WO2014208327A1 - Corrosion and erosion preventing structure and pump comprising same, and pump manufacturing method and repairing method - Google Patents

Corrosion and erosion preventing structure and pump comprising same, and pump manufacturing method and repairing method Download PDF

Info

Publication number
WO2014208327A1
WO2014208327A1 PCT/JP2014/065291 JP2014065291W WO2014208327A1 WO 2014208327 A1 WO2014208327 A1 WO 2014208327A1 JP 2014065291 W JP2014065291 W JP 2014065291W WO 2014208327 A1 WO2014208327 A1 WO 2014208327A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
ring
impeller
pump
corrosion
Prior art date
Application number
PCT/JP2014/065291
Other languages
French (fr)
Japanese (ja)
Inventor
基彦 能見
八鍬 浩
敬祐 早房
浩章 中本
恭輔 菊田
清治 福田
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to JP2015523961A priority Critical patent/JPWO2014208327A1/en
Priority to CN201480035966.7A priority patent/CN105339674A/en
Publication of WO2014208327A1 publication Critical patent/WO2014208327A1/en
Priority to SA515370324A priority patent/SA515370324B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/006Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4273Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps suction eyes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4286Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps inside lining, e.g. rubber

Definitions

  • the present invention relates to a pump using a casing ring (liner ring), and in particular, a pump impeller has a radially inward flow with respect to a rotating shaft such as a double suction centrifugal pump, a centrifugal multistage pump, a pump having a suction volute, and the like.
  • the present invention relates to a structure for preventing corrosion and erosion in a casing ring (liner ring) and a pump including the same. Furthermore, it is related with the manufacturing method and repair method of the said pump.
  • the pump casing ring (liner ring) and impeller ring (wear ring) are present at the boundary between the high pressure part and the low pressure part of the pump impeller.
  • the casing ring is fixed to the casing and does not rotate, while the impeller ring rotates according to the rotation of the rotating shaft. For this reason, the casing ring and the impeller ring are basically designed not to contact each other, and a slight gap is provided between them.
  • FIG. 10 shows a general type of pump in which a radially inward flow flows into the injection portion 59a of the impeller 59.
  • a prime mover such as an electric motor (not shown) is engaged with the rotary shaft 57 of the pump.
  • the impeller 59 is rotated by the driving force of the prime mover.
  • the liquid flowing through the suction side channel 61 flows inward in the radial direction from the radially outer side of the rotation shaft 57 and flows into the injection portion 59a of the impeller as indicated by an arrow C in the figure.
  • the liquid that has flowed into the impeller 59 from the suction-side flow path 61 receives the rotational energy of the impeller 59 and becomes a liquid whose pressure energy and kinetic energy are increased by centrifugal force.
  • a part of the casing 53 is formed as a partition wall 65 so as to separate the suction side flow path 61 and the discharge side flow path 63.
  • a casing ring 69 is provided at the end of the partition wall 65 of the casing 53 and facing the impeller 59 (sliding in some cases).
  • an impeller ring 60 is provided on the impeller 59.
  • FIG. 11 is a cross-sectional view showing an example of both suction centrifugal pumps 101.
  • 11 includes an upper casing 103, a lower casing 105, a rotating shaft 107 installed in a boundary region between the casings 103 and 105, and an impeller installed on the rotating shaft 107. 109.
  • a suction side flow path 111 and a discharge side flow path 113 are formed in both casings 103 and 105 via an impeller 109.
  • the impeller 109 rotates with the rotation of the rotating shaft 107 with which a prime mover such as an electric motor (not shown) is engaged. By this rotation, the impeller 109 sucks the liquid from the suction side flow paths 111 on both sides around the discharge side flow path 113. For this reason, in the suction side flow path 111, the radially inward flow flows into the injection portion 109 a of the impeller 109.
  • the rotational energy of the impeller 109 is given to the liquid as a centrifugal force, and converted into pressure energy and kinetic energy of the liquid itself.
  • a part of the casings 103 and 105 is formed as a partition wall 115 so as to separate the suction side flow path 111 and the discharge side flow path 113.
  • FIG. 12 is an enlarged view of the region A in FIG.
  • the casing ring 119 is provided in the partition wall 115 which is a part of the casing 105 and the impeller ring 110 is provided in the impeller 109 in the positional relationship described above.
  • the same structure as that of the region A is also present in a portion symmetric with respect to the rotation axis and a portion symmetric with respect to the center line L in the drawing.
  • the casing ring and the casing are in direct contact with each other between the metal processed surfaces without painting.
  • the casing is cast iron and the casing ring is a combination of stainless steel
  • the corrosion rate of a single cast iron is 0.1 mm / y
  • the rate of promotion by contact with stainless steel is doubled.
  • the casing ring exists between the high pressure portion and the low pressure portion in the pump.
  • the surface damage is significant when such different metal contact corrosion and cavitation erosion are superimposed.
  • the performance required for the pump cannot be satisfied.
  • the strength of the pump casing is reduced, and the possibility that a larger scale of the pump will be damaged increases.
  • the pump often has an “inlet back flow” accompanied by cavitation in the impeller at a low flow rate. This is because the flow rate is limited by opening and closing a valve installed on the downstream side of the impeller.
  • This inlet backflow phenomenon is a flow in which the fluid recirculates from the inside of the impeller 59 to the suction side flow path 61 as shown in FIG. Since the reverse flow of the inlet is also close to the casing ring 69, it also contacts the partition wall 65 close to the casing ring 69 and further promotes erosion.
  • the first means for solving the problem is an erosion prevention structure in the vicinity of a facing portion between the casing and the impeller, the casing, a casing ring that is installed in the casing and faces the impeller, and the casing And an electrically insulating material provided between the casing ring and the casing ring.
  • the second means is the corrosion erosion prevention structure according to means 1, wherein the electrical insulating material includes an epoxy-based material or a silicon-based material.
  • the electrical insulating material includes an epoxy-based material or a silicon-based material.
  • the third means is the structure for preventing corrosion and erosion according to means 1 or 2, wherein an O-ring for sealing is disposed at the boundary surface between the casing and the casing ring.
  • an O-ring for sealing is disposed at the boundary surface between the casing and the casing ring.
  • the fourth means is any one of the means 1 to 3, wherein an outer edge extension extending from the portion facing the impeller toward the radially outward direction of the pump main shaft is provided on the low pressure side of the casing ring. It is a structure for preventing corrosion and erosion as described in the item. By doing in this way, the casing ring also spreads outward in the radius of the suction flow path, and the backflow cavitation does not directly hit the casing but is protected by the casing ring.
  • the fifth means is the corrosion erosion according to means 4, wherein the difference between the angle at the tip of the outer edge extension and the angle of the outer edge of the impeller facing the tip of the outer edge is within 10 degrees. It is a prevention structure. By doing so, the flow of the liquid becomes smooth and the loss caused by the step is reduced.
  • the sixth means is the corrosion erosion prevention structure according to any one of means 1 to 5, wherein the casing ring is configured by combining two members.
  • Seventh means includes the corrosion erosion prevention structure according to any one of means 1 to 6, a pump main shaft rotatably supported by the casing, an impeller mounted on the pump main shaft, And a liquid channel formed inside the casing.
  • the eighth means is a method of manufacturing a pump comprising a casing and an impeller, wherein the casing is provided, an electrical insulating material is provided at a predetermined location of the casing, and a predetermined casing ring facing the impeller is provided with the electric It is a manufacturing method of a pump installed in the casing via an insulating material.
  • Ninth means is a method of repairing a pump comprising a casing and an impeller, wherein an electrical insulating material is provided at a predetermined location of the casing, and a predetermined casing ring facing the impeller is provided via the electrical insulating material. This is a method for repairing the pump installed in the casing.
  • FIG. 6 is an enlarged view of a portion B in FIG. 5. It is an expanded sectional view of embodiment in the pump of the form different from one Embodiment of this invention. It is an expanded sectional view of another embodiment in the pump of the form different from one Embodiment of this invention.
  • FIG. 1 is a cross-sectional view showing an overall outline of a double suction spiral pump 1 according to the present embodiment.
  • the pump 1 includes an upper casing 3, a lower casing 5, a rotating shaft 7 installed in a boundary region between the casings 3 and 5, and an impeller 9 provided on the rotating shaft 7.
  • a suction side flow path 11 and a discharge side flow path 13 are formed in both casings 3 and 5 via an impeller 9.
  • the suction side flow path 11 and the discharge side flow path 13 are fluid flow paths.
  • the pump 1 of the present embodiment is a double-suction centrifugal pump that sucks liquid from both sides around the discharge-side flow path 13.
  • the partition 15 which separates the suction side flow path 11 and the discharge side flow path 13 is provided in the casings 3 and 5.
  • One of the features of the present embodiment is the structure in the vicinity of the end portion of the partition wall 15 of the casings 3 and 5 and the portion facing (sliding) the impeller 9. The facing portion is shown as region A in this figure.
  • a prime mover such as an electric motor (not shown) is engaged with the rotary shaft 7 of the pump 1.
  • the impeller 9 installed on the rotary shaft 7 is rotated by the driving force of the prime mover.
  • the rotating shaft 7 is provided along the horizontal direction.
  • the impeller 9 rotates along a vertical plane crossing the rotation shaft 7.
  • the horizontal axis of rotation in this embodiment is an example, and it may be installed along the vertical direction or other angular directions.
  • the rotating shaft 7 is sandwiched between the upper casing 3 and the lower casing 5 via a bearing 7a.
  • the part where the bearing 7a is installed is basically a boundary between the suction side flow path 11 inside the pump and the external environment.
  • the bearing 7a is provided with a seal structure (not shown) so that the liquid in the suction side channel 11 does not leak to the outside.
  • the impeller 9 rotates with the rotation of the rotary shaft 7 and sucks liquid from the suction side flow paths 11 on both sides around the discharge side flow path 13.
  • the inflow portion 9a of the impeller 9 is formed in the vicinity of the rotating shaft 7, but the suction side flow path 11 is formed to the outside in the radial direction from the inflow portion 9a. For this reason, in the suction side flow path 11, the radially inward flow flows into the inflow portion 9 a of the impeller 9.
  • the rotational energy of the impeller 9 is given as centrifugal force to the fluid flowing inside. This centrifugal force gives kinetic energy. As a result, the rotational energy of the impeller 9 is eventually converted into pressure energy and kinetic energy.
  • the pressure in the discharge side flow path 13 is relatively higher than the pressure in the suction side flow path 11.
  • a part of the casing is provided as a partition wall 15 so as to separate the suction side flow path 11 on the low pressure side and the discharge side flow path 13 on the high pressure side.
  • a casing ring 19 is provided on the partition wall 15 of the casing at the end of the partition wall 15 of the casings 3 and 5 and facing (sliding) the impeller 9 (region A in FIG. 1).
  • a ring 10 is provided. This point will be described in detail in the explanation of enlarged views shown in FIGS. Needless to say, the same structure as that of the region A is also present in a portion symmetric with respect to the rotation axis 7 and a portion symmetric with respect to the center line L in the drawing.
  • the impeller 9 and the impeller ring 10 are substantially the same as the conventional one.
  • the structure on the casing side is different from the conventional pump. That is, the electrical insulating material 17A is provided between the casing ring 19 and the end of the partition wall 15 of the casing.
  • the electrical insulating material 17 ⁇ / b> A of the present embodiment has a semicircular shape, and is filled so as to be in close contact with the casing ring 19 and the partition wall 15. As described above, since the electrical insulating material 17A is in close contact with the casing ring 19 and the partition wall 15, no gap is formed between the casing ring 19 and the partition wall 15, and no leakage flow occurs. Electrical contact can also be prevented.
  • the resin material such as an insulating film, an insulating paint, and an insulating adhesive can be used for the electrical insulating material 17A.
  • fiber reinforced plastics and particle reinforced plastics can also be used.
  • insulating low-melting glass, ceramic adhesive, or the like may be used.
  • an epoxy-based, silicon-based, or PTFE-based electrically insulating material is preferable as a suitable material. Even when these materials are used in water, there is almost no outflow or absorption of components into the water, so that there is almost no deterioration even when used over a long period of time.
  • the epoxy-based or silicon-based electrically insulating material is a liquid or gel-like insulating paint or insulating adhesive, adhesion (affinity) to the metal surface is good. For this reason, when an electrically insulating material is applied to at least one of the partition wall 15 and the casing ring 19 of the casing and the application surfaces thereof are aligned with the mating surface, the surface spreads to the mating surface of the casing partition wall 15 and the casing ring 19. A film-like layer of an electrically insulating material is formed between the two. This film-like layer becomes the electrical insulating material 17A of the present embodiment. This film-like layer gradually cures to some extent and becomes solid. The solid film-like layer has high adhesion strength and fracture strength.
  • the electrical insulating material 17A does not break or come off and maintains the adhesion. To do. For this reason, while maintaining so that the pressurized fluid may not distribute
  • the electrically insulating material is silicon or PTFE
  • the thickness of the electrically insulating material filling is preferably in the range of 0.005 mm to 2 mm, for example, but 0.05 mm or more is preferably a film, and if it is less than 0.05 mm, an insulating paint or an insulating adhesive can be applied. preferable.
  • the cross-sectional shape of the electrical insulating material 17A is a rectangular wave shape. By doing so, even when an impact or the like is applied to the partition wall 15 or the casing ring 19, the electrically insulating material is prevented from peeling off from the partition wall 15 or the like.
  • the cross-sectional shape is an example, and the present invention is not limited to this.
  • FIG. 3 is a diagram showing a second embodiment.
  • This embodiment is a corrosion erosion prevention structure in which an electrical insulating O-ring is mounted in addition to the electrical insulating material 17. That is, an O-ring groove 23a is formed on the outer peripheral surface of the casing ring 19, and the O-ring 23b is fitted in the O-ring groove 23a.
  • the electrically insulating material 17B is broken or peeled off from the casing ring 19 or the casing 15 due to vibration of the pump, impact during sliding, frictional heat, or the like. Even in this case, the sealing performance can be maintained by the O-ring.
  • the sealing performance can be maintained so that liquid does not pass through the gap.
  • the casing ring 19 and the partition wall 15 of the casing are further reinforced so as not to make electrical contact.
  • the O-ring is responsible for maintaining the sealing performance so as to prevent leakage flow.
  • the electrical insulating material 17B sandwiched between the mating surfaces of the casing ring 19 and the partition wall 15 is not required to have much adhesiveness with the mating surfaces.
  • the contact pressure between the casing ring 19 and the partition wall 15 is not uniform before and after the O-ring with the O-ring as a fulcrum (left and right of the O-ring in FIG. 3).
  • the electrical insulating material 17 sandwiched between the mating surfaces of the casing ring 19 and the partition wall 15 prevents the casing ring 19 and the partition wall 15 from being in contact with each other, and the contact pressure applied to these mating surfaces is reduced.
  • FIG. 4 shows a third embodiment.
  • the corrosion erosion prevention structure in which the outer edge of the casing ring 19 on the low pressure (suction side flow path 11) side extends radially outward of the rotating shaft is shown.
  • the extending portion is referred to as an outer edge extension portion 19A.
  • An outer edge extension 19A on the low pressure side of the casing ring 19 covers the partition wall 15 of the casing in a wide range.
  • the diameter of the outer edge extension 19 ⁇ / b> A extending outward in the radial direction with respect to the rotation axis is sufficient up to about 1.5 times the diameter of the inflow portion 9 a of the impeller 9.
  • an electrical insulating material 17C having a predetermined thickness is also filled between the outer edge extension 19A and the partition wall 15.
  • the casing ring 19 is made of a metal resistant to erosion, for example, stainless cast steel, and the casing (partition 15) is less susceptible to erosion than stainless cast steel, but is a general-purpose metal. For example, even if it is made of cast iron, the partition wall 15 can be protected from cavitation erosion.
  • the suction flow path is not necessarily axisymmetric with respect to the rotation axis of the pump, but is often non-axisymmetric. It is desirable to manufacture the outer edge extension portion in a non-axisymmetric manner in accordance with the shape of the suction flow path so that the path and the outer edge extension portion 19A are smoothly connected.
  • FIG. 5 shows a fourth embodiment.
  • 9a is a corrosion erosion prevention structure in which the difference from the inclination of the outer edge facing the casing ring 19 side is within about 10 degrees (region B in the figure).
  • FIG. 6 is an enlarged view of region B in FIG.
  • the inclination angle of the outer edge of the casing ring 19 facing the inflow portion side of the adjacent impeller 9 is ⁇ ′ degree, and the inclination of the outer edge of the inflow portion of the impeller 9 facing the casing ring 19 side.
  • the angle is ⁇ degrees.
  • FIG. 7 is a diagram showing the main part of an example in which the structure for preventing corrosion and corrosion according to the present embodiment is applied to a pump of a type in which a radially inward flow flows into the inflow portion 9a of the impeller 9.
  • the electrical insulating material 17E of this embodiment has an L-shaped cross section.
  • a prime mover such as an electric motor (not shown) is engaged with the rotary shaft 7 of the pump, and the impeller 9 is rotated by the driving force of the prime mover.
  • the liquid flowing in the internal flow path passes through the suction side flow path 11 between the side cover 14 and the partition wall 15 of the casing, and flows inward in the radial direction from the outside of the rotating shaft 7. Then, it flows into the inflow portion 9a of the impeller 9 as indicated by an arrow C in the figure.
  • the liquid that has flowed into the impeller 9 from the suction side flow path 11 receives the rotational energy of the impeller 9 and is converted into a liquid whose pressure energy and kinetic energy are increased by centrifugal force.
  • the pressure of the discharge side flow path 13 is relatively higher than that of the suction side flow path 11, and in order to maintain this pressure, the suction side flow path 11 and the discharge side flow path 13 are separated by the partition wall 15 of the casing portion. It is separated.
  • the impeller 9 rotates along a vertical plane that crosses the rotary shaft 7.
  • the horizontal axis of rotation in this embodiment is an example, and it may be installed along the vertical direction or other angular directions.
  • the casing ring 19 is provided in the partition wall 15 of the casing and the impeller ring 10 is provided in the impeller 9 at the end of the partition wall 15 of the casing and facing the impeller 9.
  • An electrical insulating material 17 is provided between the casing ring 19 and the end of the partition wall 15 of the casing.
  • the electrical insulating material 17E is filled so as to be in close contact with the casing ring 19 and the partition wall 15 of the casing. Has been. Since the electrical insulating material 17E is in intimate contact with the casing ring 19 and the partition wall 15, no gap is formed between the casing ring 19 and the partition wall 15, thereby preventing fluid leakage and preventing the casing ring 19 and the partition wall 15 from Electric contact can also be prevented.
  • the electrical insulating material 17E may use any resin material such as an insulating film, an insulating paint, and an insulating adhesive, and may be formed as a fiber reinforced plastic or a particle reinforced plastic. In addition to resin materials, insulating low-melting glass, ceramic adhesive, and the like may be used. However, it is necessary to maintain the functions of maintaining electrical insulation, maintaining sealing properties, and maintaining dimensional accuracy by absorbing vibrations, shocks, and temperature changes in pump operation over a long period of time. For this reason, an epoxy-based, silicon-based, or PTFE-based electrically insulating material is preferable as a suitable material. Even when these materials are used in water, there is almost no outflow or absorption of components into the water, so there is almost no deterioration even during long-term use.
  • An epoxy-based or silicon-based electrically insulating material has good adhesion (affinity) to a metal surface if it is a liquid or gel-like insulating paint or insulating adhesive. For this reason, when this is applied to one or both of the casing and the casing ring, and the application surfaces thereof are aligned with the mating surface, the coating agent spreads on the mating surface of the casing and the casing ring, and an electrically insulating material between the two A film-like layer is formed. This film-like layer gradually cures to some extent and becomes solid.
  • the solid film-like layer has high adhesion strength and fracture strength, and even when the pump is operated for a long period of time, even if there is vibration of the pump, impact during sliding, frictional heat, etc., the electrically insulating material Does not break or come off and maintains adhesion. For this reason, a gap is not formed between the casing ring and the casing, and the liquid is kept from leaking, and electrical contact and electrical continuity between the casing ring and the casing are prevented.
  • the electrically insulating material is silicon or PTFE
  • the filling thickness of the electrical insulating material 17E is preferably in the range of about 0.005 mm to 2 mm, but 0.05 mm or more is preferably in the form of a film, and if it is less than 0.05 mm, an insulating paint or an insulating adhesive can be applied. preferable.
  • FIG. 8 shows a corrosion / erosion prevention structure equipped with an electrically insulating O-ring 23b in addition to the electrically insulating material 17F disclosed in FIG.
  • the O-ring 23 b is mounted in an O-ring groove 23 a formed in the partition wall 15.
  • the electrically insulating material 17F may break or peel from the casing ring 19 or the casing 15 due to vibration of the pump, impact during sliding, frictional heat, or the like.
  • the sealing performance is maintained by the O-ring 23b, the liquid is continuously maintained so as not to flow through the gap, and the casing ring 19 and the partition wall 15 of the casing are further reinforced so as not to make electrical contact.
  • the O-ring groove 23a may be formed on either the casing ring 19 side or the casing 15 side.
  • the electrically insulating O-ring 23b is responsible for maintaining the sealing performance, the electrical insulating material 17F is not required to have much adhesiveness with the mating surface.
  • the electrical insulating material 17F is formed with a thickness of 0.05 mm to 10 mm so that the casing ring 19 and the partition wall 15 of the casing do not contact even at one point and in order to receive the contact pressure applied to their mating surfaces. It is also desirable to insert it as a silicon-based or PTFE-based component.
  • FIG. 9 shows a corrosion / erosion prevention structure in which the outer edge of the casing ring 19a on the low pressure side, that is, the suction side flow path 11 side, extends outward in the radial direction of the pump shaft.
  • This extending portion is an outer edge extension 19A.
  • the casing ring 19 is divided into two parts, a first member 19a and a second member 19b. For this reason, even when the joining shape of the electrically insulating material 17G is complicated as shown in the figure, the first member 19a is disposed on the impeller 9 side, and the second member 19b is disposed on the suction side flow path 11 side. Can be assembled by fixing with screws 21.
  • the above-described corrosion erosion prevention structure enables assembly of the corrosion erosion prevention structure including the outer edge extension portion 19A even in a pump (such as a ring-cut type) in which the upper casing and the lower casing are not separated.
  • the low pressure side of the second portion 19b of the casing ring 19 covers the partition wall 15 in a wide range. By doing in this way, even if the inlet back flow accompanied by cavitation occurs from the impeller 9 to the suction side flow path 11 during the low flow rate operation of the pump, the second portion 19b protects the partition wall 15, so that erosion progresses. Can be prevented.
  • the second portion 19b of the casing ring 19 is made of a metal that is resistant to erosion, for example, stainless cast steel, and the partition wall 15 of the casing is less susceptible to erosion than the second portion 19b of the casing ring 19 but is made of a general-purpose metal, for example, cast iron.
  • the partition wall 15 of the casing can be protected from cavitation erosion.
  • the present invention can also be defined as a method for manufacturing a pump. That is, a method of manufacturing a pump including a casing and an impeller, wherein the casing is provided, an electrical insulating material is provided at a predetermined position of the casing, and a predetermined casing ring facing the impeller is interposed via the electrical insulating material.
  • the pump is installed in the casing.
  • the present invention can also be defined as a pump repair method. That is, a method of repairing a pump including a casing and an impeller, wherein an electrical insulating material is provided at a predetermined location of the casing, and a predetermined casing ring facing the impeller is attached to the casing via the electrical insulating material.
  • This is a repair method for the pump. The repair is performed after disassembling the pump once.
  • the present invention is not limited to the embodiment shown in FIG. 1 and FIG. 9, and is a pump that pressurizes and transfers a liquid. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Provided is a structure that prevents corrosion from occurring and progressing between materials even when a casing and a casing ring (liner ring) (19) are of dissimilar metal materials and that prevents erosion by way of cavitation caused by leaks that pass through gaps between the casing and the casing ring due to corrosion progression. An erosion preventing structure near the location where the casing faces an impeller (9) comprises the casing, the casing ring (19) that is disposed in the casing and faces the impeller (9), and an electrical insulating member (17A) that is provided between the casing and the casing ring (19).

Description

腐食壊食防止構造およびこれを備えるポンプ、並びにポンプの製造方法および補修方法Corrosion erosion prevention structure, pump including the same, pump manufacturing method and repair method
 本願発明は、ケーシングリング(ライナーリング)を用いたポンプに係り、特に、両吸込遠心ポンプ、遠心多段ポンプ、吸込ボリュートを有するポンプなどのように、回転軸に関して半径方向内向き流れがポンプ羽根車の流入部に流入する形式のポンプに深く関連し、ケーシングリング(ライナーリング)における腐食壊食防止構造およびこれを備えるポンプに関する。更には、当該ポンプの製造方法及び補修方法に関する。 The present invention relates to a pump using a casing ring (liner ring), and in particular, a pump impeller has a radially inward flow with respect to a rotating shaft such as a double suction centrifugal pump, a centrifugal multistage pump, a pump having a suction volute, and the like. The present invention relates to a structure for preventing corrosion and erosion in a casing ring (liner ring) and a pump including the same. Furthermore, it is related with the manufacturing method and repair method of the said pump.
 ポンプのケーシングリング(ライナーリング)とインペラリング(ウェアリングリング)は、ポンプ羽根車の高圧部と低圧部の境界に存在する。ケーシングリングはケーシングに固定されて回転せず、一方インペラリングは回転軸の回転に従い回転する。このため、基本的にケーシングリングとインペラリングは接触しないように設計され、互いの間にわずかな隙間を持たせている。 The pump casing ring (liner ring) and impeller ring (wear ring) are present at the boundary between the high pressure part and the low pressure part of the pump impeller. The casing ring is fixed to the casing and does not rotate, while the impeller ring rotates according to the rotation of the rotating shaft. For this reason, the casing ring and the impeller ring are basically designed not to contact each other, and a slight gap is provided between them.
 例えば、図10は、半径方向内向き流れがインペラ59の注入部59aに流入する、一般的な形式のポンプである。ポンプの回転軸57には、図示しない電動モータなどの原動機が係合されている。この原動機の駆動力によりインペラ59が回転するようになっている。吸込側流路61を流れる液体は、回転軸57の半径方向外側から半径方向内向きに流れ込んで、図中矢印Cのように羽根車の注入部59aに流入する。 For example, FIG. 10 shows a general type of pump in which a radially inward flow flows into the injection portion 59a of the impeller 59. A prime mover such as an electric motor (not shown) is engaged with the rotary shaft 57 of the pump. The impeller 59 is rotated by the driving force of the prime mover. The liquid flowing through the suction side channel 61 flows inward in the radial direction from the radially outer side of the rotation shaft 57 and flows into the injection portion 59a of the impeller as indicated by an arrow C in the figure.
 吸込側流路61からインペラ59に流入した液体は、インペラ59の回転エネルギーを受けて、遠心力により圧力エネルギーと運動エネルギーが高められた液体となる。この圧力エネルギーを保持するために、吸込側流路61と吐出側流路63を隔てるように、ケーシング53の一部が隔壁65として形成されている。 The liquid that has flowed into the impeller 59 from the suction-side flow path 61 receives the rotational energy of the impeller 59 and becomes a liquid whose pressure energy and kinetic energy are increased by centrifugal force. In order to maintain this pressure energy, a part of the casing 53 is formed as a partition wall 65 so as to separate the suction side flow path 61 and the discharge side flow path 63.
 このケーシング53の隔壁65の端部であって、インペラ59と対向(場合によっては摺動)する部位に、ケーシングリング69が設けられる。一方、インペラリング60がインペラ59に備えられている。 A casing ring 69 is provided at the end of the partition wall 65 of the casing 53 and facing the impeller 59 (sliding in some cases). On the other hand, an impeller ring 60 is provided on the impeller 59.
 また別の例として、図11は両吸込渦巻きポンプ101の例を示す断面図である。この図11に示す両吸込渦巻きポンプ101は、上ケーシング103と、下ケーシング105と、これら両ケーシング103,105の境界領域に設置される回転軸107と、当該回転軸107上に設置されるインペラ109とを備えている。そして両ケーシング103,105内には、インペラ109を介して吸込側流路111と吐出側流路113とが形成されている。 As another example, FIG. 11 is a cross-sectional view showing an example of both suction centrifugal pumps 101. 11 includes an upper casing 103, a lower casing 105, a rotating shaft 107 installed in a boundary region between the casings 103 and 105, and an impeller installed on the rotating shaft 107. 109. A suction side flow path 111 and a discharge side flow path 113 are formed in both casings 103 and 105 via an impeller 109.
 インペラ109は、図示しない電動モータなどの原動機が係合された回転軸107の回転に伴い回転する。この回転によりインペラ109は、吐出側流路113を中心として両側の吸込側流路111から液体を吸い込む。このため、吸込側流路111では、半径方向内向き流れがインペラ109の注入部109aに流入する。インペラ109の回転エネルギーは遠心力として液体に対して与えられ、液体自体の圧力エネルギーと運動エネルギーに変換されている。この圧力を保持するため、吸込側流路111と吐出側流路113を隔てるように、ケーシング103,105の一部が隔壁115として形成されている。 The impeller 109 rotates with the rotation of the rotating shaft 107 with which a prime mover such as an electric motor (not shown) is engaged. By this rotation, the impeller 109 sucks the liquid from the suction side flow paths 111 on both sides around the discharge side flow path 113. For this reason, in the suction side flow path 111, the radially inward flow flows into the injection portion 109 a of the impeller 109. The rotational energy of the impeller 109 is given to the liquid as a centrifugal force, and converted into pressure energy and kinetic energy of the liquid itself. In order to maintain this pressure, a part of the casings 103 and 105 is formed as a partition wall 115 so as to separate the suction side flow path 111 and the discharge side flow path 113.
 このケーシング103,105の隔壁115の端部であって、インペラ109と摺動する部位は、図11における領域Aの拡大図である図12に詳述されている。この図12に示されるように、前述した位置関係でケーシングリング119がケーシング105の一部である隔壁115に備えられ、インペラリング110がインペラ109に備えられている。尚、領域Aと同じ構造が、図中の回転軸に関して対称の部分と、中心線Lに関して対称な部分にもあることは勿論である。 The end of the partition wall 115 of the casings 103 and 105 and the part that slides with the impeller 109 is described in detail in FIG. 12, which is an enlarged view of the region A in FIG. As shown in FIG. 12, the casing ring 119 is provided in the partition wall 115 which is a part of the casing 105 and the impeller ring 110 is provided in the impeller 109 in the positional relationship described above. Needless to say, the same structure as that of the region A is also present in a portion symmetric with respect to the rotation axis and a portion symmetric with respect to the center line L in the drawing.
 以上、例示したポンプ101において、ケーシングリング119とインペラリング110の対向部位では、両者の間の隙間を通る漏れ流れが高圧側から低圧側に向かって発生する。この隙間は非常に小さく設計されるので、両者が接触することは避けられない。そこで、ケーシングリング119は、軸受に要求されるほどの性能が求められる訳ではないが、ポンプ101が送液する液体によって潤滑されれば、接触しても問題の無いような材料が選ばれる。このような理由で、ケーシングリング119の材料を選ぶことから、多くの場合、ケーシング105とケーシングリング119は異種金属材料の組み合わせとなる。 As described above, in the illustrated pump 101, a leakage flow passing through the gap between the casing ring 119 and the impeller ring 110 is generated from the high pressure side to the low pressure side. Since this gap is designed to be very small, it is inevitable that the two come into contact with each other. Therefore, the casing ring 119 is not required to have the performance required for the bearing. However, if the casing ring 119 is lubricated by the liquid sent by the pump 101, a material that does not cause a problem even if contacted is selected. For this reason, since the material of the casing ring 119 is selected, in many cases, the casing 105 and the casing ring 119 are a combination of different metal materials.
 ところで、二種の異なる金属が電気的に接した状態で電解質溶液に接触したとき、単独の場合と比較して腐食が助長される。これは、金属間の電位差によりイオン化傾向の強い金属から弱い金属に電子が移動し、電荷を失った金属原子がイオンとして溶液中に溶け出すことによる腐食現象である。例えば、ポンプの材料として広く用いられる鋳鉄は、単独でも溶存酸素を多く含む水にさらされた場合、1年で0.1から0.2mm程度の速度で腐食が進む。しかし、鋳鉄が、ステンレス鋼などの鋳鉄よりも腐食電位が高い(貴な)金属と電気的に接した状態では、腐食がさらに加速され、場合によっては鋳鉄が単独で存在する場合の2倍以上の腐食速度になることもある。このため、長期間にわたってポンプの運転をしたケーシングとケーシングリング間にも、腐食によって隙間が生じ拡大する場合がある。 By the way, when the two different metals are in contact with the electrolyte solution while being in electrical contact, corrosion is promoted as compared with the case where it is alone. This is a corrosion phenomenon caused by electrons moving from a metal having a strong ionization tendency to a weak metal due to a potential difference between the metals, and the metal atoms that have lost their charge are dissolved in the solution as ions. For example, cast iron, which is widely used as a material for pumps, corrodes at a rate of about 0.1 to 0.2 mm per year when exposed to water containing a large amount of dissolved oxygen. However, when the cast iron is in electrical contact with a (noble) metal having a higher corrosion potential than cast iron such as stainless steel, the corrosion is further accelerated, and in some cases more than twice that when cast iron is present alone. Corrosion rate may be reduced. For this reason, a gap may be generated due to corrosion between the casing and the casing ring that have been operated for a long time.
 従来のポンプにおいては、ケーシングリングとケーシング間は、塗装の無い金属加工面同士で直接接触する場合が多かった。例えば、ケーシングが鋳鉄で、ケーシングリングがステンレス鋳鋼の組み合わせを選択した場合、仮に単独の鋳鉄の腐食速度を0.1mm/yとし、ステンレスとの接触による助長率を2倍とすると、10年間で0.1×2×10=2mm程度の隙間がケーシングとケーシングリング間に形成される場合もある。前述のように、ケーシングリングはポンプ内の高圧部と低圧部の間に存在する。このため、ケーシングとケーシングリングの間の隙間が拡大して、高圧部と低圧部が連通して流体がその隙間を通過してしまう。その結果、ケーシングリングとインペラリング間の漏れ流れとは別に、新たな漏れ流れが発生することになる。 In conventional pumps, there are many cases in which the casing ring and the casing are in direct contact with each other between the metal processed surfaces without painting. For example, if the casing is cast iron and the casing ring is a combination of stainless steel, the corrosion rate of a single cast iron is 0.1 mm / y, and the rate of promotion by contact with stainless steel is doubled. In some cases, a gap of about × 2 × 10 = 2 mm is formed between the casing and the casing ring. As described above, the casing ring exists between the high pressure portion and the low pressure portion in the pump. For this reason, the clearance gap between a casing and a casing ring expands, a high pressure part and a low voltage | pressure part are connected, and the fluid will pass the clearance gap. As a result, a new leakage flow is generated separately from the leakage flow between the casing ring and the impeller ring.
 さらに、ポンプの揚程が高い場合、高圧側と低圧側の圧力差が大きくなり、漏れ流れが低圧側に噴出する際にきわめて高速となる。このため、ケーシングリングの周囲にキャビテーションを生じさせてしまう。キャビテーションは金属材料を壊食するため、ケーシングリングとケーシングとが接触する部位も含め、その近傍のケーシング表面に壊食を生じさせる場合がある。 Furthermore, when the pump head is high, the pressure difference between the high-pressure side and the low-pressure side becomes large, and when the leakage flow is ejected to the low-pressure side, the speed becomes extremely high. This causes cavitation around the casing ring. Since cavitation erodes the metal material, it may cause erosion on the surface of the casing in the vicinity thereof, including the portion where the casing ring and the casing come into contact.
 特に、ポンプの材料に広く用いられる鋳鉄においては、このような異種金属接触腐食とキャビテーション壊食が重畳された場合の表面の損傷は著しい。このような漏れ流れの増大、およびケーシングの損傷が進展すると、ポンプに要求される性能が満足されなくなる。またポンプケーシングの強度が低下し、より大規模なポンプの破損が生じる可能性も高まる。 Especially, in cast iron widely used for pump materials, the surface damage is significant when such different metal contact corrosion and cavitation erosion are superimposed. As the leakage flow increases and casing damage progresses, the performance required for the pump cannot be satisfied. In addition, the strength of the pump casing is reduced, and the possibility that a larger scale of the pump will be damaged increases.
 また、ポンプは低流量時にインペラ部にキャビテーションを伴った「入口逆流」が生じる場合が多い。流量はインペラよりも下流側に設置されるバルブの開閉によって制限されるようになっているからである。この入口逆流現象は、図13に示すように、インペラ59の内部から吸込側流路61側へ流体が再循環する流れが生じることである。この入口逆流も、その発生場所がケーシングリング69に近いため、ケーシングリング69に近い隔壁65にも接触し、壊食をさらに進展させることになる。 Also, the pump often has an “inlet back flow” accompanied by cavitation in the impeller at a low flow rate. This is because the flow rate is limited by opening and closing a valve installed on the downstream side of the impeller. This inlet backflow phenomenon is a flow in which the fluid recirculates from the inside of the impeller 59 to the suction side flow path 61 as shown in FIG. Since the reverse flow of the inlet is also close to the casing ring 69, it also contacts the partition wall 65 close to the casing ring 69 and further promotes erosion.
 しかしながら、従来の技術で、このようなケーシングとケーシングリング(ライナーリング)間の腐食と重畳されたキャビテーション壊食による表面の損傷を防止するものは知られていない。このため、本願発明は、上記問題点に鑑みてなされたものであり、ケーシングとケーシングリングが異種金属材料であっても、互いの材料の間の腐食の発生と進展を防止するものである。また、ケーシングとケーシングリング間に生じる隙間における、漏れ流れによるキャビテーション壊食を防止する構造を提供するものである。さらに、ポンプの低流量時にインペラ内にキャビテーションを伴って生じる「入口逆流」の影響によるケーシングリング近傍のケーシング(隔壁)の壊食を防止する構造を提供するものである。 However, there is no known prior art that prevents surface damage due to cavitation erosion superimposed on corrosion between the casing and the casing ring (liner ring). For this reason, this invention is made | formed in view of the said problem, Even if a casing and a casing ring are dissimilar metal materials, generation | occurrence | production and progress of corrosion between each other material are prevented. Moreover, the structure which prevents the cavitation erosion by the leakage flow in the clearance gap produced between a casing and a casing ring is provided. Furthermore, the present invention provides a structure that prevents erosion of the casing (partition wall) in the vicinity of the casing ring due to the influence of “inlet backflow” that occurs with cavitation in the impeller at a low flow rate of the pump.
 前記課題解決にむけた第1の手段は、ケーシングとインペラとの対向部位近傍における壊食防止構造であって、ケーシングと、当該ケーシングに設置されると共に前記インペラに対向するケーシングリングと、前記ケーシングとケーシングリングとの間に設けられる電気的絶縁材とを備えている、壊食防止構造である。このようにすることで、電気的絶縁材により、ケーシングリングとケーシングの間が電気的に絶縁され、ケーシングリングとケーシング間の異種金属接触腐食が生じず、腐食の進展が抑えられる。更に、電気的絶縁材により、ケーシングリングとケーシング間に隙間を、加圧された液体が流通しないようにすることができる。このため、キャビテーションによる壊食および、それらに起因するケーシングリングとケーシング間の漏れ流れの増大が防止される。 The first means for solving the problem is an erosion prevention structure in the vicinity of a facing portion between the casing and the impeller, the casing, a casing ring that is installed in the casing and faces the impeller, and the casing And an electrically insulating material provided between the casing ring and the casing ring. By doing in this way, between an casing ring and a casing is electrically insulated by an electrical insulating material, the dissimilar-metal contact corrosion between a casing ring and a casing does not arise, but progress of corrosion is suppressed. Further, the electrically insulating material can prevent the pressurized liquid from flowing through the gap between the casing ring and the casing. For this reason, the erosion by cavitation and the increase of the leakage flow between the casing ring and casing resulting from them are prevented.
 第2の手段は、前記電気的絶縁材は、エポキシ系材料又はシリコン系材料を含む、手段1に記載の腐食壊食防止構造である。ケーシングとケーシングリングの間に、エポキシ系、シリコン系、PTFE材料の少なくとも1つを含む電気的絶縁材を挟み込むことで、ポンプを長期間にわたって運転した場合に、ポンプの振動や摺動時の衝撃や摩擦熱などがあっても、該電気的絶縁材は、割れたり外れたりせず、密着性を維持する。このため、ケーシングとケーシングリングとの隙間を加圧された液体が流通しないように維持し続けるとともに、ケーシングリングとケーシングの電気的接触、電気的導通も防止できる。 The second means is the corrosion erosion prevention structure according to means 1, wherein the electrical insulating material includes an epoxy-based material or a silicon-based material. When the pump is operated for a long period of time by sandwiching an electrical insulating material containing at least one of epoxy, silicon, and PTFE material between the casing and the casing ring, the vibration of the pump and the impact during sliding Even if there is frictional heat or the like, the electrical insulating material does not break or come off and maintains the adhesion. For this reason, while maintaining the gap between a casing and a casing ring so that the pressurized liquid may not distribute | circulate, the electrical contact and electrical conduction of a casing ring and a casing can also be prevented.
 第3の手段は、前記ケーシングとケーシンリングの境界面に、シール用のOリングが配置されている、手段1又は2に記載の腐食壊食防止構造である。このようにすると、ポンプを長期間にわたって運転した場合に、ポンプの振動や摺動時の衝撃や摩擦熱などにより、該電気的絶縁材料が割れたり、ケーシングリングやケーシングから剥離したりしても、Oリングによりシール性が維持される。このため、ケーシングリングやケーシングとの隙間を加圧された液体が流通しないように維持し続けるとともに、ケーシングリングとケーシングの電気的接触、電気的導通も防げられる。 The third means is the structure for preventing corrosion and erosion according to means 1 or 2, wherein an O-ring for sealing is disposed at the boundary surface between the casing and the casing ring. In this way, when the pump is operated over a long period of time, even if the electrically insulating material is cracked or peeled off from the casing ring or casing due to vibration of the pump, impact during sliding, frictional heat, etc. The o-ring maintains the sealing performance. For this reason, while keeping the pressurized liquid from flowing through the gap between the casing ring and the casing, electrical contact and electrical continuity between the casing ring and the casing can be prevented.
 第4の手段は、前記ケーシングリングの低圧側には、前記インペラとの対向部位からポンプ主軸の半径方向外方に向かって延びる外縁延長部が設けられている、手段1から3の何れか一項に記載の腐食壊食防止構造である。このようにすることで、ケーシングリングが吸込流路の半径外向きにも広がっており、逆流キャビテーションがケーシングに直接当たらず、ケーシングリングによって保護される。 The fourth means is any one of the means 1 to 3, wherein an outer edge extension extending from the portion facing the impeller toward the radially outward direction of the pump main shaft is provided on the low pressure side of the casing ring. It is a structure for preventing corrosion and erosion as described in the item. By doing in this way, the casing ring also spreads outward in the radius of the suction flow path, and the backflow cavitation does not directly hit the casing but is protected by the casing ring.
 第5の手段は、前記外縁延長部の先端部における角度と、当該外縁の先端部に対向する前記インペラの外縁の角度とは、差が10度以内である、手段4に記載の腐食壊食防止構造である。このようにすることで、液体の流れは滑らかになり、段差によって生じる損失が低減される。 The fifth means is the corrosion erosion according to means 4, wherein the difference between the angle at the tip of the outer edge extension and the angle of the outer edge of the impeller facing the tip of the outer edge is within 10 degrees. It is a prevention structure. By doing so, the flow of the liquid becomes smooth and the loss caused by the step is reduced.
 第6の手段は、前記ケーシングリングは2つの部材を組み合わせて構成されている、手段1から5の何れか一項に記載の腐食壊食防止構造である。こうすることで、ケーシングと電気的絶縁材が複雑な形状を有していても、それに対応して複雑な形状のケーシングリングを設置することが可能である。また、上ケーシングと下ケーシングとが分離しない形式のポンプにも、容易に複雑な形状のケーシングリングを設置することが可能である。 The sixth means is the corrosion erosion prevention structure according to any one of means 1 to 5, wherein the casing ring is configured by combining two members. By doing so, even if the casing and the electrical insulating material have a complicated shape, it is possible to install a casing ring having a complicated shape correspondingly. Also, it is possible to easily install a casing ring having a complicated shape even in a pump in which the upper casing and the lower casing are not separated.
 第7の手段は、手段1から6の何れか一項に記載の腐食壊食防止構造と、前記ケーシングによって回転自在に支持されているポンプ主軸と、該ポンプ主軸に装着されたインペラと、前記ケーシング内部に形成される液体流路、とを備えたポンプである。 Seventh means includes the corrosion erosion prevention structure according to any one of means 1 to 6, a pump main shaft rotatably supported by the casing, an impeller mounted on the pump main shaft, And a liquid channel formed inside the casing.
 第8の手段は、ケーシングとインペラとを備えるポンプの製造方法であって、前記ケーシング備え、前記ケーシングの所定箇所に電気的絶縁材を設け、前記インペラに対向する所定のケーシングリングを、前記電気絶縁材料を介して前記ケーシングに設置する、ポンプの製造方法である。 The eighth means is a method of manufacturing a pump comprising a casing and an impeller, wherein the casing is provided, an electrical insulating material is provided at a predetermined location of the casing, and a predetermined casing ring facing the impeller is provided with the electric It is a manufacturing method of a pump installed in the casing via an insulating material.
 第9の手段は、ケーシングとインペラとを備えるポンプの補修方法であって、前記ケーシングの所定箇所に電気的絶縁材を設け、前記インペラに対向する所定のケーシングリングを、前記電気絶縁材料を介して前記ケーシングに設置する、ポンプの補修方法である。 Ninth means is a method of repairing a pump comprising a casing and an impeller, wherein an electrical insulating material is provided at a predetermined location of the casing, and a predetermined casing ring facing the impeller is provided via the electrical insulating material. This is a method for repairing the pump installed in the casing.
 以上のような各手段により、例えば、
1)ケーシングリングとケーシング間の腐食の防止、
2)上記腐食に起因するケーシングリングとケーシング間の漏れ流れの防止、
3)漏れ流れによるキャビテーション壊食の防止、さらに
4)低流量時にポンプ吸込み口近傍に生ずる「入口逆流」のキャビテーションによるポンプケーシングリング近傍の壊食を防止、
をすることが可能となる。
By each means as described above, for example,
1) Prevention of corrosion between casing ring and casing,
2) Prevention of leakage flow between the casing ring and the casing due to the above corrosion,
3) Prevention of cavitation erosion due to leakage flow, and 4) Prevention of erosion near the pump casing ring due to cavitation of "inlet reverse flow" generated near the pump suction port at low flow rates.
It becomes possible to do.
本願発明の一実施形態に係る腐食壊食防止構造を具備するポンプの全体断面図である。It is a whole sectional view of a pump which comprises a corrosion erosion prevention structure concerning one embodiment of the present invention. 図1の領域Aにおける拡大断面図である。It is an expanded sectional view in the field A of FIG. 図1の領域Aにおける別の実施形態の拡大断面図である。It is an expanded sectional view of another embodiment in the area | region A of FIG. 図1の領域Aにおける、さらに別の実施形態の拡大断面図である。It is an expanded sectional view of another embodiment in the area | region A of FIG. 図1の領域Aにおける、さらに別の実施形態の拡大断面図である。It is an expanded sectional view of another embodiment in the area | region A of FIG. 図5のB部分の拡大図である。FIG. 6 is an enlarged view of a portion B in FIG. 5. 本願発明の一実施形態とは別の形態のポンプにおける実施形態の拡大断面図である。It is an expanded sectional view of embodiment in the pump of the form different from one Embodiment of this invention. 本願発明の一実施形態とは別の形態のポンプにおける、別の実施形態の拡大断面図である。It is an expanded sectional view of another embodiment in the pump of the form different from one Embodiment of this invention. 本願発明の一実施形態とは別の形態のポンプにおける、さらに別の実施形態の拡大断面図である。It is an expanded sectional view of another embodiment in the pump of the form different from one Embodiment of this invention. 従来のポンプを示す全体断面図である。It is whole sectional drawing which shows the conventional pump. 従来のポンプを示す全体断面図である。It is whole sectional drawing which shows the conventional pump. 図10に開示したポンプの領域Aの拡大断面図である。It is an expanded sectional view of the area | region A of the pump disclosed in FIG. 低流量時にインペラ部にキャビテーションを伴った「入口逆流」の説明図である。It is explanatory drawing of the "inlet backflow" accompanied by cavitation in the impeller part at the time of low flow volume.
 次に、図面を参照しながら、本願発明の一実施形態について説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
[全体概要]
 図1は、本実施形態に係る両吸込渦巻き型のポンプ1の全体概要を示す断面図である。ポンプ1は、上ケーシング3と、下ケーシング5と、これら両ケーシング3,5の境界領域に設置される回転軸7と、当該回転軸7に設けられるインペラ9とを備えている。そして両ケーシング3,5内には、インペラ9を介して吸込側流路11と吐出側流路13とが形成されている。これら吸込側流路11と吐出側流路13が流体流路となる。
[Overview]
FIG. 1 is a cross-sectional view showing an overall outline of a double suction spiral pump 1 according to the present embodiment. The pump 1 includes an upper casing 3, a lower casing 5, a rotating shaft 7 installed in a boundary region between the casings 3 and 5, and an impeller 9 provided on the rotating shaft 7. A suction side flow path 11 and a discharge side flow path 13 are formed in both casings 3 and 5 via an impeller 9. The suction side flow path 11 and the discharge side flow path 13 are fluid flow paths.
[ケーシング]
 上述したように、本実施形態のポンプ1は、吐出側流路13を中心として両側から液体を吸い込む形式の両吸込渦巻きポンプである。このため、ケーシング3、5の内部に、吸込側流路11と吐出側流路13を隔てる隔壁15が設けられている。本実施形態の特徴の一つは、このケーシング3,5の隔壁15の端部であって、インペラ9と対向(摺動)する部位の近傍の構造である。その対向部位を、この図においては、領域Aとして示している。
[casing]
As described above, the pump 1 of the present embodiment is a double-suction centrifugal pump that sucks liquid from both sides around the discharge-side flow path 13. For this reason, the partition 15 which separates the suction side flow path 11 and the discharge side flow path 13 is provided in the casings 3 and 5. One of the features of the present embodiment is the structure in the vicinity of the end portion of the partition wall 15 of the casings 3 and 5 and the portion facing (sliding) the impeller 9. The facing portion is shown as region A in this figure.
[回転軸]
 ポンプ1の回転軸7には、図示しない電動モータなどの原動機が係合されている。この原動機の駆動力により、回転軸7に設置されたインペラ9が回転するようになっている。本実施形態のポンプ1では、回転軸7が水平方向に沿って設けられている。このため、インペラ9は回転軸7を横切る垂直面に沿って回転することとなる。ただし、本実施形態における水平方向の回転軸は一例であって、垂直方向やそれ以外の角度方向に沿って設置してもよい。回転軸7は、軸受7aを介して、上ケーシング3と下ケーシング5の間に挟まれている。この軸受7aが設置される部位は、基本的にポンプ内部の吸込側流路11と外部環境との境界となっている。このため、吸込側流路11内の液体が外部に漏れないように、軸受7aにはシール構造(図示略)が設けられている。
[Axis of rotation]
A prime mover such as an electric motor (not shown) is engaged with the rotary shaft 7 of the pump 1. The impeller 9 installed on the rotary shaft 7 is rotated by the driving force of the prime mover. In the pump 1 of this embodiment, the rotating shaft 7 is provided along the horizontal direction. For this reason, the impeller 9 rotates along a vertical plane crossing the rotation shaft 7. However, the horizontal axis of rotation in this embodiment is an example, and it may be installed along the vertical direction or other angular directions. The rotating shaft 7 is sandwiched between the upper casing 3 and the lower casing 5 via a bearing 7a. The part where the bearing 7a is installed is basically a boundary between the suction side flow path 11 inside the pump and the external environment. For this reason, the bearing 7a is provided with a seal structure (not shown) so that the liquid in the suction side channel 11 does not leak to the outside.
[インペラ]
 インペラ9は、回転軸7の回転に伴い回転し、吐出側流路13を中心として両側の吸込側流路11から液体を吸い込む。インペラ9の流入部9aは回転軸7の近傍に形成されているが、吸込側流路11は上記流入部9aよりも半径方向外側まで形成されている。このため、吸込側流路11では、半径方向内向き流れが、インペラ9の流入部9aに流入する。インペラ9の回転エネルギーは、内部を流れる流体に対して遠心力として付与される。この遠心力によって運動エネルギーが与えられる。これにより、結果的にはインペラ9の回転エネルギーが圧力エネルギーと運動エネルギーに変換されるのである。従って、吐出側流路13の圧力は、相対的に吸込側流路11の圧力より高い圧力となる。この圧力を保持するために、低圧側の吸込側流路11と高圧側の吐出側流路13を隔てるように、ケーシングの一部が隔壁15として設けられているのである。
[Impeller]
The impeller 9 rotates with the rotation of the rotary shaft 7 and sucks liquid from the suction side flow paths 11 on both sides around the discharge side flow path 13. The inflow portion 9a of the impeller 9 is formed in the vicinity of the rotating shaft 7, but the suction side flow path 11 is formed to the outside in the radial direction from the inflow portion 9a. For this reason, in the suction side flow path 11, the radially inward flow flows into the inflow portion 9 a of the impeller 9. The rotational energy of the impeller 9 is given as centrifugal force to the fluid flowing inside. This centrifugal force gives kinetic energy. As a result, the rotational energy of the impeller 9 is eventually converted into pressure energy and kinetic energy. Accordingly, the pressure in the discharge side flow path 13 is relatively higher than the pressure in the suction side flow path 11. In order to maintain this pressure, a part of the casing is provided as a partition wall 15 so as to separate the suction side flow path 11 on the low pressure side and the discharge side flow path 13 on the high pressure side.
 このケーシング3,5の隔壁15の端部であって、インペラ9と対向(摺動)する部位(図1の領域A)では、ケーシングの隔壁15にケーシングリング19が設けられ、インペラ9にインペラリング10が備えられている。この点は、図2から図5に示された拡大図の説明で詳述する。尚、領域Aと同じ構造が、図中の回転軸7に関して対称の部分と、中心線Lに関して対称な部分にもあることは勿論である。 A casing ring 19 is provided on the partition wall 15 of the casing at the end of the partition wall 15 of the casings 3 and 5 and facing (sliding) the impeller 9 (region A in FIG. 1). A ring 10 is provided. This point will be described in detail in the explanation of enlarged views shown in FIGS. Needless to say, the same structure as that of the region A is also present in a portion symmetric with respect to the rotation axis 7 and a portion symmetric with respect to the center line L in the drawing.
[ケーシングリング]
 図2に示すように、本実施形態に係るポンプでは、インペラ9とインペラリング10については従来のものとほぼ同様ではある。一方、ケーシング側の構造が従来のポンプと異なっている。すなわち、ケーシングリング19とケーシングの隔壁15の端部との間に、電気的絶縁材17Aを設けている点が特徴である。本実施形態の電気的絶縁材17Aは半円形状であり、ケーシングリング19と、隔壁15のそれぞれに密着するような状態で充填されている。このように、電気的絶縁材17Aがケーシングリング19と隔壁15に密着しているので、ケーシングリング19と隔壁15との間には隙間が形成されず、漏れ流れが発生せず、また両者の電気的接触も防ぐことができる。
[Casing ring]
As shown in FIG. 2, in the pump according to the present embodiment, the impeller 9 and the impeller ring 10 are substantially the same as the conventional one. On the other hand, the structure on the casing side is different from the conventional pump. That is, the electrical insulating material 17A is provided between the casing ring 19 and the end of the partition wall 15 of the casing. The electrical insulating material 17 </ b> A of the present embodiment has a semicircular shape, and is filled so as to be in close contact with the casing ring 19 and the partition wall 15. As described above, since the electrical insulating material 17A is in close contact with the casing ring 19 and the partition wall 15, no gap is formed between the casing ring 19 and the partition wall 15, and no leakage flow occurs. Electrical contact can also be prevented.
 電気的絶縁材17Aは、絶縁性フィルム、絶縁性塗料、絶縁性接着剤などの樹脂材料を用いることができる。また、繊維強化プラスティックや粒子強化プラスティックも用いることができる。更には、樹脂材料以外でも、絶縁性のある低融点ガラス、セラミック系接着剤などを用いても良い。しかしながら、長期間に及ぶポンプ運転による振動、衝撃、温度変化などに対して、電気的絶縁性維持、シール性維持、寸法精度の維持という機能を保ち続ける必要がある。このため、それに適した材料として、エポキシ系、シリコン系、あるいはPTFE系の電気的絶縁材料が好ましい。これらの材料は、水中で使用した場合でも水中への成分の流出や吸収がほとんどないので、長期間にわたって使用しても劣化がほとんどない。 The resin material such as an insulating film, an insulating paint, and an insulating adhesive can be used for the electrical insulating material 17A. Further, fiber reinforced plastics and particle reinforced plastics can also be used. Furthermore, in addition to the resin material, insulating low-melting glass, ceramic adhesive, or the like may be used. However, it is necessary to maintain the functions of maintaining electrical insulation, maintaining sealing properties, and maintaining dimensional accuracy against vibrations, shocks, temperature changes, and the like due to pump operation over a long period of time. For this reason, an epoxy-based, silicon-based, or PTFE-based electrically insulating material is preferable as a suitable material. Even when these materials are used in water, there is almost no outflow or absorption of components into the water, so that there is almost no deterioration even when used over a long period of time.
 エポキシ系あるいはシリコン系の電気的絶縁材料が、液状あるいはゲル状の絶縁塗料、絶縁性接着剤である場合は、金属面への付着性(親和性)がよい。このため、電気的絶縁材料をケーシングの隔壁15またはケーシングリング19の少なくともどちらか一方に塗布し、それらの塗布面を相手面に合わせると、ケーシングの隔壁15とケーシングリング19の合わせ面に広がって、両者の間に電気的絶縁材料の膜状の層が形成される。この膜状の層が、本実施形態の電気的絶縁材17Aとなる。この膜状の層は次第に硬化がある程度進行し、固体状になる。固体状の膜状の層は、密着強度、破壊強度ともに高い。このため、ポンプを長期間にわたって運転した場合において、ポンプの振動や摺動時の衝撃や摩擦熱などがあっても、該電気的絶縁材17Aは、割れたり外れたりせず、密着性を維持する。このため、ケーシングの隔壁15とケーシングリング19との間を加圧された流体が流通しないように維持し続けるとともに、ケーシングリング19と隔壁15との電気的接触、電気的導通も防止できる。 When the epoxy-based or silicon-based electrically insulating material is a liquid or gel-like insulating paint or insulating adhesive, adhesion (affinity) to the metal surface is good. For this reason, when an electrically insulating material is applied to at least one of the partition wall 15 and the casing ring 19 of the casing and the application surfaces thereof are aligned with the mating surface, the surface spreads to the mating surface of the casing partition wall 15 and the casing ring 19. A film-like layer of an electrically insulating material is formed between the two. This film-like layer becomes the electrical insulating material 17A of the present embodiment. This film-like layer gradually cures to some extent and becomes solid. The solid film-like layer has high adhesion strength and fracture strength. Therefore, when the pump is operated for a long period of time, even if there is vibration of the pump, impact during sliding, frictional heat, etc., the electrical insulating material 17A does not break or come off and maintains the adhesion. To do. For this reason, while maintaining so that the pressurized fluid may not distribute | circulate between the partition 15 and the casing ring 19 of a casing, the electrical contact and electrical continuity with the casing ring 19 and the partition 15 can also be prevented.
 また、電気的絶縁材料がシリコン系あるいはPTFE系であれば、フィルム状にして隔壁15とケーシングリング19の合わせ面の間に挟みこむことも好ましい。シリコン系(PTFE系)は、硬化しても粘弾性を失わないので、金属面の表面粗さが少なければ金属面に密着する。また、隔壁15とケーシングリング19の合わせ面の形状が標準化されていれば、あらかじめシリコン系フィルムを成型したものを用意することで、隔壁15とケーシングリング19の間に挟みこむ作業も効率的となる。この点で、絶縁塗料、絶縁性接着剤の塗布作業ではおこりがちな塗布量の不均一といったことがない。尚、電気的絶縁材料の充填の厚みは、例えば0.005mmから2mmの範囲が好ましいが、0.05mm以上はフィルム状の方が好ましく、0.05mm未満の場合は絶縁塗料、絶縁性接着剤の塗布が好ましい。 Further, if the electrically insulating material is silicon or PTFE, it is also preferable to form a film and sandwich it between the mating surfaces of the partition wall 15 and the casing ring 19. Since silicon (PTFE) does not lose viscoelasticity even when cured, it adheres closely to the metal surface if the surface roughness of the metal surface is small. Further, if the shape of the mating surface of the partition wall 15 and the casing ring 19 is standardized, it is possible to efficiently insert the silicon-based film between the partition wall 15 and the casing ring 19 in advance. Become. In this respect, there is no non-uniform application amount that tends to occur in the application of the insulating paint and the insulating adhesive. The thickness of the electrically insulating material filling is preferably in the range of 0.005 mm to 2 mm, for example, but 0.05 mm or more is preferably a film, and if it is less than 0.05 mm, an insulating paint or an insulating adhesive can be applied. preferable.
 なお、電気的絶縁材17Aは、隔壁15およびケーシングリング19との密着性を確保するために、その断面形状が矩形波状となっている。こうすることで、隔壁15やケーシングリング19に衝撃等が加わった場合でも、電気的絶縁材料が隔壁15等から剥離するのが防止される。但し、当該断面形状は一例であって、本発明がこれに限定される訳ではない。 In addition, in order to ensure the adhesiveness with the partition 15 and the casing ring 19, the cross-sectional shape of the electrical insulating material 17A is a rectangular wave shape. By doing so, even when an impact or the like is applied to the partition wall 15 or the casing ring 19, the electrically insulating material is prevented from peeling off from the partition wall 15 or the like. However, the cross-sectional shape is an example, and the present invention is not limited to this.
 図3は、第2の実施形態を示す図である。この実施形態は、前記電気的絶縁材17に加えて、電気的絶縁性のOリングが装着された腐食壊食防止構造である。すなわち、ケーシングリング19の外周面にOリング溝23aが形成され、このOリング溝23aにOリング23bが嵌め込まれている。ポンプを長期間にわたって運転した場合に、ポンプの振動や摺動時の衝撃や摩擦熱などにより、電気的絶縁材料17Bが割れたり、ケーシングリング19やケーシング15から剥離したりすることが考えられる。この場合でも、Oリングによりシール性を維持することができる。このため、ケーシングリング19と隔壁15の間に隙間が形成されたとしても、この隙間を液体が通過しないようにシール性を維持し続けることができる。それと共に、ケーシングリング19とケーシングの隔壁15とが電気的接触をしないように更に補強する。 FIG. 3 is a diagram showing a second embodiment. This embodiment is a corrosion erosion prevention structure in which an electrical insulating O-ring is mounted in addition to the electrical insulating material 17. That is, an O-ring groove 23a is formed on the outer peripheral surface of the casing ring 19, and the O-ring 23b is fitted in the O-ring groove 23a. When the pump is operated for a long period of time, it is conceivable that the electrically insulating material 17B is broken or peeled off from the casing ring 19 or the casing 15 due to vibration of the pump, impact during sliding, frictional heat, or the like. Even in this case, the sealing performance can be maintained by the O-ring. For this reason, even if a gap is formed between the casing ring 19 and the partition wall 15, the sealing performance can be maintained so that liquid does not pass through the gap. At the same time, the casing ring 19 and the partition wall 15 of the casing are further reinforced so as not to make electrical contact.
 このOリングを用いる実施形態の場合は、Oリングが漏れ流れを防止するようにシール性の維持を担っている。このため、ケーシングリング19と隔壁15との合わせ面の間に挟みこむ電気的絶縁材17Bは、合わせ面との密着性をそれほど要求されない。但し、Oリングを使用する場合、一定以上のシール性を確保するために、Oリング自体が潰れることを前提としている。この場合、Oリングを支点としたOリング前後(図3においては、Oリングの左右)において、ケーシングリング19と隔壁15との当接圧力は均一ではない。このため、ケーシングリング19と隔壁15の合わせ面の間に挟みこむ電気的絶縁材17は、ケーシングリング19と隔壁15が一点でも接触しないようにし、かつ、それらの合わせ面にかかる当接圧力を受け止めるために、0.05mmから10mm程度の厚みとして成型されシリコン系あるいはPTFE系の部品として嵌め込むことも望ましい。 In the case of the embodiment using this O-ring, the O-ring is responsible for maintaining the sealing performance so as to prevent leakage flow. For this reason, the electrical insulating material 17B sandwiched between the mating surfaces of the casing ring 19 and the partition wall 15 is not required to have much adhesiveness with the mating surfaces. However, when an O-ring is used, it is assumed that the O-ring itself is crushed in order to ensure a certain level of sealing performance. In this case, the contact pressure between the casing ring 19 and the partition wall 15 is not uniform before and after the O-ring with the O-ring as a fulcrum (left and right of the O-ring in FIG. 3). For this reason, the electrical insulating material 17 sandwiched between the mating surfaces of the casing ring 19 and the partition wall 15 prevents the casing ring 19 and the partition wall 15 from being in contact with each other, and the contact pressure applied to these mating surfaces is reduced. In order to receive it, it is also desirable to mold it as a thickness of about 0.05 mm to 10 mm and fit it as a silicon-based or PTFE-based component.
 図4は、第3の実施形態を示している。この実施形態では、ケーシングリング19の低圧(吸込側流路11)側の外縁が、回転軸の半径方向外側に延びている腐食壊食防止構造を示す。以下、延びている部分を外縁延長部19Aと称する。ケーシングリング19の低圧側の外縁延長部19Aは、ケーシングの隔壁15を広い範囲で覆っている。このようにすることで、ポンプの低流量運転時にインペラ9から吸込側流路11にキャビテーションを伴った入口逆流が生じても、ケーシングリング19が隔壁15を保護するので、壊食の進展を防ぐことができる。 FIG. 4 shows a third embodiment. In this embodiment, the corrosion erosion prevention structure in which the outer edge of the casing ring 19 on the low pressure (suction side flow path 11) side extends radially outward of the rotating shaft is shown. Hereinafter, the extending portion is referred to as an outer edge extension portion 19A. An outer edge extension 19A on the low pressure side of the casing ring 19 covers the partition wall 15 of the casing in a wide range. By doing in this way, even if an inlet reverse flow accompanied by cavitation occurs from the impeller 9 to the suction side flow path 11 during the low flow operation of the pump, the casing ring 19 protects the partition wall 15 and thus prevents the progress of erosion. be able to.
 外縁延長部19Aの回転軸に関する半径方向外側への延びは、インペラ9の流入部9aの直径の1.5倍程度までの直径で充分である。本実施形態では、外縁延長部19Aと隔壁15との間にも、所定厚さの電気的絶縁材17Cが充填されている。このような外縁延長部19Aを形成することで、ケーシングリング19を壊食に強い金属、例えばステンレス鋳鋼で構成し、ケーシング(隔壁15)をステンレス鋳鋼よりも壊食に弱いが汎用的な金属、例えば鋳鉄で構成しても、キャビテーション壊食から隔壁15を守ることができる。なお、両吸込渦巻遠心ポンプや吸込みボリュートを有するポンプでは、ポンプの回転軸に対して吸込流路が必ずしも軸対称ではなく、非軸対称である場合が多いが、このような場合は、吸込流路と外縁延長部19Aが滑らかに接続するよう、外縁延長部形状を吸込流路形状に合わせて非軸対称に製作するのが望ましい。 The diameter of the outer edge extension 19 </ b> A extending outward in the radial direction with respect to the rotation axis is sufficient up to about 1.5 times the diameter of the inflow portion 9 a of the impeller 9. In the present embodiment, an electrical insulating material 17C having a predetermined thickness is also filled between the outer edge extension 19A and the partition wall 15. By forming such an outer edge extension 19A, the casing ring 19 is made of a metal resistant to erosion, for example, stainless cast steel, and the casing (partition 15) is less susceptible to erosion than stainless cast steel, but is a general-purpose metal. For example, even if it is made of cast iron, the partition wall 15 can be protected from cavitation erosion. In the case of a double-suction centrifugal pump or a pump having a suction volute, the suction flow path is not necessarily axisymmetric with respect to the rotation axis of the pump, but is often non-axisymmetric. It is desirable to manufacture the outer edge extension portion in a non-axisymmetric manner in accordance with the shape of the suction flow path so that the path and the outer edge extension portion 19A are smoothly connected.
 図5は、第4の実施形態を示している。この実施形態では、ケーシングリング19の低圧側、すなわち吸込側流路11の側の外縁において、近接するインペラ9の流入部9a側に向いたケーシングリング19の外縁の傾きと、インペラ9の流入部9aのケーシングリング19側に向いた外縁の傾きとの差が、約10度以内である腐食壊食防止構造である(図中の領域B)。 FIG. 5 shows a fourth embodiment. In this embodiment, the inclination of the outer edge of the casing ring 19 facing the inflow portion 9a side of the adjacent impeller 9 and the inflow portion of the impeller 9 at the low pressure side of the casing ring 19, that is, the outer edge of the suction side flow path 11 side. 9a is a corrosion erosion prevention structure in which the difference from the inclination of the outer edge facing the casing ring 19 side is within about 10 degrees (region B in the figure).
 図6は、図5の領域Bを拡大した図である。図6では、ケーシングリング19の低圧側外縁で、近接するインペラ9の流入部側に向いた外縁の傾き角をα’度とし、インペラ9の流入部のケーシングリング19側に向いた外縁の傾き角をα度としている。ここで、α-α’の絶対値が10度以内となるように角度を設定することで、液体の流れは滑らかになり、段差によって生じる損失が低減される。 FIG. 6 is an enlarged view of region B in FIG. In FIG. 6, the inclination angle of the outer edge of the casing ring 19 facing the inflow portion side of the adjacent impeller 9 is α ′ degree, and the inclination of the outer edge of the inflow portion of the impeller 9 facing the casing ring 19 side. The angle is α degrees. Here, by setting the angle so that the absolute value of α−α ′ is within 10 degrees, the flow of the liquid becomes smooth and the loss caused by the step is reduced.
 図7は、半径方向内向き流れがインペラ9の流入部9aに流入する形式のポンプに、本実施形態に係る腐食壊食防止構造を適用した例について、その主要部分を示した図である。当該実施形態の電気的絶縁材17Eは、断面がL字形状となっている。ポンプの回転軸7には、図示しない電動モータなどの原動機が係合されており、この原動機の駆動力によりインペラ9を回転させるようになっている。内部の流路を流れる液体は、サイドカバー14とケーシングの隔壁15の間の吸込側流路11を通り、回転軸7の外側から半径方向内向きに流れ込む。そして、図中矢印Cのようにインペラ9の流入部9aに流入する。 FIG. 7 is a diagram showing the main part of an example in which the structure for preventing corrosion and corrosion according to the present embodiment is applied to a pump of a type in which a radially inward flow flows into the inflow portion 9a of the impeller 9. The electrical insulating material 17E of this embodiment has an L-shaped cross section. A prime mover such as an electric motor (not shown) is engaged with the rotary shaft 7 of the pump, and the impeller 9 is rotated by the driving force of the prime mover. The liquid flowing in the internal flow path passes through the suction side flow path 11 between the side cover 14 and the partition wall 15 of the casing, and flows inward in the radial direction from the outside of the rotating shaft 7. Then, it flows into the inflow portion 9a of the impeller 9 as indicated by an arrow C in the figure.
 吸込側流路11からインペラ9に流入した液体は、インペラ9の回転エネルギーを受けて、遠心力により圧力エネルギーと運動エネルギーを高められた液体に変換される。吐出側流路13の圧力は相対的に吸込側流路11より高い圧力となっており、この圧力を保持するため、吸込側流路11と吐出側流路13は、ケーシング部の隔壁15により隔てられている。尚、本実施形態のポンプでは、回転軸7が水平方向に沿って設けられているため、インペラ9は回転軸7を横切る垂直面に沿って回転することとなる。ただし、本実施形態における水平方向の回転軸は一例であって、垂直方向やそれ以外の角度方向に沿って設置してもよい。 The liquid that has flowed into the impeller 9 from the suction side flow path 11 receives the rotational energy of the impeller 9 and is converted into a liquid whose pressure energy and kinetic energy are increased by centrifugal force. The pressure of the discharge side flow path 13 is relatively higher than that of the suction side flow path 11, and in order to maintain this pressure, the suction side flow path 11 and the discharge side flow path 13 are separated by the partition wall 15 of the casing portion. It is separated. In the pump of the present embodiment, since the rotary shaft 7 is provided along the horizontal direction, the impeller 9 rotates along a vertical plane that crosses the rotary shaft 7. However, the horizontal axis of rotation in this embodiment is an example, and it may be installed along the vertical direction or other angular directions.
 このケーシングの隔壁15の端部であって、インペラ9と対向する部位で、ケーシングリング19がケーシングの隔壁15に備えられ、インペラリング10がインペラ9に備えられている。ケーシングリング19とケーシングの隔壁15の端部との間には、電気的絶縁材17が設けられており、この電気的絶縁材17Eは、ケーシングリング19とケーシングの隔壁15に密着するように充填されている。電気的絶縁材17Eがケーシングリング19と隔壁15に密着しているので、ケーシングリング19と隔壁15の間に隙間が形成されず、流体の漏れ流れを防止し、ケーシングリング19と隔壁15との電気的接触も防げる。 The casing ring 19 is provided in the partition wall 15 of the casing and the impeller ring 10 is provided in the impeller 9 at the end of the partition wall 15 of the casing and facing the impeller 9. An electrical insulating material 17 is provided between the casing ring 19 and the end of the partition wall 15 of the casing. The electrical insulating material 17E is filled so as to be in close contact with the casing ring 19 and the partition wall 15 of the casing. Has been. Since the electrical insulating material 17E is in intimate contact with the casing ring 19 and the partition wall 15, no gap is formed between the casing ring 19 and the partition wall 15, thereby preventing fluid leakage and preventing the casing ring 19 and the partition wall 15 from Electric contact can also be prevented.
 電気的絶縁材17Eは、絶縁性フィルム、絶縁塗料、絶縁性接着剤など、いかなる樹脂材料を用いても良く、繊維強化プラスティックや粒子強化プラスティックとして形成してもよい。また、樹脂材料以外でも、絶縁性のある低融点ガラス、セラミック系接着剤などを用いても良い。しかし、長期間に及ぶポンプ運転における振動や衝撃、温度変化を吸収して、電気的絶縁維持、シール性維持、寸法精度維持という機能を保ち続ける必要がある。このため、それに適した材料として、エポキシ系、シリコン系、あるいはPTFE系の電気的絶縁材料が好ましい。これらの材料は、水中で使用した場合にも、水中への成分の流出や吸収がほとんどないので、長期使用でも劣化がほとんどない。 The electrical insulating material 17E may use any resin material such as an insulating film, an insulating paint, and an insulating adhesive, and may be formed as a fiber reinforced plastic or a particle reinforced plastic. In addition to resin materials, insulating low-melting glass, ceramic adhesive, and the like may be used. However, it is necessary to maintain the functions of maintaining electrical insulation, maintaining sealing properties, and maintaining dimensional accuracy by absorbing vibrations, shocks, and temperature changes in pump operation over a long period of time. For this reason, an epoxy-based, silicon-based, or PTFE-based electrically insulating material is preferable as a suitable material. Even when these materials are used in water, there is almost no outflow or absorption of components into the water, so there is almost no deterioration even during long-term use.
 エポキシ系あるいはシリコン系の電気的絶縁材料は、液状あるいはゲル状の絶縁塗料、絶縁性接着剤であれば、金属面に付着性(親和性)が良い。このため、ケーシングまたはケーシングリングのどちらか一方あるいは両方にこれを塗布し、それらの塗布面を相手面に合わせるとケーシングとケーシングリングの合わせ面に塗布剤が広がって両者の間に電気的絶縁材料の膜状の層が形成される。この膜状の層は次第に硬化がある程度進行し、固体状になる。固体状の膜状の層は、密着強度、破壊強度ともに高く、ポンプを長期間にわたって運転した場合に、ポンプの振動や摺動時の衝撃や摩擦熱などがあっても、該電気的絶縁材料は、割れたり外れたりせず、密着性を維持する。このため、ケーシングリングとケーシングとの間に隙間が形成されず、液体の漏れ流れが発生しないように維持し続けるとともに、ケーシングリングとケーシングとの電気的接触、電気的導通も防げられる。 An epoxy-based or silicon-based electrically insulating material has good adhesion (affinity) to a metal surface if it is a liquid or gel-like insulating paint or insulating adhesive. For this reason, when this is applied to one or both of the casing and the casing ring, and the application surfaces thereof are aligned with the mating surface, the coating agent spreads on the mating surface of the casing and the casing ring, and an electrically insulating material between the two A film-like layer is formed. This film-like layer gradually cures to some extent and becomes solid. The solid film-like layer has high adhesion strength and fracture strength, and even when the pump is operated for a long period of time, even if there is vibration of the pump, impact during sliding, frictional heat, etc., the electrically insulating material Does not break or come off and maintains adhesion. For this reason, a gap is not formed between the casing ring and the casing, and the liquid is kept from leaking, and electrical contact and electrical continuity between the casing ring and the casing are prevented.
 また、電気的絶縁材料がシリコン系あるいはPTFE系であれば、フィルム状にしてケーシングとケーシングリングの合わせ面の間に挟みこむことも好ましい。シリコン系あるいはPTFE系は、硬化しても粘弾性を失わないので、上記合わせ面の表面粗さが少なければ合わせ面に密着する。このため、ケーシングとケーシングリングの合わせ面の形状が標準化されていれば、あらかじめシリコン系フィルムを成型したものを用意することで、ケーシングとケーシングリングの間に挟みこむ作業も効率的で、絶縁塗料、絶縁性接着剤の塗布作業ではおこりがちな塗布量の不均一といったことが生じない。尚、電気的絶縁材17Eの充填厚みは、0.005mmから2mm程度の範囲が好ましいが、0.05mm以上はフィルム状の方が好ましく、0.05mm未満の場合は絶縁塗料、絶縁性接着剤の塗布が好ましい。 Also, if the electrically insulating material is silicon or PTFE, it is also preferable to form a film and sandwich it between the mating surfaces of the casing and the casing ring. Since silicon or PTFE does not lose viscoelasticity even when cured, it adheres closely to the mating surface if the surface roughness of the mating surface is small. For this reason, if the shape of the mating surface of the casing and the casing ring is standardized, it is possible to efficiently insert the silicon-based film between the casing and the casing ring. In addition, there is no occurrence of non-uniform coating amount that tends to occur in the application of the insulating adhesive. The filling thickness of the electrical insulating material 17E is preferably in the range of about 0.005 mm to 2 mm, but 0.05 mm or more is preferably in the form of a film, and if it is less than 0.05 mm, an insulating paint or an insulating adhesive can be applied. preferable.
 図8は、図7に開示した電気的絶縁材17Fに加えて、電気的絶縁性のOリング23bを装着した腐食壊食防止構造である。Oリング23bは隔壁15に形成されたOリング溝23aに装着されている。ポンプを長期間にわたって運転した場合に、ポンプの振動や摺動時の衝撃や摩擦熱などにより、該電気的絶縁材料17Fが、割れたり、ケーシングリング19やケーシング15から剥離する場合もある。この場合でも、Oリング23bによりシール性を維持しているので、隙間に液体が流通しないように維持し続けるとともに、ケーシングリング19とケーシングの隔壁15が電気的接触をしないように更に補強する。 FIG. 8 shows a corrosion / erosion prevention structure equipped with an electrically insulating O-ring 23b in addition to the electrically insulating material 17F disclosed in FIG. The O-ring 23 b is mounted in an O-ring groove 23 a formed in the partition wall 15. When the pump is operated for a long period of time, the electrically insulating material 17F may break or peel from the casing ring 19 or the casing 15 due to vibration of the pump, impact during sliding, frictional heat, or the like. Even in this case, since the sealing performance is maintained by the O-ring 23b, the liquid is continuously maintained so as not to flow through the gap, and the casing ring 19 and the partition wall 15 of the casing are further reinforced so as not to make electrical contact.
 Oリング溝23aを形成するのは、ケーシングリング19側でも、ケーシング15側でもどちらでも良い。尚、この場合は、電気的絶縁性のOリング23bがシール性の維持を担っているので、電気的絶縁材17Fは、合わせ面との密着性をそれほど要求されない。但し、Oリング23bを使用する場合にはOリング自体の所定量の潰れを前提とするので、Oリング23bを支点としたOリング前後(図ではOリングの左右)のケーシングリング19とケーシング15による接触圧力のかかり方は均一ではない。そのため、電気的絶縁材17Fは、ケーシングリング19とケーシングの隔壁15が一点でも接触しないように、かつ、それらの合わせ面にかかる接触圧力を受けるために、0.05mmから10mmの厚みとした成型されシリコン系あるいはPTFE系の部品としてはめ込むことも望ましい。 The O-ring groove 23a may be formed on either the casing ring 19 side or the casing 15 side. In this case, since the electrically insulating O-ring 23b is responsible for maintaining the sealing performance, the electrical insulating material 17F is not required to have much adhesiveness with the mating surface. However, when the O-ring 23b is used, it is assumed that the O-ring itself is crushed by a predetermined amount. The contact pressure applied by is not uniform. Therefore, the electrical insulating material 17F is formed with a thickness of 0.05 mm to 10 mm so that the casing ring 19 and the partition wall 15 of the casing do not contact even at one point and in order to receive the contact pressure applied to their mating surfaces. It is also desirable to insert it as a silicon-based or PTFE-based component.
 図9は、ケーシングリング19aの低圧側、すなわち吸込側流路11の側の外縁が、ポンプ軸の半径方向外側に延びている腐食壊食防止構造を示す。この延びている部分は、外縁延長部19Aである。ケーシングリング19は、第1部材19aと第2部材19bの二つの部分に分かれている。このため、図のように電気的絶縁材料17Gの接合形状が複雑な場合でも、インペラ9側に第1部材19aを配置し、吸込側流路11の側に第2部材19bを配置し、これらをネジ21にて固定して組み立てることができる。 FIG. 9 shows a corrosion / erosion prevention structure in which the outer edge of the casing ring 19a on the low pressure side, that is, the suction side flow path 11 side, extends outward in the radial direction of the pump shaft. This extending portion is an outer edge extension 19A. The casing ring 19 is divided into two parts, a first member 19a and a second member 19b. For this reason, even when the joining shape of the electrically insulating material 17G is complicated as shown in the figure, the first member 19a is disposed on the impeller 9 side, and the second member 19b is disposed on the suction side flow path 11 side. Can be assembled by fixing with screws 21.
 上記腐食壊食防止構造は、上ケーシングと下ケーシングとが分離しない形式のポンプ(輪切り型など)においても、外縁延長部19Aを備える腐食壊食防止構造の組立てを可能にする。また、ケーシングリング19の第2部分19bの低圧側は、隔壁15を広い範囲で覆っている。このようにすることで、ポンプの低流量運転時にインペラ9から吸込側流路11にキャビテーションを伴った入口逆流が生じても、第2部分19bが隔壁15を保護するので、壊食の進展を防ぐことができる。ケーシングリング19の第2部分19bを壊食に強い金属、例えばステンレス鋳鋼製とし、ケーシングの隔壁15をケーシングリング19の第2部分19bよりも壊食に弱いが汎用的な金属、例えば鋳鉄製としても、キャビテーション壊食からケーシングの隔壁15を守ることができる。 The above-described corrosion erosion prevention structure enables assembly of the corrosion erosion prevention structure including the outer edge extension portion 19A even in a pump (such as a ring-cut type) in which the upper casing and the lower casing are not separated. The low pressure side of the second portion 19b of the casing ring 19 covers the partition wall 15 in a wide range. By doing in this way, even if the inlet back flow accompanied by cavitation occurs from the impeller 9 to the suction side flow path 11 during the low flow rate operation of the pump, the second portion 19b protects the partition wall 15, so that erosion progresses. Can be prevented. The second portion 19b of the casing ring 19 is made of a metal that is resistant to erosion, for example, stainless cast steel, and the partition wall 15 of the casing is less susceptible to erosion than the second portion 19b of the casing ring 19 but is made of a general-purpose metal, for example, cast iron. In addition, the partition wall 15 of the casing can be protected from cavitation erosion.
 以上の説明は、ポンプの腐食壊食防止構造として記載している。しかしながら、本願発明は、ポンプの製造方法として定義することもできる。すなわち、ケーシングとインペラとを備えるポンプの製造方法であって、前記ケーシング備え、前記ケーシングの所定箇所に電気的絶縁材を設け、前記インペラに対向する所定のケーシングリングを、前記電気絶縁材料を介して前記ケーシングに設置する、ポンプの製造方法である。なお、上述の発明を実施するための形態で説明した様々な特徴点は、当該ポンプの製造方法と組み合わせて適用することが可能である。 The above explanation is described as a structure for preventing corrosion and corrosion of the pump. However, the present invention can also be defined as a method for manufacturing a pump. That is, a method of manufacturing a pump including a casing and an impeller, wherein the casing is provided, an electrical insulating material is provided at a predetermined position of the casing, and a predetermined casing ring facing the impeller is interposed via the electrical insulating material. The pump is installed in the casing. It should be noted that the various feature points described in the embodiment for carrying out the invention described above can be applied in combination with the manufacturing method of the pump.
 更に本発明は、ポンプの補修方法としても定義することができる。すなわち、ケーシングとインペラとを備えるポンプの補修方法であって、前記ケーシングの所定箇所に電気的絶縁材を設け、前記インペラに対向する所定のケーシングリングを、前記電気絶縁材料を介して前記ケーシングに設置する、ポンプの補修方法である。なお、当該補修はポンプを一旦分解してから行われる。なお、上述の発明を実施するための形態で説明した様々な特徴点は、当該ポンプの補修方法と組み合わせて適用することが可能である。 Furthermore, the present invention can also be defined as a pump repair method. That is, a method of repairing a pump including a casing and an impeller, wherein an electrical insulating material is provided at a predetermined location of the casing, and a predetermined casing ring facing the impeller is attached to the casing via the electrical insulating material. This is a repair method for the pump. The repair is performed after disassembling the pump once. It should be noted that the various feature points described in the embodiments for carrying out the invention described above can be applied in combination with the pump repair method.
 本発明は、図1および図9に示す実施形態に限らず、液体を加圧して移送するポンプで、ケーシングとケーシングリング(ライナーリング)が異種金属材料であるポンプについて、腐食壊食対策に利用することができる。 The present invention is not limited to the embodiment shown in FIG. 1 and FIG. 9, and is a pump that pressurizes and transfers a liquid. can do.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。また、上記実施形態で説明した各発明特定事項は、発明として成立することを前提として、単独あるいは任意の組み合わせによって本願発明を構成する。 The above-described embodiments are described for the purpose of enabling the person having ordinary knowledge in the technical field to which the present invention belongs to implement the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the present invention is not limited to the described embodiments, but is to be construed in the widest scope according to the technical idea defined by the claims. Moreover, each invention specific matter demonstrated by the said embodiment comprises this invention individually or in arbitrary combinations on the assumption that it is materialized as invention.
1 ポンプ
3 上ケーシング
5 下ケーシング
7 回転軸
9 インペラ
9a 流入部
10 インペラリング
11 吸込側流路
13 吐出側流路
15 ケーシングの隔壁
17A,17B,17C,17D,17E,17F,17G 電気的絶縁材
19 ケーシングリング
19A 外縁延長部
21 ネジ
23a Oリング溝
23b Oリング溝
 
DESCRIPTION OF SYMBOLS 1 Pump 3 Upper casing 5 Lower casing 7 Rotating shaft 9 Impeller 9a Inlet part 10 Impeller ring 11 Suction side flow path 13 Discharge side flow path 15 Casing partition walls 17A, 17B, 17C, 17D, 17E, 17F, 17G Electrical insulation 19 Casing ring 19A Outer edge extension 21 Screw 23a O-ring groove 23b O-ring groove

Claims (9)

  1.  ケーシングとインペラとの対向部位近傍における壊食防止構造であって、
     ケーシングと、当該ケーシングに設置されると共に前記インペラに対向するケーシングリングと、前記ケーシングとケーシングリングとの間に設けられる電気的絶縁材とを備えている、腐食壊食防止構造。
    An erosion prevention structure in the vicinity of the facing portion between the casing and the impeller,
    A structure for preventing corrosion and corrosion, comprising a casing, a casing ring that is installed in the casing and faces the impeller, and an electrical insulating material that is provided between the casing and the casing ring.
  2.  前記電気的絶縁材は、エポキシ系、シリコン系、PTFE系材料の少なくとも1つを含む、請求項1に記載の腐食壊食防止構造。 The corrosion erosion prevention structure according to claim 1, wherein the electrical insulating material includes at least one of an epoxy-based material, a silicon-based material, and a PTFE-based material.
  3.  前記ケーシングとケーシンリングの境界面に、シール用のOリングが配置されている、請求項1又は2に記載の腐食壊食防止構造。 The corrosion / erosion prevention structure according to claim 1 or 2, wherein an O-ring for sealing is disposed at a boundary surface between the casing and the casing ring.
  4.  前記ケーシングリングの低圧側には、前記インペラとの対向部位からポンプ主軸の半径方向外方に向かって延びる外縁延長部が設けられている、請求項1から3の何れか一項に記載の腐食壊食防止構造。 The corrosion according to any one of claims 1 to 3, wherein an outer edge extension that extends from a portion facing the impeller toward a radially outward direction of the pump main shaft is provided on the low pressure side of the casing ring. Erosion prevention structure.
  5.  前記外縁延長部の先端部における角度と、当該外縁の先端部に対向する前記インペラの外縁の角度とは、差が10度以内である、請求項4に記載の腐食壊食防止構造。 The corrosion erosion prevention structure according to claim 4, wherein a difference between an angle at a tip portion of the outer edge extension portion and an angle of an outer edge of the impeller facing the tip portion of the outer edge is within 10 degrees.
  6.  前記ケーシングリングは2つの部材を組み合わせて構成されている、請求項1から5の何れか一項に記載の腐食壊食防止構造。 The corrosion erosion prevention structure according to any one of claims 1 to 5, wherein the casing ring is configured by combining two members.
  7.  請求項1から6の何れか一項に記載の腐食壊食防止構造と、前記ケーシングによって回転自在に支持されているポンプ主軸と、該ポンプ主軸に装着されたインペラと、前記ケーシング内部に形成される液体流路、とを備えたポンプ。 The corrosion erosion prevention structure according to any one of claims 1 to 6, a pump main shaft rotatably supported by the casing, an impeller mounted on the pump main shaft, and an inner portion of the casing. A liquid flow path.
  8.  ケーシングとインペラとを備えるポンプの製造方法であって、
     前記ケーシング備え、
     前記ケーシングの所定箇所に電気的絶縁材を設け、
     前記インペラに対向する所定のケーシングリングを、前記電気絶縁材料を介して前記ケーシングに設置する、ポンプの製造方法。
    A method of manufacturing a pump comprising a casing and an impeller,
    Including the casing,
    An electrical insulating material is provided at a predetermined location of the casing,
    A method for manufacturing a pump, wherein a predetermined casing ring facing the impeller is installed in the casing via the electrically insulating material.
  9.  ケーシングとインペラとを備えるポンプの補修方法であって、
     前記ケーシングの所定箇所に電気的絶縁材を設け、
     前記インペラに対向する所定のケーシングリングを、前記電気絶縁材料を介して前記ケーシングに設置する、ポンプの補修方法。
    A method of repairing a pump comprising a casing and an impeller,
    An electrical insulating material is provided at a predetermined location of the casing,
    A method for repairing a pump, wherein a predetermined casing ring facing the impeller is installed in the casing via the electrically insulating material.
PCT/JP2014/065291 2013-06-27 2014-06-10 Corrosion and erosion preventing structure and pump comprising same, and pump manufacturing method and repairing method WO2014208327A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015523961A JPWO2014208327A1 (en) 2013-06-27 2014-06-10 Corrosion erosion prevention structure, pump including the same, pump manufacturing method and repair method
CN201480035966.7A CN105339674A (en) 2013-06-27 2014-06-10 Corrosion and erosion preventing structure and pump comprising same, and pump manufacturing method and repairing method
SA515370324A SA515370324B1 (en) 2013-06-27 2015-12-27 Corrosion and Erosion Preventing Structure and Pump Comprising same, and Pump Manufacturing Method and Repairing Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013135228 2013-06-27
JP2013-135228 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208327A1 true WO2014208327A1 (en) 2014-12-31

Family

ID=52141672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065291 WO2014208327A1 (en) 2013-06-27 2014-06-10 Corrosion and erosion preventing structure and pump comprising same, and pump manufacturing method and repairing method

Country Status (4)

Country Link
JP (2) JPWO2014208327A1 (en)
CN (1) CN105339674A (en)
SA (1) SA515370324B1 (en)
WO (1) WO2014208327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190292A (en) * 2018-04-19 2019-10-31 株式会社荏原製作所 Liner ring, pump, and template used for repair of casing, and method for repairing casing of pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468657A (en) * 2018-04-09 2018-08-31 捷达消防科技(苏州)股份有限公司 The fire-fighting pump configuration of used in fire-fighting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119697U (en) * 1984-07-10 1986-02-04 株式会社クボタ double suction volute pump
JP2001323893A (en) * 2000-05-16 2001-11-22 Shimadzu Corp High speed rotation instrument
JP2002257082A (en) * 2001-02-28 2002-09-11 Teral Kyokuto Inc Liner ring for pump
JP2003013884A (en) * 2001-07-02 2003-01-15 Tsurumi Mfg Co Ltd Corrosive melt preventing structure for impeller fixing end face in underwater rotary machinery
JP2013047510A (en) * 2011-07-25 2013-03-07 Nidec Sankyo Corp Cascade pump device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529919Y2 (en) * 1991-05-08 1997-03-26 三菱重工業株式会社 Insulation material integrated pump with wear ring
JPH09329081A (en) * 1996-06-12 1997-12-22 Toshiba Corp Compressor
CN200999749Y (en) * 2007-01-12 2008-01-02 上海连成(集团)有限公司 Water pump blade wheel sealing device
CN201144858Y (en) * 2007-12-18 2008-11-05 兰州理工大学 Novel seal ring for centrifugal pump
CN201391481Y (en) * 2009-05-26 2010-01-27 湖南斯德尔重工科技有限公司 Sealing cup with sealing ring used for pump
CN201771849U (en) * 2010-07-13 2011-03-23 山东双轮股份有限公司 Anti-lock water pump impeller
CN201747666U (en) * 2010-08-03 2011-02-16 上海凯泉泵业(集团)有限公司 Seal ring structure of large flow high-lift double suction pump
CN201934361U (en) * 2010-11-03 2011-08-17 西安泵阀总厂有限公司 Mosaic sealing ring structure of centrifugal pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119697U (en) * 1984-07-10 1986-02-04 株式会社クボタ double suction volute pump
JP2001323893A (en) * 2000-05-16 2001-11-22 Shimadzu Corp High speed rotation instrument
JP2002257082A (en) * 2001-02-28 2002-09-11 Teral Kyokuto Inc Liner ring for pump
JP2003013884A (en) * 2001-07-02 2003-01-15 Tsurumi Mfg Co Ltd Corrosive melt preventing structure for impeller fixing end face in underwater rotary machinery
JP2013047510A (en) * 2011-07-25 2013-03-07 Nidec Sankyo Corp Cascade pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190292A (en) * 2018-04-19 2019-10-31 株式会社荏原製作所 Liner ring, pump, and template used for repair of casing, and method for repairing casing of pump
JP7262928B2 (en) 2018-04-19 2023-04-24 株式会社荏原製作所 How to repair the casing of a pump with a liner ring

Also Published As

Publication number Publication date
CN105339674A (en) 2016-02-17
JP6469811B2 (en) 2019-02-13
JPWO2014208327A1 (en) 2017-02-23
JP2018040363A (en) 2018-03-15
SA515370324B1 (en) 2020-12-06

Similar Documents

Publication Publication Date Title
JP5575202B2 (en) Magnetic drive pump
US9494239B2 (en) Sliding parts
US9086075B2 (en) Impeller assembly and method
EP2841826B1 (en) High damping labyrinth seal with helicoidal or helicoidal-cylindrical mixed pattern
EP2800904B1 (en) Rotodynamic pump with permanent magnet coupling inside the impeller
EP2752602A1 (en) Sliding component
JP6469811B2 (en) Corrosion erosion prevention structure, pump including the same, pump manufacturing method and repair method
JP6001707B2 (en) Compressor housing for turbocharger
EP3276142B1 (en) Impeller cover, rotary machine, and impeller cover manufacturing method
JP6177421B2 (en) Seal structure and supercharger provided with the seal structure
JP5767636B2 (en) Vacuum pump
US20070280823A1 (en) Seal device for a fluid machine
CA2797164C (en) Centrifugal pump for slurries
WO2012105116A1 (en) Rotating body of vacuum pump, fixed member placed to be opposed to same, and vacuum pump provided with them
US20110286840A1 (en) Liquid ring pump with liner
JP2017020412A (en) Fluid machine and shaft seal device
CN108591473A (en) Mechanically-sealing apparatus
JP5517880B2 (en) Eddy flow pump device
KR20100050986A (en) A underwater pump
KR102104416B1 (en) Centrifugal compressor
JP2006183475A (en) Centrifugal compressor
US5452997A (en) Rotary device with thermally compensated seal
JP2011236823A (en) Screw compressor
Konishi et al. Hydraulic Loss and Internal Flow of a Pump Equipped with an Impeller with Radial and Annular Flow Channels
CN115681541A (en) Sealing element and electric valve

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035966.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523961

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818551

Country of ref document: EP

Kind code of ref document: A1