WO2014208619A1 - Epoxy-group-containing polyorganosiloxane and curable resin composition containing same - Google Patents

Epoxy-group-containing polyorganosiloxane and curable resin composition containing same Download PDF

Info

Publication number
WO2014208619A1
WO2014208619A1 PCT/JP2014/066888 JP2014066888W WO2014208619A1 WO 2014208619 A1 WO2014208619 A1 WO 2014208619A1 JP 2014066888 W JP2014066888 W JP 2014066888W WO 2014208619 A1 WO2014208619 A1 WO 2014208619A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
epoxy
compound
carbon atoms
Prior art date
Application number
PCT/JP2014/066888
Other languages
French (fr)
Japanese (ja)
Inventor
直房 宮川
直佑 谷口
窪木 健一
智江 佐々木
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2015524095A priority Critical patent/JP6239616B2/en
Publication of WO2014208619A1 publication Critical patent/WO2014208619A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to an epoxy group-containing polyorganosiloxane suitable for use in a portion requiring high transparency, particularly for optical semiconductor sealing, and a curable resin composition containing the epoxy group.
  • the curable resin composition is a thermosetting resin composition that has excellent workability and excellent electrical properties, heat resistance, adhesion, moisture resistance, etc. It is widely used in such fields.
  • curable resin compositions have been used as resins for encapsulating optical semiconductors such as red and green colored LEDs (light emitting diodes).
  • red and green colored LEDs light emitting diodes
  • Resin sealing materials have been used (see Patent Document 1).
  • the present invention relates to an epoxy group-containing polyorganosiloxane that provides a cured product having excellent heat-resistant transparency, excellent sulfidation resistance, and low tack, and a method for producing the same, and a curable resin containing the epoxy group-containing polyorganosiloxane.
  • An object is to provide a composition.
  • the present inventors have found that an epoxy group-containing polyorganosiloxane having a specific structure or an epoxy group-containing polyorganosiloxane produced using a specific compound as a raw material and a curability containing the same
  • the present inventors have found that a resin composition solves the above problems and have completed the present invention. That is, the present invention relates to the following (1) to (14).
  • L represents an integer greater than or equal to 2.
  • * represents a bond to a silicon atom of the silicone resin structure (A) or the silicone oil structure (C));
  • Silicone resin (component a) represented by average formula (1); epoxy group-containing silicon compound (component b) represented by formula (2); and silanol-terminated silicone represented by formula (3) A method for producing an epoxy group-containing polyorganosiloxane produced using oil (component c) as a raw material, comprising the following two-stage production steps: [Manufacturing step I] A step of dealcoholizing the silanol groups of component a and c and the alkoxy group of component b in the presence of an inorganic base compound [Manufacturing step II] After manufacturing step I, water is added to remain. The step of condensing the alkoxy groups together:
  • R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
  • Silicone resin represented by average formula (1) (component a); epoxy group-containing silicon compound represented by formula (2) (component b); and silanol-terminated silicone represented by formula (3) A method for producing an epoxy group-containing polyorganosiloxane produced from oil (component c) as a raw material, comprising the following three steps: [Manufacturing step 1] A step of dealcoholizing a silanol group of component a and an alkoxy group of component b in the presence of an inorganic base compound. [Manufacturing step 2] A step of adding a component c after the manufacturing step 1 and performing dealcoholization condensation between the alkoxy group remaining after the manufacturing step 1 and silanol of the component c. [Manufacturing step 3] After manufacturing step 2, water is added to condense the remaining alkoxy groups:
  • R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
  • a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. Show).
  • a curable resin composition comprising the epoxy group-containing polyorganosiloxane according to any one of (1) to (4) and an epoxy resin curing agent.
  • the polycarboxylic acid compound is a carbinol-modified silicone oil (d) at both terminals, a polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule, and one carboxylic acid anhydride in the molecule.
  • an epoxy group-containing polyorganosiloxane having a specific structure or an epoxy group-containing polyorganosiloxane produced using a specific compound as a raw material and a curable resin composition containing the epoxy group-containing polyorganosiloxane have heat resistant transparency, In order to give a cured product having excellent sulfidity and low tackiness, it is extremely useful as a sealing resin for materials that require high transparency and low tackiness, particularly optical semiconductors (LEDs, etc.).
  • the silicone resin (component a) in the present invention is a silicone resin represented by the following average formula (1). It is a component for introducing a phenyl group into the epoxy group-containing siloxane of the present invention without excessively increasing the viscosity and improving the sulfidation resistance of the cured product for optical semiconductor encapsulation of the present invention.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are monovalent hydrocarbon groups or hydroxyl groups, preferably linear or branched having 1 to 10 carbon atoms in total. Alternatively, it is a cyclic alkyl group or an aryl group having an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • a plurality of R 1 to R 6 present in the formula may be the same or different, but when R 1 to R 6 in the molecule is 100 mol%, a hydroxyl group (silanol group, Si—OH) is present. 5 to 50 mol%, and the phenyl group is 30 to 95 mol%.
  • R 1 to R 6 other than hydroxyl group and phenyl group examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, and n-pentyl group. N-hexyl group, cyclopentyl group, cyclohexyl group, phenyl group, naphthyl group, hydroxyl group and the like. Among these, a methyl group and an n-propyl group are preferable from the viewpoints of compatibility and heat-resistant transparency of the cured product.
  • the hydroxyl group is preferably 20 to 45 mol%, particularly preferably 25 to 40 mol%.
  • the phenyl group is preferably 35 to 95 mol%, more preferably 40 to 90 mol%, and particularly preferably 50 to 85 mol%.
  • the a structure is preferably 0.2 to 0.7, and particularly preferably 0.3 to 0.6.
  • the b structure is preferably from 0.3 to 0.7, particularly preferably from 0.4 to 0.7.
  • the weight average molecular weight (Mw) of the silicone resin (component a) is preferably in the range of 400 to 10,000 (GPC). If the weight average molecular weight is less than 400, the cured product may have poor sulfidation resistance, and if it exceeds 10,000, the epoxy group-containing polyorganosiloxane may have too high a viscosity and poor workability.
  • the weight average molecular weight (Mw) is more preferably 1000 to 5000, and particularly preferably 1500 to 3000.
  • Silicone resin (component a) includes, for example, tetraalkoxysilane, tetrachlorosilane, phenyltrialkoxysilane, phenyltrichlorosilane, diphenyl dialkoxysilane, diphenyldichlorosilane, alkyltrialkoxysilane having 1 to 10 carbon atoms, 1 to carbon atoms It can be obtained by hydrolytic condensation of a hydrolyzable silane compound such as 10 alkyltrichlorosilanes.
  • preferable silicone resin include the following product names.
  • Z-6018, 217FLAKE, FCA-107, 220FLAKE, 233FLAKE, 249FLAKE are manufactured by Toray Dow Corning
  • SILRES 603, SILRES 604, SILRES 605, SILRES H44, SILRES4 SY300, SILRES4 SY300, SILRES4 SY300, SILRES4 SY300 , SILRES4 SY300 , SILRES IC836, manufactured by Momentive, Inc. include TSR160.
  • Z-6018, 217FLAKE, FCA-107, 233FLAKE, SILRES603, and SILRES604 are preferable from the viewpoint of compatibility, molecular weight, and sulfidation resistance of the cured product.
  • These silicone resins (component a) may be used alone or in combination of two or more.
  • the epoxy group-containing silicon compound (component b) in the present invention is an alkoxysilicon compound represented by the formula (2).
  • the epoxy group-containing silicon compound (component b) is a compound for introducing an epoxy group into the epoxy group-containing polyorganosiloxane of the present invention.
  • An epoxy group is introduced by dealcohol condensation with a silanol group (Si—OH group) of the silanol-terminated silicone oil (component c).
  • X is not particularly limited as long as X is a reactive functional group having an epoxy group.
  • an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as ⁇ -glycidoxyethyl, ⁇ -glycidoxypropyl, ⁇ -glycidoxybutyl, glycidyl group, ⁇ - (3,4-epoxy Cyclohexyl) ethyl group, ⁇ - (3,4-epoxycyclohexyl) propyl group, ⁇ - (3,4-epoxycycloheptyl) ethyl group, 4- (3,4-epoxycyclohexyl) butyl group, 5- (3 And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as 4-epoxycyclohexyl) pentyl group.
  • a glycidoxy group
  • R 8 in the formula (2) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • a methyl group or an ethyl group is preferable, and a methyl group is particularly preferable.
  • E in the formula (2) is an integer representing 0, 1, 2 and f represents (3-e), respectively. From the viewpoint of the viscosity of the epoxy group-containing polyorganosiloxane and the mechanical strength of the cured product, e is preferably 0 or 1.
  • preferable epoxy group-containing silicon compounds include ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycid.
  • 2- (3,4-epoxycyclohexyl) is particularly preferable.
  • Ethyltrimethoxysilane is preferred.
  • These epoxy group-containing silicon compounds (component b) may be used alone or in combination of two or more, and may also be used in combination with the following alkoxysilicon compounds (component g).
  • an alkoxy silicon compound (g component) represented by the following formula (4) can be used together with the epoxy group-containing silicon compound (component b).
  • the alkoxysilicon compound (g component) By using the alkoxysilicon compound (g component) in combination, the viscosity, refractive index and the like of the epoxy group-containing polyorganosiloxane of the present invention can be adjusted.
  • R 7 and R 8 are the same as described above, h is an integer, 0, 1, 2, 3 and i is (4-h).
  • the silanol-terminated silicone oil (component c) refers to a silicone resin represented by the following formula (3) and having silanol groups at both ends.
  • g represents an average value of 2 to 2000, preferably 3 to 200, more preferably 3 to 100, and further preferably 3 to 50.
  • g is less than 3, the cured product becomes too hard, and the heat cycle resistance may be inferior. If g exceeds 200, the mechanical strength of the cured product tends to decrease, such being undesirable.
  • the weight average molecular weight (Mw) of the silanol-terminated silicone oil (component c) is preferably in the range of 400 to 3000 (GPC).
  • the weight average molecular weight of the silanol-terminated silicone oil (component c) is a weight average molecular weight (calculated in terms of polystyrene) based on values measured under the following conditions using GPC (gel permeation chromatography). Mw).
  • Silanol-terminated silicone oil (component c) can be produced, for example, by hydrolyzing and condensing dimethyl dialkoxysilane and dimethyldichlorosilane.
  • preferable silanol-terminated silicone oil include the following product names.
  • PRX413, BY16-873 manufactured by Toray Dow Corning Co., Ltd. X-21-5841, KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd., XC96-723, TSR160, YR3370, YF3800, manufactured by Momentive XF3905, YF3057, YF3807, YF3802, YF3897, XF3905, YF3804, Asahi Kasei Wacker Silicone, FINISH WS 62M, CT 601M, CT 5000M, Gelest, DMS-S12, DMS-S14, DMS-S15 , DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S42, DMS-S45, DMS-S51, PDS-
  • PRX413, BY16-873, X-21-5841, KF-9701, XC96-723, YF3800, FINISH WS 62 M, DMS-S12, DMS-S14, DMS-S15, DMS-S21 and PDS-1615 are preferred.
  • X-21-5841, XC96-723, YF3800, FINISH WS 62 M, DMS-S14, and PDS-1615 are particularly preferable from the viewpoint of molecular weight.
  • These silanol-terminated silicone oils (component c) may be used alone or in combination of two or more.
  • the epoxy group-containing silicon compound (component b) for the total amount of silanol groups in the silicone resin (component a) and silanol-terminated silicone oil (component c) 1 equivalent
  • the alkoxy group of the alkoxy silicon compound (g component) is reacted in an amount smaller than 1.5 equivalents to give an epoxy group-containing silicon compound (component b) (and if necessary, the alkoxy silicon compound (g Two or more alkoxy groups in the component)) will react with the silanol groups of the silicone resin (component a) and / or the silanol-terminated silicone oil (component c), resulting in too much polymer during production and gelation. There is a risk of it. For this reason, it is preferable to make an alkoxy group react with 1.5 equivalent or more with respect to 1 equivalent of silanol groups. From the viewpoint of reaction control, 2.0 equivalents or
  • the epoxy group-containing polyorganosiloxane of the present invention can be obtained through the production steps I and II or the production steps 1 to 3.
  • Silanol group of silicone resin (component a) and silanol-terminated silicone oil (component c), and alkoxy of epoxy group-containing silicon compound (component b) (and alkoxy silicon compound (g) as required) A step of subjecting a group to dealcohol condensation in the presence of an inorganic base compound
  • [Production Step II] A step of adding water after the production step I to condense the remaining alkoxy groups.
  • the silanol group and the alkoxy group are surely reacted to obtain a modified silicone resin and a modified silicone oil, and then the remaining alkoxy groups are dealcoholized and hydrolyzed and condensed to achieve uniform stability. Product can be obtained.
  • the polymerization of the epoxy group-containing silicon compound (component b) (and the alkoxy silicon compound (component g as necessary)) is caused by the condensation reaction between the silanol group and the alkoxy group. May progress further, become an excessively high molecular weight body and become a solvent-insoluble component (gelation).
  • Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol and the like
  • examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc. From the viewpoint of subsequent removal performance, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, and t-butanol is preferable. These alcohols may be used as a mixture.
  • the amount of primary alcohol is preferably 5% by weight or more, more preferably 8% by weight or more of the total alcohol amount.
  • the amount of alcohol used is silicone resin (a component), silanol-terminated silicone oil (c component) and epoxy group-containing silicon compound (b component) (and alkoxy silicon compound (g component) if necessary). It is preferable to contain 2% by weight or more based on the total weight. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight. When the amount exceeds 100% by weight, the progress of the reaction may be extremely slow. When the amount is less than 2% by weight, the reaction other than the target reaction proceeds, the molecular weight increases, gelation, increase in viscosity, and curing. There may be a problem such as an increase in elastic modulus that makes it difficult to use as an object.
  • solvents may be used in combination as necessary.
  • solvents that can be used in combination include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hexane, hydrocarbons such as cyclohexane, toluene, and xylene. it can.
  • silicone resins (component a) used in this reaction are in a solid state, it is desirable to use a solvent that dissolves the silicone resin (component a).
  • methyl isobutyl ketone, butyl acetate, and toluene are preferable from the viewpoint of workability such as the solubility, versatility, and boiling point of the silicone resin (component a) are not too low.
  • the stability of the epoxy group-containing organopolysiloxane is preferred. From the viewpoint of transparency, methyl isobutyl ketone and toluene are particularly preferable.
  • an inorganic base compound By using an inorganic base compound, not only can the reaction sufficiently proceed, but it can be easily removed from the product.
  • the inorganic base compound include alkali metal inorganic salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal inorganic salts, and hydroxides are particularly preferable.
  • potassium hydroxide is particularly preferable from the viewpoint of catalytic ability and solubility in alcohol.
  • the addition method of an inorganic base compound is used in the state added directly or in the state melt
  • the allowable range of moisture at this time is the total of silicone resin (a component), silanol-terminated silicone oil (c component) and epoxy group-containing silicon compound (b component) (and alkoxy silicon compound (g component) if necessary) It is preferably 0.5% by weight or less, more preferably 0.3% by weight or less, and more preferably no water as much as possible.
  • the reaction temperature in the production step I is usually preferably 20 to 160 ° C., more preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of inorganic base compound added and the solvent used.
  • the reaction time is usually preferably 1 to 20 hours, more preferably 3 to 12 hours.
  • the polymerization reactions (1) to (8) are considered to proceed simultaneously in parallel.
  • the basic inorganic compound is necessary as a catalyst, and the necessary amount may be added in the production process I first.
  • alcohol is preferably used as the solvent in the production process II.
  • examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc.
  • primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, and t-butanol is preferable. These alcohols may be used as a mixture. The presence of these alcohols can contribute to molecular weight control and stability.
  • the silicone resin (a component) charged in the production process I, the silicon compound (b component) containing an epoxy group (and the alkoxy silicon compound (g component) if necessary), and a silanol-terminated silicone oil are used. It is preferably 20 to 200% by weight, more preferably 20 to 150% by weight, and particularly preferably 30 to 120% by weight based on the total weight of the component (c).
  • the molecular weight control is not effective, and the molecular weight may be higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the epoxy group-containing polyorganosiloxane.
  • the reaction temperature in the production step II is preferably 20 to 160 ° C., more preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used.
  • the reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the catalyst can be removed by quenching and / or washing with water as necessary.
  • a solvent that can be separated from water.
  • preferable solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. it can.
  • the catalyst may be removed only by washing with water.
  • the catalyst is adsorbed by using an adsorbent after washing with water after quenching by a neutralization reaction. It is preferable to remove the adsorbent later by filtration.
  • Any compound that exhibits acidity can be used for the neutralization reaction.
  • the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • an inorganic acid is preferable because it can be easily removed from the product, and phosphates and the like that can more easily adjust the pH to near neutral are more preferable.
  • adsorbent examples include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
  • activated clay for example, manufactured by Toshin Kasei Co., Ltd., activated clay, SA35, SA1, T, R-15, E, Nikkanite (trade names) G-36, G-153, G-168, Mizusawa Chemical Industries
  • Galeon Earth trade name
  • Mizuka Ace trade name
  • the activated carbon for example, CL-H, Y-10S, Y-10SF manufactured by Ajinomoto Fine Techno Co., Ltd., S, Y, FC, DP, SA1000, K, A, KA, M, CW130BR manufactured by Phutamura Chemical Co., Ltd. , CW130AR, GM130A, and the like.
  • the zeolite include, for example, molecular sieves (trade names) 3A, 4A, 5A, and 13X manufactured by Union Showa.
  • the synthetic adsorbent include Kyowa Chemical Co., Ltd., Kyoward (trade name) 100, 200, 300, 400, 500, 600, 700, 1000, 2000, and Rohm and Haas Co., Ltd.
  • the reaction After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration.
  • the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
  • reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
  • the epoxy group-containing polyorganosiloxane of the present invention can be obtained by removing the solvent by vacuum concentration or the like.
  • a silanol group and an alkoxy group of the silicone resin (component a) having relatively low reactivity in the production process 1 are surely reacted to obtain a modified silicone resin, and then the production process 2
  • the silanol-terminated silicone oil (component c) is added and the silanol group of the relatively highly reactive silanol-terminated silicone oil (component c) is reacted with the alkoxy group to obtain a modified silicone oil.
  • the remaining alkoxy group can be dealcoholized and hydrolyzed to obtain a uniform and stable product.
  • the condensation reaction between the silanol group and the alkoxy group and the polymerization reaction between the alkoxysilanes become a competitive reaction, resulting in a difference in the reaction rate between the products and the compatibility of the products. Due to the difference, a heterogeneous compound can be obtained, or a large amount of silicone resin (a component) or silanol-terminated silicone oil (c component) having no epoxy group can be adversely affected.
  • Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol, and the like.
  • Examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture.
  • the solubility of the catalyst described later is excellent.
  • the amount of primary alcohol is preferably 5% by weight or more, more preferably 10% by weight or more of the total alcohol amount.
  • the amount of change in the weight average molecular weight per unit time in the reaction system of production process 1 is smaller than when only the primary alcohol is used, so the reaction is more easily controlled. It is.
  • the combined use of secondary alcohols is particularly important for large-scale reactions such as industrial production from the viewpoint of reaction control. Useful for.
  • solvents may be used in combination as necessary.
  • solvents that can be used in combination include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hexane, cyclohexane, toluene, and xylene hydrocarbons. It can be illustrated.
  • silicone resins (component a) used in this reaction are in a solid state, it is desirable to dissolve them in the initial stage of production process 1.
  • an epoxy group-containing silicon compound (component b) (and an alkoxysilicon compound (component g as necessary)) that is usually liquid may be used, or the above-described solvents that can be used in combination may be used.
  • methyl isobutyl ketone, butyl acetate, and toluene are preferable from the viewpoint of workability such as the solubility, versatility, and boiling point of the silicone resin (component a) are not too low.
  • epoxy group-containing organopolysiloxanes are preferred. Methyl isobutyl ketone and toluene are particularly preferable from the viewpoints of stability and transparency.
  • the reaction in the production step 1 of the present invention is performed in the presence of an inorganic base compound.
  • the inorganic base compound acts as a catalyst for the reaction.
  • the reaction progress is slow and the reaction efficiency is remarkably poor.
  • an organic base such as triethylamine
  • the basicity is weak
  • the reaction efficiency is poor
  • the viscosity of the resulting epoxy resin is too low
  • the hardness of the cured product is insufficient, and the reaction proceeds depending on the reaction temperature. Sometimes it doesn't.
  • an inorganic base compound By using an inorganic base compound, not only can the reaction sufficiently proceed, but it can be easily removed from the product.
  • the inorganic base compound include alkali metal salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal salts, and hydroxides are particularly preferable.
  • potassium hydroxide is particularly preferable from the viewpoint of catalytic ability and solubility in alcohol.
  • the addition method of an inorganic base compound is used in the state added directly or in the state melt
  • the allowable range of moisture is silicone resin (component a), silanol-terminated silicone oil (component c) and epoxy group-containing silicon compound (component b) (and alkoxy silicon compound (component g) as required) ) Is preferably 0.5% by weight or less, more preferably 0.3% by weight or less, and more preferably as little water as possible.
  • the amount of the inorganic base compound that can be used in the production process 1 of the present invention includes the silicone resin (a component), silanol-terminated silicone oil (c component) and epoxy group-containing silicon compound (b component) used in the reaction (and necessary Accordingly, it is usually preferably 0.001 to 5% by weight, more preferably 0.01 to 2% by weight, based on the total weight of the alkoxysilicon compound (component g).
  • silanol-terminated silicone oil (component c) is added after production step 1, silanol groups of silanol-terminated silicone oil (component c), and epoxy group-containing silicon compound (component b) (and necessary) Depending on the case, dealcohol condensation with the alkoxy group of the alkoxysilicon compound (g component) is carried out.
  • the silicone resin (component a) and the silanol-terminated silicone oil (component c) are condensed with an epoxy group-containing silicon compound (component b) (and, if necessary, an alkoxy silicon compound (component g)).
  • a modified silicone resin and a modified silicone oil can be obtained.
  • the reaction in the production process 2 of the present invention is performed in the presence of an inorganic base compound for the same reason as in the production process 1.
  • the inorganic base compound used in the production process 2 is used within the range of the kind and addition amount exemplified in the production process 1 described above, but a new inorganic base compound may be added in the production process 2.
  • the reaction in the production process 2 of the present invention can be carried out without a solvent as in the production process 1, but it is preferably carried out in the presence of a solvent.
  • the solvent used in the manufacturing process 2 can be used within the range of the kind and addition amount exemplified in the manufacturing process 1 described above.
  • the reaction temperature in the production step 2 is usually preferably 20 to 160 ° C., more preferably 40 to 100 ° C., and particularly preferably 50 to 95 ° C., although it depends on the amount of inorganic base compound added and the solvent used.
  • the reaction time is usually preferably 1 to 20 hours, more preferably 2 to 12 hours.
  • the manufacturing process 3 After completion of the reaction in the production process 2, water is added, and the alkoxy group remaining in the modified silicone resin and modified silicone oil obtained in the production processes 1 and 2 and the epoxy group remaining unreacted are contained. Hydrolytic dealcohol condensation of the alkoxy group of the silicon compound (component b) (and the alkoxysilicon compound (component g) if necessary) is performed. At this time, if necessary, the above-mentioned epoxy compound-containing silicon compound (component b) (and, if necessary, an alkoxysilicon compound (component g)) and an inorganic base compound are added within the aforementioned amounts. It doesn't matter.
  • This reaction is carried out by using (1) modified silicone resins and / or (2) modified silicone oils and / or (3) silicon compounds containing epoxy groups (component b). And alkoxy silicon compound (component g)) and / or (4) between modified silicone resin and modified silicone oil and / or (5) silicon compound containing modified silicone resin and epoxy group (b) Component) (and alkoxy silicon compound (g component) if used) and / or (6) silicon compound containing modified silicone oil and epoxy group (b component) (and if used) And / or (7) a silicon compound containing an epoxy group (b component).
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, and t-butanol is preferable. These alcohols may be used as a mixture. The presence of these alcohols can contribute to molecular weight control and stability.
  • the silicone resin (a component) charged in the production steps 1 and 2 the silicon compound containing epoxy group (b component) (and the alkoxy silicon compound (g component) if necessary) and the silanol terminal It is preferably 20 to 200% by weight, more preferably 20 to 150% by weight, and particularly preferably 30 to 120% by weight based on the total weight with the silicone oil (component c).
  • water is added (ion exchange water, distilled water, or clean water can be used).
  • the amount of water used is preferably 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents relative to the amount of remaining alkoxy groups. is there.
  • the amount of water is less than 0.5 equivalent, the progress of the reaction is slowed, and the silicon compound containing the epoxy group (component b) (and the alkoxy silicon compound (component g) if necessary) does not react. There is a possibility that a problem such as remaining may occur, a sufficient network may not be formed, and a curing failure may occur even after curing after a subsequent curable resin composition.
  • the molecular weight control is not effective, and the molecular weight may be higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the epoxy group-containing polyorganosiloxane.
  • the reaction temperature in production step 3 is usually preferably 20 to 160 ° C., more preferably 40 to 100 ° C., and particularly preferably 50 to 95 ° C., although it depends on the amount of inorganic base compound added and the solvent used.
  • the reaction time is usually preferably 1 to 20 hours, more preferably 3 to 12 hours.
  • the epoxy equivalent (measured by the method described in JIS K-7236) of the epoxy group-containing polyorganosiloxane of the present invention is 300 to 1500 g / eq.
  • the epoxy equivalent is less than 300 g / eq, the cured product tends to be too hard, and when it exceeds 1500 g / eq, the mechanical properties of the cured product tend to deteriorate.
  • the epoxy group-containing polyorganosiloxane may be a single epoxy group-containing polyorganosiloxane or a mixture of two or more epoxy group-containing polyorganosiloxanes.
  • the epoxy resin is a mixture of two or more epoxy group-containing polyorganosiloxanes, it is specified if it is a single epoxy group-containing polyorganosiloxane.
  • the epoxy equivalent of the sum of the epoxy equivalent of the epoxy group-containing polyorganosiloxane x is 300 to 1500 g / eq. It is preferably 350 to 1000 g / eq.
  • the viscosity of the epoxy group-containing polyorganosiloxane is preferably 50 to 40,000 mPa ⁇ s, more preferably 500 to 20,000 mPa ⁇ s, particularly 800 to 15, 000 mPa ⁇ s is preferred. If the viscosity is less than 50 mPa ⁇ s, the viscosity may be too low to be suitable for use as an optical semiconductor encapsulant, and if it exceeds 40,000 mPa ⁇ s, the viscosity may be too high and workability may be poor. is there.
  • the ratio of silicon atoms to which three oxygen atoms are bonded to the total silicon atoms is preferably 3 to 50 mol%, more preferably 5 to 40 mol%, and particularly preferably 6 to 35 mol%. . If the ratio of silicon atoms bonded to three oxygen atoms to the total silicon atoms is less than 3 mol%, the cured product tends to be too soft, and there is a concern of surface tack and scratches. Moreover, when it exceeds 50 mol%, hardened
  • the proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the epoxy group-containing polyorganosiloxane.
  • R ′ 1 , R ′ 2 , R ′ 3 , R ′ 4 , R ′ 5 , R ′ 6 may be the same as or different from each other, and may be a monovalent hydrocarbon group or a hydroxyl group.
  • L represents an integer greater than or equal to 2.
  • * represents a bond to a silicon atom of the silicone resin structure (A) or the silicone oil structure (C));
  • a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000.
  • * Represents a bond to the oxygen atom of the epoxy group-containing silsesquioxane structure (B).
  • the silicone resin (component a) and the silanol-terminated silicone oil (component c) that can be obtained through the production steps I and II or the production steps 1 to 3, which are preferred embodiments of the epoxy group-containing polyorganosiloxane in the present invention.
  • the condensate of the silanol group and the silicon compound containing the epoxy group (component b) (and, if necessary, the alkoxysilicon compound (component g)) has been described.
  • the resin composition for encapsulating an optical semiconductor of the present invention may be used by mixing an epoxy resin in addition to the epoxy group-containing organopolysiloxane obtained through the production steps I and II or the production steps 1 to 3 described above. it can.
  • Other epoxy resins that can be used include epoxy resins that are glycidyl etherified products of phenolic compounds, epoxy resins that are glycidyl etherified products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, Glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, copolymers of polymerizable unsaturated compounds having an epoxy group and other polymerizable unsaturated compounds, etc. Can be mentioned.
  • Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-me Ren-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-ter
  • novolac resins such as a novolak resin, a phenol novolac resin containing a xylylene skeleton, a phenol novolak resin containing a dicyclopentadiene skeleton, a phenol novolak resin containing a biphenyl skeleton, and a phenol novolac resin containing a fluorene skeleton.
  • Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate.
  • An epoxy resin is mentioned.
  • Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
  • heterocyclic epoxy resin examples include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
  • examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
  • examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
  • epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • An epoxy resin obtained by glycidylating any of the halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like.
  • copolymer of a polymerizable unsaturated compound having an epoxy group and another polymerizable unsaturated compound other than the above As a product available from the market, Marproof (trade name) G-0115S, G-0130S, G-0250S, G-1010S, G-0150M, G-2050M (manufactured by NOF Corporation) and the like.
  • polymerizable unsaturated compounds having an epoxy group include glycidyl acrylate, methacrylic acid, and the like. Examples thereof include glycidyl acid and 4-vinyl-1-cyclohexene-1,2-epoxide.
  • Examples of other polymerizable unsaturated compound copolymers include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, and vinylcyclohexane.
  • the above epoxy resins may be used alone or in combination of two or more.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
  • these epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol. 36 p. 2409 (1980), Tetrahedron Letter p. 4475 (1980), etc.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • Diols Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, tetraols such as pentaerythritol and ditrimethylolpropane And the like.
  • carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to them (reference: review epoxy resin basic edition I p76-85, the entire contents of which are incorporated herein by reference).
  • the ratio of the epoxy group-containing organopolysiloxane to the total epoxy resin is preferably 60 to 99 parts by weight, preferably 90 to 97 parts by weight. Is particularly preferred. If the amount is less than 60 parts by weight, the light resistance (UV resistance) of the cured product may be inferior.
  • the blending ratio of the total epoxy resin containing the epoxy group-containing organopolysiloxane and the epoxy resin curing agent is 0.5 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resins. It is preferable to use a curing agent. When less than 0.5 equivalent or more than 1.2 equivalent with respect to 1 equivalent of an epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • the epoxy resin curing agent examples include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and polyvalent carboxylic acid compounds.
  • the epoxy resin curing agent is particularly preferably an acid anhydride compound or a polyvalent carboxylic acid compound from the viewpoints of hardness, workability (being liquid at room temperature), and transparency of the cured product.
  • acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydro Phthalic anhydride, methylhexahydrophthalic anhydride, glutaric anhydride, 2,4-diethyl glutaric anhydride, 3,3-dimethyl glutaric anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane- Acids such as 2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride Anhydrides are mentioned.
  • the polyvalent carboxylic acid compound is a compound having at least two carboxyl groups.
  • the polyvalent carboxylic acid is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, malic acid, etc.
  • Linear alkyl diacids, alkyl tricarboxylic acids such as 1,3,5-pentanetricarboxylic acid, citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, cyclohexanetricarboxylic acid
  • An aliphatic cyclic polycarboxylic acid such as acid, nadic acid and methyl nadic acid; a multimer of unsaturated fatty acids such as linolenic acid and oleic acid; and dimer acids which are reduced products thereof; Examples include compounds obtained by reaction with acid anhydrides, bifunctional to hexafunctional polyhydric alcohols and acid anhydrides Compounds obtained by the reaction of, heat resistance, and more preferable from the viewpoint of workability.
  • the polyhydric carboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid
  • the bi- to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol.
  • Preferred polyhydric alcohols are alcohols having 5 or more carbon atoms, such as 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2,4 Compounds such as diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferred, and 2-ethyl-2-butyl-1,3 is particularly preferred Alcohols having a branched chain structure or a cyclic structure such as propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol, Preferred from the viewpoint of transparency In particular, tricyclodecan
  • the conditions for the addition reaction can be used without any particular limitation as long as they are known methods.
  • Specific reaction conditions include, for example, acid anhydrides and polyhydric alcohols in the absence of a catalyst and in the absence of a solvent.
  • a method of reacting at 150 ° C. and heating, and taking it out as it is after completion of the reaction can be mentioned.
  • the epoxy resin curing agent in the present invention is particularly an acid anhydride (C1), a polyvalent carboxylic acid (C2) having at least two carboxyl groups and having an aliphatic hydrocarbon group as a main skeleton from the viewpoint of heat resistance. Or a polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule, a compound (f) having one carboxylic acid anhydride group in the molecule, and optionally two or more in the molecule.
  • the polyvalent carboxylic acid resin (C3) obtained by addition reaction with the compound (h) having a carboxylic acid anhydride group is preferred.
  • both ends carbinol-modified silicone oil (d) and other polyhydric alcohol compounds having two or more hydroxyl groups in the molecule A polycarboxylic acid resin (C3) containing e) is more preferred.
  • the acid anhydride (C1) include succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, phthalic anhydride, naphthalenedicarboxylic anhydride, trimellit Acid anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, bicyclo [ 2.2.1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3, 4-anhydride, pentanedioic anhydride,
  • the polyvalent carboxylic acid (C2) is a compound having at least two carboxyl groups.
  • the polyvalent carboxylic acid is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, malic acid, etc.
  • Linear alkyl diacids such as 1,3,5-pentanetricarboxylic acid, alkyltricarboxylic acids such as citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, cyclohexanetricarboxylic acid
  • alkyltricarboxylic acids such as citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, cyclohexanetricarboxylic acid
  • aliphatic cyclic polycarboxylic acids such as acid, nadic acid, and methyl nadic acid, multimers of unsaturated fatty acids such as linolenic acid and oleic acid, and dimer acids that are reduced products thereof, and the above acid anhydrides
  • the polyvalent carboxylic acid resin (C3) preferred as an epoxy resin curing agent used in the curable resin composition of the present invention is an alcoholic hydroxyl group of a polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule described below.
  • the acid anhydride group of the compound (f) having one carboxylic anhydride group in the molecule (and optionally the compound (h) having two or more carboxylic anhydride groups in the molecule) undergoes an addition reaction. This compound is obtained by having two or more carboxylic acids in the molecule as functional groups.
  • both ends carbinol-modified silicone oil (d) and the other polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule It is preferable to use together.
  • polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule examples include those having 1 to 10 carbon atoms such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, and nonanediol.
  • polycyclic polyphenol compound is a compound having two or more six-membered rings and having two or more phenolic hydroxyl groups.
  • an alcohol compound (e6), a terminal alcohol polyester compound (e7), and a terminal alcohol polycarbonate compound (e8) in which one or more aromatic rings having a hydroxyl group are hydrogenated, and selected from these groups At least one polyhydric alcohol compound can be used, and two or more kinds can be used in combination.
  • Both terminal carbinol-modified silicone oil (d) is a silicone compound having alcoholic hydroxyl groups at both ends represented by the following formula (7).
  • R 10 examples include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene and other alkylene groups, ethoxyethylene group, propoxyethylene group propoxy
  • Examples include an alkylene group having an ether bond such as a propylene group and an ethoxypropylene group. Particularly preferred are propoxyethylene group and ethoxypropylene group.
  • R 9 represents an alkyl group having 1 to 3 carbon atoms, such as a methyl group, or a phenyl group, and may be the same or different.
  • a methyl group is preferred compared to a phenyl group.
  • v is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 30.
  • X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-201, BY16-004 are used as the both-end carbinol-modified silicone oil (d) represented by the formula (7).
  • SF8427 both manufactured by Toray Dow Corning Co., Ltd.
  • XF42-B0970, XF42-C3294 both manufactured by Momentive Performance Materials Japan GK
  • Silaplane trade names
  • FM-4411, FM-4421, FM-4425 (both manufactured by JNC Co., Ltd.) and the like, and all are available from the market.
  • These two terminal carbinol-modified silicone oils can be used alone or in combination.
  • X-22-160AS, KF6001, KF6002, BY16-201, XF42-B0970, and FM-4411 are preferable.
  • the chain alkylene diol (e2) having a branched structure which is a polyhydric alcohol compound will be described.
  • Specific examples of the branched alkylene diol (e2) having a branched structure include, for example, neopentyl glycol, 2-ethyl-2-butylpropylene-1,3-diol, 2,4-diethylpentane-1,5-diol, Examples include, but are not limited to, dimethylbutanediol, dimethylpentanediol, diethylpropanediol, dimethylhexanediol, diethylbutanediol, dimethylheptanediol, diethylpentanediol, dimethyloctanediol, diethylhexanediol, and ethylbutylpropanediol. There is nothing. These may be used alone or
  • the polyhydric alcohol (e3) which has an alicyclic structure which is a polyhydric alcohol compound is demonstrated.
  • Specific examples of the polyhydric alcohol having an alicyclic structure which is a particularly preferred polyhydric alcohol compound include cyclohexanediol, cyclohexanedimethanol, tricyclodecane dimethanol, tricyclodecanediol, pentacyclodecane dimethanol, norbornanediol, norbornanedi. Examples thereof include, but are not limited to, methanol, dioxane glycol, and spiro glycol. These may be used alone or in combination of two or more. It is preferable to apply a polyhydric alcohol having an alicyclic structure because gas permeability resistance is improved in the cured product.
  • polyhydric alcohol (e4) having three or more hydroxyl groups in the molecule which is a polyhydric alcohol compound
  • polyhydric alcohols having three or more hydroxyl groups in the molecule which are particularly preferred polyhydric alcohol compounds, include glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, and tris (2-hydroxyethyl) isocyanurate.
  • Pentaerythritol, ditrimethylolpropane, diglycerol, dipentaerythritol and the like but are not limited thereto. These may be used alone or in combination of two or more. It is preferable to apply a polyhydric alcohol having three or more hydroxyl groups in the molecule because the hardness of the cured product is increased.
  • a polyhydric alcohol (e5) obtained by ring-opening addition polymerization of a lactone having 2 to 8 carbon atoms to a polyhydric alcohol having two or more hydroxyl groups in the molecule which is a polyhydric alcohol compound
  • a polyhydric alcohol-modified lactone polymer obtained by ring-opening addition polymerization of a lactone having 2 to 8 carbon atoms to a polyhydric alcohol having two or more hydroxyl groups in the molecule which is a particularly preferred polyhydric alcohol.
  • polyhydric alcohol examples include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol and other alkylene diols having 1 to 10 carbon atoms, EO (ethylene oxide) modification Bisphenol A, EO-modified bisphenol F, EO-modified bisphenol E, EO-modified naphthalene diol, PO (propylene oxide) -modified bisphenol A, a branched alkylene diol having a branched structure, neopentyl glycol, 2-ethyl-2-butyl group Pyrene-1,3-diol, 2,4-diethylpentane-1,5-diol, dimethylbutanediol, dimethylpentanediol, diethylpropanedio
  • Terminals represented by formula (3) such as glycerin, trimethylolpropane, isocyanuric acid tris (2-hydroxyethyl), pentaerythritol, ditrimethylolpropane, diglycerol, dipentaerythritol, etc., which are polyhydric alcohols having a hydroxyl group above Examples include alcohol polyester compounds, but are not limited thereto.
  • alkylene oxide modified bisphenol A such as EO modified bisphenol A
  • alkylene oxide modified bisphenol F such as EO modified bisphenol F
  • polyhydric alcohol having an alicyclic structure and chain alkylene diol having a branched structure are preferable. These may be used alone or in combination of two or more.
  • the lactones used for obtaining the polyhydric alcohol-modified lactone polymer are lactones having 4 to 8 carbon atoms. Specific examples include ⁇ -butyrolactone, ⁇ -methylpropiolactone, ⁇ -valerolactone, ⁇ -Caprolactone, 3-methylcaprolactone, 4-methylcaprolactone, trimethylcaprolactone, ⁇ -methyl- ⁇ -caprolactone and the like.
  • the polyhydric alcohol-modified lactone polymer usually contains lactones in the range of 0.1 to 10 mol, preferably 0.2 to 5 mol, more preferably 0.3 to 2 mol, per mol of the hydroxyl group of the polyhydric alcohol.
  • a catalyst such as an alkali metal compound, a tin compound, a titanium compound, a zinc compound, a molybdenum compound, an aluminum compound, or a tungsten compound is usually used at 80 to 230 ° C., preferably 100 to 200 ° C., more preferably 120 to 160 ° C. It is obtained by making it react.
  • an alcohol compound (e6) in which one or more aromatic rings having a hydroxyl group of a polycyclic polyhydric phenol compound which is a polyhydric alcohol compound is hydrogenated will be described.
  • 1 having a hydroxyl group of a polycyclic polyphenol compound a polycyclic polyphenol compound is a compound having two or more six-membered rings and having two or more phenolic hydroxyl groups.
  • Ethane hydrogenated bisphenol E
  • 4,4′-bicyclohexanol hydrogenated biphenol
  • methylene biscyclohexanol Hydrogenated bisphenol F
  • 4,4 ′, 4 ′′ -methylidenetriscyclohexanol 4,4 ′-[(4-hydroxycyclohexyl) Methylene] bis (2-methylhexanol)
  • the terminal alcohol polyester compound (e7) is a polyester compound having a hydroxyl group at the terminal represented by the following formula (8).
  • R 11 and R 12 each independently represents an alkylene group having 1 to 10 carbon atoms, and n represents an average value of 1 to 100
  • R 11 examples include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain of 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene.
  • an alkylene group having a branched chain having 1 to 10 carbon atoms or an alkylene group having a cyclic structure is preferable, and in particular, ethylbutylpropylene, isobutylene, neopentylene, diethylpentylene, and cyclohexanedimethylene are the heat-resistant transparency of the cured product. It is preferable from the viewpoint.
  • R 12 examples include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene.
  • a linear alkylene group having 1 to 10 carbon atoms is preferable, and propylene, butylene, pentylene, and hexylene are particularly preferable from the viewpoint of adhesion of a cured product to a substrate.
  • n is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
  • the weight average molecular weight (Mw) of the terminal alcohol polyester (e7) is preferably 500 to 20000, more preferably 500 to 5000, and still more preferably 500 to 3000. If the weight average molecular weight is less than 500, the cured product hardness of the curable resin composition of the present invention is too high, and there is a concern that cracks may occur in a heat cycle test or the like. If the weight average molecular weight is more than 20000, the cured product becomes sticky. There is a concern that will occur.
  • a weight average molecular weight means the weight average molecular weight (Mw) calculated in polystyrene conversion based on the value measured on condition of the following using GPC (gel permeation chromatography).
  • polyester polyols having an alcoholic hydroxyl group at the terminal include polyester polyols having an alcoholic hydroxyl group at the terminal.
  • polyester polyols such as Kyowapol (trade name) 1000PA, 2000PA, 3000PA, 2000BA (all manufactured by Kyowa Hakko Chemical Co., Ltd.); Adeka New Ace (trade name) Y9-10, YT-101 (both manufactured by ADEKA); Plaxel (trade name) 220EB, 220EC (both manufactured by Daicel Chemical Industries); Polylite (trade name) OD-X-286, OD-X- 102, OD-X-355, OD-X-2330, OD-X-240, OD-X-668, OD-X-2554, OD-X-2108, OD-X-2376 OD-X-2044, OD-X-688, OD-X-2068, OD-X-2547, OD-X-2420, OD-X-2 23, OD-X-2555 (all manufactured by DIC
  • terminal alcohol polycarbonate compound (e8) will be described. Although it does not specifically limit as a terminal alcohol polycarbonate compound, For example, the polycarbonate compound etc. which have a hydroxyl group at the terminal shown by following formula (9) are mentioned.
  • R 14 represents an alkylene group having 1 to 10 carbon atoms, and j represents an average value of 1 to 100
  • R 14 examples include linear alkylene groups having 1 to 10 carbon atoms such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, Examples thereof include alkylene groups having a branched chain of 1 to 10 carbon atoms such as isobutylene, isopentylene, neopentylene, diethylpentylene, and the like, and alkylene groups having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene.
  • linear alkylene groups having 4 to 7 carbon atoms such as butylene, pentylene, hexylene and heptylene are preferable from the viewpoint of workability because the viscosity of the terminal alcohol polycarbonate compound is not too high.
  • a plurality of R 14 present in the formula (9) may be the same or different.
  • j is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
  • the weight average molecular weight (Mw) of the terminal alcohol polycarbonate compound is preferably 500 to 20000, more preferably 500 to 5000, and still more preferably 500 to 3000. If the weight average molecular weight is 500 or more, the cured product hardness of the curable resin composition does not become excessively high, and there is no fear of cracking in a heat cycle test or the like, which is preferable. Moreover, if a weight average molecular weight is 20000 or less, there is no fear that stickiness of hardened
  • a weight average molecular weight means the weight average molecular weight (Mw) calculated in polystyrene conversion based on the value measured on condition of the following using GPC (gel permeation chromatography).
  • both ends carbinol-modified silicone oil (d) and other polyhydric alcohol (e) are used in combination as the polyhydric alcohol
  • the other polyhydric alcohol (e) is used in the amount of both ends carbinol-modified silicone oil.
  • the amount is preferably 0.5 to 200 parts by weight, more preferably 5 to 50 parts by weight, and still more preferably 10 to 30 parts by weight with respect to 100 parts by weight. If the amount is less than 0.5 parts by weight, the mechanical strength of the cured product may be inferior, and if it exceeds 200 parts by weight, the heat resistant transparency of the cured product may be inferior.
  • the compound (h) having two or more carboxylic acid anhydride groups in the molecule is, for example, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetra.
  • the compound (h) having two or more carboxylic acid anhydride groups in the molecule can be used alone or in combination.
  • 1,2,3,4-butanetetracarboxylic dianhydride, 1,2 4,5-cyclohexanetetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride is preferred
  • 1,2,3,4-butanetetracarboxylic dianhydride is preferred.
  • the compound (f) having one carboxylic acid anhydride group in the molecule is, for example, succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, phthalic anhydride.
  • the compound (f) having one carboxylic anhydride group in the molecule can be used alone or in combination.
  • a cured product obtained by curing a polyvalent carboxylic acid resin and an epoxy resin is excellent, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, norbornane-2 3-dicarboxylic acid anhydride, methylnorbornane-2, 3-dicarboxylic acid anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and 2,4-diethylpentanedioic acid anhydride are preferred.
  • methylhexahydrophthalic anhydride 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 2,4-diethylpentanedioic anhydride, and particularly preferred is methylhexahydrophthalic anhydride. It is a thing.
  • the amount of compound (f) having one carboxylic anhydride group in the molecule is 100% of (h) when compound (h) having two or more carboxylic anhydride groups in the molecule is used.
  • the amount is preferably 5 to 1000 parts by weight, more preferably 10 to 500 parts by weight, still more preferably 50 to 300 parts by weight with respect to parts by weight. If the amount is less than 5 parts by weight, the polyvalent carboxylic acid resin (C3) may be too high in molecular weight and workability may be inferior, and if it is more than 300 parts by weight, the mechanical strength of the cured product may be inferior.
  • the amount of the polyhydric alcohol compound (E), the compound (h) having two or more carboxylic anhydride groups in the molecule, and the compound (f) having one carboxylic anhydride group in the molecule is Compound (h) having two or more carboxylic anhydride groups in the molecule and compound (f) having one carboxylic anhydride group in the molecule with respect to 1 equivalent of the total alcoholic hydroxyl group of the alcohol compound (E)
  • the total carboxylic acid anhydride group is preferably 0.5 to 2.0 equivalents, more preferably 0.8 to 1.5 equivalents. If it is less than 0.5 equivalent, the mechanical strength of the cured product may be inferior, and if it is more than 2.0, a large amount of acid anhydride groups may remain, resulting in poor storage stability.
  • the production of the polyvalent carboxylic acid resin can be performed with or without a solvent.
  • the solvent does not react with the polyhydric alcohol compound (E), the compound (h) having two or more carboxylic anhydride groups in the molecule, and the compound (f) having one carboxylic anhydride group in the molecule.
  • Any solvent can be used without particular limitation.
  • solvents that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene.
  • an aromatic hydrocarbon and ketones are preferable.
  • These solvents may be used alone or in combination of two or more.
  • the amount used is the polyhydric alcohol compound (E), the compound (h) having two or more carboxylic anhydride groups in the molecule, and the compound having one carboxylic anhydride group in the molecule. 0.5 to 300 parts by weight is preferable with respect to 100 parts by weight of the total of (f).
  • the polyvalent carboxylic acid resin (C3) can be produced without a catalyst or with a catalyst.
  • usable catalysts are hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, water Metal hydroxides such as calcium oxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, Heterocyclic compounds such as imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide,
  • a catalyst When using a catalyst, it can also be used 1 type or in mixture of 2 or more types.
  • the amount used thereof is a polyhydric alcohol compound (E), a compound (h) having two or more carboxylic anhydride groups in the molecule, and a compound having one carboxylic anhydride group in the molecule. 0.05 to 10 parts by weight is preferable with respect to 100 parts by weight in total of (f).
  • a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like.
  • an alcoholic solvent such as methanol or ethanol or water means that an unreacted compound (h) having two or more carboxylic acid anhydride groups in the molecule or one carboxylic acid anhydride in the molecule. Since it reacts with the compound (f) having a physical group, it is preferable to avoid it.
  • the reaction temperature during the production of the polyvalent carboxylic acid resin (C3) depends on the amount of catalyst and the solvent used, but is usually preferably 20 to 160 ° C, more preferably 50 to 150 ° C, particularly preferably 60 to 145 ° C. is there.
  • the total reaction time is usually preferably 1 to 20 hours, more preferably 3 to 12 hours.
  • the reaction may be carried out in two or more stages. For example, the reaction may be carried out at 20 to 100 ° C. for 1 to 8 hours and then at 100 to 160 ° C. for 1 to 12 hours.
  • the compound (f) having one carboxylic acid anhydride group in the molecule is often highly volatile. When such a compound is used, the compound (f) is reacted at 20 to 100 ° C.
  • the catalyst can be removed by quenching and / or washing with water as necessary, but it is left as it is and used as a curing accelerator for the curable resin composition of the present invention.
  • Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone
  • esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate
  • hydrocarbons such as hexane, cyclohexane, toluene and xylene.
  • the polycarboxylic acid resin (C3) thus obtained is usually a liquid having fluidity at 25 ° C.
  • the molecular weight is preferably from 800 to 80,000, more preferably from 1,000 to 10,000, and particularly preferably from 1500 to 8,000 as the weight average molecular weight measured by GPC.
  • the weight average molecular weight is less than 800, the fluidity at 25 ° C. may decrease, and when it exceeds 80,000, when a curable resin composition using the same is used, the compatibility with the epoxy resin described later is low. May be inferior.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
  • the acid value (measured by the method described in JIS K-2501) of the produced polycarboxylic acid resin (C3) is preferably 35 to 200 mgKOH / g, more preferably 50 to 180 mgKOH / g, particularly 60-150 mgKOH / g is preferred.
  • the functional group equivalent is less than 35 mgKOH / g, the mechanical properties of the cured product tend to deteriorate, and when it exceeds 150 mgKOH / g, the cured product tends to be hard and the elastic modulus tends to be too high.
  • the viscosity of the polycarboxylic acid resin (C3) (E-type viscometer, measured at 25 ° C.) is preferably from 50 to 800,000 mPa ⁇ s, more preferably from 500 to 100,000 mPa ⁇ s, particularly from 800 to The thing of 30,000 mPa * s is preferable.
  • the viscosity is less than 50 mPa ⁇ s, the viscosity is too low and may not be suitable when used as a sealing material or the like, and when it exceeds 800,000 mPa ⁇ s, the viscosity is too high or the sealing material or the like. May be inferior in workability.
  • two or more of acid anhydride (C1), polyvalent carboxylic acid (C2), and polyvalent carboxylic acid resin (C3) are used in combination as an epoxy resin curing agent. You can also.
  • solid polyvalent carboxylic acid (C2) is used in applications such as an optical semiconductor encapsulant that requires liquid at room temperature (25 ° C.)
  • liquid acid anhydride (C1) and / or polyvalent carboxylic acid It is desirable to use the resin (C3) in combination and use it as a liquid mixture.
  • the acid anhydride (C1) and / or the polyvalent carboxylic acid resin (C3) can be used in a proportion of 0.5 to 99.5% by weight of the total epoxy resin curing agent.
  • the curing agent other than the above-mentioned acid anhydride and / or polyvalent carboxylic acid resin and / or polyvalent carboxylic acid resin is used in combination as the epoxy resin curing agent
  • the acid anhydride and / or polyvalent carboxylic acid and / or polyhydric carboxylic acid are used.
  • the proportion of the total amount of the polyvalent carboxylic acid resin in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more.
  • the curing agent that can be used in combination include amine compounds, amide compounds, phenol compounds, and the like.
  • curing agents that can be used include amines and polyamide compounds (such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and polyamide resins synthesized from linolenic acid dimer and ethylenediamine).
  • amines and polyamide compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and polyamide resins synthesized from linolenic acid dimer and ethylenediamine).
  • Polyphenols bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fe (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyaceto
  • the curing accelerator any epoxy group-containing polyorganosiloxane (and an epoxy resin when used in combination) and an epoxy resin curing agent capable of accelerating the curing reaction can be used.
  • examples include ammonium salt curing accelerators, phosphonium salt curing accelerators, metal soap curing accelerators, imidazole curing accelerators, amine curing accelerators, phosphine curing accelerators, and phosphite curing accelerators. Agents, Lewis acid curing accelerators and the like.
  • the curing accelerator is preferably used in an amount of 0.001 to 15 parts by weight of the curing accelerator with respect to 100 parts by weight of the curable resin composition.
  • another curing catalyst (curing accelerator) can be used in combination as necessary.
  • the curing catalyst that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole) (1 ′)) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-diamino-6 (2′-di
  • Diaza compounds such as undecene-7 and the like Salts such as tetraphenylborate and phenol novolak, salts with the above polycarboxylic acids, or phosphinic acids, tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide and other ammonium salts, triphenylphosphine, triphenylphosphine (Toluyl) phosphines such as phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts and tin octylate, etc.
  • Salts such as tetraphenylborate and phenol novolak, salts with the above polycarboxylic acids, or
  • microcapsule type curing accelerator obtained by making these curing accelerators into microcapsules. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions.
  • the curing accelerator is preferably used in the range of usually 0.001 to 15 parts by weight per 100 parts by weight of the epoxy resin.
  • the metal soap curing accelerator is excellent, and among the metal soap curing accelerators, a zinc carboxylate compound is particularly preferable.
  • the metal soap type curing accelerator include tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, potassium octylate, calcium stearate, zinc stearate, magnesium stearate, stearin Aluminum oxide, barium stearate, lithium stearate, sodium stearate, potassium stearate, calcium 12-hydroxyphosphate, zinc 12-hydroxystearate, magnesium 12-hydroxystearate, aluminum 12-hydroxystearate, 12-hydroxystearic acid Barium, lithium 12-hydroxystearate, sodium 12-hydroxystearate, calcium montanate, zinc montanate, mon Magnesium phosphate, aluminum montanate, lithium montanate, lithium montanate, lithium montan
  • Carbons such as zinc stearate, zinc montanate, zinc behenate, zinc laurate, zinc undecylenate, zinc ricinoleate, zinc myristate, and zinc palmitate are used to obtain cured products with excellent transparency and sulfidation resistance.
  • Zinc salts composed of a monocarboxylic acid compound having 10 to 30 carbon atoms and having a hydroxyl group such as zinc carbonate of several tens to thirty and zinc 12-hydroxystearate can be preferably used.
  • a zinc salt composed of a monocarboxylic acid compound having 10 to 20 carbon atoms such as zinc stearate and zinc undecylenate, and a hydroxyl group such as zinc 12-hydroxystearate.
  • a zinc salt composed of a monocarboxylic acid compound having 15 to 20 carbon atoms can be preferably used, more preferably zinc stearate, zinc undecylenate and zinc 12-hydroxystearate, particularly preferably zinc stearate, 12- Zinc hydroxystearate can be used.
  • ammonium salt curing accelerator examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide.
  • Trimethylcetylammonium hydroxide Trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate and the like.
  • the phosphonium salt curing accelerator include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like.
  • ammonium salt-based curing accelerators phosphonium salt-based curing accelerators, metal soap-based curing accelerators, imidazole-based curing accelerators, amine-based curing accelerators, and heterocyclic compound-based curing accelerators.
  • a phosphine-based curing accelerator, a phosphite-based curing accelerator, a Lewis acid-based curing accelerator, or the like can be used.
  • the curing accelerator described above can be used as a solid compound or a liquid compound at room temperature (25 ° C.).
  • a solid compound when used as a curing accelerator at room temperature (25 ° C.), it can be used by dissolving it in a resin in advance.
  • coupling agent in the curable resin composition of the present invention as necessary, it is possible to supplement the viscosity adjustment of the composition and the hardness of the cured product.
  • coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl.
  • Trimethoxysilane N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate
  • the curable resin composition of the present invention it is possible to supplement mechanical strength without impairing transparency by using a nano-order level inorganic filler as necessary.
  • the standard for the nano-order level is preferably an average particle diameter of 500 nm or less, and particularly preferably a filler having an average particle diameter of 200 nm or less from the viewpoint of transparency.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more.
  • the content of these inorganic fillers is preferably such that it accounts for 0 to 95% by weight in the curable resin composition of the present invention.
  • a phosphor can be added to the curable resin composition of the present invention as necessary.
  • the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light.
  • the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of such a phosphor those known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m.
  • the addition amount is preferably 1 to 80 parts by weight, more preferably 5 to 60 parts by weight with respect to 100 parts by weight of the resin component.
  • a thixotropic imparting agent such as fine silica powder (also referred to as “aerosil” or “aerosol”) can be added for the purpose of preventing sedimentation of various phosphors during curing.
  • silica fine powder examples include Aerosil (trade name) 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974. Aerosil R812S, Aerosil R805, RY200, RX200 (manufactured by Nippon Aerosil Co., Ltd.) and the like.
  • the curable resin composition of the present invention may contain an amine compound as a light stabilizer or a phosphorus compound and a phenol compound as an antioxidant.
  • the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, bis (2,2,6) decanedioate , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-t
  • the following commercially available products can be used as the amine compound that is the light stabilizer.
  • the commercially available amine compound is not particularly limited.
  • TINUVIN trade name 765
  • TINUVIN 770DF TINUVIN 144
  • TINUVIN 123 TINUVIN 622LD
  • TINUVIN 152 and CHIMASSORB (trade name) 944 are manufactured by Ciba Specialty Chemicals.
  • ADEKA LA-52, LA-57, LA-62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like can be mentioned.
  • the phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-
  • the commercially available phosphorus compounds are not particularly limited.
  • ADK STAB (trade name) PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB 522A, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 135A and the like.
  • the phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • IRGANOX (trade name) 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 245, IRGANOX 259, IRGANOX 295, IRGANOX 3114, IRGANOX manufactured by Ciba Specialty Chemicals 1098, IRGANOX 1520L, manufactured by Adeka
  • Adeka Stub (trade name) AO-20, Adeka Stub AO-30, Adeka Stub AO-40, Adeka Stub AO-50, Adeka Stub AO-60, Adeka Stub AO-70, Adeka Stub AO-80, Adeka Stub AO-90, ADK STAB AO-330, manufactured by Sumitomo Chemical Co., Ltd., Sumilizer (trade name) GA- 0, Sumilizer MDP-S, Sumilizer B
  • THINUVIN (trade name) 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB (trade name) 2020FDL, CHIMASSORB 119FL and the like can be cited as products manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but with respect to the total weight of the curable resin composition of the present invention, A range of 0.005 to 5.0% by weight is preferred.
  • the curable resin composition of the present invention can be obtained by uniformly mixing the above components at room temperature or under heating. For example, mix thoroughly until uniform using an extruder, kneader, three rolls, universal mixer, planetary mixer, homomixer, homodisper, bead mill, etc., and if necessary, filter with SUS mesh etc. Prepared.
  • the curable resin composition of the present invention is obtained by thoroughly mixing additives such as an epoxy group-containing polyorganosiloxane, an epoxy resin curing agent, a curing accelerator, an antioxidant, and a light stabilizer. It can be prepared and used as a sealing material.
  • additives such as an epoxy group-containing polyorganosiloxane, an epoxy resin curing agent, a curing accelerator, an antioxidant, and a light stabilizer. It can be prepared and used as a sealing material.
  • mixing method can be performed at room temperature or by heating using a kneader, a triple roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill, or the like.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens.
  • the curable resin composition of this invention can be used for this sealing material.
  • an injection method in which the sealing material is injected into the mold frame in which the optical semiconductor element is fixed is inserted and then heat-cured and then molded, and the sealing material is injected on the mold in advance.
  • a compression molding method is used in which an optical semiconductor element fixed on a substrate is immersed therein and heat-cured and then released from a mold.
  • the injection method include a dispenser.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • For the purpose of reducing internal stress generated during heat-curing for example, after pre-curing at 80 to 120 ° C.
  • X to Y indicates a range from X to Y, and the range includes X and Y.
  • Example 1 Synthesis of an epoxy group-containing polyorganosiloxane through production steps I and II (production step I) In a 500 ml four-necked flask made of glass, FCA107 (manufactured by Dow Corning Toray Co., Ltd., weight average molecular weight 1750, silanol equivalent 283 g / eq, 61.9 mol% phenyl group and 38.1 hydroxyl group in the above formula (1).
  • FCA107 manufactured by Dow Corning Toray Co., Ltd., weight average molecular weight 1750, silanol equivalent 283 g / eq, 61.9 mol% phenyl group and 38.1 hydroxyl group in the above formula (1).
  • the epoxy equivalent of the obtained compound was 437 g / eq
  • the weight average molecular weight was 3,800
  • the viscosity was 9651 mPa ⁇ s
  • the appearance was a colorless transparent liquid.
  • Example 2 Synthesis of an epoxy group-containing polyorganosiloxane through production steps I and II (production step I) In a 500 ml four-necked flask made of glass, 21.5 parts of FCA107 (silicone resin manufactured by Toray Dow Corning, Inc.), 82.0 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, FINISH WS62M (described above) Asahi Kasei Wacker's silanol-terminated silicone oil) 86.5 parts, 0.8% by weight KOH methanol solution, 7.3 parts of isopropyl alcohol, 124 parts of toluene, and Jimroth condenser, sales expansion device, thermometer installed And the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
  • FCA107 silicone resin manufactured by Toray Dow Corning, Inc.
  • the epoxy equivalent of the obtained compound was 496 g / eq, the weight average molecular weight was 4444, the viscosity was 1731 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Example 3 Production Example of Epoxy Group-Containing Polysiloxane via Production Processes 1 to 3 (Production Process 1)
  • FCA 107 silicone resin manufactured by Toray Dow Corning Co., Ltd.
  • 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane 95.4 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane
  • isopropyl alcohol The Dimroth condenser, the sales expansion device and the thermometer were installed, and the flask was immersed in a water bath.
  • the epoxy equivalent of the obtained compound was 432 g / eq, the weight average molecular weight was 5051, the viscosity was 6533 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Example 4 Production Example of Epoxy Group-Containing Polysiloxane via Production Processes 1 to 3 (Production Process 1)
  • FCA107 the above-mentioned silicone resin manufactured by Toray Dow Corning
  • 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane 95.4 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane
  • isopropyl alcohol The Dimroth condenser, the sales expansion device and the thermometer were installed, and the flask was immersed in a water bath.
  • the epoxy equivalent of the obtained compound was 426 g / eq
  • the weight average molecular weight was 6094
  • the viscosity was 9216 mPa ⁇ s
  • the appearance was a colorless transparent liquid.
  • Example 5 Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I) In a 500 ml four-necked flask made of glass, SILRES 604 (manufactured by Asahi Kasei Wacker Co., Ltd., weight average molecular weight 2176, silanol equivalent 485 g / eq, 40.6 mol% phenyl group in the above formula (1), 27.4 mol% hydroxyl group.
  • SILRES 604 manufactured by Asahi Kasei Wacker Co., Ltd., weight average molecular weight 2176, silanol equivalent 485 g / eq, 40.6 mol% phenyl group in the above formula (1), 27.4 mol% hydroxyl group.
  • the epoxy equivalent of the obtained compound was 410 g / eq, the weight average molecular weight was 4267, the viscosity was 5328 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Example 6 Production Example of Epoxy Group-Containing Polysiloxane via Production Steps I and II (Production Step I) To a 500 ml four-necked flask made of glass, 33.8 parts of SILRES 604 (the above-mentioned silicone resin manufactured by Asahi Kasei Wacker), 106.0 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, FINISH WS62M (described above, Asahi Kasei Wacker's silanol-terminated silicone oil) 70.2 parts, 0.9 parts by weight of KOH methanol solution, 8.1 parts of isopropyl alcohol, 105 parts of methyl isobutyl ketone, Jimroth condenser, sales expansion equipment, thermometer installed And the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
  • SILRES 604
  • the epoxy equivalent of the obtained compound was 422 g / eq, the weight average molecular weight was 5204, the viscosity was 36600 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Example 7 Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I) In a glass 500 ml four-necked flask, 36.4 parts of SILRES 604 (the aforementioned silicone resin manufactured by Asahi Kasei Wacker), 91.2 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, FINISH WS62M (described above, Asahi Kasei Wacker Co., Ltd.
  • SILRES 604 the aforementioned silicone resin manufactured by Asahi Kasei Wacker
  • 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane FINISH WS62M (described above, Asahi Kasei Wacker Co., Ltd.
  • Silanol-terminated silicone oil 82.4 parts, 0.9 parts by weight of 5% by weight KOH methanol solution, 8.1 parts of isopropyl alcohol, 105 parts of methyl isobutyl ketone, charged with Jimroth condenser, sales expansion device and thermometer And the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
  • the epoxy equivalent of the obtained compound was 499 g / eq
  • the weight average molecular weight was 5476
  • the viscosity was 10033 mPa ⁇ s
  • the appearance was a colorless transparent liquid.
  • Example 8 Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I)
  • SILRES 604 the aforementioned silicone resin manufactured by Asahi Kasei Wacker
  • 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane FINISH WS62M (described above, Asahi Kasei Wacker's Silanol-terminated silicone oil) 98.2 parts, 0.9 parts of 5 wt% KOH methanol solution, 8.1 parts of isopropyl alcohol, 116 parts of methyl isobutyl ketone, and Jimroth condenser, sales expansion device, thermometer installed
  • the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
  • the epoxy equivalent of the obtained compound was 482 g / eq, the weight average molecular weight was 5181, the viscosity was 2458 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Example 9 Production example of epoxy group-containing polysiloxane through production steps 1 to 3 (production step 1)
  • FCA107 the above-mentioned silicone resin manufactured by Toray Dow Corning
  • 84.1 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 7. 3 parts were charged, a Jimroth condenser, a sales expansion device and a thermometer were installed, and the flask was immersed in a water bath.
  • the epoxy equivalent of the obtained compound was 474 g / eq, the weight average molecular weight was 6009, the viscosity was 1454 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Example 10 Production example of epoxy group-containing polysiloxane after production steps 1 to 3 (production step 1)
  • FCA107 the above-mentioned silicone resin manufactured by Toray Dow Corning Co., Ltd.
  • 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane isopropyl alcohol 7. 3 parts were charged, a Jimroth condenser, a sales expansion device and a thermometer were installed, and the flask was immersed in a water bath.
  • the epoxy equivalent of the obtained compound was 566 g / eq
  • the weight average molecular weight was 10158
  • the viscosity was 1910 mPa ⁇ s
  • the appearance was a colorless transparent liquid.
  • Example 13 Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I)
  • SILRES 603 manufactured by Asahi Kasei Wacker, weight average molecular weight 1500, silanol equivalent 567 g / eq, in the above formula (1), the phenyl group is 83.7 mol%, the hydroxyl group is 16.3 mol%.
  • SILRES 603 was dissolved in 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane while maintaining the internal temperature at 60 ° C. and stirring for 30 minutes. Thereafter, X-21-5841 (manufactured by Shin-Etsu Chemical Co., Ltd., silanol-terminated silicone oil having a weight average molecular weight of 1000 and a silanol equivalent of 500 g / eq) 80.1 parts, 0.9 parts of 5 wt% KOH methanol solution, isopropyl alcohol 8. 1 part was charged, the water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was carried out for 8 hours.
  • X-21-5841 manufactured by Shin-Etsu Chemical Co., Ltd., silanol-terminated silicone oil having a weight average molecular weight of 1000 and a silanol equivalent of 500 g / eq
  • the epoxy equivalent of the obtained compound was 463 g / eq, the weight average molecular weight was 7445, the viscosity was 6835 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Comparative Example 1 Example using an organic base compound as a catalyst (Production Process 1) In a glass 500 ml four-necked flask, 20 parts of FCA107 (the above-mentioned silicone resin manufactured by Toray Dow Corning), 95.4 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 7.3 parts of isopropyl alcohol The Dimroth condenser, the sales expansion device and the thermometer were installed, and the flask was immersed in a water bath. The water bath was heated and the internal temperature was kept at 60 ° C.
  • FCA107 the above-mentioned silicone resin manufactured by Toray Dow Corning
  • 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane 7.3 parts of isopropyl alcohol
  • the Dimroth condenser, the sales expansion device and the thermometer were installed, and the flask was immersed in a water bath. The water bath was heated and the internal temperature was kept
  • Silicone resin FCA107 manufactured by Toray Dow Corning a-2
  • Silicone resin SILRES604 manufactured by Asahi Kasei Wacker a-3
  • Silicone resin SILRES603 manufactured by Asahi Kasei Wacker b-1
  • 2- 3-,4-epoxycyclohexyl) ethyltrimethoxysilane c-1
  • silicone oil from Asahi Kasei Wacker, FINISH WS62M c-2 Silicone oil XC96-723 manufactured by Momentive c-3: Silicone oil X-21-5841 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples 1 to 10 and 13 are all obtained with a colorless and transparent liquid resin, and can be obtained with appropriate epoxy equivalent, viscosity, and weight average molecular weight, and are particularly suitable as a liquid epoxy resin for optical applications. It could be confirmed.
  • Synthesis Example 1 Production Example of Epoxy Group-Containing Polysiloxane Using Silicone Resin through Production Process I / II (Production Process I)
  • a glass 500 ml four-necked flask 86.9 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, XC96-723 (the aforementioned Silanol-terminated silicone oil made by Momentive) 103.8 parts, 5% by weight
  • a KOH methanol solution 0.8 part and isopropyl alcohol 7.3 parts were charged, a Dimroth condenser, a sales expansion device, and a thermometer were installed, and the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was carried out for 10 hours.
  • an epoxy group-containing polyorganosiloxane (A-11) containing no silicone resin was obtained 154 parts of an epoxy group-containing polyorganosiloxane (A-11) containing no silicone resin.
  • the epoxy equivalent of the obtained compound was 473 g / eq, the weight average molecular weight was 6511, the viscosity was 845 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Synthesis Example 2 Production Example of Epoxy Group-Containing Polysiloxane Using Silanol-Terminated Silicone Oil Containing Phenyl Group as Silanol-Terminated Silicone Oil without Using Silicone Resin through Production Process I / II (Production Process I)
  • the organic layer contains an epoxy group using a silanol-terminated silicone oil containing a phenyl group as a silanol-terminated silicone oil without using a silicone resin that has undergone production steps I and II.
  • 731 parts of polysiloxane (A-12) were obtained.
  • the epoxy equivalent of the obtained compound was 491 g / eq, the weight average molecular weight was 2090, the viscosity was 3328 mPa ⁇ s, and the appearance was a colorless transparent liquid.
  • Synthesis Example 3 Carbinol-modified silicone oil (d) at both ends, terminal alcohol polyester compound (i), compound (h) having two or more carboxylic anhydride groups in the molecule, and one in the molecule
  • polyvalent carboxylic acid resin which is epoxy resin curing agent (B) obtained by addition reaction with compound (f) having carboxylic anhydride group Glass equipped with stirrer, Dimroth condenser and thermometer
  • 47.1 parts of both-end carbinol-modified silicone X22-160AS manufactured by Shin-Etsu Chemical Co., Ltd.
  • Adeka New Ace Y9-10 made by ADEKA Corporation
  • a polyester polyol the above formula (6 polyester polyol) 11.8 parts R 12 is butyl and R 11 is neopentyl group in), RIKACID BT-10 (1,2,3,4-butanetetracarboxylic dianhydride, manufactured by Shin Nippon Rika Co.,
  • Example 11 100 parts of the epoxy group-containing polyorganosiloxane (A-2) obtained in Example 2, 63.2 parts of the polyvalent carboxylic acid resin (B-1) obtained in Synthesis Example 3, and a curing accelerator As described above, 0.5 part of zinc 2-ethylhexanoate was placed in a polypropylene container, mixed and degassed for 5 minutes to obtain a curable resin composition for sealing an optical semiconductor of the present invention.
  • Example 12 100 parts of the epoxy group-containing polyorganosiloxane (A-9) obtained in Example 9, 66.7 parts of the polyvalent carboxylic acid resin (B-1) obtained in Synthesis Example 3, and a curing accelerator As described above, 0.5 part of zinc 2-ethylhexanoate was placed in a polypropylene container, mixed and degassed for 5 minutes to obtain a curable resin composition for sealing an optical semiconductor of the present invention.
  • Comparative Example 2 100 parts of an epoxy group-containing polyorganosiloxane (A-11) not using the silicone resin obtained in Synthesis Example 1 as a raw material, and the polyvalent carboxylic acid resin (B-1) 66 obtained in Synthesis Example 3 .8 parts and 0.5 parts of zinc 2-ethylhexanoate as a curing accelerator were placed in a polypropylene container, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
  • Table 2 shows the blending ratios of the curable resin compositions for sealing an optical semiconductor obtained in Examples 11 to 12 and Comparative Examples 2 to 3, and the results of hardness, transmittance, sulfidation resistance, and tack test of the cured products. Shown in The test in Table 2 was performed as follows.
  • the durometer A hardness was measured by the method described in JIS K-7215.
  • (2) Cured product transmittance and cured post-heat cured product transmittance The curable resin composition for sealing an optical semiconductor obtained in Examples 11 to 12 and Comparative Examples 2 to 3 was vacuum degassed for 5 minutes, and then 30 mm ⁇ The mold was gently cast on a glass substrate on which a dam was created with a heat-resistant tape so that the height was 20 mm and the height was 0.8 mm. The cast was cured at 120 ° C. for 3 hours after pre-curing at 120 ° C. for 1 hour to obtain a test piece for transmittance having a thickness of 0.8 mm. The obtained specimen was measured for light transmittance at 400 nm under the following conditions.
  • Spectrophotometer measurement conditions Manufacturer Hitachi High-Technologies Corporation Model: U-3300 Slit width: 2.0nm Scan speed: 120 nm / min
  • 120mm x 180mm x 36mmt polypropylene made from a sealed surface-mount LED with two glass containers (open lid) with an opening diameter of 0.6cm and a height of 3.5cm containing 1ml of 20% ammonium sulfide aqueous solution It put into the airtight container and left to stand in a 25 degreeC thermostat. The discoloration of the silver-plated portion on the bottom surface was visually confirmed every 2 hours. The time when it was confirmed that the silver plating on the bottom surface was severely discolored was entered.
  • the LED-A after sealing is fixed to a 1 g aluminum plate using double-sided tape so that the opening is on top, and the LED-B is placed on the LED-A so that the respective openings are in contact with each other.
  • the LED-B was pressed for 5 seconds. After that, when only LED-B is lifted with tweezers, the sample lifted with 1 g of aluminum metal plate makes a judgment (D) that there is tack (stickiness), and LED-B peels off from LED-A.
  • the sample which raised only B was judged (A) without tack (stickiness).
  • A-2, A-9, A-11, A-12, and B-1 represent the compounds obtained in the above Examples and Comparative Examples.
  • Comparative Example 2 using an epoxy group-containing polysiloxane that does not use a silicone resin as a raw material is suitable for optical semiconductor sealing applications in terms of viscosity, hardness, and cured product transmittance after mixing.
  • Comparative Example 3 the viscosity and hardness after mixing and the cured product transmittance are suitable for optical semiconductor sealing applications, but they are excellent in sulfidation resistance but inferior in tackiness.
  • Examples 11 to 12 In addition to its appropriate physical properties, it has excellent sulfidation resistance and tackiness.
  • the epoxy group-containing polyorganosiloxane of the present invention and the curable resin composition containing the epoxy group are excellent in heat-resistant transparency and sulfidation resistance, and further provide a low-tack cured product. Therefore, it can be suitably used as a sealing resin for optical semiconductors (such as LEDs).

Abstract

 An epoxy-group-containing polyorganosiloxane in which a silicone resin structure (A) having a specific structure, an epoxy-group-containing silsesquioxane structure (B) having a specific structure, and a silicone oil structure (C) having a specific structure are linked, with the terminals being an alkoxy group having 1 to 10 carbon atoms and/or a silanol group.

Description

エポキシ基含有ポリオルガノシロキサンおよびそれを含有する硬化性樹脂組成物Epoxy group-containing polyorganosiloxane and curable resin composition containing the same
 本発明は特に光半導体封止用などの高い透明性が求められる部分に用いるのに好適なエポキシ基含有ポリオルガノシロキサンおよびそれを含有する硬化性樹脂組成物に関する。 The present invention relates to an epoxy group-containing polyorganosiloxane suitable for use in a portion requiring high transparency, particularly for optical semiconductor sealing, and a curable resin composition containing the epoxy group.
 硬化性樹脂組成物は熱硬化性樹脂組成物として、作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性等により、電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
 赤、緑等の有色LED(Light Emitting Diode、発光ダイオード)等の光半導体封止用の樹脂としてこれまで硬化性樹脂組成物が用いられてきた。
 しかし、白色光を発するLEDの封止用の樹脂としては高い耐光・耐熱透明性が求められるために、それらに優れる不飽和炭化水素基含有ジメチルポリシロキサンとオルガノハイドロジェンジメチルポリシロキサンを用いたシリコーン樹脂封止材が用いられてきた(特許文献1を参照)。
The curable resin composition is a thermosetting resin composition that has excellent workability and excellent electrical properties, heat resistance, adhesion, moisture resistance, etc. It is widely used in such fields.
Until now, curable resin compositions have been used as resins for encapsulating optical semiconductors such as red and green colored LEDs (light emitting diodes).
However, as a resin for sealing an LED that emits white light, high light resistance and heat-resistant transparency are required. Therefore, a silicone using an unsaturated hydrocarbon group-containing dimethylpolysiloxane and an organohydrogendimethylpolysiloxane which are excellent in them. Resin sealing materials have been used (see Patent Document 1).
 近年になって、LEDパッケージ内部の銀メッキが施された銅電線が空気中に存在する硫黄性のガスによって腐食(銀の硫化)され、その輝度が低下することが問題となり、封止材に耐硫化性能が求められるようになってきた。そこで、不飽和炭化水素基含有のジメチルポリシロキサンにフェニル基を導入したフェニルシリコーン系封止材が開発、上市されているが、その耐硫化性は未だ満足できるのものではなかった。またシリコーン系樹脂封止材はポリアミド樹脂などからなるLEDパッケージの基板樹脂への密着性が悪いといった問題も抱えていた。
 そこで、耐光、耐熱性に優れるシリコーン骨格にエポキシ基を導入したポリオルガノシロキサンを用いることにより、シリコーン樹脂封止材の密着性や耐硫化性能の弱点を補うような封止材が開発されてきた(特許文献2を参照)。
 また、同様に耐硫化性を向上する目的でフェニル基を導入したエポキシ基を含有するポリオルガノシロキサン樹脂も検討されており、耐硫化性は向上するが、硬化物同士のべたつき(タック性)があるためにLED製造時の歩留まりが悪くなる問題があった。さらに、エポキシ硬化のために使用する酸無水物化合物は、加熱硬化中に揮発してしまったり、硬化前に空気中に存在する水によって加水分解して硬化物特性が変化してしまったりする問題を抱えている。
In recent years, it has become a problem that the copper wire with silver plating inside the LED package is corroded (sulfurized silver) by sulfurous gas present in the air, and its brightness decreases, Sulfide resistance has been demanded. Accordingly, phenyl silicone-based encapsulants in which phenyl groups are introduced into dimethylpolysiloxane containing unsaturated hydrocarbon groups have been developed and marketed, but their sulfidation resistance has not yet been satisfactory. In addition, the silicone-based resin sealing material has a problem that the adhesion of the LED package made of polyamide resin or the like to the substrate resin is poor.
Therefore, a sealing material has been developed that compensates for the weakness of the adhesion and sulfidation resistance of the silicone resin sealing material by using a polyorganosiloxane having an epoxy group introduced into a silicone skeleton excellent in light resistance and heat resistance. (See Patent Document 2).
Similarly, a polyorganosiloxane resin containing an epoxy group having a phenyl group introduced for the purpose of improving sulfidation resistance has also been investigated, and although sulfidation resistance is improved, the stickiness between the cured products (tackiness) is improved. For this reason, there is a problem that the yield at the time of manufacturing the LED deteriorates. In addition, acid anhydride compounds used for epoxy curing may volatilize during heat curing or may be hydrolyzed by water present in the air before curing, resulting in changes in the properties of the cured product. Have
日本国特許第4636242号公報Japanese Patent No. 4636242 日本国特許第4935972号公報Japanese Patent No. 4935972
 本発明は優れた耐熱透明性、優れた耐硫化性、さらには低タック性の硬化物を与えるエポキシ基含有ポリオルガノシロキサンおよびその製造方法、さらにはエポキシ基含有ポリオルガノシロキサンを含有する硬化性樹脂組成物を提供することを目的とする。 The present invention relates to an epoxy group-containing polyorganosiloxane that provides a cured product having excellent heat-resistant transparency, excellent sulfidation resistance, and low tack, and a method for producing the same, and a curable resin containing the epoxy group-containing polyorganosiloxane. An object is to provide a composition.
 本発明者らは前記した実状に鑑み、鋭意検討した結果、特定の構造を有するエポキシ基含有ポリオルガノシロキサンまたは特定の化合物を原料として製造されたエポキシ基含有ポリオルガノシロキサンおよびそれを含有する硬化性樹脂組成物が上記課題を解決することを見出し、本発明を完成させるに至った。
 すなわち本発明は、下記(1)~(14)に関する。
As a result of intensive investigations in view of the above-described actual situation, the present inventors have found that an epoxy group-containing polyorganosiloxane having a specific structure or an epoxy group-containing polyorganosiloxane produced using a specific compound as a raw material and a curability containing the same The present inventors have found that a resin composition solves the above problems and have completed the present invention.
That is, the present invention relates to the following (1) to (14).
(1)平均式(A)で表されるシリコーンレジン構造(A)、式(B)で表されるエポキシ基含有シルセスキオキサン構造(B)、および、式(C)で表されるシリコーンオイル構造(C)が連結し、末端がシラノール基及び/または炭素数1~10のアルコキシ基であるエポキシ基含有ポリオルガノシロキサン: (1) Silicone resin structure (A) represented by average formula (A), epoxy group-containing silsesquioxane structure (B) represented by formula (B), and silicone represented by formula (C) Epoxy group-containing polyorganosiloxane in which the oil structure (C) is linked and the terminal is a silanol group and / or an alkoxy group having 1 to 10 carbon atoms:
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
(式中、R’、R’、R’、R’、R’、R’は、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。但し、分子中のR’~R’の少なくとも2つの水酸基が脱離して、ケイ素原子がエポキシ基含有シルセスキオキサン構造(B)の酸素原子に結合している。); (In the formula, R ′ 1 , R ′ 2 , R ′ 3 , R ′ 4 , R ′ 5 , R ′ 6 may be the same as or different from each other, and may be a monovalent hydrocarbon group or a hydroxyl group. And the total amount of R ′ 1 to R ′ 6 in the molecule is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3, where numerator And at least two hydroxyl groups of R ′ 1 to R ′ 6 are eliminated, and a silicon atom is bonded to an oxygen atom of the epoxy group-containing silsesquioxane structure (B)).
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
(式中、Yは、それぞれ独立して、水素原子、エポキシ基を有する反応性官能基、炭素数1~3のアルキル基またはフェニル基であるが、Yの少なくとも一つはエポキシ基を有する反応性官能基である。lは2以上の整数を表す。*はシリコーンレジン構造(A)またはシリコーンオイル構造(C)のケイ素原子への結合を表す。); (Wherein Y is independently a hydrogen atom, a reactive functional group having an epoxy group, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, at least one of Y is a reaction having an epoxy group) L represents an integer greater than or equal to 2. * represents a bond to a silicon atom of the silicone resin structure (A) or the silicone oil structure (C));
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
(式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す。*はエポキシ基含有シルセスキオキサン構造(B)の酸素原子への結合を表す。)。 (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. * Represents a bond to the oxygen atom of the epoxy group-containing silsesquioxane structure (B).
(2)平均式(1)で表されるシリコーンレジン(a成分);式(2)で表されるエポキシ基含有ケイ素化合物(b成分);および、式(3)で表されるシラノール末端シリコーンオイル(c成分)を原料として製造されたエポキシ基含有ポリオルガノシロキサン: (2) Silicone resin represented by average formula (1) (component a); epoxy group-containing silicon compound represented by formula (2) (component b); and silanol-terminated silicone represented by formula (3) Epoxy group-containing polyorganosiloxane produced from oil (component c) as a raw material:
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
(式中、R、R、R、R、R、Rは、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。); (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different from each other, and are a monovalent hydrocarbon group or a hydroxyl group, and R in the molecule) When the total amount of ' 1 to R' 6 is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1 0.0, b / (a + b + c + d) = 0-0.7, c / (a + b + c + d) = 0-0.3, d / (a + b + c + d) = 0-0.3);
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
(式中、Xはエポキシ基を有する反応性官能基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を有するアリール基を、Rは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、eは0、1または2を表し、fは(3-e)を表す。); (Wherein X has a reactive functional group having an epoxy group, R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
(式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す)。 (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. Show).
(3)下記2段階の製造工程を経て製造された、(2)に記載のエポキシ基含有ポリオルガノシロキサン:
[製造工程I]a成分およびc成分のシラノール基と、b成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
[製造工程II]製造工程Iの後、水を添加して残存するアルコキシ基同士の縮合を行う工程。
(3) The epoxy group-containing polyorganosiloxane according to (2), produced through the following two-stage production process:
[Manufacturing step I] A step of dealcoholizing a silanol group of component a and c and an alkoxy group of component b in the presence of an inorganic base compound [Manufacturing step II] After manufacturing step I, water is added to remain. The step of condensing the alkoxy groups.
(4)下記3段階の製造工程を経て製造された、(2)に記載のエポキシ基含有ポリオルガノシロキサン:
[製造工程1]a成分のシラノール基とb成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
[製造工程2]製造工程1の後、c成分を添加し、製造工程1を経て残存しているアルコキシ基と、c成分のシラノール基との脱アルコール縮合を行う工程
[製造工程3]製造工程2の後、水を添加し、残存しているアルコキシ基同士の縮合を行う工程。
(4) The epoxy group-containing polyorganosiloxane according to (2), produced through the following three-stage production process:
[Manufacturing step 1] A step of dealcoholizing a silanol group of component a and an alkoxy group of component b in the presence of an inorganic base compound [Manufacturing step 2] After manufacturing step 1, component c is added and manufacturing step 1 is performed. Step of performing dealcoholization condensation between alkoxy group remaining after passing and silanol group of component c [Manufacturing step 3] Step of adding water after manufacturing step 2 and condensing remaining alkoxy groups .
(5)平均式(1)で表されるシリコーンレジン(a成分);式(2)で表されるエポキシ基含有ケイ素化合物(b成分);および、式(3)で表されるシラノール末端シリコーンオイル(c成分)を原料として製造されたエポキシ基含有ポリオルガノシロキサンの製造方法であって、下記の2段階の製造工程を含む製造方法:
[製造工程I]a成分およびc成分のシラノール基と、b成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
[製造工程II]製造工程Iの後、水を添加して残存するアルコキシ基同士の縮合を行う工程:
(5) Silicone resin (component a) represented by average formula (1); epoxy group-containing silicon compound (component b) represented by formula (2); and silanol-terminated silicone represented by formula (3) A method for producing an epoxy group-containing polyorganosiloxane produced using oil (component c) as a raw material, comprising the following two-stage production steps:
[Manufacturing step I] A step of dealcoholizing the silanol groups of component a and c and the alkoxy group of component b in the presence of an inorganic base compound [Manufacturing step II] After manufacturing step I, water is added to remain. The step of condensing the alkoxy groups together:
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
(式中、R、R、R、R、R、Rは、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’の全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。); (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different from each other, and are a monovalent hydrocarbon group or a hydroxyl group, and R in the molecule) When the total amount of ' 1 to R' 6 is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3);
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
(式中、Xはエポキシ基を有する反応性官能基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を有するアリール基を、Rは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、eは0、1または2を表し、fは(3-e)を表す。); (Wherein X has a reactive functional group having an epoxy group, R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
(式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す)。 (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. Show).
(6)平均式(1)で表されるシリコーンレジン(a成分);式(2)で表されるエポキシ基含有ケイ素化合物(b成分);および、式(3)で表されるシラノール末端シリコーンオイル(c成分)を原料として製造されたエポキシ基含有ポリオルガノシロキサンの製造方法であって、下記の3段階の製造工程を含む製造方法:
[製造工程1]a成分のシラノール基とb成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程。
[製造工程2]製造工程1の後、c成分を添加し、製造工程1を経て残存しているアルコキシ基と、c成分のシラノールとの脱アルコール縮合を行う工程。
[製造工程3]製造工程2の後、水を添加し、残存しているアルコキシ基同士の縮合を行う工程:
(6) Silicone resin represented by average formula (1) (component a); epoxy group-containing silicon compound represented by formula (2) (component b); and silanol-terminated silicone represented by formula (3) A method for producing an epoxy group-containing polyorganosiloxane produced from oil (component c) as a raw material, comprising the following three steps:
[Manufacturing step 1] A step of dealcoholizing a silanol group of component a and an alkoxy group of component b in the presence of an inorganic base compound.
[Manufacturing step 2] A step of adding a component c after the manufacturing step 1 and performing dealcoholization condensation between the alkoxy group remaining after the manufacturing step 1 and silanol of the component c.
[Manufacturing step 3] After manufacturing step 2, water is added to condense the remaining alkoxy groups:
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
(式中、R、R、R、R、R、Rは、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’の全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。); (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different from each other, and are a monovalent hydrocarbon group or a hydroxyl group, and R in the molecule) When the total amount of ' 1 to R' 6 is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3);
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
(式中、Xはエポキシ基を有する反応性官能基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を有するアリール基を、Rは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、eは0、1または2を表し、fは(3-e)を表す。); (Wherein X has a reactive functional group having an epoxy group, R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
(式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す)。 (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. Show).
(7)(1)~(4)のいずれか一つに記載のエポキシ基含有ポリオルガノシロキサンとエポキシ樹脂硬化剤を含有する硬化性樹脂組成物。
(8)エポキシ樹脂硬化剤が、多価カルボン酸化合物である(7)記載の硬化性樹脂組成物。
(9)多価カルボン酸化合物が、両末端カルビノール変性シリコーンオイル(d)、分子内に2つ以上の水酸基を有する多価アルコール化合物(e)、および、分子内に一つのカルボン酸無水物基を有する化合物(f)を重合単位として含む付加重合体である多価カルボン酸樹脂である、(8)に記載の硬化性樹脂組成物。
(7) A curable resin composition comprising the epoxy group-containing polyorganosiloxane according to any one of (1) to (4) and an epoxy resin curing agent.
(8) The curable resin composition according to (7), wherein the epoxy resin curing agent is a polyvalent carboxylic acid compound.
(9) The polycarboxylic acid compound is a carbinol-modified silicone oil (d) at both terminals, a polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule, and one carboxylic acid anhydride in the molecule. The curable resin composition according to (8), which is a polyvalent carboxylic acid resin which is an addition polymer containing a group-containing compound (f) as a polymerization unit.
(10)さらに硬化促進剤を含有する(7)~(9)のいずれか一つに記載の硬化性樹脂組成物。
(11)硬化促進剤が金属石鹸硬化促進剤である(10)に記載の硬化性樹脂組成物。
(12)光半導体封止用途である(7)~(11)のいずれか一つに記載の硬化性樹脂組成物。
(13)(7)~(12)のいずれか一つに記載の硬化性樹脂組成物を硬化した硬化物。
(14)(13)に記載の硬化物を具備する光半導体。
(10) The curable resin composition according to any one of (7) to (9), further comprising a curing accelerator.
(11) The curable resin composition according to (10), wherein the curing accelerator is a metal soap curing accelerator.
(12) The curable resin composition according to any one of (7) to (11), which is used for optical semiconductor sealing.
(13) A cured product obtained by curing the curable resin composition according to any one of (7) to (12).
(14) An optical semiconductor comprising the cured product according to (13).
 本発明によれば、特定の構造を有するエポキシ基含有ポリオルガノシロキサンまたは特定の化合物を原料として製造されたエポキシ基含有ポリオルガノシロキサンおよびそれを含有する硬化性樹脂組成物は、耐熱透明性、耐硫化性に優れ、さらには低タック性の硬化物を与えるため、高い透明性や低タック性が求められる材料、特に光半導体(LEDなど)の封止用樹脂としてきわめて有用である。 According to the present invention, an epoxy group-containing polyorganosiloxane having a specific structure or an epoxy group-containing polyorganosiloxane produced using a specific compound as a raw material and a curable resin composition containing the epoxy group-containing polyorganosiloxane have heat resistant transparency, In order to give a cured product having excellent sulfidity and low tackiness, it is extremely useful as a sealing resin for materials that require high transparency and low tackiness, particularly optical semiconductors (LEDs, etc.).
 本発明のエポキシ基含有ポリオルガノシロキサンは、下記a成分~c成分を原料として製造されたエポキシ樹脂である。
(a成分)シリコーンレジン
(b成分)エポキシ基含有ケイ素化合物
(c成分)シラノール末端シリコーンオイル
The epoxy group-containing polyorganosiloxane of the present invention is an epoxy resin produced using the following components a to c as raw materials.
(A component) Silicone resin (b component) Epoxy group-containing silicon compound (c component) Silanol-terminated silicone oil
 ここからはa成分~c成分各々に関して詳細に説明する。
 本発明におけるシリコーンレジン(a成分)は下記平均式(1)で表わされるシリコーンレジンである。本発明のエポキシ基含有シロキサンに過度な粘度上昇をさせることなくフェニル基を導入し、本発明の光半導体封止用硬化物の耐硫化性を向上させるための成分である。
Hereafter, each of the a component to the c component will be described in detail.
The silicone resin (component a) in the present invention is a silicone resin represented by the following average formula (1). It is a component for introducing a phenyl group into the epoxy group-containing siloxane of the present invention without excessively increasing the viscosity and improving the sulfidation resistance of the cured product for optical semiconductor encapsulation of the present invention.
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
 式(1)において、R、R、R、R、R、Rは一価の炭化水素基または水酸基であり、好ましくは、炭素総数1~10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6~10の芳香族炭化水素基を有するアリール基である。式中複数存在するR~Rは同一であっても異なってもよいが、分子中のR~R全体を100モル%とした場合に、水酸基(シラノール基、Si-OH)が5~50モル%であり、フェニル基が30~95モル%である。水酸基、フェニル基以外のR~Rの例として、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基、水酸基等が挙げられる。これらの中でも、相溶性、硬化物の耐熱透明性の観点から、メチル基、n-プロピル基が好ましい。
 ここで、分子中のR~R全体を100モル%とした場合に、水酸基(シラノール基、Si-OH)は20~45モル%が好ましく、25~40モル%が特に好ましい。
 また、分子中のR~R全体を100モル%とした場合に、フェニル基は35~95モル%が好ましく、40~90モル%がより好ましく、50~85モル%が特に好ましい。
In the formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are monovalent hydrocarbon groups or hydroxyl groups, preferably linear or branched having 1 to 10 carbon atoms in total. Alternatively, it is a cyclic alkyl group or an aryl group having an aromatic hydrocarbon group having 6 to 10 carbon atoms. A plurality of R 1 to R 6 present in the formula may be the same or different, but when R 1 to R 6 in the molecule is 100 mol%, a hydroxyl group (silanol group, Si—OH) is present. 5 to 50 mol%, and the phenyl group is 30 to 95 mol%. Examples of R 1 to R 6 other than hydroxyl group and phenyl group include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, and n-pentyl group. N-hexyl group, cyclopentyl group, cyclohexyl group, phenyl group, naphthyl group, hydroxyl group and the like. Among these, a methyl group and an n-propyl group are preferable from the viewpoints of compatibility and heat-resistant transparency of the cured product.
Here, when the total amount of R 1 to R 6 in the molecule is 100 mol%, the hydroxyl group (silanol group, Si—OH) is preferably 20 to 45 mol%, particularly preferably 25 to 40 mol%.
Further, when the total amount of R 1 to R 6 in the molecule is 100 mol%, the phenyl group is preferably 35 to 95 mol%, more preferably 40 to 90 mol%, and particularly preferably 50 to 85 mol%.
 R~Rに含まれる水酸基は、後に説明するエポキシ基含有ケイ素化合物(b成分)中のアルコキシ基と脱アルコール縮合反応をして結合する。水酸基はR~R全体を100モル%とした場合に、5~50モル%である。5モル%未満であるとエポキシ基含有ケイ素化合物(b成分)との結合が不十分となり、未反応のシリコーンレジン成分がエポキシ基含有ポリオルガノシロキサン中に含有することになる。また、50モル%より多いとエポキシ基含有ポリオルガノシロキサンの粘度が高くなりすぎて作業性に劣る懸念がある。 The hydroxyl group contained in R 1 to R 6 is bonded with an alkoxy group in an epoxy group-containing silicon compound (component b), which will be described later, through a dealcoholization condensation reaction. The hydroxyl group is 5 to 50 mol% when the total amount of R 1 to R 6 is 100 mol%. If it is less than 5 mol%, the bond with the epoxy group-containing silicon compound (component b) will be insufficient, and the unreacted silicone resin component will be contained in the epoxy group-containing polyorganosiloxane. On the other hand, if it exceeds 50 mol%, the viscosity of the epoxy group-containing polyorganosiloxane becomes too high and the workability may be inferior.
 R~Rに含まれるフェニル基は、相溶性、硬化物の耐硫化性を向上させる観点から、R~R全体を100モル%とした場合に、30モル~95モル%である。フェニル基が30モル%未満であると、エポキシ基含有ポリオルガノシロキサンの相溶性、硬化物の耐硫化性が劣る懸念がある。 Phenyl groups contained in R 1 - R 6 are compatible, from the viewpoint of improving the sulfidation resistance of the cured product, when the entire R 1 - R 6 is 100 mol%, 30 mol% to 95 mol% . If the phenyl group is less than 30 mol%, the compatibility of the epoxy group-containing polyorganosiloxane and the sulfidation resistance of the cured product may be inferior.
 式(1)中のa~dの関係は以下の式で表される。
a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3を示す。
 これはシリコーンレジン(a成分)中、全てa構造であってもよく、b構造は0.7以下、c、d構造はそれぞれ0.3以下であることを示す。c、d構造が0.3よりも多いと硬化物の耐硫化性が劣る懸念があり、d構造が0.3よりも多いとエポキシ基含有ポリオルガノシロキサンの粘度が上がりすぎるために作業性に劣る傾向がある。
 この中でも、a構造は0.2~0.7が好ましく、0.3~0.6が特に好ましい。また、b構造は0.3~0.7が好ましく、0.4~0.7が特に好ましい。
The relationship between a and d in the formula (1) is expressed by the following formula.
a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3 Show.
This indicates that all of the silicone resin (component a) may be a structure, b structure is 0.7 or less, and c and d structures are each 0.3 or less. When there are more c, d structures than 0.3, there exists a possibility that the sulfidation resistance of a hardened material may be inferior. There is a tendency to be inferior.
Among these, the a structure is preferably 0.2 to 0.7, and particularly preferably 0.3 to 0.6. The b structure is preferably from 0.3 to 0.7, particularly preferably from 0.4 to 0.7.
 シリコーンレジン(a成分)中に含まれる、R~Rの含有率、a~d構造の割合は、H-NMR、13C-NMR、29Si-NMR等で分析することができる。分析方法としては、例えば、下記の手法が適用できる。
・核磁気共鳴スペクトル(H-NMR)[日本電子株式会社製、JNM-ECA400]を使用しHの核磁気共鳴スペクトル(NMR)を測定、溶媒はCDCl溶液を使用する。
・核磁気共鳴スペクトル(29Si-NMR)[アジレント・テクノロジー株式会社製、Model 500NMR]を使用し29Siの核磁気共鳴スペクトル(NMR)を測定、溶媒はTHF(テトラヒドロフラン)とアセトンの混合溶液を使用する。
(また、緩和試薬としてCr(AcAc)を15mMになるように添加できる。)
The content of R 1 to R 6 and the ratio of the ad structures contained in the silicone resin (component a) can be analyzed by 1 H-NMR, 13 C-NMR, 29 Si-NMR, and the like. As an analysis method, for example, the following method can be applied.
-Nuclear magnetic resonance spectrum ( 1 H-NMR) [JNM-ECA400, manufactured by JEOL Ltd.] was used to measure 1 H nuclear magnetic resonance spectrum (NMR), and a CDCl 3 solution was used as the solvent.
• Nuclear magnetic resonance spectrum ( 29 Si-NMR) [Model 500 NMR, manufactured by Agilent Technologies, Inc.] was used to measure the nuclear magnetic resonance spectrum (NMR) of 29 Si, and the solvent was a mixed solution of THF (tetrahydrofuran) and acetone. use.
(In addition, Cr (AcAc) 3 can be added to 15 mM as a relaxation reagent.)
 シリコーンレジン(a成分)の重量平均分子量(Mw)は400~10000(GPC)の範囲のものが好ましい。重量平均分子量が400を下回る場合、硬化物の耐硫化性が劣る懸念があり、10000を超えるとエポキシ基含有ポリオルガノシロキサンの粘度が上がりすぎて作業性に劣る懸念がある。ここで、当該重量平均分子量(Mw)は1000~5000がより好ましく、1500~3000が特に好ましい。
 本発明においてシリコーンレジン(a成分)の重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。
The weight average molecular weight (Mw) of the silicone resin (component a) is preferably in the range of 400 to 10,000 (GPC). If the weight average molecular weight is less than 400, the cured product may have poor sulfidation resistance, and if it exceeds 10,000, the epoxy group-containing polyorganosiloxane may have too high a viscosity and poor workability. Here, the weight average molecular weight (Mw) is more preferably 1000 to 5000, and particularly preferably 1500 to 3000.
In the present invention, the weight average molecular weight of the silicone resin (component a) is a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography). Means.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 シリコーンレジン(a成分)の水酸基当量(g/eq)は、100~1000が好ましく、150~800がさらに好ましく、反応制御の容易性、得られたエポキシ基含有ポリオルガノシロキサンの適度な粘度の観点から200~600が特に好ましい。
 シリコーンレジン(a成分)は、例えば、テトラアルコキシシラン、テトラクロロシラン、フェニルトリアルコキシシラン、フェニルトリクロロシラン、ジフェニルジアルコキシシラン、ジフェニルジクロロシラン、炭素数1~10のアルキルトリアルコキシシラン、炭素数1~10のアルキルトリクロロシラン等の加水分解性シラン化合物の加水分解縮合を行うことで得ることができる。
The hydroxyl group equivalent (g / eq) of the silicone resin (component a) is preferably from 100 to 1,000, more preferably from 150 to 800, from the viewpoint of ease of reaction control and appropriate viscosity of the resulting epoxy group-containing polyorganosiloxane. To 200 to 600 are particularly preferred.
Silicone resin (component a) includes, for example, tetraalkoxysilane, tetrachlorosilane, phenyltrialkoxysilane, phenyltrichlorosilane, diphenyl dialkoxysilane, diphenyldichlorosilane, alkyltrialkoxysilane having 1 to 10 carbon atoms, 1 to carbon atoms It can be obtained by hydrolytic condensation of a hydrolyzable silane compound such as 10 alkyltrichlorosilanes.
 シリコーンレジン(a成分)として好ましい具体例としては、以下の製品名を挙げることができる。たとえば東レダウコーニング社製としては、Z-6018、217FLAKE、FCA-107、220FLAKE、233FLAKE、249FLAKE、旭化成ワッカーシリコーン社製としては、SILRES603、SILRES604、SILRES605、SILRES H44、SILRES SY300、SILRES REN100、SILRES SY430、SILRES IC836、モメンティブ社製としては、TSR160などが挙げられる。上記の中でも、相溶性、分子量、硬化物の耐硫化性の観点からZ-6018、217FLAKE、FCA-107、233FLAKE、SILRES603、SILRES604が好ましい。これらシリコーンレジン(a成分)は、単独で用いてもよく、2種以上を併用してもよい。 Specific examples of preferable silicone resin (component a) include the following product names. For example, Z-6018, 217FLAKE, FCA-107, 220FLAKE, 233FLAKE, 249FLAKE are manufactured by Toray Dow Corning, and SILRES 603, SILRES 604, SILRES 605, SILRES H44, SILRES4 SY300, SILRES4 SY300, SILRES SY300, SILRES4 SY300, SILRES4 SY300 , SILRES IC836, manufactured by Momentive, Inc. include TSR160. Among these, Z-6018, 217FLAKE, FCA-107, 233FLAKE, SILRES603, and SILRES604 are preferable from the viewpoint of compatibility, molecular weight, and sulfidation resistance of the cured product. These silicone resins (component a) may be used alone or in combination of two or more.
 次に、エポキシ基含有ケイ素化合物(b成分)について説明する。
 本発明におけるエポキシ基含有ケイ素化合物(b成分)は式(2)で表されるアルコキシケイ素化合物である。エポキシ基含有ケイ素化合物(b成分)は、本発明のエポキシ基含有ポリオルガノシロキサン中にエポキシ基を導入するための化合物であり、化合物中のアルコキシ基が前述したシリコーンレジン(a成分)および後述するシラノール末端シリコーンオイル(c成分)の有するシラノール基(Si-OH基)と脱アルコール縮合をすることでエポキシ基を導入する。
Next, the epoxy group-containing silicon compound (component b) will be described.
The epoxy group-containing silicon compound (component b) in the present invention is an alkoxysilicon compound represented by the formula (2). The epoxy group-containing silicon compound (component b) is a compound for introducing an epoxy group into the epoxy group-containing polyorganosiloxane of the present invention. An epoxy group is introduced by dealcohol condensation with a silanol group (Si—OH group) of the silanol-terminated silicone oil (component c).
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
 式(2)中、Xはエポキシ基を有する反応性官能基であれば特に制限はない。
 例えば、β-グリシドキシエチル、γ-グリシドキシプロピル、γ-グリシドキシブチル等のグリシドオキシ基で置換された炭素数1~4のアルキル基、グリシジル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、4-(3,4-エポキシシクロヘキシル)ブチル基、5-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5~8のシクロアルキル基で置換された炭素数1~5のアルキル基が挙げられる。これらの中で、グリシドオキシ基で置換された炭素数1~3のアルキル基、エポキシ基を有する炭素数5~8のシクロアルキル基で置換された炭素数1~3のアルキル基として、例えば、β-グリシドキシエチル基、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基が好ましく、特に着色を抑えることができることからβ-(3,4-エポキシシクロヘキシル)エチル基が好ましい。
In formula (2), X is not particularly limited as long as X is a reactive functional group having an epoxy group.
For example, an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as β-glycidoxyethyl, γ-glycidoxypropyl, γ-glycidoxybutyl, glycidyl group, β- (3,4-epoxy Cyclohexyl) ethyl group, γ- (3,4-epoxycyclohexyl) propyl group, β- (3,4-epoxycycloheptyl) ethyl group, 4- (3,4-epoxycyclohexyl) butyl group, 5- (3 And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as 4-epoxycyclohexyl) pentyl group. Among these, as an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group and an alkyl group having 1 to 3 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an epoxy group, for example, β -Glycidoxyethyl group, γ-glycidoxypropyl group, β- (3,4-epoxycyclohexyl) ethyl group are preferable, and since β- (3,4-epoxycyclohexyl) ethyl group can be particularly suppressed in coloration Is preferred.
 式(2)中、Rは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を有するアリール基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、フェニル基、ナフチル基等が挙げられる。これらの中でも、相溶性、硬化物の耐熱透明性の観点から、メチル基、フェニル基が好ましい。 In the formula (2), R 7 represents an aryl group having a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, phenyl Group, naphthyl group and the like. Among these, a methyl group and a phenyl group are preferable from the viewpoints of compatibility and heat-resistant transparency of the cured product.
 式(2)中のRは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの中でも、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基が好ましく、特にメチル基が好ましい。 R 8 in the formula (2) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, etc. Can be mentioned. Among these, from the viewpoint of reaction conditions such as compatibility and reactivity, a methyl group or an ethyl group is preferable, and a methyl group is particularly preferable.
 式(2)中のeは整数で0、1、2を表し、fは(3-e)をそれぞれ表す。エポキシ基含有ポリオルガノシロキサンの粘度、硬化物の機械強度の観点からeは0又は1が好ましい。 E in the formula (2) is an integer representing 0, 1, 2 and f represents (3-e), respectively. From the viewpoint of the viscosity of the epoxy group-containing polyorganosiloxane and the mechanical strength of the cured product, e is preferably 0 or 1.
 エポキシ基含有ケイ素化合物(b成分)として好ましい具体例としては、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルフェニルジメトキシシラン、γ-グリシドキシプロピルシクロヘキシルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルフェニルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルシクロヘキシルジメトキシシラン等が挙げられ、反応性や本発明のエポキシ基含有ポリオルガノシロキサンを硬化してなる硬化物の透明性が優れることから、特に2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。これらエポキシ基含有ケイ素化合物(b成分)は、単独又は2種以上で用いてもよく、以下に示すアルコキケイ素化合物(g成分)と併用することもできる。 Specific examples of preferable epoxy group-containing silicon compounds (component b) include β-glycidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycid. Xylpropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylphenyldimethoxysilane, γ-glycidoxypropylcyclohexyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylphenyldimethoxysilane, 2- (3 , -Epoxycyclohexyl) ethylcyclohexyldimethoxysilane, etc., and particularly excellent in reactivity and transparency of a cured product obtained by curing the epoxy group-containing polyorganosiloxane of the present invention. Therefore, 2- (3,4-epoxycyclohexyl) is particularly preferable. ) Ethyltrimethoxysilane is preferred. These epoxy group-containing silicon compounds (component b) may be used alone or in combination of two or more, and may also be used in combination with the following alkoxysilicon compounds (component g).
 本発明のエポキシ基含有ポリオルガノシロキサンの原料として、エポキシ基含有ケイ素化合物(b成分)と共に、下記式(4)で表わされるアルコキシケイ素化合物(g成分)を併用することができる。アルコキシケイ素化合物(g成分)を併用することで、本発明のエポキシ基含有ポリオルガノシロキサンの、粘度、屈折率等を調整することができる。 As the raw material for the epoxy group-containing polyorganosiloxane of the present invention, an alkoxy silicon compound (g component) represented by the following formula (4) can be used together with the epoxy group-containing silicon compound (component b). By using the alkoxysilicon compound (g component) in combination, the viscosity, refractive index and the like of the epoxy group-containing polyorganosiloxane of the present invention can be adjusted.
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
 式(4)中の、R、Rは前記したものと同じ内容を、hは整数で0、1、2、3を、iは(4-h)をそれぞれ示す。 In the formula (4), R 7 and R 8 are the same as described above, h is an integer, 0, 1, 2, 3 and i is (4-h).
 併用できるアルコキシケイ素化合物(g成分)として好ましい具体例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、シクロヘキシルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、ジメチルジメトキシシラン、メチルシクロヘキシルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジジエトキシシラン等が挙げられる。上記の中でもメチルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジメトキシシランが好ましい。 Specific examples of preferable alkoxysilicon compounds (component g) that can be used in combination include methyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, dimethyldimethoxysilane, methylcyclohexyldimethoxysilane, Examples include dimethyldiethoxysilane, diphenyldimethoxysilane, and diphenyldidiethoxysilane. Among these, methyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and diphenyldimethoxysilane are preferable.
 次にシラノール末端シリコーンオイル(c成分)について説明する。本発明において、シラノール末端シリコーンオイル(c成分)は下記式(3)で表される、シラノール基を両末端に有するシリコーン樹脂のことをいう。 Next, the silanol-terminated silicone oil (component c) will be described. In the present invention, the silanol-terminated silicone oil (component c) refers to a silicone resin represented by the following formula (3) and having silanol groups at both ends.
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
 式(3)においてRはメチル基等の炭素数1~3のアルキル基、またはフェニル基等の炭素数6~10のアリール基を示す。複数存在するRは同一であっても異なっていても構わない。 In the formula (3), R 9 represents an alkyl group having 1 to 3 carbon atoms such as a methyl group or an aryl group having 6 to 10 carbon atoms such as a phenyl group. A plurality of R 9 may be the same or different.
 式(3)において、gは平均値で2~2000を示し、好ましくは3~200、より好ましくは3~100、さらに好ましくは3~50である。gが3を下回ると硬化物が硬くなりすぎ、そのヒートサイクル耐性が劣る恐れがあり好ましくない。gが200を上回ると硬化物の機械強度が低下する傾向にあり好ましくない。 In the formula (3), g represents an average value of 2 to 2000, preferably 3 to 200, more preferably 3 to 100, and further preferably 3 to 50. When g is less than 3, the cured product becomes too hard, and the heat cycle resistance may be inferior. If g exceeds 200, the mechanical strength of the cured product tends to decrease, such being undesirable.
 シラノール末端シリコーンオイル(c成分)の重量平均分子量(Mw)は400~3000(GPC)の範囲のものが好ましい。重量平均分子量が400を下回る場合、エポキシ基含有ポリオルガノシロキサンの粘度が上がるため作業性に劣る懸念があり、3000を超えると激しい層分離構造を持つ事で、光半導体素子封止に使用するには透過性が悪くなり、使用することが困難となる懸念がある。
 本発明においてシラノール末端シリコーンオイル(c成分)の重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。
The weight average molecular weight (Mw) of the silanol-terminated silicone oil (component c) is preferably in the range of 400 to 3000 (GPC). When the weight average molecular weight is less than 400, the viscosity of the epoxy group-containing polyorganosiloxane increases, so there is a concern that the workability is inferior. May be difficult to use because of poor permeability.
In the present invention, the weight average molecular weight of the silanol-terminated silicone oil (component c) is a weight average molecular weight (calculated in terms of polystyrene) based on values measured under the following conditions using GPC (gel permeation chromatography). Mw).
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 シラノール末端シリコーンオイル(c成分)は、例えば、ジメチルジアルコキシシラン、ジメチルジクロルシランを加水分解、縮合することによって製造できる。 Silanol-terminated silicone oil (component c) can be produced, for example, by hydrolyzing and condensing dimethyl dialkoxysilane and dimethyldichlorosilane.
 シラノール末端シリコーンオイル(c成分)として好ましい具体例としては、以下の製品名を挙げることができる。例えば、東レダウコーニング社製としては、PRX413、BY16-873、信越化学工業社製としては、X-21-5841、KF-9701、モメンティブ社製としては、XC96-723、TSR160、YR3370、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897、XF3905、YF3804、旭化成ワッカーシリコーン社製としては、FINISH WS 62 M、CT 601M、CT 5000M、Gelest社製としては、DMS-S12、DMS-S14、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S42、DMS-S45、DMS-S51、PDS-0332、PDS-1615、PDS-9931などが挙げられる。上記の中でも、分子量、動粘度の観点からPRX413、BY16-873、X-21-5841、KF-9701、XC96-723,YF3800、FINISH WS 62 M、DMS-S12、DMS-S14、DMS-S15、DMS-S21、PDS-1615が好ましい。これらの中でも分子量の観点から、X-21-5841,XC96-723,YF3800、FINISH WS 62 M、DMS-S14、PDS-1615が特に好ましい。これらシラノール末端シリコーンオイル(c成分)は、単独で用いてもよく、2種以上を併用して用いてもよい。 Specific examples of preferable silanol-terminated silicone oil (component c) include the following product names. For example, PRX413, BY16-873 manufactured by Toray Dow Corning Co., Ltd., X-21-5841, KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd., XC96-723, TSR160, YR3370, YF3800, manufactured by Momentive XF3905, YF3057, YF3807, YF3802, YF3897, XF3905, YF3804, Asahi Kasei Wacker Silicone, FINISH WS 62M, CT 601M, CT 5000M, Gelest, DMS-S12, DMS-S14, DMS-S15 , DMS-S21, DMS-S27, DMS-S31, DMS-S32, DMS-S33, DMS-S35, DMS-S42, DMS-S45, DMS-S51, PDS-0332, PDS-1 15, such as PDS-9931 and the like. Among these, from the viewpoint of molecular weight and kinematic viscosity, PRX413, BY16-873, X-21-5841, KF-9701, XC96-723, YF3800, FINISH WS 62 M, DMS-S12, DMS-S14, DMS-S15, DMS-S21 and PDS-1615 are preferred. Among these, X-21-5841, XC96-723, YF3800, FINISH WS 62 M, DMS-S14, and PDS-1615 are particularly preferable from the viewpoint of molecular weight. These silanol-terminated silicone oils (component c) may be used alone or in combination of two or more.
 本発明のエポキシ基含有ポリオルガノシロキサンの製造において、シリコーンレジン(a成分)とシラノール末端シリコーンオイル(c成分)のシラノール基の合計量1当量に対して、エポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))のアルコキシ基を1.5当量より小さい量で反応させるとエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))中の2つ以上のアルコキシ基がシリコーンレジン(a成分)および/又はシラノール末端シリコーンオイル(c成分)のシラノール基と反応することになり、製造時に高分子になりすぎてゲル化がおきる恐れがある。このため、シラノール基1当量に対して、アルコキシ基を1.5当量以上で反応させることが好ましい。反応制御の観点からは2.0当量以上がより好ましい。 In the production of the epoxy group-containing polyorganosiloxane of the present invention, the epoxy group-containing silicon compound (component b) (for the total amount of silanol groups in the silicone resin (component a) and silanol-terminated silicone oil (component c) 1 equivalent) ( And if necessary, the alkoxy group of the alkoxy silicon compound (g component)) is reacted in an amount smaller than 1.5 equivalents to give an epoxy group-containing silicon compound (component b) (and if necessary, the alkoxy silicon compound (g Two or more alkoxy groups in the component)) will react with the silanol groups of the silicone resin (component a) and / or the silanol-terminated silicone oil (component c), resulting in too much polymer during production and gelation. There is a risk of it. For this reason, it is preferable to make an alkoxy group react with 1.5 equivalent or more with respect to 1 equivalent of silanol groups. From the viewpoint of reaction control, 2.0 equivalents or more is more preferable.
 次に本発明のエポキシ基含有ポリオルガノシロキサンの製造工程について説明する。
 本発明のエポキシ基含有ポリオルガノシロキサンは、製造工程I、IIまたは製造工程1~3を経ることによって得ることができる。
 まず、製造工程I、IIについて説明する。
[製造工程I]シリコーンレジン(a成分)およびシラノール末端シリコーンオイル(c成分)のシラノール基と、エポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g))のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
[製造工程II]製造工程Iの後、水を添加して残存するアルコキシ基同士の縮合を行う工程。
Next, the production process of the epoxy group-containing polyorganosiloxane of the present invention will be described.
The epoxy group-containing polyorganosiloxane of the present invention can be obtained through the production steps I and II or the production steps 1 to 3.
First, the manufacturing steps I and II will be described.
[Production Process I] Silanol group of silicone resin (component a) and silanol-terminated silicone oil (component c), and alkoxy of epoxy group-containing silicon compound (component b) (and alkoxy silicon compound (g) as required) A step of subjecting a group to dealcohol condensation in the presence of an inorganic base compound [Production Step II] A step of adding water after the production step I to condense the remaining alkoxy groups.
 製造工程を二段階に分けることで、まずシラノール基とアルコキシ基を確実に反応させて変性シリコーンレジンおよび変性シリコーンオイルを得た後に、残存するアルコキシ基の脱アルコール加水分解縮合を行ない、均一な安定した製品を得ることができる。 By dividing the production process into two stages, first, the silanol group and the alkoxy group are surely reacted to obtain a modified silicone resin and a modified silicone oil, and then the remaining alkoxy groups are dealcoholized and hydrolyzed and condensed to achieve uniform stability. Product can be obtained.
 製造工程を一段階として、製造の始めから水を加えると、シラノール基とアルコキシ基との縮合反応と、エポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の重合反応が競争反応となり、お互いの反応速度の差、生成物の相溶性の差により、不均一な化合物が得られたり、エポキシ基を有さないシリコーンレジン(a成分)やシラノール末端シリコーンオイル(c成分)が大量に残存することにより製品に悪影響を及ぼしたりする。
 また、反応温度、原料の反応濃度によっては、エポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))同士の重合がシラノール基とアルコキシ基との縮合反応よりも先に進行し、過度な高分子量体になって溶剤不溶成分になる(ゲル化)こともある。
When water is added from the beginning of the manufacturing process as one step, a condensation reaction between a silanol group and an alkoxy group, an epoxy group-containing silicon compound (component b) (and an alkoxy silicon compound (component g) as necessary) ) Polymerization reaction becomes a competitive reaction, resulting in heterogeneous compounds due to differences in reaction rates and compatibility of products, silicone resins that do not have epoxy groups (component a) and silanol-terminated silicones A large amount of oil (component c) may adversely affect the product.
Further, depending on the reaction temperature and the reaction concentration of the raw material, the polymerization of the epoxy group-containing silicon compound (component b) (and the alkoxy silicon compound (component g as necessary)) is caused by the condensation reaction between the silanol group and the alkoxy group. May progress further, become an excessively high molecular weight body and become a solvent-insoluble component (gelation).
 製造工程Iにおいては無溶剤で反応することもできるが、溶剤存在下で反応させることが好ましく、溶剤の中でも反応制御の観点からアルコールが特に好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては1級アルコール、2級アルコールが好ましく、特に1級アルコール、もしくは1級アルコールと2級アルコールを混合して用いることが好ましい。1級アルコールの例としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、プロピレングリコール等が挙げられ、また、2級アルコールの例としては、イソプロパノール、シクロヘキサノール、プロピレングリコール等が挙げられる。また、後の除去性能の観点から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わず、混合する場合、1級アルコール、2級アルコールから選択される二種以上であることが好ましく、少なくとも1成分に1級アルコールが含有されることが、後述する触媒の溶解性に優れることから好ましい。好ましい1級アルコールの量は全アルコール量の5重量%以上、より好ましくは8重量%以上である。
 本反応に2級アルコールを併用することで製造工程Iの反応系の単位時間あたりの重量平均分子量の変化量が、1級アルコールのみを用いた場合よりも小さくなるため、反応の制御がより容易である。一般的に工業生産など大スケールの反応の際には、反応時間、反応温度の厳密な制御が困難になるため、2級アルコールの併用は反応制御の観点から特に工業生産など大スケール反応の際に有用である。
In the production process I, the reaction can be carried out without solvent, but the reaction is preferably carried out in the presence of a solvent, and alcohol is particularly preferred among the solvents from the viewpoint of reaction control. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are preferable, and it is particularly preferable to use primary alcohols or a mixture of primary alcohols and secondary alcohols. Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol and the like, and examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc. From the viewpoint of subsequent removal performance, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, and t-butanol is preferable. These alcohols may be used as a mixture. When they are mixed, they are preferably two or more selected from primary alcohols and secondary alcohols, and at least one component contains primary alcohols. It is preferable because the solubility of the catalyst described later is excellent. The amount of primary alcohol is preferably 5% by weight or more, more preferably 8% by weight or more of the total alcohol amount.
By using a secondary alcohol in combination with this reaction, the amount of change in the weight average molecular weight per unit time in the reaction system of production process I is smaller than when only a primary alcohol is used, making it easier to control the reaction. It is. In general, in the case of large-scale reactions such as industrial production, it becomes difficult to strictly control the reaction time and reaction temperature, so the combined use of secondary alcohols is particularly important for large-scale reactions such as industrial production from the viewpoint of reaction control. Useful for.
 製造工程Iにおいてアルコールの使用量は、シリコーンレジン(a成分)、シラノール末端シリコーンオイル(c成分)とエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の総重量に対し、2重量%以上含有することが好ましい。より好ましくは2~100重量%、さらに好ましくは3~50重量%、特に好ましくは4~40重量%である。
 100重量%を越えると反応の進みが極度に遅くなる場合があり、2重量%未満の場合、目的とする反応以外の反応が進行し、高分子量化が進み、ゲル化、粘度の上昇、硬化物として使用が困難となるほどの弾性率の増加、といった問題が生じる場合がある。
 本反応においては必要に応じて他の溶剤を併用しても構わない。
 併用できる溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノン等のケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類ヘキサン、シクロヘキサン、トルエン、キシレン等の炭化水素等が例示できる。
In the production process I, the amount of alcohol used is silicone resin (a component), silanol-terminated silicone oil (c component) and epoxy group-containing silicon compound (b component) (and alkoxy silicon compound (g component) if necessary). It is preferable to contain 2% by weight or more based on the total weight. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight.
When the amount exceeds 100% by weight, the progress of the reaction may be extremely slow. When the amount is less than 2% by weight, the reaction other than the target reaction proceeds, the molecular weight increases, gelation, increase in viscosity, and curing. There may be a problem such as an increase in elastic modulus that makes it difficult to use as an object.
In this reaction, other solvents may be used in combination as necessary.
Examples of solvents that can be used in combination include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hexane, hydrocarbons such as cyclohexane, toluene, and xylene. it can.
 本反応で使用するシリコーンレジン(a成分)は、固体状態のものが多いため、シリコーンレジン(a成分)を溶解する溶媒を併用することが望ましい。その場合、シリコーンレジン(a成分)の溶解性、汎用性、沸点が低すぎないなど作業性の観点から、メチルイソブチルケトン、酢酸ブチル、トルエンが好ましく、その中でもエポキシ基含有オルガノポリシロキサンの安定性、透明性の観点からメチルイソブチルケトン、トルエンが特に好ましい。 Since many silicone resins (component a) used in this reaction are in a solid state, it is desirable to use a solvent that dissolves the silicone resin (component a). In that case, methyl isobutyl ketone, butyl acetate, and toluene are preferable from the viewpoint of workability such as the solubility, versatility, and boiling point of the silicone resin (component a) are not too low. Among them, the stability of the epoxy group-containing organopolysiloxane is preferred. From the viewpoint of transparency, methyl isobutyl ketone and toluene are particularly preferable.
 本発明の製造工程Iにおける反応は、無機塩基化合物存在下で行う。本発明の反応において無機塩基化合物は反応の触媒として作用し、無添加で反応を行うと反応進行が遅く反応効率が著しく悪い。また、トリエチルアミンなどの有機塩基存在下では塩基性が弱いため反応効率が悪く、得られたエポキシ基含有ポリオルガノシロキサンの粘度が低すぎたり、硬化物の硬度が不十分であったり、反応温度によっては反応が進行しないこともある。 The reaction in the production step I of the present invention is performed in the presence of an inorganic base compound. In the reaction of the present invention, the inorganic base compound acts as a catalyst for the reaction. When the reaction is carried out without addition, the reaction progress is slow and the reaction efficiency is remarkably poor. In addition, in the presence of an organic base such as triethylamine, the reaction efficiency is poor because the basicity is weak, the viscosity of the resulting epoxy group-containing polyorganosiloxane is too low, the hardness of the cured product is insufficient, and depending on the reaction temperature The reaction may not proceed.
 無機塩基化合物を用いることで反応が十分に進行させられるだけでなく、生成物からの除去が容易である。
 無機塩基化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属無機塩、あるいはアルカリ土類金属無機塩が挙げられ、特に水酸化物が好ましい。この中でも触媒能、アルコールへの溶解性から水酸化カリウムが特に好ましい。
By using an inorganic base compound, not only can the reaction sufficiently proceed, but it can be easily removed from the product.
Examples of the inorganic base compound include alkali metal inorganic salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal inorganic salts, and hydroxides are particularly preferable. Among these, potassium hydroxide is particularly preferable from the viewpoint of catalytic ability and solubility in alcohol.
 無機塩基化合物の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、目的とする反応以外のゾルーゲル反応が競争的に進行してしまい、エポキシ基含有ケイ素化合物(b成分)(および、使用する場合アルコキシケイ素化合物(g成分))のアルコキシ基の重縮合を一方的に進行させ、それにより生成した反応物と、シラノール末端シリコーンオイル(c成分)とが相溶せず白濁する可能性があるので注意が必要である。
 この際の水分の許容範囲はシリコーンレジン(a成分)、シラノール末端シリコーンオイル(c成分)とエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の総重量に対し0.5重量%以下が好ましく、より好ましくは0.3重量%以下であり、水分が可能な限り無いほうがより好ましい。
The addition method of an inorganic base compound is used in the state added directly or in the state melt | dissolved in the soluble solvent. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol. In this case, addition as an aqueous solution using water or the like causes a sol-gel reaction other than the target reaction to proceed competitively, and an epoxy group-containing silicon compound (component b) (and alkoxysilicon when used) Since the polycondensation of the alkoxy group of the compound (component (g)) is allowed to proceed unilaterally, the resulting reaction product and the silanol-terminated silicone oil (component c) may not be compatible and may become cloudy. is necessary.
The allowable range of moisture at this time is the total of silicone resin (a component), silanol-terminated silicone oil (c component) and epoxy group-containing silicon compound (b component) (and alkoxy silicon compound (g component) if necessary) It is preferably 0.5% by weight or less, more preferably 0.3% by weight or less, and more preferably no water as much as possible.
 本発明の製造工程Iにおいて使用しうる無機塩基化合物の量は、反応に用いるシリコーンレジン(a成分)、シラノール末端シリコーンオイル(c成分)とエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の総重量に対し、通常0.001~5重量%が好ましく、より好ましくは0.01~2重量%である。 The amount of the inorganic base compound that can be used in the production step I of the present invention is as follows: silicone resin (a component), silanol-terminated silicone oil (c component) and epoxy group-containing silicon compound (b component) used for the reaction (and necessary Accordingly, it is usually preferably 0.001 to 5% by weight, more preferably 0.01 to 2% by weight, based on the total weight of the alkoxysilicon compound (component g).
 製造工程Iの反応温度は、無機塩基化合物添加量、使用溶剤にもよるが、通常20~160℃が好ましく、より好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間が好ましく、より好ましくは3~12時間である。 The reaction temperature in the production step I is usually preferably 20 to 160 ° C., more preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of inorganic base compound added and the solvent used. The reaction time is usually preferably 1 to 20 hours, more preferably 3 to 12 hours.
 次に、製造工程IIについて詳細に記載する。
 製造工程IIにおいては、製造工程Iの反応終了後、水を添加し、製造工程Iで得られた変性シリコーンレジンおよび変性シリコーンオイルに残存するアルコキシ基、および未反応で残存するエポキシ基含有ケイ素化合物(b成分)(および、使用する場合アルコキシケイ素化合物(g成分))のアルコキシ基の加水分解脱アルコール縮合を行う。
 この反応は、(1)変性シリコーンレジン同士、および/または、(2)変性シリコーンオイル同士、および/または、(3)エポキシ基を含有するケイ素化合物(b成分)同士(および、使用する場合にはアルコキシケイ素化合物(g成分))との間、および/または、(4)変性シリコーンレジンと変性シリコーンオイルとの間、および/または(5)変性シリコーンレジンとエポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))との間、および/または、(6)変性シリコーンオイルとエポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))との間、および/または、(7)エポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))部分重合物と変性シリコーンレジンとの間、および/または、(8)エポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))の部分重合物と変性シリコーンオイルとの間で重合反応を行う工程である。上記(1)~(8)の重合反応は、同時に平行して進行していると考えられる。
 特に製造工程IIにおいても先と同様、触媒として塩基性無機化合物が必要であることは代わりがなく、製造工程Iの段階で必要な量を先に添加しておいても構わない。ただし、製造工程Iで好ましい態様として記載した範囲を越えることは好ましくない。
Next, the manufacturing process II will be described in detail.
In the production process II, after completion of the reaction in the production process I, water is added, the alkoxy group remaining in the modified silicone resin and the modified silicone oil obtained in the production process I, and the epoxy group-containing silicon compound remaining unreacted Hydrolysis dealcohol condensation of the alkoxy group of (component b) (and alkoxysilicon compound (component g) if used) is performed.
This reaction is carried out by using (1) modified silicone resins and / or (2) modified silicone oils and / or (3) silicon compounds containing epoxy groups (component b). And alkoxy silicon compound (component g)) and / or (4) between modified silicone resin and modified silicone oil and / or (5) silicon compound containing modified silicone resin and epoxy group (b) Component) (and alkoxy silicon compound (g component) if used) and / or (6) silicon compound containing modified silicone oil and epoxy group (b component) (and if used) And / or (7) a silicon compound containing an epoxy group (b component). ) (And alkoxy silicon compound (g component) if used) between the partial polymer and modified silicone resin and / or (8) silicon compound containing epoxy group (b component) (and use) In this case, a polymerization reaction is carried out between the partially polymerized alkoxysilicon compound (component g) and the modified silicone oil. The polymerization reactions (1) to (8) are considered to proceed simultaneously in parallel.
In particular, in the production process II, as before, the basic inorganic compound is necessary as a catalyst, and the necessary amount may be added in the production process I first. However, it is not preferable to exceed the range described as a preferred embodiment in the production process I.
 製造工程IIにおいては溶剤を添加することが好ましい。
 製造工程IIにおいて溶剤として、製造工程Iと同様にアルコールを用いることが好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては特に1級アルコール、2級アルコールが好ましく、特に1級アルコールが好ましい。また、後の除去性能の観点から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わない。これらアルコールの存在が分子量制御、およびその安定性に寄与することができる。
 アルコールの添加量としては製造工程Iにおいて仕込んだシリコーンレジン(a成分)とエポキシ基を含有するケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))とシラノール末端シリコーンオイル(c成分)との総重量に対し、20~200重量%が好ましく、より好ましくは20~150重量%、特に好ましくは30~120重量%である。
In the production step II, it is preferable to add a solvent.
As in the production process I, alcohol is preferably used as the solvent in the production process II. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred. From the viewpoint of subsequent removal performance, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, and t-butanol is preferable. These alcohols may be used as a mixture. The presence of these alcohols can contribute to molecular weight control and stability.
As the addition amount of alcohol, the silicone resin (a component) charged in the production process I, the silicon compound (b component) containing an epoxy group (and the alkoxy silicon compound (g component) if necessary), and a silanol-terminated silicone oil are used. It is preferably 20 to 200% by weight, more preferably 20 to 150% by weight, and particularly preferably 30 to 120% by weight based on the total weight of the component (c).
 製造工程IIにおいては水を加える(イオン交換水、蒸留水、上水、何れも使用できる)。水の使用量としては、残存するアルコキシ基量に対し、0.5~8.0当量が好ましく、より好ましくは0.6~5.0当量、特に好ましくは0.65~2.0当量である。
 水の量が0.5当量を下回る場合、反応の進行が遅くなり、エポキシ基を含有するケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))が反応せずに残存する等の問題が生じたり、十分なネットワークを組めず、後の硬化性樹脂組成物とした後の硬化後も硬化不良を起こしたりする可能性がある。また8.0当量を越える場合、分子量制御が効かず、必要以上に高分子量となる可能性がある。さらに、エポキシ基含有ポリオルガノシロキサンの安定性を阻害する可能性がある。
In the production process II, water is added (ion exchange water, distilled water, or clean water can be used). The amount of water used is preferably 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents relative to the amount of remaining alkoxy groups. is there.
When the amount of water is less than 0.5 equivalent, the progress of the reaction is slowed, and the silicon compound containing the epoxy group (component b) (and the alkoxy silicon compound (component g) if necessary) does not react. There is a possibility that a problem such as remaining may occur, a sufficient network may not be formed, and a curing failure may occur even after curing after a subsequent curable resin composition. On the other hand, if it exceeds 8.0 equivalents, the molecular weight control is not effective, and the molecular weight may be higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the epoxy group-containing polyorganosiloxane.
 製造工程IIの反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃が好ましく、より好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間、好ましくは3~12時間である。 The reaction temperature in the production step II is preferably 20 to 160 ° C., more preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used. The reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
 反応終了後、必要に応じてクエンチ、および/又は水洗によって触媒を除去することができる。水洗を行う場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノン等のケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレン等の炭化水素等が例示できる。 After completion of the reaction, the catalyst can be removed by quenching and / or washing with water as necessary. When washing with water, depending on the type of solvent used, it is preferable to add a solvent that can be separated from water. Examples of preferable solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. it can.
 本反応は水洗のみで触媒の除去を行っても構わないが、塩基性条件で反応を行うことから、中和反応によりクエンチを行った後に水洗を行うか、吸着剤を用いて触媒を吸着した後にろ過により吸着剤を除くことが好ましい。
 中和反応には酸性を示す化合物であれば使用する事ができる。酸性を示す化合物の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。これらの中でも、特に生成物からの除去が容易である点で無機酸が好ましく、さらに好ましくは中性付近へのpHの調整がより容易である燐酸塩類などである。
In this reaction, the catalyst may be removed only by washing with water. However, since the reaction is carried out under basic conditions, the catalyst is adsorbed by using an adsorbent after washing with water after quenching by a neutralization reaction. It is preferable to remove the adsorbent later by filtration.
Any compound that exhibits acidity can be used for the neutralization reaction. Examples of the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid. Among these, an inorganic acid is preferable because it can be easily removed from the product, and phosphates and the like that can more easily adjust the pH to near neutral are more preferable.
 吸着剤としては活性白土、活性炭、ゼオライト、無機・有機系の合成吸着剤、イオン交換樹脂等が例示でき、具体例としては下記の製品が挙げられる。
 活性白土としては、例えば、東新化成社製として、活性白土SA35、SA1、T、R-15、E、ニッカナイト(商品名)G-36、G-153、G-168が、水沢化学工業社製として、ガレオンアース(商品名)、ミズカエース(商品名)などが挙げられる。活性炭としては、例えば、味の素ファインテクノ社製として、CL-H、Y-10S、Y-10SFがフタムラ化学社製として、S、Y、FC、DP、SA1000、K、A、KA、M、CW130BR、CW130AR、GM130Aなどが挙げられる。ゼオライトとしては、例えば、ユニオン昭和社製として、モレキュラーシーブ(商品名)3A、4A、5A、13Xなどが挙げられる。合成吸着剤としては、例えば、協和化学社製として、キョーワード(商品名)100、200、300、400、500、600、700、1000、2000や、ローム・アンド・ハース社製として、アンバーリスト(商品名)15JWET、15DRY、16WET、31WET、A21、アンバーライト(商品名)IRA400JCl、IRA403BLCl、IRA404JCl、ダウケミカル社製として、ダウエックス(商品名)66、HCR-S、HCR-W2、MAC-3などが挙げられる。
 吸着剤を反応液に加え、攪拌、加熱等の処理を行い、触媒を吸着した後に、吸着剤をろ過、さらには残渣を水洗することによって、触媒、吸着剤を除くことができる。
Examples of the adsorbent include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
As the activated clay, for example, manufactured by Toshin Kasei Co., Ltd., activated clay, SA35, SA1, T, R-15, E, Nikkanite (trade names) G-36, G-153, G-168, Mizusawa Chemical Industries As a product made by the company, Galeon Earth (trade name), Mizuka Ace (trade name) and the like can be mentioned. As the activated carbon, for example, CL-H, Y-10S, Y-10SF manufactured by Ajinomoto Fine Techno Co., Ltd., S, Y, FC, DP, SA1000, K, A, KA, M, CW130BR manufactured by Phutamura Chemical Co., Ltd. , CW130AR, GM130A, and the like. Examples of the zeolite include, for example, molecular sieves (trade names) 3A, 4A, 5A, and 13X manufactured by Union Showa. Examples of the synthetic adsorbent include Kyowa Chemical Co., Ltd., Kyoward (trade name) 100, 200, 300, 400, 500, 600, 700, 1000, 2000, and Rohm and Haas Co., Ltd. (Product Name) 15JWET, 15DRY, 16WET, 31WET, A21, Amberlite (Product Name) IRA400JCl, IRA403BLCl, IRA404JCl, manufactured by Dow Chemical Co., Dowex (Product Name) 66, HCR-S, HCR-W2, MAC- 3 etc. are mentioned.
The adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.
 反応終了後またはクエンチ後は水洗、ろ過の他慣用の分離精製手段によって精製することができる。精製手段としては例えば、カラムクロマトグラフィー、減圧濃縮、蒸留、抽出等が挙げられる。これらの精製手段は単独で行なってもよいし、複数を組み合わせて行なってもかまわない。 After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration. Examples of the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
 反応溶媒として水と混合する溶媒を用いて反応した場合には、クエンチ後に蒸留または減圧濃縮によって水と混合する反応溶媒を系中から除いた後に、水と分離可能な溶剤を用いて水洗を行なうことが好ましい。 When the reaction is performed using a solvent mixed with water as a reaction solvent, the reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
 水洗後は減圧濃縮等により溶剤を除去することで、本発明のエポキシ基含有ポリオルガノシロキサンを得ることができる。 After washing with water, the epoxy group-containing polyorganosiloxane of the present invention can be obtained by removing the solvent by vacuum concentration or the like.
 以上、本発明における製造工程I、IIと、それを経て得られたエポキシ基含有ポリオルガノシロキサンのクエンチ、水洗、吸着、分離精製方法について説明した。 The production steps I and II in the present invention and the quenching, water washing, adsorption and separation / purification methods of the epoxy group-containing polyorganosiloxane obtained through the above have been described above.
次に製造工程1~3について説明する。
[製造工程1]シリコーンレジン(a成分)のシラノール基とエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
[製造工程2]製造工程1の後、シラノール末端シリコーンオイル(c成分)を添加し、製造工程1を経て残存しているアルコキシ基と、c成分のシラノール基との脱アルコール縮合を行う工程
[製造工程3]製造工程2の後、水を添加し、残存しているアルコキシ基同士の縮合を行う工程。
Next, manufacturing steps 1 to 3 will be described.
[Production Process 1] The silanol group of the silicone resin (component a) and the epoxy group-containing silicon compound (component b) (and the alkoxy group of the alkoxy silicon compound (component g as necessary)) are removed in the presence of an inorganic base compound. Step of alcohol condensation [Manufacturing step 2] After manufacturing step 1, silanol-terminated silicone oil (component c) is added, and dealcoholization of the alkoxy group remaining through manufacturing step 1 and the silanol group of component c Step of performing condensation [Manufacturing step 3] A step of adding water after manufacturing step 2 to condense the remaining alkoxy groups.
 製造工程を三段階に分けることで、まず製造工程1において比較的反応性の低いシリコーンレジン(a成分)のシラノール基とアルコキシ基を確実に反応させて変性シリコーンレジンを得た後に、製造工程2においてシラノール末端シリコーンオイル(c成分)を添加し、比較的反応性の高いシラノール末端シリコーンオイル(c成分)のシラノール基とアルコキシ基を確実に反応させて変性シリコーンオイルを得て、製造工程3において残存するアルコキシ基の脱アルコール加水分解縮合を行ない、均一な安定した製品を得ることができる。 By dividing the production process into three stages, first, a silanol group and an alkoxy group of the silicone resin (component a) having relatively low reactivity in the production process 1 are surely reacted to obtain a modified silicone resin, and then the production process 2 In Step 3, the silanol-terminated silicone oil (component c) is added and the silanol group of the relatively highly reactive silanol-terminated silicone oil (component c) is reacted with the alkoxy group to obtain a modified silicone oil. The remaining alkoxy group can be dealcoholized and hydrolyzed to obtain a uniform and stable product.
 製造工程を三段階とすることで、前述した二段階の製造工程I、IIの製法よりも、より均一な安定した製品を得ることができる。 By making the manufacturing process into three stages, it is possible to obtain a more uniform and stable product than the above-described two-stage manufacturing processes I and II.
 製造工程を一段階として、製造の始めから水を加えると、シラノール基とアルコキシ基との縮合反応と、アルコキシシラン同士の重合反応が競争反応となり、お互いの反応速度の差、生成物の相溶性の差により、不均一な化合物が得られたり、エポキシ基を有さないシリコーンレジン(a成分)やシラノール末端シリコーンオイル(c成分)が大量に残存することにより製品に悪影響を及ぼしたりする。 When water is added from the beginning of the manufacturing process in one step, the condensation reaction between the silanol group and the alkoxy group and the polymerization reaction between the alkoxysilanes become a competitive reaction, resulting in a difference in the reaction rate between the products and the compatibility of the products. Due to the difference, a heterogeneous compound can be obtained, or a large amount of silicone resin (a component) or silanol-terminated silicone oil (c component) having no epoxy group can be adversely affected.
 製造工程1においては無溶剤で反応することもできるが、溶剤存在下で反応させることが好ましく、溶剤の中でも反応制御の観点からアルコールが特に好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては1級アルコール、2級アルコールが好ましく、特に1級アルコール、もしくは1級アルコールと2級アルコールを混合して用いることが好ましい。1級アルコールの例としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、プロピレングリコール等が挙げられ、また、2級アルコールの例としては、イソプロパノール、シクロヘキサノール、プロピレングリコール等が挙げられる。また、後の除去性能の問題から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わず、混合する場合、1級アルコール、2級アルコールから選択される二種以上であることが好ましく、少なくとも1成分に1級アルコールが含有されることが、後述する触媒の溶解性に優れることから好ましい。好ましい1級アルコールの量は全アルコール量の5重量%以上、より好ましくは10重量%以上である。 In the production process 1, the reaction can be carried out without a solvent, but the reaction is preferably carried out in the presence of a solvent, and among the solvents, alcohol is particularly preferred from the viewpoint of reaction control. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are preferable, and it is particularly preferable to use primary alcohols or a mixture of primary alcohols and secondary alcohols. Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol, and the like. Examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc. In view of the problem of removal performance later, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. When they are mixed, they are preferably two or more selected from primary alcohols and secondary alcohols, and at least one component contains primary alcohols. It is preferable because the solubility of the catalyst described later is excellent. The amount of primary alcohol is preferably 5% by weight or more, more preferably 10% by weight or more of the total alcohol amount.
 本反応に2級アルコールを併用することで製造工程1の反応系の単位時間あたりの重量平均分子量の変化量が、1級アルコールのみを用いた場合よりも小さくなるため、反応の制御がより容易である。一般的に工業生産など大スケールの反応の際には、反応時間、反応温度の厳密な制御が困難になるため、2級アルコールの併用は反応制御の観点から特に工業生産など大スケール反応の際に有用である。 By using a secondary alcohol in combination with this reaction, the amount of change in the weight average molecular weight per unit time in the reaction system of production process 1 is smaller than when only the primary alcohol is used, so the reaction is more easily controlled. It is. In general, in the case of large-scale reactions such as industrial production, it becomes difficult to strictly control the reaction time and reaction temperature, so the combined use of secondary alcohols is particularly important for large-scale reactions such as industrial production from the viewpoint of reaction control. Useful for.
 製造工程1においてアルコールの使用量は、シリコーンレジン(a成分)とエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の総重量に対し、2重量%以上含有することが好ましい。より好ましくは2~100重量%、さらに好ましくは3~50重量%、特に好ましくは4~40重量%である。
 100重量%を越えると反応の進みが極度に遅くなる恐れがあり、2重量%未満の場合、目的とする反応以外の反応が進行し、高分子量化が進み、ゲル化、粘度の上昇、硬化物として使用が困難となるほどの弾性率の増加、といった問題が生じる恐れがある。
 本反応においては必要に応じて他の溶剤を併用しても構わない。
 併用できる溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類ヘキサン、シクロヘキサン、トルエン、キシレン等の炭化水素等が例示できる。
In production step 1, the amount of alcohol used is 2% by weight based on the total weight of the silicone resin (component a) and the epoxy group-containing silicon compound (component b) (and the alkoxysilicon compound (component g) as required). It is preferable to contain above. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight.
If it exceeds 100% by weight, the progress of the reaction may be extremely slow. If it is less than 2% by weight, the reaction other than the intended reaction proceeds, the molecular weight increases, gelation, increase in viscosity, and curing. There is a possibility that a problem such as an increase in elastic modulus that makes it difficult to use as an object may occur.
In this reaction, other solvents may be used in combination as necessary.
Examples of solvents that can be used in combination include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hexane, cyclohexane, toluene, and xylene hydrocarbons. It can be illustrated.
 本反応で使用するシリコーンレジン(a成分)は、固体状態のものが多いため、製造工程1の初期段階で溶解させることが望ましい。
 溶媒としては、通常液体であるエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))を用いても構わないし、前述した併用できる溶剤を用いても構わない。
 溶剤を用いる場合、シリコーンレジン(a成分)の溶解性、汎用性、沸点が低すぎないなど作業性の観点から、メチルイソブチルケトン、酢酸ブチル、トルエンが好ましく、その中でもエポキシ基含有オルガノポリシロキサンの安定性、透明性の観点からメチルイソブチルケトン、トルエンが特に好ましい。
Since most of the silicone resins (component a) used in this reaction are in a solid state, it is desirable to dissolve them in the initial stage of production process 1.
As the solvent, an epoxy group-containing silicon compound (component b) (and an alkoxysilicon compound (component g as necessary)) that is usually liquid may be used, or the above-described solvents that can be used in combination may be used. .
When using a solvent, methyl isobutyl ketone, butyl acetate, and toluene are preferable from the viewpoint of workability such as the solubility, versatility, and boiling point of the silicone resin (component a) are not too low. Among them, epoxy group-containing organopolysiloxanes are preferred. Methyl isobutyl ketone and toluene are particularly preferable from the viewpoints of stability and transparency.
 本発明の製造工程1における反応は、無機塩基化合物存在下で行う。本発明の反応において無機塩基化合物は反応の触媒として作用し、無添加で反応を行うと反応進行が遅く反応効率が著しく悪い。また、トリエチルアミンなどの有機塩基存在下では塩基性が弱く、反応効率が悪く、得られたエポキシ樹脂の粘度が低すぎたり、硬化物の硬度が不十分であったり、反応温度によっては反応が進行しないこともある。 The reaction in the production step 1 of the present invention is performed in the presence of an inorganic base compound. In the reaction of the present invention, the inorganic base compound acts as a catalyst for the reaction. When the reaction is carried out without addition, the reaction progress is slow and the reaction efficiency is remarkably poor. In the presence of an organic base such as triethylamine, the basicity is weak, the reaction efficiency is poor, the viscosity of the resulting epoxy resin is too low, the hardness of the cured product is insufficient, and the reaction proceeds depending on the reaction temperature. Sometimes it doesn't.
 無機塩基化合物を用いることで反応が十分に進行させられるだけでなく、生成物からの除去が容易である。
 無機塩基化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属塩、あるいはアルカリ土類金属塩が挙げられ、特に水酸化物が好ましい。この中でも触媒能、アルコールへの溶解性から水酸化カリウムが特に好ましい。
 無機塩基化合物の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、目的とする反応以外のゾルーゲル反応が競争的に進行してしまい、エポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))のアルコキシ基の重縮合を一方的に進行させ、それにより生成した反応物と、シリコーンレジン(a成分)や、製造工程2において添加するシラノール末端シリコーンオイル(c成分)とが相溶せず白濁する可能性があるので注意が必要である。
 製造工程1~2を通して水分の許容範囲はシリコーンレジン(a成分)、シラノール末端シリコーンオイル(c成分)とエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の総重量に対し0.5重量%以下が好ましく、より好ましくは0.3重量%以下であり、水分が可能な限り無いほうがより好ましい。
By using an inorganic base compound, not only can the reaction sufficiently proceed, but it can be easily removed from the product.
Examples of the inorganic base compound include alkali metal salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal salts, and hydroxides are particularly preferable. Among these, potassium hydroxide is particularly preferable from the viewpoint of catalytic ability and solubility in alcohol.
The addition method of an inorganic base compound is used in the state added directly or in the state melt | dissolved in the soluble solvent. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol. At this time, addition as an aqueous solution using water or the like causes a sol-gel reaction other than the target reaction to proceed competitively, and the epoxy group-containing silicon compound (component b) (and alkoxy if necessary) The polycondensation of the alkoxy group of the silicon compound (component g) is unilaterally advanced, the reaction product produced thereby, the silicone resin (component a), and the silanol-terminated silicone oil (component c) added in production step 2 It is necessary to be careful because it may become incompatible and become cloudy.
Throughout the production steps 1 and 2, the allowable range of moisture is silicone resin (component a), silanol-terminated silicone oil (component c) and epoxy group-containing silicon compound (component b) (and alkoxy silicon compound (component g) as required) ) Is preferably 0.5% by weight or less, more preferably 0.3% by weight or less, and more preferably as little water as possible.
 本発明の製造工程1において使用しうる無機塩基化合物の量は、反応に用いるシリコーンレジン(a成分)、シラノール末端シリコーンオイル(c成分)とエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の総重量に対し、通常0.001~5重量%が好ましく、より好ましくは0.01~2重量%である。 The amount of the inorganic base compound that can be used in the production process 1 of the present invention includes the silicone resin (a component), silanol-terminated silicone oil (c component) and epoxy group-containing silicon compound (b component) used in the reaction (and necessary Accordingly, it is usually preferably 0.001 to 5% by weight, more preferably 0.01 to 2% by weight, based on the total weight of the alkoxysilicon compound (component g).
 製造工程1の反応温度は、無機塩基化合物添加量、使用溶剤にもよるが、通常20~160℃が好ましく、より好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間が好ましく、より好ましくは2~12時間である。 The reaction temperature in the production step 1 is preferably 20 to 160 ° C., more preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of inorganic base compound added and the solvent used. The reaction time is usually preferably 1 to 20 hours, more preferably 2 to 12 hours.
 次に製造工程2について詳細に記載する。
 製造工程2においては、製造工程1の後に、シラノール末端シリコーンオイル(c成分)を添加し、シラノール末端シリコーンオイル(c成分)のシラノール基と、エポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))のアルコキシ基との脱アルコール縮合を行う。製造工程2を経ることで、シリコーンレジン(a成分)およびシラノール末端シリコーンオイル(c成分)にエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))が縮合した、変性シリコーンレジンと変性シリコーンオイルを得ることができる。
Next, manufacturing process 2 will be described in detail.
In production step 2, silanol-terminated silicone oil (component c) is added after production step 1, silanol groups of silanol-terminated silicone oil (component c), and epoxy group-containing silicon compound (component b) (and necessary) Depending on the case, dealcohol condensation with the alkoxy group of the alkoxysilicon compound (g component) is carried out. Through production step 2, the silicone resin (component a) and the silanol-terminated silicone oil (component c) are condensed with an epoxy group-containing silicon compound (component b) (and, if necessary, an alkoxy silicon compound (component g)). Thus, a modified silicone resin and a modified silicone oil can be obtained.
 本発明の製造工程2における反応は、製造工程1と同様の理由で、無機塩基化合物存在下で行う。製造工程2において使用する無機塩基化合物は前述した製造工程1で例示した種類、添加量の範囲内で使用するが、製造工程2で新たな無機塩基化合物を添加してもよい。
 本発明の製造工程2における反応は、製造工程1と同様に無溶剤で反応させることもできるが、溶剤存在下で反応させることが好ましい。製造工程2において使用する溶剤は前述した製造工程1で例示した種類、添加量の範囲内で使用することができる。
The reaction in the production process 2 of the present invention is performed in the presence of an inorganic base compound for the same reason as in the production process 1. The inorganic base compound used in the production process 2 is used within the range of the kind and addition amount exemplified in the production process 1 described above, but a new inorganic base compound may be added in the production process 2.
The reaction in the production process 2 of the present invention can be carried out without a solvent as in the production process 1, but it is preferably carried out in the presence of a solvent. The solvent used in the manufacturing process 2 can be used within the range of the kind and addition amount exemplified in the manufacturing process 1 described above.
 製造工程2の反応温度は、無機塩基化合物添加量、使用溶剤にもよるが、通常20~160℃が好ましく、より好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間が好ましく、より好ましくは2~12時間である。 The reaction temperature in the production step 2 is usually preferably 20 to 160 ° C., more preferably 40 to 100 ° C., and particularly preferably 50 to 95 ° C., although it depends on the amount of inorganic base compound added and the solvent used. The reaction time is usually preferably 1 to 20 hours, more preferably 2 to 12 hours.
 次に、製造工程3について詳細に記載する。
 製造工程3においては、製造工程2の反応終了後、水を添加し、製造工程1、2で得られた変性シリコーンレジンおよび変性シリコーンオイルに残存するアルコキシ基、および未反応で残存するエポキシ基含有ケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))のアルコキシ基の加水分解脱アルコール縮合を行う。
 この際、必要に応じて前述のエポキシ基を含有するケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))、無機塩基化合物を前述の量の範囲内で添加しても構わない。この反応は、(1)変性シリコーンレジン同士、および/または、(2)変性シリコーンオイル同士、および/または、(3)エポキシ基を含有するケイ素化合物(b成分)同士(および、使用する場合にはアルコキシケイ素化合物(g成分))との間、および/または、(4)変性シリコーンレジンと変性シリコーンオイルとの間、および/または(5)変性シリコーンレジンとエポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))との間、および/または、(6)変性シリコーンオイルとエポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))との間、および/または、(7)エポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))部分重合物と変性シリコーンレジンとの間、および/または、(8)エポキシ基を含有するケイ素化合物(b成分)(および、使用する場合にはアルコキシケイ素化合物(g成分))部分重合物と変性シリコーンオイルとの間で重合反応を行う工程である。上記(1)~(8)の重合反応は、同時に平行して進行していると考えられる。
 特に製造工程3においても先と同様、触媒としては塩基性無機化合物が必要であることは代わりがなく、製造工程1、2の段階で必要な量を先に添加しておいても構わない。ただし、製造工程1で好ましい態様として記載した範囲を越えることは好ましくない。
Next, the manufacturing process 3 will be described in detail.
In the production process 3, after completion of the reaction in the production process 2, water is added, and the alkoxy group remaining in the modified silicone resin and modified silicone oil obtained in the production processes 1 and 2 and the epoxy group remaining unreacted are contained. Hydrolytic dealcohol condensation of the alkoxy group of the silicon compound (component b) (and the alkoxysilicon compound (component g) if necessary) is performed.
At this time, if necessary, the above-mentioned epoxy compound-containing silicon compound (component b) (and, if necessary, an alkoxysilicon compound (component g)) and an inorganic base compound are added within the aforementioned amounts. It doesn't matter. This reaction is carried out by using (1) modified silicone resins and / or (2) modified silicone oils and / or (3) silicon compounds containing epoxy groups (component b). And alkoxy silicon compound (component g)) and / or (4) between modified silicone resin and modified silicone oil and / or (5) silicon compound containing modified silicone resin and epoxy group (b) Component) (and alkoxy silicon compound (g component) if used) and / or (6) silicon compound containing modified silicone oil and epoxy group (b component) (and if used) And / or (7) a silicon compound containing an epoxy group (b component). ) (And alkoxy silicon compound (g component) if used) between the partially polymerized product and the modified silicone resin and / or (8) silicon compound containing epoxy group (b component) (and use) In this case, a polymerization reaction is carried out between the alkoxysilicon compound (component g)) partial polymer and the modified silicone oil. The polymerization reactions (1) to (8) are considered to proceed simultaneously in parallel.
In particular, in the production process 3, as in the previous case, a basic inorganic compound is not necessarily required as the catalyst, and a necessary amount may be added in advance in the production processes 1 and 2. However, it is not preferable to exceed the range described in the production process 1 as a preferred embodiment.
 製造工程3においては溶剤を添加することが好ましい。
 製造工程3において溶剤として、製造工程1、2と同様にアルコールを用いることが好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては特に1級アルコール、2級アルコールが好ましく、特に1級アルコールが好ましい。また、後の除去性能の観点から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わない。これらアルコールの存在が分子量制御、およびその安定性に寄与することができる。
In the production process 3, it is preferable to add a solvent.
It is preferable to use an alcohol as the solvent in the production step 3 as in the production steps 1 and 2. Examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc. In the present invention, primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred. From the viewpoint of subsequent removal performance, a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, and t-butanol is preferable. These alcohols may be used as a mixture. The presence of these alcohols can contribute to molecular weight control and stability.
 アルコールの添加量としては製造工程1、2において仕込んだシリコーンレジン(a成分)とエポキシ基を含有するケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))とシラノール末端シリコーンオイル(c成分)との総重量に対し、20~200重量%が好ましく、より好ましくは20~150重量%、特に好ましくは30~120重量%である。 As the addition amount of alcohol, the silicone resin (a component) charged in the production steps 1 and 2, the silicon compound containing epoxy group (b component) (and the alkoxy silicon compound (g component) if necessary) and the silanol terminal It is preferably 20 to 200% by weight, more preferably 20 to 150% by weight, and particularly preferably 30 to 120% by weight based on the total weight with the silicone oil (component c).
 製造工程3においては水を加える(イオン交換水、蒸留水、上水、何れも使用できる)。水の使用量としては、残存するアルコキシ基量に対し、0.5~8.0当量が好ましく、より好ましくは0.6~5.0当量、特に好ましくは0.65~2.0当量である。
 水の量が0.5当量を下回る場合、反応の進行が遅くなり、エポキシ基を含有するケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))が反応せずに残存する等の問題が生じたり、十分なネットワークを組めず、後の硬化性樹脂組成物とした後の硬化後も硬化不良を起こしたりする可能性がある。また8.0当量を越える場合、分子量制御が効かず、必要以上に高分子量となる可能性がある。さらに、エポキシ基含有ポリオルガノシロキサンの安定性を阻害する可能性がある。
In the production process 3, water is added (ion exchange water, distilled water, or clean water can be used). The amount of water used is preferably 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents relative to the amount of remaining alkoxy groups. is there.
When the amount of water is less than 0.5 equivalent, the progress of the reaction is slowed, and the silicon compound containing the epoxy group (component b) (and the alkoxy silicon compound (component g) if necessary) does not react. There is a possibility that a problem such as remaining may occur, a sufficient network may not be formed, and a curing failure may occur even after curing after a subsequent curable resin composition. On the other hand, if it exceeds 8.0 equivalents, the molecular weight control is not effective, and the molecular weight may be higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the epoxy group-containing polyorganosiloxane.
 製造工程3の反応温度は、無機塩基化合物の添加量、使用溶剤にもよるが、通常20~160℃が好ましく、より好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間が好ましく、より好ましくは3~12時間である。 The reaction temperature in production step 3 is usually preferably 20 to 160 ° C., more preferably 40 to 100 ° C., and particularly preferably 50 to 95 ° C., although it depends on the amount of inorganic base compound added and the solvent used. The reaction time is usually preferably 1 to 20 hours, more preferably 3 to 12 hours.
 以上、本発明の製造工程1~3について説明した。 The production steps 1 to 3 of the present invention have been described above.
 製造工程1~3の後は、前述したクエンチ、水洗、吸着、分離精製を行うことができる。 After the production steps 1 to 3, the quenching, washing, adsorption, separation and purification described above can be performed.
 本発明の製造工程I、IIまたは製造工程1~3を経て得られるエポキシ基含有ポリオルガノシロキサンの外観は、通常無色透明で25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として1000~20000のものが好ましく、2000~10000のものがより好ましく、特に3000~7000のものが好ましい。重量平均分子量が1000より下回る場合は耐熱性が低下する恐れがあり、20000を上回る場合は、これを用いて封止したLED素子のはんだリフロー時に基板から封止材が剥離する恐れがある。
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下で測定されたポリスチレン換算の重量平均分子量(Mw)である。
The appearance of the epoxy group-containing polyorganosiloxane obtained through the production steps I and II or the production steps 1 to 3 of the present invention is usually a colorless and transparent liquid having fluidity at 25 ° C. The molecular weight is preferably 1000 to 20000, more preferably 2000 to 10000, and particularly preferably 3000 to 7000 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 1000, the heat resistance may be lowered. When the weight average molecular weight is more than 20000, the encapsulant may be peeled from the substrate during reflow soldering of the LED element encapsulated using the weight average molecular weight.
The weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured under the following conditions using GPC (gel permeation chromatography).
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 本発明のエポキシ基含有ポリオルガノシロキサンのエポキシ当量(JIS K-7236に記載の方法で測定)は300~1500g/eq.のものが好ましく、320~1400g/eqのものがより好ましく、さらに350~1200g/eq、特に350~1000g/eqのものが好ましい。エポキシ当量が300g/eqを下回る場合はその硬化物が硬くなりすぎる傾向があり、1500g/eqを上回る場合は硬化物の機械特性が悪化する傾向にあり好ましくない。 The epoxy equivalent (measured by the method described in JIS K-7236) of the epoxy group-containing polyorganosiloxane of the present invention is 300 to 1500 g / eq. Preferably, 320 to 1400 g / eq, more preferably 350 to 1200 g / eq, and particularly preferably 350 to 1000 g / eq. When the epoxy equivalent is less than 300 g / eq, the cured product tends to be too hard, and when it exceeds 1500 g / eq, the mechanical properties of the cured product tend to deteriorate.
 エポキシ基含有ポリオルガノシロキサンは、単一のエポキシ基含有ポリオルガノシロキサンであっても良いし、2種以上のエポキシ基含有ポリオルガノシロキサンの混合物であっても構わない。ここで、硬化物の適度な機械強度の観点からは、単一のエポキシ基含有ポリオルガノシロキサンであれば当該エポキシ樹脂が、2種以上のエポキシ基含有ポリオルガノシロキサンの混合物である場合は、特定のシエポキシ基含有ポリオルガノシロキサンのエポキシ当量×(当該特定のエポキシ基含有ポリオルガノシロキサンの含有量/エポキシ基含有ポリオルガノシロキサンの総量)の総和のエポキシ当量が、300~1500g/eqであることが好ましく、350~1000g/eqであることが特に好ましい。 The epoxy group-containing polyorganosiloxane may be a single epoxy group-containing polyorganosiloxane or a mixture of two or more epoxy group-containing polyorganosiloxanes. Here, from the viewpoint of appropriate mechanical strength of the cured product, if the epoxy resin is a mixture of two or more epoxy group-containing polyorganosiloxanes, it is specified if it is a single epoxy group-containing polyorganosiloxane. The epoxy equivalent of the sum of the epoxy equivalent of the epoxy group-containing polyorganosiloxane x (content of the specific epoxy group-containing polyorganosiloxane / total amount of the epoxy group-containing polyorganosiloxane) is 300 to 1500 g / eq. It is preferably 350 to 1000 g / eq.
 エポキシ基含有ポリオルガノシロキサンの粘度(E型粘度計、25℃で測定)は50~40,000mPa・sのものが好ましく、500~20,000mPa・sのものがより好ましく、特に800~15,000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて光半導体封止材用途としては適さない恐れがあり、40,000mPa・sを上回る場合は、粘度が高すぎて作業性に劣る場合がある。 The viscosity of the epoxy group-containing polyorganosiloxane (E-type viscometer, measured at 25 ° C.) is preferably 50 to 40,000 mPa · s, more preferably 500 to 20,000 mPa · s, particularly 800 to 15, 000 mPa · s is preferred. If the viscosity is less than 50 mPa · s, the viscosity may be too low to be suitable for use as an optical semiconductor encapsulant, and if it exceeds 40,000 mPa · s, the viscosity may be too high and workability may be poor. is there.
 エポキシ基含有ポリオルガノシロキサンにおいて3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は3~50モル%が好ましく、5~40モル%がより好ましく、特に6~35モル%が好ましい。3つの酸素原子に結合しているケイ素原子の全ケイ素原子に対する割合が3モル%を下回ると、硬化物がやわらかくなりすぎる傾向にあり、表面タックや傷つきの懸念がある。また50モル%を上回ると硬化物が硬くなりすぎる場合があり、好ましくない。
 存在するケイ素原子の割合は、エポキシ基含有ポリオルガノシロキサンのH NMR、29Si NMR、元素分析等によって求めることができる。
In the epoxy group-containing polyorganosiloxane, the ratio of silicon atoms to which three oxygen atoms are bonded to the total silicon atoms is preferably 3 to 50 mol%, more preferably 5 to 40 mol%, and particularly preferably 6 to 35 mol%. . If the ratio of silicon atoms bonded to three oxygen atoms to the total silicon atoms is less than 3 mol%, the cured product tends to be too soft, and there is a concern of surface tack and scratches. Moreover, when it exceeds 50 mol%, hardened | cured material may become hard too much and is not preferable.
The proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the epoxy group-containing polyorganosiloxane.
 得られる本発明のエポキシ基含有ポリオルガノポリシロキサンは、例えば、下記のような構造となる。
下記シリコーンレジン構造(A)、エポキシ基含有シルセスキオキサン構造(B)、シリコーンオイル構造(C)の構造が連結し、末端がシラノール基及び/または炭素数1~10のアルコキシ基であるエポキシ基含有ポリオルガノシロキサン。
The resulting epoxy group-containing polyorganopolysiloxane of the present invention has the following structure, for example.
An epoxy having the following silicone resin structure (A), epoxy group-containing silsesquioxane structure (B), and silicone oil structure (C) linked to each other and having a silanol group and / or an alkoxy group having 1 to 10 carbon atoms Group-containing polyorganosiloxane.
シリコーンレジン構造(A): Silicone resin structure (A):
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
(式中、R’、R’、R’、R’、R’、R’は、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。但し、分子中のR’~R’の少なくとも2つの水酸基が脱離して、ケイ素原子がエポキシ基含有シルセスキオキサン構造(B)の酸素原子に結合している。); (In the formula, R ′ 1 , R ′ 2 , R ′ 3 , R ′ 4 , R ′ 5 , R ′ 6 may be the same as or different from each other, and may be a monovalent hydrocarbon group or a hydroxyl group. And the total amount of R ′ 1 to R ′ 6 in the molecule is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3, where numerator And at least two hydroxyl groups of R ′ 1 to R ′ 6 are eliminated, and a silicon atom is bonded to an oxygen atom of the epoxy group-containing silsesquioxane structure (B)).
エポキシ基含有シルセスキオキサン構造(B): Epoxy group-containing silsesquioxane structure (B):
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
(式中、Yは、それぞれ独立して、水素原子、エポキシ基を有する反応性官能基、炭素数1~3のアルキル基またはフェニル基であるが、Yの少なくとも一つはエポキシ基を有する反応性官能基である。lは2以上の整数を表す。*はシリコーンレジン構造(A)またはシリコーンオイル構造(C)のケイ素原子への結合を表す。); (Wherein Y is independently a hydrogen atom, a reactive functional group having an epoxy group, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, at least one of Y is a reaction having an epoxy group) L represents an integer greater than or equal to 2. * represents a bond to a silicon atom of the silicone resin structure (A) or the silicone oil structure (C));
シリコーンオイル構造(C): Silicone oil structure (C):
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
(式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す。*はエポキシ基含有シルセスキオキサン構造(B)の酸素原子への結合を表す。)。 (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. * Represents a bond to the oxygen atom of the epoxy group-containing silsesquioxane structure (B).
 以上、本発明におけるエポキシ基含有ポリオルガノシロキサンの好ましい態様である、製造工程I、IIまたは製造工程1~3を経て得ることができる、シリコーンレジン(a成分)およびシラノール末端シリコーンオイル(c成分)のシラノール基と、エポキシ基を含有するケイ素化合物(b成分)(および、必要に応じてアルコキシケイ素化合物(g成分))の縮合物について説明した。 As described above, the silicone resin (component a) and the silanol-terminated silicone oil (component c) that can be obtained through the production steps I and II or the production steps 1 to 3, which are preferred embodiments of the epoxy group-containing polyorganosiloxane in the present invention. The condensate of the silanol group and the silicon compound containing the epoxy group (component b) (and, if necessary, the alkoxysilicon compound (component g)) has been described.
 本発明の光半導体封止用樹脂組成物には、前述した製造工程I、IIまたは製造工程1~3を経て得られたエポキシ基含有オルガノポリシロキサンの他にエポキシ樹脂を混合して用いることができる。
 用いうる他のエポキシ樹脂としては、フェノール化合物のグリシジルエーテル化物であるエポキシ樹脂、各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂、脂環式エポキシ樹脂、脂肪族系エポキシ樹脂、複素環式エポキシ樹脂、グリシジルエステル系エポキシ樹脂、グリシジルアミン系エポキシ樹脂、ハロゲン化フェノール類をグリシジル化したエポキシ樹脂、エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体等が挙げられる。
The resin composition for encapsulating an optical semiconductor of the present invention may be used by mixing an epoxy resin in addition to the epoxy group-containing organopolysiloxane obtained through the production steps I and II or the production steps 1 to 3 described above. it can.
Other epoxy resins that can be used include epoxy resins that are glycidyl etherified products of phenolic compounds, epoxy resins that are glycidyl etherified products of various novolak resins, alicyclic epoxy resins, aliphatic epoxy resins, heterocyclic epoxy resins, Glycidyl ester epoxy resins, glycidyl amine epoxy resins, epoxy resins obtained by glycidylation of halogenated phenols, copolymers of polymerizable unsaturated compounds having an epoxy group and other polymerizable unsaturated compounds, etc. Can be mentioned.
 前記フェノール類化合物のグリシジルエーテル化物であるエポキシ樹脂としては、例えば2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-ヒドロキシ)フェニル]エチル]フェニル]プロパン、ビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’-ビフェノール、テトラメチルビスフェノールA、ジメチルビスフェノールA、テトラメチルビスフェノールF、ジメチルビスフェノールF、テトラメチルビスフェノールS、ジメチルビスフェノールS、テトラメチル-4,4’-ビフェノール、ジメチル-4,4’-ビフェノール、1-(4-ヒドロキシフェニル)-2-[4-(1,1-ビス-(4-ヒドロキシフェニル)エチル)フェニル]プロパン、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェノール)、トリスヒドロキシフェニルメタン、レゾルシノール、ハイドロキノン、ピロガロール、フロログリシノール、ジイソプロピリデン骨格を有するフェノール類、1,1-ジ-4-ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類、フェノール化ポリブタジエン等のポリフェノール化合物のグリシジルエーテル化物であるエポキシ樹脂等が挙げられる。 Examples of the epoxy resin that is a glycidyl etherified product of the phenol compound include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3 -Hydroxy) phenyl] ethyl] phenyl] propane, bisphenol A, bisphenol F, bisphenol S, 4,4'-biphenol, tetramethyl bisphenol A, dimethyl bisphenol A, tetramethyl bisphenol F, dimethyl bisphenol F, tetramethyl bisphenol S, Dimethylbisphenol S, tetramethyl-4,4′-biphenol, dimethyl-4,4′-biphenol, 1- (4-hydroxyphenyl) -2- [4- (1,1-bis- (4-hydroxyphenyl) Ethyl) phenyl] propane, 2,2'-me Ren-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (3-methyl-6-tert-butylphenol), trishydroxyphenylmethane, resorcinol, hydroquinone, pyrogallol, phloroglucinol, Examples thereof include phenols having a diisopropylidene skeleton, phenols having a fluorene skeleton such as 1,1-di-4-hydroxyphenylfluorene, and epoxy resins which are glycidyl etherified products of polyphenol compounds such as phenolized polybutadiene.
 前記各種ノボラック樹脂のグリシジルエーテル化物であるエポキシ樹脂としては、例えばフェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ビスフェノールF及びビスフェノールS等のビスフェノール類、ナフトール類等の各種フェノールを原料とするノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、ビフェニル骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂のグリシジルエーテル化物等が挙げられる。 Examples of epoxy resins that are glycidyl etherified products of various novolak resins include phenols, cresols, ethylphenols, butylphenols, octylphenols, bisphenols such as bisphenol A, bisphenol F and bisphenol S, and various phenols such as naphthols. And glycidyl etherified products of various novolac resins such as a novolak resin, a phenol novolac resin containing a xylylene skeleton, a phenol novolak resin containing a dicyclopentadiene skeleton, a phenol novolak resin containing a biphenyl skeleton, and a phenol novolac resin containing a fluorene skeleton.
 前記脂環式エポキシ樹脂としては、例えば3,4-エポキシシクロヘキシルメチル-(3,4-エポキシ)シクロヘキシルカルボキシレート、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等の脂肪族環骨格を有する脂環式エポキシ樹脂が挙げられる。
 前記脂肪族系エポキシ樹脂としては、例えば1,4-ブタンジオール、1,6-ヘキサンジオール、ポリエチレングリコール、ペンタエリスリトール等の多価アルコールのグリシジルエーテル類が挙げられる。
 複素環式エポキシ樹脂としては、例えばイソシアヌル環、ヒダントイン環等の複素環を有する複素環式エポキシ樹脂が挙げられる。
 前記グリシジルエステル系エポキシ樹脂としては、例えばヘキサヒドロフタル酸ジグリシジルエステル等のカルボン酸エステル類からなるエポキシ樹脂が挙げられる。
 グリシジルアミン系エポキシ樹脂としては、例えばアニリン、トルイジン等のアミン類をグリシジル化したエポキシ樹脂が挙げられる。
 前記ハロゲン化フェノール類をグリシジル化したエポキシ樹脂としては、例えばブロム化ビスフェノールA、ブロム化ビスフェノールF、ブロム化ビスフェノールS、ブロム化フェノールノボラック、ブロム化クレゾールノボラック、クロル化ビスフェノールS、クロル化ビスフェノールA等のハロゲン化フェノール類をグリシジル化したエポキシ樹脂が挙げられる。
Examples of the alicyclic epoxy resin include alicyclic rings having an aliphatic ring skeleton such as 3,4-epoxycyclohexylmethyl- (3,4-epoxy) cyclohexylcarboxylate and bis (3,4-epoxycyclohexylmethyl) adipate. An epoxy resin is mentioned.
Examples of the aliphatic epoxy resin include glycidyl ethers of polyhydric alcohols such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, and pentaerythritol.
Examples of the heterocyclic epoxy resin include heterocyclic epoxy resins having a heterocyclic ring such as an isocyanuric ring and a hydantoin ring.
Examples of the glycidyl ester-based epoxy resin include epoxy resins made of carboxylic acid esters such as hexahydrophthalic acid diglycidyl ester.
Examples of the glycidylamine-based epoxy resin include epoxy resins obtained by glycidylating amines such as aniline and toluidine.
Examples of epoxy resins obtained by glycidylating halogenated phenols include brominated bisphenol A, brominated bisphenol F, brominated bisphenol S, brominated phenol novolac, brominated cresol novolac, chlorinated bisphenol S, chlorinated bisphenol A, and the like. An epoxy resin obtained by glycidylating any of the halogenated phenols.
 エポキシ基を持つ重合性不飽和化合物とそれ以外の他の重合性不飽和化合物との共重合体としては、市場から入手可能な製品ではマープルーフ(商品名)G-0115S、同G-0130S、同G-0250S、同G-1010S、同G-0150M、同G-2050M (日油(株)製)等が挙げられ、エポキシ基を持つ重合性不飽和化合物としては、例えばアクリル酸グリシジル、メタクリル酸グリシジル、4-ビニル-1-シクロヘキセン-1,2-エポキシド等が挙げられる。また他の重合性不飽和化合物の共重合体としては、例えばメチル(メタ)アクリレート、エーテル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、スチレン、ビニルシクロヘキサンなどが挙げられる。 As a copolymer of a polymerizable unsaturated compound having an epoxy group and another polymerizable unsaturated compound other than the above, as a product available from the market, Marproof (trade name) G-0115S, G-0130S, G-0250S, G-1010S, G-0150M, G-2050M (manufactured by NOF Corporation) and the like. Examples of polymerizable unsaturated compounds having an epoxy group include glycidyl acrylate, methacrylic acid, and the like. Examples thereof include glycidyl acid and 4-vinyl-1-cyclohexene-1,2-epoxide. Examples of other polymerizable unsaturated compound copolymers include methyl (meth) acrylate, ether (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, styrene, and vinylcyclohexane.
 前記したエポキシ樹脂は1種又は2種以上を混合して用いても良い。 The above epoxy resins may be used alone or in combination of two or more.
 前記したエポキシ樹脂の中でも、透明性、耐熱透明性、耐光透明性の観点から、脂環式エポキシ樹脂の併用は好ましい。脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409(1980)、Tetrahedron Letter p.4475(1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる(これらの引例の全内容はここに参照として取り込まれる)。
Among the above-described epoxy resins, the combined use of an alicyclic epoxy resin is preferable from the viewpoints of transparency, heat-resistant transparency, and light-resistant transparency. In the case of an alicyclic epoxy resin, a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
Examples of these epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol. 36 p. 2409 (1980), Tetrahedron Letter p. 4475 (1980), etc. Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No. 2004-262871, etc.), and transesterification of cyclohexene carboxylic acid ester (Japan) Examples thereof include compounds obtained by oxidizing compounds that can be produced by the method described in Japanese Patent Application Laid-Open No. 2006-052187, etc. (the entire contents of these references are incorporated herein by reference).
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。 The alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane. Diol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornenediol, etc. Diols, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, triols such as 2-hydroxymethyl-1,4-butanediol, tetraols such as pentaerythritol and ditrimethylolpropane And the like. Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
 さらには、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)およびジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85、その全内容はここに参照として取り込まれる))。
Furthermore, the acetal compound by acetal reaction of a cyclohexene aldehyde derivative and an alcohol body is mentioned.
Specific examples of these epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited to them (reference: review epoxy resin basic edition I p76-85, the entire contents of which are incorporated herein by reference).
 エポキシ基含有オルガノポリシロキサンと他のエポキシ樹脂を併用する場合には、全エポキシ樹脂に対して、エポキシ基含有オルガノポリシロキサンの割合は60~99重量部であることが好ましく、90~97重量部が特に好ましい。60重量部を下回ると、硬化物の耐光性(耐UV性)が劣る恐れがある。 When the epoxy group-containing organopolysiloxane is used in combination with another epoxy resin, the ratio of the epoxy group-containing organopolysiloxane to the total epoxy resin is preferably 60 to 99 parts by weight, preferably 90 to 97 parts by weight. Is particularly preferred. If the amount is less than 60 parts by weight, the light resistance (UV resistance) of the cured product may be inferior.
 本発明の硬化性樹脂組成物においてエポキシ基含有オルガノポリシロキサンを含む全エポキシ樹脂と、エポキシ樹脂硬化剤の配合比率は、全エポキシ樹脂のエポキシ基1当量に対して0.5~1.2当量の硬化剤を使用することが好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。 In the curable resin composition of the present invention, the blending ratio of the total epoxy resin containing the epoxy group-containing organopolysiloxane and the epoxy resin curing agent is 0.5 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resins. It is preferable to use a curing agent. When less than 0.5 equivalent or more than 1.2 equivalent with respect to 1 equivalent of an epoxy group, curing may be incomplete and good cured properties may not be obtained.
 次に、エポキシ樹脂硬化剤について説明する。
 エポキシ樹脂硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、多価カルボン酸化合物などが挙げられる。
 本発明においてエポキシ樹脂硬化剤としては硬度、作業性(室温にて液状であること)、硬化物の透明性という観点から特に酸無水物系化合物、多価カルボン酸化合物が好ましく、その中でも後述する、両末端カルビノール変性シリコーンオイル(d)と、分子内に二つ以上の水酸基を有する多価アルコール化合物(e)と、分子内に一つのカルボン酸無水物基を有する化合物(f)と、必要に応じて分子内に二つ以上のカルボン酸無水物基を有する化合物(h)とを付加反応することで得られる、多価カルボン酸樹脂が最も好ましい。
Next, the epoxy resin curing agent will be described.
Examples of the epoxy resin curing agent include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and polyvalent carboxylic acid compounds.
In the present invention, the epoxy resin curing agent is particularly preferably an acid anhydride compound or a polyvalent carboxylic acid compound from the viewpoints of hardness, workability (being liquid at room temperature), and transparency of the cured product. , A carbinol-modified silicone oil (d) at both ends, a polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule, a compound (f) having one carboxylic anhydride group in the molecule, A polyvalent carboxylic acid resin obtained by addition reaction with a compound (h) having two or more carboxylic acid anhydride groups in the molecule as required is most preferred.
 酸無水物系化合物としては具体的には無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水グルタル酸、2,4-ジエチル無水グルタル酸、3,3-ジメチル無水グルタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物が挙げられる。
 特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、2,4-ジエチル無水グルタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが、耐光性、透明性、作業性の観点から好ましい。
Specific examples of acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydro Phthalic anhydride, methylhexahydrophthalic anhydride, glutaric anhydride, 2,4-diethyl glutaric anhydride, 3,3-dimethyl glutaric anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane- Acids such as 2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride Anhydrides are mentioned.
In particular, methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 2,4-diethylglutaric anhydride, butanetetracarboxylic anhydride, bicyclo [2,2, 1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride Are preferable from the viewpoints of light resistance, transparency, and workability.
 多価カルボン酸化合物は少なくとも2つのカルボキシル基を有する化合物である。
 多価カルボン酸としては、2~6官能のカルボン酸が好ましく、例えば、ブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、リンゴ酸等の直鎖アルキル二酸類、1,3,5-ペンタントリカルボン酸、クエン酸等のアルキルトリカルボン酸類、フタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、シクロヘキサントリカルボン酸、ナジック酸、メチルナジック酸等の脂肪族環状多価カルボン酸類、リノレン酸やオレイン酸などの不飽和脂肪酸の多量体およびそれらの還元物であるダイマー酸類、2~6官能の多価アルコールと酸無水物との反応により得られた化合物類が挙げられ、2~6官能の多価アルコールと酸無水物との反応により得られた化合物類が、耐熱性、作業性の観点からより好ましい。さらには上記酸無水物が飽和脂肪族環状酸無水物である多価カルボン酸が透明性の観点から好ましい。
The polyvalent carboxylic acid compound is a compound having at least two carboxyl groups.
The polyvalent carboxylic acid is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, malic acid, etc. Linear alkyl diacids, alkyl tricarboxylic acids such as 1,3,5-pentanetricarboxylic acid, citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, cyclohexanetricarboxylic acid An aliphatic cyclic polycarboxylic acid such as acid, nadic acid and methyl nadic acid; a multimer of unsaturated fatty acids such as linolenic acid and oleic acid; and dimer acids which are reduced products thereof; Examples include compounds obtained by reaction with acid anhydrides, bifunctional to hexafunctional polyhydric alcohols and acid anhydrides Compounds obtained by the reaction of, heat resistance, and more preferable from the viewpoint of workability. Furthermore, the polyhydric carboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid anhydride is preferable from a transparency viewpoint.
 2~6官能の多価アルコールとしてはアルコール性水酸基を有する化合物であれば特に限定されないが、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類、ジペンタエリスリトールなどのヘキサオール類、末端にアルコール性水酸基を有する末端アルコールポリエステル化合物、炭化水素多価アルコール化合物、末端アルコールポリカーボネート化合物などのアルコール性水酸基末端オリゴマーやポリマーなどが挙げられる。 The bi- to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol. 1,5-pentanediol, 1,6-hexanediol, cyclohexanedimethanol, 2,4-diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecanedi Diols such as methanol and norbornenediol, triols such as glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, 2-hydroxymethyl-1,4-butanediol, tetraerythritol, ditrimethylolpropane and the like Raoul acids, hexaol such as dipentaerythritol, terminal alcohol polyester compound having an alcoholic hydroxyl group-terminated hydrocarbon polyhydric alcohol compound, such as an alcoholic hydroxyl group-terminated oligomer or polymer, such as a terminal alcohol polycarbonate compounds.
 好ましい多価アルコールとしては炭素数が5以上のアルコールであり、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどの化合物が好ましく、中でも2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、2,4-ジエチルペンタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオールなどの分岐鎖状構造や環状構造を有するアルコール類が、耐熱性、透明性の観点から好ましく、特に、トリシクロデカンジメタノールが好ましい。 Preferred polyhydric alcohols are alcohols having 5 or more carbon atoms, such as 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2,4 Compounds such as diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferred, and 2-ethyl-2-butyl-1,3 is particularly preferred Alcohols having a branched chain structure or a cyclic structure such as propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol, Preferred from the viewpoint of transparency In particular, tricyclodecanedimethanol are preferred.
 多価アルコールと反応させる酸無水物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水グルタル酸、2,4-ジエチル無水グルタル酸、3,3-ジメチル無水グルタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが好ましく、中でもメチルヘキサヒドロ無水フタル酸、2,4-ジエチル無水グルタル酸、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物が、耐熱性、透明性、作業性の観点から好ましい。
 付加反応の条件としては公知の方法であれば特に限定なく用いることができるが、具体的な反応条件としては、例えば、酸無水物、多価アルコールを無触媒、無溶剤の条件下、40~150℃で反応させ加熱し、反応終了後、そのまま取り出す手法が挙げられる。
Examples of acid anhydrides to be reacted with polyhydric alcohols include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, glutaric anhydride, and 2,4-diethylglutaric anhydride. Acid, 3,3-dimethylglutaric anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2, 3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride and the like are preferable. Among them, methylhexahydrophthalic anhydride, 2,4-diethyl glutaric anhydride, cyclohexane-1,3 , 4-tricarboxylic acid-3,4-anhydride is preferred from the viewpoints of heat resistance, transparency and workability.
The conditions for the addition reaction can be used without any particular limitation as long as they are known methods. Specific reaction conditions include, for example, acid anhydrides and polyhydric alcohols in the absence of a catalyst and in the absence of a solvent. A method of reacting at 150 ° C. and heating, and taking it out as it is after completion of the reaction can be mentioned.
 本発明におけるエポキシ樹脂硬化剤は、耐熱性の観点から特に酸無水物(C1)、少なくとも2つ以上のカルボキシル基を有し、脂肪族炭化水素基を主骨格とする多価カルボン酸(C2)、または後述する、分子内に二つ以上の水酸基を有する多価アルコール化合物(E)と、分子内に一つのカルボン酸無水物基を有する化合物(f)、さらに場合により分子内に二つ以上のカルボン酸無水物基を有する化合物(h)とを付加反応することで得られる、多価カルボン酸樹脂(C3)が好ましい。中でも、分子内に二つ以上の水酸基を有する多価アルコール化合物(E)として、両末端カルビノール変性シリコーンオイル(d)と、その他の分子内に二つ以上の水酸基を有する多価アルコール化合物(e)を含む多価カルボン酸樹脂(C3)がより好ましい。 The epoxy resin curing agent in the present invention is particularly an acid anhydride (C1), a polyvalent carboxylic acid (C2) having at least two carboxyl groups and having an aliphatic hydrocarbon group as a main skeleton from the viewpoint of heat resistance. Or a polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule, a compound (f) having one carboxylic acid anhydride group in the molecule, and optionally two or more in the molecule. The polyvalent carboxylic acid resin (C3) obtained by addition reaction with the compound (h) having a carboxylic acid anhydride group is preferred. Among them, as the polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule, both ends carbinol-modified silicone oil (d) and other polyhydric alcohol compounds having two or more hydroxyl groups in the molecule ( A polycarboxylic acid resin (C3) containing e) is more preferred.
 酸無水物(C1)としては具体的にはコハク酸無水物、メチルコハク酸無水物、エチルコハク酸無水物、ブチルコハク酸無水物、アリルコハク酸無水物、フタル酸無水物、ナフタレンジカルボン酸無水物、トリメリット酸無水物、マレイン酸無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ナジック酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、ペンタン二酸無水物、2,4-ジエチルペンタン二酸無水物、2,2-ジメチルペンタン二酸無水物、3,3-ジメチルペンタン二酸無水物、1,1-シクロペンタン二酸無水物、1,1-シクロヘキサン二酸無水物、ジグリコール酸無水物、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、ドデシルコハク酸無水物、1,3-シクロヘキサンジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、ビシクロ[2,2,2]オクタン-2,3-ジカルボン酸無水物、4,5-ジメチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物、7-オキサビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物等が挙げられる。
 特にメチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ナジック酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ブタンテトラカルボン酸無水物、ビシクロ[2、2、1]ヘプタン-2、3-ジカルボン酸無水物、メチルビシクロ[2、2、1]ヘプタン-2、3-ジカルボン酸無水物、シクロヘキサン-1、3、4-トリカルボン酸-3、4-無水物、2,4-ジエチルペンタン二酸無水物などが、耐光性、透明性、作業性の観点から好ましい。
Specific examples of the acid anhydride (C1) include succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, phthalic anhydride, naphthalenedicarboxylic anhydride, trimellit Acid anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl hexahydrophthalic anhydride, bicyclo [ 2.2.1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3, 4-anhydride, pentanedioic anhydride, 2,4-diethylpentanedioic anhydride, 2,2-dimethylpentanedioic anhydride 3,3-dimethylpentanedioic anhydride, 1,1-cyclopentanedioic anhydride, 1,1-cyclohexanedioic anhydride, diglycolic anhydride, maleic anhydride, itaconic anhydride, citraconic acid Anhydride, dodecyl succinic anhydride, 1,3-cyclohexanedicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, bicyclo [2,2,2] Octane-2,3-dicarboxylic acid anhydride, 4,5-dimethyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, bicyclo [2.2.2] -5-octene-2,3-dicarboxylic acid anhydride And 7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid anhydride.
In particular, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, nadic acid anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane -2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, 2, 4-Diethylpentanedioic anhydride is preferred from the viewpoints of light resistance, transparency, and workability.
 多価カルボン酸(C2)は少なくとも2つのカルボキシル基を有する化合物である。
 多価カルボン酸としては、2~6官能のカルボン酸が好ましく、例えば、ブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、リンゴ酸等の直鎖アルキル二酸類、1、3、5-ペンタントリカルボン酸、クエン酸等のアルキルトリカルボン酸類、フタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、シクロヘキサントリカルボン酸、ナジック酸、メチルナジック酸等の脂肪族環状多価カルボン酸類、リノレン酸やオレイン酸などの不飽和脂肪酸の多量体およびそれらの還元物であるダイマー酸類が挙げられ、上記酸無水物が飽和脂肪族環状酸無水物である多価カルボン酸が透明性の観点から好ましい。
The polyvalent carboxylic acid (C2) is a compound having at least two carboxyl groups.
The polyvalent carboxylic acid is preferably a bi- to hexafunctional carboxylic acid, such as butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonanedioic acid, decanedioic acid, malic acid, etc. Linear alkyl diacids such as 1,3,5-pentanetricarboxylic acid, alkyltricarboxylic acids such as citric acid, phthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, cyclohexanetricarboxylic acid Examples include aliphatic cyclic polycarboxylic acids such as acid, nadic acid, and methyl nadic acid, multimers of unsaturated fatty acids such as linolenic acid and oleic acid, and dimer acids that are reduced products thereof, and the above acid anhydrides are saturated. A polyvalent carboxylic acid which is an aliphatic cyclic acid anhydride is preferred from the viewpoint of transparency.
 本発明の硬化性樹脂組成物に用いるエポキシ樹脂硬化剤として好ましい多価カルボン酸樹脂(C3)は、後述する分子内に二つ以上の水酸基を有する多価アルコール化合物(E)のアルコール性水酸基と、分子内に一つのカルボン酸無水物基を有する化合物(f)(および場合により、分子内に二つ以上のカルボン酸無水物基を有する化合物(h))の酸無水物基が付加反応することによって得られる化合物であり、官能基として分子内にカルボン酸を二個以上有する。分子内に二つ以上の水酸基を有する多価アルコール化合物(E)として、両末端カルビノール変性シリコーンオイル(d)と、その他の分子内に二つ以上の水酸基を有する多価アルコール化合物(e)を併用することが好ましい。 The polyvalent carboxylic acid resin (C3) preferred as an epoxy resin curing agent used in the curable resin composition of the present invention is an alcoholic hydroxyl group of a polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule described below. The acid anhydride group of the compound (f) having one carboxylic anhydride group in the molecule (and optionally the compound (h) having two or more carboxylic anhydride groups in the molecule) undergoes an addition reaction. This compound is obtained by having two or more carboxylic acids in the molecule as functional groups. As the polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule, both ends carbinol-modified silicone oil (d) and the other polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule It is preferable to use together.
 ここからは、多価カルボン酸樹脂(C3)の原料となる、分子内に二つ以上の水酸基を有する多価アルコール化合物(E)と、分子内に一つのカルボン酸無水物基を有する化合物(f)、分子内に二つ以上の酸無水物基を有する化合物(h)について説明する。
 分子内に二つ以上の水酸基を有する多価アルコール化合物(E)としてはエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール等の炭素数1~10のアルキレンジオール、EO変性ビスフェノールA、EO変性ビスフェノールF、EO変性ビスフェノールE、EO変性ナフタレンジオール、PO変性ビスフェノールA、両末端カルビノール変性シリコーンオイル(d)、分岐構造を有する鎖状アルキレンジオール(e2)、脂環構造を有する多価アルコール(e3)、分子内に三つ以上の水酸基を有する多価アルコール(e4)、分子内に二つ以上の水酸基を有する多価アルコールに炭素数2~8のラクトン類を開環付加重合させた多価アルコール変性ラクトン重合体(e5)、多環多価フェノール化合物(多環多価フェノール化合物とは、2つ以上の六員環を有する化合物であって、2つ以上のフェノール性水酸基を有する化合物を意味する。)の水酸基を有する1個以上の芳香環が水素化されているアルコール化合物(e6)、末端アルコールポリエステル化合物(e7)、末端アルコールポリカーボネート化合物(e8)が挙げられ、これらの群から選択される少なくとも1つの多価アルコール化合物を用いることができ、2種類以上を併用することもできる。好ましくは両末端カルビノール変性シリコーンオイル(d)、分岐構造を有する鎖状アルキレンジオール(e2)、脂環構造を有する多価アルコール(e3)、分子内に三つ以上の水酸基を有する多価アルコール(a4)、多価アルコール変性ラクトン重合体(e5)、多環多価フェノール化合物の水酸基を有する1個以上の芳香環が水素化されているアルコール化合物(e6)が挙げられ、両末端カルビノール変性シリコーンオイル(d)と、その他の分子内に二つ以上の水酸基を有する多価アルコール化合物(e)を併用することがより好ましい。
From here, a polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule, and a compound having one carboxylic anhydride group in the molecule (raw material, which is a raw material of the polycarboxylic acid resin (C3)) f) The compound (h) having two or more acid anhydride groups in the molecule will be described.
Examples of the polyhydric alcohol compound (E) having two or more hydroxyl groups in the molecule include those having 1 to 10 carbon atoms such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, and nonanediol. Alkylene diol, EO-modified bisphenol A, EO-modified bisphenol F, EO-modified bisphenol E, EO-modified naphthalene diol, PO-modified bisphenol A, both-end carbinol-modified silicone oil (d), branched alkylene diol having a branched structure (e2) A polyhydric alcohol (e3) having an alicyclic structure, a polyhydric alcohol (e4) having three or more hydroxyl groups in the molecule, a polyhydric alcohol having two or more hydroxyl groups in the molecule, and having 2 to 8 carbon atoms. Many polymers obtained by ring-opening addition polymerization of lactones Alcohol-modified lactone polymer (e5), polycyclic polyphenol compound (polycyclic polyphenol compound is a compound having two or more six-membered rings and having two or more phenolic hydroxyl groups. And an alcohol compound (e6), a terminal alcohol polyester compound (e7), and a terminal alcohol polycarbonate compound (e8) in which one or more aromatic rings having a hydroxyl group are hydrogenated, and selected from these groups At least one polyhydric alcohol compound can be used, and two or more kinds can be used in combination. Preferably both ends carbinol-modified silicone oil (d), branched alkylene diol (e2) having a branched structure, polyhydric alcohol (e3) having an alicyclic structure, polyhydric alcohol having three or more hydroxyl groups in the molecule (A4), polyhydric alcohol-modified lactone polymer (e5), alcohol compound (e6) in which one or more aromatic rings having a hydroxyl group of a polycyclic polyphenol compound are hydrogenated, and carbinol at both ends More preferably, the modified silicone oil (d) and the polyhydric alcohol compound (e) having two or more hydroxyl groups in other molecules are used in combination.
 まず、両末端カルビノール変性シリコーンオイル(d)について説明する。
 両末端カルビノール変性シリコーンオイル(d)は下記式(7)で示される両末端にアルコール性水酸基を有するシリコーン化合物である。
First, both terminal carbinol-modified silicone oil (d) will be described.
Both ends carbinol-modified silicone oil (d) is a silicone compound having alcoholic hydroxyl groups at both ends represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
(式(7)において、R10は炭素総数1~10のアルキレン基、エーテル結合を有するアルキレン基を、Rは炭素数1~3のアルキル基又はフェニル基を、vは平均値で1~100をそれぞれ表す。) (In the formula (7), R 10 represents an alkylene group having 1 to 10 carbon atoms and an alkylene group having an ether bond, R 9 represents an alkyl group or phenyl group having 1 to 3 carbon atoms, and v represents an average value of 1 to 100 represents each.)
 式(7)において、R10の具体例としては、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、イソペンチレン、へキシレン、ヘプチレン、オクチレン等のアルキレン基、エトキシエチレン基、プロポキシエチレン基プロポキシプロピレン基、エトキシプロピレン基等のエーテル結合を有するアルキレン基などが挙げられる。特に好ましいものとしては、プロポキシエチレン基、エトキシプロピレン基である。 In the formula (7), specific examples of R 10 include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene and other alkylene groups, ethoxyethylene group, propoxyethylene group propoxy Examples include an alkylene group having an ether bond such as a propylene group and an ethoxypropylene group. Particularly preferred are propoxyethylene group and ethoxypropylene group.
 次に、Rはメチル基等の炭素数1~3のアルキル基又はフェニル基を表し同一又は異種のいずれでもよいが、両末端カルビノール変性シリコーンオイル(d)と、その他の分子内に二つ以上の水酸基を有する多価アルコール化合物(e)と、(必要により、分子内に二つ以上の酸無水物基を有する化合物(h)と、)分子内に一つのカルボン酸無水物基を有する化合物(f)とを付加反応させることにより得られる多価カルボン酸樹脂が室温で液状であるためにはフェニル基と比較し、メチル基が好ましい。 Next, R 9 represents an alkyl group having 1 to 3 carbon atoms, such as a methyl group, or a phenyl group, and may be the same or different. A polyhydric alcohol compound (e) having one or more hydroxyl groups, and (optionally a compound (h) having two or more acid anhydride groups in the molecule) one carboxylic acid anhydride group in the molecule. In order for the polyvalent carboxylic acid resin obtained by addition reaction with the compound (f) to be contained to be liquid at room temperature, a methyl group is preferred compared to a phenyl group.
 式(7)においてvは平均値で1~100であるが、好ましくは2~80、より好ましくは5~30である。 In the formula (7), v is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 30.
 式(7)で示される両末端カルビノール変性シリコーンオイル(d)は、例えば、X-22-160AS、KF6001、KF6002、KF6003(いずれも信越化学工業(株)製)BY16-201、BY16-004、SF8427(いずれも東レ・ダウコーニング(株)製)XF42-B0970、XF42-C3294(いずれもモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)サイラプレーン(商品名)FM-4411、FM-4421、FM-4425(いずれもJNC(株)製)等が挙げられ、いずれも市場から入手できる。これら両末端カルビノール変性シリコーンオイルは1種又は2種以上を混合して用いることが出来る。これらの中でもX-22-160AS、KF6001、KF6002、BY16-201、XF42-B0970、FM-4411が好ましい。 For example, X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-201, BY16-004 are used as the both-end carbinol-modified silicone oil (d) represented by the formula (7). SF8427 (both manufactured by Toray Dow Corning Co., Ltd.) XF42-B0970, XF42-C3294 (both manufactured by Momentive Performance Materials Japan GK) Silaplane (trade names) FM-4411, FM-4421, FM-4425 (both manufactured by JNC Co., Ltd.) and the like, and all are available from the market. These two terminal carbinol-modified silicone oils can be used alone or in combination. Among these, X-22-160AS, KF6001, KF6002, BY16-201, XF42-B0970, and FM-4411 are preferable.
 次に、多価アルコール化合物である分岐構造を有する鎖状アルキレンジオール(e2)について説明する。分岐構造を有する鎖状アルキレンジオール(e2)の具体例としては、例えばネオペンチルグリコール、2-エチル-2-ブチルプロピレン-1,3-ジオール、2,4-ジエチルペンタン-1,5-ジオール、ジメチルブタンジオール、ジメチルペンタンジオール、ジエチルプロパンジオール、ジメチルヘキサンジオール、ジエチルブタンジオール、ジメチルヘプタンジオール、ジエチルペンタンジオール、ジメチルオクタンジオール、ジエチルヘキサンジオール、エチルブチルプロパンジオールなどが挙げられるがこれらに限定されることはない。また、これらは単独でも2種以上を混合して用いてもよい。
 分岐構造を有する鎖状アルキレンジオールを適用すると、硬化物において耐ガス透過性が向上するため好ましい。
Next, the chain alkylene diol (e2) having a branched structure which is a polyhydric alcohol compound will be described. Specific examples of the branched alkylene diol (e2) having a branched structure include, for example, neopentyl glycol, 2-ethyl-2-butylpropylene-1,3-diol, 2,4-diethylpentane-1,5-diol, Examples include, but are not limited to, dimethylbutanediol, dimethylpentanediol, diethylpropanediol, dimethylhexanediol, diethylbutanediol, dimethylheptanediol, diethylpentanediol, dimethyloctanediol, diethylhexanediol, and ethylbutylpropanediol. There is nothing. These may be used alone or in combination of two or more.
Applying a chain alkylene diol having a branched structure is preferable because the gas permeation resistance of the cured product is improved.
 次に、多価アルコール化合物である脂環構造を有する多価アルコール(e3)について説明する。特に好ましい多価アルコール化合物である脂環構造を有する多価アルコールの具体例としてはシクロヘキサンジオール、シクロヘキサンジメタノール、トリシクロデカンジメタノール、トリシクロデカンジオール、ペンタシクロデカンジメタノール、ノルボルナンジオール、ノルボルナンジメタノール、ジオキサングリコール、スピログリコール等が挙げられるがこれらに限定されることはない。また、これらは単独でも2種以上を混合して用いてもよい。
 脂環構造を有する多価アルコールを適用すると、硬化物において耐ガス透過性が向上するため好ましい。
Next, the polyhydric alcohol (e3) which has an alicyclic structure which is a polyhydric alcohol compound is demonstrated. Specific examples of the polyhydric alcohol having an alicyclic structure which is a particularly preferred polyhydric alcohol compound include cyclohexanediol, cyclohexanedimethanol, tricyclodecane dimethanol, tricyclodecanediol, pentacyclodecane dimethanol, norbornanediol, norbornanedi. Examples thereof include, but are not limited to, methanol, dioxane glycol, and spiro glycol. These may be used alone or in combination of two or more.
It is preferable to apply a polyhydric alcohol having an alicyclic structure because gas permeability resistance is improved in the cured product.
 次に、多価アルコール化合物である分子内に三つ以上の水酸基を有する多価アルコール(e4)について説明する。特に好ましい多価アルコール化合物である分子内に三つ以上の水酸基を有する多価アルコールの具体例としては、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、イソシアヌル酸トリス(2-ヒドロキシエチル)、ペンタエリスリトール、ジトリメチロールプロパン、ジグリセロール、ジペンタエリスリトール等が挙げられるがこれらに限定されることはない。また、これらは単独でも2種以上を混合して用いてもよい。
 分子内に三つ以上の水酸基を有する多価アルコールを適用すると、硬化物において硬度が上昇するため好ましい。
Next, the polyhydric alcohol (e4) having three or more hydroxyl groups in the molecule, which is a polyhydric alcohol compound, will be described. Specific examples of polyhydric alcohols having three or more hydroxyl groups in the molecule, which are particularly preferred polyhydric alcohol compounds, include glycerin, trimethylolethane, trimethylolpropane, trimethylolbutane, and tris (2-hydroxyethyl) isocyanurate. , Pentaerythritol, ditrimethylolpropane, diglycerol, dipentaerythritol and the like, but are not limited thereto. These may be used alone or in combination of two or more.
It is preferable to apply a polyhydric alcohol having three or more hydroxyl groups in the molecule because the hardness of the cured product is increased.
 次に、多価アルコール化合物である分子内に二つ以上の水酸基を有する多価アルコールに炭素数2~8のラクトン類を開環付加重合させた多価アルコール(e5)について説明する。特に好ましい多価アルコールである、分子内に二つ以上の水酸基を有する多価アルコールに炭素数2~8のラクトン類を開環付加重合させた多価アルコール変性ラクトン重合体を得るために使用される多価アルコールの具体例としては、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール等の炭素数1~10のアルキレンジオール、EO(エチレンオキサイド)変性ビスフェノールA、EO変性ビスフェノールF、EO変性ビスフェノールE、EO変性ナフタレンジオール、PO(プロピレンオキサイド)変性ビスフェノールA、分岐構造を有する鎖状アルキレンジオールであるネオペンチルグリコール、2-エチル-2-ブチルプロピレン-1,3-ジオール、2,4-ジエチルペンタン-1,5-ジオール、ジメチルブタンジオール、ジメチルペンタンジオール、ジエチルプロパンジオール、ジメチルヘキサンジオール、ジエチルブタンジオール、ジメチルヘプタンジオール、ジエチルペンタンジオール、ジメチルオクタンジオール、ジエチルヘキサンジオール、エチルブチルプロパンジオール等、脂環構造を有する多価アルコールであるシクロヘキサンジオール、シクロヘキサンジメタノール、トリシクロデカンジメタノール、トリシクロデカンジオール、ペンタシクロデカンジメタノール、ノルボルナンジオール、ノルボルナンジメタノール、ジオキサングリコール、スピログリコール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン等、分子内に三つ以上の水酸基を有する多価アルコールであるグリセリン、トリメチロールプロパン、イソシアヌル酸トリス(2-ヒドロキシエチル)、ペンタエリスリトール、ジトリメチロールプロパン、ジグリセロール、ジペンタエリスリトール等、式(3)で表される末端アルコールポリエステル化合物等が挙げられるが、これらに限定されることはない。中でも、EO変性ビスフェノールA等のアルキレンオキサイド変性ビスフェノールA、EO変性ビスフェノールF等のアルキレンオキサイド変性ビスフェノールF、脂環構造を有する多価アルコール、分岐構造を有する鎖状アルキレンジオールが好ましい。また、これらは単独でも2種以上を混合して用いてもよい。 Next, a polyhydric alcohol (e5) obtained by ring-opening addition polymerization of a lactone having 2 to 8 carbon atoms to a polyhydric alcohol having two or more hydroxyl groups in the molecule, which is a polyhydric alcohol compound, will be described. It is used to obtain a polyhydric alcohol-modified lactone polymer obtained by ring-opening addition polymerization of a lactone having 2 to 8 carbon atoms to a polyhydric alcohol having two or more hydroxyl groups in the molecule, which is a particularly preferred polyhydric alcohol. Specific examples of the polyhydric alcohol include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol and other alkylene diols having 1 to 10 carbon atoms, EO (ethylene oxide) modification Bisphenol A, EO-modified bisphenol F, EO-modified bisphenol E, EO-modified naphthalene diol, PO (propylene oxide) -modified bisphenol A, a branched alkylene diol having a branched structure, neopentyl glycol, 2-ethyl-2-butyl group Pyrene-1,3-diol, 2,4-diethylpentane-1,5-diol, dimethylbutanediol, dimethylpentanediol, diethylpropanediol, dimethylhexanediol, diethylbutanediol, dimethylheptanediol, diethylpentanediol, dimethyl Cyclohexanediol, cyclohexanedimethanol, tricyclodecane dimethanol, tricyclodecanediol, pentacyclodecane dimethanol, norbornanediol, which is a polyhydric alcohol having an alicyclic structure, such as octanediol, diethylhexanediol, ethylbutylpropanediol, Norbornanedimethanol, dioxane glycol, spiroglycol, 2,2-bis (4-hydroxycyclohexyl) propane, etc. Terminals represented by formula (3) such as glycerin, trimethylolpropane, isocyanuric acid tris (2-hydroxyethyl), pentaerythritol, ditrimethylolpropane, diglycerol, dipentaerythritol, etc., which are polyhydric alcohols having a hydroxyl group above Examples include alcohol polyester compounds, but are not limited thereto. Among these, alkylene oxide modified bisphenol A such as EO modified bisphenol A, alkylene oxide modified bisphenol F such as EO modified bisphenol F, polyhydric alcohol having an alicyclic structure, and chain alkylene diol having a branched structure are preferable. These may be used alone or in combination of two or more.
 また、多価アルコール変性ラクトン重合体を得るために使用するラクトン類は炭素数が4~8のラクトン類で、具体例としてはγ―ブチロラクトン、β―メチルプロピオラクトン、δ―バレロラクトン、ε―カプロラクトン、3-メチルカプロラクトン、4-メチルカプロラクトン、トリメチルカプロラクトン、β―メチル-δ-カプロラクトン等が挙げられる。
 多価アルコール変性ラクトン重合体は、多価アルコールの水酸基1モルに対し通常0.1~10モル、好ましくは0.2~5モル、より好ましくは0.3~2モルの範囲のラクトン類を使用し、アルカリ金属化合物、スズ化合物、チタン化合物、亜鉛化合物、モリブデン化合物、アルミニウム化合物、タングステン化合物などの触媒を用い、通常80~230℃、好ましくは100~200℃、より好ましくは120~160℃で反応させることで得られる。
The lactones used for obtaining the polyhydric alcohol-modified lactone polymer are lactones having 4 to 8 carbon atoms. Specific examples include γ-butyrolactone, β-methylpropiolactone, δ-valerolactone, ε -Caprolactone, 3-methylcaprolactone, 4-methylcaprolactone, trimethylcaprolactone, β-methyl-δ-caprolactone and the like.
The polyhydric alcohol-modified lactone polymer usually contains lactones in the range of 0.1 to 10 mol, preferably 0.2 to 5 mol, more preferably 0.3 to 2 mol, per mol of the hydroxyl group of the polyhydric alcohol. And a catalyst such as an alkali metal compound, a tin compound, a titanium compound, a zinc compound, a molybdenum compound, an aluminum compound, or a tungsten compound is usually used at 80 to 230 ° C., preferably 100 to 200 ° C., more preferably 120 to 160 ° C. It is obtained by making it react.
 次に、多価アルコール化合物である多環多価フェノール化合物の水酸基を有する1個以上の芳香環が水素化されているアルコール化合物(e6)について説明する。多環多価フェノール化合物(多環多価フェノール化合物とは、2つ以上の六員環を有する化合物であって、2つ以上のフェノール性水酸基を有する化合物を意味する。)の水酸基を有する1個以上の芳香環が水素化されているアルコール化合物(e6)としては、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン(=水素化ビスフェノールA)、1,1-ビス(4-ヒドロキシシクロヘキシル)エタン(=水素化ビスフェノールE)、4,4’-ビシクロヘキサノール(=水素化ビフェノール)、3,3’,5,5’-テトラメチル-4,4’-ビシクロヘキサノール、メチレンビスシクロヘキサノール(=水素化ビスフェノールF)、4,4’,4”-メチリデントリスシクロヘキサノール、4,4’-[(4-ヒドロキシシクロヘキシル)メチレン]ビス(2-メチルヘキサノール)4,4’-(1-{4-[1-(4-ヒドロキシシクロヘキシル)-1-メチルエチル]フェニル}エチリデン)ビスシクロヘキサノール、4,4’-[4-(4-ヒドロキシシクロヘキシル)シクロヘキシリデン]ビスフェノール、4,4’-[4-(4-ヒドロキシシクロヘキシル)シクロヘキシリデン]ビス(2-メチルフェノール)、4,4’-[4-(4-ヒドロキシシクロヘキシル)シクロヘキシリデン]ビス(2,6-ジメチルフェノール、ジヒドロキシデカヒドロナフタレン(=水素化ジヒドロキシナフタレン)、ジヒドロキシテトラデカヒドロアントラセン、1,4-シクロへキシレンビス(メチルエタノール)、5,5’-(1-メチルエチリデン)ビス[1,1’-(ビシクロヘキシル)-2-オール]、5,5’-(1,1’-シクロヘキシリデン)ビス[1,1’-(ビシクロヘキシル)-2-オール]、5,5’-(シクロヘキシルメチレン)ビス[1,1’-(ビシクロヘキシル)-2-オール]、1,1,2,2,-テトラキス(4-ヒドロキシシクロヘキシル)エタン、1,1,2,2,-テトラキス(3,5-ジメチル-4-ヒドロキシシクロヘキシル)エタン、が挙げられるがこれらに限定されず、1種又は2種以上を混合して用いても良い。
 上記の中でも、水素化ビスフェノールA等の水素化ビスフェノール、水素化ビフェノール、水素化ジヒドロキシナフタレンが好ましい。
Next, an alcohol compound (e6) in which one or more aromatic rings having a hydroxyl group of a polycyclic polyhydric phenol compound which is a polyhydric alcohol compound is hydrogenated will be described. 1 having a hydroxyl group of a polycyclic polyphenol compound (a polycyclic polyphenol compound is a compound having two or more six-membered rings and having two or more phenolic hydroxyl groups). Examples of the alcohol compound (e6) having at least one aromatic ring hydrogenated include 2,2-bis (4-hydroxycyclohexyl) propane (= hydrogenated bisphenol A), 1,1-bis (4-hydroxycyclohexyl). Ethane (= hydrogenated bisphenol E), 4,4′-bicyclohexanol (= hydrogenated biphenol), 3,3 ′, 5,5′-tetramethyl-4,4′-bicyclohexanol, methylene biscyclohexanol (= Hydrogenated bisphenol F), 4,4 ′, 4 ″ -methylidenetriscyclohexanol, 4,4 ′-[(4-hydroxycyclohexyl) Methylene] bis (2-methylhexanol) 4,4 ′-(1- {4- [1- (4-hydroxycyclohexyl) -1-methylethyl] phenyl} ethylidene) biscyclohexanol, 4,4 ′-[4 -(4-hydroxycyclohexyl) cyclohexylidene] bisphenol, 4,4 '-[4- (4-hydroxycyclohexyl) cyclohexylidene] bis (2-methylphenol), 4,4'-[4- (4- Hydroxycyclohexyl) cyclohexylidene] bis (2,6-dimethylphenol, dihydroxydecahydronaphthalene (= hydrogenated dihydroxynaphthalene), dihydroxytetradecahydroanthracene, 1,4-cyclohexylenebis (methylethanol), 5,5 '-(1-Methylethylidene) bis [1,1'-(bicyclohe Syl) -2-ol], 5,5 ′-(1,1′-cyclohexylidene) bis [1,1 ′-(bicyclohexyl) -2-ol], 5,5 ′-(cyclohexylmethylene) bis [1,1 ′-(bicyclohexyl) -2-ol], 1,1,2,2, -tetrakis (4-hydroxycyclohexyl) ethane, 1,1,2,2, -tetrakis (3,5-dimethyl) -4-hydroxycyclohexyl) ethane, but is not limited thereto, and one or more kinds may be used in combination.
Among these, hydrogenated bisphenol such as hydrogenated bisphenol A, hydrogenated biphenol, and hydrogenated dihydroxynaphthalene are preferable.
 次に末端アルコールポリエステル化合物(e7)について説明する。
 末端アルコールポリエステル化合物(e7)は下記式(8)で示される、末端に水酸基を有するポリエステル化合物である。
Next, the terminal alcohol polyester compound (e7) will be described.
The terminal alcohol polyester compound (e7) is a polyester compound having a hydroxyl group at the terminal represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
(式(8)において、R11、R12はそれぞれ独立して炭素数1~10のアルキレン基を、nは平均値で1~100をそれぞれ表す。) (In Formula (8), R 11 and R 12 each independently represents an alkylene group having 1 to 10 carbon atoms, and n represents an average value of 1 to 100)
 式(8)において、R11の具体例としては、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、炭素数1~10の分岐鎖を有するアルキレン基又は環状構造を有するアルキレン基が好ましく、特にエチルブチルプロピレン、イソブチレン、ネオペンチレン、ジエチルペンチレン、シクロヘキサンジメチレンが、硬化物の耐熱透明性の観点から好ましい。 In the formula (8), specific examples of R 11 include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain of 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, an alkylene group having a branched chain having 1 to 10 carbon atoms or an alkylene group having a cyclic structure is preferable, and in particular, ethylbutylpropylene, isobutylene, neopentylene, diethylpentylene, and cyclohexanedimethylene are the heat-resistant transparency of the cured product. It is preferable from the viewpoint.
 式(8)において、R12の具体例としては、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、炭素数1~10の直鎖アルキレン基が好ましく、プロピレン、ブチレン、ペンチレン、へキシレンが、硬化物の基材への密着性の観点から特に好ましい。 In the formula (8), specific examples of R 12 include linear alkylene groups having 1 to 10 carbon atoms such as ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, isobutylene, Examples thereof include an alkylene group having a branched chain having 1 to 10 carbon atoms such as isopentylene, neopentylene and diethylpentylene, and an alkylene group having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, a linear alkylene group having 1 to 10 carbon atoms is preferable, and propylene, butylene, pentylene, and hexylene are particularly preferable from the viewpoint of adhesion of a cured product to a substrate.
 式(8)においてnは平均値で1~100であるが、好ましくは2~40、より好ましくは3~30である。 In the formula (8), n is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
 末端アルコールポリエステル(e7)の重量平均分子量(Mw)は、500~20000が好ましく、より好ましくは500~5000、さらに好ましくは、500~3000である。重量平均分子量が500未満であると、本発明の硬化性樹脂組成物の硬化物硬度が高くなり過ぎヒートサイクル試験等でクラックが入る懸念があり、重量平均分子量が20000より大きいと硬化物のベトツキが発生する懸念がある。本発明において重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。 The weight average molecular weight (Mw) of the terminal alcohol polyester (e7) is preferably 500 to 20000, more preferably 500 to 5000, and still more preferably 500 to 3000. If the weight average molecular weight is less than 500, the cured product hardness of the curable resin composition of the present invention is too high, and there is a concern that cracks may occur in a heat cycle test or the like. If the weight average molecular weight is more than 20000, the cured product becomes sticky. There is a concern that will occur. In this invention, a weight average molecular weight means the weight average molecular weight (Mw) calculated in polystyrene conversion based on the value measured on condition of the following using GPC (gel permeation chromatography).
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 式(8)で示される末端アルコールポリエステル(e7)は、例えば、末端にアルコール性水酸基を有するポリエステルポリオール類が挙げられる。その具体例としてはポリエステルポリオールである、キョーワポール(商品名)1000PA、同2000PA、同3000PA、同2000BA(いずれも協和発酵ケミカル(株)製);アデカニューエース(商品名)Y9-10、同YT-101(いずれもADEKA(株)製);プラクセル(商品名)220EB、同220EC(いずれもダイセル化学工業(株)製);ポリライト(商品名)OD-X-286、同OD-X-102、同OD-X-355、同OD-X-2330、同OD-X-240、同OD-X-668、同OD-X-2554、同OD-X-2108、同OD-X-2376、同OD-X-2044、同OD-X-688、同OD-X-2068、同OD-X-2547、同OD-X-2420、同OD-X-2523、同OD-X-2555(いずれもDIC(株)製);HS2H-201AP、HS2H-351A、HS2H-451A、HS2H-851A、HS2N-221A、HS2N-521A、HS2H-220S、HS2N-220S、HS2N-226P、HS2B-222A、HOKOKUOL HT-110、同HT-210、同HT-12、同HT-250、同HT-310、同HT-40M(いずれも豊国製油(株)製)等が挙げられ、いずれも市場から入手できる。これらポリエステル化合物は1種又は2種以上を混合して用いることが出来る。これらの中でもキョーワポール1000PA、アデカニューエースY9-10、HS2N-221Aが好ましい。 Examples of the terminal alcohol polyester (e7) represented by the formula (8) include polyester polyols having an alcoholic hydroxyl group at the terminal. Specific examples thereof are polyester polyols such as Kyowapol (trade name) 1000PA, 2000PA, 3000PA, 2000BA (all manufactured by Kyowa Hakko Chemical Co., Ltd.); Adeka New Ace (trade name) Y9-10, YT-101 (both manufactured by ADEKA); Plaxel (trade name) 220EB, 220EC (both manufactured by Daicel Chemical Industries); Polylite (trade name) OD-X-286, OD-X- 102, OD-X-355, OD-X-2330, OD-X-240, OD-X-668, OD-X-2554, OD-X-2108, OD-X-2376 OD-X-2044, OD-X-688, OD-X-2068, OD-X-2547, OD-X-2420, OD-X-2 23, OD-X-2555 (all manufactured by DIC Corporation); HS2H-201AP, HS2H-351A, HS2H-451A, HS2H-851A, HS2N-221A, HS2N-521A, HS2H-220S, HS2N-220S, HS2N-226P, HS2B-222A, HOKOKOOL HT-110, HT-210, HT-12, HT-250, HT-310, HT-40M (all manufactured by Toyokuni Oil Co., Ltd.) Both are available from the market. These polyester compounds can be used alone or in combination of two or more. Of these, Kyowapol 1000PA, Adeka New Ace Y9-10, and HS2N-221A are preferable.
 次に末端アルコールポリカーボネート化合物(e8)について説明する。
 末端アルコールポリカーボネート化合物としては、特に限定されないが、例えば下記式(9)で示される、末端に水酸基を有するポリカーボネート化合物等が挙げられる。
Next, the terminal alcohol polycarbonate compound (e8) will be described.
Although it does not specifically limit as a terminal alcohol polycarbonate compound, For example, the polycarbonate compound etc. which have a hydroxyl group at the terminal shown by following formula (9) are mentioned.
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
 (式(9)において、R14は炭素数1~10のアルキレン基を、jは平均値で1~100をそれぞれ表す。) (In the formula (9), R 14 represents an alkylene group having 1 to 10 carbon atoms, and j represents an average value of 1 to 100)
 式(9)において、R14の具体例としては、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、へキシレン、ヘプチレン、オクチレン等の炭素数1~10の直鎖アルキレン基、イソプロピレン、エチルブチルプロピレン、イソブチレン、イソペンチレン、ネオペンチレン、ジエチルペンチレン等の炭素数1~10の分岐鎖を有するアルキレン基、シクロペンタンジメチレン、シクロヘキサンジメチレン等の環状構造を有するアルキレン基が挙げられる。この中でも、ブチレン、ペンチレン、へキシレン、ヘプチレン等の炭素数4~7の直鎖アルキレン基が、末端アルコールポリカーボネート化合物の粘度が高すぎず、作業性の観点から好ましい。 In the formula (9), specific examples of R 14 include linear alkylene groups having 1 to 10 carbon atoms such as methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, isopropylene, ethylbutylpropylene, Examples thereof include alkylene groups having a branched chain of 1 to 10 carbon atoms such as isobutylene, isopentylene, neopentylene, diethylpentylene, and the like, and alkylene groups having a cyclic structure such as cyclopentanedimethylene and cyclohexanedimethylene. Among these, linear alkylene groups having 4 to 7 carbon atoms such as butylene, pentylene, hexylene and heptylene are preferable from the viewpoint of workability because the viscosity of the terminal alcohol polycarbonate compound is not too high.
 式(9)中に複数存在するR14は同一であっても、異なっても構わない。 A plurality of R 14 present in the formula (9) may be the same or different.
 式(9)においてjは平均値で1~100であるが、好ましくは2~40、より好ましくは3~30である。 In the formula (9), j is an average value of 1 to 100, preferably 2 to 40, more preferably 3 to 30.
 末端アルコールポリカーボネート化合物の重量平均分子量(Mw)は、好ましくは500~20000であるが、より好ましくは500~5000、さらに好ましくは500~3000である。重量平均分子量が500以上であれば、硬化性樹脂組成物の硬化物硬度が高くなり過ぎることがなくヒートサイクル試験等でクラックが入る懸念がなく好ましい。また、重量平均分子量が20000以下であれば硬化物のベトツキが発生する懸念がなく好ましい。本発明において重量平均分子量とは、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。 The weight average molecular weight (Mw) of the terminal alcohol polycarbonate compound is preferably 500 to 20000, more preferably 500 to 5000, and still more preferably 500 to 3000. If the weight average molecular weight is 500 or more, the cured product hardness of the curable resin composition does not become excessively high, and there is no fear of cracking in a heat cycle test or the like, which is preferable. Moreover, if a weight average molecular weight is 20000 or less, there is no fear that stickiness of hardened | cured material generate | occur | produces and it is preferable. In this invention, a weight average molecular weight means the weight average molecular weight (Mw) calculated in polystyrene conversion based on the value measured on condition of the following using GPC (gel permeation chromatography).
 GPCの各種条件
 メーカー:島津製作所
 カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
 流速:1.0ml/min.
 カラム温度:40℃
 使用溶剤:THF(テトラヒドロフラン)
 検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 多価アルコールとして、両末端カルビノール変性シリコーンオイル(d)とその他の多価アルコール(e)を併用する場合、当該その他の多価アルコール(e)の使用量は、両末端カルビノール変性シリコーンオイル(d)100重量部に対し、0.5~200重量部が好ましく、より好ましくは5~50重量部、さらに好ましくは10~30重量部である。0.5重量部を下回ると硬化物の機械強度が劣る恐れがあり、200重量部を上回ると硬化物の耐熱透明性に劣る恐れがある。 When both ends carbinol-modified silicone oil (d) and other polyhydric alcohol (e) are used in combination as the polyhydric alcohol, the other polyhydric alcohol (e) is used in the amount of both ends carbinol-modified silicone oil. (D) The amount is preferably 0.5 to 200 parts by weight, more preferably 5 to 50 parts by weight, and still more preferably 10 to 30 parts by weight with respect to 100 parts by weight. If the amount is less than 0.5 parts by weight, the mechanical strength of the cured product may be inferior, and if it exceeds 200 parts by weight, the heat resistant transparency of the cured product may be inferior.
 次に分子内に二つ以上のカルボン酸無水物基を有する化合物(h)は、例えば、1、2、3、4-ブタンテトラカルボン酸二無水物、1、2、3、4-シクロブタンテトラカルボン酸二無水物、1、2、3、4-シクロペンタンテトラカルボン酸二無水物、1、2、4、5-シクロヘキサンテトラカルボン酸二無水物、ピロメリット酸無水物、5-(2、5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1、2-ジカルボン酸無水物、4-(2、5-ジオキソテトラヒドロフラン-3-イル)-1、2、3、4-テトラヒドロナフタレン-1、2-ジカルボン酸無水物等が挙げられる。
 分子内にカルボン酸無水物基を二つ以上有する化合物(h)は1種又は2種以上混合して用いることができる。この中でも、多価カルボン酸樹脂(C3)と後述するエポキシ樹脂とを硬化してなる硬化物の透明性が優れるため、1、2、3、4-ブタンテトラカルボン酸二無水物、1、2、4、5-シクロヘキサンテトラカルボン酸二無水物、4-(2、5-ジオキソテトラヒドロフラン-3-イル)-1、2、3、4-テトラヒドロナフタレン-1、2-ジカルボン酸無水物が好ましく、特に1、2、3、4-ブタンテトラカルボン酸二無水物が好ましい。
Next, the compound (h) having two or more carboxylic acid anhydride groups in the molecule is, for example, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetra. Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, pyromellitic anhydride, 5- (2, 5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydro And naphthalene-1,2-dicarboxylic acid anhydride.
The compound (h) having two or more carboxylic acid anhydride groups in the molecule can be used alone or in combination. Among these, since the transparency of a cured product obtained by curing the polyvalent carboxylic acid resin (C3) and an epoxy resin described later is excellent, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2 4,5-cyclohexanetetracarboxylic dianhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride is preferred In particular, 1,2,3,4-butanetetracarboxylic dianhydride is preferred.
 次に分子内に一つのカルボン酸無水物基を有する化合物(f)は、例えばコハク酸無水物、メチルコハク酸無水物、エチルコハク酸無水物、ブチルコハク酸無水物、アリルコハク酸無水物、フタル酸無水物、ナフタレンジカルボン酸無水物、トリメリット酸無水物、マレイン酸無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ナジック酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、ペンタン二酸無水物、2,4-ジエチルペンタン二酸無水物、2,2-ジメチルペンタン二酸無水物、3,3-ジメチルペンタン二酸無水物、1,1-シクロペンタン二酸無水物、1,1-シクロヘキサン二酸無水物、ジグリコール酸無水物、マレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、ドデシルコハク酸無水物、1,3-シクロヘキサンジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、ビシクロ[2,2,2]オクタン-2,3-ジカルボン酸無水物、4,5-ジメチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物、7-オキサビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物等が挙げられる。 Next, the compound (f) having one carboxylic acid anhydride group in the molecule is, for example, succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, butyl succinic anhydride, allyl succinic anhydride, phthalic anhydride. , Naphthalene dicarboxylic anhydride, trimellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methyl Hexahydrophthalic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, cyclohexane-1, 3,4-tricarboxylic acid-3,4-anhydride, pentanedioic anhydride, 2,4-diethylpentanedioic anhydride, , 2-Dimethylpentanedioic anhydride, 3,3-dimethylpentanedioic anhydride, 1,1-cyclopentanedioic anhydride, 1,1-cyclohexanedioic anhydride, diglycolic anhydride, maleic acid Anhydride, itaconic anhydride, citraconic anhydride, dodecyl succinic anhydride, 1,3-cyclohexanedicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride Bicyclo [2,2,2] octane-2,3-dicarboxylic acid anhydride, 4,5-dimethyl-4-cyclohexene-1,2-dicarboxylic acid anhydride, bicyclo [2.2.2] -5 -Octene-2,3-dicarboxylic acid anhydride, 7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid anhydride, and the like.
 分子内に一つのカルボン酸無水物基を有する化合物(f)は1種又は2種以上混合して用いることができる。この中でも、多価カルボン酸樹脂とエポキシ樹脂とを硬化してなる硬化物の透明性が優れるため、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、ノルボルナン-2、3-ジカルボン酸無水物、メチルノルボルナン-2、3-ジカルボン酸無水物、1、2、4-シクロヘキサントリカルボン酸-1、2-無水物、2,4-ジエチルペンタン二酸無水物が好ましい。より好ましくはメチルヘキサヒドロフタル酸無水物、1、2、4-シクロヘキサントリカルボン酸-1、2-無水物、2,4-ジエチルペンタン二酸無水物であり、特に好ましくはメチルヘキサヒドロフタル酸無水物である。 The compound (f) having one carboxylic anhydride group in the molecule can be used alone or in combination. Among these, since a cured product obtained by curing a polyvalent carboxylic acid resin and an epoxy resin is excellent, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, norbornane-2 3-dicarboxylic acid anhydride, methylnorbornane-2, 3-dicarboxylic acid anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and 2,4-diethylpentanedioic acid anhydride are preferred. More preferred are methylhexahydrophthalic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 2,4-diethylpentanedioic anhydride, and particularly preferred is methylhexahydrophthalic anhydride. It is a thing.
 分子内に一つのカルボン酸無水物基を有する化合物(f)の使用量は、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)が使用される場合、(h)の100重量部に対し、5~1000重量部が好ましく、より好ましくは10~500重量部、さらに好ましくは50~300重量部である。5重量部未満であると、多価カルボン酸樹脂(C3)が高分子量化しすぎて作業性が劣る恐れがあり、300重量部より大きいと、硬化物の機械強度が劣る恐れがある。 The amount of compound (f) having one carboxylic anhydride group in the molecule is 100% of (h) when compound (h) having two or more carboxylic anhydride groups in the molecule is used. The amount is preferably 5 to 1000 parts by weight, more preferably 10 to 500 parts by weight, still more preferably 50 to 300 parts by weight with respect to parts by weight. If the amount is less than 5 parts by weight, the polyvalent carboxylic acid resin (C3) may be too high in molecular weight and workability may be inferior, and if it is more than 300 parts by weight, the mechanical strength of the cured product may be inferior.
 多価アルコール化合物(E)、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)、分子内に一つのカルボン酸無水物基を有する化合物(f)の使用量は、多価アルコール化合物(E)の総アルコール性水酸基1当量に対し、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)と分子内に一つのカルボン酸無水物基を有する化合物(f)の総カルボン酸無水物基が0.5~2.0当量が好ましく、より好ましくは0.8~1.5当量である。0.5当量未満であると硬化物の機械強度が劣る恐れがあり、2.0より大きいと酸無水物基が多く残存するため保管安定性に劣る恐れがある。 The amount of the polyhydric alcohol compound (E), the compound (h) having two or more carboxylic anhydride groups in the molecule, and the compound (f) having one carboxylic anhydride group in the molecule is Compound (h) having two or more carboxylic anhydride groups in the molecule and compound (f) having one carboxylic anhydride group in the molecule with respect to 1 equivalent of the total alcoholic hydroxyl group of the alcohol compound (E) The total carboxylic acid anhydride group is preferably 0.5 to 2.0 equivalents, more preferably 0.8 to 1.5 equivalents. If it is less than 0.5 equivalent, the mechanical strength of the cured product may be inferior, and if it is more than 2.0, a large amount of acid anhydride groups may remain, resulting in poor storage stability.
 多価カルボン酸樹脂の製造は、溶剤中でも無溶剤でも行うことができる。溶剤としては、多価アルコール化合物(E)、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)、分子内に一つのカルボン酸無水物基を有する化合物(f)と反応しない溶剤であれば特に制限なく使用できる。使用しうる溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリルの様な非プロトン性極性溶媒、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンのようなケトン類、トルエン、キシレンのような芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素やケトン類が好ましい。これらの溶剤は1種又は2種以上を混合して用いても良い。溶剤を用いる場合、その使用量は、多価アルコール化合物(E)、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)、分子内に一つのカルボン酸無水物基を有する化合物(f)の合計100重量部に対して、0.5~300重量部が好ましい。 The production of the polyvalent carboxylic acid resin can be performed with or without a solvent. The solvent does not react with the polyhydric alcohol compound (E), the compound (h) having two or more carboxylic anhydride groups in the molecule, and the compound (f) having one carboxylic anhydride group in the molecule. Any solvent can be used without particular limitation. Examples of solvents that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene. An aromatic hydrocarbon etc. are mentioned, Among these, an aromatic hydrocarbon and ketones are preferable. These solvents may be used alone or in combination of two or more. When a solvent is used, the amount used is the polyhydric alcohol compound (E), the compound (h) having two or more carboxylic anhydride groups in the molecule, and the compound having one carboxylic anhydride group in the molecule. 0.5 to 300 parts by weight is preferable with respect to 100 parts by weight of the total of (f).
 多価カルボン酸樹脂(C3)は、無触媒でも、触媒を用いても製造する事ができる。触媒を用いる場合、用い得る触媒は、塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1、8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩、オルトチタン酸テトラエチル、オルトチタン酸テトラメチル等のオルトチタン酸類、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、オクチル酸カリウム等の金属石鹸類が挙げられる。 The polyvalent carboxylic acid resin (C3) can be produced without a catalyst or with a catalyst. When a catalyst is used, usable catalysts are hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, sodium hydroxide, potassium hydroxide, water Metal hydroxides such as calcium oxide and magnesium hydroxide, amine compounds such as triethylamine, tripropylamine and tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, Heterocyclic compounds such as imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium Roxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctyl Quaternary ammonium salts such as methylammonium acetate, orthotitanic acid such as tetraethyl orthotitanate, tetramethyl orthotitanate, tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, Examples include metal soaps such as potassium octylate.
 触媒を用いる場合、1種または2種以上を混合して用いることもできる。
 触媒を用いる場合、その使用量は、多価アルコール化合物(E)、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)、分子内に一つのカルボン酸無水物基を有する化合物(f)の合計100重量部に対して、0.05~10重量部が好ましい。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。この際、メタノール、エタノール等のアルコール性の溶媒や水を用いることは、未反応の、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)や分子内に一つのカルボン酸無水物基を有する化合物(f)と反応してしまうため、避けることが好ましい。
When using a catalyst, it can also be used 1 type or in mixture of 2 or more types.
When a catalyst is used, the amount used thereof is a polyhydric alcohol compound (E), a compound (h) having two or more carboxylic anhydride groups in the molecule, and a compound having one carboxylic anhydride group in the molecule. 0.05 to 10 parts by weight is preferable with respect to 100 parts by weight in total of (f).
As a method for adding the catalyst, it is added directly or used in a state dissolved in a soluble solvent or the like. At this time, use of an alcoholic solvent such as methanol or ethanol or water means that an unreacted compound (h) having two or more carboxylic acid anhydride groups in the molecule or one carboxylic acid anhydride in the molecule. Since it reacts with the compound (f) having a physical group, it is preferable to avoid it.
 多価カルボン酸樹脂(C3)の製造時の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃が好ましく、より好ましくは50~150℃、特に好ましくは60~145℃である。又、反応時間の総計は通常1~20時間が好ましく、より好ましくは3~12時間である。反応は2段階以上で行なっても良く、例えば20~100℃で1~8時間反応させた後に、100~160℃で1~12時間などと反応させても良い。これは特に分子内に一つのカルボン酸無水物基を有する化合物(f)は揮発性の高いものが多く、そのようなものを用いる場合、あらかじめ20~100℃で反応させた後に、100~160℃で反応させることで、揮発を抑えることができる。これにより、大気中への有害物質の拡散を抑制するだけでなく、設計どおりの多価カルボン酸樹脂(C3)を得ることができる。 The reaction temperature during the production of the polyvalent carboxylic acid resin (C3) depends on the amount of catalyst and the solvent used, but is usually preferably 20 to 160 ° C, more preferably 50 to 150 ° C, particularly preferably 60 to 145 ° C. is there. The total reaction time is usually preferably 1 to 20 hours, more preferably 3 to 12 hours. The reaction may be carried out in two or more stages. For example, the reaction may be carried out at 20 to 100 ° C. for 1 to 8 hours and then at 100 to 160 ° C. for 1 to 12 hours. In particular, the compound (f) having one carboxylic acid anhydride group in the molecule is often highly volatile. When such a compound is used, the compound (f) is reacted at 20 to 100 ° C. in advance, and then 100 to 160 By reacting at ℃, volatilization can be suppressed. Thereby, not only the diffusion of harmful substances into the atmosphere can be suppressed, but also the polyvalent carboxylic acid resin (C3) as designed can be obtained.
 触媒を用いて製造を行なった場合は必要に応じてクエンチ、および/又は水洗を行なうことで触媒を除くことができるが、そのまま残存させ、本発明の硬化性樹脂組成物の硬化促進剤として利用することもできる。
 水洗工程を行なう場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。
 反応や水洗に溶剤を用いた場合、減圧濃縮などによって除くことができる。
In the case of production using a catalyst, the catalyst can be removed by quenching and / or washing with water as necessary, but it is left as it is and used as a curing accelerator for the curable resin composition of the present invention. You can also
When performing a water washing process, it is preferable to add the solvent which can be isolate | separated from water depending on the kind of solvent currently used. Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
When a solvent is used for the reaction or washing with water, it can be removed by vacuum concentration or the like.
 このようにして得られる多価カルボン酸樹脂(C3)は、通常25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として800~80000のものが好ましく、1000~10000のものがより好ましく、特に1500~8000のものが好ましい。重量平均分子量が800を下回る場合は25℃における流動性が低下する恐れがあり、80000を上回る場合は、これを用いた硬化性樹脂組成物とした際に、後述するエポキシ樹脂との相溶性が劣る恐れがある。
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
The polycarboxylic acid resin (C3) thus obtained is usually a liquid having fluidity at 25 ° C. The molecular weight is preferably from 800 to 80,000, more preferably from 1,000 to 10,000, and particularly preferably from 1500 to 8,000 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the fluidity at 25 ° C. may decrease, and when it exceeds 80,000, when a curable resin composition using the same is used, the compatibility with the epoxy resin described later is low. May be inferior.
The weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 製造された多価カルボン酸樹脂(C3)の酸価(JIS K-2501に記載の方法で測定した)は35~200mgKOH/gのものが好ましく、50~180mgKOH/gのものがより好ましく、特に60~150mgKOH/gのものが好ましい。官能基当量が35mgKOH/gを下回る場合は硬化物の機械特性が悪化する傾向があり、150mgKOH/gを上回る場合はその硬化物が硬く、弾性率が高くなりすぎる傾向があり好ましくない。 The acid value (measured by the method described in JIS K-2501) of the produced polycarboxylic acid resin (C3) is preferably 35 to 200 mgKOH / g, more preferably 50 to 180 mgKOH / g, particularly 60-150 mgKOH / g is preferred. When the functional group equivalent is less than 35 mgKOH / g, the mechanical properties of the cured product tend to deteriorate, and when it exceeds 150 mgKOH / g, the cured product tends to be hard and the elastic modulus tends to be too high.
 多価カルボン酸樹脂(C3)の粘度(E型粘度計、25℃で測定)は50~800、000mPa・sのものが好ましく、500~100、000mPa・sのものがより好ましく、特に800~30、000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて封止材等として使用した場合には適さない恐れがあり、800、000mPa・sを上回る場合は、粘度が高すぎて封止材等として使用した場合に作業性に劣る場合がある。 The viscosity of the polycarboxylic acid resin (C3) (E-type viscometer, measured at 25 ° C.) is preferably from 50 to 800,000 mPa · s, more preferably from 500 to 100,000 mPa · s, particularly from 800 to The thing of 30,000 mPa * s is preferable. When the viscosity is less than 50 mPa · s, the viscosity is too low and may not be suitable when used as a sealing material or the like, and when it exceeds 800,000 mPa · s, the viscosity is too high or the sealing material or the like. May be inferior in workability.
 本発明の硬化性樹脂組成物において、エポキシ樹脂硬化剤として、酸無水物(C1)と、多価カルボン酸(C2)と、多価カルボン酸樹脂(C3)をそれぞれ、2種以上併用することもできる。特に室温(25℃)にて液状が求められる光半導体の封止材などの用途において固体の多価カルボン酸(C2)を用いる場合、液状の酸無水物(C1)および/または多価カルボン酸樹脂(C3)を併用し、液状の混合物として使用することが望ましい。併用する場合、酸無水物(C1)および/又は多価カルボン酸樹脂(C3)は、エポキシ樹脂硬化剤合計の0.5~99.5重量%の割合で使用できる。 In the curable resin composition of the present invention, two or more of acid anhydride (C1), polyvalent carboxylic acid (C2), and polyvalent carboxylic acid resin (C3) are used in combination as an epoxy resin curing agent. You can also. In particular, when solid polyvalent carboxylic acid (C2) is used in applications such as an optical semiconductor encapsulant that requires liquid at room temperature (25 ° C.), liquid acid anhydride (C1) and / or polyvalent carboxylic acid It is desirable to use the resin (C3) in combination and use it as a liquid mixture. When used in combination, the acid anhydride (C1) and / or the polyvalent carboxylic acid resin (C3) can be used in a proportion of 0.5 to 99.5% by weight of the total epoxy resin curing agent.
 エポキシ樹脂硬化剤として、前述の酸無水物および/または多価カルボン酸樹脂および/または多価カルボン酸樹脂以外の硬化剤を併用する場合、酸無水物および/または多価カルボン酸および/または多価カルボン酸樹脂の総量が、全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
 併用できる硬化剤としては、例えばアミン系化合物、アミド系化合物、フェノール系化合物などが挙げられる。使用できる硬化剤の具体例としては、アミン類やポリアミド化合物(ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂など)、多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物、その他(イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、など)などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
When the curing agent other than the above-mentioned acid anhydride and / or polyvalent carboxylic acid resin and / or polyvalent carboxylic acid resin is used in combination as the epoxy resin curing agent, the acid anhydride and / or polyvalent carboxylic acid and / or polyhydric carboxylic acid are used. The proportion of the total amount of the polyvalent carboxylic acid resin in the total curing agent is preferably 30% by weight or more, particularly preferably 40% by weight or more.
Examples of the curing agent that can be used in combination include amine compounds, amide compounds, phenol compounds, and the like. Specific examples of curing agents that can be used include amines and polyamide compounds (such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and polyamide resins synthesized from linolenic acid dimer and ethylenediamine). Polyphenols (bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, fe (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, Dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl) -1,1'-biphenyl, 1,4'-bis (chloro Methyl) benzene, polycondensates with 1,4′-bis (methoxymethyl) benzene and their modified products, halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols, etc. Imidazole, trifluoroborane -. Amine complex, guanidine derivatives, etc.) and the like, but the invention is not limited to these may be used alone, or two or more may be used.
 次に、硬化促進剤について説明する。
 硬化促進剤としてはエポキシ基含有ポリオルガノシロキサン(および併用する場合のエポキシ樹脂)とエポキシ樹脂硬化剤の硬化反応を促進する能力のあるものは何れも使用可能であるが、使用できる硬化促進剤の例としては、アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤、金属石鹸系硬化促進剤、イミダゾ-ル系硬化促進剤、アミン系硬化促進剤、ホスフィン系硬化促進剤、ホスファイト系硬化促進剤、ルイス酸系硬化促進剤等が挙げられる。
 本発明の硬化性樹脂組成物において硬化促進剤の配合比率は、硬化性樹脂組成物100重量部に対して0.001~15重量部の硬化促進剤を使用することが好ましい。
Next, the curing accelerator will be described.
As the curing accelerator, any epoxy group-containing polyorganosiloxane (and an epoxy resin when used in combination) and an epoxy resin curing agent capable of accelerating the curing reaction can be used. Examples include ammonium salt curing accelerators, phosphonium salt curing accelerators, metal soap curing accelerators, imidazole curing accelerators, amine curing accelerators, phosphine curing accelerators, and phosphite curing accelerators. Agents, Lewis acid curing accelerators and the like.
In the curable resin composition of the present invention, the curing accelerator is preferably used in an amount of 0.001 to 15 parts by weight of the curing accelerator with respect to 100 parts by weight of the curable resin composition.
 本発明の硬化性樹脂組成物には、必要に応じて他の硬化触媒(硬化促進剤)を併用することができる。使用できる硬化触媒の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-ウンデシルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-エチル,4-メチルイミダゾール(1’))エチル-s-トリアジン、2,4-ジアミノ-6(2’-メチルイミダゾール(1’))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、および、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物およびそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、およびこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001~15重量部の範囲で使用することが好ましい。 In the curable resin composition of the present invention, another curing catalyst (curing accelerator) can be used in combination as necessary. Specific examples of the curing catalyst that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 2,4-diamino-6 (2′-methylimidazole) (1 ′)) Ethyl-s-triazine, 2,4-diamino-6 (2′-undecylimidazole (1 ′)) ethyl-s-triazine, 2,4-diamino-6 (2′-ethyl, 4 -Methylimidazole (1 ')) ethyl-s-triazine, 2,4-diamino- (2′-methylimidazole (1 ′)) ethyl-s-triazine isocyanuric acid adduct, 2-methylimidazole isocyanuric acid 2: 3 adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-3, Various imidazoles of 5-dihydroxymethylimidazole, 2-phenyl-4-hydroxymethyl-5-methylimidazole, 1-cyanoethyl-2-phenyl-3,5-dicyanoethoxymethylimidazole, and imidazoles and phthalic acid, Isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, naphthalene dicarboxylic acid, maleic acid, salts with polyvalent carboxylic acids such as succinic acid, amides such as dicyandiamide, 1,8-diaza-bicyclo (5.4. 0) Diaza compounds such as undecene-7 and the like Salts such as tetraphenylborate and phenol novolak, salts with the above polycarboxylic acids, or phosphinic acids, tetrabutylammonium bromide, cetyltrimethylammonium bromide, trioctylmethylammonium bromide and other ammonium salts, triphenylphosphine, triphenylphosphine (Toluyl) phosphines such as phosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, phosphonium compounds, phenols such as 2,4,6-trisaminomethylphenol, metal compounds such as amine adducts and tin octylate, etc. And a microcapsule type curing accelerator obtained by making these curing accelerators into microcapsules. Which of these curing accelerators is used is appropriately selected depending on characteristics required for the obtained transparent resin composition, such as transparency, curing speed, and working conditions. The curing accelerator is preferably used in the range of usually 0.001 to 15 parts by weight per 100 parts by weight of the epoxy resin.
 これらの中でも、硬化物の透明性、耐硫化性の観点から、金属石鹸硬化促進剤が優れ、金属石鹸硬化促進剤の中でもカルボン酸亜鉛化合物が特に好ましい。
 金属石鹸系硬化促進剤としては、例えばオクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸マンガン、オクチル酸カルシウム、オクチル酸ナトリウム、オクチル酸カリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、12-ヒドロキシリン酸カルシウム、12-ヒドロキシステアリン酸亜鉛、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸アルミニウム、12-ヒドロキシステアリン酸バリウム、12-ヒドロキシステアリン酸リチウム、12-ヒドロキシステアリン酸ナトリウム、モンタン酸カルシウム、モンタン酸亜鉛、モンタン酸マグネシウム、モンタン酸アルミニウム、モンタン酸リチウム、モンタン酸ナトリウム、ベヘン酸カルシウム、ベヘン酸亜鉛、ベヘン酸マグネシウム、ベヘン酸リチウム、ベヘン酸ナトリウム、ベヘン酸銀、ラウリン酸カルシウム、ラウリン酸亜鉛、ラウリン酸バリウム、ラウリン酸リチウム、ウンデシレン酸亜鉛、リシノール酸亜鉛、リシノール酸バリウム、ミリスチン酸亜鉛、パルミチン酸亜鉛等が挙げられる。これら触媒は1種又は2種以上を混合して用いても良い。
Among these, from the viewpoints of transparency of the cured product and sulfidation resistance, the metal soap curing accelerator is excellent, and among the metal soap curing accelerators, a zinc carboxylate compound is particularly preferable.
Examples of the metal soap type curing accelerator include tin octylate, cobalt octylate, zinc octylate, manganese octylate, calcium octylate, sodium octylate, potassium octylate, calcium stearate, zinc stearate, magnesium stearate, stearin Aluminum oxide, barium stearate, lithium stearate, sodium stearate, potassium stearate, calcium 12-hydroxyphosphate, zinc 12-hydroxystearate, magnesium 12-hydroxystearate, aluminum 12-hydroxystearate, 12-hydroxystearic acid Barium, lithium 12-hydroxystearate, sodium 12-hydroxystearate, calcium montanate, zinc montanate, mon Magnesium phosphate, aluminum montanate, lithium montanate, sodium montanate, calcium behenate, zinc behenate, magnesium behenate, lithium behenate, sodium behenate, silver behenate, calcium laurate, zinc laurate, barium laurate , Lithium laurate, zinc undecylate, zinc ricinoleate, barium ricinoleate, zinc myristate, zinc palmitate and the like. These catalysts may be used alone or in combination of two or more.
 透明性、耐硫化性に優れる硬化物を得るために、特にステアリン酸亜鉛、モンタン酸亜鉛、ベヘン酸亜鉛、ラウリン酸亜鉛、ウンデシレン酸亜鉛、リシノール酸亜鉛、ミリスチン酸亜鉛、パルミチン酸亜鉛等の炭素数10~30のカルボン酸亜鉛、12-ヒドロキシステアリン酸亜鉛等の水酸基を有する炭素数10~30のモノカルボン酸化合物からなる亜鉛塩が好ましく使用できる。これらの中でも特に、ポットライフ、耐硫化性に優れる観点から、ステアリン酸亜鉛、ウンデシレン酸亜鉛等の炭素数10~20のモノカルボン酸化合物からなる亜鉛塩、12-ヒドロキシステアリン酸亜鉛等の水酸基を有する炭素数15~20のモノカルボン酸化合物からなる亜鉛塩が好ましく使用でき、さらに好ましくはステアリン酸亜鉛、ウンデシレン酸亜鉛、12-ヒドロキシステアリン酸亜鉛が使用でき、特に好ましくはステアリン酸亜鉛、12-ヒドロキシステアリン酸亜鉛が使用できる。 Carbons such as zinc stearate, zinc montanate, zinc behenate, zinc laurate, zinc undecylenate, zinc ricinoleate, zinc myristate, and zinc palmitate are used to obtain cured products with excellent transparency and sulfidation resistance. Zinc salts composed of a monocarboxylic acid compound having 10 to 30 carbon atoms and having a hydroxyl group such as zinc carbonate of several tens to thirty and zinc 12-hydroxystearate can be preferably used. Among these, from the viewpoint of excellent pot life and sulfidation resistance, a zinc salt composed of a monocarboxylic acid compound having 10 to 20 carbon atoms such as zinc stearate and zinc undecylenate, and a hydroxyl group such as zinc 12-hydroxystearate. A zinc salt composed of a monocarboxylic acid compound having 15 to 20 carbon atoms can be preferably used, more preferably zinc stearate, zinc undecylenate and zinc 12-hydroxystearate, particularly preferably zinc stearate, 12- Zinc hydroxystearate can be used.
 アンモニウム塩系硬化促進剤としては、例えばテトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等が挙げられる。ホスホニウム塩系硬化促進剤としては、例えばエチルトリフェニルホスホニウムブロミド、テトラフェニルホスホニウムテトラフェニルボレート、メチルトリブチルホスホニウムジメチルホスフェート、メチルトリブチルホスホニウムジエチルホスフェート等が挙げられる。 Examples of the ammonium salt curing accelerator include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, trimethylethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide. , Trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium acetate, trioctylmethylammonium acetate and the like. Examples of the phosphonium salt curing accelerator include ethyltriphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, methyltributylphosphonium dimethylphosphate, methyltributylphosphonium diethylphosphate, and the like.
 その他の汎用用途には、上記アンモニウム塩系硬化促進剤、ホスホニウム塩系硬化促進剤、金属石鹸系硬化促進剤の他、イミダゾール系硬化促進剤、アミン系硬化促進剤、複素環化合物系硬化促進剤、ホスフィン系硬化促進剤、ホスファイト系硬化促進剤、ルイス酸系硬化促進剤等が使用できる。 In addition to the above-mentioned ammonium salt-based curing accelerators, phosphonium salt-based curing accelerators, metal soap-based curing accelerators, imidazole-based curing accelerators, amine-based curing accelerators, and heterocyclic compound-based curing accelerators. A phosphine-based curing accelerator, a phosphite-based curing accelerator, a Lewis acid-based curing accelerator, or the like can be used.
 前記した硬化促進剤は、室温(25℃)において固体の化合物でも液体の化合物でも使用することができる。本発明の硬化性樹脂組成物を光半導体封止用途に用いる場合で、室温(25℃)にて固体の化合物を硬化促進剤として使用する場合、予め樹脂に溶解させて使用することもできる。 The curing accelerator described above can be used as a solid compound or a liquid compound at room temperature (25 ° C.). In the case where the curable resin composition of the present invention is used for optical semiconductor sealing applications, when a solid compound is used as a curing accelerator at room temperature (25 ° C.), it can be used by dissolving it in a resin in advance.
 本発明の硬化性樹脂組成物には、必要に応じてカップリング剤を使用することで、組成物の粘度調整、硬化物の硬度を補完することが可能である。
 使用できるカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
 これらカップリング剤は1種又は2種以上を混合して用いても良い。
 カップリング剤は、本発明の硬化性樹脂組成物において通常0.05~20重量部が好ましく、より好ましくは0.1~10重量部が必要に応じて含有される。
By using a coupling agent in the curable resin composition of the present invention as necessary, it is possible to supplement the viscosity adjustment of the composition and the hardness of the cured product.
Examples of coupling agents that can be used include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyl. Trimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltri Methoxysilane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate, Titanium coupling agents such as neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneodeca Noyl zirconate, neoalkoxytris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxytris (ethylenediaminoethyl) zirconate, neoalco Examples thereof include zirconium such as xylitol (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al-acetylacetonate, Al-methacrylate, Al-propionate, and aluminum coupling agents.
These coupling agents may be used alone or in combination of two or more.
In the curable resin composition of the present invention, the coupling agent is usually preferably 0.05 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, if necessary.
 本発明の硬化性樹脂組成物には、必要に応じてナノオーダーレベルの無機充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下が好ましく、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0~95重量%を占める量が用いられることが好ましい。 In the curable resin composition of the present invention, it is possible to supplement mechanical strength without impairing transparency by using a nano-order level inorganic filler as necessary. The standard for the nano-order level is preferably an average particle diameter of 500 nm or less, and particularly preferably a filler having an average particle diameter of 200 nm or less from the viewpoint of transparency. Examples of inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like. However, the present invention is not limited to these. These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is preferably such that it accounts for 0 to 95% by weight in the curable resin composition of the present invention.
 本発明の硬化性樹脂組成物には、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μmが好ましく、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1~80重量部が好ましく、より好ましくは5~60重量部である。 A phosphor can be added to the curable resin composition of the present invention as necessary. For example, the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light. After the phosphor is dispersed in advance in the curable resin composition, the optical semiconductor is sealed. There is no restriction | limiting in particular as fluorescent substance, A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated. More specifically, phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified. As the particle size of such a phosphor, those known in this field are used, and the average particle size is preferably 1 to 250 μm, particularly preferably 2 to 50 μm. When these phosphors are used, the addition amount is preferably 1 to 80 parts by weight, more preferably 5 to 60 parts by weight with respect to 100 parts by weight of the resin component.
 本発明の硬化性樹脂組成物に各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil(商品名)50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。 In the curable resin composition of the present invention, a thixotropic imparting agent such as fine silica powder (also referred to as “aerosil” or “aerosol”) can be added for the purpose of preventing sedimentation of various phosphors during curing. Examples of such silica fine powder include Aerosil (trade name) 50, Aerosil 90, Aerosil 130, Aerosil 200, Aerosil 300, Aerosil 380, Aerosil OX50, Aerosil TT600, Aerosil R972, Aerosil R974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974, AerosilR974. Aerosil R812S, Aerosil R805, RY200, RX200 (manufactured by Nippon Aerosil Co., Ltd.) and the like.
 本発明の硬化性樹脂組成物に着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物およびフェノール系化合物を含有することができる。
 前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
For the purpose of preventing coloring, the curable resin composition of the present invention may contain an amine compound as a light stabilizer or a phosphorus compound and a phenol compound as an antioxidant.
Examples of the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, bis (2,2,6) decanedioate , 6-Tetramethyl-4-piperidyl) sebacate, bis (1-undecanoxy-2,2,6,6-tetramethylpiperidin-4-yl) carbonate, 2,2,6,6,- Tramethyl-4-piperidyl methacrylate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 4-benzoyloxy -2,2,6,6-tetramethylpiperidine, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 1,2,2,6,6-pentamethyl-4-piperidinyl-methacrylate, bis (1,2,2,6,6-pentamethyl-4-piperidinyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] me L) butyl malonate, decanedioic acid bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester, reaction product of 1,1-dimethylethyl hydroperoxide and octane, N , N ′, N ″, N ′ ″-tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazine -2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl 1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [[6- (1,1,3,3-tetramethylbutyl Amino-1,3,5-tria -2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]], Polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, 2,2,4,4-tetramethyl-20- (β-lauryloxycarbonyl) ethyl-7 -Oxa-3,20-diazadispiro [5 · 1 · 11 · 2] heneicosan-21-one, β-alanine, N,-(2,2,6,6-tetramethyl-4-piperidinyl) -dodecyl ester / Tetradecyl ester, N-acetyl-3-dodecyl-1- (2,2,6,6-tetramethyl-4-piperidinyl) pyrrolidine-2,5-dione, 2,2,4,4-tetramethyl-7 - Oxa-3,20-diazadispiro [5,1,11,2] heneicosan-21-one, 2,2,4,4-tetramethyl-21-oxa-3,20-diazadicyclo- [5,1,11, 2] -Heneicosane-20-propanoic acid dodecyl ester / tetradecyl ester, propanedioic acid, [(4-methoxyphenyl) -methylene] -bis (1,2,2,6,6-pentamethyl-4-piperidinyl) Ester, higher fatty acid ester of 2,2,6,6-tetramethyl-4-piperidinol, 1,3-benzenedicarboxamide, N, N′-bis (2,2,6,6-tetramethyl-4- Hindered amine compounds such as piperidinyl), benzophenone compounds such as octabenzone, 2- (2H-benzotriazol-2-yl) -4- (1,1 3,3-tetramethylbutyl) phenol, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5,6-tetrahydrophthalimide-methyl) -5 -Methylphenyl] benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5-di-tert-pentylphenyl) Benzotriazole, the reaction product of methyl 3- (3- (2H-benzotriazol-2-yl) -5-tert-butyl-4-hydroxyphenyl) propionate and polyethylene glycol, 2- (2H-benzotriazole-2- Yl) -6-dodecyl-4-methylphenol and other benzotriazole compounds, 2 Benzoate series such as 1,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) Examples include triazine compounds such as -5-[(hexyl) oxy] phenol, and hindered amine compounds are particularly preferable.
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN(商品名)765、TINUVIN 770DF、TINUVIN 144、TINUVIN 123、TINUVIN 622LD、TINUVIN 152、CHIMASSORB(商品名)944、ADEKA製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
The following commercially available products can be used as the amine compound that is the light stabilizer.
The commercially available amine compound is not particularly limited. For example, TINUVIN (trade name) 765, TINUVIN 770DF, TINUVIN 144, TINUVIN 123, TINUVIN 622LD, TINUVIN 152, and CHIMASSORB (trade name) 944 are manufactured by Ciba Specialty Chemicals. As ADEKA, LA-52, LA-57, LA-62, LA-63P, LA-77Y, LA-81, LA-82, LA-87 and the like can be mentioned.
 前記リン系化合物としては特に限定されず、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。 The phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) Hos Ite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butyl) Phenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2′-methylenebis (4,6-di-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-methylenebis (4-methyl-6-tert-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-ethylidenebis (4-methyl-6-tert-butyl) Phenyl) (2-tert-butyl-4-methylphenyl) phosphite, tetrakis (2,4-di-tert-butylphenyl) 4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -3, 3′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -4,3 ′ -Biphenylenediphosphonite, tetrakis (2,6-di-tert-butylphenyl) -3,3'-biphenylenediphosphonite, bis (2,4-di-tert-butylphenyl) -4-phenyl-phenylphospho Knight, bis (2,4-di-tert-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6- Di-n-butylphenyl) -3-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) -4-phenyl-phenylphosphonite, bis (2,6-di-tert-butylphenyl) ) -3-phenyl-phenylphosphonite, tetrakis (2,4-di-tert-butyl-5-methylphenyl) -4,4'-biphenylenediphosphonite, tributyl phosphate, trimethyl phosphate, tricresyl phosphate, tri Phenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, dioctyl phosphate, diisopropyl phosphate, etc. And the like.
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、ADEKA製として、アデカスタブ(商品名)PEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135Aなどが挙げられる。 Commercially available products can also be used as the phosphorus compound. The commercially available phosphorus compounds are not particularly limited. For example, as ADEKA, ADK STAB (trade name) PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB 522A, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 135A and the like.
 フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。 The phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate. Tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane, 2,4-di-tert-butyl-6-methylphenol, 1,6-hexanediol-bis -[3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], tris (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, pentae Srityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,9-bis- [2- [3- (3-tert-butyl-4-hydroxy-5- Methylphenyl) -propionyloxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethylene glycol-bis [3- (3-t-butyl-5 -Methyl-4-hydroxyphenyl) propionate], 2,2′-butylidenebis (4,6-di-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 2,2 '-Methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butyl) Phenol), 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenol acrylate, 2- [1- (2-hydroxy-3,5-di-) tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6) -Tert-butylphenol), 2-tert-butyl-4-methylphenol, 2,4-di-tert-butylphenol, 2,4-di-tert-pentylphenol, 4,4'-thiobis (3-methyl-6) -Tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) Bis- [3,3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester, 2,4-di-tert-butylphenol, 2,4-di- tert-pentylphenol, 2- [1- (2-hydroxy-3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate, bis- [3,3-bis- (4′-hydroxy-3′-tert-butylphenyl) -butanoic acid] -glycol ester and the like.
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX(商品名)1010、IRGANOX 1035、IRGANOX 1076、IRGANOX 1135、IRGANOX 245、IRGANOX 259、IRGANOX 295、IRGANOX 3114、IRGANOX 1098、IRGANOX 1520L、アデカ製としては、アデカスタブ(商品名)AO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、Sumilizer(商品名)GA-80、Sumilizer MDP-S、Sumilizer BBM-S、Sumilizer GM、Sumilizer GS(F)、Sumilizer GPなどが挙げられる。 Commercially available products can also be used as the phenolic compound. The commercially available phenolic compound is not particularly limited. For example, IRGANOX (trade name) 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 245, IRGANOX 259, IRGANOX 295, IRGANOX 3114, IRGANOX manufactured by Ciba Specialty Chemicals 1098, IRGANOX 1520L, manufactured by Adeka include Adeka Stub (trade name) AO-20, Adeka Stub AO-30, Adeka Stub AO-40, Adeka Stub AO-50, Adeka Stub AO-60, Adeka Stub AO-70, Adeka Stub AO-80, Adeka Stub AO-90, ADK STAB AO-330, manufactured by Sumitomo Chemical Co., Ltd., Sumilizer (trade name) GA- 0, Sumilizer MDP-S, Sumilizer BBM-S, Sumilizer GM, Sumilizer GS (F), and the like Sumilizer GP.
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、THINUVIN(商品名)328、THINUVIN 234、THINUVIN 326、THINUVIN 120、THINUVIN 477、THINUVIN 479、CHIMASSORB(商品名)2020FDL、CHIMASSORB 119FLなどが挙げられる。 In addition, commercially available additives can be used as resin coloring inhibitors. For example, THINUVIN (trade name) 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB (trade name) 2020FDL, CHIMASSORB 119FL and the like can be cited as products manufactured by Ciba Specialty Chemicals.
 上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、本発明の硬化性樹脂組成物の全重量に対して、0.005~5.0重量%の範囲が好ましい。 It is preferable to contain at least one or more of the phosphorus compounds, amine compounds, and phenol compounds, and the amount of the compound is not particularly limited, but with respect to the total weight of the curable resin composition of the present invention, A range of 0.005 to 5.0% by weight is preferred.
 本発明の硬化性樹脂組成物は前記各成分を常温もしくは加温下で均一に混合することにより得ることができる。例えば、押出機、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて均一になるまで充分に混合し、必要によりSUSメッシュ等によりろ過処理を行うことにより調製される。 The curable resin composition of the present invention can be obtained by uniformly mixing the above components at room temperature or under heating. For example, mix thoroughly until uniform using an extruder, kneader, three rolls, universal mixer, planetary mixer, homomixer, homodisper, bead mill, etc., and if necessary, filter with SUS mesh etc. Prepared.
 本発明の硬化性樹脂組成物は、エポキシ基含有ポリオルガノシロキサン、エポキシ樹脂硬化剤、硬化促進剤、酸化防止剤、光安定剤等の添加物を充分に混合することにより硬化性樹脂組成物を調製し、封止材として使用できる。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合することができる。 The curable resin composition of the present invention is obtained by thoroughly mixing additives such as an epoxy group-containing polyorganosiloxane, an epoxy resin curing agent, a curing accelerator, an antioxidant, and a light stabilizer. It can be prepared and used as a sealing material. As a mixing method, mixing can be performed at room temperature or by heating using a kneader, a triple roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill, or the like.
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明の硬化性樹脂組成物はこの封止材に用いることができる。 Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like. Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material). There is also a type in which a wire such as a gold wire is connected to pass an electric current. The semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens. The curable resin composition of this invention can be used for this sealing material.
 封止材の成形方式としては、光半導体素子が固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された光半導体素子を浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 本明細書において、比率、パーセント、部などは、特に断りのない限り、重量に基づくものである。本明細書において、「X~Y」という表現は、XからYまでの範囲を示し、その範囲はX、Yを含む。
As a molding method of the sealing material, an injection method in which the sealing material is injected into the mold frame in which the optical semiconductor element is fixed is inserted and then heat-cured and then molded, and the sealing material is injected on the mold in advance. A compression molding method is used in which an optical semiconductor element fixed on a substrate is immersed therein and heat-cured and then released from a mold.
Examples of the injection method include a dispenser.
For the heating, methods such as hot air circulation, infrared rays and high frequency can be used. For example, the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours. For the purpose of reducing internal stress generated during heat-curing, for example, after pre-curing at 80 to 120 ° C. for 30 minutes to 5 hours, post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
In the present specification, ratios, percentages, parts and the like are based on weight unless otherwise specified. In this specification, the expression “X to Y” indicates a range from X to Y, and the range includes X and Y.
 以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。なお、合成例、実施例中の各物性値は以下の方法で測定した。ここで、部は特に断りのない限り重量部を表す。
1.重量平均分子量:GPC法により、下記条件下測定されたポリスチレン換算、重量平均分子量を算出した。
Hereinafter, the present invention will be described in more detail with reference to synthesis examples and examples. The present invention is not limited to these synthesis examples and examples. In addition, each physical-property value in a synthesis example and an Example was measured with the following method. Here, the part represents part by weight unless otherwise specified.
1. Weight average molecular weight: Polystyrene conversion and weight average molecular weight measured under the following conditions were calculated by the GPC method.
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
Various conditions of GPC Manufacturer: Shimadzu Corporation Column: Guard column SHODEX GPC LF-G LF-804 (3)
Flow rate: 1.0 ml / min.
Column temperature: 40 ° C
Solvent: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
2.エポキシ当量:JIS K-7236に記載の方法で測定した。
3.粘度:25℃においてE型粘度計を使用して測定した。
4.核磁気共鳴スペクトル(H-NMR):日本電子株式会社製、JNM-ECA400を使用し1Hの核磁気共鳴スペクトル(NMR)を測定、溶媒はCDCl溶液を使用。フェニル基モル%、水酸基モル%の測定に使用。
5.核磁気共鳴スペクトル(29Si-NMR)アジレント・テクノロジー株式会社製、Model 500NMRを使用し29Siの核磁気共鳴スペクトル(NMR)を測定、溶媒はTHF(テトラヒドロフラン)とアセトンの混合溶液を使用。a~dの算出に使用。
(また、緩和試薬としてCr(AcAc)3を15mMになるように添加。)
2. Epoxy equivalent: Measured by the method described in JIS K-7236.
3. Viscosity: Measured using an E-type viscometer at 25 ° C.
4). Nuclear magnetic resonance spectrum ( 1 H-NMR): JN-ECA400 manufactured by JEOL Ltd. was used to measure 1H nuclear magnetic resonance spectrum (NMR), and a CDCl 3 solution was used as a solvent. Used to measure phenyl group mol% and hydroxyl group mol%.
5. Nuclear magnetic resonance spectra (29 Si-NMR) manufactured by Agilent Technologies Inc., measure the nuclear magnetic resonance spectra (NMR) the 29Si using Model 500 NMR, solvent using a mixed solution of acetone and THF (tetrahydrofuran). Used to calculate a to d.
(In addition, Cr (AcAc) 3 is added to 15 mM as a relaxation reagent.)
実施例1;製造工程I・IIを経るエポキシ基含有ポリオルガノシロキサンの合成
(製造工程I)
 ガラス製500ml四つ口フラスコに、FCA107(東レ・ダウコーニング社製、重量平均分子量1750、シラノール当量283g/eq、前述の式(1)中フェニル基が61.9モル%、水酸基が38.1モル%であり、29Si-NMRにより算出した、a/(a+b+c+d)=0.38、b/(a+b+c+d)=0.62、c/(a+b+c+d)=0、d/(a+b+c+d)=0であるシリコーンレジン)25.7部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン94.1部、FINISH WS62M(旭化成ワッカー社製、重量平均分子量6600、シラノール当量3300g/eqのシラノール末端シリコーンオイル)70.3部、5重量%KOHメタノール溶液0.8部、イソプロピルアルコール7.3部、トルエン110部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、6時間反応させた。
Example 1: Synthesis of an epoxy group-containing polyorganosiloxane through production steps I and II (production step I)
In a 500 ml four-necked flask made of glass, FCA107 (manufactured by Dow Corning Toray Co., Ltd., weight average molecular weight 1750, silanol equivalent 283 g / eq, 61.9 mol% phenyl group and 38.1 hydroxyl group in the above formula (1). Silicone that is mol% and calculated by 29Si-NMR, a / (a + b + c + d) = 0.38, b / (a + b + c + d) = 0.62, c / (a + b + c + d) = 0, d / (a + b + c + d) = 0 Resin) 25.7 parts, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane 94.1 parts, FINISH WS62M (manufactured by Asahi Kasei Wacker, silanol-terminated silicone oil having a weight average molecular weight of 6600, silanol equivalent of 3300 g / eq) 70 .3 parts, 0.8 parts of 5 wt% KOH methanol solution, isopropyl alcohol 7.3 parts of water and 110 parts of toluene were installed, a Dimroth condenser, a sales expansion device and a thermometer were installed, and the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
(製造工程II)
 製造工程Iの後、メタノール57部を追加し、50重量%イオン交換水メタノール溶液41.2部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を3.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン152部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-1)157.3部を得た。
 得られた化合物のエポキシ当量は437g/eq、重量平均分子量は3800、粘度は9651mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 57 parts of methanol was added, and 41.2 parts of 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, and the reaction was carried out at an internal temperature of 66 ° C. for 10 hours.
After production step II, 3.5 parts of a 5 wt% aqueous sodium dihydrogen phosphate solution was added and neutralized, and then methanol was distilled and recovered at a water bath temperature of 80 ° C. Thereafter, for washing, 152 parts of methyl isobutyl ketone was added, and then washing with water was repeated three times. Next, the organic layer was removed at 100 ° C. under reduced pressure to obtain 157.3 parts of the epoxy group-containing polyorganosiloxane (A-1) of the present invention.
The epoxy equivalent of the obtained compound was 437 g / eq, the weight average molecular weight was 3,800, the viscosity was 9651 mPa · s, and the appearance was a colorless transparent liquid.
実施例2;製造工程I・IIを経るエポキシ基含有ポリオルガノシロキサンの合成
(製造工程I)
 ガラス製500ml四つ口フラスコに、FCA107(前述した、東レ・ダウコーニング社製シリコーンレジン)21.5部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン82.0部、FINISH WS62M(前述した、旭化成ワッカー社製シラノール末端シリコーンオイル)86.5部、5重量%KOHメタノール溶液0.8部、イソプロピルアルコール7.3部、トルエン124部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、6時間反応させた。
Example 2: Synthesis of an epoxy group-containing polyorganosiloxane through production steps I and II (production step I)
In a 500 ml four-necked flask made of glass, 21.5 parts of FCA107 (silicone resin manufactured by Toray Dow Corning, Inc.), 82.0 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, FINISH WS62M (described above) Asahi Kasei Wacker's silanol-terminated silicone oil) 86.5 parts, 0.8% by weight KOH methanol solution, 7.3 parts of isopropyl alcohol, 124 parts of toluene, and Jimroth condenser, sales expansion device, thermometer installed And the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
(製造工程II)
 製造工程Iの後、メタノール49.7部を追加し、50重量%イオン交換水メタノール溶液36部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を3.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン152部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-2)160.7部を得た。
 得られた化合物のエポキシ当量は496g/eq、重量平均分子量は4444、粘度は1731mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 49.7 parts of methanol was added, and 36 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, followed by reaction at an internal temperature of 66 ° C for 10 hours.
After production step II, 3.5 parts of a 5 wt% aqueous sodium dihydrogen phosphate solution was added and neutralized, and then methanol was distilled and recovered at a water bath temperature of 80 ° C. Thereafter, for washing, 152 parts of methyl isobutyl ketone was added, and then washing with water was repeated three times. Next, the organic layer was removed under reduced pressure at 100 ° C. to obtain 160.7 parts of the epoxy group-containing polyorganosiloxane (A-2) of the present invention.
The epoxy equivalent of the obtained compound was 496 g / eq, the weight average molecular weight was 4444, the viscosity was 1731 mPa · s, and the appearance was a colorless transparent liquid.
実施例3;製造工程1~3を経るエポキシ基含有ポリシロキサンの製造例
 (製造工程1)
 ガラス製500ml四つ口フラスコに、FCA107(前述した、東レ・ダウコーニング社製シリコーンレジン)20部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン95.4部、イソプロピルアルコール7.3部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を60℃に保ち、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランにFCA107が溶解したのを確認してから、5重量%KOHメタノール溶液0.8部で仕込み内温を72℃として4時間反応させた。
Example 3 Production Example of Epoxy Group-Containing Polysiloxane via Production Processes 1 to 3 (Production Process 1)
In a 500 ml glass four-necked flask, 20 parts of FCA 107 (silicone resin manufactured by Toray Dow Corning Co., Ltd.), 95.4 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 7.3 parts of isopropyl alcohol The Dimroth condenser, the sales expansion device and the thermometer were installed, and the flask was immersed in a water bath. Heat the water bath, keep the internal temperature at 60 ° C., and confirm that FCA107 was dissolved in 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, and then add 0.8 part of 5 wt% KOH methanol solution. The charged internal temperature was 72 ° C. and reacted for 4 hours.
 (製造工程2)
 製造工程1の後、フラスコ内温を40℃まで冷却しFINISH WS62M(旭化成ワッカー社製、シラノール末端シリコーンオイル)74.7部を仕込み、ウォーターバスを加熱し、内温を72℃に保ち6時間反応させた。
(Manufacturing process 2)
After manufacturing step 1, the flask was cooled to 40 ° C. and charged with 74.7 parts of FINISH WS62M (manufactured by Asahi Kasei Wacker, silanol-terminated silicone oil), heated in a water bath, and maintained at 72 ° C. for 6 hours. Reacted.
(製造工程3)
 製造工程2の後、メタノール152部を追加し、50重量%イオン交換水メタノール溶液41.8部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程3の後、5重量%リン酸二水素ナトリウム水溶液を3.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン152部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-3)158.5部を得た。
 得られた化合物のエポキシ当量は432g/eq、重量平均分子量は5051、粘度は6533mPa・s、外観は無色透明液体であった。
(Manufacturing process 3)
After the production step 2, 152 parts of methanol was added, and 41.8 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, and the mixture was reacted at an internal temperature of 66 ° C for 10 hours.
After the production step 3, 3.5 parts of 5% by weight aqueous sodium dihydrogen phosphate solution was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, for washing, 152 parts of methyl isobutyl ketone was added, and then washing with water was repeated three times. Next, the solvent was removed from the organic layer at 100 ° C. under reduced pressure to obtain 158.5 parts of the epoxy group-containing polyorganosiloxane (A-3) of the present invention.
The epoxy equivalent of the obtained compound was 432 g / eq, the weight average molecular weight was 5051, the viscosity was 6533 mPa · s, and the appearance was a colorless transparent liquid.
実施例4;製造工程1~3を経るエポキシ基含有ポリシロキサンの製造例
 (製造工程1)
 ガラス製500ml四つ口フラスコに、FCA107(前述の、東レ・ダウコーニング社製シリコーンレジン)20部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン95.4部、イソプロピルアルコール7.3部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を60℃に保ち、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランにFCA107が溶解したのを確認してから、5重量%KOHメタノール溶液0.8部で仕込み内温を72℃として4時間反応させた。
Example 4 Production Example of Epoxy Group-Containing Polysiloxane via Production Processes 1 to 3 (Production Process 1)
In a glass 500 ml four-necked flask, 20 parts of FCA107 (the above-mentioned silicone resin manufactured by Toray Dow Corning), 95.4 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 7.3 parts of isopropyl alcohol The Dimroth condenser, the sales expansion device and the thermometer were installed, and the flask was immersed in a water bath. Heat the water bath, keep the internal temperature at 60 ° C., and confirm that FCA107 was dissolved in 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, and then add 0.8 part of 5 wt% KOH methanol solution. The charged internal temperature was 72 ° C. and reacted for 4 hours.
 (製造工程2)
 製造工程1の後、フラスコ内温を40℃まで冷却しXC96-723(モメンティブ社製、重量平均分子量997、シラノール当量499のシラノール末端シリコーンオイル)74.7部を仕込み、ウォーターバスを加熱し、内温を72℃に保ち6時間反応させた。
(Manufacturing process 2)
After the production step 1, the flask was cooled to 40 ° C, charged with 74.7 parts of XC96-723 (manufactured by Momentive, silanol-terminated silicone oil having a weight average molecular weight of 997 and a silanol equivalent of 499), and the water bath was heated. The internal temperature was kept at 72 ° C. and reacted for 6 hours.
(製造工程3)
 製造工程2の後、メタノール152部を追加し、50重量%イオン交換水メタノール溶液41.8部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程3の後、5重量%リン酸二水素ナトリウム水溶液を3.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン152部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-4)154.2部を得た。
 得られた化合物のエポキシ当量は426g/eq、重量平均分子量は6094、粘度は9216mPa・s、外観は無色透明液体であった。
(Manufacturing process 3)
After the production step 2, 152 parts of methanol was added, and 41.8 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, and the mixture was reacted at an internal temperature of 66 ° C for 10 hours.
After the production step 3, 3.5 parts of 5% by weight aqueous sodium dihydrogen phosphate solution was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, for washing, 152 parts of methyl isobutyl ketone was added, and then washing with water was repeated three times. Subsequently, the solvent was removed from the organic layer under reduced pressure at 100 ° C. to obtain 154.2 parts of the epoxy group-containing polyorganosiloxane (A-4) of the present invention.
The epoxy equivalent of the obtained compound was 426 g / eq, the weight average molecular weight was 6094, the viscosity was 9216 mPa · s, and the appearance was a colorless transparent liquid.
実施例5;製造工程I・IIを経るエポキシ基含有ポリシロキサンの製造例
(製造工程I)
 ガラス製500ml四つ口フラスコに、SILRES604(旭化成ワッカー社製、重量平均分子量2176、シラノール当量485g/eq、前述の式(1)中フェニル基が40.6モル%、水酸基が27.4モル%であり、29Si-NMRにより算出した、a/(a+b+c+d)=0.55、b/(a+b+c+d)=0.45、c/(a+b+c+d)=0、d/(a+b+c+d)=0であるシリコーンレジン)17.2部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン108.1部、FINISH WS62M(前述した、旭化成ワッカー社製シラノール末端シリコーンオイル)84.7部、5重量%KOHメタノール溶液0.9部、イソプロピルアルコール8.1部、メチルイソブチルケトン105部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、6時間反応させた。
Example 5: Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I)
In a 500 ml four-necked flask made of glass, SILRES 604 (manufactured by Asahi Kasei Wacker Co., Ltd., weight average molecular weight 2176, silanol equivalent 485 g / eq, 40.6 mol% phenyl group in the above formula (1), 27.4 mol% hydroxyl group. Silicone resin in which a / (a + b + c + d) = 0.55, b / (a + b + c + d) = 0.45, c / (a + b + c + d) = 0, d / (a + b + c + d) = 0, calculated by 29Si-NMR 17.2 parts, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane 108.1 parts, FINISH WS62M (the aforementioned silanol-terminated silicone oil manufactured by Asahi Kasei Wacker Co., Ltd.) 84.7 parts, 5 wt% KOH methanol solution 0 9 parts, 8.1 parts isopropyl alcohol, 105 parts methyl isobutyl ketone A flask, a Jimroth condenser, a sales expansion device, and a thermometer were installed, and the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
(製造工程II)
 製造工程Iの後、メタノール58.6部を追加し、50重量%イオン交換水メタノール溶液47.4部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を3.9部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン105部を追加添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-5)168部を得た。
 得られた化合物のエポキシ当量は410g/eq、重量平均分子量は4267、粘度は5328mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 58.6 parts of methanol was added, and 47.4 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, followed by reaction at an internal temperature of 66 ° C for 10 hours.
After the production step II, 3.9 parts of a 5 wt% aqueous solution of sodium dihydrogen phosphate was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, for additional washing, 105 parts of methyl isobutyl ketone was added, and washing with water was repeated three times. Next, the organic layer was removed under reduced pressure at 100 ° C. to obtain 168 parts of the epoxy group-containing polyorganosiloxane (A-5) of the present invention.
The epoxy equivalent of the obtained compound was 410 g / eq, the weight average molecular weight was 4267, the viscosity was 5328 mPa · s, and the appearance was a colorless transparent liquid.
実施例6;製造工程I・IIを経るエポキシ基含有ポリシロキサンの製造例
(製造工程I)
 ガラス製500ml四つ口フラスコに、SILRES604(前述の、旭化成ワッカー社製シリコーンレジン)33.8部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン106.0部、FINISH WS62M(前述した、旭化成ワッカー社製シラノール末端シリコーンオイル)70.2部、5重量%KOHメタノール溶液0.9部、イソプロピルアルコール8.1部、メチルイソブチルケトン105部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、6時間反応させた。
Example 6: Production Example of Epoxy Group-Containing Polysiloxane via Production Steps I and II (Production Step I)
To a 500 ml four-necked flask made of glass, 33.8 parts of SILRES 604 (the above-mentioned silicone resin manufactured by Asahi Kasei Wacker), 106.0 parts of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, FINISH WS62M (described above, Asahi Kasei Wacker's silanol-terminated silicone oil) 70.2 parts, 0.9 parts by weight of KOH methanol solution, 8.1 parts of isopropyl alcohol, 105 parts of methyl isobutyl ketone, Jimroth condenser, sales expansion equipment, thermometer installed And the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
(製造工程II)
 製造工程Iの後、メタノール59.5部を追加し、50重量%イオン交換水メタノール溶液46.4部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を3.9部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン105部を追加添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-6)165部を得た。
 得られた化合物のエポキシ当量は422g/eq、重量平均分子量は5204、粘度は36600mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 59.5 parts of methanol was added, and 46.4 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, followed by reaction at an internal temperature of 66 ° C for 10 hours.
After the production step II, 3.9 parts of a 5 wt% aqueous solution of sodium dihydrogen phosphate was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, for additional washing, 105 parts of methyl isobutyl ketone was added, and washing with water was repeated three times. Next, the organic layer was removed under reduced pressure at 100 ° C. to obtain 165 parts of the epoxy group-containing polyorganosiloxane (A-6) of the present invention.
The epoxy equivalent of the obtained compound was 422 g / eq, the weight average molecular weight was 5204, the viscosity was 36600 mPa · s, and the appearance was a colorless transparent liquid.
実施例7;製造工程I・IIを経るエポキシ基含有ポリシロキサンの製造例
(製造工程I)
 ガラス製500ml四つ口フラスコに、SILRES604(前述の、旭化成ワッカー社製シリコーンレジン)36.4部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン91.2部、FINISH WS62M(前述した、旭化成ワッカー社製シラノール末端シリコーンオイル)82.4部、5重量%KOHメタノール溶液0.9部、イソプロピルアルコール8.1部、メチルイソブチルケトン105部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、6時間反応させた。
Example 7: Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I)
In a glass 500 ml four-necked flask, 36.4 parts of SILRES 604 (the aforementioned silicone resin manufactured by Asahi Kasei Wacker), 91.2 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, FINISH WS62M (described above, Asahi Kasei Wacker Co., Ltd. Silanol-terminated silicone oil) 82.4 parts, 0.9 parts by weight of 5% by weight KOH methanol solution, 8.1 parts of isopropyl alcohol, 105 parts of methyl isobutyl ketone, charged with Jimroth condenser, sales expansion device and thermometer And the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
(製造工程II)
 製造工程Iの後、メタノール66.0部を追加し、50重量%イオン交換水メタノール溶液40.0部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を3.9部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン105部を追加添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-7)161部を得た。
 得られた化合物のエポキシ当量は499g/eq、重量平均分子量は5476、粘度は10035mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 66.0 parts of methanol was added, and 40.0 parts of 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, and the reaction was carried out at an internal temperature of 66 ° C. for 10 hours.
After the production step II, 3.9 parts of a 5 wt% aqueous solution of sodium dihydrogen phosphate was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, for additional washing, 105 parts of methyl isobutyl ketone was added, and washing with water was repeated three times. Next, the organic layer was removed under reduced pressure at 100 ° C. to obtain 161 parts of the epoxy group-containing polyorganosiloxane (A-7) of the present invention.
The epoxy equivalent of the obtained compound was 499 g / eq, the weight average molecular weight was 5476, the viscosity was 10033 mPa · s, and the appearance was a colorless transparent liquid.
実施例8;製造工程I・IIを経るエポキシ基含有ポリシロキサンの製造例
(製造工程I)
 ガラス製500ml四つ口フラスコに、SILRES604(前述の、旭化成ワッカー社製シリコーンレジン)18.6部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン93.2部、FINISH WS62M(前述した、旭化成ワッカー社製シラノール末端シリコーンオイル)98.2部、5重量%KOHメタノール溶液0.9部、イソプロピルアルコール8.1部、メチルイソブチルケトン116部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、6時間反応させた。
Example 8: Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I)
In a glass 500 ml four-necked flask, 18.6 parts of SILRES 604 (the aforementioned silicone resin manufactured by Asahi Kasei Wacker), 93.2 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, FINISH WS62M (described above, Asahi Kasei Wacker's Silanol-terminated silicone oil) 98.2 parts, 0.9 parts of 5 wt% KOH methanol solution, 8.1 parts of isopropyl alcohol, 116 parts of methyl isobutyl ketone, and Jimroth condenser, sales expansion device, thermometer installed And the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was performed for 6 hours.
(製造工程II)
 製造工程Iの後、メタノール39.7部を追加し、50重量%イオン交換水メタノール溶液40.8部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を3.9部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン110部を追加添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-8)174部を得た。
 得られた化合物のエポキシ当量は482g/eq、重量平均分子量は5181、粘度は2458mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After production step I, 39.7 parts of methanol was added, and 40.8 parts of 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, and the reaction was carried out at an internal temperature of 66 ° C for 10 hours.
After the production step II, 3.9 parts of a 5 wt% aqueous solution of sodium dihydrogen phosphate was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, 110 parts of methyl isobutyl ketone was added for washing, and washing with water was repeated three times. Subsequently, the solvent was removed from the organic layer under reduced pressure at 100 ° C. to obtain 174 parts of the epoxy group-containing polyorganosiloxane (A-8) of the present invention.
The epoxy equivalent of the obtained compound was 482 g / eq, the weight average molecular weight was 5181, the viscosity was 2458 mPa · s, and the appearance was a colorless transparent liquid.
実施例9;製造工程1~3を経るエポキシ基含有ポリシロキサンの製造例
(製造工程1)
 ガラス製500ml四つ口フラスコに、FCA107(前述の、東レ・ダウコーニング社製シリコーンレジン)11.0部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン84.1部、イソプロピルアルコール7.3部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を60℃に保ち、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランにFCA107が溶解したのを確認してから、5重量%KOHメタノール溶液0.8部で仕込み内温を72℃として4時間反応させた。
Example 9: Production example of epoxy group-containing polysiloxane through production steps 1 to 3 (production step 1)
In a 500 ml four-necked flask made of glass, 11.0 parts of FCA107 (the above-mentioned silicone resin manufactured by Toray Dow Corning), 84.1 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 7. 3 parts were charged, a Jimroth condenser, a sales expansion device and a thermometer were installed, and the flask was immersed in a water bath. Heat the water bath, keep the internal temperature at 60 ° C., and confirm that FCA107 was dissolved in 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, and then add 0.8 part of 5 wt% KOH methanol solution. The charged internal temperature was 72 ° C. and reacted for 4 hours.
(製造工程2)
 製造工程1の後、フラスコ内温を40℃まで冷却しXC96-723(前述の、モメンティブ社製シラノール末端シリコーンオイル)94.9部を仕込み、ウォーターバスを加熱し、内温を72℃に保ち6時間反応させた。
(Manufacturing process 2)
After the production step 1, the flask was cooled to 40 ° C., charged with 94.9 parts of XC96-723 (the aforementioned Silanol-terminated silicone oil manufactured by Momentive), the water bath was heated, and the internal temperature was kept at 72 ° C. The reaction was performed for 6 hours.
(製造工程3)
 製造工程2の後、メタノール152部を追加し、50重量%イオン交換水メタノール溶液36.8部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程3の後、5重量%リン酸二水素ナトリウム水溶液を3.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン152部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-9)156部を得た。
 得られた化合物のエポキシ当量は474g/eq、重量平均分子量は6009、粘度は1454mPa・s、外観は無色透明液体であった。
(Manufacturing process 3)
After production step 2, 152 parts of methanol was added, and 36.8 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, and the reaction was carried out at an internal temperature of 66 ° C. for 10 hours.
After the production step 3, 3.5 parts of 5% by weight aqueous sodium dihydrogen phosphate solution was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, for washing, 152 parts of methyl isobutyl ketone was added, and then washing with water was repeated three times. Subsequently, the organic layer was removed under reduced pressure at 100 ° C. to obtain 156 parts of the epoxy group-containing polyorganosiloxane (A-9) of the present invention.
The epoxy equivalent of the obtained compound was 474 g / eq, the weight average molecular weight was 6009, the viscosity was 1454 mPa · s, and the appearance was a colorless transparent liquid.
実施例10;製造工程1~3を経るエポキシ基含有ポリシロキサンの製造例
(製造工程1)
 ガラス製500ml四つ口フラスコに、FCA107(前述の、東レ・ダウコーニング社製シリコーンレジン)12.0部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン68.4部、イソプロピルアルコール7.3部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を60℃に保ち、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランにFCA107が溶解したのを確認してから、5重量%KOHメタノール溶液0.8部で仕込み内温を72℃として4時間反応させた。
Example 10: Production example of epoxy group-containing polysiloxane after production steps 1 to 3 (production step 1)
In a glass 500 ml four-necked flask, 12.0 parts of FCA107 (the above-mentioned silicone resin manufactured by Toray Dow Corning Co., Ltd.), 68.4 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, isopropyl alcohol 7. 3 parts were charged, a Jimroth condenser, a sales expansion device and a thermometer were installed, and the flask was immersed in a water bath. Heat the water bath, keep the internal temperature at 60 ° C., and confirm that FCA107 was dissolved in 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, and then add 0.8 part of 5 wt% KOH methanol solution. The charged internal temperature was 72 ° C. and reacted for 4 hours.
(製造工程2)
 製造工程1の後、フラスコ内温を40℃まで冷却しXC96-723(前述の、モメンティブ社製シラノール末端シリコーンオイル)109.7部を仕込み、ウォーターバスを加熱し、内温を72℃に保ち6時間反応させた。
(Manufacturing process 2)
After the production step 1, the flask was cooled to 40 ° C., charged with 109.7 parts of XC96-723 (the aforementioned silanol-terminated silicone oil manufactured by Momentive), the water bath was heated, and the internal temperature was kept at 72 ° C. The reaction was performed for 6 hours.
(製造工程3)
 製造工程2の後、メタノール152部を追加し、50重量%イオン交換水メタノール溶液30.0部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程3の後、5重量%リン酸二水素ナトリウム水溶液を3.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン152部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-10)158部を得た。
 得られた化合物のエポキシ当量は566g/eq、重量平均分子量は10158、粘度は1910mPa・s、外観は無色透明液体であった。
(Manufacturing process 3)
After the production step 2, 152 parts of methanol was added, and 30.0 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, followed by reaction at an internal temperature of 66 ° C. for 10 hours.
After the production step 3, 3.5 parts of 5% by weight aqueous sodium dihydrogen phosphate solution was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, for washing, 152 parts of methyl isobutyl ketone was added, and then washing with water was repeated three times. Next, the organic layer was removed under reduced pressure at 100 ° C. to obtain 158 parts of the epoxy group-containing polyorganosiloxane (A-10) of the present invention.
The epoxy equivalent of the obtained compound was 566 g / eq, the weight average molecular weight was 10158, the viscosity was 1910 mPa · s, and the appearance was a colorless transparent liquid.
実施例13;製造工程I・IIを経るエポキシ基含有ポリシロキサンの製造例
(製造工程I)
 ガラス製500ml四つ口フラスコに、SILRES603(旭化成ワッカー社製、重量平均分子量1500、シラノール当量567g/eq、前述の式(1)中フェニル基が83.7モル%、水酸基が16.3モル%であり、29Si-NMRにより算出した、a/(a+b+c+d)=0.45、b/(a+b+c+d)=0.55、c/(a+b+c+d)=0、d/(a+b+c+d)=0であるシリコーンレジン)25.8部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン94.1部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。内温を60℃に保ち30分間撹拌しながらSILRES603を2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランに溶解させた。その後、X-21-5841(信越化学工業社製、重量平均分子量1000、シラノール当量500g/eqのシラノール末端シリコーンオイル)80.1部、5重量%KOHメタノール溶液0.9部、イソプロピルアルコール8.1部を仕込み、ウォーターバスを加熱し内温を72℃に保ち、8時間反応させた。
Example 13: Production Example of Epoxy Group-Containing Polysiloxane after Production Process I / II (Production Process I)
In a glass 500 ml four-necked flask, SILRES 603 (manufactured by Asahi Kasei Wacker, weight average molecular weight 1500, silanol equivalent 567 g / eq, in the above formula (1), the phenyl group is 83.7 mol%, the hydroxyl group is 16.3 mol%. Silicone resin in which a / (a + b + c + d) = 0.45, b / (a + b + c + d) = 0.55, c / (a + b + c + d) = 0, d / (a + b + c + d) = 0, calculated by 29Si-NMR 25.8 parts and 94.1 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane were charged, a Dimroth condenser, a sales expansion device and a thermometer were installed, and the flask was immersed in a water bath. SILRES 603 was dissolved in 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane while maintaining the internal temperature at 60 ° C. and stirring for 30 minutes. Thereafter, X-21-5841 (manufactured by Shin-Etsu Chemical Co., Ltd., silanol-terminated silicone oil having a weight average molecular weight of 1000 and a silanol equivalent of 500 g / eq) 80.1 parts, 0.9 parts of 5 wt% KOH methanol solution, isopropyl alcohol 8. 1 part was charged, the water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was carried out for 8 hours.
(製造工程II)
 製造工程Iの後、メタノール160部を追加し、50重量%イオン交換水メタノール溶液41.2部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、20重量%リン酸二水素ナトリウム水溶液を0.96部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン160部を追加添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、本発明のエポキシ基含有ポリオルガノシロキサン(A-13)部を得た。
 得られた化合物のエポキシ当量は463g/eq、重量平均分子量は7445、粘度は6835mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 160 parts of methanol was added, and 41.2 parts of 50% by weight ion-exchanged water methanol solution was added dropwise over 30 minutes, and reacted at an internal temperature of 66 ° C. for 10 hours.
After the production step II, 0.96 part of a 20 wt% aqueous sodium dihydrogen phosphate solution was added for neutralization, and then methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, 160 parts of methyl isobutyl ketone was added for washing, and washing with water was repeated three times. Next, the solvent was removed from the organic layer at 100 ° C. under reduced pressure to obtain the epoxy group-containing polyorganosiloxane (A-13) part of the present invention.
The epoxy equivalent of the obtained compound was 463 g / eq, the weight average molecular weight was 7445, the viscosity was 6835 mPa · s, and the appearance was a colorless transparent liquid.
比較例1;触媒として有機塩基化合物を使用した例
(製造工程1)
 ガラス製500ml四つ口フラスコに、FCA107(前述の、東レ・ダウコーニング社製シリコーンレジン)20部、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン95.4部、イソプロピルアルコール7.3部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を60℃に保ち、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランにFCA107が溶解したのを確認してから、トリエチルアミン19部を追加で仕込み内温を72℃として4時間反応させたところ、GPCにおいてピークの変化が起こっておらず、反応は進行していなかった。さらに6時間追加で反応させてもGPCのピーク変化は起こっていなかった。
Comparative Example 1: Example using an organic base compound as a catalyst (Production Process 1)
In a glass 500 ml four-necked flask, 20 parts of FCA107 (the above-mentioned silicone resin manufactured by Toray Dow Corning), 95.4 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 7.3 parts of isopropyl alcohol The Dimroth condenser, the sales expansion device and the thermometer were installed, and the flask was immersed in a water bath. The water bath was heated and the internal temperature was kept at 60 ° C. After confirming that FCA107 was dissolved in 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 19 parts of triethylamine was added, and the internal temperature was 72 When reacted at 4 ° C. for 4 hours, no peak change occurred in GPC, and the reaction did not proceed. Even when the reaction was continued for an additional 6 hours, the peak change of GPC did not occur.
 実施例1~10、13、比較例1で得られた樹脂の、原料仕込み比、アルコキシ/シラノール基比、使用触媒、製造工程、エポキシ当量、重量平均分子量、粘度、外観をまとめたものを表1に示す。 Tables showing the raw material charge ratio, alkoxy / silanol group ratio, catalyst used, production process, epoxy equivalent, weight average molecular weight, viscosity, and appearance of the resins obtained in Examples 1 to 10, 13 and Comparative Example 1. It is shown in 1.
Figure JPOXMLDOC01-appb-T000035
 
Figure JPOXMLDOC01-appb-T000035
 
a-1;東レ・ダウコーニング社製シリコーンレジン FCA107
a-2;旭化成ワッカー社製シリコーンレジン SILRES604
a-3;旭化成ワッカー社製シリコーンレジン SILRES603
b-1;2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン
c-1;旭化成ワッカー社製シリコーンオイル FINISH WS62M
c-2;モメンティブ社製シリコーンオイル XC96-723
c-3;信越化学工業社製シリコーンオイル X-21-5841
a-1; Silicone resin FCA107 manufactured by Toray Dow Corning
a-2; Silicone resin SILRES604 manufactured by Asahi Kasei Wacker
a-3; Silicone resin SILRES603 manufactured by Asahi Kasei Wacker
b-1; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane c-1; silicone oil from Asahi Kasei Wacker, FINISH WS62M
c-2; Silicone oil XC96-723 manufactured by Momentive
c-3: Silicone oil X-21-5841 manufactured by Shin-Etsu Chemical Co., Ltd.
 表1に示す結果から明らかなように、比較例1は反応が進行せず所望の樹脂を得ることができなかった。一方で実施例1~10、13では、すべて無色透明液状の樹脂で得られ、エポキシ当量、粘度、重量平均分子量が適切なものが得られ、特に光学用途の液状エポキシ樹脂として適していることが確認できた。 As is clear from the results shown in Table 1, in Comparative Example 1, the reaction did not proceed and the desired resin could not be obtained. On the other hand, Examples 1 to 10 and 13 are all obtained with a colorless and transparent liquid resin, and can be obtained with appropriate epoxy equivalent, viscosity, and weight average molecular weight, and are particularly suitable as a liquid epoxy resin for optical applications. It could be confirmed.
合成例1;製造工程I・IIを経る、シリコーンレジンを用いないエポキシ基含有ポリシロキサンの製造例
(製造工程I)
 ガラス製500ml四つ口フラスコに、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン86.9部、XC96-723(前述の、モメンティブ社製シラノール末端シリコーンオイル)103.8部、5重量%KOHメタノール溶液0.8部、イソプロピルアルコール7.3部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、10時間反応させた。
Synthesis Example 1: Production Example of Epoxy Group-Containing Polysiloxane Using Silicone Resin through Production Process I / II (Production Process I)
In a glass 500 ml four-necked flask, 86.9 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, XC96-723 (the aforementioned Silanol-terminated silicone oil made by Momentive) 103.8 parts, 5% by weight A KOH methanol solution 0.8 part and isopropyl alcohol 7.3 parts were charged, a Dimroth condenser, a sales expansion device, and a thermometer were installed, and the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was carried out for 10 hours.
(製造工程II)
 製造工程Iの後、メタノール152部を追加し、50重量%イオン交換水メタノール溶液38.0部を30分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を3.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン152部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、シリコーンレジンを含まないエポキシ基含有ポリオルガノシロキサン(A-11)154部を得た。
 得られた化合物のエポキシ当量は473g/eq、重量平均分子量は6511、粘度は845mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 152 parts of methanol was added, and 38.0 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 30 minutes, followed by reaction at an internal temperature of 66 ° C. for 10 hours.
After production step II, 3.5 parts of a 5 wt% aqueous sodium dihydrogen phosphate solution was added and neutralized, and then methanol was distilled and recovered at a water bath temperature of 80 ° C. Thereafter, for washing, 152 parts of methyl isobutyl ketone was added, and then washing with water was repeated three times. Subsequently, the solvent was removed from the organic layer under reduced pressure at 100 ° C. to obtain 154 parts of an epoxy group-containing polyorganosiloxane (A-11) containing no silicone resin.
The epoxy equivalent of the obtained compound was 473 g / eq, the weight average molecular weight was 6511, the viscosity was 845 mPa · s, and the appearance was a colorless transparent liquid.
合成例2;製造工程I・IIを経るシリコーンレジンを用いず、シラノール末端シリコーンオイルとしてフェニル基を含有するシラノール末端シリコーンオイルを用いたエポキシ基含有ポリシロキサンの製造例
(製造工程I)
 ガラス製2000ml四つ口フラスコに、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン394部、シラノール末端ポリジメチルジフェニルシリコーンオイル(重量平均分子量1700、シラノール当量850、フェニル基含有量33wt%のシラノール末端シリコーンオイル)475部、5重量%KOHメタノール溶液4部、イソプロピルアルコール36部を仕込み、ジムロートコンデンサ、拡販装置、温度計を設置し、ウォーターバスにフラスコを浸した。ウォーターバスを加熱し、内温を72℃に保ち、10時間反応させた。
Synthesis Example 2: Production Example of Epoxy Group-Containing Polysiloxane Using Silanol-Terminated Silicone Oil Containing Phenyl Group as Silanol-Terminated Silicone Oil without Using Silicone Resin through Production Process I / II (Production Process I)
In a glass 2000 ml four-neck flask, 394 parts of 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, silanol-terminated polydimethyldiphenyl silicone oil (weight average molecular weight 1700, silanol equivalent 850, phenyl group content 33 wt% silanol) (Terminal silicone oil) 475 parts, 4 parts by weight of 5% by weight KOH methanol solution and 36 parts of isopropyl alcohol were charged, a Dimroth condenser, a sales expansion device and a thermometer were installed, and the flask was immersed in a water bath. The water bath was heated, the internal temperature was kept at 72 ° C., and the reaction was carried out for 10 hours.
(製造工程II)
 製造工程Iの後、メタノール656部を追加し、50重量%イオン交換水メタノール溶液173部を60分かけて滴下し、内温66℃で10時間反応させた。
 製造工程IIの後、5重量%リン酸二水素ナトリウム水溶液を17.5部添加して中和後、ウォーターバス温度80℃でメタノールの蒸留回収を行った。その後、洗浄のために、メチルイソブチルケトン780部を添加後、水洗を3回繰り返した。次いで有機層を減圧下、100℃で溶媒を除去することにより、製造工程I・IIを経るシリコーンレジンを用いず、シラノール末端シリコーンオイルとしてフェニル基を含有するシラノール末端シリコーンオイルを用いたエポキシ基含有ポリシロキサン(A-12)731部を得た。得られた化合物のエポキシ当量は491g/eq、重量平均分子量は2090、粘度は3328mPa・s、外観は無色透明液体であった。
(Manufacturing process II)
After the production step I, 656 parts of methanol was added, and 173 parts of a 50 wt% ion-exchanged water methanol solution was added dropwise over 60 minutes, and reacted at an internal temperature of 66 ° C. for 10 hours.
After the production step II, 17.5 parts of 5% by weight aqueous sodium dihydrogen phosphate solution was added for neutralization, and methanol was recovered by distillation at a water bath temperature of 80 ° C. Thereafter, 780 parts of methyl isobutyl ketone was added for washing, and washing with water was repeated three times. Next, by removing the solvent at 100 ° C. under reduced pressure, the organic layer contains an epoxy group using a silanol-terminated silicone oil containing a phenyl group as a silanol-terminated silicone oil without using a silicone resin that has undergone production steps I and II. 731 parts of polysiloxane (A-12) were obtained. The epoxy equivalent of the obtained compound was 491 g / eq, the weight average molecular weight was 2090, the viscosity was 3328 mPa · s, and the appearance was a colorless transparent liquid.
合成例3;両末端カルビノール変性シリコーンオイル(d)と、末端アルコールポリエステル化合物(i)と、分子内に二つ以上のカルボン酸無水物基を有する化合物(h)と、分子内に一つのカルボン酸無水物基を有する化合物(f)とを、付加反応することで得られるエポキシ樹脂硬化剤(B)である多価カルボン酸樹脂の合成例
 撹拌装置、ジムロートコンデンサ、温度計を設置したガラス製セパラブルフラスコに、両末端カルビノール変性シリコーンX22-160AS(信越化学工業(株)製)47.1部、ポリエステルポリオールであるアデカニューエースY9-10(ADEKA(株)製、上記式(6)においてR11がネオペンチル基でR12がブチル基であるポリエステルポリオール)11.8部、リカシッドBT-100(1,2,3,4-ブタンテトラカルボン酸二無水物、新日本理化(株)製)2.5部、リカシッドMH(メチルヘキサヒドロフタル酸無水物、新日本理化(株)製)16.6部を仕込み、140℃で10時間反応させ、多価カルボン酸樹脂(B-1)77.5部を得た。この時にGPC測定において、リカシッドBT-100および、リカシッドMHのピークは消失していた。この多価カルボン酸樹脂は、反応終了時は無色透明の液体であったが、反応液の温度が下がるにつれて白濁した液体になった。得られた化合物の酸価は88.8mgKOH/g、重量平均分子量は3452、粘度は5730mPa・s、外観は白色液体の液状であった。
Synthesis Example 3: Carbinol-modified silicone oil (d) at both ends, terminal alcohol polyester compound (i), compound (h) having two or more carboxylic anhydride groups in the molecule, and one in the molecule Synthesis example of polyvalent carboxylic acid resin which is epoxy resin curing agent (B) obtained by addition reaction with compound (f) having carboxylic anhydride group Glass equipped with stirrer, Dimroth condenser and thermometer In a separable flask, 47.1 parts of both-end carbinol-modified silicone X22-160AS (manufactured by Shin-Etsu Chemical Co., Ltd.), Adeka New Ace Y9-10 (made by ADEKA Corporation), a polyester polyol, the above formula (6 polyester polyol) 11.8 parts R 12 is butyl and R 11 is neopentyl group in), RIKACID BT-10 (1,2,3,4-butanetetracarboxylic dianhydride, manufactured by Shin Nippon Rika Co., Ltd.) 2.5 parts, Ricacid MH (methylhexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.) 16 .6 parts were charged and reacted at 140 ° C. for 10 hours to obtain 77.5 parts of a polycarboxylic acid resin (B-1). At this time, the peaks of Ricacid BT-100 and Ricacid MH disappeared in the GPC measurement. This polycarboxylic acid resin was a colorless and transparent liquid at the end of the reaction, but became a cloudy liquid as the temperature of the reaction liquid decreased. The acid value of the obtained compound was 88.8 mgKOH / g, the weight average molecular weight was 3452, the viscosity was 5730 mPa · s, and the appearance was a white liquid.
 実施例11;実施例2で得られたエポキシ基含有ポリオルガノシロキサン(A-2)100部、合成例3で得られた多価カルボン酸樹脂(B-1)63.2部、硬化促進剤として2-エチルヘキサン酸亜鉛0.5部を、ポリプロピレン製容器に入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。 Example 11: 100 parts of the epoxy group-containing polyorganosiloxane (A-2) obtained in Example 2, 63.2 parts of the polyvalent carboxylic acid resin (B-1) obtained in Synthesis Example 3, and a curing accelerator As described above, 0.5 part of zinc 2-ethylhexanoate was placed in a polypropylene container, mixed and degassed for 5 minutes to obtain a curable resin composition for sealing an optical semiconductor of the present invention.
 実施例12;実施例9で得られたエポキシ基含有ポリオルガノシロキサン(A-9)100部、合成例3で得られた多価カルボン酸樹脂(B-1)66.7部、硬化促進剤として2-エチルヘキサン酸亜鉛0.5部を、ポリプロピレン製容器に入れ、混合、5分間脱泡を行い、本発明の光半導体封止用硬化性樹脂組成物を得た。 Example 12: 100 parts of the epoxy group-containing polyorganosiloxane (A-9) obtained in Example 9, 66.7 parts of the polyvalent carboxylic acid resin (B-1) obtained in Synthesis Example 3, and a curing accelerator As described above, 0.5 part of zinc 2-ethylhexanoate was placed in a polypropylene container, mixed and degassed for 5 minutes to obtain a curable resin composition for sealing an optical semiconductor of the present invention.
 比較例2;合成例1で得られたシリコーンレジンを原料として用いないエポキシ基含有ポリオルガノシロキサン(A-11)100部、合成例3で得られた多価カルボン酸樹脂(B-1)66.8部、硬化促進剤として2-エチルヘキサン酸亜鉛0.5部を、ポリプロピレン製容器に入れ、混合、5分間脱泡を行い、光半導体封止用硬化性樹脂組成物を得た。 Comparative Example 2: 100 parts of an epoxy group-containing polyorganosiloxane (A-11) not using the silicone resin obtained in Synthesis Example 1 as a raw material, and the polyvalent carboxylic acid resin (B-1) 66 obtained in Synthesis Example 3 .8 parts and 0.5 parts of zinc 2-ethylhexanoate as a curing accelerator were placed in a polypropylene container, mixed and degassed for 5 minutes to obtain a curable resin composition for optical semiconductor encapsulation.
 比較例3;合成例2で得られたシリコーンレジンを用いず、シラノール末端シリコーンオイルとしてフェニル基を含有するシラノール末端シリコーンオイルを用いたエポキシ基含有ポリシロキサン(A-12)100部、合成例3で得られた多価カルボン酸樹脂(B-1)64.9部、硬化促進剤として2-エチルヘキサン酸亜鉛0.5部を、ポリプロピレン製容器に入れ、混合、5分間脱泡を行い、光半導体封止用硬化性樹脂組成物を得た。 Comparative Example 3; 100 parts of an epoxy group-containing polysiloxane (A-12) using a silanol-terminated silicone oil containing a phenyl group as a silanol-terminated silicone oil without using the silicone resin obtained in Synthetic Example 2, Synthetic Example 3 64.9 parts of the polyvalent carboxylic acid resin (B-1) obtained in 1 above and 0.5 part of zinc 2-ethylhexanoate as a curing accelerator are placed in a polypropylene container, mixed and degassed for 5 minutes. A curable resin composition for optical semiconductor encapsulation was obtained.
[評価試験]
 実施例11~12、比較例2~3で得られた光半導体封止用硬化性樹脂組成物の配合比とその硬化物の、硬度、透過率、耐硫化性、タック試験の結果を表2に示す。表2における試験は以下のように行った。
[Evaluation test]
Table 2 shows the blending ratios of the curable resin compositions for sealing an optical semiconductor obtained in Examples 11 to 12 and Comparative Examples 2 to 3, and the results of hardness, transmittance, sulfidation resistance, and tack test of the cured products. Shown in The test in Table 2 was performed as follows.
(1)硬さ
 JIS K-7215に記載の方法でデュロメータA硬さを測定した。
(2)硬化物透過率および耐熱後硬化物透過率
 実施例11~12、比較例2~3で得られた光半導体封止用硬化性樹脂組成物を真空脱泡5分間実施後、30mm×20mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ0.8mmの透過率用試験片を得た。得られた試験片を下記条件にて400nmの光線透過率を測定した。
(1) Hardness The durometer A hardness was measured by the method described in JIS K-7215.
(2) Cured product transmittance and cured post-heat cured product transmittance The curable resin composition for sealing an optical semiconductor obtained in Examples 11 to 12 and Comparative Examples 2 to 3 was vacuum degassed for 5 minutes, and then 30 mm × The mold was gently cast on a glass substrate on which a dam was created with a heat-resistant tape so that the height was 20 mm and the height was 0.8 mm. The cast was cured at 120 ° C. for 3 hours after pre-curing at 120 ° C. for 1 hour to obtain a test piece for transmittance having a thickness of 0.8 mm. The obtained specimen was measured for light transmittance at 400 nm under the following conditions.
分光光計測定条件
メーカー:株式会社日立ハイテクノロジーズ
機種:U-3300
スリット幅:2.0nm
スキャン速度:120nm/分
Spectrophotometer measurement conditions Manufacturer: Hitachi High-Technologies Corporation Model: U-3300
Slit width: 2.0nm
Scan speed: 120 nm / min
(3)耐硫化試験
 実施例11~12、比較例2~3で得られた光半導体封止用硬化性樹脂組成物を真空脱泡5分間実施後、シリンジに充填し精密吐出装置を使用して、底面に銀メッキを施した銅製電極を具備する3.0mm×1.4mm×1.4mmt(封止部0.6mmt)の表面実装型LEDパッケージに発光波長450nmを持つ発光素子を搭載した表面実装型LEDに、開口部が平面になるように注型した。120℃×1時間の予備硬化の後、150℃×3時間で硬化し、表面実装型LEDを封止した。封止した表面実装型LEDを、20%硫化アンモニウム水溶液1mlを入れた開口部直径0.6cm、高さ3.5cmのガラス製容器2つ(蓋は開放)と共に120mm×180mm×36mmtのポリプロピレン製密閉容器に入れ、25℃恒温槽にて放置した。放置2時間毎に底面の銀メッキ部分の変色を目視にて確認した。底面の銀メッキが酷く変色しているのを確認した時間を記入した。
(3) Sulfurization resistance test The curable resin composition for optical semiconductor encapsulation obtained in Examples 11 to 12 and Comparative Examples 2 to 3 was vacuum degassed for 5 minutes, then filled into a syringe, and a precision dispensing device was used. In addition, a light-emitting element having an emission wavelength of 450 nm is mounted on a 3.0 mm × 1.4 mm × 1.4 mmt (sealing portion 0.6 mmt) surface-mount type LED package having a copper electrode with silver plating on the bottom surface. The surface-mounted LED was cast so that the opening was flat. After pre-curing at 120 ° C. for 1 hour, it was cured at 150 ° C. for 3 hours to seal the surface-mounted LED. 120mm x 180mm x 36mmt polypropylene made from a sealed surface-mount LED with two glass containers (open lid) with an opening diameter of 0.6cm and a height of 3.5cm containing 1ml of 20% ammonium sulfide aqueous solution It put into the airtight container and left to stand in a 25 degreeC thermostat. The discoloration of the silver-plated portion on the bottom surface was visually confirmed every 2 hours. The time when it was confirmed that the silver plating on the bottom surface was severely discolored was entered.
(4)タック試験
 実施例11~12、比較例2~3で得られた光半導体封止用硬化性樹脂組成物を真空脱泡5分間実施後、シリンジに充填し精密吐出装置を使用して、底面に銀メッキを施した銅製電極を具備する5.0mm×5.0mm×1.4mmt(封止部0.6mmt)の表面実装型LEDパッケージに発光波長450nmを持つ発光素子を搭載した表面実装型LED(LED-A)と底面に銀メッキを施した銅製電極を具備する3.2mm×2.8mm×1.4mmt(封止部0.6mmt)の表面実装型LEDパッケージに発光波長450nmを持つ発光素子を搭載した表面実装型LED(LED-B)に、それぞれ開口部が平面になるように注型した。120℃×1時間の予備硬化の後、150℃×3時間で硬化し、表面実装型LEDを封止した。
(4) Tack test The curable resin composition for sealing an optical semiconductor obtained in Examples 11 to 12 and Comparative Examples 2 to 3 was vacuum degassed for 5 minutes, then filled into a syringe, and using a precision dispensing device. A surface on which a light emitting element having an emission wavelength of 450 nm is mounted on a 5.0 mm × 5.0 mm × 1.4 mmt (mounting portion 0.6 mmt) surface-mount LED package having a copper electrode with silver plating on the bottom surface Light emitting wavelength 450nm on surface mounted LED package of 3.2mm x 2.8mm x 1.4mmt (sealing part 0.6mmt) with mounted LED (LED-A) and copper electrode with silver plating on the bottom Each surface-mounting type LED (LED-B) mounted with a light emitting device having a shape was cast so that the opening was flat. After pre-curing at 120 ° C. for 1 hour, it was cured at 150 ° C. for 3 hours to seal the surface-mounted LED.
 封止後のLED-Aを開口部が上になるように、両面テープを用いて1gのアルミ板に固定し、それぞれの開口部同士が接触するようにLED-BをLED-Aの上に乗せ、LED-Bを5秒間押し付けた。
 その後、LED-Bのみをピンセットで持ち上げた際に、1gのアルミ製金属板ごと持ち上がったサンプルはタック(ベタツキ)ありの判定(D)をし、LED-BがLED-AからはがれてLED-Bのみ持ち上がったサンプルをタック(ベタツキ)なしの判定(A)をした。
The LED-A after sealing is fixed to a 1 g aluminum plate using double-sided tape so that the opening is on top, and the LED-B is placed on the LED-A so that the respective openings are in contact with each other. The LED-B was pressed for 5 seconds.
After that, when only LED-B is lifted with tweezers, the sample lifted with 1 g of aluminum metal plate makes a judgment (D) that there is tack (stickiness), and LED-B peels off from LED-A. The sample which raised only B was judged (A) without tack (stickiness).
Figure JPOXMLDOC01-appb-T000036
 
Figure JPOXMLDOC01-appb-T000036
 
*A-2、A-9、A-11、A-12、B-1は前述の実施例および比較例で得られた化合物を表す。 * A-2, A-9, A-11, A-12, and B-1 represent the compounds obtained in the above Examples and Comparative Examples.
 表2に示す結果から明らかなように、原料にシリコーンレジンを用いないエポキシ基含有ポリシロキサンを用いた比較例2は混合後粘度や硬さ、硬化物透過率が光半導体封止用途として適切であるが耐硫化試験で2時間後に銀メッキが酷く変色し耐硫化性に劣り、シリコーンレジンを用いず、シラノール末端シリコーンオイルとしてフェニル基を含有するシラノール末端シリコーンオイルを用いたエポキシ基含有ポリシロキサンを用いた比較例3も混合後粘度や硬さ、硬化物透過率が光半導体封止用途として適切であるが耐硫化性に優れるもののタック性に劣るのに対し、実施例11~12では、前記物性が適切であるのに加え、耐硫化性、タック性に優れた。 As is clear from the results shown in Table 2, Comparative Example 2 using an epoxy group-containing polysiloxane that does not use a silicone resin as a raw material is suitable for optical semiconductor sealing applications in terms of viscosity, hardness, and cured product transmittance after mixing. There is an epoxy group-containing polysiloxane using a silanol-terminated silicone oil containing a phenyl group as a silanol-terminated silicone oil without using a silicone resin, and the silver plating is severely discolored after 2 hours in the sulfidation-resistant test and inferior in sulfidation resistance. In Comparative Example 3 used, the viscosity and hardness after mixing and the cured product transmittance are suitable for optical semiconductor sealing applications, but they are excellent in sulfidation resistance but inferior in tackiness. In Examples 11 to 12, In addition to its appropriate physical properties, it has excellent sulfidation resistance and tackiness.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2013年6月26日付で出願された日本国特許出願(2013-133600)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japan patent application (2013-133600) for which it applied on June 26, 2013, The whole is used by reference. Also, all references cited herein are incorporated as a whole.
 本発明のエポキシ基含有ポリオルガノシロキサンおよびそれを含有する硬化性樹脂組成物は、耐熱透明性、耐硫化性に優れ、さらには低タック性の硬化物を与えるため、高い透明性や低タック性が求められる材料、特に光半導体(LEDなど)の封止用樹脂として好適に使用することができる。 The epoxy group-containing polyorganosiloxane of the present invention and the curable resin composition containing the epoxy group are excellent in heat-resistant transparency and sulfidation resistance, and further provide a low-tack cured product. Therefore, it can be suitably used as a sealing resin for optical semiconductors (such as LEDs).

Claims (14)

  1.  平均式(A)で表されるシリコーンレジン構造(A)、式(B)で表されるエポキシ基含有シルセスキオキサン構造(B)、および、式(C)で表されるシリコーンオイル構造(C)が連結し、末端がシラノール基及び/または炭素数1~10のアルコキシ基であるエポキシ基含有ポリオルガノシロキサン:
    Figure JPOXMLDOC01-appb-C000001
    (式中、R’、R’、R’、R’、R’、R’は、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。但し、分子中のR’~R’の少なくとも2つの水酸基が脱離して、ケイ素原子がエポキシ基含有シルセスキオキサン構造(B)の酸素原子に結合している。);
    Figure JPOXMLDOC01-appb-C000002
    (式中、Yは、それぞれ独立して、水素原子、エポキシ基を有する反応性官能基、炭素数1~3のアルキル基またはフェニル基であるが、Yの少なくとも一つはエポキシ基を有する反応性官能基である。lは2以上の整数を表す。*はシリコーンレジン構造(A)またはシリコーンオイル構造(C)のケイ素原子への結合を表す。);
    Figure JPOXMLDOC01-appb-C000003
    (式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す。*はエポキシ基含有シルセスキオキサン構造(B)の酸素原子への結合を表す。)。
    Silicone resin structure (A) represented by average formula (A), epoxy group-containing silsesquioxane structure (B) represented by formula (B), and silicone oil structure represented by formula (C) ( Epoxy group-containing polyorganosiloxane in which C) is linked and the terminal is a silanol group and / or an alkoxy group having 1 to 10 carbon atoms:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R ′ 1 , R ′ 2 , R ′ 3 , R ′ 4 , R ′ 5 , R ′ 6 may be the same as or different from each other, and may be a monovalent hydrocarbon group or a hydroxyl group. And the total amount of R ′ 1 to R ′ 6 in the molecule is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3, where numerator And at least two hydroxyl groups of R ′ 1 to R ′ 6 are eliminated, and a silicon atom is bonded to an oxygen atom of the epoxy group-containing silsesquioxane structure (B)).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein Y is independently a hydrogen atom, a reactive functional group having an epoxy group, an alkyl group having 1 to 3 carbon atoms, or a phenyl group, at least one of Y is a reaction having an epoxy group) L represents an integer greater than or equal to 2. * represents a bond to a silicon atom of the silicone resin structure (A) or the silicone oil structure (C));
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. * Represents a bond to the oxygen atom of the epoxy group-containing silsesquioxane structure (B).
  2.  平均式(1)で表されるシリコーンレジン(a成分);式(2)で表されるエポキシ基含有ケイ素化合物(b成分);および、式(3)で表されるシラノール末端シリコーンオイル(c成分)を原料として製造されたエポキシ基含有ポリオルガノシロキサン:
    Figure JPOXMLDOC01-appb-C000004
    (式中、R、R、R、R、R、Rは、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。);
    Figure JPOXMLDOC01-appb-C000005
    (式中、Xはエポキシ基を有する反応性官能基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を有するアリール基を、Rは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、eは0、1または2を表し、fは(3-e)を表す。);
    Figure JPOXMLDOC01-appb-C000006
    (式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す)。
    Silicone resin represented by average formula (1) (component a); epoxy group-containing silicon compound represented by formula (2) (component b); and silanol-terminated silicone oil represented by formula (3) (c) Component-containing epoxy group-containing polyorganosiloxane manufactured from:
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different from each other, and are a monovalent hydrocarbon group or a hydroxyl group, and R in the molecule) When the total amount of ' 1 to R' 6 is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1 0.0, b / (a + b + c + d) = 0-0.7, c / (a + b + c + d) = 0-0.3, d / (a + b + c + d) = 0-0.3);
    Figure JPOXMLDOC01-appb-C000005
    (Wherein X has a reactive functional group having an epoxy group, R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. Show).
  3.  下記2段階の製造工程を経て製造された、請求項2に記載のエポキシ基含有ポリオルガノシロキサン:
    [製造工程I]a成分およびc成分のシラノール基と、b成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
    [製造工程II]製造工程Iの後、水を添加して残存するアルコキシ基同士の縮合を行う工程。
    The epoxy group-containing polyorganosiloxane according to claim 2, which is produced through the following two-stage production process:
    [Manufacturing step I] A step of dealcoholizing a silanol group of component a and c and an alkoxy group of component b in the presence of an inorganic base compound [Manufacturing step II] After manufacturing step I, water is added to remain. The step of condensing the alkoxy groups.
  4.  下記3段階の製造工程を経て製造された、請求項2に記載のエポキシ基含有ポリオルガノシロキサン:
    [製造工程1]a成分のシラノール基とb成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
    [製造工程2]製造工程1の後、c成分を添加し、製造工程1を経て残存しているアルコキシ基と、c成分のシラノール基との脱アルコール縮合を行う工程
    [製造工程3]製造工程2の後、水を添加し、残存しているアルコキシ基同士の縮合を行う工程。
    The epoxy group-containing polyorganosiloxane according to claim 2, which is produced through the following three-stage production process:
    [Manufacturing step 1] A step of dealcoholizing a silanol group of component a and an alkoxy group of component b in the presence of an inorganic base compound [Manufacturing step 2] After manufacturing step 1, component c is added and manufacturing step 1 is performed. Step of performing dealcoholization condensation between alkoxy group remaining after passing and silanol group of component c [Manufacturing step 3] Step of adding water after manufacturing step 2 and condensing remaining alkoxy groups .
  5.  平均式(1)で表されるシリコーンレジン(a成分);式(2)で表されるエポキシ基含有ケイ素化合物(b成分);および、式(3)で表されるシラノール末端シリコーンオイル(c成分)を原料として製造されたエポキシ基含有ポリオルガノシロキサンの製造方法であって、下記の2段階の製造工程を含む製造方法:
    [製造工程I]a成分およびc成分のシラノール基と、b成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程
    [製造工程II]製造工程Iの後、水を添加して残存するアルコキシ基同士の縮合を行う工程:
    Figure JPOXMLDOC01-appb-C000007
    (式中、R、R、R、R、R、Rは、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’の全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。);
    Figure JPOXMLDOC01-appb-C000008
    (式中、Xはエポキシ基を有する反応性官能基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を有するアリール基を、Rは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、eは0、1または2を表し、fは(3-e)を表す。);
    Figure JPOXMLDOC01-appb-C000009
    (式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す)。
    Silicone resin represented by average formula (1) (component a); epoxy group-containing silicon compound represented by formula (2) (component b); and silanol-terminated silicone oil represented by formula (3) (c) A method for producing an epoxy group-containing polyorganosiloxane produced using a component) as a raw material, comprising the following two-stage production steps:
    [Manufacturing step I] A step of dealcoholizing the silanol groups of component a and c and the alkoxy group of component b in the presence of an inorganic base compound [Manufacturing step II] After manufacturing step I, water is added to remain. The step of condensing the alkoxy groups together:
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different from each other, and are a monovalent hydrocarbon group or a hydroxyl group, and R in the molecule) When the total amount of ' 1 to R' 6 is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3);
    Figure JPOXMLDOC01-appb-C000008
    (Wherein X has a reactive functional group having an epoxy group, R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. Show).
  6.  平均式(1)で表されるシリコーンレジン(a成分);式(2)で表されるエポキシ基含有ケイ素化合物(b成分);および、式(3)で表されるシラノール末端シリコーンオイル(c成分)を原料として製造されたエポキシ基含有ポリオルガノシロキサンの製造方法であって、下記の3段階の製造工程を含む製造方法:
    [製造工程1]a成分のシラノール基とb成分のアルコキシ基を無機塩基化合物存在下、脱アルコール縮合を行う工程。
    [製造工程2]製造工程1の後、c成分を添加し、製造工程1を経て残存しているアルコキシ基と、c成分のシラノールとの脱アルコール縮合を行う工程。
    [製造工程3]製造工程2の後、水を添加し、残存しているアルコキシ基同士の縮合を行う工程:
    Figure JPOXMLDOC01-appb-C000010
    (式中、R、R、R、R、R、Rは、互いに同一であっても異なっていてもよく、一価の炭化水素基または水酸基であり、分子中のR’~R’の全体を100モル%とした場合に、水酸基が5~50モル%であり、フェニル基が30~95モル%であり、かつ、a/(a+b+c+d)=0.01~1.0、b/(a+b+c+d)=0~0.7、c/(a+b+c+d)=0~0.3、d/(a+b+c+d)=0~0.3である。);
    Figure JPOXMLDOC01-appb-C000011
    (式中、Xはエポキシ基を有する反応性官能基を、Rは炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基又は炭素数6~10の芳香族炭化水素基を有するアリール基を、Rは、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を、eは0、1または2を表し、fは(3-e)を表す。);
    Figure JPOXMLDOC01-appb-C000012
    (式中、複数のRは互いに同一であっても異なっていてもよく、炭素数1~3のアルキル基または炭素数6~10のアリール基を示し、gは平均値で2~2000を示す)。
    Silicone resin represented by average formula (1) (component a); epoxy group-containing silicon compound represented by formula (2) (component b); and silanol-terminated silicone oil represented by formula (3) (c) A method for producing an epoxy group-containing polyorganosiloxane produced using a component) as a raw material, comprising the following three-stage production steps:
    [Manufacturing step 1] A step of dealcoholizing a silanol group of component a and an alkoxy group of component b in the presence of an inorganic base compound.
    [Manufacturing step 2] A step of adding a component c after the manufacturing step 1 and performing dealcoholization condensation between the alkoxy group remaining after the manufacturing step 1 and silanol of the component c.
    [Manufacturing step 3] After manufacturing step 2, water is added to condense the remaining alkoxy groups:
    Figure JPOXMLDOC01-appb-C000010
    (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different from each other, and are a monovalent hydrocarbon group or a hydroxyl group, and R in the molecule) When the total amount of ' 1 to R' 6 is 100 mol%, the hydroxyl group is 5 to 50 mol%, the phenyl group is 30 to 95 mol%, and a / (a + b + c + d) = 0.01 to 1.0, b / (a + b + c + d) = 0 to 0.7, c / (a + b + c + d) = 0 to 0.3, d / (a + b + c + d) = 0 to 0.3);
    Figure JPOXMLDOC01-appb-C000011
    (Wherein X has a reactive functional group having an epoxy group, R 7 has a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms or an aromatic hydrocarbon group having 6 to 10 carbon atoms. An aryl group, R 8 represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, e represents 0, 1 or 2, and f represents (3-e));
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, a plurality of R 9 s may be the same or different and each represents an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms, and g represents an average value of 2 to 2000. Show).
  7.  請求項1~4のいずれか一項に記載のエポキシ基含有ポリオルガノシロキサンとエポキシ樹脂硬化剤を含有する硬化性樹脂組成物。 A curable resin composition comprising the epoxy group-containing polyorganosiloxane according to any one of claims 1 to 4 and an epoxy resin curing agent.
  8.  エポキシ樹脂硬化剤が、多価カルボン酸化合物である請求項7記載の硬化性樹脂組成物。 The curable resin composition according to claim 7, wherein the epoxy resin curing agent is a polyvalent carboxylic acid compound.
  9.  多価カルボン酸化合物が、両末端カルビノール変性シリコーンオイル(d)、分子内に2つ以上の水酸基を有する多価アルコール化合物(e)、および、分子内に一つのカルボン酸無水物基を有する化合物(f)を重合単位として含む付加重合体である多価カルボン酸樹脂である、請求項8に記載の硬化性樹脂組成物。 The polyvalent carboxylic acid compound has a carbinol-modified silicone oil (d) at both terminals, a polyhydric alcohol compound (e) having two or more hydroxyl groups in the molecule, and one carboxylic anhydride group in the molecule. The curable resin composition according to claim 8, which is a polyvalent carboxylic acid resin which is an addition polymer containing the compound (f) as a polymerization unit.
  10.  さらに硬化促進剤を含有する請求項7~9のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 7 to 9, further comprising a curing accelerator.
  11.  硬化促進剤が金属石鹸硬化促進剤である請求項10に記載の硬化性樹脂組成物。 The curable resin composition according to claim 10, wherein the curing accelerator is a metal soap curing accelerator.
  12.  光半導体封止用途である請求項7~11のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 7 to 11, which is used for optical semiconductor sealing.
  13.  請求項7~12のいずれか一項に記載の硬化性樹脂組成物を硬化した硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 7 to 12.
  14.  請求項13に記載の硬化物を具備する光半導体。 An optical semiconductor comprising the cured product according to claim 13.
PCT/JP2014/066888 2013-06-26 2014-06-25 Epoxy-group-containing polyorganosiloxane and curable resin composition containing same WO2014208619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015524095A JP6239616B2 (en) 2013-06-26 2014-06-25 Epoxy group-containing polyorganosiloxane and curable resin composition containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-133600 2013-06-26
JP2013133600 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014208619A1 true WO2014208619A1 (en) 2014-12-31

Family

ID=52141948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066888 WO2014208619A1 (en) 2013-06-26 2014-06-25 Epoxy-group-containing polyorganosiloxane and curable resin composition containing same

Country Status (3)

Country Link
JP (1) JP6239616B2 (en)
TW (1) TW201518343A (en)
WO (1) WO2014208619A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001900A (en) * 2015-06-05 2017-01-05 信越化学工業株式会社 Nanoparticle, manufacturing method of nanoparticle, addition curable silicone resin composition and semiconductor device
KR20180103115A (en) * 2016-01-15 2018-09-18 페르녹스 가부시키가이샤 The condensation reaction type silicone composition and the cured product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892776A (en) * 2018-04-13 2018-11-27 湖北航泰科技有限公司 A kind of organic-silicon-modified epoxy resin and preparation method thereof
JP7021046B2 (en) * 2018-10-22 2022-02-16 信越化学工業株式会社 Additive-curable silicone composition, silicone cured product, and optical element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192665A (en) * 1997-09-24 1999-04-06 Dow Corning Toray Silicone Co Ltd Production of diorganopolysiloxane containing epoxy group and textile-treating agent
JP2006336010A (en) * 2005-05-02 2006-12-14 Jsr Corp Siloxane-based condensate, method for producing the same and polysiloxane composition
WO2008090971A1 (en) * 2007-01-25 2008-07-31 Jsr Corporation Terminally epoxidized polydimethylsiloxane, method for producing the same, and curable polysiloxane composition
WO2009072632A1 (en) * 2007-12-07 2009-06-11 Jsr Corporation Curable composition, coating composition for optical device, led sealing material, and method for producing the same
WO2010026714A1 (en) * 2008-09-03 2010-03-11 日本化薬株式会社 Siloxane compound, curable resin composition, cured object obtained therefrom, and photosemiconductor element
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339910B2 (en) * 1993-04-15 2002-10-28 東レ・ダウコーニング・シリコーン株式会社 Curable resin composition
JP3263177B2 (en) * 1993-04-15 2002-03-04 東レ・ダウコーニング・シリコーン株式会社 Epoxy group-containing silicone resin and method for producing the same
JP4818646B2 (en) * 2005-06-10 2011-11-16 東レ・ダウコーニング株式会社 Method for purifying silicone resin
JP2008120843A (en) * 2006-11-08 2008-05-29 Momentive Performance Materials Japan Kk Light-transmitting silicone resin, light-transmitting silicone resin composition and optical semiconductor device
JP2011084668A (en) * 2009-10-16 2011-04-28 Sekisui Chem Co Ltd Sealant material for electronic component, sealant for electronic component, and photosemiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192665A (en) * 1997-09-24 1999-04-06 Dow Corning Toray Silicone Co Ltd Production of diorganopolysiloxane containing epoxy group and textile-treating agent
JP2006336010A (en) * 2005-05-02 2006-12-14 Jsr Corp Siloxane-based condensate, method for producing the same and polysiloxane composition
WO2008090971A1 (en) * 2007-01-25 2008-07-31 Jsr Corporation Terminally epoxidized polydimethylsiloxane, method for producing the same, and curable polysiloxane composition
WO2009072632A1 (en) * 2007-12-07 2009-06-11 Jsr Corporation Curable composition, coating composition for optical device, led sealing material, and method for producing the same
WO2010026714A1 (en) * 2008-09-03 2010-03-11 日本化薬株式会社 Siloxane compound, curable resin composition, cured object obtained therefrom, and photosemiconductor element
WO2012137837A1 (en) * 2011-04-07 2012-10-11 日本化薬株式会社 Polycarboxylic acid resin and composition thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001900A (en) * 2015-06-05 2017-01-05 信越化学工業株式会社 Nanoparticle, manufacturing method of nanoparticle, addition curable silicone resin composition and semiconductor device
KR20180103115A (en) * 2016-01-15 2018-09-18 페르녹스 가부시키가이샤 The condensation reaction type silicone composition and the cured product
KR102081074B1 (en) 2016-01-15 2020-02-25 페르녹스 가부시키가이샤 Condensation Reaction Silicone Composition and Cured Product

Also Published As

Publication number Publication date
JP6239616B2 (en) 2017-11-29
TW201518343A (en) 2015-05-16
JPWO2014208619A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5878862B2 (en) Curable resin composition and cured product thereof
JP6006725B2 (en) Curable resin composition for optical semiconductor element sealing and cured product thereof
JP5730852B2 (en) Method for producing organopolysiloxane, organopolysiloxane obtained by the production method, and composition containing the organopolysiloxane
JP6456836B2 (en) Curable resin composition and cured product thereof
JP5433705B2 (en) Curable resin composition and cured product thereof
JP5626856B2 (en) Curable resin composition and cured product thereof
JP5768047B2 (en) Curable resin composition and cured product thereof
TWI564318B (en) Epoxy resin composition
JP6150415B2 (en) Curable resin composition and cured product thereof
JP6239616B2 (en) Epoxy group-containing polyorganosiloxane and curable resin composition containing the same
JP2014145073A (en) Curable resin composition and cured product of the same
JP6279830B2 (en) Curable resin composition and cured product thereof
JP2015165013A (en) Epoxy resin curing agent composition and epoxy resin composition
JPWO2014157552A1 (en) Epoxy resin composition for optical semiconductor encapsulation, cured product thereof and optical semiconductor device
JP5832601B2 (en) Curable resin composition and cured product thereof
JP6016697B2 (en) Curable resin composition for light-emitting semiconductor coating protective material
JP2014177531A (en) Epoxy resin composition including hydrotalcite compound
JP2018030999A (en) Curable resin composition and cured product of the same
JP6319845B2 (en) Curable resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818538

Country of ref document: EP

Kind code of ref document: A1