690A (en) * 1971-05-18 1973-02-06 Trw Inc Automatic tuning electric wave filter
JPS6017162B2 (ja) * 1978-01-19 1985-05-01 日本電気株式会社 導波管型マルチプレクサ
US5808528A (en) * 1996-09-05 1998-09-15 Digital Microwave Corporation Broad-band tunable waveguide filter using etched septum discontinuities
JP3610751B2 (ja) * 1997-01-24 2005-01-19 株式会社村田製作所 誘電体フィルタ及び誘電体デュプレクサ
AUPS061802A0 (en) 2002-02-19 2002-03-14 Commonwealth Scientific And Industrial Research Organisation Low cost dielectric tuning for e-plane filters
JP4411260B2 (ja) * 2005-09-20 2010-02-10 Necエンジニアリング株式会社 チューナブルフィルタ
JP5115314B2 (ja) 2008-05-08 2013-01-09 富士通株式会社 立体フィルタ及びチューナブルフィルタ装置
CN201859933U (zh) * 2010-11-12 2011-06-08 北京遥测技术研究所 Ka波段E面纵向膜片加载波导滤波器
US9083071B2 (en) 2011-01-04 2015-07-14 Alcatel Lucent Microwave and millimeter-wave compact tunable cavity filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804484A (zh) * 2009-06-23 2012-11-28 日本电气株式会社 可调带通滤波器
CN102945993A (zh) * 2012-12-04 2013-02-27 成都赛纳赛德科技有限公司 伸缩型可调滤波器

Also Published As

Publication number Publication date
CN103891041B (zh) 2015-09-30
US9979065B2 (en) 2018-05-22
US20160118702A1 (en) 2016-04-28
CN103891041A (zh) 2014-06-25
EP3002818A1 (en) 2016-04-06
EP3002818A4 (en) 2017-02-15
EP3002818B1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2015000164A1 (zh) 滤波器、通信装置及通信系统
JP5187766B2 (ja) チューナブル帯域通過フィルタ
US10164309B2 (en) Dielectric resonator and dielectric filter
EP4092825A1 (en) High-q multi-mode dielectric resonance structure, and dielectric filter
EP4145633A1 (en) Antenna apparatus and electronic device
EP2979322A1 (en) Planar antenna apparatus and method
KR101357027B1 (ko) 리엔트런트 캐비티형 유전체 공진기를 이용한 듀얼 모드 유전체 공진기 필터
CN109560391B (zh) Mimo天线阵列及其天线反射板
CN112993580B (zh) 天线装置和电子设备
CN114221115A (zh) 折叠波导谐振腔天线及电子设备
US11342669B2 (en) Antenna structure and wireless communication device using same
US20230387592A1 (en) Multi-frequency and multi-beam independent electrically adjustable antenna
CN111293439B (zh) 一种毫米波低副瓣波导缝隙阵列天线
WO2021081769A1 (zh) 一种腔体滤波器及电磁波设备
TWI683474B (zh) 立體式天線元件
US20200220269A1 (en) Antenna device and radio apparatus
CN114784480B (zh) 一种相控阵天线
KR101315878B1 (ko) 이중 모드 유전체 공진기 필터
CN109888444A (zh) 可调滤波器及可调双工器
CN105406157B (zh) 一种膜片式可调滤波器
CN110011009B (zh) 一种带通滤波器
CN105990682B (zh) 微带天线收发器
KR101468409B1 (ko) 홈이 파인 도체판을 포함하는 이중 모드 공진기 및 이를 이용한 필터
EP3435478B1 (en) Dielectric resonator, and dielectric filter, transceiver and base station applying same
CN218677527U (zh) 可调滤波结构、可调滤波器和双工器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013888604

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201600762

Country of ref document: ID