WO2014206249A1 - Device and method for improving modulation performance of mz modulator, and storage medium - Google Patents

Device and method for improving modulation performance of mz modulator, and storage medium Download PDF

Info

Publication number
WO2014206249A1
WO2014206249A1 PCT/CN2014/080429 CN2014080429W WO2014206249A1 WO 2014206249 A1 WO2014206249 A1 WO 2014206249A1 CN 2014080429 W CN2014080429 W CN 2014080429W WO 2014206249 A1 WO2014206249 A1 WO 2014206249A1
Authority
WO
WIPO (PCT)
Prior art keywords
sine function
signal
inverse sine
mzm
modulator
Prior art date
Application number
PCT/CN2014/080429
Other languages
French (fr)
Chinese (zh)
Inventor
周伟勤
陈雪
孟小波
闫峥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014206249A1 publication Critical patent/WO2014206249A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5055Laser transmitters using external modulation using a pre-coder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • H04B10/588Compensation for non-linear transmitter output in external modulation systems

Definitions

  • the invention relates to optical fiber communication, especially to coherent optical communication technology, and particularly relates to preprocessing of an originating signal and a modulation mechanism of a Mach-Zehnder modulator. Background technique
  • the coherent optical communication system based on the high-order modulation format adapts to the development of the current optical network, and constructs a high-speed, high-capacity, low-cost optical transmission network.
  • Coherent optical communication systems based on high-order modulation formats are widely used in MZM for optical transmitter I/Q modulation.
  • MZM is a non-linear modulator.
  • MZM cannot achieve linear field modulation due to the extinction ratio.
  • the signal amplitude is increased to eliminate the effect of the undesired extinction ratio, if the signal amplitude exceeds the MZM linear field modulation interval, the signal will also introduce irreversible distortion, resulting in deterioration of the system bit error rate performance.
  • an embodiment of the present invention discloses an apparatus for improving the modulation performance of an MZ modulator, including a laser, and the apparatus further includes:
  • the inverse sine function transform unit performs an inverse sine function preprocessing on the input digital signal of the MZ modulator, so that the preprocessed signal operates in the MZM nonlinear region without distortion;
  • An analog-to-digital conversion (DAC) unit that converts the digital electrical signal processed by the inverse sine function transformation module into an analog electrical signal
  • the MZM unit modulates the optical carrier of the laser output by using an analog electrical signal converted by the DAC unit.
  • the inverse sine function preprocessing of the input digital signal of the MZ modulator means is a preprocessing of the input digital signal of the MZ modulator means:
  • the inverse sine function transform unit performs a corresponding inverse transform on the input signal according to the signal response characteristic of the MZM.
  • the inverse sine function conversion unit performs an inverse sine function preprocessing on the input digital signal according to the following formula:
  • is a half-wave voltage of ⁇
  • / is a coefficient for controlling the magnitude of the driving signal, and is an output digital signal preprocessed by an inverse sine function.
  • the inverse sine function transformation unit includes one or more inverse sine function transformation modules.
  • the analog-to-digital conversion (DAC) unit when the inverse sine function transformation unit includes a plurality of inverse sine function transformation modules, the analog-to-digital conversion (DAC) unit includes as many DACs as the number of inverse sine function transformation modules,
  • the ⁇ unit includes as many ⁇ as the number of inverse sine function transformation modules.
  • the inverse sine function transformation unit when the inverse sine function transformation unit includes two inverse sine function transformation modules, the input digital signal is divided into I road and Q road, and two inverse sine function transformation modules respectively pair I and Q.
  • the input digital signal of the circuit is subjected to an inverse sine function preprocessing, and the processed digital electrical signal is separately sent to a corresponding DAC in the analog-to-digital conversion (DAC) unit and a corresponding MZM in the MZM unit for processing.
  • DAC analog-to-digital conversion
  • the two inverse sine function transformation modules respectively perform an inverse sine function on the input digital signals of the I and Q channels according to the following formula: Preprocessing: . Rek ⁇
  • Re J , Im ⁇ 5 march ⁇ are the input digital signals of I and Q in I/Q modulation process respectively
  • is the half-wave voltage of MZM
  • / is the coefficient of controlling the size of MZM driving signal
  • Rek ⁇ ' And Imk ⁇ ' are the output digital signals preprocessed by the inverse sine function of I and Q, respectively.
  • the invention also discloses a method for improving the modulation performance of an MZ modulator, comprising: performing an inverse sine function preprocessing on an input digital signal of the MZ modulator, so that the preprocessed signal works in a nonlinear region of the MZM without distortion, and then Converting the digital electrical signal preprocessed by the inverse sine function into an analog electrical signal;
  • the converted optical carrier is modulated by the converted analog electrical signal.
  • the input signal is inversely transformed accordingly.
  • the input digital signal is subjected to an inverse sine function preprocessing according to the following formula:
  • is the half-wave voltage of MZM
  • / is the coefficient for controlling the magnitude of the MZM drive signal, which is the output digital signal preprocessed by the inverse sine function.
  • the above method further includes:
  • the input digital signal of the MZ modulator is divided into one or more signals for processing.
  • the input digital signal of the MZ modulator when the input digital signal of the MZ modulator is divided into two signals for processing, the input digital signal is divided into I and Q channels, and the input digital signals of the I and Q channels are respectively corrected anyway.
  • the string function is preprocessed, and the processed digital electrical signals are respectively converted into analog signals, and the converted optical signals output by the laser are modulated by the converted two analog electrical signals.
  • the inverse digital sine function preprocessing is performed on the input digital signals of the I and Q channels according to the following formula:
  • Rek ⁇ , Im ⁇ 5 suitcase ⁇ are the input digital signals of I and Q, respectively, in the I/Q modulation process
  • is the half-wave voltage of MZM
  • / is the coefficient controlling the size of the MZM drive signal
  • Re ⁇ ' And Imk ⁇ ' are the output digital signals preprocessed by the inverse sine function of I and Q, respectively.
  • a storage medium having stored therein a computer program configured to perform the aforementioned method of improving modulation performance of an MZ modulator.
  • the technical solution of the embodiment of the present invention performs the Arcsin (anti-sinusoidal function) preprocessing on the digital signal, thereby effectively suppressing the influence of the MZ field modulation nonlinearity and improving the output optical power of the transmitter.
  • FIG. 1 is a schematic structural diagram of an apparatus for improving MZM field modulation performance in a preferred embodiment of the present invention
  • FIG. 2 is a schematic diagram of the MZM field modulation performance of the 16QAM-CO-OFDM transmission system improved by the apparatus shown in FIG.
  • FIG. 3 is a functional table diagram of a digital domain Arcsin transform unit implemented by the apparatus of FIG. 1.
  • FIG. 4 is a flow chart of a method for improving MZM field modulation performance in accordance with a preferred embodiment of the present invention. detailed description
  • the present embodiment provides an apparatus for improving the modulation performance of an MZM.
  • the apparatus includes a laser, an Arcsin transform unit, a DAC unit, and an MZM unit.
  • the working principles of the various parts are described below.
  • the Arcsin transform module unit is used for Arcsin preprocessing of the digital signal input to the MZ modulator.
  • the preprocessed signal can operate in the MZM nonlinear region without distortion.
  • the above Arcsin transformation module's Arcsin calculation method includes a table lookup method, but it is not limited to the table lookup method.
  • the above Arcsin transform module unit performs an inverse sine on the input digital signal of the MZ modulator.
  • the function preprocessing refers to:
  • the Arcsin transform unit performs corresponding inverse transformation on the input signal according to the signal response characteristic of the MZM.
  • the Arcsin transform module can perform Arcsin preprocessing on the input digital signal according to the following formula:
  • is a half-wave voltage of ⁇
  • / is a coefficient for controlling the size of the driving signal, and is an output digital signal preprocessed by Arcsin.
  • the input signal is linear with the output signal without being affected by the nonlinearity of the MZM.
  • the data input by the above Arcsin transform unit needs to be valued within the range [1 - 1 ' 1 ].
  • the DAC unit is configured to convert the digital electrical signal processed by the Arcsin transform module into an analog electrical signal.
  • the MZM unit is configured to modulate the optical carrier output by the laser by an analog electrical signal converted by the DAC unit for electrical/optical conversion.
  • This embodiment provides a method for improving the modulation performance of an MZ modulator, which may be implemented by, but not limited to, the apparatus of the above Embodiment 1, which operates as follows:
  • Arcsin preprocessing is performed on the input digital signal of the MZ modulator, so that the preprocessed signal operates in the nonlinear region of the MZM without distortion, and then the digital electrical signal preprocessed by Arcsin is converted into an analog electrical signal;
  • the converted optical carrier is modulated by the converted analog electrical signal.
  • the Arcsin preprocessing of the input digital signal of the MZ modulator is: according to the signal response characteristic of the MZM, the input signal is inversely transformed accordingly.
  • the input digital signal can be subjected to Arcsin preprocessing according to the following formula:
  • is the half-wave voltage of MZM
  • / is the coefficient for controlling the size of the MZM drive signal, which is the output digital signal preprocessed by Arcsin. It should be noted that, in practical applications, the input digital signal of the MZ modulator can be divided into one or multiple signals for processing.
  • This embodiment provides a preferred apparatus for improving the MZM modulation performance, which is mainly optimized on the basis of the above-described Embodiment 1. It mainly focuses on the modulation mode of 16QAM, and proposes to divide the input signal into two signals of I and Q.
  • the Arcsin transform module unit in the MZM modulation performance device can include two Arcsin transform modules, and the DAC unit includes The two DAC and MZM units include two MZMs, the structure of which is shown in Figure 1.
  • the two Arcsin transform modules perform Arcsin preprocessing on the input digital signals of the I and Q channels of the input signal, respectively, which can be calculated according to the following formula.
  • n is the input digital signal of I and Q, respectively, during I/Q modulation, V p , is the half-wave voltage of MZM, ; / is the coefficient controlling the size of MZM drive signal, Re ⁇ ' and Imk ⁇ '
  • the output digital signals are preprocessed by Arcsin for I and Q respectively. It should be emphasized that the apparatus proposed in this embodiment is not limited to the scene use of the 16QAM-OFDM input signal. Depending on the scenario, adjustments can be made as appropriate.
  • the means for MZM modulation performance comprises a laser 18, a 16-QAM constellation mapping unit 10, a serial-to-parallel changing unit 11, an IFFT unit 12, a parallel string unit 13, a real Arcsin unit 14 and an imaginary part Arcsin unit 15, DAC unit 16 17, MZM unit 19, 20, and phase shifter 21.
  • the real Arcsin unit 14 and the imaginary Arcsin unit 15 can be realized by look-up table method, as shown in Figure 3.
  • the present embodiment provides a method for improving the MZM optical modulation performance of the 16QAM-CO-OFDM system based on the Arcsin transform.
  • the implementation of the method may be implemented by the apparatus of the embodiment 3, and the specific implementation includes the following steps 400 to 406:
  • Step 400 The binary bit stream enters the 16QAM constellation mapping unit 10 to generate a 16QAM symbol s ".
  • the 16QAM symbol forms multiple parallel data through the serial-to-parallel transform unit 11.
  • the multiplex parallel data forms an OFDM signal through the IFFT unit 12. .
  • Step 403 the parallel OFDM signal data is subjected to serial-to-serial conversion unit 13 to form serial data.
  • Step 406 the data output by the DAC unit 16, 17 is input to the MZM unit 19, 20 to modulate the optical carrier generated by the laser.
  • the key of the system solution is the Arcsin transformation of the digital domain, which can be implemented by using the look-up table method, specifically:
  • the Arcsin transform can be performed by using the look-up table method. Firstly, the Arcsin table in the look-up table method is set. Different digits can be selected according to the accuracy requirement.
  • the N-bit Arcsin table is taken as an example.
  • Figure 3 shows the Arcsin operation. The operation result corresponding to the input data of the unit.
  • the real Arcsin unit 14 and the imaginary Arcsin unit 15 signal are converted by the DAC unit 16, 17 and then enter the MZM unit 19, 20 as a drive signal.
  • the output signals of the MZM unit 19, 20 are:
  • the Arcsin transform method can make MZM meet the requirements of linear field modulation under the high PAPR of 16QAM-CO-OFDM system.
  • the technical solution of the present invention uses the Arcsin transform operation unit to preprocess the signal before the originating DAC, so that the transmitted signal can work in the MZM field modulation nonlinear region, thereby avoiding the MZM working in the field modulation nonlinear region.
  • the resulting system error rate is degraded and the system's efficiency in using the transmitter laser power is improved.
  • Embodiments of the present invention also describe a storage medium in which a computer program is stored, the computer program being configured to perform the method of improving the modulation performance of the MZ modulator of the foregoing embodiment.
  • the invention performs Arcsin (anti-sinusoidal function) preprocessing on the digital signal, thereby effectively suppressing the influence of the MZ field modulation nonlinearity and improving the output optical power of the transmitter.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Disclosed in an embodiment of the present invention are a device and method for improving the modulation performance of an MZ modulator, and a storage medium, the device comprising a laser, and further comprising: an arcsin transformation unit for conducting arcsin preprocessing on the input digital signal of an MZ modulator so as to allow the preprocessed signal to operate in an MZM nonlinear area without distortion; an digital-to-analog conversion (DAC) unit for converting the digital electrical signal processed by the arcsin transformation module into an analog electrical signal; an MZM unit for modulating the optical carrier outputted by the laser using the analog electrical signal converted by the DAC unit. Also disclosed is a method for improving the modulation performance of an MZ modulator. Through arcsin preprocessing of a digital signal, the technical solution of the present application can effectively inhibit the impact of the nonlinearity of MZ on-site modulation, thus increasing the output optical power of a transmitter.

Description

一种改进 MZ调制器调制性能的装置和方法、 存储介质 技术领域  Apparatus and method for improving modulation performance of MZ modulator, storage medium
本发明涉及光纤通信特别是相干光通信技术, 具体涉及发端信号的预 处理及马赫-曾德尔 (MZ, Mach-Zehnder )调制器的调制机制。 背景技术  The invention relates to optical fiber communication, especially to coherent optical communication technology, and particularly relates to preprocessing of an originating signal and a modulation mechanism of a Mach-Zehnder modulator. Background technique
基于高阶调制格式的相干光通信系统, 适应了当前光网络的发展, 构 建出高速率、 高容量、 低成本的光传输网络需求。 基于高阶调制格式的相 干光通信系统广泛应用 MZM进行光发射机 I/Q调制。 MZM是一个非线性 的调制器, 在驱动信号幅值非常小时, 由于消光比的影响, MZM无法实现 线性场调制。 当增大信号幅值以消除消光比不理想造成的影响时, 如果信 号幅值超出 MZM线性场调制区间,信号同样会引入不可逆转的失真,导致 系统误码率性能的恶化。  The coherent optical communication system based on the high-order modulation format adapts to the development of the current optical network, and constructs a high-speed, high-capacity, low-cost optical transmission network. Coherent optical communication systems based on high-order modulation formats are widely used in MZM for optical transmitter I/Q modulation. MZM is a non-linear modulator. When the amplitude of the drive signal is very small, MZM cannot achieve linear field modulation due to the extinction ratio. When the signal amplitude is increased to eliminate the effect of the undesired extinction ratio, if the signal amplitude exceeds the MZM linear field modulation interval, the signal will also introduce irreversible distortion, resulting in deterioration of the system bit error rate performance.
基于高阶调制格式的相干光通信系统中, 对于峰值平均功率比较大的 信号,信号的幅值变化范围很大。在使用 MZM对高峰值平均功率比( PAP , Peak to Average Power Ratio )信号进行线性场调制时, 为了避免不理想的消 光比造成调制性能恶化, 驱动信号不能控制得太小。 由于信号具有较高的 PAP , 因此不可避免地会有一些高峰值的驱动信号落在非线性区域内, 会 造成调制信号的非线性失真。 因此,如何克服 PAPR对 MZM的影响就成为 亟待解决的问题。 发明内容  In a coherent optical communication system based on a high-order modulation format, the amplitude of the signal varies widely for a signal having a relatively large peak average power. When using MZM to linearly modulate a peak-to-average power ratio (PAP) signal, the drive signal cannot be controlled too small to avoid deterioration of modulation performance due to undesired extinction ratio. Since the signal has a high PAP, it is inevitable that some high-peak drive signals will fall in the nonlinear region, causing nonlinear distortion of the modulated signal. Therefore, how to overcome the impact of PAPR on MZM has become an urgent problem to be solved. Summary of the invention
本发明实施例所要解决的技术问题是, 提供一种改进 MZ调制器调制 性能的装置和方法、 存储介质, 以降解 MZ现场调制非线性的影响。 为了解决上述技术问题, 本发明实施例公开了一种改进 MZ调制器调 制性能的装置, 包括激光器, 该装置还包括: The technical problem to be solved by the embodiments of the present invention is to provide an apparatus and method for improving the modulation performance of an MZ modulator and a storage medium to degrade the influence of the MZ field modulation nonlinearity. In order to solve the above technical problem, an embodiment of the present invention discloses an apparatus for improving the modulation performance of an MZ modulator, including a laser, and the apparatus further includes:
反正弦函数变换单元, 对 MZ调制器的输入数字信号进行反正弦函数 预处理, 使预处理后的信号工作在 MZM非线性区域而不失真;  The inverse sine function transform unit performs an inverse sine function preprocessing on the input digital signal of the MZ modulator, so that the preprocessed signal operates in the MZM nonlinear region without distortion;
模数转换(DAC )单元, 将所述反正弦函数变换模块处理后的数字电 信号转换为模拟电信号;  An analog-to-digital conversion (DAC) unit that converts the digital electrical signal processed by the inverse sine function transformation module into an analog electrical signal;
MZM单元, 利用所述 DAC单元转换的模拟电信号调制所述激光器输 出的光载波。  The MZM unit modulates the optical carrier of the laser output by using an analog electrical signal converted by the DAC unit.
较佳地, 上述装置中, 所述对 MZ调制器的输入数字信号进行反正弦 函数预处理指:  Preferably, in the above apparatus, the inverse sine function preprocessing of the input digital signal of the MZ modulator means:
所述反正弦函数变换单元根据 MZM的信号响应特性,对输入信号进行 相应的反变换。  The inverse sine function transform unit performs a corresponding inverse transform on the input signal according to the signal response characteristic of the MZM.
较佳地, 上述装置中, 所述反正弦函数变换单元按照如下公式对输入 数字信号进行反正弦函数预处理:
Figure imgf000004_0001
Preferably, in the above apparatus, the inverse sine function conversion unit performs an inverse sine function preprocessing on the input digital signal according to the following formula:
Figure imgf000004_0001
上式中, 为输入数字信号, ^为 ΜΖΜ的半波电压, ;/为控制 ΜΖΜ 驱动信号大小的系数, 为经反正弦函数预处理后的输出数字信号。  In the above formula, for inputting a digital signal, ^ is a half-wave voltage of ΜΖΜ, and / is a coefficient for controlling the magnitude of the driving signal, and is an output digital signal preprocessed by an inverse sine function.
较佳地, 上述装置中, 所述反正弦函数变换单元包括一个或多个反正 弦函数变换模块。  Preferably, in the above apparatus, the inverse sine function transformation unit includes one or more inverse sine function transformation modules.
较佳地, 上述装置中, 当所述反正弦函数变换单元包括多个反正弦函 数变换模块时, 所述模数转换(DAC )单元包括与反正弦函数变换模块数 量一样多的 DAC , 所述 ΜΖΜ单元包括与反正弦函数变换模块数量一样多 的 ΜΖΜ。 较佳地, 上述装置中, 所述反正弦函数变换单元包括两个反正弦函数 变换模块时, 将输入数字信号划分为 I路与 Q路, 两个反正弦函数变换模 块分别对 I路与 Q路的输入数字信号进行反正弦函数预处理, 再将处理后 的数字电信号分别发送给模数转换(DAC )单元中中对应的 DAC以及 MZM 单元中对应的 MZM进行处理。 Preferably, in the above apparatus, when the inverse sine function transformation unit includes a plurality of inverse sine function transformation modules, the analog-to-digital conversion (DAC) unit includes as many DACs as the number of inverse sine function transformation modules, The ΜΖΜ unit includes as many ΜΖΜ as the number of inverse sine function transformation modules. Preferably, in the above apparatus, when the inverse sine function transformation unit includes two inverse sine function transformation modules, the input digital signal is divided into I road and Q road, and two inverse sine function transformation modules respectively pair I and Q. The input digital signal of the circuit is subjected to an inverse sine function preprocessing, and the processed digital electrical signal is separately sent to a corresponding DAC in the analog-to-digital conversion (DAC) unit and a corresponding MZM in the MZM unit for processing.
较佳地, 上述装置中, 所述反正弦函数变换单元包括两个反正弦函数 变换模块时, 两个反正弦函数变换模块分别按照如下公式对 I路与 Q路的 输入数字信号进行反正弦函数预处理: . Rek}|≤l 7. Re{ > 1 . Im{, < 1 lm{¾}| > l Preferably, in the above apparatus, when the inverse sine function transformation unit includes two inverse sine function transformation modules, the two inverse sine function transformation modules respectively perform an inverse sine function on the input digital signals of the I and Q channels according to the following formula: Preprocessing: . Rek}| ≤ l 7. Re{ > 1 . Im{, < 1 lm{3⁄4}| > l
Figure imgf000005_0001
Figure imgf000005_0001
其中, Re J , Im{5„}分别为 I/Q调制过程中 I路与 Q路的输入数字信 号, ^为 MZM的半波电压, ;/为控制 MZM驱动信号大小的系数, Rek} ' 和 Imk} '分别为 I路和 Q路经反正弦函数预处理后的输出数字信号。  Among them, Re J , Im{5 „} are the input digital signals of I and Q in I/Q modulation process respectively, ^ is the half-wave voltage of MZM, and / is the coefficient of controlling the size of MZM driving signal, Rek} ' And Imk} ' are the output digital signals preprocessed by the inverse sine function of I and Q, respectively.
本发明还公开了一种改进 MZ调制器调制性能的方法, 包括: 对 MZ调制器的输入数字信号进行反正弦函数预处理, 使预处理后的 信号工作在 MZM非线性区域而不失真,再将反正弦函数预处理后的数字电 信号转换为模拟电信号;  The invention also discloses a method for improving the modulation performance of an MZ modulator, comprising: performing an inverse sine function preprocessing on an input digital signal of the MZ modulator, so that the preprocessed signal works in a nonlinear region of the MZM without distortion, and then Converting the digital electrical signal preprocessed by the inverse sine function into an analog electrical signal;
利用转换后的模拟电信号调制激光器输出的光载波。  The converted optical carrier is modulated by the converted analog electrical signal.
较佳地, 上述方法中, 对 MZ调制器的输入数字信号进行反正弦函数 预处理指:  Preferably, in the above method, performing an inverse sine function on the input digital signal of the MZ modulator means:
根据 MZM的信号响应特性, 对输入信号进行相应的反变换。 较佳地, 上述方法中, 按照如下公式对输入数字信号进行反正弦函数 预处理:
Figure imgf000006_0001
According to the signal response characteristics of MZM, the input signal is inversely transformed accordingly. Preferably, in the above method, the input digital signal is subjected to an inverse sine function preprocessing according to the following formula:
Figure imgf000006_0001
— - arcsin(l), η - s \ > 1  — - arcsin(l), η - s \ > 1
π 上式中, 为输入数字信号, ^为 MZM的半波电压, ;/为控制 MZM 驱动信号大小的系数, 为经反正弦函数预处理后的输出数字信号。  In the above equation, for the input digital signal, ^ is the half-wave voltage of MZM, and / is the coefficient for controlling the magnitude of the MZM drive signal, which is the output digital signal preprocessed by the inverse sine function.
较佳地, 上述方法还包括:  Preferably, the above method further includes:
将 MZ调制器的输入数字信号分为一种或多路信号进行处理。  The input digital signal of the MZ modulator is divided into one or more signals for processing.
较佳地, 上述方法中, 将 MZ调制器的输入数字信号分为两路信号进 行处理时, 将输入数字信号划分为 I路与 Q路, 分别对 I路与 Q路的输入 数字信号进行反正弦函数预处理, 再将处理后的数字电信号分别转换为模 拟信号, 利用转换后的两路模拟电信号调制激光器输出的光载波。  Preferably, in the above method, when the input digital signal of the MZ modulator is divided into two signals for processing, the input digital signal is divided into I and Q channels, and the input digital signals of the I and Q channels are respectively corrected anyway. The string function is preprocessed, and the processed digital electrical signals are respectively converted into analog signals, and the converted optical signals output by the laser are modulated by the converted two analog electrical signals.
较佳地, 上述方法中, 将 MZ调制器的输入数字信号分为两路信号进 行处理时, 分别按照如下公式对 I路与 Q路的输入数字信号进行反正弦函 数预处理:  Preferably, in the above method, when the input digital signal of the MZ modulator is divided into two signals for processing, the inverse digital sine function preprocessing is performed on the input digital signals of the I and Q channels according to the following formula:
Figure imgf000006_0002
Figure imgf000006_0002
其中, Rek} , Im{5„}分别为 I/Q调制过程中 I路与 Q路的输入数字信 号, ^为 MZM的半波电压, ;/为控制 MZM驱动信号大小的系数, Re } ' 和 Imk} '分别为 I路和 Q路经反正弦函数预处理后的输出数字信号。 一种存储介质, 所述存储介质中存储有计算机程序, 所述计算机程序 配置为执行前述的改进 MZ调制器调制性能的方法。 Among them, Rek}, Im{5„} are the input digital signals of I and Q, respectively, in the I/Q modulation process, ^ is the half-wave voltage of MZM, and / is the coefficient controlling the size of the MZM drive signal, Re } ' And Imk} ' are the output digital signals preprocessed by the inverse sine function of I and Q, respectively. A storage medium having stored therein a computer program configured to perform the aforementioned method of improving modulation performance of an MZ modulator.
本发明实施例的技术方案通过对数字信号进行 Arcsin (反正弦函数) 预处理, 从而有效地抑制 MZ现场调制非线性的影响, 提高发射机输出光 功率。 附图说明  The technical solution of the embodiment of the present invention performs the Arcsin (anti-sinusoidal function) preprocessing on the digital signal, thereby effectively suppressing the influence of the MZ field modulation nonlinearity and improving the output optical power of the transmitter. DRAWINGS
图 1是本发明优选实施例中改进 MZM场调制性能的装置结构示意图; 图 2是图 1所示装置改进 16QAM-CO-OFDM传输系统 MZM场调制性 能示意图;  1 is a schematic structural diagram of an apparatus for improving MZM field modulation performance in a preferred embodiment of the present invention; FIG. 2 is a schematic diagram of the MZM field modulation performance of the 16QAM-CO-OFDM transmission system improved by the apparatus shown in FIG.
图 3是图 1所示装置实现数字域 Arcsin变换单元的函数表格图; 图 4是本发明优选实施例改进 MZM场调制性能的方法流程图。 具体实施方式  3 is a functional table diagram of a digital domain Arcsin transform unit implemented by the apparatus of FIG. 1. FIG. 4 is a flow chart of a method for improving MZM field modulation performance in accordance with a preferred embodiment of the present invention. detailed description
为使本发明的目的、 技术方案和优点更加清楚明白, 下文将结合附图 对本发明技术方案作进一步详细说明。 需要说明的是, 在不沖突的情况下, 本申请的实施例和实施例中的特征可以任意相互组合。  In order to make the objects, technical solutions and advantages of the present invention more comprehensible, the technical solutions of the present invention will be further described in detail below with reference to the accompanying drawings. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily.
实施例 1  Example 1
本实施例提供一种改进 MZM调制性能的装置,装置包括激光器、 Arcsin 变换单元、 DAC单元和 MZM单元, 下面介绍各部分的工作原理。  The present embodiment provides an apparatus for improving the modulation performance of an MZM. The apparatus includes a laser, an Arcsin transform unit, a DAC unit, and an MZM unit. The working principles of the various parts are described below.
激光器, 提供光载波;  a laser that provides an optical carrier;
Arcsin变换模块单元, 用以对 MZ调制器的输入的数字信号的 Arcsin 预处理, 预处理后的信号可以工作在 MZM非线性区域而不失真。  The Arcsin transform module unit is used for Arcsin preprocessing of the digital signal input to the MZ modulator. The preprocessed signal can operate in the MZM nonlinear region without distortion.
其中, 上述 Arcsin变换模块其 Arcsin计算方法包括查表法, 但不仅限 于查表法。  Among them, the above Arcsin transformation module's Arcsin calculation method includes a table lookup method, but it is not limited to the table lookup method.
而上述 Arcsin变换模块单元对 MZ调制器的输入数字信号进行反正弦 函数预处理指: Arcsin变换单元根据 MZM的信号响应特性,对输入信号进 行相应的反变换。 The above Arcsin transform module unit performs an inverse sine on the input digital signal of the MZ modulator. The function preprocessing refers to: The Arcsin transform unit performs corresponding inverse transformation on the input signal according to the signal response characteristic of the MZM.
本实施例中, Arcsin变换模块可以按照如下公式对输入的数字信号进 行 Arcsin预处理:
Figure imgf000008_0001
In this embodiment, the Arcsin transform module can perform Arcsin preprocessing on the input digital signal according to the following formula:
Figure imgf000008_0001
上式中, 为输入数字信号, ^为 ΜΖΜ的半波电压, ;/为控制 ΜΖΜ 驱动信号大小的系数, 为经 Arcsin预处理后的输出数字信号。  In the above formula, for inputting a digital signal, ^ is a half-wave voltage of ΜΖΜ, and / is a coefficient for controlling the size of the driving signal, and is an output digital signal preprocessed by Arcsin.
按照上述公式进行调制后, 输入信号与输出信号呈线性关系, 而不会受 MZM非线性的影响导致变形。  After modulation according to the above formula, the input signal is linear with the output signal without being affected by the nonlinearity of the MZM.
上述 Arcsin变换单元输入的数据需在 [一1'1]范围内进行取值。 The data input by the above Arcsin transform unit needs to be valued within the range [1 - 1 ' 1 ].
另夕卜, 此 DAC单元, 用于将 Arcsin变换模块处理后的号数字电信号转 换为模拟电信号。  In addition, the DAC unit is configured to convert the digital electrical signal processed by the Arcsin transform module into an analog electrical signal.
MZM单元, 用于利用 DAC单元转换的模拟电信号调制所述激光器输 出的所述光载波, 进行电 /光转换。  The MZM unit is configured to modulate the optical carrier output by the laser by an analog electrical signal converted by the DAC unit for electrical/optical conversion.
实施例 2  Example 2
本实施例提供一种改进 MZ调制器调制性能的方法, 可依赖但不限于 上述实施例 1的装置实现, 该方法如下操作:  This embodiment provides a method for improving the modulation performance of an MZ modulator, which may be implemented by, but not limited to, the apparatus of the above Embodiment 1, which operates as follows:
对 MZ调制器的输入数字信号进行 Arcsin预处理, 使预处理后的信号 工作在 MZM非线性区域而不失真, 再将 Arcsin预处理后的数字电信号转 换为模拟电信号;  Arcsin preprocessing is performed on the input digital signal of the MZ modulator, so that the preprocessed signal operates in the nonlinear region of the MZM without distortion, and then the digital electrical signal preprocessed by Arcsin is converted into an analog electrical signal;
利用转换后的模拟电信号调制激光器输出的光载波。  The converted optical carrier is modulated by the converted analog electrical signal.
其中,对 MZ调制器的输入数字信号进行 Arcsin预处理是:根据 MZM 的信号响应特性, 对输入信号进行相应的反变换。 本实施例中, 可按照如下公式对输入数字信号进行 Arcsin预处理:Among them, the Arcsin preprocessing of the input digital signal of the MZ modulator is: according to the signal response characteristic of the MZM, the input signal is inversely transformed accordingly. In this embodiment, the input digital signal can be subjected to Arcsin preprocessing according to the following formula:
V . V.
— -arcsin (^-5 ), J <1  — -arcsin (^-5 ), J <1
π π
„,  „,
■arcsi inn(l), Vl-
Figure imgf000009_0001
上式中, 为输入数字信号, ^为 MZM的半波电压, ;/为控制 MZM 驱动信号大小的系数, 为经 Arcsin预处理后的输出数字信号。 需要说明的是, 在实际应用中, 可以将 MZ调制器的输入数字信号分 为一种或多路信号进行处理。
■arcsi inn(l), Vl-
Figure imgf000009_0001
In the above formula, for the input digital signal, ^ is the half-wave voltage of MZM, and / is the coefficient for controlling the size of the MZM drive signal, which is the output digital signal preprocessed by Arcsin. It should be noted that, in practical applications, the input digital signal of the MZ modulator can be divided into one or multiple signals for processing.
实施例 3  Example 3
本实施例提供一种优选的改进 MZM调制性能的装置,其主要在上述实 施例 1的基础上进行优化。其主要针对 16QAM的调制方式,提出将输入信 号分为 I路和 Q路两路信号进行处理, 此时, MZM调制性能的装置中的 Arcsin变换模块单元可包括两个 Arcsin变换模块, DAC单元包括两个 DAC、 MZM单元包括两个 MZM, 其结构如图 1所示。 这两个 Arcsin变换模块分 别对输入信号的 I路与 Q路的输入数字信号进行 Arcsin预处理, 具体可按 照如下公式进行计算。  This embodiment provides a preferred apparatus for improving the MZM modulation performance, which is mainly optimized on the basis of the above-described Embodiment 1. It mainly focuses on the modulation mode of 16QAM, and proposes to divide the input signal into two signals of I and Q. At this time, the Arcsin transform module unit in the MZM modulation performance device can include two Arcsin transform modules, and the DAC unit includes The two DAC and MZM units include two MZMs, the structure of which is shown in Figure 1. The two Arcsin transform modules perform Arcsin preprocessing on the input digital signals of the I and Q channels of the input signal, respectively, which can be calculated according to the following formula.
V„,  V„,
.arcsin (77.Re{s"}) .Rek}|≤l  .arcsin (77.Re{s"}) .Rek}|≤l
π  π
Re{¾}'  Re{3⁄4}'
R {^„} Vpi Re{^„} Vt R {^„} V pi Re{^„} V t
arcsin „}|>1 ;/.Ιηψ„}|≤1  Arcsin „}|>1 ;/.Ιηψ„}|≤1
上式中, Re } , 2 In the above formula, Re } , 2
Figure imgf000009_0002
Figure imgf000009_0002
\m{sn 分别为 I/Q调制过程中 I路与 Q路的输入数字信号, Vp,为 MZM的半 波电压, ;/为控制 MZM驱动信号大小的系数, Re }'和 Imk}'分别为 I路 和 Q路经 Arcsin预处理后的输出数字信号。 需要强调的是, 本实施例提出的装置并不仅限于 16QAM-OFDM输入 信号的场景使用。 根据不同的场景, 可适当进行调整。 \m{s n is the input digital signal of I and Q, respectively, during I/Q modulation, V p , is the half-wave voltage of MZM, ; / is the coefficient controlling the size of MZM drive signal, Re } ' and Imk} 'The output digital signals are preprocessed by Arcsin for I and Q respectively. It should be emphasized that the apparatus proposed in this embodiment is not limited to the scene use of the 16QAM-OFDM input signal. Depending on the scenario, adjustments can be made as appropriate.
下面结合图 2, 说明本优选实施例是如何通过 Arcsin 变换模块改进 16QAM-CO-OFDM系统 MZM场调制性能的。 优选地, MZM调制性能的 装置包括激光器 18, 16-QAM星座映射单元 10, 串并变化单元 11 , IFFT 单元 12, 并串单元 13 , 实部 Arcsin单元 14和虚部 Arcsin单元 15, DAC 单元 16、 17 , MZM单元 19、 20, 以及 移相器 21。 其中, 实部 Arcsin 单元 14和虚部 Arcsin单元 15可通过查表法实现, 如图 3所示。  The following describes how the preferred embodiment improves the MZM field modulation performance of the 16QAM-CO-OFDM system through the Arcsin transform module in conjunction with FIG. Preferably, the means for MZM modulation performance comprises a laser 18, a 16-QAM constellation mapping unit 10, a serial-to-parallel changing unit 11, an IFFT unit 12, a parallel string unit 13, a real Arcsin unit 14 and an imaginary part Arcsin unit 15, DAC unit 16 17, MZM unit 19, 20, and phase shifter 21. Among them, the real Arcsin unit 14 and the imaginary Arcsin unit 15 can be realized by look-up table method, as shown in Figure 3.
实施例 4  Example 4
本实施例提供一种基于 Arcsin变换改进 16QAM-CO-OFDM系统 MZM 光调制性能的方法, 该方法的实现可依赖于实施例 3 的装置实现, 具体实 现包括如下步骤 400至步骤 406:  The present embodiment provides a method for improving the MZM optical modulation performance of the 16QAM-CO-OFDM system based on the Arcsin transform. The implementation of the method may be implemented by the apparatus of the embodiment 3, and the specific implementation includes the following steps 400 to 406:
步骤 400, 二进制 bit流进入 16QAM星座映射单元 10, 产生 16QAM 符号 s"。 步骤 401 , 16QAM符号 经过串并变换单元 11形成多路并行数据。 步骤 402 , 多路并行数据经过 IFFT单元 12形成 OFDM信号。 Step 400: The binary bit stream enters the 16QAM constellation mapping unit 10 to generate a 16QAM symbol s ". Step 401, the 16QAM symbol forms multiple parallel data through the serial-to-parallel transform unit 11. Step 402, the multiplex parallel data forms an OFDM signal through the IFFT unit 12. .
步骤 403 ,并行的 OFDM信号数据经过并串变换单元 13形成串行数据。 步骤 404, 串并变换单元 13输出的 OFDM信号 分别求其实部与虚 部, 输入实部 Arcsin单元 14和虚部 Arcsin单元 15, 进行如下变化。 „}|≤1  Step 403, the parallel OFDM signal data is subjected to serial-to-serial conversion unit 13 to form serial data. Step 404, the OFDM signals outputted by the serial-to-parallel transform unit 13 respectively obtain the real part and the imaginary part, and input the real part Arcsin unit 14 and the imaginary part Arcsin unit 15, and perform the following changes. „}|≤1
Re{¾}' Re{3⁄4}'
Rek}| > l Rek}| > l
Figure imgf000010_0001
^arcsin(^ Im{¾}) ' |^ Im{¾}|≤l
Figure imgf000010_0001
^arcsin(^ Im{3⁄4}) ' |^ Im{3⁄4}|≤l
ImiSn VP. Im i S n V P.
T ~~ ~Τ a arrcsi n HT ~~ ~Τ a a r rcsi n H
n lj _ -τ- I ~m~i—^i VP. n lj _ -τ- I ~ m ~i-^i V P.
ττ-— I T ,1 1 Ττ-— I T , 1 1
\n lm s„ \\>\  \n lm s„ \\>\
|lmk}| π |lm{5„}| 2 > " l 步骤 405, 实部 Arcsin变换单元 14和虚部 Arcsin变换单元 15输出的 数字信号分别经过 DAC单元 16、 17进行模数转换。  |lmk}| π |lm{5„}| 2 > " l Step 405, real part Arcsin transform unit 14 and imaginary part The digital signal output from the Arcsin transform unit 15 is subjected to analog-to-digital conversion via the DAC units 16, 17.
步骤 406, DAC单元 16、 17输出的数据输入到 MZM单元 19、 20, 调制激光器产生的光载波。  Step 406, the data output by the DAC unit 16, 17 is input to the MZM unit 19, 20 to modulate the optical carrier generated by the laser.
该系统方案关键是数字域的 Arcsin变换, 具体可以使用查表法实现, 具体地:  The key of the system solution is the Arcsin transformation of the digital domain, which can be implemented by using the look-up table method, specifically:
在数字域 Arcsin变换可利用查表法进行, 首先设定查表法中 Arcsin运 算表, 根据精度要求可选不同位数, 这里以 N位 Arcsin运算表为例, 图 3 给出的是 Arcsin运算单元不同输入数据对应的运算结果。  In the digital domain, the Arcsin transform can be performed by using the look-up table method. Firstly, the Arcsin table in the look-up table method is set. Different digits can be selected according to the accuracy requirement. Here, the N-bit Arcsin table is taken as an example. Figure 3 shows the Arcsin operation. The operation result corresponding to the input data of the unit.
将实部 Arcsin单元 14和虚部 Arcsin单元 15信号经 DAC单元 16、 17 转换后作为驱动信号进入 MZM单元 19、 20, 此时 MZM单元 19、 20的输 出信号为:  The real Arcsin unit 14 and the imaginary Arcsin unit 15 signal are converted by the DAC unit 16, 17 and then enter the MZM unit 19, 20 as a drive signal. At this time, the output signals of the MZM unit 19, 20 are:
Eout = Ειη · sin (-^ · Re{.(t)}') = Ειη ^ Rc{sn} E out = Ε ιη · sin (-^ · Re{.(t)}') = Ε ιη ^ Rc{s n }
Pi  Pi
Eout = E,n · sin (^- · Ιπψ )}') = Em · η · {sn) E out = E , n · sin (^- · Ιπψ )}') = E m · η · {s n )
Pi  Pi
由此可知 Arcsin变换的方法可以使 MZM在 16QAM-CO-OFDM系统 高 PAPR下满足线性场调制的要求。  It can be seen that the Arcsin transform method can make MZM meet the requirements of linear field modulation under the high PAPR of 16QAM-CO-OFDM system.
从上述实施例可以看出, 本发明技术方案在发端 DAC之前使用 Arcsin 变换运算单元对信号进行预处理,使发送信号可以工作在 MZM场调制非线 性区域,避免了 MZM工作在场调制非线性区所造成的系统误码率恶化,并 提高了系统对发射机激光器功率的使用效率。  It can be seen from the above embodiment that the technical solution of the present invention uses the Arcsin transform operation unit to preprocess the signal before the originating DAC, so that the transmitted signal can work in the MZM field modulation nonlinear region, thereby avoiding the MZM working in the field modulation nonlinear region. The resulting system error rate is degraded and the system's efficiency in using the transmitter laser power is improved.
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程 序来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如 只读存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可 以使用一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元 可以采用硬件的形式实现, 也可以采用软件功能模块的形式实现。 本申请 不限制于任何特定形式的硬件和软件的结合。 One of ordinary skill in the art can understand that all or part of the steps in the above methods can pass the process. The instructions are completed by instruction related hardware, and the program may be stored in a computer readable storage medium such as a read only memory, a magnetic disk or an optical disk. Alternatively, all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits. Correspondingly, each module/unit in the above embodiment may be implemented in the form of hardware or in the form of a software function module. This application is not limited to any specific combination of hardware and software.
本发明实施例还记载了一种存储介质 , 所述存储介质中存储有计算机 程序, 所述计算机程序配置为执行前述实施例的改进 MZ调制器调制性能 的方法。  Embodiments of the present invention also describe a storage medium in which a computer program is stored, the computer program being configured to perform the method of improving the modulation performance of the MZ modulator of the foregoing embodiment.
以上所述, 仅为本发明的较佳实例而已, 并非用于限定本发明的保护 范围。 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进 等, 均应包含在本发明的保护范围之内。  The above description is only a preferred embodiment of the present invention and is not intended to limit the scope of the present invention. Any modifications, equivalent substitutions, improvements, etc., made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
工业实用性  Industrial applicability
本发明通过对数字信号进行 Arcsin (反正弦函数)预处理, 从而有效 地抑制 MZ现场调制非线性的影响, 提高发射机输出光功率。  The invention performs Arcsin (anti-sinusoidal function) preprocessing on the digital signal, thereby effectively suppressing the influence of the MZ field modulation nonlinearity and improving the output optical power of the transmitter.

Claims

权利要求书 Claim
1、一种改进 MZ调制器调制性能的装置, 包括激光器,该装置还包括: 反正弦函数变换单元, 对 MZ调制器的输入数字信号进行反正弦函数 预处理, 使预处理后的信号工作在 MZM非线性区域而不失真; A device for improving the modulation performance of an MZ modulator, comprising a laser, the device further comprising: an inverse sine function transform unit for performing an inverse sine function preprocessing on the input digital signal of the MZ modulator, so that the preprocessed signal operates MZM nonlinear region without distortion;
模数转换(DAC )单元, 将所述反正弦函数变换模块处理后的数字电 信号转换为模拟电信号;  An analog-to-digital conversion (DAC) unit that converts the digital electrical signal processed by the inverse sine function transformation module into an analog electrical signal;
MZM单元, 利用所述 DAC单元转换的模拟电信号调制所述激光器输 出的光载波。  The MZM unit modulates the optical carrier of the laser output by using an analog electrical signal converted by the DAC unit.
2、 如权利要求 1所述的装置, 其中, 所述对 MZ调制器的输入数字信 号进行反正弦函数预处理指: 2. The apparatus of claim 1, wherein the inverse sine function preprocessing of the input digital signal of the MZ modulator is:
所述反正弦函数变换单元根据 MZM的信号响应特性,对输入信号进行 相应的反变换。  The inverse sine function transform unit performs a corresponding inverse transform on the input signal according to the signal response characteristic of the MZM.
3、 如权利要求 2所述的装置, 其中, 所述反正弦函数变换单元按照如 下公 弦函数预处理: 3. The apparatus according to claim 2, wherein the inverse sine function transformation unit is preprocessed according to a lower chord function:
Figure imgf000013_0001
Figure imgf000013_0001
上式中, 为输入数字信号, ^为 ΜΖΜ的半波电压, ;/为控制 ΜΖΜ 驱动信号大小的系数, 为经反正弦函数预处理后的输出数字信号。  In the above formula, for inputting a digital signal, ^ is a half-wave voltage of ΜΖΜ, and / is a coefficient for controlling the magnitude of the driving signal, and is an output digital signal preprocessed by an inverse sine function.
4、 如权利要求 1至 3任一项所述的装置, 其中, 所述反正弦函数变换 单元包括一个或多个反正弦函数变换模块。 The apparatus according to any one of claims 1 to 3, wherein the inverse sine function transformation unit comprises one or more inverse sine function transformation modules.
5、 如权利要求 4所述的装置, 其中, 当所述反正弦函数变换单元包括 多个反正弦函数变换模块时, 所述模数转换(DAC )单元包括与反正弦函 数变换模块数量一样多的 DAC , 所述 ΜΖΜ单元包括与反正弦函数变换模 块数量一样多的 ΜΖΜ。 5. The apparatus according to claim 4, wherein, when the inverse sine function transform unit includes a plurality of inverse sine function transform modules, the analog-to-digital conversion (DAC) unit includes as many as the inverse sine function transform module The DAC, the ΜΖΜ unit includes as many ΜΖΜ as the number of inverse sine function transformation modules.
6、 如权利要求 5所述的装置, 其中, 所述反正弦函数变换单元包括两 个反正弦函数变换模块时, 将输入数字信号划分为 I路与 Q路, 两个反正 弦函数变换模块分别对 I路与 Q路的输入数字信号进行反正弦函数预处理, 再将处理后的数字电信号分别发送给模数转换 ( DAC )单元中中对应的 DAC 以及 MZM单元中对应的 MZM进行处理。 6. The apparatus of claim 5, wherein the inverse sine function transformation unit comprises two When the inverse sine function transformation module divides the input digital signal into I and Q channels, the two inverse sine function transformation modules respectively perform inverse sine function preprocessing on the input digital signals of I and Q, respectively, and then process the processed The digital electrical signals are respectively sent to corresponding DACs in the analog-to-digital conversion (DAC) unit and corresponding MZMs in the MZM unit for processing.
7、 如权利要求 6所述的装置, 其中, 所述反正弦函数变换单元包括两 个反正弦函数变换模块时, 两个反正弦函数变换模块分别按照如下公式对 I 路与 Q路的输入数字信号进行反正弦函数预处理: 7. The apparatus according to claim 6, wherein, when the inverse sine function transformation unit comprises two inverse sine function transformation modules, the two inverse sine function transformation modules respectively input the input numbers of the I and Q channels according to the following formula: The signal is preprocessed with an inverse sine function:
^arcsin(^ Re{¾}) , |^ Re{¾}|≤l π . rcSm(1)—國 . ' ^ 〉1
Figure imgf000014_0001
^arcsin(^ Re{3⁄4}) , |^ Re{3⁄4}|≤l π . rcSm(1) —国. ' ^ 〉 1
Figure imgf000014_0001
」!mk}| π |Imk}| !!mk}| π | Im k}|
其中, Re J , \m{sn 分别为 I/Q调制过程中 I路与 Q路的输入数字信 号, ^为 MZM的半波电压, ;/为控制 MZM驱动信号大小的系数, Rek}' 和 Imk}'分别为 I路和 Q路经反正弦函数预处理后的输出数字信号。 Among them, Re J , \m{s n are the input digital signals of I and Q channels in I/Q modulation process respectively, ^ is the half-wave voltage of MZM, and / is the coefficient of controlling the size of MZM driving signal, Rek}' And Imk}' are the output digital signals preprocessed by the I and Q paths through the inverse sine function.
8、 一种改进 MZ调制器调制性能的方法, 包括: 8. A method of improving the modulation performance of an MZ modulator, comprising:
对 MZ调制器的输入数字信号进行反正弦函数预处理, 使预处理后的 信号工作在 MZM非线性区域而不失真,再将反正弦函数预处理后的数字电 信号转换为模拟电信号;  The input digital signal of the MZ modulator is subjected to an inverse sine function preprocessing, so that the preprocessed signal operates in the nonlinear region of the MZM without distortion, and then the digital electrical signal preprocessed by the inverse sine function is converted into an analog electrical signal;
利用转换后的模拟电信号调制激光器输出的光载波。  The converted optical carrier is modulated by the converted analog electrical signal.
9、 如权利要求 8所述的方法, 其中, 对 MZ调制器的输入数字信号进 行反正弦函数预处理指: 9. The method of claim 8, wherein the inverse sine function preprocessing of the input digital signal of the MZ modulator is:
根据 MZM的信号响应特性, 对输入信号进行相应的反变换。  According to the signal response characteristics of MZM, the input signal is inversely transformed accordingly.
10、 如权利要求 9所述的方法, 其中, 按照如下公式对输入数字信号 进行反正弦函数预处理:
Figure imgf000015_0001
10. The method of claim 9, wherein the input digital signal is subjected to an inverse sine function preprocessing according to the following formula:
Figure imgf000015_0001
上式中, 为输入数字信号, ^为 MZM的半波电压, ;/为控制 MZM 驱动信号大小的系数, 为经反正弦函数预处理后的输出数字信号。  In the above formula, for inputting a digital signal, ^ is the half-wave voltage of MZM, and / is a coefficient for controlling the magnitude of the MZM drive signal, and is an output digital signal preprocessed by an inverse sine function.
11、 如权利要求 8至 10任一项所述的方法, 其中, 该方法还包括: 将 MZ调制器的输入数字信号分为一种或多路信号进行处理。 The method according to any one of claims 8 to 10, wherein the method further comprises: dividing the input digital signal of the MZ modulator into one or more signals for processing.
12、 如权利要求 11所述的方法, 其中, 将 MZ调制器的输入数字信号 分为两路信号进行处理时, 将输入数字信号划分为 I路与 Q路, 分别对 I 路与 Q路的输入数字信号进行反正弦函数预处理, 再将处理后的数字电信 号分别转换为模拟信号, 利用转换后的两路模拟电信号调制激光器输出的 光载波。 12. The method according to claim 11, wherein, when the input digital signal of the MZ modulator is divided into two signals for processing, the input digital signal is divided into I road and Q road, respectively, for the I road and the Q road. The digital signal is input to perform an inverse sine function preprocessing, and then the processed digital electrical signal is separately converted into an analog signal, and the converted optical signal is modulated by the converted two analog electrical signals.
13、 如权利要求 12所述的方法, 其中, 将 MZ调制器的输入数字信号 分为两路信号进行处理时, 分别按照如下公式对 I路与 Q路的输入数字信 号进行反正弦函数预处理: 13. The method according to claim 12, wherein, when the input digital signal of the MZ modulator is divided into two signals for processing, the inverse digital sine function preprocessing is performed on the input digital signals of the I and Q channels according to the following formula: :
Figure imgf000015_0002
Figure imgf000015_0002
V,  V,
― arcsin (^ Im{¾}) η - lm - < 1  ― arcsin (^ Im{3⁄4}) η - lm - < 1
π  π
arcsin lm{¾}| > l Arcsin lm{3⁄4}| > l
Figure imgf000015_0003
Figure imgf000015_0003
其中, Rek} , lm{sn}分别为 I/Q调制过程中 I路与 Q路的输入数字信 号, ^为 MZM的半波电压, ;/为控制 MZM驱动信号大小的系数, Re } ' 和 Imk} '分别为 I路和 Q路经反正弦函数预处理后的输出数字信号。 Where Rek} and lm{s n } are the input digital signals of I and Q, respectively, in the I/Q modulation process, ^ is the half-wave voltage of MZM, and / is the coefficient controlling the size of the MZM drive signal, Re } ' And Imk} ' are the output digital signals preprocessed by the inverse sine function of I and Q, respectively.
14、 一种存储介质, 所述存储介质中存储有计算机程序, 所述计算机 程序配置为执行权利要求 8至 13任一项所述的改进 MZ调制器调制性能的 方法。 A storage medium storing a computer program, the computer program being configured to perform the method of improving the modulation performance of the MZ modulator according to any one of claims 8 to 13.
PCT/CN2014/080429 2013-06-27 2014-06-20 Device and method for improving modulation performance of mz modulator, and storage medium WO2014206249A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310265487.1 2013-06-27
CN201310265487.1A CN104253654A (en) 2013-06-27 2013-06-27 Device and method for improving modulation performance of MZ (Mach Zehnder) modulator

Publications (1)

Publication Number Publication Date
WO2014206249A1 true WO2014206249A1 (en) 2014-12-31

Family

ID=52141047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080429 WO2014206249A1 (en) 2013-06-27 2014-06-20 Device and method for improving modulation performance of mz modulator, and storage medium

Country Status (2)

Country Link
CN (1) CN104253654A (en)
WO (1) WO2014206249A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729037A (en) * 2017-10-27 2019-05-07 华为技术有限公司 Signal creating method and electronic equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098392A (en) * 2012-10-22 2013-05-08 华为技术有限公司 Electro-optical modulation apparatus, method, emitter and electro-optical modulation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198996B2 (en) * 2008-09-19 2013-05-15 住友大阪セメント株式会社 Light modulator
EP2323287A1 (en) * 2009-11-12 2011-05-18 Intune Networks Limited Modulator control system and method in an optical network
JP5006978B1 (en) * 2011-03-30 2012-08-22 株式会社フジクラ Compensation method, optical modulation system, and optical demodulation system
CN103166706B (en) * 2013-02-05 2016-03-30 上海交通大学 Based on the photoelectric oscillation device of the frequency-tunable of wide spectrum light source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103098392A (en) * 2012-10-22 2013-05-08 华为技术有限公司 Electro-optical modulation apparatus, method, emitter and electro-optical modulation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. CHIU ET AL.: "Broad-Band Electronic Linearizer for Externally Modulated Analog Fiber-Optic Links", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 11, no. 1, 31 January 1999 (1999-01-31), pages 1 - 3, XP011046399 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729037A (en) * 2017-10-27 2019-05-07 华为技术有限公司 Signal creating method and electronic equipment
CN109729037B (en) * 2017-10-27 2020-03-20 华为技术有限公司 Signal generation method and electronic equipment
US10911149B2 (en) 2017-10-27 2021-02-02 Huawei Technologies Co., Ltd. Signal generation method and electronic device

Also Published As

Publication number Publication date
CN104253654A (en) 2014-12-31

Similar Documents

Publication Publication Date Title
Bao et al. Nonlinearity mitigation for high-speed optical OFDM transmitters using digital pre-distortion
US10236991B2 (en) Probabilistically shaped orthogonal frequency division multiplexing
CN110169027B (en) Method for converting or reconverting data signal, data transmitting and receiving method and system
US20210006451A1 (en) Systems, methods and apparatuses for modulation-agnostic unitary braid division multiplexing signal transformation
US9641374B2 (en) Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
CN109756438B (en) OOFDM method and system based on LDPC coding probability shaping mapping
CN101480011B (en) System and method of wireless communication of uncompressed video having a fast fourier transform-based channel interleaver
US20110135319A1 (en) Optical orthogonal frequency division multiplexing receiver and optical signal receiving method thereof
CN111095791B (en) Three-phase modulation for efficient and wideband radio transmitters
Wu et al. The phase estimation of geometric shaping 8-QAM modulations based on K-means clustering in underwater visible light communication
Zakaria et al. PAPR reduction scheme: wavelet packet‐based PTS with embedded side information data scheme
US20110026924A1 (en) Ofdm optical transmitter and optical transmission method
Sharifi A new post-coding approach for PAPR reduction in DC-biased optical OFDM systems
JPWO2009122509A1 (en) Digital signal processing optical transmitter
Wang et al. Demonstration of 100-Gbit/s 32-QAM signal transmission in a radio-over-fiber system with 2-bit DAC
Zhalehpour et al. Mitigating pattern dependent nonlinearity in SiP IQ-modulators via iterative learning control predistortion
EP4170983A1 (en) Data modulation method and apparatus, and device and storage medium
WO2014206249A1 (en) Device and method for improving modulation performance of mz modulator, and storage medium
TW201924294A (en) Baseband processing apparatus and baseband processing method based on orthogonal frequency-division multiplexing
WO2013078855A1 (en) Method and apparatus for generating star-type optical signal
CN111092663A (en) Optical orthogonal frequency division multiplexing system and communication method based on bit weighted distribution
WO2012103824A2 (en) Method, device, and transmission system for generating quadrature amplitude modulation signal
Ma et al. Enhanced performance of PS-256QAM-OFDM for optical access network
Jia et al. An Adaptive Iterative Symbol Clipping Scheme for OFDM-Based Visible Light Communication
JP2009303136A (en) Dispersion pre-equalizing optical transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818600

Country of ref document: EP

Kind code of ref document: A1