WO2014207857A1 - Cytotoxicity testing device and cytotoxicity testing method - Google Patents

Cytotoxicity testing device and cytotoxicity testing method Download PDF

Info

Publication number
WO2014207857A1
WO2014207857A1 PCT/JP2013/067577 JP2013067577W WO2014207857A1 WO 2014207857 A1 WO2014207857 A1 WO 2014207857A1 JP 2013067577 W JP2013067577 W JP 2013067577W WO 2014207857 A1 WO2014207857 A1 WO 2014207857A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
tank
culture
culture tank
waste liquid
Prior art date
Application number
PCT/JP2013/067577
Other languages
French (fr)
Japanese (ja)
Inventor
由美子 五十嵐
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/067577 priority Critical patent/WO2014207857A1/en
Publication of WO2014207857A1 publication Critical patent/WO2014207857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity

Definitions

  • the present invention relates to an easy-to-handle cytotoxicity test apparatus and a test method using the same, which can be cultured while being transported after seeding of cells and can be easily exchanged a plurality of times.
  • Toxicity evaluation of chemical substances and the like using cells is widely used as a representative, such as the neutral red method and MTT (evaluation using Methylthiazol reagent) method, and is performed in a laboratory.
  • the first reason that is limited to the laboratory is that it is difficult to bring out the cells as the test material outside the laboratory in terms of maintaining the culture conditions.
  • cell culture uses a gas-exchangeable container, and is cultured in an environment of 37 ° C., saturated water vapor, and 5% CO 2 addition, so a dedicated incubator is required.
  • the second reason is that the cytotoxicity test is difficult to perform except in a laboratory equipped with facilities.
  • the procedure of the cytotoxicity test is very complicated as cell maintenance, cell seeding and culture, medium exchange and exposure to a test substance, replacement with a detection reagent consisting of several steps, and measurement with an instrument.
  • cell culture facilities sterile operation benches, CO 2 incubators, cell storage facilities, microscopes, centrifuges
  • measuring devices suitable for detection items spectrometers, fluorescence measuring devices, image analysis software, etc.
  • OECD Test Guidelines (TG 201: Algae Growth Inhibition Test (July 28, 2011), TG 202: Daphnia Acute swimming Inhibition Test (November 23, 2004), TG 203: Fish Acute Toxicity Test (1992) July 17th edition), TG 204: Fish extended toxicity test (April 4, 1984 edition), TG 211: Daphnia reproduction test (October 2, 2012 edition)), http: //www.oecd-ilibrary .org / environment / oecd-guidelines-for-the-testing-of-chemicals-section-2-effects-on-biotic-systems_20745761
  • an object of the present invention is to provide a cell toxicity test apparatus that enables cell culture and toxicity tests on-site and is easy to handle, and a test method using the apparatus.
  • the cytotoxicity test apparatus has a liquid feeding hole for injecting a medium containing cells to be tested, a culture tank for introducing the medium and seeding and culturing the cells, and a waste liquid tank for discarding the culture medium in the culture tank.
  • the cells are cultured using the medium, and a test solution for testing the toxicity injected from the solution feeding hole is fed into the culture tank in which the medium is discarded, and the test solution is exposed to the cultured cells, It is characterized by assessing cell toxicity based on cell viability.
  • the main features of the cytotoxicity test method according to the present invention are as follows. (2) A step of injecting a medium containing cells to be tested from a liquid supply hole, a step of supplying the injected medium to a culture tank and seeding the cells, and a step of culturing the cells seeded in the culture tank And a step of discarding the culture medium in the culture tank to the waste liquid tank, a step of feeding a test liquid for testing the toxicity injected from the liquid feed hole into the culture tank in which the medium has been drained after culturing the cells, and culturing the test liquid Exposing the exposed cells, determining the viability of the cells after the exposure, and evaluating the toxicity to the cells.
  • cell culture and toxicity tests can be performed on-site, and a cytotoxicity test apparatus that is easy to handle and a test method using the same can be provided.
  • the cytotoxicity test can be carried out outside the laboratory, the time until the result can be obtained can be shortened, and the problem of sample denaturation due to storage time and condition can be solved.
  • the operation is simple, and toxicity tests can be performed with only a micropipette and a simple temperature controller, and even those who have little experience in bio-experiments can easily perform tests.
  • the cytotoxicity test apparatus of the present invention is small in size and can save space when carried out in a laboratory.
  • the cytotoxicity test container is a container capable of performing cell culture and toxicity test in an integrated manner, and includes a culture tank and a waste liquid tank, from a liquid feed hole to a culture tank, from a culture tank to a waste liquid tank, and from a waste liquid tank to a waste liquid. It consists of a flow path connecting each of the holes.
  • Cells and culture medium are injected into the culture tank 1 from the feeding hole 3 and cultured. After discarding the culture medium into the waste tank 2, the test solution / detection reagent is injected from the feeding hole 3 to treat the cells, and the toxicity test is performed. It can be performed.
  • the size of the culture tank 1 is preferably 5 mm square or more and 1 mm to 2 mm high, which can easily determine toxicity with the naked eye.
  • a circular spot facing is inserted under the liquid feeding hole 3. It is desirable that the spot facings have the same height as the flow path and have a diameter that is at least twice the diameter of the flow path.
  • the position of the solution is maintained and the reverse flow is achieved by balance with the air pressure. Can be prevented.
  • the turn of the flow path 5 connecting the liquid feeding hole 3 to the culture tank 1 is one time or a plurality of times. It is desirable to put the turn of the flow path 6 connecting the culture tank 1 to the waste liquid tank 2 at least twice.
  • the shape of the turn is preferably a right angle or an acute angle so as to prevent the flow of the solution. This turn makes it possible to prevent the solution position from being retained and the waste liquid from flowing backward.
  • FIG. 2 is a cross-sectional view showing an example of a structure for preventing the backflow of waste liquid into the culture tank 1.
  • This backflow prevention structure is installed on the outlet side of the culture tank 1 where the flow path 6 is connected to the culture tank 1.
  • the structure 13 in which the height of the outlet channel is set at a position lower than the outlet can enhance the effect of preventing the backflow of waste liquid.
  • the position of the medium can be maintained even if the cell is tilted or falls during transport, and the flow of the solution can be prevented, thereby reducing cell damage during transport. Can do.
  • FIG. 2 shows an example of a structure for preventing the backflow of waste liquid to the culture tank 1, but the same structure for preventing the backflow of waste liquid can be applied to the waste liquid tank 2. That is, any one of the structures 11, 12, and 13 may be installed on the inlet side of the waste liquid tank 2 connected to the waste liquid tank 2 and the flow path 6. In addition, you may provide this backflow prevention structure in either the culture tank 1 side or the waste liquid tank 2 side, or both.
  • FIG. 3 shows the position of the flow path attached to the culture tank 1.
  • the inlet channel 21 and the outlet channel 22 As shown in this figure, both the inlet channel 21 and the outlet channel 22 are provided on the upper side of the culture tank 1.
  • FIG. 4 is a side view of the test container, showing a structure that facilitates observation with a microscope.
  • FIG. 5 is a plan view showing the position of the solution fed to the culture tank by a general-purpose micropipette.
  • the tester performs the cytotoxicity test by injecting and discharging the solution in a single flow path by performing liquid feeding and air feeding with a general-purpose micropipette from the liquid feeding hole 3 of the cytotoxicity test container.
  • a number of cells suitable for various toxicity tests are seeded from the liquid feeding hole 3.
  • it is desirable that the culture medium is contained up to the flow path position indicated by the black dots in FIG.
  • the liquid feeding hole 3 and the waste liquid hole 4 are sealed and culture is performed. After stationary culture for 2 hours or more and confirmation of cell attachment, transportation is possible. It is desirable to use a simple temperature control device and carry the culture under conditions of 30 to 37 ° C. while continuing the culture.
  • the culture solution in the culture tank is replaced with a test solution.
  • the liquid feeding hole 3 and the waste liquid hole 4 are unsealed, and air is fed with a micropipette to send the medium and dead cells to the waste liquid tank.
  • the test solution is injected, and air is introduced to stop at the position shown in FIG.
  • the test liquid is again sent to the waste liquid tank 2 by air feeding. Inject a buffer solution such as PBS buffer, discard it by air supply, and wash away harmful substances in the test solution.
  • a conventional method for measuring cell activity / viability can be used.
  • Cell viability is measured by using a dye method such as neutral red, which examines cell membrane permeability as an indicator, and the phenomenon that MTT (methylthiazoletetrazolium) is reduced and decomposed along with the mitochondrial oxidative phosphorylation ability.
  • the MTT method for obtaining the survival rate of can be used.
  • the medium is exchanged with a culture solution containing neutral red, and further cultured for 2 to 3 hours, so that neutral red is incorporated into the cells and the amount of incorporation is measured.
  • the following post-treatment is usually performed. That is, after removing the culture solution containing neutral red, a cultured cell is fixed by adding a calcium chloride-containing formalin solution (for example, 1% calcium chloride-containing 1% formalin solution), and the supernatant is further removed to remove cells. Neutral red that is not taken up into the cells is removed, and then neutral red taken up into the living cells is extracted by adding ethanol containing acetic acid (for example, 50% ethanol containing 1% acetic acid).
  • ethanol containing acetic acid for example, 50% ethanol containing 1% acetic acid
  • Neutral red is a soluble pigment that is a substance that allows only living cells to be taken into cells. Neutral red uptake is reduced when cell growth is inhibited by toxicity, or when cell death is induced and the number of cells is reduced. Therefore, by measuring neutral red taken up into cells after washing, the number of viable cells relative to the control group can be estimated, and toxicity can be determined from the relative survival rate.
  • cytotoxicity test container provided by the present invention, it is possible to perform a toxicity test by exchanging the solution in a single flow path by performing liquid feeding and air feeding with a micropipette. .
  • a color sample for the degree of cytotoxicity is prepared in advance, and it can be easily judged by the color density. It is also possible to photograph a culture tank using a device having a camera function such as a smartphone, perform image processing, and determine the color intensity numerically. For image processing, you can use ImageJ distributed by National Institutes of Health, which can be downloaded for free, and Photoshop from Adobe.
  • the turn of the flow path 5 connecting the liquid feeding hole 3 to the culture tank 1 is one time, and the turn of the flow path 6 connecting the culture tank 1 to the waste liquid tank 2 is A test vessel that was 4 times was used.
  • the shape of the turn was a right angle.
  • FIG. 6A and 6B are diagrams showing the results of confirming the effect of maintaining the position of the solution
  • FIG. 6A is a case where the container is placed horizontally
  • FIG. 6B is a case where the container is placed vertically.
  • horizontal placement refers to a state in which the long side of the container as shown in FIG. 1 is installed perpendicular to the installation surface.
  • vertical placement refers to a state where the short side of the container as shown in FIG. 1 is installed perpendicular to the installation surface.
  • the confirmation of the effect of maintaining the position of the solution was performed as follows. Assuming the transportation state of the container, the container is vibrated 10 times, the culture tank is rotated, and then, as shown in FIG. Considered moving.
  • the container in the “horizontal” state is set to “vertical”, that is, the container is stood still in the vertical direction and the movement of the liquid was examined.
  • FIG. 6A (a) shows a photograph of the above confirmation result
  • FIG. 6 (b) is a schematic diagram for easy understanding of the state of (a). The same applies to FIGS. 6B (a) and (b).
  • FIG. 6A (b) shows the position of the solution after each elapsed time of 0h (hour), 3h (hour), and 24h (hour) after being placed horizontally, and it can be seen that almost no change is seen from the position of the solution at the time of 0 h (hours).
  • This example is evaluated from the viewpoint of cell culture in the test container.
  • cell culture is performed in a container capable of gas exchange by using a dedicated incubator under 37 ° C., saturated water vapor, with 5% CO 2 addition.
  • 2 ⁇ 10 5 human liver cancer cell lines HepG2 are seeded in a cytotoxicity test container, sealed in the liquid feeding hole 3 and the waste liquid hole 4, and kept at 37 ° C., without humidity control, without CO 2 addition. Culture was performed under conditions. This evaluation condition is hereinafter referred to as a sealed or sealed system.
  • Cells were collected after 24 hours and 48 hours, and the number of viable cells was measured to determine the ratio to the number of seeding.
  • FIG. 7 is a graph showing the results of cell culture in a cytotoxicity test container. The doubling rate and viability after 24 hours and 48 hours are shown as the ratio of the number of cells after time to the initial number of viable cells. Further, the white in the graph is the result of the evaluation in the open system shown above, and the dot shows the result of the evaluation in the closed system shown above.
  • the cytotoxicity test cell is a short-term test in which results are obtained within approximately 48 hours, and the culture time before exposure to the test solution is 24 hours at the maximum. Therefore, it can be said that the effect of the present invention can be sufficiently confirmed if the culture effect of the doubling rate and the survival rate in 24 hours can be confirmed.
  • test cells equivalent to normal culture can be donated to the toxicity test by simple culture using the cytotoxicity test vessel of the present invention.
  • FIG. 8 is a diagram showing a result of solution exchange performed by feeding and feeding with a general-purpose micropipette.
  • FIG. 8A is a photograph showing the results of the implementation, and
  • FIG. 8B is a schematic diagram for making the results easier to see.
  • the solution exchange in the culture tank can be easily performed by combining air feeding and liquid feeding. All the waste liquid could be stored in the waste liquid tank.
  • a neutral red assay was performed using this test container.
  • seeding was performed in advance by changing the number of seeded cells, and the result of performing only the neutral red assay without performing toxicity tests was obtained. The difference in the number of cells can be evaluated by the color shading.
  • FIG. 9 is a diagram showing the result of detecting the number of viable cells, that is, the survival rate in the toxicity test by chromaticity.
  • FIG. 9A is a photograph of the detection result
  • FIG. 9B is a schematic diagram for easily viewing the result. This evaluation actually uses color shading, but in this figure, the shading is represented by dot density instead of color display.
  • the color density in the culture tank was measured.
  • the chromaticity ratio at a survival rate of 0% was 1, the survival rate was 30%, the chromaticity ratio was 15, and the survival rate was 100%, and the chromaticity ratio was 92.
  • the standard of the chromaticity ratio is the darkness of black.
  • a reference sample is determined and expressed as a relative value. In this embodiment, the standard is one having a small number of cells.
  • Toxicity can be evaluated by either comparing these color samples with actual test results with the naked eye, or taking a picture with a smartphone and comparing the color density numerically with image analysis software. .
  • 1 culture tank
  • 2 Waste tank 3: Liquid feed hole
  • 4 Waste liquid hole
  • 5 A flow path connecting the liquid feeding hole to the culture tank
  • 6 A flow path connecting the culture tank to the waste liquid tank
  • 7 Flow path connecting the waste liquid tank to the waste liquid hole
  • 11 Tapered structure installed in the outlet channel of the culture tank
  • 12 Structure in which the outlet channel of the culture tank is partially narrowed
  • 13 Structure in which the outlet channel of the culture tank is installed at a position lower than the outlet
  • 21 Inlet channel of the culture tank
  • 22 outlet channel of the culture tank
  • 30 sealing lid
  • 31 Excavation of the bottom of the culture tank placed for microscopic observation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Sustainable Development (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Provided are a cytotoxicity testing device, which makes on-site cell cultivation and toxicity testing possible and which is user-friendly, and a testing method using same. The device comprises a fluid delivery hole where a culture medium containing cells to be tested is injected, a culturing vessel into which culture medium is introduced and cells are sown and cultured, and a waste fluid vessel into which culture medium from the culturing vessel is discarded. In addition to cells being cultured using the culture medium in the culturing vessel, toxicity-testing test solution, which has been injected from the fluid delivery hole, is delivered into the culturing vessel from which the culture medium has been discharged to expose the cultured cells to the test solution, and cell toxicity is evaluated on the basis of the survival rate of the cells after the exposure.

Description

細胞毒性試験装置、及び細胞毒性試験方法Cytotoxicity test apparatus and cytotoxicity test method
 本発明は、細胞を播種した後、輸送しながら培養が可能で、かつ複数回の溶液交換が容易な、取扱いの簡便な細胞毒性試験装置およびそれを用いた試験方法に関する。 The present invention relates to an easy-to-handle cytotoxicity test apparatus and a test method using the same, which can be cultured while being transported after seeding of cells and can be easily exchanged a plurality of times.
 細胞を用いた化学物質等の毒性評価(バイオアッセイ)は、ニュートラルレッド法やMTT(Methylthiazol試薬を用いた評価)法を代表として広く利用されており、実験室内で実施される。この実験室内に限られる第一の理由は、試験材料である細胞を実験室外に持ち出すことが、培養条件の維持の面で難しいことによる。通常、細胞培養はガス交換の可能な容器を用い、37℃、飽和水蒸気下、5% CO添加という環境で培養されるために、専用のインキュベータが必要である。近年、この条件を維持し培養細胞を輸送するための細胞輸送容器が開発されている(特許文献1を参照)が、現段階では医療目的の利用に限定されており、市販品は発売されていない。また研究用途として密閉容器にCO添加のための試薬をいれて輸送ができる理化学品が販売されているが、温度、湿度の調節はできない(細胞培養用ガス濃度調整剤、カルチャーパル、三菱ガス化学(株)など)。 Toxicity evaluation (bioassay) of chemical substances and the like using cells is widely used as a representative, such as the neutral red method and MTT (evaluation using Methylthiazol reagent) method, and is performed in a laboratory. The first reason that is limited to the laboratory is that it is difficult to bring out the cells as the test material outside the laboratory in terms of maintaining the culture conditions. Usually, cell culture uses a gas-exchangeable container, and is cultured in an environment of 37 ° C., saturated water vapor, and 5% CO 2 addition, so a dedicated incubator is required. In recent years, a cell transport container for transporting cultured cells while maintaining these conditions has been developed (see Patent Document 1), but at this stage, it is limited to use for medical purposes, and a commercial product has been released. Absent. In addition, physics and chemistry products that can be transported by putting a reagent for CO 2 addition into a sealed container are sold for research purposes, but the temperature and humidity cannot be adjusted (cell culture gas concentration regulator, Culturepal, Mitsubishi Gas) Chemical Co., Ltd.).
 また、第二の理由として、細胞毒性試験は設備の揃った実験室以外では実施が困難であることによる。細胞毒性試験の手法は、その手順として細胞の維持、細胞の播種と培養、試験物質への培地交換と曝露、数ステップからなる検出試薬への置換、機器による計測と非常に煩雑である。さらに細胞培養施設(無菌操作ベンチ、COインキュベータ、細胞貯蔵設備、顕微鏡、遠心機)、および検出項目に適した計測機器(分光器、蛍光測定器、画像解析ソフト等)が必要である。 The second reason is that the cytotoxicity test is difficult to perform except in a laboratory equipped with facilities. The procedure of the cytotoxicity test is very complicated as cell maintenance, cell seeding and culture, medium exchange and exposure to a test substance, replacement with a detection reagent consisting of several steps, and measurement with an instrument. Furthermore, cell culture facilities (sterile operation benches, CO 2 incubators, cell storage facilities, microscopes, centrifuges), and measuring devices suitable for detection items (spectrometers, fluorescence measuring devices, image analysis software, etc.) are required.
 近年、化学物質は人間の生活を向上させるうえで、多くの貢献をしてきたが、環境を汚染するとともに生物に作用して様々な生理的影響を与え、生態系の構造にまで影響を与えている。特に、ナノマテリアル(タテ・ヨコ・高さの少なくとも一辺が1億分の1メートル-ナノサイズ-の化学物質)によって生じるヒト健康へのリスクが懸念されている。従来技術においては、水棲生物(藻類、ミジンコ、魚類)を用いてバイオアッセイが行われているが、あくまでも生態影響を測定するものであり、ヒト健康リスクを十分に検出できるとはされていない(非特許文献2を参照)。 In recent years, chemical substances have made many contributions to improving human life, but they pollute the environment and act on living organisms to have various physiological effects and affect the structure of ecosystems. Yes. In particular, there are concerns about the risks to human health caused by nanomaterials (vertical, horizontal, and at least one side of the height is 100 millionth of a meter-nano-size chemicals). In the prior art, bioassays are carried out using aquatic organisms (algae, daphnia, fish), but they only measure the ecological effects and have not been able to sufficiently detect human health risks ( (Refer nonpatent literature 2).
 このような状況から、環境分野におけるヒト細胞などの細胞毒性試験が期待されている。しかしながら、河川・湖沼(浄水場原水含む)、工場排水、井戸水などのように環境汚染等の調査の場合、フィールド調査でのサンプリング後に試料を持ち帰り実施となるため、解析結果がでるまでの時間的ロス、保管状態による試料変性が問題となる。なお、実験室内においてもより簡便で装置を用いない試験法の開発が望まれている。 Under such circumstances, cytotoxicity tests for human cells and the like in the environmental field are expected. However, in the case of surveys of environmental pollution such as rivers and lakes (including raw water from water treatment plants), factory effluents, well water, etc., samples are taken home after sampling in field surveys, so the time until analysis results are obtained Sample denaturation due to loss and storage conditions becomes a problem. It is desirable to develop a test method that is simpler and does not use an apparatus even in a laboratory.
特開2013-39102号公報JP 2013-39102 A
 細胞毒性試験の利用分野拡大ニーズは大きい。しかしながら、従来技術では実験室以外への細胞の持ち出しが困難であり、またオペレーションが煩雑で、かつ高価な装置を必要とする。すなわち、細胞を、ストレスを低減した状態で持ち出し輸送すること、取り扱いが簡便な毒性計測を可能とすること、高額の専用機器を不要とし、汎用器具で計測を可能とすることといった課題がある。 There is a great need to expand the application field of cytotoxicity tests. However, in the prior art, it is difficult to take cells outside the laboratory, and the operation is complicated and an expensive apparatus is required. That is, there are problems such as taking out and transporting cells in a state where stress is reduced, enabling toxicology measurement that is easy to handle, and eliminating the need for expensive dedicated equipment and enabling measurement with a general-purpose instrument.
 そこで、本発明の目的は、細胞培養、毒性試験をオンサイトで可能とし、取り扱いが簡便な細胞毒性試験装置およびそれを用いた試験方法の提供することである。 Therefore, an object of the present invention is to provide a cell toxicity test apparatus that enables cell culture and toxicity tests on-site and is easy to handle, and a test method using the apparatus.
 上記課題を解決するために、本願発明に係る細胞毒性試験装置の主な特徴は以下の通りである。
(1)試験対象とする細胞を含む培地を注入する送液穴と、培地を導入し細胞を播種し培養する培養槽と、培養槽の培地を廃棄する廃液槽とを有し、培養槽で前記培地を用いて細胞を培養すると共に、培地を廃液した培養槽に送液穴から注入した毒性を試験する試験液を送液し、試験液を培養された細胞に暴露し、暴露後の該細胞の生存率に基づいて、細胞への毒性を評価することを特徴とする。
In order to solve the above problems, main characteristics of the cytotoxicity test apparatus according to the present invention are as follows.
(1) It has a liquid feeding hole for injecting a medium containing cells to be tested, a culture tank for introducing the medium and seeding and culturing the cells, and a waste liquid tank for discarding the culture medium in the culture tank. The cells are cultured using the medium, and a test solution for testing the toxicity injected from the solution feeding hole is fed into the culture tank in which the medium is discarded, and the test solution is exposed to the cultured cells, It is characterized by assessing cell toxicity based on cell viability.
 また、本願発明に係る細胞毒性試験方法の主な特徴は以下の通りである。
(2)試験対象とする細胞を含む培地を送液穴から注入するステップと、注入した培地を培養槽へ送液し細胞を播種するステップと、培養槽にて播種された細胞を培養するステップと、培養槽の培地を廃液槽へ廃棄するステップと、細胞の培養後に、培地を廃液した培養槽に送液穴から注入した毒性を試験する試験液を送液するステップと、試験液を培養された細胞に暴露し、暴露後の該細胞の生存率を求め、細胞への毒性を評価するステップとを有することを特徴とする。
The main features of the cytotoxicity test method according to the present invention are as follows.
(2) A step of injecting a medium containing cells to be tested from a liquid supply hole, a step of supplying the injected medium to a culture tank and seeding the cells, and a step of culturing the cells seeded in the culture tank And a step of discarding the culture medium in the culture tank to the waste liquid tank, a step of feeding a test liquid for testing the toxicity injected from the liquid feed hole into the culture tank in which the medium has been drained after culturing the cells, and culturing the test liquid Exposing the exposed cells, determining the viability of the cells after the exposure, and evaluating the toxicity to the cells.
 本発明によれば、細胞培養、毒性試験をオンサイトで可能とし、取り扱いが簡便な細胞毒性試験装置およびそれを用いた試験方法を提供できる。 According to the present invention, cell culture and toxicity tests can be performed on-site, and a cytotoxicity test apparatus that is easy to handle and a test method using the same can be provided.
 すなわち、細胞毒性試験を実験室外に持ち出して行うことが可能となり、結果の取得までの時間を短縮できるとともに、保管時間・状態による試料変性の問題を解決することができる。 That is, the cytotoxicity test can be carried out outside the laboratory, the time until the result can be obtained can be shortened, and the problem of sample denaturation due to storage time and condition can be solved.
 また、操作が簡便で、マイクロピペットと簡単な温調器だけで毒性試験を行うことができ、バイオ実験に経験の少ない分野の実施者にも容易に試験が可能である。 In addition, the operation is simple, and toxicity tests can be performed with only a micropipette and a simple temperature controller, and even those who have little experience in bio-experiments can easily perform tests.
 さらに、本発明の細胞毒性試験装置は小型であり、実験室において実施する際の省スペース化も可能である。 Furthermore, the cytotoxicity test apparatus of the present invention is small in size and can save space when carried out in a laboratory.
細胞培養と毒性試験を一体型で実施できる細胞毒性試験容器の一例を説明する平面図である。It is a top view explaining an example of the cytotoxicity test container which can implement a cell culture and a toxicity test by an integrated type. 図1に示す培養槽への廃液の逆流防止構造の3例を示した断面図である。It is sectional drawing which showed three examples of the backflow prevention structure of the waste liquid to the culture tank shown in FIG. 図1に示す培養槽に取り付ける流路の位置を示した断面図である。It is sectional drawing which showed the position of the flow path attached to the culture tank shown in FIG. 顕微鏡による観察を容易とする構造を示した断面図である。It is sectional drawing which showed the structure which makes an observation with a microscope easy. 汎用のマイクロピペットにより培養槽へ送液した溶液位置を示す平面図である。It is a top view which shows the solution position sent to the culture tank with the general purpose micropipette. 溶液の横置きの場合の位置保持効果を確認した結果を示す図である。It is a figure which shows the result of having confirmed the position holding effect in the case of horizontal placement of a solution. 溶液の縦置きの場合の位置保持効果を確認した結果を示す図である。It is a figure which shows the result of having confirmed the position holding effect in the case of placing the solution vertically. 細胞毒性試験容器で細胞培養を実施した結果を示すグラフである。It is a graph which shows the result of having performed cell culture with the cytotoxicity test container. 汎用のマイクロピペットで送液・送気し、溶液交換を実施した結果を示す図である。It is a figure which shows the result of having carried out liquid supply and air supply with the general purpose micropipette, and implemented solution exchange. 細胞毒性度を色度で検出した結果を示す図である。It is a figure which shows the result of having detected the cytotoxicity by chromaticity.
 以下に図面を参照して、本発明の実施の形態を説明する。
<第1の実施形態>
 本発明に関わる細胞毒性試験容器の構成例を図1に基づいて説明する。なお、この実施の形態は一例にすぎず、本発明を限定するものではない。
Embodiments of the present invention will be described below with reference to the drawings.
<First Embodiment>
A configuration example of a cytotoxicity test container according to the present invention will be described with reference to FIG. In addition, this embodiment is only an example and does not limit this invention.
 図1において、1は培養槽、2は廃液槽、3は送液穴、4は廃液穴、5は送液穴から培養槽までを結ぶ流路、6は培養槽から廃液槽までを結ぶ流路、7は廃液槽から廃液穴までを結ぶ流路である。本発明に関わる細胞毒性試験容器は、細胞培養と毒性試験を一体型で実施できる容器であり、培養槽と廃液槽を備え、送液穴から培養槽、培養槽から廃液槽、廃液槽から廃液穴のそれぞれを接続する流路で構成される。送液穴3より細胞と培地を培養槽1に注入して培養し、培地を廃液槽2に廃棄した後に、試験液・検出試薬を送液穴3より注入して細胞を処理し、毒性試験を行うことができる。 In FIG. 1, 1 is a culture tank, 2 is a waste liquid tank, 3 is a liquid feed hole, 4 is a waste liquid hole, 5 is a flow path connecting the liquid feed hole to the culture tank, and 6 is a flow connecting the culture tank to the waste liquid tank. A path 7 is a flow path connecting the waste liquid tank to the waste liquid hole. The cytotoxicity test container according to the present invention is a container capable of performing cell culture and toxicity test in an integrated manner, and includes a culture tank and a waste liquid tank, from a liquid feed hole to a culture tank, from a culture tank to a waste liquid tank, and from a waste liquid tank to a waste liquid. It consists of a flow path connecting each of the holes. Cells and culture medium are injected into the culture tank 1 from the feeding hole 3 and cultured. After discarding the culture medium into the waste tank 2, the test solution / detection reagent is injected from the feeding hole 3 to treat the cells, and the toxicity test is performed. It can be performed.
 培養槽1のサイズは、毒性判定を肉眼で容易に行える5mm四方以上、1mm~2mm高さが望ましい。廃液槽2のサイズは、培養槽のサイズに対して大きくし、容積比20倍以上にすることで、一回の細胞培養から毒性試験結果取得までの廃液をすべて廃液槽にためることができる。 The size of the culture tank 1 is preferably 5 mm square or more and 1 mm to 2 mm high, which can easily determine toxicity with the naked eye. By making the size of the waste liquid tank 2 larger than the size of the culture tank and making the volume ratio 20 times or more, all of the waste liquid from one cell culture to acquisition of the toxicity test result can be accumulated in the waste liquid tank.
 また、送液穴3からの送液を容易にするために、送液穴3の下に円座の座グリを入れる。座グリは流路と同じ高さで、流路径の2倍以上の径であることが望ましい。 Also, in order to facilitate liquid feeding from the liquid feeding hole 3, a circular spot facing is inserted under the liquid feeding hole 3. It is desirable that the spot facings have the same height as the flow path and have a diameter that is at least twice the diameter of the flow path.
 また、送液穴3から培養槽1までを結ぶ流路5と培養槽1から廃液槽2までを結ぶ流路6に折り返しのターンを入れることで、空気圧とのバランスにより溶液の位置保持と逆流を防ぐことができる。このとき、送液穴3から培養槽1までを結ぶ流路5のターンは1回、もしくは複数回以上が望ましい。培養槽1から廃液槽2までを結ぶ流路6のターンは、2回以上入れることが望ましい。またターンの形状は、溶液の流れを防ぐように直角、またはそれよりも鋭角が望ましい。このターンにより、溶液の位置保持と廃液の逆流を防ぐことが可能となる。 Further, by putting a turn back into the flow path 5 connecting the liquid feeding hole 3 to the culture tank 1 and the flow path 6 connecting the culture tank 1 to the waste liquid tank 2, the position of the solution is maintained and the reverse flow is achieved by balance with the air pressure. Can be prevented. At this time, it is desirable that the turn of the flow path 5 connecting the liquid feeding hole 3 to the culture tank 1 is one time or a plurality of times. It is desirable to put the turn of the flow path 6 connecting the culture tank 1 to the waste liquid tank 2 at least twice. Further, the shape of the turn is preferably a right angle or an acute angle so as to prevent the flow of the solution. This turn makes it possible to prevent the solution position from being retained and the waste liquid from flowing backward.
 図2は、培養槽1への廃液の逆流防止構造の例を示した断面図である。この逆流防止構造は、流路6が培養槽1と接続する培養槽1の出口側に設置される。
図2(a)のように、培養槽1の出口流路にテーパーを設置した構造11や、図2(b)のように、出口流路の一部を少し細くした構造12、図2(c)のように、出口流路の高さを出口より下げた位置に設置した構造13により、廃液の逆流防止効果を高めることも可能である。
FIG. 2 is a cross-sectional view showing an example of a structure for preventing the backflow of waste liquid into the culture tank 1. This backflow prevention structure is installed on the outlet side of the culture tank 1 where the flow path 6 is connected to the culture tank 1.
As shown in FIG. 2 (a), the structure 11 in which the outlet channel of the culture tank 1 is tapered, the structure 12 in which a part of the outlet channel is slightly narrowed as shown in FIG. 2 (b), FIG. As shown in c), the structure 13 in which the height of the outlet channel is set at a position lower than the outlet can enhance the effect of preventing the backflow of waste liquid.
 本発明に係る細胞毒性試験容器の構成により、細胞を輸送中に傾きや転倒があっても培地の位置が保持され、溶液の流動を防ぐことができ、これにより輸送中の細胞ダメージを減らすことができる。 Due to the configuration of the cytotoxicity test container according to the present invention, the position of the medium can be maintained even if the cell is tilted or falls during transport, and the flow of the solution can be prevented, thereby reducing cell damage during transport. Can do.
 図2では、培養槽1への廃液の逆流防止構造の例を示したが、廃液槽2に対しても同様の廃液の逆流防止構造を適用できる。すなわち、上記の構造11、12、13のいずれかを廃液槽2と流路6と接続される廃液槽2の入口側に設置しても良い。なお、この逆流防止構造は、培養槽1側、または廃液槽2側のいずれか一方、あるいは両方に設けても良い。 FIG. 2 shows an example of a structure for preventing the backflow of waste liquid to the culture tank 1, but the same structure for preventing the backflow of waste liquid can be applied to the waste liquid tank 2. That is, any one of the structures 11, 12, and 13 may be installed on the inlet side of the waste liquid tank 2 connected to the waste liquid tank 2 and the flow path 6. In addition, you may provide this backflow prevention structure in either the culture tank 1 side or the waste liquid tank 2 side, or both.
 図3は、培養槽1に取り付ける流路の位置を示したものである。ここで、入口流路21、出口流路22である。本図が示すように、入口流路21、出口流路22のいずれも培養槽1の側面上部に設けられている。この構成により、培養槽1の底面から離れた高い位置からの送液となり、溶液交換の際の底面に付着している細胞へのダメージを減らすことができる。同時に、培養中に生じた死細胞を、溶液置換時に容易に廃棄し、培養槽内への残存を低減することが可能となる。 FIG. 3 shows the position of the flow path attached to the culture tank 1. Here, the inlet channel 21 and the outlet channel 22. As shown in this figure, both the inlet channel 21 and the outlet channel 22 are provided on the upper side of the culture tank 1. With this configuration, liquid is fed from a high position away from the bottom surface of the culture tank 1, and damage to cells attached to the bottom surface during solution exchange can be reduced. At the same time, dead cells generated during the culture can be easily discarded at the time of solution replacement, and the remaining in the culture tank can be reduced.
 図4は、試験容器を横から見た図であり、顕微鏡による観察を容易にする構造を示す。培養槽1が設けられた領域の容器基板の底面に掘り込み31を入れ容器基板の肉厚を薄くすることで、顕微鏡のワーキングディスタンスを確保し、観察を容易にすることができる。 FIG. 4 is a side view of the test container, showing a structure that facilitates observation with a microscope. By digging 31 into the bottom surface of the container substrate in the region where the culture tank 1 is provided and reducing the thickness of the container substrate, the working distance of the microscope can be secured and observation can be facilitated.
 なお、本図では、培養槽1や廃液槽2の上面は、開放された構成を示しているが、点線で示す密閉蓋30を用いるのが好ましい。
<第2の実施形態>
 本実施形態は、本発明における細胞毒性試験容器を用いて毒性評価試験を行う際の使用方法について図5を用いて説明する。
In addition, in this figure, although the upper surface of the culture tank 1 or the waste liquid tank 2 has shown the structure open | released, it is preferable to use the airtight cover 30 shown with a dotted line.
<Second Embodiment>
This embodiment demonstrates the usage method at the time of performing a toxicity evaluation test using the cytotoxicity test container in this invention using FIG.
 図5は、汎用のマイクロピペットにより培養槽へ送液した溶液位置を示す平面図である。
  試験者は、細胞毒性試験容器の送液穴3から、汎用のマイクロピペットで送液・送気を行うことにより単一流路で、溶液の注入と排出を行い、細胞毒性試験を行う。
  初めに、送液穴3から各種の毒性試験に適する数の細胞を播種する。このとき、培地は図5の黒ドットで示す流路位置まで入っていることが望ましい。この状態で、送液穴3と廃液穴4に封をして、培養を行う。2時間以上の静置培養を行い、細胞の静着が確認できたら輸送が可能である。簡易型の温調器具を用い、30~37℃の条件化で培養を継続しながら運ぶことが望ましい。
FIG. 5 is a plan view showing the position of the solution fed to the culture tank by a general-purpose micropipette.
The tester performs the cytotoxicity test by injecting and discharging the solution in a single flow path by performing liquid feeding and air feeding with a general-purpose micropipette from the liquid feeding hole 3 of the cytotoxicity test container.
First, a number of cells suitable for various toxicity tests are seeded from the liquid feeding hole 3. At this time, it is desirable that the culture medium is contained up to the flow path position indicated by the black dots in FIG. In this state, the liquid feeding hole 3 and the waste liquid hole 4 are sealed and culture is performed. After stationary culture for 2 hours or more and confirmation of cell attachment, transportation is possible. It is desirable to use a simple temperature control device and carry the culture under conditions of 30 to 37 ° C. while continuing the culture.
 次に、培養槽の培養液を試験液に交換する。まず、送液穴3と廃液穴4の封をはずし、マイクロピペットで送気を行って培地と死細胞を廃液槽に送りだす。ついで試験液を注入し、図5の位置に来るように空気を入れてストップする。送液穴3と廃液穴4に封をして、必要時間、細胞を試験液に曝露した後、再び送気により試験液を廃液槽2に送る。PBSバッファーなど緩衝液を注入し、送気により廃棄して試験液の有害物質を洗浄する。 Next, the culture solution in the culture tank is replaced with a test solution. First, the liquid feeding hole 3 and the waste liquid hole 4 are unsealed, and air is fed with a micropipette to send the medium and dead cells to the waste liquid tank. Next, the test solution is injected, and air is introduced to stop at the position shown in FIG. After sealing the liquid feeding hole 3 and the waste liquid hole 4 and exposing the cells to the test liquid for a necessary time, the test liquid is again sent to the waste liquid tank 2 by air feeding. Inject a buffer solution such as PBS buffer, discard it by air supply, and wash away harmful substances in the test solution.
 毒性試験は、細胞活性/生存率を測定する従来法を用いることができる。細胞の生存率の測定には細胞膜の透過性を指標として調べるニュートラルレッドなどの色素法、MTT(メチルチアゾールテトラゾリウム)がミトコンドリアの酸化的リン酸化能に伴い還元、分解される現象を利用して細胞の生存率を出すMTT法などが利用できる。 For the toxicity test, a conventional method for measuring cell activity / viability can be used. Cell viability is measured by using a dye method such as neutral red, which examines cell membrane permeability as an indicator, and the phenomenon that MTT (methylthiazoletetrazolium) is reduced and decomposed along with the mitochondrial oxidative phosphorylation ability. The MTT method for obtaining the survival rate of can be used.
 例えば、ニュートラルレッド法の場合、ニュートラルレッドを含む培養液に交換し、さらに2~3時間培養することで、細胞にニュートラルレッドを取り込ませ、取り込み量を測定する。取り込み量を測定するためには、通常、以下の後処理を行う。すなわち、ニュートラルレッドを含む培養液を除去後、塩化カルシウム含有ホルマリン溶液(例えば、塩化カルシウム1%含有1%ホルマリン溶液)を添加して培養細胞を固定し、さらに上清を除去することによって、細胞に取り込まれないニュートラルレッドを除去し、ついで酢酸含有エタノール(例えば、酢酸1%含有50%エタノール)を添加することによって、生細胞に取り込まれたニュートラルレッドを抽出する。該抽出液に含まれるニュートラルレッドの量は分光光度計を用いて540nmにおける吸光度を測定する方法が簡便である。 For example, in the case of the neutral red method, the medium is exchanged with a culture solution containing neutral red, and further cultured for 2 to 3 hours, so that neutral red is incorporated into the cells and the amount of incorporation is measured. In order to measure the amount of uptake, the following post-treatment is usually performed. That is, after removing the culture solution containing neutral red, a cultured cell is fixed by adding a calcium chloride-containing formalin solution (for example, 1% calcium chloride-containing 1% formalin solution), and the supernatant is further removed to remove cells. Neutral red that is not taken up into the cells is removed, and then neutral red taken up into the living cells is extracted by adding ethanol containing acetic acid (for example, 50% ethanol containing 1% acetic acid). As for the amount of neutral red contained in the extract, a method of measuring the absorbance at 540 nm using a spectrophotometer is simple.
 ニュートラルレッドは、可溶性の色素で、生細胞のみ細胞内に取り込むことが出来る物質である。毒性によって細胞増殖が抑制された場合、あるいは細胞死が誘発され細胞数が減少した場合には、ニュートラルレッドの取り込みが減少する。したがって、洗浄後に細胞に取り込まれたニュートラルレッドを測定することで、対照群に対する相対的な生細胞数を推定することができ、相対生存率から毒性を判定することが可能である。 Neutral red is a soluble pigment that is a substance that allows only living cells to be taken into cells. Neutral red uptake is reduced when cell growth is inhibited by toxicity, or when cell death is induced and the number of cells is reduced. Therefore, by measuring neutral red taken up into cells after washing, the number of viable cells relative to the control group can be estimated, and toxicity can be determined from the relative survival rate.
 本細胞毒性試験容器でニュートラルレッド法を行う場合、以下のように行う。ニュートラルレッドを含む培養液を注入し、同様に図5の位置で止め、送液穴3と廃液穴4の封をして必要時間処理する。2~3時間が一般的に用いられる。ついで、送液穴と廃液穴の封をはずし、マイクロピペットで送気を行って培養液を廃棄槽に送り出す。塩化カルシウム含有ホルマリン溶液(例えば、塩化カルシウム1%含有1%ホルマリン溶液)を注入し、同様に図5の位置で止め、1分以上固定を行う。再びマイクロピペットで送気を行って塩化カルシウム含有ホルマリン溶液を廃棄槽に送り出す。酢酸含有エタノール(例えば、酢酸1%含有50%エタノール)を注入し、同様に図5の位置で止め、10分以上保持する。 When carrying out the neutral red method with this cytotoxicity test container, it is carried out as follows. A culture solution containing neutral red is injected, similarly stopped at the position shown in FIG. 5, and the solution feeding hole 3 and the waste solution hole 4 are sealed and processed for a necessary time. Two to three hours are generally used. Next, the liquid feeding hole and the waste liquid hole are removed, and air is fed with a micropipette to send the culture solution to the waste tank. A calcium chloride-containing formalin solution (for example, 1% calcium chloride-containing 1% formalin solution) is injected and similarly stopped at the position of FIG. 5 and fixed for 1 minute or longer. Air is again supplied with a micropipette, and the calcium chloride-containing formalin solution is sent to the waste tank. Acetic acid-containing ethanol (for example, 50% ethanol containing 1% acetic acid) is injected and similarly stopped at the position of FIG. 5 and held for 10 minutes or longer.
 以上のように、本発明によって提供された細胞毒性試験容器を用いて、マイクロピペットで送液・送気を行うことで単一流路内で溶液交換を行い、毒性試験を行うことが可能となる。 As described above, using the cytotoxicity test container provided by the present invention, it is possible to perform a toxicity test by exchanging the solution in a single flow path by performing liquid feeding and air feeding with a micropipette. .
 毒性の評価は、予め細胞毒性度に対する色見本を用意しておき、色の濃淡で簡便に判定することができる。またスマートフォンなどカメラ機能を備える機器を用いて培養槽を撮影し、画像処理を行い、色の濃さを数値化して判定することもできる。画像処理には、無料でダウンロード可能な米国National Institutes of Health配布のImageJやAdobe社のPhotoshopなどが利用可能である。 To evaluate the toxicity, a color sample for the degree of cytotoxicity is prepared in advance, and it can be easily judged by the color density. It is also possible to photograph a culture tank using a device having a camera function such as a smartphone, perform image processing, and determine the color intensity numerically. For image processing, you can use ImageJ distributed by National Institutes of Health, which can be downloaded for free, and Photoshop from Adobe.
 本実施例は、送液穴3から培養槽1までを結ぶ流路5と培養槽1から廃液槽2までを結ぶ流路6に折り返しのターンを入れることで、空気圧とのバランスにより溶液の位置保持と逆流を防ぐ機構、すなわち培養槽内の培地の流れを押さえる構造の効果を確認したものである。 In this embodiment, by turning the channel 5 connecting the solution feeding hole 3 to the culture tank 1 and the channel 6 connecting the culture tank 1 to the waste solution tank 2, the position of the solution is balanced by the air pressure. This confirms the effect of the mechanism that prevents the holding and backflow, that is, the structure that suppresses the flow of the medium in the culture tank.
 図1又は、図5に示すように、送液穴3から培養槽1までを結ぶ流路5のターンは1回であり、培養槽1から廃液槽2までを結ぶ流路6のターンは、4回である試験容器を用いた。また、ターンの形状は直角とした。 As shown in FIG. 1 or FIG. 5, the turn of the flow path 5 connecting the liquid feeding hole 3 to the culture tank 1 is one time, and the turn of the flow path 6 connecting the culture tank 1 to the waste liquid tank 2 is A test vessel that was 4 times was used. The shape of the turn was a right angle.
 図6A、及び6Bは、溶液の位置保持効果を確認した結果を示す図であり、図6Aは、容器を横置きにした場合であり、図6Bは、縦置きの場合である。ここで、「横置」とは、図1に示すような容器の長辺側を設置面に対して垂直を保って設置する状態を指すものとする。また、「縦置」とは、図1に示すような容器の短辺側を設置面に対して垂直を保って設置する状態を指すものとする。 6A and 6B are diagrams showing the results of confirming the effect of maintaining the position of the solution, FIG. 6A is a case where the container is placed horizontally, and FIG. 6B is a case where the container is placed vertically. Here, “horizontal placement” refers to a state in which the long side of the container as shown in FIG. 1 is installed perpendicular to the installation surface. In addition, “vertical placement” refers to a state where the short side of the container as shown in FIG. 1 is installed perpendicular to the installation surface.
 溶液の位置保持効果の確認は以下の様に行った。容器の輸送状態を想定し、容器に振動を10回加え、培養槽を回転し、その後に図6Aに示すように、「横置」にし、すなわち横方向に容器を立てて静置し、液の移動を検討した。 The confirmation of the effect of maintaining the position of the solution was performed as follows. Assuming the transportation state of the container, the container is vibrated 10 times, the culture tank is rotated, and then, as shown in FIG. Considered moving.
 また、図6Bでは、「横置」状態の容器を「縦置」にし、すなわち、縦方向に容器を立てて静置し、液の移動を検討した。 In FIG. 6B, the container in the “horizontal” state is set to “vertical”, that is, the container is stood still in the vertical direction and the movement of the liquid was examined.
 図6A(a)は上記確認結果の写真を示し、(b)は(a)の状態を見易くするために、模式図に表したものである。図6B(a)、(b)も同様である。 FIG. 6A (a) shows a photograph of the above confirmation result, and FIG. 6 (b) is a schematic diagram for easy understanding of the state of (a). The same applies to FIGS. 6B (a) and (b).
 図6A(b)に示すように、横置きにしてから0h(時間)、3h(時間)、24h(時間)のそれぞれの経過時間後の溶液の位置はほぼ同じに保持されていることが分かる。図6B(b)では、縦置きにしてから24h(時間)の経過時間後の溶液の位置を示し、0h(時間)の時点の溶液の位置から変化がほとんど見られないことが分かる。 As shown in FIG. 6A (b), it can be seen that the position of the solution after each elapsed time of 0h (hour), 3h (hour), and 24h (hour) after being placed horizontally is held substantially the same. . FIG. 6B (b) shows the position of the solution after the elapse of 24 h (hours) from the vertical placement, and it can be seen that almost no change is seen from the position of the solution at the time of 0 h (hours).
 以上から、図6A、及び6Bに示すように、溶液の位置保持は良好であった。 From the above, as shown in FIGS. 6A and 6B, the position retention of the solution was good.
 本実施例は、本試験容器の細胞培養の観点から評価したものである。通常の場合、細胞培養は、専用のインキュベータを用いて、37℃、飽和水蒸気下、5%CO添加条件で行われ、ガス交換が可能な容器で行われる。細胞毒性試験容器に、ヒト肝臓がん細胞株HepG2を2×10個播種し、送液穴3と廃液穴4に封をして密閉状態とし、37℃、湿度制御なし、CO添加なし条件で培養を行った。この評価条件を以下に、密閉、または密閉系と呼ぶ。 This example is evaluated from the viewpoint of cell culture in the test container. Normally, cell culture is performed in a container capable of gas exchange by using a dedicated incubator under 37 ° C., saturated water vapor, with 5% CO 2 addition. 2 × 10 5 human liver cancer cell lines HepG2 are seeded in a cytotoxicity test container, sealed in the liquid feeding hole 3 and the waste liquid hole 4, and kept at 37 ° C., without humidity control, without CO 2 addition. Culture was performed under conditions. This evaluation condition is hereinafter referred to as a sealed or sealed system.
 比較対象としては、試験容器の蓋のない培養槽と流路がむき出しのタイプの容器を用い、通常の開放系培養条件で、ヒト肝臓がん細胞株HepG2を2×10個を培養した。この評価条件を以下に、開放、または開放系と呼ぶ。 For comparison, 2 × 10 5 human liver cancer cell lines HepG2 were cultured under normal open culture conditions using a culture tank without a lid of the test container and a container with a flow channel exposed. This evaluation condition is hereinafter referred to as open or open system.
 24時間後、48時間後に細胞を回収し、生存細胞数を測定して播種数に対する割合を求めた。 Cells were collected after 24 hours and 48 hours, and the number of viable cells was measured to determine the ratio to the number of seeding.
 図7は、細胞毒性試験容器で細胞培養を実施した結果を示すグラフである。24時間後及び48時間後の倍加率および生存率を初期の生存細胞数に対する時間経過後の細胞数の比で示す。
また、グラフ中の白抜きは上記で示す開放系での評価の結果で、ドットは、上記で示す密閉系での評価の結果を示している。
FIG. 7 is a graph showing the results of cell culture in a cytotoxicity test container. The doubling rate and viability after 24 hours and 48 hours are shown as the ratio of the number of cells after time to the initial number of viable cells.
Further, the white in the graph is the result of the evaluation in the open system shown above, and the dot shows the result of the evaluation in the closed system shown above.
 図7に示すように、本試験容器を用いることで、開放系での培養と比較して24時間では倍加率も生存率も同等の培養効果があり、48時間では倍加率は劣るものの生存率は同等の培養効果が得られることが確認された。 As shown in FIG. 7, by using this test vessel, the doubling rate and the survival rate are equivalent in 24 hours as compared with the culture in the open system, and the survival rate is inferior in doubling rate in 48 hours. It was confirmed that an equivalent culture effect was obtained.
 ところで、細胞毒性試験細胞は、おおよそ48時間以内に結果が出る短期試験であり、試験液に曝露する前の培養時間は最大24時間である。従って、24時間での倍加率、生存率の培養効果が確認できれば、本願発明の効果は十分に確認できたと言える。 By the way, the cytotoxicity test cell is a short-term test in which results are obtained within approximately 48 hours, and the culture time before exposure to the test solution is 24 hours at the maximum. Therefore, it can be said that the effect of the present invention can be sufficiently confirmed if the culture effect of the doubling rate and the survival rate in 24 hours can be confirmed.
 従って、本実施結果により、本発明である細胞毒性試験容器による簡易培養で、通常の培養と同等の試験細胞を毒性試験に供与できることが示された。 Therefore, the results of this implementation showed that test cells equivalent to normal culture can be donated to the toxicity test by simple culture using the cytotoxicity test vessel of the present invention.
 本実施例は、送気、送液による培養槽の溶液置換を実施した結果である。
図8は、汎用のマイクロピペットで送液・送気し、溶液交換を実施した結果を示す図ある。
図8(a)は、実施した結果を示す写真であり、(b)はその結果を見易くするための模式図である。
This example is the result of carrying out solution replacement of the culture tank by air supply and liquid supply.
FIG. 8 is a diagram showing a result of solution exchange performed by feeding and feeding with a general-purpose micropipette.
FIG. 8A is a photograph showing the results of the implementation, and FIG. 8B is a schematic diagram for making the results easier to see.
 次に、本図(1)~(6)について説明する。
(1)はじめにマイクロピペットを用いて、送液穴3から160μlの溶液Aを培養槽1に注入した。少し送液側にエアを送り、流路の途中に溶液が残る形で止めた。
(2)次に、200μlの送気を3回行い、培養槽から溶液Aを完全に除去した。
(3)洗浄を想定して溶液Bを200μl注入し、これを3回繰り返した。
(4)次に、再び200μlの送気を2回行い、培養槽から溶液Bを除去し、
(5)溶液Cを200μl注入した。
(6)さらに、200μlの送気を2回行い、溶液Cを完全に廃液槽に移動させた。
Next, the drawings (1) to (6) will be described.
(1) First, 160 μl of the solution A was injected into the culture tank 1 from the liquid feeding hole 3 using a micropipette. A little air was sent to the liquid feeding side, and the solution was stopped in the middle of the flow path.
(2) Next, 200 μl of air was supplied three times to completely remove the solution A from the culture tank.
(3) Assuming washing, 200 μl of solution B was injected, and this was repeated three times.
(4) Next, 200 μl of air is supplied twice again to remove the solution B from the culture tank,
(5) 200 μl of solution C was injected.
(6) Furthermore, 200 μl of air was supplied twice, and the solution C was completely moved to the waste liquid tank.
 上記(1)~(6)の(b)の模式図から分かるように、送気と送液を組み合わせることにより、培養槽内の溶液交換が容易に可能であった。また廃液はすべて廃液槽に溜めることができた。 As can be seen from the schematic diagrams (b) of (1) to (6) above, the solution exchange in the culture tank can be easily performed by combining air feeding and liquid feeding. All the waste liquid could be stored in the waste liquid tank.
 本実施例は、本試験容器を用いてニュートラルレッドアッセイを実施したものである。毒性評価をニュートラルレッドの赤色の濃淡で評価を行うために、予め、播種細胞数を変化させて播種し、毒性試験を行わずにニュートラルレッドアッセイのみを実施した結果を取得した。細胞数の違いが色の濃淡で評価できる。 In this example, a neutral red assay was performed using this test container. In order to evaluate toxicity using the red density of neutral red, seeding was performed in advance by changing the number of seeded cells, and the result of performing only the neutral red assay without performing toxicity tests was obtained. The difference in the number of cells can be evaluated by the color shading.
 図9は、生存細胞数、すなわち毒性試験における生存率を色度で検出した結果を示す図である。
図9(a)は、検出した結果の写真であり、(b)はその結果を見易くするための模式図である。なお、本評価は、実際には色の濃淡を用いるが、本図では、色表示に代えてドットの密度でその濃淡を表している。
FIG. 9 is a diagram showing the result of detecting the number of viable cells, that is, the survival rate in the toxicity test by chromaticity.
FIG. 9A is a photograph of the detection result, and FIG. 9B is a schematic diagram for easily viewing the result. This evaluation actually uses color shading, but in this figure, the shading is represented by dot density instead of color display.
 培養槽の部位を写真撮影し、画像解析ソフトPhotoshop(Adobe社)を用いて白黒加工した後に、培養槽内の色の濃さを測定した。生存率0%の色度比を1としたとき、生存率30%は色度比15、生存率100%は色度比92であった。ここで、色度比の基準は、黒色の濃さになる。基準サンプルを決めて相対値で表わす。本実施例では細胞数の少ないものを基準としている。 After taking a picture of the part of the culture tank and processing it in black and white using image analysis software Photoshop (Adobe), the color density in the culture tank was measured. When the chromaticity ratio at a survival rate of 0% was 1, the survival rate was 30%, the chromaticity ratio was 15, and the survival rate was 100%, and the chromaticity ratio was 92. Here, the standard of the chromaticity ratio is the darkness of black. A reference sample is determined and expressed as a relative value. In this embodiment, the standard is one having a small number of cells.
 検出した結果、図9(1)に示すように毒性無し(播種細胞数2×10個)、(2)に示すように毒性ありI(生存率30%、播種細胞数6×10個)、(3)に示すように毒性ありII(生存率0%、播種細胞数0個)の色濃淡(本図(b)ではドット濃淡)を示した。 As a result of detection, there was no toxicity as shown in FIG. 9 (1) (number of seeded cells 2 × 10 5 ), and there was toxicity as shown in (2) I (survival rate 30%, number of seeded cells 6 × 10 4 ). ) And (3) showed toxicity II (survival rate 0%, seeded cell number 0) color shading (dot shading in this figure (b)).
 これらの色見本と実際の試験結果を肉眼で比較する、もしくはスマートフォンなどで写真を撮影し、画像解析ソフトで色の濃度を数値化して比較するかのいずれかを用いて毒性評価が可能である。 Toxicity can be evaluated by either comparing these color samples with actual test results with the naked eye, or taking a picture with a smartphone and comparing the color density numerically with image analysis software. .
1:培養槽、
2:廃液槽、
3:送液穴、
4:廃液穴、
5:送液穴から培養槽までを結ぶ流路、
6:培養槽から廃液槽までを結ぶ流路、
7:廃液槽から廃液穴までを結ぶ流路、
11:培養槽の出口流路に設置したテーパー構造、
12:培養槽の出口流路を一部細くした構造、
13:培養槽の出口流路を出口より下げた位置に設置した構造、
21:培養槽の入口流路、
22:培養槽の出口流路、
30:密閉蓋、
31:顕微鏡観察のために入れた培養槽底面の掘り込み。
1: culture tank,
2: Waste tank
3: Liquid feed hole,
4: Waste liquid hole,
5: A flow path connecting the liquid feeding hole to the culture tank,
6: A flow path connecting the culture tank to the waste liquid tank,
7: Flow path connecting the waste liquid tank to the waste liquid hole,
11: Tapered structure installed in the outlet channel of the culture tank,
12: Structure in which the outlet channel of the culture tank is partially narrowed,
13: Structure in which the outlet channel of the culture tank is installed at a position lower than the outlet,
21: Inlet channel of the culture tank,
22: outlet channel of the culture tank,
30: sealing lid,
31: Excavation of the bottom of the culture tank placed for microscopic observation.

Claims (14)

  1.  試験対象とする細胞を含む培地を注入する送液穴と、
     前記培地を導入し前記細胞を播種し培養する培養槽と、
     前記培養槽の培地を廃棄する廃液槽と、を有し、
     前記培養槽で前記培地を用いて前記細胞を培養すると共に、
     前記培地を廃液した前記培養槽に前記送液穴から注入した毒性を試験する試験液を送液し、前記試験液を前記培養された細胞に暴露し、暴露後の該細胞の生存率に基づいて、前記細胞への毒性を評価する
     ことを特徴とする細胞毒性試験装置。
    A feeding hole for injecting a medium containing cells to be tested;
    A culture vessel for introducing the medium and seeding and culturing the cells;
    A waste liquid tank for discarding the culture medium of the culture tank,
    Culturing the cells using the medium in the culture vessel;
    Based on the survival rate of the cells after the exposure, the test solution for testing the toxicity injected from the liquid supply hole is fed into the culture tank in which the medium is discarded, and the test solution is exposed to the cultured cells. A cytotoxicity test apparatus characterized by evaluating toxicity to the cells.
  2.  前記送液穴と前記培養槽とを接続する第1流路と、
     前記培養槽と前記廃液槽とを接続する第2流路と、を有し、
     前記第1流路及び前記第2流路のそれぞれに折り返し構造を設けることで前記第1及び第2流路中の液の移動を防止し、前記培養槽中で前記細胞を培養しながら、搬送可能とする
     ことを特徴とする請求項1に記載の細胞毒性試験装置。
    A first flow path connecting the liquid feeding hole and the culture tank;
    A second flow path connecting the culture tank and the waste liquid tank,
    By providing a folded structure in each of the first channel and the second channel, the liquid in the first and second channels is prevented from moving, and the cells are conveyed while being cultured in the culture tank. The cytotoxicity test apparatus according to claim 1, wherein the cytotoxicity test apparatus is possible.
  3.  前記第2流路の折り返し構造が有する折り返し数は、前記第1流路の折り返し数より多い
     ことを特徴とする請求項2に記載の細胞毒性試験装置。
    The cytotoxicity test apparatus according to claim 2, wherein the folding number of the folding structure of the second channel is greater than the folding number of the first channel.
  4.  前記細胞の生存率は、前記送液穴から注入した検出試薬を用いて前記暴露後の細胞に処理を行い、前記処理後の細胞の色濃度を予め設定された色濃度を基準として決定される
     ことを特徴とする請求項1に記載の細胞毒性試験装置。
    The viability of the cells is determined by processing the cells after the exposure using the detection reagent injected from the liquid feeding hole, and the color density of the cells after the treatment is set based on a preset color density The cytotoxicity test apparatus according to claim 1, wherein:
  5.  前記培養槽からの出口側、または前記廃液槽の入口側の前記第2流路の少なくとも一方において、前記前記培養槽、または前記廃液槽からの逆流を防止する逆流防止機構を設けた
     ことを特徴とする請求項2に記載の細胞毒性試験装置。
    A backflow prevention mechanism for preventing a backflow from the culture tank or the waste liquid tank is provided in at least one of the second flow path on the outlet side from the culture tank or the inlet side of the waste liquid tank. The cytotoxicity test apparatus according to claim 2.
  6.  前記逆流防止機構は、前記第2流路の断面構造が前記培養槽の出口側、または前記廃液槽の入口側から次第に断面積が大きくなるテーパー構造を有する
     ことを特徴とする請求項5に記載の細胞毒性試験装置。
    The backflow prevention mechanism has a tapered structure in which the cross-sectional structure of the second flow path gradually increases from the outlet side of the culture tank or the inlet side of the waste liquid tank. Cytotoxicity test equipment.
  7.  前記逆流防止機構は、前記培養槽の出口側、または前記廃液槽の入口側の前記第2流路において、該流路の他の部分に比べて断面積が小さい領域を有する
     ことを特徴とする請求項5に記載の細胞毒性試験装置。
    The backflow prevention mechanism is characterized in that the second channel on the outlet side of the culture tank or the inlet side of the waste liquid tank has a region having a smaller cross-sectional area than the other part of the channel. The cytotoxicity test apparatus according to claim 5.
  8.  前記逆流防止機構は、前記培養槽の出口側、または前記廃液槽の入口側の前記第2流路において、該流路が前記培養槽、または前記廃液槽の表面側から次第に前記培養槽の底面側、または前記廃液槽の底面側へ傾斜する構造を有する
     ことを特徴とする請求項5に記載の細胞毒性試験装置。
    In the second flow path on the outlet side of the culture tank or on the inlet side of the waste liquid tank, the reverse flow prevention mechanism is configured such that the flow path gradually becomes the bottom surface of the culture tank from the surface side of the culture tank or the waste liquid tank. The cytotoxicity test apparatus according to claim 5, wherein the cytotoxicity test apparatus has a structure inclined to a side or a bottom side of the waste liquid tank.
  9.  前記第1及び第2流路を、前記培養槽の側面上部から液の流入、または排出がされる位置に設置することで、前記培地交換の際の前記細胞へのダメージを低減する
     ことを特徴とする請求項2に記載の細胞毒性試験装置。
    The first and second flow paths are installed at a position where liquid is introduced or discharged from the upper part of the side surface of the culture tank, thereby reducing damage to the cells during the medium exchange. The cytotoxicity test apparatus according to claim 2.
  10.  前記培養槽が形成された基板において、前記培養槽の上部、もしくは底部に削り込み構造を備えることで、前記培養槽中の前記細胞状態の観察が容易となる
     ことを特徴とする請求項1に記載の細胞毒性試験装置。
    The substrate on which the culture tank is formed is provided with a scraped structure at the top or bottom of the culture tank, so that the cell state in the culture tank can be easily observed. The cytotoxicity test apparatus as described.
  11.  前記培養槽と前記廃液槽との容積比を、1:20以上とすることで、試験開始から終了までの廃液を貯留する
     ことを特徴とする請求項1に記載の細胞毒性試験装置。
    The cytotoxicity test apparatus according to claim 1, wherein the waste liquid from the start to the end of the test is stored by setting a volume ratio of the culture tank and the waste liquid tank to 1:20 or more.
  12.  試験対象とする細胞を含む培地を送液穴から注入するステップと、
     前記注入した培地を培養槽へ送液し前記細胞を播種するステップと、
     前記培養槽にて前記播種された細胞を培養するステップと、
     前記培養槽の培地を廃液槽へ廃棄するステップと、
     前記細胞の培養後に、前記培地を廃液した前記培養槽に前記送液穴から注入した毒性を試験する試験液を送液するステップと、
     前記試験液を前記培養された細胞に暴露し、暴露後の該細胞の生存率を求め、前記細胞への毒性を評価するステップと、を有する
     ことを特徴とする細胞毒性試験方法。
    Injecting a medium containing cells to be tested from a liquid feeding hole;
    Feeding the injected medium to a culture tank and seeding the cells;
    Culturing the seeded cells in the culture vessel;
    Discarding the culture medium in the culture tank to a waste liquid tank;
    After culturing the cells, feeding a test solution for testing the toxicity injected from the feeding hole into the culture tank in which the medium is discarded;
    Exposing the test solution to the cultured cells, determining the survival rate of the cells after the exposure, and evaluating the toxicity to the cells.
  13.  前記培養槽の前記培地は、前記送液穴から注入された溶液を前記送液穴からの気体の送気により前記培養槽から除去する
     ことを特徴とする請求項12に記載の細胞毒性試験方法。
    The cytotoxicity test method according to claim 12, wherein the culture medium in the culture tank removes the solution injected from the liquid supply hole from the culture tank by supplying gas from the liquid supply hole. .
  14.  前記細胞の生存率は、前記送液穴から注入された検出試薬を用いて前記暴露後の細胞に処理を行い、前記処理後の細胞の色濃度を予め設定された基準の色濃度に基づいて、決定する
     ことを特徴とする請求項12に記載の細胞毒性試験方法。
    The survival rate of the cells is obtained by processing the cells after the exposure using the detection reagent injected from the liquid feeding hole, and setting the color density of the cells after the treatment based on a preset reference color density. The cytotoxicity test method according to claim 12, wherein the cytotoxicity test method is determined.
PCT/JP2013/067577 2013-06-26 2013-06-26 Cytotoxicity testing device and cytotoxicity testing method WO2014207857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067577 WO2014207857A1 (en) 2013-06-26 2013-06-26 Cytotoxicity testing device and cytotoxicity testing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067577 WO2014207857A1 (en) 2013-06-26 2013-06-26 Cytotoxicity testing device and cytotoxicity testing method

Publications (1)

Publication Number Publication Date
WO2014207857A1 true WO2014207857A1 (en) 2014-12-31

Family

ID=52141261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067577 WO2014207857A1 (en) 2013-06-26 2013-06-26 Cytotoxicity testing device and cytotoxicity testing method

Country Status (1)

Country Link
WO (1) WO2014207857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249427A (en) * 2021-04-20 2021-08-13 广东纽唯质量技术服务有限公司 Cosmetic toxicity test method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180594A (en) * 2002-12-04 2004-07-02 Shimadzu Corp Cell-culturing device
WO2005036182A1 (en) * 2003-10-15 2005-04-21 Matsushita Electric Industrial Co., Ltd. Method of passing fluid in capillary chip
JP2006115741A (en) * 2004-10-20 2006-05-11 Sumitomo Precision Prod Co Ltd Nucleic acid-amplifying substrate
WO2006109397A1 (en) * 2005-03-31 2006-10-19 Konica Minolta Medical & Graphic, Inc. Backflow prevention structure, and microchip for inspection and inspection device that use the same
JP2007029041A (en) * 2005-07-29 2007-02-08 Hitachi Medical Corp Cell culturing apparatus
JP2009233514A (en) * 2008-03-26 2009-10-15 Hitachi Plant Technologies Ltd Microchemical reaction device and microchemical reaction system
JP2010008058A (en) * 2008-06-24 2010-01-14 Konica Minolta Medical & Graphic Inc Microinspection chip, liquid back flow preventing method of microinspection chip and inspection apparatus
JP2011193758A (en) * 2010-03-18 2011-10-06 National Institute Of Advanced Industrial Science & Technology Biochip used for drug sensitivity test
JP2012235749A (en) * 2011-05-12 2012-12-06 National Institute Of Advanced Industrial Science & Technology Method for producing microchip, physical mask, and the microchip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180594A (en) * 2002-12-04 2004-07-02 Shimadzu Corp Cell-culturing device
WO2005036182A1 (en) * 2003-10-15 2005-04-21 Matsushita Electric Industrial Co., Ltd. Method of passing fluid in capillary chip
JP2006115741A (en) * 2004-10-20 2006-05-11 Sumitomo Precision Prod Co Ltd Nucleic acid-amplifying substrate
WO2006109397A1 (en) * 2005-03-31 2006-10-19 Konica Minolta Medical & Graphic, Inc. Backflow prevention structure, and microchip for inspection and inspection device that use the same
JP2007029041A (en) * 2005-07-29 2007-02-08 Hitachi Medical Corp Cell culturing apparatus
JP2009233514A (en) * 2008-03-26 2009-10-15 Hitachi Plant Technologies Ltd Microchemical reaction device and microchemical reaction system
JP2010008058A (en) * 2008-06-24 2010-01-14 Konica Minolta Medical & Graphic Inc Microinspection chip, liquid back flow preventing method of microinspection chip and inspection apparatus
JP2011193758A (en) * 2010-03-18 2011-10-06 National Institute Of Advanced Industrial Science & Technology Biochip used for drug sensitivity test
JP2012235749A (en) * 2011-05-12 2012-12-06 National Institute Of Advanced Industrial Science & Technology Method for producing microchip, physical mask, and the microchip

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FOTAKIS G. ET AL.: "In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride", TOXICOL. LETT., vol. 160, no. 2, 2006, pages 171 - 177 *
LIM KH. ET AL.: "Multiparametric assessment of Cd 2+ cytotoxicity using MTT-based microfluidic image cytometry", CYTOMETRY A, vol. 81A, no. 8, 2012, pages 691 - 697 *
XU Y. ET AL.: "A microfluidic device with passive air-bubble valves for real-time measurement of dose-dependent drug cytotoxicity through impedance sensing", BIOSENS. BIOELECTRON., vol. 32, no. 1, 2012, pages 300 - 304 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113249427A (en) * 2021-04-20 2021-08-13 广东纽唯质量技术服务有限公司 Cosmetic toxicity test method

Similar Documents

Publication Publication Date Title
JP2007135582A (en) Method and apparatus for detecting microorganism in ballast water
KR20170099789A (en) Culturing patch, culturing method, culture test method, culture test device, drug test method, and drug test device
EP2108946A3 (en) Inspection method and reagent solution
CN106442920A (en) Ship ballast water drainage real-time monitoring device and method
Chai et al. Multi-chamber petaloid root-growth chip for the non-destructive study of the development and physiology of the fibrous root system of Oryza sativa
JPWO2005062027A1 (en) Hazardous substance evaluation method and hazardous substance evaluation kit
WO2014207857A1 (en) Cytotoxicity testing device and cytotoxicity testing method
Fujita et al. Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flats
CN206892092U (en) Freshwater ponds automatic fish-feeding and water quality detection ship
Burbanck et al. The use of sessile ciliates collected in plastic Petri dishes for rapid assessment of water pollution
CN104472442B (en) Substrate suitable for cultivation of marine benthonic aquatic animals
CN106645611A (en) Fish and photogenic bacterium-based comprehensive toxicity online analyzer
CN106198469A (en) A kind of utilize Hoechst 33258 fluorescent dye to the detection method of active o content in living cells
Alnnasouri et al. Comparison of four methods to assess biofilm development
KR20100083095A (en) A kit and a method for evaluating toxicity using spore release by the green alga ulva
Stumpp et al. Measurement of feeding rates, respiration, and pH regulatory processes in the light of ocean acidification research
DE202011108681U1 (en) Miniaturized bioreactor
JP4605559B2 (en) How to observe bacterial activity
US6936463B1 (en) Method and device for making different thickness of biofilms
US20010014472A1 (en) Experimental apparatus for sliced specimen of biological tissue and specimen holder
WO2024131012A1 (en) Method for analyzing content and distribution of microplastics in marine cnidarian
WO2014057233A2 (en) Screening method and apparatus
Halsted Approaches to Studying Bacterial Biofilms in the Bioeconomy with Nanofabrication Techniques and Engineered Platforms.
TWI531647B (en) Cell separation and culture device
JP4871821B2 (en) Air diffusion evaluation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP