WO2014205843A1 - 一种多域网络保护方法、系统和节点 - Google Patents

一种多域网络保护方法、系统和节点 Download PDF

Info

Publication number
WO2014205843A1
WO2014205843A1 PCT/CN2013/078506 CN2013078506W WO2014205843A1 WO 2014205843 A1 WO2014205843 A1 WO 2014205843A1 CN 2013078506 W CN2013078506 W CN 2013078506W WO 2014205843 A1 WO2014205843 A1 WO 2014205843A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
message
protection
fault monitoring
Prior art date
Application number
PCT/CN2013/078506
Other languages
English (en)
French (fr)
Inventor
叶敏
�龙昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES13888067.9T priority Critical patent/ES2641165T3/es
Priority to CN201380000615.8A priority patent/CN105264836B/zh
Priority to ES17171394T priority patent/ES2762075T3/es
Priority to PCT/CN2013/078506 priority patent/WO2014205843A1/zh
Priority to EP13888067.9A priority patent/EP3001612B1/en
Priority to EP17171394.4A priority patent/EP3264693B1/en
Publication of WO2014205843A1 publication Critical patent/WO2014205843A1/zh
Priority to US14/982,282 priority patent/US9806937B2/en
Priority to US15/783,403 priority patent/US10164823B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to network communication technologies, and in particular, to a multi-domain network protection method, system and node. Background technique
  • the existing multi-domain network protection mechanism in order to implement multi-source and/or multi-homing protection in a single network domain, multiple protection paths need to be configured on the protection switching node, and each protection path is connected to different sources and sinks. In order to prevent a multi-domain network from failing, an effective protection switching can be implemented for the protected service.
  • This mechanism needs to modify the function of the protection switching node.
  • the service accesses the network through a single service access node, which usually only supports the traditional single source and single sink linear protection mechanism. Due to the large number of service access nodes on the access side, the existing protection mechanism needs to upgrade and upgrade a large number of service access nodes to support multiple source nodes and/or sink nodes, resulting in complex equipment implementation and high equipment cost. Summary of the invention
  • the embodiments of the present invention provide a multi-domain network protection method, system, and node, which solves the problem that the prior art needs to upgrade and upgrade a large number of service access nodes, resulting in complicated equipment implementation and high equipment cost.
  • a first aspect of the present invention provides a multi-domain network protection method, where the multi-domain network includes a first domain and a second domain, where the first domain and the second domain intersect with the first node and the second node,
  • the method includes: after the second node detects that the first link is faulty, disconnecting the first protection path at the local node, connecting the first sub-path and the second domain, and using the second node as an endpoint for carrying a path of the service; sending, by the first sub-path, a first fault monitoring message carrying the first maintenance information to the third node;
  • the first maintenance information is the same as the information carried in the second fault monitoring message; the second fault monitoring message is sent by the first node to the third node for monitoring on the first protection path.
  • the first protection path failure message; the first link is a link between the first node and the second node; the service is via the first domain and the second domain
  • the first protection path is formed by the first sub-path and the second sub-path, and is a protection path of the first working path; the first working path is that the service is in the first domain.
  • the node disconnects the first protection path, and connects the first sub-path and a path for carrying the service with the second node as the endpoint in the second domain.
  • the method includes: disconnecting the first protection path and the second protection path at the local node; connecting the first sub-path and the third sub-path; and the second protection path by the third sub-path and the fourth sub-path The path is spliced into a protection path of the second working path; the second working path is a working path between the first node and the fourth node in the second domain of the service; the third subpath a path between the second node and the fourth node; the fourth sub-path is a path between the first node and the second node.
  • the second maintenance information includes: a maintenance entity group where the maintenance endpoint of the first protection path is located a maintenance entity of the maintenance endpoint of the first protection path on the first node The group endpoint identifier; the maintenance entity group endpoint identifier of the maintenance endpoint of the first protection path on the third node.
  • the second maintenance information includes: an identifier of a maintenance group where the maintenance endpoint of the first protection path is located a maintenance group endpoint identifier of the maintenance endpoint of the first protection path on the first node; and a maintenance group endpoint identifier of the maintenance endpoint of the first protection path on the third node.
  • the second maintenance information includes: a connection of the serial connection of the first protection path Logo.
  • the first possible implementation manner of the first aspect, the second possible implementation manner, the third possible implementation manner, or the fourth possible implementation manner, in the fifth possible implementation manner further includes: before the second node detects that the first link fails, the second node forwards the received second fault monitoring message to the third node, and records and receives The second maintenance information carried in the second fault monitoring message.
  • the method further includes: the second Before the node detects that the first link is faulty, the second node forwards the received second automatic protection switching information to the third node; the second automatic protection switching information is that the first node is Information sent to the third node on the first protection path; after detecting that the first link fails, the second node sends a message to the third node on the first protection path An automatic protection switching information.
  • the method further includes: before the second node detects that the first link is faulty, the second And the node forwards the received third automatic protection switching message to the first node, and maintains a protection switching state machine according to the third automatic protection switching message; the third automatic protection switching message is that the third node is in the Information sent to the first node on the first protection path; the second section After the point detects that the first link fails, the second node terminates forwarding of the third automatic protection switching message.
  • the method further includes: the second node detecting the first link After the fault occurs, when the request sent by the third node is switched to the third automatic protection switching information of the first protection path, the second node sends an advertisement message to the second domain, where The advertisement message is used to indicate that the first domain and the second domain are connected by the second node.
  • the method further includes: the second Before the node detects that the first link fails, the second node forwards the received third fault monitoring message to the first node, and monitors the first subpath according to the third fault monitoring message.
  • the third fault monitoring message is a message that the third node sends to the first node to monitor the first protection path on the first protection path; the second node detects After the first link fails, the second node terminates forwarding of the third fault monitoring message.
  • a second aspect of the present invention provides a node, including a detecting unit, a switching unit, and a processing unit: the detecting unit is configured to detect a fault of the first link, where the first link is between the first node and the node Link
  • the switching unit is configured to: after detecting that the first link is faulty, disconnect the first protection path at the local node, and connect the first sub-path and the second domain to use the local node as an endpoint for carrying the service. a path of the first domain and the second domain; the first domain and the second domain intersect with the first node and the local node; The first sub-path and the second sub-path are spliced together, which is a protection path of the first working path; the first working path is that the service is between the first node and the third node in the first domain a working path; the first sub-path is a path between the node and the third node; the second sub-path is a path between the first node and the local node via the first link; The processing unit is configured to: after detecting that the first link is faulty, send a first fault monitoring message carrying the first maintenance information to the third node on the first subpath; The maintenance information is the same as the second maintenance information carried in the second fault monitoring message, where the second fault monitoring message
  • the switching unit specifically includes: after detecting that the first link is faulty, disconnecting the first protection path and the second protection path at the local node, where the connection is a first sub-path and a third sub-path; the second protection path is formed by splicing the third sub-path and the fourth sub-path, and is a protection path of the second working path; a working path between the first node and the fourth node in the second domain; the third sub-path is a path between the node and the fourth node; the fourth sub-path is the The path between the first node and the node.
  • the switching unit specifically includes a first bridge, a first selector, and a control unit:
  • An output end of the first selector is connected to the first sub-path; a first input end of the first selector is connected to the second sub-path; a second input end of the first selector is connected to the a second output end of the first bridge; a first output end of the first bridge is connected to the fourth sub-path; an input end of the first bridge is connected to the third sub-path;
  • the control unit is configured to: after detecting that the first link fails, control an input end of the first bridge to be disconnected from a first output end of the first bridge, and the first bridge
  • the second output of the second selector is connected; the output of the first selector is disconnected from the first input of the first selector, and is connected to the second input of the first selector.
  • the switching unit further includes a second bridge and a second selector:
  • An input end of the second bridge is connected to the first sub-path; a first output end of the second bridge is connected to the second sub-path; and a second output end of the second bridge is connected to the Second choice a second input end of the second selector; a first input end of the second selector is connected to the fourth sub path; an output end of the second selector is connected to the third sub path;
  • the control unit is further configured to: after detecting that the first link fails, controlling an input end of the second bridge to be disconnected from a first output end of the second bridge, and the second The second output of the bridge is connected; the output of the second selector is controlled to be disconnected from the first input of the second selector, and connected to the second input of the second selector.
  • the processing unit is further used to Before detecting that the first link fails, forwarding the received second fault monitoring message and the second automatic protection switching information to the third node; the second automatic protection switching information is the first Information sent by the node to the third node on the first protection path; after detecting that the first link fails, sending the first automatic protection to the third node on the first protection path Switch information.
  • the node further includes a recording unit, configured to record the received location before detecting that the first link fails The second maintenance information carried in the second fault monitoring message.
  • the processing unit is further configured to detect Before the first link fails, forwarding the received third automatic protection switching message to the first node, and maintaining a protection switching state machine according to the third automatic protection switching message; the third automatic protection switching message And the information that is sent by the third node to the first node on the first protection path; after detecting that the first link fails, the forwarding of the third automatic protection switching message is terminated.
  • the node further includes an advertising unit, configured to: after detecting that the first link is faulty, receive the The request sent by the three nodes is switched to the third automatic protection switching letter of the first protection path And sending an advertisement message to the fourth node, where the advertisement message is used to indicate that the service is connected to the first domain and the second domain by using the local node.
  • the processing unit is further configured to detect Before the first link fails, forwarding the received third fault monitoring message to the first node, and monitoring the fault of the first subpath according to the third fault monitoring message; the third fault monitoring The message is sent by the third node to the first node on the first protection path for monitoring the first protection path; after detecting that the first link is faulty, the terminal is terminated. The forwarding of the third fault monitoring message is described.
  • the processing unit specifically includes:
  • a third bridge configured to receive the third fault monitoring message and the third automatic protection switching information; send the third fault monitoring message and the third automatic protection switching information to the first maintenance unit and Two switches
  • a first maintenance unit configured to receive the third fault monitoring message and the third automatic protection switching information output by the third bridge, and maintain a protection switching state machine according to the third automatic protection switching message, according to The third fault monitoring message monitors a fault of the first subpath; regenerates the first fault monitoring message and the first automatic protection switching information; the first fault monitoring message to be regenerated and the The first automatic protection switching information is sent to the first switch;
  • a first switch configured to forward the received second fault monitoring message and the second automatic protection switching information sent by the first node to the third node; detecting that the first link is faulty The first fault monitoring message and the first automatic protection switching information are prohibited from being forwarded to the third node; after detecting that the first link fails, the first fault monitoring message and the first An automatic protection switching information is sent to the third node;
  • a second switch configured to send the received third fault monitoring message and the third automatic protection switching message to the first node before detecting that the first link fails; detecting the first After the link fails, the sending of the third fault monitoring message and the third automatic protection switching message is terminated.
  • the processing unit specifically includes:
  • a third bridge configured to receive the third fault monitoring message and the third automatic protection switching information; send the third fault monitoring message and the third automatic protection switching information to the first maintenance unit and Two maintenance units;
  • a first maintenance unit configured to receive the third fault monitoring message and the third automatic protection switching information output by the third bridge, and maintain a protection switching state machine according to the third automatic protection switching message, according to The third fault monitoring message monitors a fault of the first subpath; regenerates the first fault monitoring message and the first automatic protection switching information; the first fault monitoring message to be regenerated and the The first automatic protection switching information is sent to the first switch;
  • a second maintenance unit configured to receive the third fault monitoring message and the third automatic protection switching information output by the third bridge, and the third fault monitoring message and the third automatic protection switching information Sending to the second switch; forwarding the received second fault monitoring message and the second automatic protection switching information sent by the first node to the third node;
  • a first switch configured to: before detecting that the first link fails, prohibiting forwarding the first fault monitoring message and the first automatic protection switching information to a third node; detecting the first link After the fault occurs, sending the first fault monitoring message and the first automatic protection switching information to the third node;
  • a second switch configured to send the received third fault monitoring message and the third automatic protection switching message to the first node before detecting that the first link fails; detecting the first link After the failure occurs, the transmission of the third failure monitoring message and the third automatic protection switching message is terminated.
  • a third aspect of the present invention provides a multi-domain network protection system, where the multi-domain network includes a first domain and a second domain, where the first domain and the second domain intersect with the first node and the second node, Its characteristics Included in, including:
  • the first node is configured to send, to the third node, a second fault monitoring message for monitoring the first protection path fault, where the second fault monitoring message carries the second maintenance information.
  • the second node is the node described in any one of the foregoing second aspect or the second possible aspect of the second aspect;
  • the third node is configured to receive the first fault monitoring message or the second fault monitoring message, and monitor the fault of the first protection path according to the first fault monitoring message or the second fault monitoring message .
  • the multi-domain network protection method, system and node provided by the embodiments of the present invention optimize the protection path only by processing on the intersecting node, so that the non-intersecting node can be backward compatible with the existing protection mechanism, thereby reducing the complexity of the device. And cost.
  • FIG. 1 is a flowchart of a multi-domain network protection method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a multi-domain network topology according to an embodiment of the present invention
  • FIG. 3 is a block diagram of another multi-domain network topology according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of still another multi-domain network topology according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a node according to an embodiment of the present invention.
  • 6a is a structural block diagram of a switching unit according to an embodiment of the present invention.
  • 6b is a structural block diagram of another switching unit according to an embodiment of the present invention.
  • FIG. 7a is a structural block diagram of a first sub-processing unit according to an embodiment of the present invention
  • FIG. 7b is a structural block diagram of another first sub-processing unit according to an embodiment of the present invention
  • FIG. 7c is a structural block diagram of still another first sub-processing unit according to an embodiment of the present invention
  • FIG. 8 is an embodiment of the present invention
  • FIG. 9 is a structural block diagram of a multi-domain network protection system according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a multi-domain network protection method, system, and node.
  • the multi-domain network includes a first domain and a second domain, where the first domain and the second domain intersect with the first node and the second node.
  • the method includes the following steps:
  • Step S101 After detecting that the first link is faulty, the second node disconnects the first protection path at the local node, and connects the first sub-path and a path for carrying the service with the second node as the endpoint in the second domain;
  • Step S102 Send a first fault monitoring message carrying the first maintenance information to the third node on the first subpath.
  • the first maintenance information is the same as the second maintenance information carried in the second fault monitoring message.
  • the second fault monitoring message is a message sent by the first node to the third node on the first protection path for monitoring the first protection path fault.
  • the first link is a link between the first node and the second node; the service is a service via the first domain and the second domain;
  • the first protection path is formed by merging the first sub-path and the second sub-path, and is a protection path of the first working path; the first working path is a working path between the first node and the third node in the first domain; The first sub-path is a path between the second node and the third node; the second sub-path is via the first The path between the first node and the second node of the link.
  • the step S101 may include: disconnecting the first protection path and the second protection path at the local node; and connecting the first sub-path and the third sub-path;
  • the second protection path is formed by merging the third sub-path and the fourth sub-path, and is a protection path of the second working path; the second working path is a working path between the first node and the fourth node of the service in the second domain;
  • the second maintenance information may include: an identifier of a maintenance entity group where the maintenance endpoint of the first protection path is located; a maintenance entity group endpoint identifier of the maintenance endpoint of the first protection path on the first node; and a first protection on the third node Maintenance entity group endpoint ID of the maintenance endpoint of the path.
  • the second maintenance information may include: an identifier of the maintenance group where the maintenance endpoint of the first protection path is located; a maintenance group endpoint identifier of the maintenance endpoint of the first protection path on the first node; and maintenance of the first protection path on the third node
  • the maintenance group endpoint ID of the endpoint may include: an identifier of the maintenance group where the maintenance endpoint of the first protection path is located; a maintenance group endpoint identifier of the maintenance endpoint of the first protection path on the first node; and maintenance of the first protection path on the third node The maintenance group endpoint ID of the endpoint.
  • the second maintenance information may include: a connection tracking identifier of the serial connection monitoring of the first protection path.
  • the method may further include: before the second node detects that the first link fails, the second node forwards the received second fault monitoring message to the third node, and records the received second fault monitoring message.
  • the method may further include: before the second node detects that the first link fails, the second node forwards the received second automatic protection switching information to the third node; and the second automatic protection switching information is the first node.
  • the method may further include: before the second node detects that the first link fails, the second node forwards the received third automatic protection switching message to the first node, and maintains protection according to the third automatic protection switching message. Switching state machine; the third automatic protection switching message is the third node in the Information sent to the first node on a protection path;
  • the second node After the second node detects that the first link fails, the second node terminates forwarding of the third automatic protection switching message.
  • the method may further include: after detecting that the first link fails, the second node receives the automatic protection switching information that is sent by the third node to the first protection path, and the second node is to the second domain. And sending an advertisement message, where the advertisement message is used to indicate that the first domain and the second domain are connected by using the second node.
  • the method may further include: before the second node detects that the first link fails, the second node forwards the received third fault monitoring message to the first node, and monitors the first child according to the third fault monitoring message.
  • the third fault monitoring message is a message sent by the third node to the first node for monitoring the first protection path on the first protection path; the second node detects that the first link fails, the second The node terminates the forwarding of the third failure monitoring message.
  • Embodiment 1 The embodiment of the present invention provides a multi-domain network protection method.
  • the multi-domain network topology is as shown in FIG. 2.
  • the multi-domain network includes domain 1 and domain 2.
  • Domain 1 and domain 2 intersect with node B and node C.
  • Node B and node C are called intersecting nodes, and may also be called Portal Node.
  • Node A, Node E, and Node F are located in Domain 1
  • Node D, Node G, and Node H are located in Domain 2.
  • the link BC is a link between the node B and the node C, and the link BC may be a direct link between the node B and the node C, or may be a non-direct link including a plurality of links between the node B and the node C. road.
  • the multi-domain network also includes four paths:
  • the working path 210 is a working path between the node A and the node B in the domain 1 of the protected service 200.
  • the path is used to carry the protected service 200 in the domain 1, and the route is AEB;
  • the working path 220 is a working path between the node B and the node D in the domain 2 of the protected service 200, and is used to carry the protected service 200 in the domain 2, and the route is B-G-D;
  • the protection path 230 is a protection path of the working path 210 in the domain 1.
  • the path 250 and the path 260 are concatenated at the node C, and the route is A-F-C-B.
  • Path 250 and path 260 may be referred to as sub-paths of protection path 230.
  • the path 250 is a path between the node A and the node C;
  • the path 260 is a path between the node C and the node B via the link B-C, that is, an inter-portal link.
  • the splicing can be implemented by configuring a cross-connection or forwarding entry on node C, so that the service can be transparently forwarded between path 250 and path 260.
  • the protection path 240 is a protection path of the working path 220 in the domain 2.
  • the path 270 and the path 280 are spliced at the node C, and the route is B-C-H-D. Path 270 and path 270 may be referred to as sub-paths of protection path 240.
  • Path 270 is the path between node D and node C;
  • path 280 is the path between node C and node B, that is, the inter-portal link.
  • the splicing can be implemented by configuring a cross-connect or forwarding entry on Node C to enable traffic to be transparently forwarded between path 270 and path 280.
  • the protected service 200 is carried on the working path 210 and the working path 220, and the node B acts as a gateway to forward the protected service 200 between the working path 210 and the working path 220, thereby implementing an end-to-end connection.
  • the node B can implement the forwarding between the working path 210 and the working path 220 by using the upper and lower services, and can also forward the service between the working path 210 and the working path 220 through forwarding entries or cross-connections.
  • the maintenance endpoint of the protection path 230 can be configured on the node A, the node B, and the node C.
  • the maintenance endpoint configured on the node is in the direction facing the node A.
  • These maintenance endpoints run a connection monitoring state machine and a protection switching state machine.
  • the corresponding maintenance endpoint configuration can be selected according to the network technologies of the domain 1 and the domain 2: If the domain 1 is an Ethernet, the MEP (Maintenance Association End Point or Maintenance Entity Group End Point) can be configured on the node A and the node B.
  • domain 1 is a multi-protocol label switching (Multi-Protocl Label Switching, MPLS) network
  • MEP Maintenance Entity Group End Point
  • TCM Tandem Connection Monitoring A monitoring point, such as an ODUkT (Optical Data Unit of level k, Tandem connection sub-layer) function.
  • the method specifically includes the following steps:
  • Step S201 The node B sends a fault monitoring message for carrying the second maintenance information to the node A on the protection path 230, where the fault monitoring message can be used to monitor the fault of the protection path 230.
  • the Node B can select the corresponding OAM packet or the cost as the fault monitoring message to perform fault monitoring according to the network technologies of the domain 1 and the domain 2.
  • Ethernet continuity check (CC) packets can be used for fault monitoring.
  • the Node B sends a continuity check message carrying the second maintenance information to the node A on the protection path 230.
  • the second maintenance information includes at least the following information:
  • the domain 1 is a Multi-Protocl Label Switching (MPLS) network
  • MPLS continuity and connectivity check (CC/CV) packets can be used for fault monitoring.
  • the node B sends a continuous and connectivity detection packet carrying the second maintenance information to the node A on the protection path 230.
  • the second maintenance information includes at least the following information:
  • the Tandem Connection Monitoring (TCM) overhead bytes can be used for fault monitoring. It is necessary to establish a Tandem Connection Monitoring (TCM) for monitoring the protection path 230 and configure a Trail Trace Identifier ( ⁇ ) for the serial connection monitoring.
  • the second maintenance information is filled in the overhead bytes of the data block sent by the node to the node ⁇ on the protection path 230.
  • the second maintenance information carried in the overhead byte is a connection tracking identifier, and the connection tracking identifier may be in the following identifier.
  • SAPI Source Access Point Identifier
  • DPI Destination Access Point Identifier
  • the source access point identifier and the destination access point identifier that is, the access point identifier of the node B and the access point identifier of the node A.
  • Step S202 the node A receives the fault monitoring message sent by the node B on the protection path 230, and monitors the fault of the protection path 230 according to the fault monitoring message.
  • the node C may forward the fault monitoring message sent by the received Node B on the protection path 230 to the node.
  • the node A receives the fault monitoring message sent by the node B on the protection path 230, and can determine according to the existing fault monitoring mechanism. If the second maintenance information carried in the fault monitoring message is correct, it is determined that the protection path 230 has no fault. Otherwise, if the fault monitoring message is not received, or the second maintenance information carried in the received fault monitoring message is incorrect, it is determined that the protection path 230 is faulty.
  • Step S203 After detecting that the link BC is faulty, the node C disconnects the protection path 230 in the local node, and connects the path of the protected service 200 with the node C as the endpoint in the communication path 250 and the domain 2.
  • the node C detects that the link BC has failed.
  • the link BC failure may be a Node B failure or a link failure between Node B and Node C.
  • the node C can determine that the protection path 230 no longer has the protection capability.
  • the protection path 230 is disconnected at the local node, and is divided into the path 250 and the path 260, that is, the splicing of the disconnected path 250 and the path 260, and the path 250 and the domain are connected.
  • Node C is a path of the endpoint for carrying the protected service 200 to reconstruct the protection path.
  • the node C can disconnect the protection path 230 and the protection path 240, the path 250 and the path 270 at the local node.
  • Node C disconnects path 250 and path 260, splits protection path 230 into path 250 and path 260; disconnects path 270 and path 280, and separates protection path 240 into path 270 and path 280.
  • Path 270 is a path for the 7-protected service 200 with node C as the endpoint in domain 2, and node C can connect path 250 and path 270.
  • path 280 is also a path for 7-load protected service 200 with node C as the endpoint in domain 2, and node C can connect path 250 and path 280.
  • the path CH is also a path for the bearer protected service 200 with the node C as the endpoint in the domain, and the node C can be connected. Path 250 and path CH.
  • Step S204 After detecting that the link BC is faulty, the node C sends a fault monitoring message carrying the first maintenance information to the node A on the path 250, where the first maintenance information is sent to the node A on the protection path 230.
  • the second maintenance information carried in the fault monitoring message is the same.
  • node C can perform fault monitoring on link BC.
  • the Node B may send a fault monitoring message carrying the maintenance information to the node C on the link BC, so that the node C monitors the fault of the link BC, and the specific content and processing mechanism of the maintenance information is similar to the protection path 230.
  • the fault detection of the link BC should be on a lower maintenance domain level or a lower maintenance entity group level or a higher order ODU TCM than the fault detection of the protection path 230. get on.
  • the node C sends a fault monitoring message carrying the first maintenance information to the node A instead of the node B.
  • the first maintenance information is the same as the second maintenance information.
  • Node C can obtain the second maintenance information in two ways:
  • the node C can record the second maintenance information carried in the fault monitoring message after receiving the fault monitoring message sent by the node B on the protection path 230 before detecting the fault of the link B-C.
  • Node C can also configure second maintenance information on node C in advance. You can select the corresponding maintenance endpoint configuration based on the network technologies of domain 1 and domain 2. If domain 1 is Ethernet, you can configure MEP (Maintenance Association End Point or Maintenance Entity Group End Point) on node C. Maintenance endpoint on node C. The MA ID or the MEG ID of the maintenance endpoint on the Node B is the same, and the MEP ID is the same. If the domain 1 is an MPLS network, you can configure the MEP (Maintenance Entity Group End Point) on the node C. The maintenance endpoint on the node C is The MEG ID and MEP ID of the maintenance endpoint on Node B are the same. If Domain 1 is an OTN network, you can configure TCM monitoring points on Node C, such as ODUkT function, access point identifier of Node C, and access point of Node B. The logo is the same.
  • TCM monitoring points on Node C such as ODUkT function, access point identifier of Node C,
  • the node B After the node C detects the link BC failure, the node B sends a fault monitoring message with the same maintenance information, so that the node A does not perceive the fault, and the protection path is reconstructed from the protection path 230. Switching to path 250, the newly formed protection path spans across node C.
  • the node C Before detecting the link B-C failure, the node C does not send a fault monitoring message carrying the first maintenance information.
  • Step S205 the node A receives the fault monitoring message sent by the node C on the path 250, and monitors the fault of the path 250 according to the fault monitoring message.
  • the node A can obtain the same first maintenance information as the second maintenance information after receiving the fault monitoring message sent by the node C, thereby causing the node to A does not perceive the failure of the link BC, and does not need to re-select the protection path, and does not need to perform any switching action.
  • the execution order of the foregoing steps S203 and S204 is not limited, and step S203 may be performed first and then step S204 may be performed, and vice versa.
  • the Node B can also send a second Automatic Protection Switching (APS) information to the Node A on the protection path 230 for determining whether the protection path 230 is available and coordinating the Node B and the node.
  • APS Automatic Protection Switching
  • the switching state machine is protected, it is determined whether the protection path 230 is available, or the protection switching action of the node A is determined.
  • the node B After detecting the link B-C failure, the node B stops transmitting the second APS information and the fault monitoring message carrying the second maintenance information.
  • the node C may also send the first APS information to the node A on the protection path 250 after detecting the failure of the link BC, instead of performing the APS information interaction between the node B and the node A; the node A receives the node C in the protection path 250.
  • the first APS message sent on the link does not sense the failure of the link BC.
  • Node C does not send the first APS information until it detects that the link B-C has failed.
  • the node A may also send the third APS information to the node B on the protection path 230.
  • the node C receives the third APS information according to the protection switching state machine on the maintenance node C. And forwarding the third APS information to the node B; the node B receives the third APS information, and maintains the protection switching state machine on the node B according to the third APS information, and performs APS information interaction with the node A.
  • Node C can also terminate the forwarding of the APS message after detecting that the link B-C has failed.
  • FIG. 4 illustrates a scenario in which the working path 210 and the link BC both fail due to the failure of the node B.
  • the node C detects that the link BC has failed, disconnects the protection path 230 and the protection path 240, and connects the path 250 and the path 270.
  • Node A detects that the working path 210 is sent. In the event of a failure, the protected service 200 is switched over to path 250.
  • the node ⁇ can perform fault monitoring on the working path 210. Specifically, the Node B can send a fault monitoring message to the node A on the working path 210, so that the node A monitors the fault of the working path 210.
  • the node A After the working path 210 also fails, the node A detects that the working path 210 is faulty, the node A can send the third APS information requesting to switch to the protection path 230, and coordinate the node A and the node C by the APS information with the node C.
  • the protection switching action between the two switches the service path 210 to the path 250.
  • the APS information can be an APS message or overhead.
  • the node C may send an advertisement message to the domain 2 when receiving the request for the node A to switch to the third APS information of the protection path, where the notification message indicates that the node C is implemented by the node C.
  • the advertisement message may indicate that domain 1 and domain 2 are connected through node C.
  • each link may carry one or more paths:
  • the link BC may be an intersecting link between the domain 1 and the domain 2, that is, the link BC is located in both the domain 1 and the domain 2, and the protection path 230 and the protection path 240 are both Link BC; or
  • link BC can be located only in domain 1, link B, -C, only in domain 2, then protection path 230 via link BC, protection path 240 via link B, -C,.
  • the node C may send an advertisement message to the node D in the domain 2, and the node D may perform corresponding protection switching on the protected service 200 according to the advertisement message. Specifically, if the path 270 is not faulty, the node D switches the protected service 200 to the path 270, and the protected service 200 crosses the domain through the node C to implement end-to-end protection of the service in the case of the node B failure.
  • the node A may also send a fault monitoring message carrying the third maintenance information to the node B on the protection path 230; the node C detects that the link BC is faulty. Before receiving the fault monitoring message, according to the fault of the monitoring path 250, and forwarding the fault monitoring message to the node B; the node B receives the fault monitoring message, and monitors the fault of the protection path 230 according to the fault monitoring message. After detecting that the link BC fails, the node C terminates the forwarding of the fault monitoring message.
  • the processing between the node D located in the domain 2 and the node B and the node C is similar to the above embodiment, when the node C detects the link BC failure (only one link BC exists between the node B and the node C) or the link B, - C, failure (link BC and link B'-C exist between node B and node C, and protection path 240 transmits fault monitoring to node D on protection path 270 via link B, -C, )
  • the maintenance information carried in the fault monitoring message is the same as the maintenance information carried in the fault monitoring message sent by the node D to the node D on the protection path 240, so that the protection path is reconstructed when the node D does not sense the fault.
  • the protection path of the domain 2 is switched from the protection path 240 to the path 270, and the newly formed protection path is cross-domained at the node C.
  • the multi-domain network protection method provided by the embodiment of the present invention, after the intersecting node on the protection path detects the fault of the path between the intersecting nodes, the intersecting node on the working path sends a fault monitoring message, so that the non-intersecting node does not perceive the protection path.
  • the processing on the non-intersecting node is not increased, and the protection switching of the cross-domain service is realized.
  • the second embodiment of the present invention provides a node.
  • the structure of the node 300 is as shown in FIG. 5, and includes:
  • the detecting unit 310 is configured to detect a fault of the first link; the first link is a link between the first node and the local node;
  • the switching unit 320 is configured to: after detecting that the first link is faulty, disconnect the first protection path at the local node, and connect the first sub-path and a path for carrying the service with the local node as the endpoint in the second domain;
  • the service is the service of the first domain and the second domain; the first domain and the second domain intersect with the first node and the local node; the first protection path is formed by the first subpath and the second subpath.
  • a protection path of the working path is a working path between the first node and the third node in the first domain;
  • the first subpath is a path between the node and the third node;
  • the second subpath is a path between the first node and the local node via the first link;
  • the processing unit 330 is configured to: after detecting that the first link is faulty, send, to the third node, a first fault monitoring message that carries the first maintenance information on the first sub-path;
  • the first maintenance information is the same as the second maintenance information carried in the second fault monitoring message.
  • the second fault monitoring message is a message sent by the first node to the third node on the first protection path for monitoring the first protection path fault. .
  • the switching unit 320 may specifically include: after detecting that the first link fails, disconnecting the first protection path and the second protection path at the local node, and connecting the first sub-path and the third sub-path;
  • the second protection path is formed by merging the third sub-path and the fourth sub-path, and is a protection path of the second working path; the second working path is a working path between the first node and the fourth node of the service in the second domain;
  • the third sub-path is a path between the node and the fourth node; the fourth sub-path is a path between the first node and the local node.
  • the internal switching module of the node may be implemented by a selective bridge (Selective Bridge) and a selective selector (Selective Selector).
  • the switching unit 320 may specifically include a first bridge 321, a first selector 322, and a control unit 323, as shown in FIG. 6a:
  • the output of the first selector 322 is coupled to the first sub-path; the input 1 of the first selector 322 is coupled to the second sub-path;
  • the input terminal 2 of the first selector 322 is connected to the output terminal 2 of the first bridge 321;
  • the output end 1 of the first bridge 321 is connected to the fourth sub-path; the input end of the first bridge 321 Connecting the third subpath;
  • the control unit 323 is configured to detect that the input end of the first bridge 321 is disconnected from the output end 1 of the first bridge 321 after the first link fails, and is connected to the output end 2 of the first bridge 321;
  • the output of the first selector 322 is controlled to be disconnected from the input 1 of the first selector 322 and to the input 2 of the first selector 322.
  • the switching unit 320 may further include a second bridge 324 and a second selector 325, as shown in FIG. 6b:
  • the input of the second bridge 324 is connected to the first subpath; the output 1 of the second bridge 324 is connected to the second subpath;
  • the output 2 of the second bridge 324 is connected to the input 2 of the second selector 325;
  • the input end 1 of the second selector 325 is connected to the fourth sub path; the output end of the second selector 325 is connected to the third sub path;
  • the control unit 323 is further configured to detect that the input of the second bridge 324 is disconnected from the output end 1 of the second bridge 324 after the first link fails, and is connected to the output end 2 of the second bridge 324.
  • the output of the second selector 325 is disconnected from the input 1 of the second selector 325 and connected to the input 2 of the second selector 325.
  • processing unit 330 is further configured to: before detecting that the first link fails, forward the received second fault monitoring message to the third node.
  • processing unit 330 may be further configured to: before detecting that the first link fails, forwarding the received second APS information to the third node; the second APS information is that the first node is in the third protection path to the third node. The information sent by the node; after detecting that the first link fails, transmitting the first APS information to the third node on the first protection path.
  • the node may further include a recording unit 340, configured to record second maintenance information carried in the received second fault monitoring message before detecting that the first link fails.
  • processing unit 330 may be further configured to: before detecting that the first link fails, forward the received third APS message to the first node, and maintain a protection switching according to the third APS message.
  • the third APS message is information that is sent by the third node to the first node on the first protection path; after detecting that the first link fails, the forwarding of the third APS message is terminated.
  • the node may further include an advertising unit 350, configured to: after detecting that the first link fails, send the third APS information that is sent by the third node to the first protection path, and send the message to the fourth node.
  • the advertisement message is used to indicate that the service connects the first domain and the second domain through the local node.
  • processing unit 330 is further configured to: before detecting that the first link fails, forwarding the received third fault monitoring message to the first node, and monitoring the fault of the first subpath according to the third fault monitoring message;
  • the third fault monitoring message is a message that is sent by the third node to the first node to monitor the first protection path on the first protection path; after detecting that the first link fails, the forwarding of the third fault monitoring message is terminated.
  • the processing unit 330 may include:
  • a third bridge configured to receive a third fault monitoring message and a third automatic protection switching information; and send the third fault monitoring message and the third automatic protection switching information to the first maintenance unit and the second switch;
  • a first maintenance unit configured to receive a third fault monitoring message outputted by the third bridge and a third automatic protection switching information, and maintain a protection switching state machine according to the third automatic protection switching message, and monitor the first according to the third fault monitoring message Resolving the first fault monitoring message and the first automatic protection switching information; sending the regenerated first fault monitoring message and the first automatic protection switching information to the first switch;
  • a first switch configured to forward the received second fault monitoring message and the second automatic protection switching information sent by the first node to the third node; before detecting that the first link fails, prohibiting the first fault monitoring message and The first automatic protection switching information is forwarded to the third node; after detecting that the first link is faulty, the first fault monitoring message and the first automatic protection switching information are sent to the third node; the second switch is used to detect the first Sending the received third fault monitoring message and the third automatic protection switching message to the first node before the failure of the link; detecting that the first link is faulty After that, the sending of the third fault monitoring message and the third automatic protection switching message is terminated.
  • the third bridge, the first maintenance unit, the first switch, and the second switch included in the processing unit 330 may be specifically the third bridge 331 and the first maintenance unit 333 in FIG. 7a.
  • the third bridge 331 can adopt a permanent bridge
  • the first switch 332 and the second switch 335 can adopt a single-pole single-throw switch
  • the first maintenance unit 333 can adopt an MEP function unit that implements MEP-related functions.
  • the processing unit 330 may include:
  • a third bridge configured to receive the third fault monitoring message and the third automatic protection switching information; and send the third fault monitoring message and the third automatic protection switching information to the first maintenance unit and the second maintenance unit;
  • a first maintenance unit configured to receive a third fault monitoring message outputted by the third bridge and a third automatic protection switching information, and maintain a protection switching state machine according to the third automatic protection switching message, and monitor the first according to the third fault monitoring message Resolving the first fault monitoring message and the first automatic protection switching information; sending the regenerated first fault monitoring message and the first automatic protection switching information to the first switch;
  • a second maintenance unit configured to receive a third fault monitoring message and a third automatic protection switching information output by the third bridge, and send the third fault monitoring message and the third automatic protection switching information to the second switch; The second fault monitoring message sent by the first node and the second automatic protection switching information to the third node;
  • the first switch is configured to: before detecting the failure of the first link, prohibiting forwarding the first fault monitoring message and the first automatic protection switching information to the third node; after detecting that the first link is faulty, detecting the first fault The monitoring message and the first automatic protection switching information are sent to the third node;
  • the third bridge, the first maintenance unit, the second maintenance unit, the first switch, and the second switch included in the processing unit 330 may be specifically the third bridge 331 in FIG. 7b.
  • the third bridge 331 can adopt a permanent bridge
  • the first switch 332 and the second switch 335 can adopt a single-pole single-throw switch
  • the first maintenance unit 333 can adopt a MEP functional unit that implements MEP-related functions
  • the maintenance unit 334 may employ a MIP functional unit that implements MIP (MEG Intermediate Point or MA Intermediate Point, maintenance entity group intermediate point or maintenance group intermediate point) related functions.
  • MIP MIP
  • the processing unit 330 may include:
  • a third bridge configured to receive the third fault monitoring message and the third automatic protection switching information; before detecting that the first link fails, send the third fault monitoring message and the third automatic protection switching information to the second maintenance unit After detecting that the first link fails, sending the third fault monitoring message and the third automatic protection switching information to the first maintenance unit;
  • a first maintenance unit configured to receive a third fault monitoring message outputted by the third bridge and a third automatic protection switching information, and maintain a protection switching state machine according to the third automatic protection switching message, and monitor the first according to the third fault monitoring message Resolving the first fault monitoring message and the first automatic protection switching information; sending the regenerated first fault monitoring message and the first automatic protection switching information to the first switch;
  • a second maintenance unit configured to receive a third fault monitoring message and a third automatic protection switching information output by the third bridge, and send the third fault monitoring message and the third automatic protection switching information to the second switch; The second fault monitoring message sent by the first node and the second automatic protection switching information to the third node;
  • the first switch is configured to: before detecting the failure of the first link, prohibiting forwarding the first fault monitoring message and the first automatic protection switching information to the third node; after detecting that the first link is faulty, detecting the first fault The monitoring message and the first automatic protection switching information are sent to the third node;
  • a second switch configured to detect a third fault that is received before the first link fails
  • the test message and the third automatic protection switching message are sent to the first node; after detecting that the first link fails, the sending of the third fault monitoring message and the third automatic protection switching message is terminated.
  • the third bridge, the first maintenance unit, the second maintenance unit, the first switch, and the second switch included in the processing unit 330 may be specifically the third bridge 331 in FIG. 7c.
  • the third bridge 331 can adopt a selective bridge
  • the first switch 332 and the second switch 335 can adopt a single-pole single-throw switch
  • the first maintenance unit 333 can adopt a MEP functional unit that implements MEP-related functions
  • second The maintenance unit 334 can employ a MIP functional unit that implements MIP related functions.
  • Embodiment 3 Another embodiment of the present invention provides a node.
  • the structure of the node 800 is as shown in FIG. 8, and includes:
  • the transmitter 810 is configured to: after detecting that the first link is faulty, send a first fault monitoring message carrying the first maintenance information to the third node on the first subpath;
  • the first link is a link between the first node and the second node;
  • the first maintenance information is the same as the second maintenance information carried in the second fault monitoring message;
  • the second fault monitoring message is that the first node is in the first protection path Sending a message to the third node for monitoring the first protection path failure;
  • a memory 820 configured to store information including a program routine
  • the processor 830 is coupled to the memory 820 and the coupled transmitter 810 for controlling the execution of the program routine, and specifically includes:
  • the first protection path After detecting that the first link is faulty, the first protection path is disconnected at the local node, and the first sub-path and a path for carrying the service with the local node as the end point in the first sub-path and the second domain are connected;
  • the service is the service of the first domain and the second domain; the first domain and the second domain intersect with the first node and the local node; the first protection path is formed by the first subpath and the second subpath.
  • a protection path of a working path is between the first node and the third node in the first domain of the service
  • the working path of the first sub-path is the path between the first node and the third node; the second sub-path is the path between the first node and the second node via the first link.
  • the node provided by the embodiment of the present invention may be a network device such as an Ethernet switch, a router, or an OTN transmission device, or may be a module in the foregoing network device, and is not limited herein.
  • a node provided by an embodiment of the present invention is an intersecting node on a protection path. After detecting a fault of a path between intersecting nodes, the intersecting node sends a fault monitoring message instead of the intersecting node on the working path, so that the non-intersecting node does not sense the protection. The path is faulty, and the protection path is reconstructed. Therefore, the optimization of the protection path is achieved only by the processing on the intersecting nodes, and the complexity of the non-intersecting nodes in the multi-domain network is reduced. In addition, in the case of a working path failure, the processing on the non-intersecting node is not increased, and the protection switching of the inter-domain service is implemented.
  • the fourth embodiment of the present invention provides a multi-domain network protection system.
  • the multi-domain network where the system 900 is located includes a first domain and a second domain, where the first domain and the second domain intersect with each other.
  • the first node 910 is configured to send, to the third node 930, a second fault monitoring message for monitoring the first protection path fault on the first protection path, where the second fault monitoring message carries the second maintenance information; After detecting that the first link is faulty, disconnecting the first protection path at the local node, connecting the first sub-path and a path for carrying the service with the second node 920 as the endpoint in the second domain; The first fault monitoring message carrying the first maintenance information is sent to the third node 930; the first maintenance information is the same as the second maintenance information carried in the second fault monitoring message; the first link is the first node 910 and a link between the second node 920; the service is a service via the first domain and the second domain;
  • the first protection path is formed by splicing the first sub-path and the second sub-path, and is the first working path
  • the first working path is a working path between the first node 910 and the third node 930 in the first domain;
  • the first sub-path is a path between the second node 920 and the third node 930;
  • the second sub-path a path between the first node 910 and the second node 920 via the first link;
  • the third node 930 is configured to receive the first fault monitoring message or the second fault monitoring message, and monitor the fault of the first protection path according to the first fault monitoring message or the second fault monitoring message.
  • the first protection path is disconnected, and the first sub-path is connected to the first sub-path and the second-layer 920 is used as the end point of the second node 920.
  • the second protection path is formed by merging the third sub-path and the fourth sub-path, and is a protection path of the second working path; the second working path is that the service is between the first node 910 and the fourth node 940 in the second domain.
  • the working path is the third sub-path is the path between the second node 920 and the fourth node 940; the fourth sub-path is the path between the first node 910 and the second node 920.
  • the second node 920 is further configured to: before detecting that the first link fails, forward the received second fault monitoring message to the third node 930.
  • the second node 920 is further configured to: before detecting that the first link is faulty, record the second maintenance information carried in the received second fault monitoring message.
  • first node 910 is further configured to send the second APS information to the third node 930 on the first protection path;
  • the second node 920 is further configured to: before detecting that the first link fails, forwarding the received second APS information to the third node 930; and detecting that the first link fails, the third protection path is to the third.
  • Node 930 sends the first APS information.
  • the third node 930 is further configured to send the third APS information to the first node 910 on the first protection path;
  • the second node 920 is further configured to: before detecting that the first link fails, forwarding the received third APS information to the first node 910, and maintaining a protection switching state machine according to the third APS message; After the failure of the first link, the forwarding of the third APS information is terminated.
  • the second node 920 is further configured to: after detecting that the first link fails, send an advertisement message to the second domain when receiving the third APS information that is sent by the third node 930 to the first protection path, The advertisement message is used to indicate that the service connects the first domain and the second domain through the second node.
  • the third node 930 is further configured to send, to the first node 910, a third fault monitoring message for monitoring the first protection path on the first protection path; the second node 920 is further configured to detect that the first link occurs. Before the fault, the received third fault monitoring message is forwarded to the first node 910, and the fault of the first subpath is monitored according to the third fault monitoring message; after detecting the fault of the first link, the third fault monitoring message is terminated.
  • the first node 910 is further configured to receive the third fault monitoring message, and monitor the fault of the first protection path according to the third fault monitoring message.
  • the second node 920 For the internal device implementation of the second node 920, refer to the nodes in the second embodiment or the third embodiment, and details are not described herein again.
  • the multi-domain network protection system in the above-mentioned fourth embodiment, the information exchange, the execution process and the like between the internal nodes are based on the same concept as the method embodiment and the device embodiment of the present invention. For details, refer to the method implementation of the present invention. The descriptions in the examples and device embodiments are not described herein again.
  • the intersecting node on the protection path detects the fault of the path between the intersecting nodes
  • the intersecting node on the working path sends a fault monitoring message, so that the non-intersecting node does not perceive the protection path.
  • the processing on the non-intersecting node is not increased, and the protection switching of the cross-domain service is implemented.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only) Memory, ROM) or random access memory (RAM).
  • ROM read-only storage memory
  • RAM random access memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明涉及网络通信领域,具体公开了一种多域网络保护方法,包括:第二节点检测到第一链路发生故障后,在本节点断开第一保护路径,连通第一子路径和第二域内以第二节点为端点的用于承载业务的一条路径;在第一子路径上向第三节点发送携带第一维护信息的第一故障监测消息;第一维护信息与第二故障监测消息中携带的第二维护信息相同;第二故障监测消息为第一节点在第一保护路径上向第三节点发送的用于监测第一保护路径故障的消息;第一链路为第一节点与第二节点间的链路;第一保护路径由第一子路径和第二子路径拼接而成,为第一工作路径的保护路径;第一工作路径为业务在第一域内第一节点与第三节点间的工作路径。

Description

一种多域网^ ^护方法、 系统和节点 技术领域
本发明涉及网络通信技术, 尤其涉及一种多域网络保护方法、 系统和节 点。 背景技术
当业务跨过多个网络域时, 可以通过在各个网络域分别部署保护机制, 利用分段保护的方式实现业务的端到端的保护。 为避免单节点失效时无法实 现业务的保护, 一般在网络域间采用双节点互联的方式。 在这种情况下, 与 传统的线性保护机制中的单源单宿不同, 单个保护域中会有多个源节点和 /或 宿节点。
现有的多域网络保护机制, 为了在单个网络域中实现多源和 /或多宿方式 的保护, 需要在保护倒换节点上配置多条保护路径, 每条保护路径连接不同 的源和宿, 以便多域网络发生故障时, 能够对被保护业务实现有效的保护倒 换, 这种机制需要对保护倒换节点的功能进行改动。 然而在业务接入侧, 业 务通过单个业务接入节点接入到网络, 该业务接入节点通常仅支持传统的单 源单宿线性保护机制。 由于位于接入侧的业务接入节点数量很多, 现有保护 机制需要对大量的业务接入节点进行改造升级以支持多个源节点和 /或宿节点 保护, 导致设备实现复杂、 设备成本高。 发明内容
本发明的实施例提供了一种多域网络保护方法、 系统和节点, 解决现有 技术需要对大量的业务接入节点进行改造升级, 导致设备实现复杂、 设备成 本高的问题。
本发明的实施例采用如下技术方案: 本发明第一方面提供了一种多域网络保护方法, 所述多域网络包括第一 域和第二域, 所述第一域和所述第二域相交于第一节点和第二节点, 包括: 所述第二节点检测到第一链路发生故障后, 在本节点断开第一保护路径, 连通第一子路径和所述第二域内以所述第二节点为端点的用于承载业务的一 条路径; 在所述第一子路径上向所述第三节点发送携带第一维护信息的第一 故障监测消息;
所述第一维护信息与第二故障监测消息中携带的信息相同; 所述第二故 障监测消息为所述第一节点在所述第一保护路径上向所述第三节点发送的用 于监测所述第一保护路径故障的消息; 所述第一链路为所述第一节点与所述 第二节点间的链路; 所述业务为经由所述第一域和所述第二域的业务; 所述 第一保护路径由所述第一子路径和第二子路径拼接而成, 为第一工作路径的 保护路径; 所述第一工作路径为所述业务在所述第一域内所述第一节点与所 述第三节点间的工作路径; 所述第一子路径为所述第二节点与所述第三节点 间的路径; 所述第二子路径为经由所述第一链路的所述第一节点与所述第二 节点间的路径。
在第一种可能的实现方式中, 所述在本节点断开第一保护路径, 连通第 一子路径和所述第二域内以所述第二节点为端点的用于承载业务的一条路 径, 具体包括: 在本节点断开所述第一保护路径和第二保护路径; 连通所述 第一子路径和第三子路径; 所述第二保护路径由所述第三子路径和第四子路 径拼接而成, 为第二工作路径的保护路径; 所述第二工作路径为所述业务在 所述第二域内所述第一节点与第四节点间的工作路径; 所述第三子路径为所 述第二节点与所述第四节点间的路径; 所述第四子路径为所述第一节点与所 述第二节点间的路径。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述第二维护信息包括: 所述第一保护路径的维护端点所在的维 护实体组的标识; 所述第一节点上所述第一保护路径的维护端点的维护实体 组端点标识; 所述第三节点上所述第一保护路径的维护端点的维护实体组端 点标识。
结合第一方面或第一方面的第一种可能的实现方式, 在第三种可能的实 现方式中, 所述第二维护信息包括: 所述第一保护路径的维护端点所在的维 护组的标识; 所述第一节点上所述第一保护路径的维护端点的维护组端点标 识; 所述第三节点上所述第一保护路径的维护端点的维护组端点标识。
结合第一方面或第一方面的第一种可能的实现方式, 在第四种可能的实 现方式中, 所述第二维护信息包括: 所述第一保护路径的串联连接监视的连 接 3艮踪标识。
结合第一方面、 第一方面的第一种可能的实现方式、 第二种可能的实现 方式、 第三种可能的实现方式或第四种可能的实现方式, 在第五种可能的实 现方式中, 所述方法还包括: 所述第二节点检测到所述第一链路发生故障之 前, 所述第二节点转发接收到的所述第二故障监测消息至所述第三节点, 并 记录接收到的所述第二故障监测消息中携带的所述第二维护信息。
结合第一方面或第一方面的第一种可能的实现方式至第五种可能的实现 方式中的任一项, 在第六种可能的实现方式中, 所述方法还包括: 所述第二 节点检测到所述第一链路发生故障之前, 所述第二节点转发接收到的第二自 动保护倒换信息至所述第三节点; 所述第二自动保护倒换信息为所述第一节 点在所述第一保护路径上向所述第三节点发送的信息; 所述第二节点检测到 所述第一链路发生故障后, 在所述第一保护路径上向所述第三节点发送第一 自动保护倒换信息。
结合第一方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述方法还包括: 所述第二节点检测到所述第一链路发生故障之前, 所述第 二节点转发接收到的第三自动保护倒换消息至所述第一节点, 并根据所述第 三自动保护倒换消息维护保护倒换状态机; 所述第三自动保护倒换消息为所 述第三节点在所述第一保护路径上向所述第一节点发送的信息; 所述第二节 点检测到所述第一链路发生故障后, 所述第二节点终止对所述第三自动保护 倒换消息的转发。
结合第一方面的第六种可能的实现方式或第七种可能的实现方式, 在第 八种可能的实现方式中, 所述方法还包括: 所述第二节点检测到所述第一链 路发生故障后, 接收到所述第三节点发送的请求倒换至所述第一保护路径的 所述第三自动保护倒换信息时, 所述第二节点向所述第二域发送通告消息, 所述通告消息用于指示通过所述第二节点连通所述第一域和所述第二域。
结合第一方面、 第一方面的第一种可能的实现方式至第八种可能的实现 方式中的任一项, 在第九种可能的实现方式中, 所述方法还包括: 所述第二 节点检测到所述第一链路发生故障之前, 所述第二节点转发接收到的第三故 障监测消息至所述第一节点, 并根据所述第三故障监测消息监测所述第一子 路径的故障; 所述第三故障监测消息为所述第三节点在所述第一保护路径上 向所述第一节点发送的用于监测所述第一保护路径的消息; 所述第二节点检 测到所述第一链路发生故障后, 所述第二节点终止对所述第三故障监测消息 的转发。
本发明第二方面提供了一种节点, 包括检测单元、 倒换单元和处理单元: 所述检测单元, 用于检测第一链路的故障; 所述第一链路为第一节点与 本节点间的链路;
所述倒换单元, 用于检测到所述第一链路发生故障后, 在本节点断开所 述第一保护路径 , 连通第一子路径和第二域内以本节点为端点的用于承载业 务的一条路径; 所述业务为经由第一域和所述第二域的业务; 所述第一域和 所述第二域相交于所述第一节点和本节点; 所述第一保护路径由所述第一子 路径和第二子路径拼接而成, 为第一工作路径的保护路径; 所述第一工作路 径为所述业务在所述第一域内所述第一节点与第三节点间的工作路径; 所述 第一子路径为本节点与所述第三节点间的路径; 所述第二子路径为经由所述 第一链路的所述第一节点与本节点间的路径; 所述处理单元, 用于检测到所述第一链路发生故障后, 在所述第一子路 径上向所述第三节点发送携带第一维护信息的第一故障监测消息; 所述第一 维护信息与第二故障监测消息中携带的第二维护信息相同; 所述第二故障监 测消息为所述第一节点在所述第一保护路径上向所述第三节点发送的用于监 测所述第一保护路径故障的消息。
在第一种可能的实现方式中, 所述倒换单元具体包括: 用于检测到所述 第一链路发生故障后, 在本节点断开所述第一保护路径和第二保护路径, 连 通所述第一子路径和第三子路径; 所述第二保护路径由所述第三子路径和第 四子路径拼接而成, 为第二工作路径的保护路径; 所述第二工作路径为所述 业务在所述第二域内所述第一节点与第四节点间的工作路径; 所述第三子路 径为本节点与所述第四节点间的路径; 所述第四子路径为所述第一节点与本 节点间的路径。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述倒换单元具体包括第一桥接器、 第一选择器和控制单元:
所述第一选择器的输出端连接所述第一子路径; 所述第一选择器的第一 输入端连接所述第二子路径; 所述第一选择器的第二输入端连接所述第一桥 接器的第二输出端; 所述第一桥接器的第一输出端连接所述第四子路径; 所 述第一桥接器的输入端连接所述第三子路径;
所述控制单元, 用于检测到所述第一链路发生故障后, 控制所述第一桥 接器的输入端与所述第一桥接器的第一输出端断开, 与所述第一桥接器的第 二输出端连接; 控制所述第一选择器的输出端与所述第一选择器的第一输入 端断开, 与所述第一选择器的第二输入端连接。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述倒换单元还包括第二桥接器和第二选择器:
所述第二桥接器的输入端连接所述第一子路径; 所述第二桥接器的第一 输出端连接所述第二子路径; 所述第二桥接器的第二输出端连接所述第二选 择器的第二输入端; 所述第二选择器的第一输入端连接所述第四子路径; 所 述第二选择器的输出端连接所述第三子路径;
所述控制单元, 还用于检测到所述第一链路发生故障后, 控制所述第二 桥接器的输入端与所述第二桥接器的第一输出端断开, 与所述第二桥接器的 第二输出端连接; 控制所述第二选择器的输出端与所述第二选择器的第一输 入端断开, 与所述第二选择器的第二输入端连接。
结合第二方面、 第二方面的第一种可能的实现方式、 第二种可能的实现 方式或第三种可能的实现方式, 在第四种可能的实现方式中, 所述处理单元 还用于检测到所述第一链路发生故障之前, 转发接收到的所述第二故障监测 消息和第二自动保护倒换信息至所述第三节点; 所述第二自动保护倒换信息 为所述第一节点在所述第一保护路径上向所述第三节点发送的信息; 检测到 所述第一链路发生故障后, 在所述第一保护路径上向所述第三节点发送第一 自动保护倒换信息。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述节点还包括记录单元, 用于检测到所述第一链路发生故障之前, 记录接 收到的所述第二故障监测消息中携带的所述第二维护信息。
结合第二方面或第二方面的第一种可能的实现方式至第五种可能的实现 方式中的任一项, 在第六种可能的实现方式中, 所述处理单元还用于检测到 所述第一链路发生故障之前, 转发接收到的第三自动保护倒换消息至所述第 一节点, 并根据所述第三自动保护倒换消息维护保护倒换状态机; 所述第三 自动保护倒换消息为所述第三节点在所述第一保护路径上向所述第一节点发 送的信息; 检测到所述第一链路发生故障后, 终止对所述第三自动保护倒换 消息的转发。
结合第二方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述节点还包括通告单元, 用于检测到所述第一链路发生故障后, 接收到所 述第三节点发送的请求倒换至所述第一保护路径的所述第三自动保护倒换信 息时, 向所述第四节点发送通告消息, 所述通告消息用于指示所述业务通过 本节点连通所述第一域和所述第二域。
结合第二方面或第二方面的第一种可能的实现方式至第七种可能的实现 方式中的任一项, 在第八种可能的实现方式中, 所述处理单元还用于检测到 所述第一链路发生故障之前, 转发接收到的第三故障监测消息至所述第一节 点, 并根据所述第三故障监测消息监测所述第一子路径的故障; 所述第三故 障监测消息为所述第三节点在所述第一保护路径上向所述第一节点发送的用 于监测所述第一保护路径的消息; 检测到所述第一链路发生故障后, 终止对 所述第三故障监测消息的转发。
结合第二方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述处理单元具体包括:
第三桥接器, 用于接收所述第三故障监测消息和所述第三自动保护倒换 信息; 将所述第三故障监测消息和所述第三自动保护倒换信息发送至第一维 护单元和第二开关;
第一维护单元, 用于接收所述第三桥接器输出的所述第三故障监测消息 和所述第三自动保护倒换信息, 并根据所述第三自动保护倒换消息维护保护 倒换状态机, 根据所述第三故障监测消息监测所述第一子路径的故障; 重新 生成所述第一故障监测消息和所述第一自动保护倒换信息; 将重新生成的所 述第一故障监测消息和所述第一自动保护倒换信息发送至第一开关;
第一开关, 用于转发接收到的所述第一节点发送的所述第二故障监测消 息和所述第二自动保护倒换信息至所述第三节点; 检测到所述第一链路发生 故障之前, 禁止将所述第一故障监测消息和所述第一自动保护倒换信息转发 至第三节点; 检测到所述第一链路发生故障后, 将所述第一故障监测消息和 所述第一自动保护倒换信息发送至所述第三节点;
第二开关, 用于检测到所述第一链路发生故障之前, 将接收到的第三故 障监测消息和第三自动保护倒换消息发送至所述第一节点; 检测到所述第一 链路发生故障后, 终止对所述第三故障监测消息和所述第三自动保护倒换消 息的发送。
结合第二方面的第八种可能的实现方式, 在第十种可能的实现方式中, 所述处理单元具体包括:
第三桥接器, 用于接收所述第三故障监测消息和所述第三自动保护倒换 信息; 将所述第三故障监测消息和所述第三自动保护倒换信息发送至第一维 护单元和第二维护单元;
第一维护单元, 用于接收所述第三桥接器输出的所述第三故障监测消息 和所述第三自动保护倒换信息, 并根据所述第三自动保护倒换消息维护保护 倒换状态机, 根据所述第三故障监测消息监测所述第一子路径的故障; 重新 生成所述第一故障监测消息和所述第一自动保护倒换信息; 将重新生成的所 述第一故障监测消息和所述第一自动保护倒换信息发送至第一开关;
第二维护单元, 用于接收所述第三桥接器输出的所述第三故障监测消息 和所述第三自动保护倒换信息, 将所述第三故障监测消息和所述第三自动保 护倒换信息发送至第二开关; 转发接收到的所述第一节点发送的所述第二故 障监测消息和所述第二自动保护倒换信息至所述第三节点;
第一开关, 用于检测到所述第一链路发生故障之前, 禁止将所述第一故 障监测消息和所述第一自动保护倒换信息转发至第三节点; 检测到所述第一 链路发生故障后, 将所述第一故障监测消息和所述第一自动保护倒换信息发 送至所述第三节点;
第二开关, 用于检测到所述第一链路发生故障之前, 将接收到的第三故 障监测消息和第三自动保护倒换消息发送至所述第一节点; 检测到所述第一 链路发生故障后, 终止对所述第三故障监测消息和所述第三自动保护倒换消 息的发送。
本发明第三方面提供了一种多域网络保护系统, 所述多域网络包括第一 域和第二域, 所述第一域和所述第二域相交于第一节点和第二节点, 其特征 在于, 包括:
所述第一节点, 用于在第一保护路径上向所述第三节点发送用于监测所 述第一保护路径故障的第二故障监测消息, 所述第二故障监测消息携带第二 维护信息;
所述第二节点为上述第二方面或第二方面中各种可能的实现方式中的任 一项所述的节点;
所述第三节点, 用于接收所述第一故障监测消息或所述第二故障监测消 息; 根据所述第一故障监测消息或所述第二故障监测消息监测所述第一保护 路径的故障。
本发明实施例提供的一种多域网络保护方法、 系统和节点, 仅通过相交 节点上的处理实现保护路径的优化, 使得非相交节点能够后向兼容现有保护 机制, 从而降低设备的复杂性和成本。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例中所需要 使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提 下, 还可以根据这些附图获得其它的附图。
图 1为本发明的实施例提供的一种多域网络保护方法的流程图; 图 2为本发明的实施例提供的一种多域网络拓朴框图;
图 3为本发明的实施例提供的另一种多域网络拓朴框图;
图 4为本发明的实施例提供的再一种多域网络拓朴框图;
图 5为本发明的实施例提供的一种节点的结构框图;
图 6a为本发明的实施例提供的一倒换单元的结构框图;
图 6b为本发明的实施例提供的另一倒换单元的结构框图;
图 7a为本发明的实施例提供的一第一子处理单元的结构框图; 图 7b为本发明的实施例提供的另一第一子处理单元的结构框图; 图 7c为本发明的实施例提供的再一第一子处理单元的结构框图; 图 8为本发明的实施例提供的另一种节点的结构框图;
图 9为本发明的实施例提供的一种多域网络保护系统的结构框图。 具体实施方式
本发明实施例提供了一种多域网络保护方法、 系统和节点。 为了更好的 理解本发明的技术方案, 下面结合附图对本发明实施例进行详细描述。
应当明确, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的 实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳 动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明实施例, 一种多域网络保护方法的流程如图 1所示, 该多域网络 包括第一域和第二域, 第一域和第二域相交于第一节点和第二节点, 该方法 包括以下步骤:
步骤 S101 , 第二节点检测到第一链路发生故障后, 在本节点断开第一保 护路径, 连通第一子路径和第二域内以第二节点为端点的用于承载业务的一 条路径;
步骤 S102, 在第一子路径上向第三节点发送携带第一维护信息的第一故 障监测消息。
第一维护信息与第二故障监测消息中携带的第二维护信息相同; 第二故 障监测消息为第一节点在第一保护路径上向第三节点发送的用于监测第一保 护路径故障的消息; 第一链路为第一节点与第二节点间的链路; 该业务为经 由第一域和第二域的业务;
第一保护路径由第一子路径和第二子路径拼接而成, 为第一工作路径的 保护路径; 第一工作路径为该业务在第一域内第一节点与第三节点间的工作 路径; 第一子路径为第二节点与第三节点间的路径; 第二子路径为经由第一 链路的第一节点与第二节点间的路径。
具体地, 步骤 S101可以包括: 在本节点断开第一保护路径和第二保护路 径; 连通第一子路径和第三子路径;
第二保护路径由第三子路径和第四子路径拼接而成, 为第二工作路径的 保护路径; 第二工作路径为该业务在第二域内第一节点与第四节点间的工作 路径; 第三子路径为第二节点与第四节点间的路径; 第四子路径为第一节点 与第二节点间的路径。
具体地, 第二维护信息可以包括: 第一保护路径的维护端点所在的维护 实体组的标识; 第一节点上第一保护路径的维护端点的维护实体组端点标识; 第三节点上第一保护路径的维护端点的维护实体组端点标识。
或者, 第二维护信息可以包括: 第一保护路径的维护端点所在的维护组 的标识; 第一节点上第一保护路径的维护端点的维护组端点标识; 第三节点 上第一保护路径的维护端点的维护组端点标识。
或者, 第二维护信息可以包括: 第一保护路径的串联连接监视的连接跟 踪标识。
进一步地, 该方法还可以包括: 第二节点检测到第一链路发生故障之前, 第二节点转发接收到的第二故障监测消息至第三节点, 并记录接收到的第二 故障监测消息中携带的第二维护信息。
进一步地, 该方法还可以包括: 第二节点检测到第一链路发生故障之前, 第二节点转发接收到的第二自动保护倒换信息至第三节点; 第二自动保护倒 换信息为第一节点在第一保护路径上向第三节点发送的信息; 第二节点检测 到第一链路发生故障后, 在第一保护路径上向第三节点发送第一自动保护倒 换信息。
进一步地, 该方法还可以包括: 第二节点检测到第一链路发生故障之前, 第二节点转发接收到的第三自动保护倒换消息至第一节点, 并根据第三自动 保护倒换消息维护保护倒换状态机; 第三自动保护倒换消息为第三节点在第 一保护路径上向第一节点发送的信息;
第二节点检测到第一链路发生故障后, 第二节点终止对第三自动保护倒 换消息的转发。
进一步地, 该方法还可以包括: 第二节点检测到第一链路发生故障后, 接收到第三节点发送的请求倒换至第一保护路径的自动保护倒换信息时, 第 二节点向第二域发送通告消息, 通告消息用于指示通过第二节点连通第一域 和第二域。
进一步地, 该方法还可以包括: 第二节点检测到第一链路发生故障之前, 第二节点转发接收到的第三故障监测消息至第一节点, 并根据第三故障监测 消息监测第一子路径的故障; 第三故障监测消息为第三节点在第一保护路径 上向第一节点发送的用于监测第一保护路径的消息; 第二节点检测到第一链 路发生故障后, 第二节点终止对第三故障监测消息的转发。 下面结合附图对本发明实施例提供的一种多域网络保护方法、 系统和节 点进行详细描述。
实施例一, 本发明实施例提供了一种多域网络保护方法。 该多域网络拓 朴如图 2所示, 该多域网络包括域 1和域 2, 域 1和域 2相交于节点 B和节 点 C, 节点 B和节点 C称为相交节点, 也可以称为门户节点 (Portal Node )。 节点 A、节点 E和节点 F位于域 1中, 节点 D、节点 G和节点 H位于域 2中。
链路 B-C为节点 B与节点 C间的链路,链路 B-C可能是节点 B与节点 C 间的直连链路, 也可能是节点 B和节点 C间的包含多段链路的非直连链路。
可能有多个被保护业务跨越域 1和域 2,本实施例以经由域 1和域 2的被 保护业务 200为例进行说明。 正常情况下, 被保护业务 200在节点 A和节点 D间的工作路径上传输。
该多域网络还包括四条路径:
工作路径 210, 为被保护业务 200在域 1内节点 A与节点 B间的工作路 径, 用于在域 1内^载被保护业务 200, 路由为 A-E-B;
工作路径 220, 为被保护业务 200在域 2内节点 B与节点 D间的工作路 径, 用于在域 2内^载被保护业务 200, 路由为 B-G-D;
保护路径 230, 为域 1 中工作路径 210的保护路径, 由路径 250和路径 260在节点 C拼接而成,路由为 A-F-C-B。路径 250和路径 260可以称为保护 路径 230的子路径。 其中路径 250为节点 A和节点 C之间的路径; 路径 260 为经由链路 B-C的节点 C和节点 B之间的路径,即门户节点间链路( Intra-Portal Link )。 可以通过在节点 C上配置交叉连接或者转发表项实现拼接, 使得业务 能够在路径 250和路径 260之间透明转发。
保护路径 240, 为域 2中工作路径 220的保护路径, 由路径 270和路径 280在节点 C拼接而成, 路由为 B-C-H-D。 路径 270和路径 270可以称为保 护路径 240的子路径。其中路径 270为节点 D和节点 C之间的路径;路径 280 为节点 C和节点 B之间的路径, 即门户节点间链路 ( Intra-Portal Link )。 可以 通过在节点 C上配置交叉连接或者转发表项实现拼接, 使得业务能够在路径 270和路径 280之间透明转发。
正常情况下, 被保护业务 200承载在工作路径 210和工作路径 220上, 节点 B作为网关实现被保护业务 200在工作路径 210和工作路径 220之间的 转发,从而实现端到端的连接。节点 B可以通过上下业务实现被保护业务 200 在工作路径 210和工作路径 220之间的转发, 也可以通过转发表项或者交叉 连接实现工作路径 210和工作路径 220之间业务的转发。
这里以域 1中的操作为例, 可以在节点 A、 节点 B和节点 C上配置保护 路径 230的维护端点,特别地对于节点 C,其上配置的维护端点在面向节点 A 的方向上, 在这些维护端点上运行有连接监视状态机和保护倒换状态机。 本 实施例中,可以根据域 1和域 2的网络技术选择相应的维护端点配置: 若域 1 为以太网, 可以在节点 A和节点 B上配置 MEP ( Maintenance Association End Point或 Maintenance Entity Group End Point ); 若域 1 为多协议标签交换 ( Multi-Protocl Label Switching, MPLS ) 网络, 可以在节点 A和节点 B上配 置 MEP ( Maintenance Entity Group End Point ); 若域 1为 OTN网络, 可以在 节点 A和节点 B上配置 TCM ( Tandem Connection Monitoring )监视点, 如 ODUkT ( Optical Data Unit of level k, Tandem connection sub -layer ) 功能。
该方法具体包括如下步骤:
步骤 S201 ,节点 B在保护路径 230上向节点 A发送用于携带第二维护信 息的故障监测消息, 该故障监测消息可以用于监测保护路径 230的故障。
本实施例中, 节点 B可以根据域 1和域 2的网络技术选择相应的 OAM 报文或开销作为故障监测消息进行故障监测。
如域 1为以太网, 可采用以太网的连续性检测 (Continuity check, CC ) 报文进行故障监测。 节点 B在保护路径 230上向节点 A发送携带第二维护信 息的连续性检测报文, 该第二维护信息至少包括下列信息:
1 )保护路径 230的维护端点所在的维护组的标识( Maintenance Association Identifier, MA ID )或维护实体组的标识 ( Maintenance Entity Group Identifier, MEG ID ), 该标识在节点 A和节点 B的维护端点上应配置为相同值;
2 ) 节点 B上保护路径 230的维护端点的维护组端点标识(Maintenance Association End Point Identifier, MEP ID )或维护实体组端点标识 ( Maintenance Entity Group End Point Identifier, MEP ID ), 本实施例中, 节点 A和节点 B上 维护端点的 MEP ID不同。
如域 1为多协议标签交换 ( Multi-Protocl Label Switching, MPLS ) 网络, 可采用 MPLS 的连续及连通性检测 (Continuity and Connectivity Check, CC/CV )报文进行故障监测。 节点 B在保护路径 230上向节点 A发送携带第 二维护信息的连续及连通性检测报文, 该第二维护信息至少包括下列信息:
1 )保护路径 230的维护端点所在的维护实体组的标识( Maintenance Entity Group Identifier ), 该标识在节点 A和节点 B的维护端点上应配置为相同值;
2 )节点 B上保护路径 230的维护端点的维护实体组端点标识, 本实施例 中, 节点 Α和节点 B上维护端点的 MEP ID不同。
如域 1为光传送网 ( Optical Transport Network, OTN ), 可采用串联连接 监视(Tandem Connection Monitoring, TCM )开销字节进行故障监测。 需要 为监测保护路径 230 建立串联连接监视(Tandem Connection Monitoring , TCM ), 配置串联连接监视的连接跟踪标识(Trail Trace Identifier, ΤΉ )。 节 点 Β在保护路径 230上向节点 Α发送的数据块的开销字节中填充第二维护信 息, 该开销字节中携带的第二维护信息为连接跟踪标识, 连接跟踪标识可以 是下述标识中的一种:
1 ) 源接入点标识(Source Access Point Identifier, SAPI ), 即节点 B的接 入点标识;
2 ) 目的接入点标识(Destination Access Point Identifier, DAPI ), 即节点
A的接入点标识;
3 )源接入点标识和目的接入点标识, 即节点 B的接入点标识和节点 A的 接入点标识。
步骤 S202,节点 A接收到节点 B在保护路径 230上发送的故障监测消息, 根据该故障监测消息监测保护路径 230的故障。
本实施例中, 节点 C可以将接收到的节点 B在保护路径 230上发送的故 障监测消息转发至节点 。
节点 A接收到节点 B在保护路径 230上发送的故障监测消息, 可以根据 现有的故障监测机制进行判断, 如果该故障监测消息中携带的第二维护信息 正确, 则确定保护路径 230无故障; 否则, 如果接收不到该故障监测消息, 或者接收到的故障监测消息中携带的第二维护信息不正确, 则确定保护路径 230发生故障。
步骤 S203 , 节点 C检测到链路 B-C发生故障后, 在本节点断开保护路径 230,连通路径 250和域 2内以节点 C为端点的用于^ ^载被保护业务 200的一 条路径。 本实施例中, 当链路 B-C发生故障后,节点 C检测到链路 B-C发生故障。 链路 B-C故障可能是节点 B故障或者节点 B与节点 C间的链路故障。 节点 C 可判断保护路径 230不再具备保护能力, 在本节点断开保护路径 230, 将其分 为路径 250和路径 260, 即断开路径 250和路径 260的拼接, 并连通路径 250 和域 内以节点 C为端点的用于承载被保护业务 200的一条路径, 以重构保 护路径。
具体地, 节点 C可以在本节点断开保护路径 230和保护路径 240, 连通 路径 250和路径 270。
节点 C断开路径 250和路径 260的拼接, 将保护路径 230分为路径 250 和路径 260; 断开路径 270和路径 280的拼接, 将保护路径 240分为路径 270 和路径 280。 路径 270为域 2内以节点 C为端点的用于 7 载被保护业务 200 的一条路径, 节点 C可以连通路径 250和路径 270。
如果路径 270发生故障, 路径 280也是域 2内以节点 C为端点的用于 7 载被保护业务 200的一条路径, 节点 C可以连通路径 250和路径 280。
如果路径 280也发生故障, 且还存在与域 2相交于节点 D和节点 H的域 3 ,则路径 C-H也是域 内以节点 C为端点的用于承载被保护业务 200的一条 路径, 节点 C可以连通路径 250和路径 C-H。
步骤 S204, 节点 C检测到链路 B-C发生故障后, 在路径 250上向节点 A 发送携带第一维护信息的故障监测消息, 该第一维护信息与节点 B在保护路 径 230上向节点 A发送的故障监测消息中携带的第二维护信息相同。
正常情况下, 节点 C可以对链路 B-C进行故障监测。 具体地, 节点 B可 以在链路 B-C上向节点 C发送携带维护信息的故障监测消息, 以便节点 C监 测链路 B-C的故障,该维护信息的具体内容及处理机制与保护路径 230类似。 值得说明的是, 为实现快速故障监测, 相对于保护路径 230的故障检测, 链 路 B-C的故障检测应在更低的维护域等级或更低的维护实体组等级或更高阶 的 ODU TCM上进行。 本实施例中, 节点 C代替节点 B向节点 A发送携带第一维护信息的故障 监测消息。 该第一维护信息与第二维护信息相同。 节点 C可以通过两种方式 获得第二维护信息:
节点 C可以在检测到链路 B-C发生故障之前, 接收到节点 B在保护路径 230上发送的故障监测消息后, 记录该故障监测消息中携带的第二维护信息。
节点 C也可以预先在节点 C上配置第二维护信息。 可以根据域 1和域 2 的网络技术选择相应的维护端点配置: 若域 1为以太网, 可以在节点 C上配 置 MEP ( Maintenance Association End Point或 Maintenance Entity Group End Point ) , 节点 C上的维护端点与节点 B上的维护端点的 MA ID或者 MEG ID 相同,且 MEP ID相同;若域 1为 MPLS网络,可以在节点节点 C上配置 MEP ( Maintenance Entity Group End Point ),节点 C上的维护端点与节点 B上的维 护端点的 MEG ID和 MEP ID均相同; 若域 1为 OTN网络, 可以在节点 C上 配置 TCM监视点, 如 ODUkT功能, 节点 C的接入点标识与节点 B的接入点 标识相同。
由于节点 C检测到链路 B-C故障后, 代替节点 B发送具有相同维护信息 的故障监测消息, 使得在节点 A不感知故障的情况下, 重构保护路径, 将域 1的保护路径从保护路径 230切换为路径 250,新形成的保护路径在节点 C跨 域。
节点 C检测到链路 B-C故障之前, 不发送携带第一维护信息的故障监测 消息。
步骤 S205, 节点 A接收到节点 C在路径 250上发送的故障监测消息, 根 据该故障监测消息监测路径 250的故障。
本实施例中, 如图 3所示, 即使链路 B-C发生故障, 节点 A接收到节点 C发送的故障监测消息后, 仍可以获取到与第二维护信息相同的第一维护信 息, 从而使得节点 A不感知链路 B-C的故障, 无需重新选择保护路径, 更无 需执行任何倒换动作。 本实施例中, 上述步骤 S203和步骤 S204的执行顺序不做限制, 可以先 执行步骤 S203再执行步骤 S204, 反之亦可。
进一步地, 正常情况下, 节点 B还可以在保护路径 230上向节点 A发送 第二自动保护倒换 ( Automatic Protection Switching, APS )信息, 用于节点 A 确定保护路径 230是否可用及协调节点 B与节点 A之间的保护倒换动作; 节 点 C转发接收到的第二 APS信息至节点 A;节点 A接收到节点 B在保护路径 上发送的第二 APS信息,根据该第二 APS信息维护节点 A上的保护倒换状态 机, 确定保护路径 230是否可用, 或者确定节点 A的保护倒换动作。
B节点检测到链路 B-C故障后, 停止发送第二 APS信息和携带第二维护 信息的故障监测消息。
节点 C还可以在检测到链路 B-C发生故障后, 在保护路径 250上向节点 A发送第一 APS信息, 代替节点 B与节点 A进行 APS的信息交互; 节点 A 接收到节点 C在保护路径 250上发送的第一 APS信息, 不会感知到链路 B-C 的故障。
节点 C检测到链路 B-C发生故障之前, 不发送第一 APS信息。
进一步地,节点 A还可以在保护路径 230上向节点 B发送第三 APS信息, 节点 C检测到链路 B-C发生故障之前, 接收第三 APS信息, 根据其维护节点 C上的保护倒换状态机, 并转发第三 APS信息至节点 B; 节点 B接收到第三 APS信息,根据第三 APS信息维护节点 B上的保护倒换状态机, 与节点 A进 行 APS的信息交互。 节点 C还可以在检测到链路 B-C发生故障后, 终止对第 APS消息的转发。
进一步地, 若工作路径 210也发生故障, 则节点 A检测到工作路径 210 发生故障, 并且根据第一维护信息确定路径 250无故障, 将业务由工作路径 210倒换至路径 250。 图 4描述了节点 B故障造成的工作路径 210和链路 B-C 均发生故障的场景, 节点 C检测到链路 B-C发生故障, 将保护路径 230和保 护路径 240断开, 连通路径 250与路径 270, 节点 A检测到工作路径 210发 生故障 , 将受保护业务 200倒换到路径 250上。
正常情况下, 节点 Α可以对工作路径 210进行故障监测。 具体地, 节点 B可以在工作路径 210上向节点 A发送故障监测消息, 以便节点 A监测工作 路径 210的故障。
当工作路径 210也发生故障后, 节点 A检测到工作路径 210发生故障, 节点 A可以发送请求倒换至保护路径 230的第三 APS信息,通过与节点 C之 间的 APS信息协调节点 A与节点 C间的保护倒换动作, 将业务由工作路径 210倒换到路径 250。 APS信息可以是 APS报文或者开销。
进一步地, 节点 C检测到链路 B-C发生故障后, 当接收到节点 A发送的 请求倒换至保护路径的第三 APS信息时, 还可以向域 2发送通告消息, 该通 告消息指示通过节点 C实现对受保护业务 200的跨域保护。 具体地, 通告消 息可以指示通过节点 C连通域 1和域 2。
作为域 1与域 2的相交节点,节点 B和节点 C间可能存在多条物理链路, 每条链路上可以承载一条或多条路径:
1 ) 当存在一条链路 B-C时, 链路 B-C可以是域 1与域 2间的相交链路, 即链路 B-C既位于域 1也位于域 2中, 则保护路径 230和保护路径 240均经 由链路 B-C; 或者
2 ) 当存在多条链路时, 如存在链路 B-C和链路 B,-C,, 链路 B-C可以仅 位于域 1中, 链路 B,-C,仅位于域 2中, 则保护路径 230经由链路 B-C, 保护 路径 240经由链路 B,-C,。
本实施例中, 节点 C可以将通告消息发送至域 2中的节点 D, 节点 D可 以根据该通告消息对受保护业务 200进行相应的保护倒换。 具体地, 若路径 270没有故障, 节点 D将受保护业务 200倒换到路径 270上, 受保护业务 200 通过节点 C跨域, 实现节点 B故障情况下的业务端到端保护。
进一步地, 基于上述实施例, 节点 A还可以在保护路径 230上向节点 B 发送携带第三维护信息的故障监测消息; 节点 C检测到链路 B-C发生故障之 前, 接收该故障监测消息, 根据其监测路径 250的故障, 并转发该故障监测 消息至节点 B; 节点 B接收到该故障监测消息, 根据其该故障监测消息监测 保护路径 230的故障。 节点 C检测到链路 B-C发生故障后, 终止对该故障监 测消息的转发。
位于域 2的节点 D与节点 B和节点 C间的处理与上述实施例类似, 当节 点 C检测到链路 B-C故障(节点 B和节点 C间仅存在一条链路 B-C )或者链 路 B,-C,故障 (节点 B和节点 C间存在链路 B-C和链路 B'-C , 且保护路径 240经由链路 B,-C, ) , 代替节点 B在保护路径 270上向节点 D发送故障监测 消息, 该故障监测消息中携带的维护信息与节点 D在保护路径 240上向节点 D发送的故障监测消息中携带的维护信息相同, 使得在节点 D不感知故障的 情况下, 重构保护路径, 将域 2的保护路径从保护路径 240切换为路径 270, 新形成的保护路径在节点 C跨域。
本发明实施例提供的一种多域网络保护方法, 保护路径上的相交节点检 测到相交节点间路径的故障后, 代替工作路径上的相交节点发送故障监测消 息, 使得非相交节点不感知保护路径的故障, 重构保护路径。 从而仅通过相 交节点上的处理实现保护路径的优化, 降低多域网络中非相交节点的复杂性。 此外, 在工作路径故障的情况下, 不增加非相交节点上的处理, 实现跨域业 务的保护倒换。 实施例二, 本发明实施例提供了一种节点, 该节点 300的结构如图 5所 示, 包括:
检测单元 310, 用于检测第一链路的故障; 第一链路为第一节点与本节点 间的链路;
倒换单元 320, 用于检测到第一链路发生故障后, 在本节点断开第一保护 路径, 连通第一子路径和第二域内以本节点为端点的用于承载业务的一条路 径; 该业务为经由第一域和第二域的业务; 第一域和第二域相交于第一节点 和本节点; 第一保护路径由第一子路径和第二子路径拼接而成, 为第一工作 路径的保护路径; 第一工作路径为该业务在第一域内第一节点与第三节点间 的工作路径; 第一子路径为本节点与第三节点间的路径; 第二子路径为经由 第一链路的第一节点与本节点间的路径;
处理单元 330, 用于检测到第一链路发生故障后, 在第一子路径上向第三 节点发送携带第一维护信息的第一故障监测消息;
第一维护信息与第二故障监测消息中携带的第二维护信息相同; 第二故 障监测消息为第一节点在第一保护路径上向第三节点发送的用于监测第一保 护路径故障的消息。
进一步地, 倒换单元 320可以具体包括: 用于检测到第一链路发生故障 后, 在本节点断开第一保护路径和第二保护路径, 连通第一子路径和第三子 路径;
第二保护路径由第三子路径和第四子路径拼接而成, 为第二工作路径的 保护路径; 第二工作路径为该业务在第二域内第一节点与第四节点间的工作 路径; 第三子路径为本节点与第四节点间的路径; 第四子路径为第一节点与 本节点间的路径。
具体实现中, 在本节点断开第一保护路径和第二保护路径, 则本节点的 内部倒换模块可以通过选择性桥接器 (Selective Bridge ) 和选择性选择器 ( Selective Selector ) 实现。
进一步地, 倒换单元 320可以具体包括第一桥接器 321、 第一选择器 322 和控制单元 323 , 如图 6a所示:
第一选择器 322的输出端连接第一子路径; 第一选择器 322的输入端 1 连接第二子路径;
第一选择器 322的输入端 2连接第一桥接器 321的输出端 2;
第一桥接器 321的输出端 1连接第四子路径; 第一桥接器 321的输入端 连接第三子路径;
控制单元 323 , 用于检测到第一链路发生故障后,控制第一桥接器 321的 输入端与第一桥接器 321的输出端 1断开, 与第一桥接器 321的输出端 2连 接; 控制第一选择器 322的输出端与第一选择器 322的输入端 1断开, 与第 一选择器 322的输入端 2连接。
进一步地, 对于双向业务, 倒换单元 320还可以包括第二桥接器 324和 第二选择器 325 , 如图 6b所示:
第二桥接器 324的输入端连接第一子路径; 第二桥接器 324的输出端 1 连接第二子路径;
第二桥接器 324的输出端 2连接第二选择器 325的输入端 2;
第二选择器 325的输入端 1连接第四子路径; 第二选择器 325的输出端 连接第三子路径;
控制单元 323 , 还用于检测到第一链路发生故障后, 控制第二桥接器 324 的输入端与第二桥接器 324的输出端 1断开, 与第二桥接器 324的输出端 2 连接; 控制第二选择器 325的输出端与第二选择器 325的输入端 1断开, 与 第二选择器 325的输入端 2连接。
进一步地, 处理单元 330还可以用于检测到第一链路发生故障之前, 转 发接收到的第二故障监测消息至第三节点。
进一步地, 处理单元 330还可以用于检测到第一链路发生故障之前, 转 发接收到的第二 APS信息至第三节点;第二 APS信息为第一节点在第一保护 路径上向第三节点发送的信息; 检测到第一链路发生故障后, 在第一保护路 径上向第三节点发送第一 APS信息。
进一步地, 该节点还可以包括记录单元 340, 用于检测到第一链路发生故 障之前, 记录接收到的第二故障监测消息中携带的第二维护信息。
进一步地, 处理单元 330还可以用于检测到第一链路发生故障之前, 转 发接收到的第三 APS消息至第一节点,并根据第三 APS消息维护保护倒换状 态机; 第三 APS消息为第三节点在第一保护路径上向第一节点发送的信息; 检测到第一链路发生故障后, 终止对第三 APS消息的转发。
进一步地, 该节点还可以包括通告单元 350, 用于检测到第一链路发生故 障后, 接收到第三节点发送的请求倒换至第一保护路径的第三 APS信息时, 向第四节点发送通告消息, 通告消息用于指示业务通过本节点连通第一域和 第二域。
进一步地, 处理单元 330还用于检测到第一链路发生故障之前, 转发接 收到的第三故障监测消息至第一节点, 并根据第三故障监测消息监测第一子 路径的故障; 该第三故障监测消息为第三节点在第一保护路径上向第一节点 发送的用于监测第一保护路径的消息; 检测到第一链路发生故障后, 终止对 该第三故障监测消息的转发。
具体地, 处理单元 330可以包括:
第三桥接器, 用于接收第三故障监测消息和第三自动保护倒换信息; 将 第三故障监测消息和第三自动保护倒换信息发送至第一维护单元和第二开 关;
第一维护单元, 用于接收第三桥接器输出的第三故障监测消息和第三自 动保护倒换信息, 并根据第三自动保护倒换消息维护保护倒换状态机, 根据 第三故障监测消息监测第一子路径的故障; 重新生成第一故障监测消息和第 一自动保护倒换信息; 将重新生成的第一故障监测消息和第一自动保护倒换 信息发送至第一开关;
第一开关, 用于转发接收到的第一节点发送的第二故障监测消息和第二 自动保护倒换信息至第三节点; 检测到第一链路发生故障之前, 禁止将第一 故障监测消息和第一自动保护倒换信息转发至第三节点; 检测到第一链路发 生故障后, 将第一故障监测消息和第一自动保护倒换信息发送至第三节点; 第二开关, 用于检测到第一链路发生故障之前, 将接收到的第三故障监 测消息和第三自动保护倒换消息发送至第一节点; 检测到第一链路发生故障 后, 终止对第三故障监测消息和第三自动保护倒换消息的发送。
如图 7a所示, 上述处理单元 330中包括的第三桥接器、 第一维护单元、 第一开关和第二开关, 可以具体为图 7a中的第三桥接器 331、 第一维护单元 333、 第一开关 332和第二开关 335。
具体实现中, 第三桥接器 331可以采用永久性桥接器, 第一开关 332和 第二开关 335可以采用单刀单掷开关, 第一维护单元 333可以采用实现 MEP 相关功能的 MEP功能单元。
或者, 具体地, 处理单元 330可以包括:
第三桥接器, 用于接收第三故障监测消息和第三自动保护倒换信息; 将 第三故障监测消息和第三自动保护倒换信息发送至第一维护单元和第二维护 单元;
第一维护单元, 用于接收第三桥接器输出的第三故障监测消息和第三自 动保护倒换信息, 并根据第三自动保护倒换消息维护保护倒换状态机, 根据 第三故障监测消息监测第一子路径的故障; 重新生成第一故障监测消息和第 一自动保护倒换信息; 将重新生成的第一故障监测消息和第一自动保护倒换 信息发送至第一开关;
第二维护单元, 用于接收第三桥接器输出的第三故障监测消息和第三自 动保护倒换信息, 将第三故障监测消息和第三自动保护倒换信息发送至第二 开关; 转发接收到的第一节点发送的第二故障监测消息和第二自动保护倒换 信息至第三节点;
第一开关, 用于检测到第一链路发生故障之前, 禁止将第一故障监测消 息和第一自动保护倒换信息转发至第三节点; 检测到第一链路发生故障后, 将第一故障监测消息和第一自动保护倒换信息发送至第三节点;
第二开关, 用于检测到第一链路发生故障之前, 将接收到的第三故障监 测消息和第三自动保护倒换消息发送至第一节点; 检测到第一链路发生故障 后, 终止对第三故障监测消息和第三自动保护倒换消息的发送。 如图 7b所示, 上述处理单元 330中包括的第三桥接器、 第一维护单元、 第二维护单元、 第一开关和第二开关, 可以具体为图 7b中的第三桥接器 331、 第一维护单元 333、 第二维护单元 334、 第一开关 332和第二开关 335。
具体实现中, 第三桥接器 331可以采用永久性桥接器, 第一开关 332和 第二开关 335可以采用单刀单掷开关, 第一维护单元 333可以采用实现 MEP 相关功能的 MEP 功能单元, 第二维护单元 334 可以采用实现 MIP ( MEG Intermediate Point或 MA Intermediate Point , 维护实体组中间点或维护组中间 点)相关功能的 MIP功能单元。
或者, 具体地, 处理单元 330可以包括:
第三桥接器, 用于接收第三故障监测消息和第三自动保护倒换信息; 检 测到第一链路发生故障之前, 将第三故障监测消息和第三自动保护倒换信息 发送至第二维护单元; 检测到第一链路发生故障后, 将第三故障监测消息和 第三自动保护倒换信息发送至第一维护单元;
第一维护单元, 用于接收第三桥接器输出的第三故障监测消息和第三自 动保护倒换信息, 并根据第三自动保护倒换消息维护保护倒换状态机, 根据 第三故障监测消息监测第一子路径的故障; 重新生成第一故障监测消息和第 一自动保护倒换信息; 将重新生成的第一故障监测消息和第一自动保护倒换 信息发送至第一开关;
第二维护单元, 用于接收第三桥接器输出的第三故障监测消息和第三自 动保护倒换信息, 将第三故障监测消息和第三自动保护倒换信息发送至第二 开关; 转发接收到的第一节点发送的第二故障监测消息和第二自动保护倒换 信息至第三节点;
第一开关, 用于检测到第一链路发生故障之前, 禁止将第一故障监测消 息和第一自动保护倒换信息转发至第三节点; 检测到第一链路发生故障后, 将第一故障监测消息和第一自动保护倒换信息发送至第三节点;
第二开关, 用于检测到第一链路发生故障之前, 将接收到的第三故障监 测消息和第三自动保护倒换消息发送至第一节点; 检测到第一链路发生故障 后, 终止对第三故障监测消息和第三自动保护倒换消息的发送。
如图 7c所示, 上述处理单元 330中包括的第三桥接器、 第一维护单元、 第二维护单元、 第一开关和第二开关, 可以具体为图 7c中的第三桥接器 331、 第一维护单元 333、 第二维护单元 334、 第一开关 332和第二开关 335。
具体实现中, 第三桥接器 331可以采用选择性桥接器, 第一开关 332和 第二开关 335可以采用单刀单掷开关, 第一维护单元 333可以采用实现 MEP 相关功能的 MEP功能单元,第二维护单元 334可以采用实现 MIP相关功能的 MIP功能单元。 实施例三, 本发明另一实施例提供了一种节点, 该节点 800的结构如图 8 所示, 包括:
发送器 810, 用于检测到第一链路发生故障后, 在第一子路径上向第三节 点发送携带第一维护信息的第一故障监测消息;
第一链路为第一节点与第二节点间的链路; 第一维护信息与第二故障监 测消息中携带的第二维护信息相同; 第二故障监测消息为第一节点在第一保 护路径上向第三节点发送的用于监测第一保护路径故障的消息;
存储器 820, 用于存储包括程序例程的信息;
处理器 830, 与存储器 820和耦发送器 810耦合, 用于控制程序例程的执 行, 具体包括:
检测第一链路的故障;
检测到第一链路发生故障后, 在本节点断开第一保护路径, 连通第一子 路径和第二域内以本节点为端点的用于承载业务的一条路径;
该业务为经由第一域和第二域的业务; 第一域和第二域相交于第一节点 和本节点; 第一保护路径由第一子路径和第二子路径拼接而成, 为第一工作 路径的保护路径; 第一工作路径为该业务在第一域内第一节点与第三节点间 的工作路径; 第一子路径为本节点与第三节点间的路径; 第二子路径为经由 第一链路的第一节点与第二节点间的路径。
本发明实施例提供的节点可以是以太网交换机、 路由器、 OTN传送设备 等网络装置, 也可以是上述网络装置中的模块, 在此不做限制。
本发明实施例提供的一种节点, 即保护路径上的相交节点, 该相交节点 检测到相交节点间路径的故障后, 代替工作路径上的相交节点发送故障监测 消息, 使得非相交节点不感知保护路径的故障, 重构保护路径。 从而仅通过 相交节点上的处理实现保护路径的优化, 降低多域网络中非相交节点的复杂 性。 此外, 在工作路径故障的情况下, 不增加非相交节点上的处理, 实现跨 域业务的保护倒换。
上述实施例二、 三中的节点, 其内部各单元之间的信息交互、 执行过程 等内容, 由于与本发明方法实施例基于同一构思, 具体内容可参见本发明方 法实施例中的叙述, 此处不再赘述。 实施例四, 本发明实施例提供了一种多域网络保护系统, 如图 9所示, 系统 900所在的多域网络包括第一域和第二域, 第一域和第二域相交于第一 节点 910和第二节点 920, 包括:
第一节点 910,用于在第一保护路径上向第三节点 930发送用于监测第一 保护路径故障的第二故障监测消息, 第二故障监测消息携带第二维护信息; 第二节点 920, 用于检测到第一链路发生故障后, 在本节点断开第一保护 路径, 连通第一子路径和第二域内以第二节点 920为端点的用于承载业务的 一条路径; 在第一子路径上向第三节点 930发送携带第一维护信息的第一故 障监测消息; 第一维护信息与第二故障监测消息中携带的第二维护信息相同; 第一链路为第一节点 910与第二节点 920间的链路; 该业务为经由第一域和 第二域的业务;
第一保护路径由第一子路径和第二子路径拼接而成, 为第一工作路径的 保护路径; 第一工作路径为该业务在第一域内第一节点 910与第三节点 930 间的工作路径; 第一子路径为第二节点 920与第三节点 930间的路径; 第二 子路径为经由第一链路的第一节点 910与第二节点 920间的路径;
第三节点 930, 用于接收第一故障监测消息或第二故障监测消息; 根据第 一故障监测消息或第二故障监测消息监测第一保护路径的故障。
进一步地, 在本节点断开第一保护路径, 连通第一子路径和第二域内以 第二节点 920为端点的用于承载业务的一条路径, 具体包括:
在本节点断开第一保护路径和第二保护路径; 连通第一子路径和第三子 路径;
第二保护路径由第三子路径和第四子路径拼接而成, 为第二工作路径的 保护路径; 第二工作路径为该业务在第二域内第一节 910点与第四节点 940 间的工作路径; 第三子路径为第二节点 920与第四节点 940间的路径; 第四 子路径为第一节点 910与第二节点 920间的路径。
进一步地, 第二节点 920还用于检测到第一链路发生故障之前, 转发接 收到的第二故障监测消息至第三节点 930。
进一步地, 第二节点 920还用于并检测到第一链路发生故障之前, 记录 接收到的第二故障监测消息中携带的第二维护信息。
进一步地, 第一节点 910还用于在第一保护路径上向第三节点 930发送 第二 APS信息;
第二节点 920还用于检测到第一链路发生故障之前, 转发接收到的第二 APS信息至第三节点 930;检测到第一链路发生故障后,在第一保护路径上向 第三节点 930发送第一 APS信息。
进一步地, 第三节点 930还用于在第一保护路径上向第一节点 910发送 第三 APS信息;
第二节点 920还用于检测到第一链路发生故障之前, 转发接收到的第三 APS信息至第一节点 910, 并根据第三 APS消息维护保护倒换状态机; 检测 到第一链路发生故障后, 终止对第三 APS信息的转发。
进一步地, 第二节点 920还用于检测到第一链路发生故障后, 接收到第 三节点 930发送的请求倒换至第一保护路径的第三 APS信息时, 向第二域发 送通告消息, 通告消息用于指示业务通过第二节点连通第一域和第二域。
进一步地, 第三节点 930还用于在第一保护路径上向第一节点 910发送 用于监测第一保护路径的第三故障监测消息; 第二节点 920还用于检测到第 一链路发生故障之前, 转发接收到的第三故障监测消息至第一节点 910, 并根 据第三故障监测消息监测第一子路径的故障; 检测到第一链路发生故障后, 终止对第三故障监测消息的转发; 第一节点 910还用于接收第三故障监测消 息, 根据第三故障监测消息监测第一保护路径的故障。
第二节点 920的内部装置实现可以参见实施例二或实施例三中的节点, 此处不再赘述。
上述实施例四中的多域网络保护系统, 其内部各节点之间的信息交互、 执行过程等内容, 由于与本发明方法实施例和装置实施例基于同一构思, 具 体内容可参见本发明方法实施例和装置实施例中的叙述, 此处不再赘述。
本发明实施例提供的一种多域网络保护系统, 保护路径上的相交节点检 测到相交节点间路径的故障后, 代替工作路径上的相交节点发送故障监测消 息, 使得非相交节点不感知保护路径的故障, 重构保护路径。 从而仅通过相 交节点上的处理实现保护路径的优化, 降低多域网络中非相交节点的复杂性。 此外, 在工作路径故障的情况下, 不增加非相交节点上的处理, 实现跨域业 务的保护倒换。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存者 i己忆体 ( Random Access Memory, RAM )等。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保 护范围应以权利要求的保护范围为准。

Claims

权利要求书
1、 一种多域网络保护方法, 所述多域网络包括第一域和第二域, 所述第一 域和所述第二域相交于第一节点和第二节点, 其特征在于, 包括:
所述第二节点检测到第一链路发生故障后, 在本节点断开第一保护路径, 连通第一子路径和所述第二域内以所述第二节点为端点的用于承载业务的一条 路径; 在所述第一子路径上向第三节点发送携带第一维护信息的第一故障监测 消息;
所述第一维护信息与第二故障监测消息中携带的第二维护信息相同; 所述 第二故障监测消息为所述第一节点在所述第一保护路径上向所述第三节点发送 的用于监测所述第一保护路径故障的消息; 所述第一链路为所述第一节点与所 述第二节点间的链路; 所述业务为经由所述第一域和所述第二域的业务;
所述第一保护路径由所述第一子路径和第二子路径拼接而成, 为第一工作 路径的保护路径; 所述第一工作路径为所述业务在所述第一域内所述第一节点 与所述第三节点间的工作路径; 所述第一子路径为所述第二节点与所述第三节 点间的路径; 所述第二子路径为经由所述第一链路的所述第一节点与所述第二 节点间的路径。
2、 根据权利要求 1所述的方法, 其特征在于, 所述在本节点断开第一保护 路径, 连通第一子路径和所述第二域内以所述第二节点为端点的用于承载业务 的一条路径, 具体包括:
在本节点断开所述第一保护路径和第二保护路径; 连通所述第一子路径和 第三子路径;
所述第二保护路径由所述第三子路径和第四子路径拼接而成, 为第二工作 路径的保护路径; 所述第二工作路径为所述业务在所述第二域内所述第一节点 与第四节点间的工作路径; 所述第三子路径为所述第二节点与所述第四节点间 的路径; 所述第四子路径为所述第一节点与所述第二节点间的路径。
3、根据权利要求 1或 2所述的方法,其特征在于, 所述第二维护信息包括: 所述第一保护路径的维护端点所在的维护实体组的标识; 所述第一节点上所述 第一保护路径的维护端点的维护实体组端点标识; 所述第三节点上所述第一保 护路径的维护端点的维护实体组端点标识。
4、根据权利要求 1或 2所述的方法,其特征在于, 所述第二维护信息包括: 所述第一保护路径的维护端点所在的维护组的标识; 所述第一节点上所述第一 保护路径的维护端点的维护组端点标识; 所述第三节点上所述第一保护路径的 维护端点的维护组端点标识。
5、根据权利要求 1或 2所述的方法,其特征在于, 所述第二维护信息包括: 所述第一保护路径的串联连接监视的连接跟踪标识。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 所述方法还包括: 所述第二节点检测到所述第一链路发生故障之前, 所述第二节点转发接收 到的所述第二故障监测消息至所述第三节点, 并记录接收到的所述第二故障监 测消息中携带的所述第二维护信息。
7、 根据权利要求 1-6任一项所述的方法, 其特征在于, 所述方法还包括: 所述第二节点检测到所述第一链路发生故障之前, 所述第二节点转发接收 到的第二自动保护倒换信息至所述第三节点; 所述第二自动保护倒换信息为所 述第一节点在所述第一保护路径上向所述第三节点发送的信息;
所述第二节点检测到所述第一链路发生故障后, 在所述第一保护路径上向 所述第三节点发送第一自动保护倒换信息。
8、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括:
所述第二节点检测到所述第一链路发生故障之前, 所述第二节点转发接收 到的第三自动保护倒换消息至所述第一节点, 并根据所述第三自动保护倒换消 息维护保护倒换状态机; 所述第三自动保护倒换消息为所述第三节点在所述第 一保护路径上向所述第一节点发送的信息;
所述第二节点检测到所述第一链路发生故障后, 所述第二节点终止对所述 第三自动保护倒换消息的转发。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述方法还包括: 所述第二节点检测到所述第一链路发生故障后, 接收到所述第三节点发送 的请求倒换至所述第一保护路径的所述第三自动保护倒换信息时, 所述第二节 点向所述第二域发送通告消息, 所述通告消息用于指示通过所述第二节点连通 所述第一域和所述第二域。
10、 根据权利要求 1-9任一项所述的方法, 其特征在于, 所述方法还包括: 所述第二节点检测到所述第一链路发生故障之前, 所述第二节点转发接收 到的第三故障监测消息至所述第一节点, 并根据所述第三故障监测消息监测所 述第一子路径的故障; 所述第三故障监测消息为所述第三节点在所述第一保护 路径上向所述第一节点发送的用于监测所述第一保护路径的消息;
所述第二节点检测到所述第一链路发生故障后, 所述第二节点终止对所述 第三故障监测消息的转发。
11、 一种节点, 其特征在于, 包括检测单元、 倒换单元和处理单元: 所述检测单元, 用于检测第一链路的故障; 所述第一链路为第一节点与本 节点间的链路;
所述倒换单元, 用于检测到所述第一链路发生故障后, 在本节点断开所述 第一保护路径, 连通第一子路径和第二域内以本节点为端点的用于承载业务的 一条路径;
所述业务为经由第一域和所述第二域的业务; 所述第一域和所述第二域相 交于所述第一节点和本节点; 所述第一保护路径由所述第一子路径和第二子路 径拼接而成, 为第一工作路径的保护路径; 所述第一工作路径为所述业务在所 述第一域内所述第一节点与第三节点间的工作路径; 所述第一子路径为本节点 与所述第三节点间的路径; 所述第二子路径为经由所述第一链路的所述第一节 点与本节点间的路径;
所述处理单元, 用于检测到所述第一链路发生故障后, 在所述第一子路径 上向所述第三节点发送携带第一维护信息的第一故障监测消息; 所述第一维护信息与第二故障监测消息中携带的第二维护信息相同; 所述 第二故障监测消息为所述第一节点在所述第一保护路径上向所述第三节点发送 的用于监测所述第一保护路径故障的消息。
12、 根据权利要求 11所述的节点, 其特征在于, 所述倒换单元具体包括: 用于检测到所述第一链路发生故障后, 在本节点断开所述第一保护路径和第二 保护路径, 连通所述第一子路径和第三子路径;
所述第二保护路径由所述第三子路径和第四子路径拼接而成, 为第二工作 路径的保护路径; 所述第二工作路径为所述业务在所述第二域内所述第一节点 与第四节点间的工作路径; 所述第三子路径为本节点与所述第四节点间的路径; 所述第四子路径为所述第一节点与本节点间的路径。
13、 根据权利要求 12所述的节点, 其特征在于, 所述倒换单元具体包括第 一桥接器、 第一选择器和控制单元:
所述第一选择器的输出端连接所述第一子路径; 所述第一选择器的第一输 入端连接所述第二子路径;
所述第一选择器的第二输入端连接所述第一桥接器的第二输出端; 所述第一桥接器的第一输出端连接所述第四子路径; 所述第一桥接器的输 入端连接所述第三子路径;
所述控制单元, 用于检测到所述第一链路发生故障后, 控制所述第一桥接 器的输入端与所述第一桥接器的第一输出端断开, 与所述第一桥接器的第二输 出端连接; 控制所述第一选择器的输出端与所述第一选择器的第一输入端断开, 与所述第一选择器的第二输入端连接。
14、 根据权利要求 13所述的节点, 其特征在于, 所述倒换单元还包括第二 桥接器和第二选择器:
所述第二桥接器的输入端连接所述第一子路径; 所述第二桥接器的第一输 出端连接所述第二子路径;
所述第二桥接器的第二输出端连接所述第二选择器的第二输入端; 所述第二选择器的第一输入端连接所述第四子路径; 所述第二选择器的输 出端连接所述第三子路径;
所述控制单元, 还用于检测到所述第一链路发生故障后, 控制所述第二桥 接器的输入端与所述第二桥接器的第一输出端断开, 与所述第二桥接器的第二 输出端连接; 控制所述第二选择器的输出端与所述第二选择器的第一输入端断 开, 与所述第二选择器的第二输入端连接。
15、 根据权利要求 11-14任一项所述的节点, 其特征在于, 所述处理单元还 用于检测到所述第一链路发生故障之前, 转发接收到的所述第二故障监测消息 和第二自动保护倒换信息至所述第三节点; 所述第二自动保护倒换信息为所述 第一节点在所述第一保护路径上向所述第三节点发送的信息; 检测到所述第一 链路发生故障后, 在所述第一保护路径上向所述第三节点发送第一自动保护倒 换信息。
16、 根据权利要求 15任一项所述的节点, 其特征在于, 所述节点还包括记 录单元, 用于检测到所述第一链路发生故障之前, 记录接收到的所述第二故障 监测消息中携带的所述第二维护信息。
17、 根据权利要求 11-16任一项所述的节点, 其特征在于, 所述处理单元还 用于检测到所述第一链路发生故障之前, 转发接收到的第三自动保护倒换消息 至所述第一节点, 并根据所述第三自动保护倒换消息维护保护倒换状态机; 所 述第三自动保护倒换消息为所述第三节点在所述第一保护路径上向所述第一节 点发送的信息; 检测到所述第一链路发生故障后, 终止对所述第三自动保护倒 换消息的转发。
18、根据权利要求 17所述的节点, 其特征在于, 所述节点还包括通告单元, 用于检测到所述第一链路发生故障后, 接收到所述第三节点发送的请求倒换至 所述第一保护路径的所述第三自动保护倒换信息时, 向所述第四节点发送通告 消息, 所述通告消息用于指示所述业务通过本节点连通所述第一域和所述第二 域。
19、 根据权利要求 11-18任一项所述的节点, 其特征在于, 所述处理单元还 用于检测到所述第一链路发生故障之前, 转发接收到的第三故障监测消息至所 述第一节点, 并根据所述第三故障监测消息监测所述第一子路径的故障; 所述 第三故障监测消息为所述第三节点在所述第一保护路径上向所述第一节点发送 的用于监测所述第一保护路径的消息; 检测到所述第一链路发生故障后, 终止 对所述第三故障监测消息的转发。
20、 根据权利要求 19所述的节点, 其特征在于, 所述处理单元具体包括: 第三桥接器, 用于接收所述第三故障监测消息和所述第三自动保护倒换信 息; 将所述第三故障监测消息和所述第三自动保护倒换信息发送至第一维护单 元和第二开关;
第一维护单元, 用于接收所述第三桥接器输出的所述第三故障监测消息和 所述第三自动保护倒换信息, 并根据所述第三自动保护倒换消息维护保护倒换 状态机, 根据所述第三故障监测消息监测所述第一子路径的故障; 重新生成所 述第一故障监测消息和所述第一自动保护倒换信息; 将重新生成的所述第一故 障监测消息和所述第一自动保护倒换信息发送至第一开关;
第一开关, 用于转发接收到的所述第一节点发送的所述第二故障监测消息 和所述第二自动保护倒换信息至所述第三节点; 检测到所述第一链路发生故障 之前, 禁止将所述第一故障监测消息和所述第一自动保护倒换信息转发至第三 节点; 检测到所述第一链路发生故障后, 将所述第一故障监测消息和所述第一 自动保护倒换信息发送至所述第三节点;
第二开关, 用于检测到所述第一链路发生故障之前, 将接收到的第三故障 监测消息和第三自动保护倒换消息发送至所述第一节点; 检测到所述第一链路 发生故障后, 终止对所述第三故障监测消息和所述第三自动保护倒换消息的发 送。
21、 根据权利要求 19所述的节点, 其特征在于, 所述处理单元具体包括: 第三桥接器, 用于接收所述第三故障监测消息和所述第三自动保护倒换信 息; 将所述第三故障监测消息和所述第三自动保护倒换信息发送至第一维护单 元和第二维护单元;
第一维护单元, 用于接收所述第三桥接器输出的所述第三故障监测消息和 所述第三自动保护倒换信息, 并根据所述第三自动保护倒换消息维护保护倒换 状态机, 根据所述第三故障监测消息监测所述第一子路径的故障; 重新生成所 述第一故障监测消息和所述第一自动保护倒换信息; 将重新生成的所述第一故 障监测消息和所述第一自动保护倒换信息发送至第一开关;
第二维护单元, 用于接收所述第三桥接器输出的所述第三故障监测消息和 所述第三自动保护倒换信息, 将所述第三故障监测消息和所述第三自动保护倒 换信息发送至第二开关; 转发接收到的所述第一节点发送的所述第二故障监测 消息和所述第二自动保护倒换信息至所述第三节点;
第一开关, 用于检测到所述第一链路发生故障之前, 禁止将所述第一故障 监测消息和所述第一自动保护倒换信息转发至第三节点; 检测到所述第一链路 发生故障后, 将所述第一故障监测消息和所述第一自动保护倒换信息发送至所 述第三节点;
第二开关, 用于检测到所述第一链路发生故障之前, 将接收到的第三故障 监测消息和第三自动保护倒换消息发送至所述第一节点; 检测到所述第一链路 发生故障后, 终止对所述第三故障监测消息和所述第三自动保护倒换消息的发 送。
22、 一种多域网络保护系统, 所述多域网络包括第一域和第二域, 所述第 一域和所述第二域相交于第一节点和第二节点, 其特征在于, 包括:
所述第一节点, 用于在第一保护路径上向所述第三节点发送用于监测所述 第一保护路径故障的第二故障监测消息, 所述第二故障监测消息携带第二维护 信息;
所述第二节点为权利要求 11-21任一项所述的节点;
所述第三节点, 用于接收所述第一故障监测消息或所述第二故障监测消息; 根据所述第一故障监测消息或所述第二故障监 息监测所述第一保护路径的 故障。
PCT/CN2013/078506 2013-06-29 2013-06-29 一种多域网络保护方法、系统和节点 WO2014205843A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES13888067.9T ES2641165T3 (es) 2013-06-29 2013-06-29 Método de protección de red multidominio y nodo
CN201380000615.8A CN105264836B (zh) 2013-06-29 2013-06-29 一种多域网络保护方法、系统和节点
ES17171394T ES2762075T3 (es) 2013-06-29 2013-06-29 Método y sistema de protección para una red multidominio y nodo
PCT/CN2013/078506 WO2014205843A1 (zh) 2013-06-29 2013-06-29 一种多域网络保护方法、系统和节点
EP13888067.9A EP3001612B1 (en) 2013-06-29 2013-06-29 Multi-domain network protection method and node
EP17171394.4A EP3264693B1 (en) 2013-06-29 2013-06-29 Protection method and system for multi-domain network, and node
US14/982,282 US9806937B2 (en) 2013-06-29 2015-12-29 Protection method and system for multi-domain network, and node
US15/783,403 US10164823B2 (en) 2013-06-29 2017-10-13 Protection method and system for multi-domain network, and node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/078506 WO2014205843A1 (zh) 2013-06-29 2013-06-29 一种多域网络保护方法、系统和节点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/982,282 Continuation US9806937B2 (en) 2013-06-29 2015-12-29 Protection method and system for multi-domain network, and node

Publications (1)

Publication Number Publication Date
WO2014205843A1 true WO2014205843A1 (zh) 2014-12-31

Family

ID=52140908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078506 WO2014205843A1 (zh) 2013-06-29 2013-06-29 一种多域网络保护方法、系统和节点

Country Status (5)

Country Link
US (2) US9806937B2 (zh)
EP (2) EP3001612B1 (zh)
CN (1) CN105264836B (zh)
ES (2) ES2762075T3 (zh)
WO (1) WO2014205843A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9935900B2 (en) * 2014-10-16 2018-04-03 Electronics And Telecommunications Research Institute Method for providing protection switching service in virtual tenant network and controller therefor
CN109587049B (zh) * 2018-12-05 2021-02-02 首都师范大学 基于二维路由的外访流量控制及快速自愈机制及装置
CN114520760B (zh) * 2020-11-20 2023-08-22 华为技术有限公司 一种跨域故障分析的方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798051A (zh) * 2004-12-24 2006-07-05 中兴通讯股份有限公司 跨越多域连接的网络故障恢复的方法
CN101715149A (zh) * 2009-07-21 2010-05-26 北京邮电大学 一种多层多域分布式光网络并行跨域故障恢复方法和装置
FR2955224A1 (fr) * 2010-01-13 2011-07-15 Alcatel Lucent Liaison virtuelle inter-operateur
WO2012113444A1 (en) * 2011-02-22 2012-08-30 Telefonaktiebolaget L M Ericsson (Publ) A fault protection method and fault protection apparatus in a multi-domain network

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496476B1 (en) * 1997-03-12 2002-12-17 Worldcom, Inc. System and method for restricted reuse of intact portions of failed paths
US6775229B1 (en) * 2000-05-05 2004-08-10 Fujitsu Network Communications, Inc. Method and system for providing a protection path for connection-oriented signals in a telecommunications network
US7372803B2 (en) * 2001-07-24 2008-05-13 Nortel Networks Limited Apparatus and method for establishment and protection of connections within mesh networks
US7855968B2 (en) * 2004-05-10 2010-12-21 Alcatel Lucent Alarm indication and suppression (AIS) mechanism in an ethernet OAM network
US20050259589A1 (en) * 2004-05-24 2005-11-24 Metrobility Optical Systems Inc. Logical services loopback
US7512063B2 (en) * 2004-12-14 2009-03-31 Cisco Technology, Inc. Border router protection with backup tunnel stitching in a computer network
CN101051995B (zh) * 2006-06-05 2012-07-04 华为技术有限公司 基于无连接网络的保护倒换方法
KR20090050920A (ko) * 2007-11-16 2009-05-20 한국전자통신연구원 이더넷 링 네트워크의 비환원 모드에서의 장애 복구 방법
KR101257678B1 (ko) * 2008-08-26 2013-04-24 알까뗄 루슨트 트래픽 접속 및 연관된 모니터링 접속을 확립하기 위한 방법들
US9426062B2 (en) * 2009-12-01 2016-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Fault monitoring in connection-oriented networks
US8681634B2 (en) * 2010-03-31 2014-03-25 Fujitsu Limited Systems and methods for determining protection paths in a multi-domain network
EP2408128B1 (en) * 2010-07-15 2017-06-07 Alcatel Lucent Interworking agent adapted to interact between network and Precision Time Protocol entities
US8804485B2 (en) * 2011-05-06 2014-08-12 Tellabs Operations, Inc. Method and apparatus for coordinating fault recovery techniques among domains
CN102572905A (zh) 2012-01-09 2012-07-11 中兴通讯股份有限公司 一种双归保护倒换方法和系统
CN102448095A (zh) 2012-01-20 2012-05-09 杭州华三通信技术有限公司 一种双归保护方法和设备
US9270564B2 (en) * 2012-09-11 2016-02-23 Alcatel Lucent System and method for congestion notification in an ethernet OAM network
US9143398B2 (en) * 2012-12-27 2015-09-22 Futurewei Technologies, Inc. System and method for spare capacity allocation for shared backup path protection for dual link failures using successive survivable routing
US9674085B2 (en) * 2013-01-08 2017-06-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for handling inconsistency of PSC states between two ends
US9172625B2 (en) * 2013-02-15 2015-10-27 Fujitsu Limited Systems and methods of communicating path status in optical networks
CN104022949B (zh) * 2013-02-28 2017-08-04 中兴通讯股份有限公司 一种跨域路径信息长久保存的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798051A (zh) * 2004-12-24 2006-07-05 中兴通讯股份有限公司 跨越多域连接的网络故障恢复的方法
CN101715149A (zh) * 2009-07-21 2010-05-26 北京邮电大学 一种多层多域分布式光网络并行跨域故障恢复方法和装置
FR2955224A1 (fr) * 2010-01-13 2011-07-15 Alcatel Lucent Liaison virtuelle inter-operateur
WO2012113444A1 (en) * 2011-02-22 2012-08-30 Telefonaktiebolaget L M Ericsson (Publ) A fault protection method and fault protection apparatus in a multi-domain network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001612A4 *

Also Published As

Publication number Publication date
CN105264836B (zh) 2018-06-26
US10164823B2 (en) 2018-12-25
US20180041379A1 (en) 2018-02-08
EP3001612A1 (en) 2016-03-30
EP3264693B1 (en) 2019-10-02
US20160134466A1 (en) 2016-05-12
CN105264836A (zh) 2016-01-20
ES2641165T3 (es) 2017-11-08
EP3264693A1 (en) 2018-01-03
EP3001612B1 (en) 2017-08-09
US9806937B2 (en) 2017-10-31
ES2762075T3 (es) 2020-05-22
EP3001612A4 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
EP1845656B1 (en) A method for implementing master and backup transmission path
CN101999224B (zh) 对虚拟专用lan业务的冗余的以太网自动保护切换接入
US8854975B2 (en) Scaling OAM for point-to-point trunking
EP1111860B1 (en) Automatic protection switching using link-level redundancy supporting multi-protocol label switching
ES2363410T3 (es) Método, dispositivo y sistema para la conmutación de tráfico en ingeniería de tráfico de conmutación multiprotocolo por etiqueta.
EP2658182B1 (en) Ring network protection method, network node and ring network
CN100450039C (zh) 快速收敛端到端业务的方法和装置
CN102571426B (zh) 一种双归保护方法和装置
US9210037B2 (en) Method, apparatus and system for interconnected ring protection
US20100287405A1 (en) Method and apparatus for internetworking networks
US9647878B2 (en) Announcement method, device and system
US20110310730A1 (en) Hvpls hub connectivity failure recovery with dynamic spoke pseudowires
WO2011157130A2 (zh) 路径建立方法和装置
CN102132524B (zh) 用于建立业务连接及相关监控连接的方法
CN109788018B (zh) 跨域的业务互通方法、网络设备及存储介质
WO2012100571A1 (zh) 一种多条相同路径隧道集中管理的方法和系统
CN102118301A (zh) 隧道保护方法及装置
US10164823B2 (en) Protection method and system for multi-domain network, and node
AU2011229566A1 (en) Load sharing method and apparatus
CN111092822A (zh) 一种vpls的pw线性保护转发负载均衡的方法
US9929939B2 (en) Systems, apparatuses, and methods for rerouting network traffic
US8457141B2 (en) Telecommunication network
WO2007006175A1 (fr) Procede de mise en oeuvre de la prevention des defaillances facile prise en charge par la protection annulaire partagee des canaux
CN103209085A (zh) 告警的处理方法和联动支撑系统
CN103840952A (zh) 用于mac黑洞预防的方法以及相应的分布式双宿节点

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380000615.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888067

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013888067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013888067

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE