WO2014204234A1 - Phenylanthracene derivative and organic light emitting device containing same - Google Patents

Phenylanthracene derivative and organic light emitting device containing same Download PDF

Info

Publication number
WO2014204234A1
WO2014204234A1 PCT/KR2014/005421 KR2014005421W WO2014204234A1 WO 2014204234 A1 WO2014204234 A1 WO 2014204234A1 KR 2014005421 W KR2014005421 W KR 2014005421W WO 2014204234 A1 WO2014204234 A1 WO 2014204234A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
light emitting
mmol
added
phenylanthracene derivative
Prior art date
Application number
PCT/KR2014/005421
Other languages
French (fr)
Korean (ko)
Inventor
김윤희
권순기
이윤지
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2014204234A1 publication Critical patent/WO2014204234A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Definitions

  • the present invention relates to a novel phenylanthracene derivative and an organic light emitting device comprising the same in a light emitting layer, and more particularly to an asymmetric, highly twisted phenylanthracene derivative.
  • LCD Liquid Crystal Display
  • OLED organic light-emitting diodes
  • OLED is a self-luminous type that does not require backlight, and the response speed is faster than LCD in almost all aspects such as fast and low DC driving voltage, wide viewing angle, light weight, and flexible display possibility. It has been attracting attention and recently it is recognized as a core technology of display with the application of technology. However, there are still problems in efficiency and color purity, so it is urgent to develop a blue organic light emitting material for easier practical use of OLED.
  • the structure of an organic EL device is generally an anode, a hole injection layer (HIL), a hole transfer layer (HTL), an emission layer (EML), an electron transfer layer (ETL) ), An electron injection layer (EIL), and a cathode, which are formed by thermal evaporation under high vacuum (10 -6 to 10 -7 Torr). .
  • the light emitting mechanism first injects holes in the anode and electrons in the cathode, and they meet in the light emitting layer to form unstable excitons. This unstable excitons stabilize and release energy, which is released as light energy.
  • the light emitting material is also important, but it is also essential that electrons and holes must meet in the light emitting layer, and thus the role of injecting and transferring electrons and holes is also important.
  • the color of light emitted from the OLED is determined by the difference in energy level between HOMO and LUMO of the light emitting material.
  • the energy spacing between HOMO-LUMO can be controlled by varying the conjugation length of the molecule using the Linear Combination of Atomic Orbital (LCAO) method.
  • LCAO Linear Combination of Atomic Orbital
  • OLEDs need three primary colors of light: red, green, and blue to display all the colors of nature.
  • the development of high-efficiency blue light emission has become a problem for the practical use of OLED, which has a problem in that the blue light emitting material deteriorates the performance of the entire device due to the low color purity and lifetime compared to other materials.
  • the present invention relates to a phenylanthracene derivative, and more particularly, has a high thermal stability, optical properties and chemical stability by substituting a functional group capable of giving a high degree of distortion in the molecule of the anthracene derivative in the anthracene skeleton, and having an intramolecular or intermolecular interaction. It provides a phenylanthracene derivative that can have a high luminous efficiency with a minimum of action.
  • the present invention also provides an anthracene derivative having high color purity and high luminous efficiency including the phenylanthracene derivative and an organic light emitting device including the same as a light emitting material (a blue light emitting material and a blue fluorescent host).
  • the present invention provides a phenylanthracene derivative represented by the following formula (1).
  • R 1 to R 4 are independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
  • X is or R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkyl or C 1 -C 30 alkoxy;
  • Y is C 6 -C 30 aryl or C 3 -C 30 heteroaryl
  • p is an integer from 1 to 7;
  • Aryl or heteroaryl of Y may be further substituted with C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 3 -C 30 heteroaryl or C 6 -C 30 aryl.
  • Y may be selected from the following structures.
  • R 21 to R 25 are each independently hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
  • o and p are integers from 1 to 4.
  • r is an integer of 1 to 6, and when o, p and q are two or more, R 21 to R 25 may be the same or different from each other.
  • R 21 is independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
  • o is an integer from 1 to 4.
  • the phenylanthracene derivative of Chemical Formula 1 may be represented by the following Chemical Formula 2 in terms of improving thermal stability and efficiency of the organic light emitting device including the same.
  • R 1 to R 4 are independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
  • R 11 or R 21 are independently of each other hydrogen, C 1 -C 30 alkyl or C 1 -C 30 alkoxy;
  • r is an integer from 1 to 4,
  • p is an integer of 1 to 7, and each of R 11 or R 21 may be different or the same when r and p are 2 or more.
  • the phenylanthracene derivative according to an embodiment of the present invention in order to increase the thermal stability and efficiency of the organic light-emitting device including the same in Formula 1 R 1 or R 4 is hydrogen, R 2 to R 3 is hydrogen or C 1 -C 30 alkyl, more preferably C 1 -C 12 alkyl.
  • the phenyl anthracene derivative represented by Formula 1 of the present invention may be selected from the following compounds, but is not limited thereto.
  • the present invention provides an organic light emitting device including a light emitting layer between an anode, a cathode, and a positive electrode, and includes a phenylanthracene derivative according to the present invention in a light emitting layer.
  • the present invention also relates to an organic light emitting device using the phenylanthracene derivative according to the present invention as a light emitting material having an electron transport ability.
  • the phenylanthracene derivative according to the present invention may be prepared according to Scheme 1, for example, but may be prepared by a synthetic method that can be recognized by those skilled in the art.
  • the present invention provides an organic light emitting device comprising a light emitting layer between the anode, the cathode and the positive electrode, the organic light emitting device comprising a phenylanthracene derivative according to the present invention in the light emitting layer.
  • the phenylanthracene derivative according to the present invention is a light emitting material having an electron transport ability, and the organic light emitting device including the same has a high quantum efficiency, a low driving voltage, and a high luminous efficiency.
  • the phenylanthracene derivative according to the present invention has a highly twisted structure due to the high rotational disturbance of the substituents of anthracene skeleton and anthracene, and thus exhibits a high glass transition temperature and the interaction between the anthracene molecules is suppressed to the maximum, resulting in a high color purity emission spectrum. You can appear.
  • the OLED including the phenylanthracene derivative according to the present invention has a problem of deterioration due to driving heat generated during driving of the device and a decrease in emission characteristics and color purity due to low purity and pi-stacking of the material for forming an organic film. It is possible to solve the problem, improve the luminous efficiency, and improve the stability of the device, it is possible to provide a high-efficiency high color electroluminescent device for the reason that the intermolecular interference due to strong distortion is reduced.
  • the phenylanthracene derivative according to the present invention has an asymmetric structure, and the substituents of the anthracene skeleton and the anthracene, in particular pyridinylphenyl and naphthalenyl or pyridinylphenyl and pyrenyl, have a high rotational disorder and thus show a highly twisted structure. It exhibits a high glass transition temperature, and the anthracene intermolecular interaction is suppressed as much as possible, resulting in a high color purity emission spectrum.
  • the OLED having an organic film such as a light emitting layer formed by using the asymmetric phenylanthracene derivative according to the present invention has a problem due to heat generated during driving, low purity of the organic film forming material, degradation of luminescence properties and color purity due to ⁇ -stacking As a result, the luminous efficiency is improved, the stability of the device is improved, and the intermolecular interference due to the high distortion is reduced, so that a light emitting device having high efficiency and high color purity can be formed.
  • the asymmetric phenylanthracene derivative according to the present invention can be used as a host material of a conventionally known blue fluorescent material, so that the OLED of the present invention can realize excellent blue color purity.
  • FIG. 3 is a graph showing liquid UV absorption and PL spectrum of compound 1 prepared in Example 1 and PL spectrum in solid state
  • FIG. 4 is a cyclic voltammetry curve graph of Compound 1 prepared in Example 1.
  • FIG. 4 is a cyclic voltammetry curve graph of Compound 1 prepared in Example 1.
  • FIG. 5 is a diagram illustrating a measurement result of Density Functional Theory (DFT) of Compound 1 prepared in Example 1.
  • DFT Density Functional Theory
  • FIG. 6 is a view showing a DFT measurement result of Compound 2 prepared in Example 2.
  • FIG. 7 is a diagram showing a DFT measurement result of Compound 3 prepared in Example 3.
  • FIG. 7 is a diagram showing a DFT measurement result of Compound 3 prepared in Example 3.
  • the thermal properties were measured by thermogravimetric analysis (TGA) and differential calorimetry (DSC) by heating from 40 ° C. to 700 ° C. at 10 ° C. per minute under a nitrogen atmosphere.
  • TGA thermogravimetric analysis
  • DSC differential calorimetry
  • a phenylanthracene derivative was prepared at a concentration of 10 -5 M to measure UV-VIS and PL spectra.
  • Phenylanthracene derivatives were prepared at a concentration of 10 -5 M and measured by cyclic voltammetry.
  • the material has crystallinity by confirming that a peak appears at about 289 ° C. in the first heating section.
  • the UV spectrum of the liquid state of Compound 1 prepared in Example 1 was measured to be absorbed at about 260 nm, and the PL spectrum was measured to emit light at about 430 nm.
  • Electrochemical properties were measured by cyclic voltammetry and the results are shown in FIG. 4. 4, the HOMO was 5.59 eV, the LUMO was 2.59 eV, and the band gap was measured at 3.0.
  • Compound 1 prepared in Example 1 of the present invention has a pyridinylphenyl group instead of a pyridinyl group in the anthracene skeleton, so that the pyridinyl group may be formed between the pyridinyl and the anthracene skeleton in spite of being an electron withdrawing group.
  • the phenyl group present blocks the electron attraction effect of the pyridinyl group, concentrating the electron density on the anthracene skeleton, resulting in high color purity and luminous efficiency.
  • Compound 1 of the present invention has a pyridinylphenyl group substituted on one side of the anthracene skeleton and a naphthalenyl group on one side, so that it has a highly twisted structure and concentrates on the electron density anthracene skeleton, and thus has very high color purity and luminous efficiency. .
  • FIG. 6 shows the DFT of Compound 2 prepared in Example 2
  • FIG. 7 shows the DFT of Compound 3 prepared in Example 3.
  • the compounds of Examples 2 to 3 like the compound 1 of the present invention, also have a pyridinylphenyl group substituted on one side of the anthracene skeleton and a naphthalenyl group on the other side, thus providing a highly twisted structure.
  • the electron density is concentrated in the anthracene skeleton, but the color purity and luminous efficiency are very high.

Abstract

The present invention relates to a phenylanthracene derivative and an organic light emitting device containing the same in a light emitting layer. The organic light emitting device containing the phenylanthracene derivative according to the present invention has high thermal stability and remarkable luminous efficiency.

Description

페닐안트라센 유도체 및 이를 포함하는 유기 발광소자Phenylanthracene derivative and organic light emitting device comprising the same
본 발명은 신규한 페닐안트라센 유도체 및 이를 발광층에 포함하는 유기 발광 소자에 관한 것으로, 보다 상세하게 비대칭의 고도로 뒤틀린 페닐안트라센 유도체에 관한 것이다.The present invention relates to a novel phenylanthracene derivative and an organic light emitting device comprising the same in a light emitting layer, and more particularly to an asymmetric, highly twisted phenylanthracene derivative.
요즘 IT 분야의 발전이 크고 빠르게 이루어지면서 디스플레이 분야는 그에 맞춰 정보를 표현해내는 능력의 고도화가 필요하게 되었고 이에 디스플레이 분야도 함께 성장하게 되었다. 최근까지 TV나 노트북, 휴대폰의 표시 창으로 주로 쓰여 왔던 액정(Liquid Crystal Display, LCD)의 경우에는 뒤에서 빛을 비추어 주는 백 라이트 방식이므로 두꺼울 뿐만 아니라 낮은 색순도와 발광효율, 좁은 시야각 때문에 옆에서 보면 보이지 않는다는 점, 느린 반응속도로 인해 잔상이 남는 점 등의 많은 단점을 갖고 있었다. 이에 대한 해결책으로 많은 기업들은 유기 발광 소자(Organic Light-Emitting Diode, OLED)에 대한 연구를 활발히 진행하였다. OLED는 자체 발광형으로 백라이드가 필요하지 않을 뿐만 아니라, 반응속도도 LCD에 비해 빠르고 낮은 직류 구동전압, 넓은 시야각, 경량박형, Flexible display 제작 가능성 등 거의 모든 면에 있어서 LCD보다 우수하여 차세대 디스플레이로 관심을 받아왔으며 최근엔 기술을 적용한 제품이 출시되면서 디스플레이 핵심기술로 인정받고 있다. 그러나 아직 효율과 색순도의 문제점이 남아 있어 OLED의 보다 쉬운 실용화를 위해 청색 유기 발광 재료 개발이 시급하다.As the development of the IT field has progressed rapidly and rapidly, the display field needs to upgrade its ability to express information accordingly, and the display field has grown together. Liquid Crystal Display (LCD), which has been used mainly for display windows of TVs, notebooks, and mobile phones until recently, is not only thick because it is a backlight that emits light from behind, but also is seen from the side because of low color purity, luminous efficiency, and narrow viewing angle. It has many disadvantages such as not being left and afterimage remains due to slow reaction speed. As a solution to this, many companies have actively researched organic light-emitting diodes (OLEDs). OLED is a self-luminous type that does not require backlight, and the response speed is faster than LCD in almost all aspects such as fast and low DC driving voltage, wide viewing angle, light weight, and flexible display possibility. It has been attracting attention and recently it is recognized as a core technology of display with the application of technology. However, there are still problems in efficiency and color purity, so it is urgent to develop a blue organic light emitting material for easier practical use of OLED.
유기 EL 소자의 구조는 일반적으로 양극(anode), 정공 주입층(hole injection layer, HIL), 정공 수송층(hole transfer layer, HTL), 발광층(emission layer, EML), 전자 수송층(electron transfer layer, ETL), 전자 주입층(electron injection layer, EIL), 그리고 음극(cathode)으로 구분할 수 있으며 이러한 박막 층들은 고 진공(10-6∼10-7Torr)상태에서 가열 증착(thermal evaporation)에 의하여 형성된다. 발광 메커니즘은 먼저 양극에서 정공이, 음극에서 전자가 주입되고, 이들이 발광층에서 만나 불안정한 여기자(exciton)을 형성한다. 이 불안정한 여기자가 다시 안정해지면서 에너지를 내놓는데, 이 에너지는 빛 에너지로 방출된다. 이러한 원리에 의해 OLED가 구동되므로 발광재료도 중요하지만, 전자와 정공이 발광층에서 만나야 하는 것 또한 필수적이므로 전자 및 정공을 주입, 전달하는 역할도 중요하다. The structure of an organic EL device is generally an anode, a hole injection layer (HIL), a hole transfer layer (HTL), an emission layer (EML), an electron transfer layer (ETL) ), An electron injection layer (EIL), and a cathode, which are formed by thermal evaporation under high vacuum (10 -6 to 10 -7 Torr). . The light emitting mechanism first injects holes in the anode and electrons in the cathode, and they meet in the light emitting layer to form unstable excitons. This unstable excitons stabilize and release energy, which is released as light energy. As the OLED is driven by this principle, the light emitting material is also important, but it is also essential that electrons and holes must meet in the light emitting layer, and thus the role of injecting and transferring electrons and holes is also important.
OLED에서 방출되는 빛의 색깔을 결정하는 것은 발광재료의 HOMO-LUMO 사이의 에너지 준위 차이에 의해 결정되는 것으로 에너지 차이가 커지면 단파장의 빛, 에너지 차이가 작아지면 장파장의 빛을 방출하게 된다. HOMO-LUMO 사이 에너지 간격은 분자의 콘쥬게이션(conjugation) 길이를 변화시켜서 조절할 수 있음을 LCAO(Linear Combination of Atomic Orbital, 원자궤도함수 선형조합) 방식을 사용하여 보일 수 있다. 결국 콘쥬게이션(conjugation)이 길어지면 밴드갭(Band Gap)의 크기는 작아지고, 그에 해당하는 파장의 길이는 길어진다. OLED가 자연의 모든 색을 표시하기 위해서는 빛의 삼원색인 빨강색, 녹색, 파랑색이 필요하다. 그런데 현재 OLED의 실용화를 위해 고효율의 청색 발광의 개발이 가장 문제가 되고 있는데 이는 다른 재료에 비해 청색 발광물질이 낮은 색순도 및 수명으로 인해 전체 디바이스의 성능을 저하시키는 문제점이 있다.The color of light emitted from the OLED is determined by the difference in energy level between HOMO and LUMO of the light emitting material. When the energy difference increases, the light of short wavelength is emitted, and when the energy difference decreases, the light of long wavelength is emitted. The energy spacing between HOMO-LUMO can be controlled by varying the conjugation length of the molecule using the Linear Combination of Atomic Orbital (LCAO) method. As a result, the longer the conjugation, the smaller the band gap, and the corresponding wavelength becomes longer. OLEDs need three primary colors of light: red, green, and blue to display all the colors of nature. However, the development of high-efficiency blue light emission has become a problem for the practical use of OLED, which has a problem in that the blue light emitting material deteriorates the performance of the entire device due to the low color purity and lifetime compared to other materials.
한편, 대한민국공개특허 제 2008-0051625호 “안트라센 유도체 및 이를 포함하는 유기전계발광소자”에 관한 것으로, 안트라센 유도체를 포함하는 유기전계발광소자에 대하여 기재되어 있으나, 본 발명과는 그 구조가 상이하고, 색순도 및 발광효율면에서 그 효과가 충분하지 않다.On the other hand, the Republic of Korea Patent Publication No. 2008-0051625 "Anthracene derivatives and organic electroluminescent device comprising the same", but described with respect to the organic electroluminescent device comprising an anthracene derivative, the structure is different from the present invention The effect is not sufficient in terms of color purity and luminous efficiency.
본 발명은 페닐안트라센 유도체에 관한 것으로, 더욱 구체적으로 안트라센 골격에 안트라센 유도체의 분자 내에 고도의 뒤틀림을 줄 수 있는 작용기로 치환시켜 높은 열 안정성, 광학적 특성 및 화학적 안정성을 가지며, 분자 내 또는 분자 간 상호작용을 최소로 하여 높은 발광효율을 가질 수 있는 페닐안트라센 유도체를 제공한다.The present invention relates to a phenylanthracene derivative, and more particularly, has a high thermal stability, optical properties and chemical stability by substituting a functional group capable of giving a high degree of distortion in the molecule of the anthracene derivative in the anthracene skeleton, and having an intramolecular or intermolecular interaction. It provides a phenylanthracene derivative that can have a high luminous efficiency with a minimum of action.
또한 본 발명은 상기의 페닐안트라센 유도체를 포함하여 높은 색순도와 높은 발광 효율의 특성을 갖는 안트라센 유도체 및 이를 발광재료(청색 발광 재료 및 청색 형광 호스트)로 포함하는 유기 발광 소자를 제공한다. The present invention also provides an anthracene derivative having high color purity and high luminous efficiency including the phenylanthracene derivative and an organic light emitting device including the same as a light emitting material (a blue light emitting material and a blue fluorescent host).
상기의 목적을 달성하기 위한 본 발명의 일 양태로, 본 발명은 하기 화학식 1로 표시되는 페닐안트라센 유도체를 제공한다.In one aspect of the present invention for achieving the above object, the present invention provides a phenylanthracene derivative represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2014005421-appb-I000001
Figure PCTKR2014005421-appb-I000001
[상기 화학식 1에서, [In Formula 1,
R1 내지 R4는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시 또는 C6-C30아릴이며;R 1 to R 4 are independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
X는
Figure PCTKR2014005421-appb-I000002
또는
Figure PCTKR2014005421-appb-I000003
이며, R11 및 R12는서로 독립적으로 수소, C1-C30알킬 또는 C1-C30알콕시이며;
X is
Figure PCTKR2014005421-appb-I000002
or
Figure PCTKR2014005421-appb-I000003
R 11 and R 12 are each independently hydrogen, C 1 -C 30 alkyl or C 1 -C 30 alkoxy;
Y는 C6-C30아릴 또는 C3-C30헤테로아릴이며;Y is C 6 -C 30 aryl or C 3 -C 30 heteroaryl;
p는 1 내지 7의 정수이며;p is an integer from 1 to 7;
q는 1 내지 9의 정수이며, 상기 p 및 q가 2이상인 경우 각 R11 R12는 서로 동일하거나 상이할 수 있으며;q is an integer of 1 to 9, and each of R 11 and when p and q are 2 or more; R 12 may be the same or different from each other;
Y의 아릴 또는 헤테로아릴은 C1-C30알킬, C1-C30알콕시, C3-C30헤테로아릴 또는 C6-C30아릴로 더 치환될 수 있다.]Aryl or heteroaryl of Y may be further substituted with C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 3 -C 30 heteroaryl or C 6 -C 30 aryl.]
바람직하게는 상기 화학식 1에서 Y는 하기 구조에서 선택될 수 있다.Preferably, in Formula 1, Y may be selected from the following structures.
Figure PCTKR2014005421-appb-I000004
Figure PCTKR2014005421-appb-I000004
Figure PCTKR2014005421-appb-I000005
Figure PCTKR2014005421-appb-I000005
[상기 식에서 R21 내지 R25는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시 또는 C6-C30아릴이며;[Wherein R 21 to R 25 are each independently hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
o 및 p는 1 내지 4의 정수이며;o and p are integers from 1 to 4;
r은 1 내지 6의 정수이며, o, p 및 q가 둘이상인 경우 R21 내지 R25는 서로 동일하거나 상이할 수 있다.]r is an integer of 1 to 6, and when o, p and q are two or more, R 21 to R 25 may be the same or different from each other.]
보다 바람직하게는 Y는
Figure PCTKR2014005421-appb-I000006
(여기서 R21은 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시 또는 C6-C30아릴이며;
More preferably Y is
Figure PCTKR2014005421-appb-I000006
Wherein R 21 is independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
o는 1 내지 4의 정수이다.)일 수 있다.o is an integer from 1 to 4).
바람직하게는 상기 화학식 1의 페닐안트라센 유도체는 이를 포함하는 유기발광소자의 열적 안정성과 효율을 높이기 위한 측면에서 하기 화학식 2로 표시될 수 있다.Preferably, the phenylanthracene derivative of Chemical Formula 1 may be represented by the following Chemical Formula 2 in terms of improving thermal stability and efficiency of the organic light emitting device including the same.
[화학식 2][Formula 2]
Figure PCTKR2014005421-appb-I000007
Figure PCTKR2014005421-appb-I000007
[상기 화학식 2에서,[In Formula 2,
R1 내지 R4는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시 또는 C6-C30아릴이며;R 1 to R 4 are independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
R11 또는 R21은 서로 독립적으로 수소, C1-C30알킬 또는 C1-C30알콕시이며;R 11 or R 21 are independently of each other hydrogen, C 1 -C 30 alkyl or C 1 -C 30 alkoxy;
r은 1 내지 4의 정수이며, r is an integer from 1 to 4,
p는 1 내지 7의 정수이며, 상기 r 및 p가 2이상인 경우 각 R11 또는 R21은 서로 상이하거나 동일할 수 있다.]p is an integer of 1 to 7, and each of R 11 or R 21 may be different or the same when r and p are 2 or more.]
바람직하게는 본 발명의 일 실시예에 따른 페닐안트라센 유도체는 이를 포함하는 유기발광소자의 열적 안정성과 효율을 높이기 위해서 상기 화학식 1에서 R1 또는 R4는 수소이며, R2 내지 R3은 수소 또는 C1-C30알킬, 보다 바람직하게 C1-C12알킬일 수 있다. Preferably, the phenylanthracene derivative according to an embodiment of the present invention in order to increase the thermal stability and efficiency of the organic light-emitting device including the same in Formula 1 R 1 or R 4 is hydrogen, R 2 to R 3 is hydrogen or C 1 -C 30 alkyl, more preferably C 1 -C 12 alkyl.
본 발명의 상기 화학식 1로 표시되는 페닐 안트라센 유도체는 하기 화합물에서 선택될 수 있으나, 이에 한정이 있는 것은 아니다.The phenyl anthracene derivative represented by Formula 1 of the present invention may be selected from the following compounds, but is not limited thereto.
Figure PCTKR2014005421-appb-I000008
Figure PCTKR2014005421-appb-I000008
Figure PCTKR2014005421-appb-I000009
Figure PCTKR2014005421-appb-I000009
Figure PCTKR2014005421-appb-I000010
Figure PCTKR2014005421-appb-I000010
Figure PCTKR2014005421-appb-I000011
Figure PCTKR2014005421-appb-I000011
Figure PCTKR2014005421-appb-I000012
Figure PCTKR2014005421-appb-I000012
Figure PCTKR2014005421-appb-I000013
Figure PCTKR2014005421-appb-I000013
또한 본 발은 양극, 음극 및 양 전극 사이의 발광층을 포함하는 유기 발광 소자에 있어서, 본 발명에 따른 페닐안트라센 유도체를 발광층에 포함하는 유기 발광 소자를 제공한다.In another aspect, the present invention provides an organic light emitting device including a light emitting layer between an anode, a cathode, and a positive electrode, and includes a phenylanthracene derivative according to the present invention in a light emitting layer.
또한 본 발명은 본 발명에 따른 페닐안트라센 유도체를 전자 수송능력을 가지는 발광 재료로 사용하는 유기 발광 소자에 관한 것이다.The present invention also relates to an organic light emitting device using the phenylanthracene derivative according to the present invention as a light emitting material having an electron transport ability.
본 발명에 따른 페닐안트라센 유도체는 일예로, 하기 반응식 1에 따라 제조될 수 있으나, 이외에 당업자가 인식할 수 있는 합성방법으로 제조할 수 있음은 물론이다.The phenylanthracene derivative according to the present invention may be prepared according to Scheme 1, for example, but may be prepared by a synthetic method that can be recognized by those skilled in the art.
[반응식 1]Scheme 1
Figure PCTKR2014005421-appb-I000014
Figure PCTKR2014005421-appb-I000014
[상기 반응식 1에서,[In Scheme 1,
X, R1 내지 R4, 및 Y는 상기 화학식 1에서의 정의 동일하며;X, R 1 to R 4 , and Y are the same as defined in Formula 1 above;
Ha는 할로겐이다.]Ha is halogen.]
또한 본 발명은 양극, 음극 및 양 전극 사이의 발광층을 포함하는 유기 발광 소자에 있어서, 본 발명에 따른 페닐안트라센 유도체를 발광층에 포함하는 유기 발광 소자를 제공한다. 본 발명에 따른 페닐안트라센 유도체는 전자 수송 능력을 갖는 발광 재료로써, 이를 포함하는 유기 발광 소자는 양자효율이 높고, 구동전압을 낮추며, 발광효율을 높인다.In another aspect, the present invention provides an organic light emitting device comprising a light emitting layer between the anode, the cathode and the positive electrode, the organic light emitting device comprising a phenylanthracene derivative according to the present invention in the light emitting layer. The phenylanthracene derivative according to the present invention is a light emitting material having an electron transport ability, and the organic light emitting device including the same has a high quantum efficiency, a low driving voltage, and a high luminous efficiency.
본 발명에 따른 페닐안트라센 유도체는 안트라센골격과 안트라센이 가지는 치환기가 높은 회전장애를 가짐으로 인해 고도로 뒤틀린 구조를 가지며, 이로 인해 높은 유리전이 온도를 나타내며 안트라센 분자간 상호작용이 최대한 억제되어 높은 색순도의 발광 스펙트럼을 나태날 수 있다. The phenylanthracene derivative according to the present invention has a highly twisted structure due to the high rotational disturbance of the substituents of anthracene skeleton and anthracene, and thus exhibits a high glass transition temperature and the interaction between the anthracene molecules is suppressed to the maximum, resulting in a high color purity emission spectrum. You can appear.
따라서 본 발명에 따른 페닐안트라센 유도체를 포함하는 OLED는 소자 구동시 발생하는 구동열에 의한 열화 문제와 유기막 형성용 물질의 낮은 순도와 파이-스태킹(π-stacking)으로 인한 발광 특성 저하 및 색순도 감소 문제를 해결할 수 있으며, 발광 효율이 개선되는 동시에, 소자의 안정성이 향상되고, 강한 뒤틀림으로 인한 분자간 간섭이 줄어드는 이유로 인해서 고효율 고색순도의 전기 발광 소자를 제공할 수 있다. Therefore, the OLED including the phenylanthracene derivative according to the present invention has a problem of deterioration due to driving heat generated during driving of the device and a decrease in emission characteristics and color purity due to low purity and pi-stacking of the material for forming an organic film. It is possible to solve the problem, improve the luminous efficiency, and improve the stability of the device, it is possible to provide a high-efficiency high color electroluminescent device for the reason that the intermolecular interference due to strong distortion is reduced.
본 발명에 따른 페닐안트라센 유도체는 비대칭의 구조를 가지며, 안트라센골격과 안트라센이 가지는 치환기, 특히 피리디닐페닐과 나프탈레닐 또는 피리디닐페닐과 파이레닐이 높은 회전장애를 가져 고도로 뒤틀린 구조를 나타내며 이로 인해 높은 유리전이 온도를 나타내고, 안트라센 분자간 상호작용이 최대한 억제되어 높은 색순도의 발광 스펙트럼을 나타낸다. The phenylanthracene derivative according to the present invention has an asymmetric structure, and the substituents of the anthracene skeleton and the anthracene, in particular pyridinylphenyl and naphthalenyl or pyridinylphenyl and pyrenyl, have a high rotational disorder and thus show a highly twisted structure. It exhibits a high glass transition temperature, and the anthracene intermolecular interaction is suppressed as much as possible, resulting in a high color purity emission spectrum.
따라서 본 발명에 따른 비대칭 페닐안트라센 유도체를 이용하여 발광층과 같은 유기막을 형성한 OLED는 구동시 발생하는 열에 의한 문제, 유기막 형성 물질의 낮은 순도, π-stacking으로 인한 발광 특성 저하 및 색순도 저하 문제를 해결함으로써 발광 효율이 개선되는 동시에, 소자의 안정성이 향상되고, 고도의 뒤틀림으로 인한 분자간 간섭이 줄어들어 고효율 고색순도의 발광 소자를 구성할 수 있다. Therefore, the OLED having an organic film such as a light emitting layer formed by using the asymmetric phenylanthracene derivative according to the present invention has a problem due to heat generated during driving, low purity of the organic film forming material, degradation of luminescence properties and color purity due to π-stacking As a result, the luminous efficiency is improved, the stability of the device is improved, and the intermolecular interference due to the high distortion is reduced, so that a light emitting device having high efficiency and high color purity can be formed.
또한, 본 발명에 따른 비대칭 페닐안트라센 유도체는 종래 알려져 있는 청색 형광 재료의 호스트 물질로 사용될 수 있어 본 발명의 OLED는 우수한 청색의 색 순도를 구현할 수 있다.In addition, the asymmetric phenylanthracene derivative according to the present invention can be used as a host material of a conventionally known blue fluorescent material, so that the OLED of the present invention can realize excellent blue color purity.
도 1은 실시예 1에서 제조된 화합물 1의 열중량분석(TGA) 그래프이며, 1 is a thermogravimetric analysis (TGA) graph of Compound 1 prepared in Example 1,
도 2는 실시예 1에서 제조된 화합물 1의 시차열량분석(DSC) 그래프이며,2 is a differential calorimetry (DSC) graph of Compound 1 prepared in Example 1,
도 3은 실시예 1에서 제조된 화합물 1의 액체상태의 UV 흡수 및 PL 스첵트럼 및 고체 상태의 PL 스펙트럼을 나타낸 그래프이며,FIG. 3 is a graph showing liquid UV absorption and PL spectrum of compound 1 prepared in Example 1 and PL spectrum in solid state,
도 4는 실시예 1에서 제조된 화합물 1의 순환식 전압전류법 (Cyclic Voltammetry) 곡선 그래프이다.FIG. 4 is a cyclic voltammetry curve graph of Compound 1 prepared in Example 1. FIG.
도 5는 실시예 1에서 제조된 화합물 1의 DFT(Density Functional Theory) 측정결과를 나타낸 도면이다.FIG. 5 is a diagram illustrating a measurement result of Density Functional Theory (DFT) of Compound 1 prepared in Example 1. FIG.
도 6은 실시예 2에서 제조된 화합물 2의 DFT측정결과를 나타낸 도면이다.6 is a view showing a DFT measurement result of Compound 2 prepared in Example 2. FIG.
도 7은 실시예 3에서 제조된 화합물 3의 DFT측정결과를 나타낸 도면이다.7 is a diagram showing a DFT measurement result of Compound 3 prepared in Example 3. FIG.
이하에서, 본 발명의 상세한 이해를 위하여 본 발명의 대표 화합물을 들어 본 발명에 따른 페닐안트라센 유도체, 이의 제조방법 및 소자의 발광특성을 설명하나, 이는 단지 그 실시 양태를 예시하기 위한 것일 뿐, 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the phenylanthracene derivative according to the present invention, the preparation method thereof, and the luminescence properties of the device will be described with reference to the representative compounds of the present invention for a detailed understanding of the present invention, but only for the purpose of illustrating the embodiments of the present invention. It does not limit the scope of the invention.
이하 물성은 다음과 같은 방법으로 측정하였다,Hereinafter, physical properties were measured by the following method.
1. 페닐안트라센 유도체의 열적성질 평가1. Evaluation of Thermal Properties of Phenylanthracene Derivatives
열적성질을 질소 분위기 하에서 40 ℃부터 700 ℃까지 분(min)당 10 ℃로 가열하여 열중량분석(TGA) 및 시차열량분석(DSC)에 의해 측정하였다.The thermal properties were measured by thermogravimetric analysis (TGA) and differential calorimetry (DSC) by heating from 40 ° C. to 700 ° C. at 10 ° C. per minute under a nitrogen atmosphere.
2. 페닐안트라센 유도체의 흡광 및 발광측정2. Measurement of Absorption and Luminescence of Phenylanthracene Derivatives
페닐안트라센 유도체를 농도를 10-5M로 제조하여 UV-VIS 및 PL 스펙트럼을 측정하였다.A phenylanthracene derivative was prepared at a concentration of 10 -5 M to measure UV-VIS and PL spectra.
3. 페닐안트라센 유도체의 전기화학적 특성평가3. Electrochemical Characterization of Phenylanthracene Derivatives
페닐안트라센 유도체를 농도를 10-5M로 제조하여 순환식 전압전류법(cyclic voltammetry)을 통하여 측정하였다.Phenylanthracene derivatives were prepared at a concentration of 10 -5 M and measured by cyclic voltammetry.
4. 페닐안트라센 유도체의 전자밀도측정4. Electron density measurement of phenylanthracene derivatives
B3LYP 이론을 탑재한 Spartna’08 프로그램으로 6-31G**을 기본으로 HOMO와 LUMO 값을 측정하였다.The Spartna'08 program with B3LYP theory was used to measure HOMO and LUMO values based on 6-31G ** .
[실시예 1] 화합물 1의 제조Example 1 Preparation of Compound 1
Figure PCTKR2014005421-appb-I000015
Figure PCTKR2014005421-appb-I000015
화합물 A의 제조Preparation of Compound A
500 mL 3구 플라스크에 2-브로모나프탈렌(20.0 g, 96.6 mmol)와 테트라하이드로퓨란(THF;tetrahydrofuran) (100 mL)를 첨가하였다. 그리고 -78 ℃까지 냉각시킨 후 주사기를 이용하여 n-부틸리튬(n-Butyllithium) (2.5 M in hexanes, 42.4 mL, 106.2 mmol)를 30분 동안 반응기 안에 천천히 첨가하고, 1시간 후 트리에틸보레이트 (18 mL, 106.2 mmol)를 넣고 12시간 더 교반시켰다. 반응을 종결시키기 위해 2 M 염산용액을 100 mL를 첨가하고, 1시간 후 메틸렌클로라이드 200mL 와 증류수 150mL 를 첨가하여 추출하였다. 추출된 유기층을 마그네슘설페이트으로 수분을 제거 한 뒤 evaporate 시켰다. 그리고 과량의 n-헥산으로 씻어준 후 글라스필터로 필터하여 흰색의 화합물 A(2.85 g, 77,4%)을 얻었으며, 얻어진 화합물 A의 구조는 1H-NMR로 확인하였다.To a 500 mL three necked flask was added 2-bromonaphthalene (20.0 g, 96.6 mmol) and tetrahydrofuran (THF; tetrahydrofuran) (100 mL). After cooling to −78 ° C., n-Butyllithium (2.5 M in hexanes, 42.4 mL, 106.2 mmol) was slowly added to the reactor for 30 minutes by using a syringe. After 1 hour, triethylborate ( 18 mL, 106.2 mmol) was added thereto, followed by further stirring for 12 hours. To terminate the reaction, 100 mL of 2 M hydrochloric acid solution was added, and after 1 hour, 200 mL of methylene chloride and 150 mL of distilled water were added and extracted. The extracted organic layer was evaporated after removing moisture with magnesium sulfate. After washing with excess n-hexane, the resultant was filtered with a glass filter to obtain a white Compound A (2.85 g, 77,4%). The structure of the obtained Compound A was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.38 (s, 1H), 8.17 (s, 2H), 7.83-7.94 (m, 4H), 7.47-7.55 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.38 (s, 1H), 8.17 (s, 2H), 7.83-7.94 (m, 4H), 7.47-7.55 (m, 2H)
화합물 B의 제조Preparation of Compound B
500 mL 3구 플라스크에 화합물A (30.10 g, 175.01 mmol), 9-브로모안트라센(30.0 g, 116.67 mmol), Pd(PPh3)4 (1.02 g, 0.01 mmol) 및 포타슘카보네이트 용액(2 M, 100 mL)를 첨가하고, 테트라하이드로퓨란(THF;tetrahydrofuran) (250 mL)를 첨가하여 용해시킨 후 온도 85 ℃에서 24시간 반응시켰다. 반응 종결 후 클로로포름(300mL × 2)로 추출한 후 유기층의 수분을 제거한 후, 유기용매를 제거 하였다. 그리고 헥산을 이용하여 컬럼크로마토그래피로 분리하여 화합물 B(수율:67%)를 얻었으며, 얻어진 화합물 B의 구조는 1H-NMR로 확인하였다.In a 500 mL three-neck flask, Compound A (30.10 g, 175.01 mmol), 9-bromoanthracene (30.0 g, 116.67 mmol), Pd (PPh 3 ) 4 (1.02 g, 0.01 mmol) and potassium carbonate solution (2 M, 100 mL) was added, and tetrahydrofuran (THF; tetrahydrofuran) (250 mL) was added to dissolve and reacted at a temperature of 85 ° C. for 24 hours. After completion of the reaction, the mixture was extracted with chloroform (300mL × 2), and then the water of the organic layer was removed, and then the organic solvent was removed. Compound B (yield: 67%) was obtained by column chromatography using hexane. The structure of the obtained compound B was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.54 (s, 1H), 7.98-8.09(m, 4H), 7.89-7.95 (m, 2H), 7.69-7.72 (m, 2H), 7.57-7.61 (m, 3H), 7.44-7.50 (m, 2H), 7.30-7.34 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.54 (s, 1H), 7.98-8.09 (m, 4H), 7.89-7.95 (m, 2H), 7.69-7.72 (m, 2H), 7.57-7.61 ( m, 3H), 7.44-7.50 (m, 2H), 7.30-7.34 (m, 2H)
화합물 C의 제조Preparation of Compound C
500 mL 3구 플라스크에 화합물 B (9 g, 29.51 mmol)를 디메틸아마이드(50mL)에 용해시키고, N-브로모석신이미드(5.7 g, 32.46 mmol)가 용해된 디메틸아마이드(200 mL)용액을 천천히 첨가하였으며, 모두 첨가한 후 반응기를 2시간동안 교반시켰다. 그리고 증류수를 첨가하고 반응물을 글라스필터에 필터한 후 수득된 화합물을 증류수 2L로 씻어주고 건조시켜 화합물 C를 얻었으며, 얻어진 화합물 C의 구조는 1H-NMR로 확인하였다.In a 500 mL three neck flask, Compound B (9 g, 29.51 mmol) was dissolved in dimethylamide (50 mL), and dimethylamide (200 mL) solution containing N-bromosuccinimide (5.7 g, 32.46 mmol) was dissolved. The addition was slow and the reactor was stirred for 2 hours after all additions. After distilled water was added and the reaction product was filtered through a glass filter, the obtained compound was washed with 2 L of distilled water and dried to obtain Compound C. The structure of Compound C was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.67-8.65 (d, 2H), 7.99-8.07 (m, 2H), 7.84-7.89 (m, 2H), 7.64-7.66 (d, 2H), 7.56-7.60 (m, 4H), 7.50-7.52 (m, 1H), 7.32-7.35 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.67-8.65 (d, 2H), 7.99-8.07 (m, 2H), 7.84-7.89 (m, 2H), 7.64-7.66 (d, 2H), 7.56- 7.60 (m, 4H), 7.50-7.52 (m, 1H), 7.32-7.35 (m, 2H)
화합물 D의 제조Preparation of Compound D
500mL 3구 플라스크에 화합물 C (20 g, 52.18 mmol)를 테트라하이드로퓨란(THF;tetrahydrofuran) (200 mL)에 첨가하여 용해 시켰다. 그리고 -78 ℃까지 냉각시킨 후 주사기를 이용하여 n-부틸리튬 (2.5 M in hexanes, 23.0 mL, 57.40 mmol)를 20분 동안 천천히 첨가하였다. 그리고 1시간 교반시킨 후 트리에틸보레이트(9.7 mL, 57.40 mmol)를 첨가하고, 12시간 더 교반시켰다. 반응을 종결시키기 위해 2 M 염산용액을 180 mL 첨가하고, 1시간 후 메틸렌 클로라이드 200mL와 증류수 150 mL을 첨가하여 유기층만 추출하였으며, 유기층을 마그네슘설페이트로 수분을 제거 한 뒤 evaporate 시켰다. 이렇게 얻은 물질을 과량의 n-헥산으로 씻어준 후 글라스필터로 필터하였으며, 50 ℃로 가열한 톨루엔으로 씻어 여과한 뒤 건조하여 흰색의 화합물 D를 얻었으며, 얻어진 화합물 D의 구조는 1H-NMR로 확인하였다.Compound C (20 g, 52.18 mmol) was added to tetrahydrofuran (THF; tetrahydrofuran) (200 mL) and dissolved in a 500 mL three neck flask. After cooling to −78 ° C., n-butyllithium (2.5 M in hexanes, 23.0 mL, 57.40 mmol) was slowly added using a syringe for 20 minutes. After stirring for 1 hour, triethyl borate (9.7 mL, 57.40 mmol) was added, followed by further stirring for 12 hours. In order to terminate the reaction, 180 mL of 2 M hydrochloric acid solution was added, and after 1 hour, 200 mL of methylene chloride and 150 mL of distilled water were added to extract only the organic layer, and the organic layer was evaporated after removing water with magnesium sulfate. The material thus obtained was washed with an excess of n-hexane, filtered with a glass filter, washed with toluene heated to 50 ° C., filtered, and dried to obtain a white Compound D. The obtained compound D had a structure of 1H-NMR. Confirmed.
1H NMR (300 MHz, CDCl3): δ 5.25 (s, 2H), 7.35 (t, 2H), 7.51-7.47 (m, 3H), 7.67 (t, 2H), 7.70 (d, 2H), 7.89 (m, 2H), 8.06-8.00 (m, 2H), 8.19 (d, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 5.25 (s, 2H), 7.35 (t, 2H), 7.51-7.47 (m, 3H), 7.67 (t, 2H), 7.70 (d, 2H), 7.89 (m, 2H), 8.06-8.00 (m, 2H), 8.19 (d, 2H)
화합물 E의 제조Preparation of Compound E
100mL 3구 플라스크에 화합물 D (1 g, 2.87 mmol), 2,5-디브로모-1,4-디메틸벤젠(1.12 g, 4.31 mmol), Pd(PPh3)4 (0.09 g, 0.03 mmol) 및 수산화나트륨 수용액(2 M, 4.3 mL)를 첨가한 후 테트라하이드로퓨란(20 mL) 및 톨루엔 (10 mL)를 첨가하여 혼합하였다. 그리고 온도 85℃에서 12시간 반응시킨다. 반응 종결 후 클로로포름(300mL × 2)로 추출하였으며, 추출한 유기층의 수분을 제거한 후 용매를 제거하였다. 그리고 시료에 에테르를 채워넣어 교반시켜 1차 정제한 뒤 헥산:클로로포름=5:1로 컬럼크로마토그래피하여 화합물 G를 얻었으며, 얻어진 화합물 G의 구조는 1H-NMR로 확인하였다.Compound D (1 g, 2.87 mmol), 2,5-dibromo-1,4-dimethylbenzene (1.12 g, 4.31 mmol), Pd (PPh 3 ) 4 (0.09 g, 0.03 mmol) in a 100 mL three neck flask And aqueous sodium hydroxide solution (2 M, 4.3 mL) were added followed by mixing with tetrahydrofuran (20 mL) and toluene (10 mL). And it is made to react at temperature 85 degreeC for 12 hours. After completion of the reaction was extracted with chloroform (300mL × 2), and the solvent was removed after removing the moisture of the extracted organic layer. Then, ether was charged to the sample, stirred, and purified first, followed by column chromatography with hexane: chloroform = 5: 1 to obtain Compound G. The structure of Compound G was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.03-8.12 (m, 3H), 7.93-7.98 (m, 2H) 7.74-7.76 (m, 2H), 7.68 (s, 1H), 7.58-7.64 (m, 5H), 7.30-7.40 (m, 4H), 7.22(d, 1H), 2.48 (s, 1H), 1.58 (s, 1H); 1 H NMR (300 MHz, CDCl 3 ): δ 8.03-8.12 (m, 3H), 7.93-7.98 (m, 2H) 7.74-7.76 (m, 2H), 7.68 (s, 1H), 7.58-7.64 (m , 5H), 7.30-7.40 (m, 4H), 7.22 (d, 1H), 2.48 (s, 1H), 1.58 (s, 1H);
화합물 1의 제조Preparation of Compound 1
250 mL 3구 플라스크에 화합물 G (3.2 g, 6.57 mmol), 4-피리딘보로닉에시드 (1.6 g, 13.13 mmol), Pd(PPh3)4 (0.08 g, 0.06 mmol), 수산화나트륨 용액(2 M, 25 ml)을 첨가한 후 테트라하이드로퓨란(100 mL)를 첨가하여 용해시킨 후 온도를 90 ℃에서 36시간 반응시켰다. 반응 종결 후 클로로포름(300mL × 2)로 추출한 후 유기층의 수분을 제거하고, 용매를 제거하였다. 그리고 컬럼크로마토그래피로 분리하여 화합물 1를 얻었으며, 얻어진 화합물 1의 구조는 1H-NMR로 확인하였다. Compound G (3.2 g, 6.57 mmol), 4-pyridineboronic acid (1.6 g, 13.13 mmol), Pd (PPh 3 ) 4 (0.08 g, 0.06 mmol), sodium hydroxide solution (2 M, 25 ml) was added, followed by dissolution by addition of tetrahydrofuran (100 mL) and the reaction was carried out at 90 ° C. for 36 hours. After completion of the reaction, the mixture was extracted with chloroform (300mL × 2), and then the moisture of the organic layer was removed and the solvent was removed. Compound 1 was obtained by column chromatography, and the obtained compound 1 was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.85 (d, 2H), 7.98-8.11 (m, 4H), 7.75-7.78 (d, 2H), 7.63-7.69 (m, 51H), 7.49-7.51 (d, 2H), 7.34-7.44 (m, 5H), 7.29 (s, 1H), 2.40 (s, 3H), 1.98 (s, 3H); HRMS (EI) m/z calcd for C37H27N (M+): 485.2143; found 465.2144 1 H NMR (300 MHz, CDCl 3 ): δ 8.85 (d, 2H), 7.98-8.11 (m, 4H), 7.75-7.78 (d, 2H), 7.63-7.69 (m, 51H), 7.49-7.51 ( d, 2H), 7.34-7.44 (m, 5H), 7.29 (s, 1H), 2.40 (s, 3H), 1.98 (s, 3H); HRMS (EI) m / z calcd for C 37 H 27 N (M + ): 485.2143; found 465.2144
상기 제조된 화합물 1의 물성을 상기에서 기재된 방법으로 측정하여 도 1 내지 도 4의 그래프를 얻었다.Physical properties of the prepared compound 1 was measured by the method described above to obtain the graph of FIGS. 1 to 4.
도 1에서 보이는 바와 같이 페닐안트라센 유도체인 화합물인 1의 경우 5% 무게 감소하는 부분이 약 320℃로 측정되었으며, 이는 본 발명에서 합성된 페닐안트라센 유도체가 매우 우수한 열안정성을 가지고 있다는 것을 알 수 있다. As shown in FIG. 1, 5% weight loss of the compound 1, which is a phenylanthracene derivative, was measured at about 320 ° C., which shows that the phenylanthracene derivative synthesized in the present invention has excellent thermal stability. .
도 2에서는 첫 번째 가열 구간에서 약 289℃에서 피크가 나타나는 것을 확인하여 결정성을 가지는 물질임을 알 수 있다.In FIG. 2, it can be seen that the material has crystallinity by confirming that a peak appears at about 289 ° C. in the first heating section.
또한 도 3에서 보이는 바와 같이 실시예 1에서 제조된 화합물 1의 액체상태의 UV 스펙트럼을 측정시 약 260nm에서 흡광되는 것을 알 수 있으며, 또한 PL스펙트럼 측정시 약 430nm에서 발광하는 것을 알 수 있었다.In addition, as shown in FIG. 3, the UV spectrum of the liquid state of Compound 1 prepared in Example 1 was measured to be absorbed at about 260 nm, and the PL spectrum was measured to emit light at about 430 nm.
전기화학적 특성은 순환식 전압전류법(cyclic voltammetry)을 통하여 측정하였으며 그 결과를 하기 도 4에 나타내었다. 하기 도 4를 살펴보면 HOMO는 5.59 eV이고, LUMO는 2.59 eV이였으며, 밴드갭은 3.0으로 측정 되었다.Electrochemical properties were measured by cyclic voltammetry and the results are shown in FIG. 4. 4, the HOMO was 5.59 eV, the LUMO was 2.59 eV, and the band gap was measured at 3.0.
또한 도 5에서 보이는 바와 같이 본 발명의 실시예 1에서 제조된 화합물 1은 안트라센골격에 피리디닐기가 아니라 피리디닐페닐기가 치환되어 있어, 피리디닐기가 전자끌기 작용기임에도 불구하고 피리디닐과 안트라센골격사이에 존재하는 페닐기가 피리디닐기의 전자끌기효과를 차단시켜 안트라센골격에 전자밀도가 집중되어 높은 색순도와 발광효율을 나타낸다.In addition, as shown in FIG. 5, Compound 1 prepared in Example 1 of the present invention has a pyridinylphenyl group instead of a pyridinyl group in the anthracene skeleton, so that the pyridinyl group may be formed between the pyridinyl and the anthracene skeleton in spite of being an electron withdrawing group. The phenyl group present blocks the electron attraction effect of the pyridinyl group, concentrating the electron density on the anthracene skeleton, resulting in high color purity and luminous efficiency.
즉, 본 발명의 화합물 1은 안트라센골격의 한쪽에 피리디닐페닐기가 치환되어 있고 한쪽은 나프탈레닐기가 치환되어 있어 고도의 비틀린 구조를 가지면서도 전자밀도 안트라센 골격에 집중되어 색순도와 발광효율이 매우 높다.That is, Compound 1 of the present invention has a pyridinylphenyl group substituted on one side of the anthracene skeleton and a naphthalenyl group on one side, so that it has a highly twisted structure and concentrates on the electron density anthracene skeleton, and thus has very high color purity and luminous efficiency. .
[실시예 2] 화합물 2의 제조Example 2 Preparation of Compound 2
Figure PCTKR2014005421-appb-I000016
Figure PCTKR2014005421-appb-I000016
화합물 A의 제조Preparation of Compound A
500 mL 3구 플라스크에 2-브로모나프탈렌(20.0 g, 96.6 mmol)와 테트라하이드로퓨란(THF;tetrahydrofuran) (100 mL)를 첨가하였다. 그리고 -78 ℃까지 냉각시킨 후 주사기를 이용하여 n-부틸리튬(n-Butyllithium) (2.5 M in hexanes, 42.4 mL, 106.2 mmol)를 30분 동안 반응기 안에 천천히 첨가하고, 1시간 후 트리에틸보레이트 (18 mL, 106.2 mmol)를 넣고 12시간 더 교반시켰다. 반응을 종결시키기 위해 2 M 염산용액을 100 mL를 첨가하고, 1시간 후 메틸렌클로라이드 200mL 와 증류수 150mL 를 첨가하여 추출하였다. 추출된 유기층을 마그네슘설페이트으로 수분을 제거 한 뒤 evaporate 시켰다. 그리고 과량의 n-헥산으로 씻어준 후 글라스필터로 필터하여 흰색의 화합물 A(2.85 g, 77,4%)을 얻었으며, 얻어진 화합물 A의 구조는 1H-NMR로 확인하였다.To a 500 mL three necked flask was added 2-bromonaphthalene (20.0 g, 96.6 mmol) and tetrahydrofuran (THF; tetrahydrofuran) (100 mL). After cooling to −78 ° C., n-Butyllithium (2.5 M in hexanes, 42.4 mL, 106.2 mmol) was slowly added to the reactor for 30 minutes by using a syringe. After 1 hour, triethylborate ( 18 mL, 106.2 mmol) was added thereto, followed by further stirring for 12 hours. In order to terminate the reaction, 100 mL of 2 M hydrochloric acid solution was added, and after 1 hour, 200 mL of methylene chloride and 150 mL of distilled water were added and extracted. The extracted organic layer was evaporated after removing moisture with magnesium sulfate. After washing with excess n-hexane, the resultant was filtered with a glass filter to obtain a white Compound A (2.85 g, 77,4%). The structure of the obtained Compound A was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.38 (s, 1H), 8.17 (s, 2H), 7.83-7.94 (m, 4H), 7.47-7.55 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.38 (s, 1H), 8.17 (s, 2H), 7.83-7.94 (m, 4H), 7.47-7.55 (m, 2H)
화합물 B의 제조Preparation of Compound B
500 mL 3구 플라스크에 화합물A (30.10 g, 175.01 mmol), 9-브로모안트라센(30.0 g, 116.67 mmol), Pd(PPh3)4 (1.02 g, 0.01 mmol) 및 포타슘카보네이트 용액(2 M, 100 mL)를 첨가하고, 테트라하이드로퓨란(THF;tetrahydrofuran) (250 mL)를 첨가하여 용해시킨 후 온도 85 ℃에서 24시간 반응시켰다. 반응 종결 후 클로로포름(300mL × 2)로 추출한 후 유기층의 수분을 제거한 후, 유기용매를 제거 하였다. 그리고 헥산을 이용하여 컬럼크로마토그래피로 분리하여 화합물 B(수율:67%)를 얻었으며, 얻어진 화합물 B의 구조는 1H-NMR로 확인하였다.In a 500 mL three-neck flask, Compound A (30.10 g, 175.01 mmol), 9-bromoanthracene (30.0 g, 116.67 mmol), Pd (PPh 3 ) 4 (1.02 g, 0.01 mmol) and potassium carbonate solution (2 M, 100 mL) was added, and tetrahydrofuran (THF; tetrahydrofuran) (250 mL) was added to dissolve and reacted at a temperature of 85 ° C. for 24 hours. After completion of the reaction, the mixture was extracted with chloroform (300mL × 2), and then the moisture of the organic layer was removed, and then the organic solvent was removed. Compound B (yield: 67%) was obtained by column chromatography using hexane. The structure of the obtained compound B was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.54 (s, 1H), 7.98-8.09(m, 4H), 7.89-7.95 (m, 2H), 7.69-7.72 (m, 2H), 7.57-7.61 (m, 3H), 7.44-7.50 (m, 2H), 7.30-7.34 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.54 (s, 1H), 7.98-8.09 (m, 4H), 7.89-7.95 (m, 2H), 7.69-7.72 (m, 2H), 7.57-7.61 ( m, 3H), 7.44-7.50 (m, 2H), 7.30-7.34 (m, 2H)
화합물 C의 제조Preparation of Compound C
500 mL 3구 플라스크에 화합물 B (9 g, 29.51 mmol)를 디메틸아마이드(50mL)에 용해시키고, N-브로모석신이미드(5.7 g, 32.46 mmol)가 용해된 디메틸아마이드(200 mL)용액을 천천히 첨가하였으며, 모두 첨가한 후 반응기를 2시간동안 교반시켰다. 그리고 증류수를 첨가하고 반응물을 글라스필터에 필터한 후 수득된 화합물을 증류수 2L로 씻어주고 건조시켜 화합물 C를 얻었으며, 얻어진 화합물 C의 구조는 1H-NMR로 확인하였다.In a 500 mL three neck flask, Compound B (9 g, 29.51 mmol) was dissolved in dimethylamide (50 mL), and dimethylamide (200 mL) solution containing N-bromosuccinimide (5.7 g, 32.46 mmol) was dissolved. The addition was slow and the reactor was stirred for 2 hours after all additions. After distilled water was added and the reaction product was filtered through a glass filter, the obtained compound was washed with 2 L of distilled water and dried to obtain Compound C. The structure of Compound C was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.67-8.65 (d, 2H), 7.99-8.07 (m, 2H), 7.84-7.89 (m, 2H), 7.64-7.66 (d, 2H), 7.56-7.60 (m, 4H), 7.50-7.52 (m, 1H), 7.32-7.35 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.67-8.65 (d, 2H), 7.99-8.07 (m, 2H), 7.84-7.89 (m, 2H), 7.64-7.66 (d, 2H), 7.56- 7.60 (m, 4H), 7.50-7.52 (m, 1H), 7.32-7.35 (m, 2H)
화합물 D의 제조Preparation of Compound D
500mL 3구 플라스크에 화합물 C (20 g, 52.18 mmol)를 테트라하이드로퓨란(THF;tetrahydrofuran) (200 mL)에 첨가하여 용해 시켰다. 그리고 -78 ℃까지 냉각시킨 후 주사기를 이용하여 n-부틸리튬 (2.5 M in hexanes, 23.0 mL, 57.40 mmol)를 20분 동안 천천히 첨가하였다. 그리고 1시간 교반시킨 후 트리에틸보레이트(9.7 mL, 57.40 mmol)를 첨가하고, 12시간 더 교반시켰다. 반응을 종결시키기 위해 2 M 염산용액을 180 mL 첨가하고, 1시간 후 메틸렌 클로라이드 200mL와 증류수 150 mL을 첨가하여 유기층만 추출하였으며, 유기층을 마그네슘설페이트로 수분을 제거 한 뒤 evaporate 시켰다. 이렇게 얻은 물질을 과량의 n-헥산으로 씻어준 후 글라스필터로 필터하였으며, 50 ℃로 가열한 톨루엔으로 씻어 여과한 뒤 건조하여 흰색의 화합물 D를 얻었으며, 얻어진 화합물 D의 구조는 1H-NMR로 확인하였다.Compound C (20 g, 52.18 mmol) was added to tetrahydrofuran (THF; tetrahydrofuran) (200 mL) and dissolved in a 500 mL three neck flask. After cooling to −78 ° C., n-butyllithium (2.5 M in hexanes, 23.0 mL, 57.40 mmol) was slowly added using a syringe for 20 minutes. After stirring for 1 hour, triethyl borate (9.7 mL, 57.40 mmol) was added, followed by further stirring for 12 hours. In order to terminate the reaction, 180 mL of 2 M hydrochloric acid solution was added, and after 1 hour, 200 mL of methylene chloride and 150 mL of distilled water were added to extract only the organic layer, and the organic layer was evaporated after removing water with magnesium sulfate. The material thus obtained was washed with an excess of n-hexane, filtered with a glass filter, washed with toluene heated to 50 ° C., filtered, and dried to obtain a white Compound D. The obtained compound D had a structure of 1H-NMR. Confirmed.
1H NMR (300 MHz, CDCl3): δ 5.25 (s, 2H), 7.35 (t, 2H), 7.51-7.47 (m, 3H), 7.67 (t, 2H), 7.70 (d, 2H), 7.89 (m, 2H), 8.06-8.00 (m, 2H), 8.19 (d, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 5.25 (s, 2H), 7.35 (t, 2H), 7.51-7.47 (m, 3H), 7.67 (t, 2H), 7.70 (d, 2H), 7.89 (m, 2H), 8.06-8.00 (m, 2H), 8.19 (d, 2H)
화합물 E의 제조Preparation of Compound E
100mL 3구 플라스크에 화합물 D (1 g, 2.87 mmol), 2,5-디브로모-1,4-디메틸벤젠(1.12 g, 4.31 mmol), Pd(PPh3)4 (0.09 g, 0.03 mmol) 및 수산화나트륨 수용액(2 M, 4.3 mL)를 첨가한 후 테트라하이드로퓨란(20 mL) 및 톨루엔 (10 mL)를 첨가하여 혼합하였다. 그리고 온도 85℃에서 12시간 반응시킨다. 반응 종결 후 클로로포름(300mL × 2)로 추출하였으며, 추출한 유기층의 수분을 제거한 후 용매를 제거하였다. 그리고 시료에 에테르를 채워넣어 교반시켜 1차 정제한 뒤 헥산:클로로포름=5:1로 컬럼크로마토그래피하여 화합물 G를 얻었으며, 얻어진 화합물 G의 구조는 1H-NMR로 확인하였다.Compound D (1 g, 2.87 mmol), 2,5-dibromo-1,4-dimethylbenzene (1.12 g, 4.31 mmol), Pd (PPh 3 ) 4 (0.09 g, 0.03 mmol) in a 100 mL three neck flask And aqueous sodium hydroxide solution (2 M, 4.3 mL) were added followed by mixing with tetrahydrofuran (20 mL) and toluene (10 mL). And it is made to react at the temperature of 85 degreeC for 12 hours. After completion of the reaction was extracted with chloroform (300mL × 2), and the solvent was removed after removing the moisture of the extracted organic layer. Then, ether was charged to the sample, stirred, and purified first, followed by column chromatography with hexane: chloroform = 5: 1 to obtain Compound G. The structure of Compound G was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.03-8.12 (m, 3H), 7.93-7.98 (m, 2H) 7.74-7.76 (m, 2H), 7.68 (s, 1H), 7.58-7.64 (m, 5H), 7.30-7.40 (m, 4H), 7.22(d, 1H), 2.48 (s, 1H), 1.58 (s, 1H); 1 H NMR (300 MHz, CDCl 3 ): δ 8.03-8.12 (m, 3H), 7.93-7.98 (m, 2H) 7.74-7.76 (m, 2H), 7.68 (s, 1H), 7.58-7.64 (m , 5H), 7.30-7.40 (m, 4H), 7.22 (d, 1H), 2.48 (s, 1H), 1.58 (s, 1H);
화합물 2의 제조Preparation of Compound 2
250 mL 3구 플라스크에 화합물 G (3.2 g, 6.57 mmol), 2-피리딘보로닉에시드 (1.6 g, 13.13 mmol), Pd(PPh3)4 (0.08 g, 0.06 mmol), 수산화나트륨 용액(2 M, 25 ml)을 첨가한 후 테트라하이드로퓨란(100 mL)를 첨가하여 용해시킨 후 온도를 90 ℃에서 36시간 반응시켰다. 반응 종결 후 클로로포름(300mL × 2)로 추출한 후 유기층의 수분을 제거하고, 용매를 제거하였다. 그리고 컬럼크로마토그래피로 분리하여 화합물 2를 얻었으며, 얻어진 화합물 1의 구조는 1H-NMR로 확인하였다. Compound G (3.2 g, 6.57 mmol), 2-pyridine boronic acid (1.6 g, 13.13 mmol), Pd (PPh 3 ) 4 (0.08 g, 0.06 mmol), sodium hydroxide solution (2 M, 25 ml) was added, followed by dissolution by addition of tetrahydrofuran (100 mL) and the reaction was carried out at 90 ° C. for 36 hours. After completion of the reaction, the mixture was extracted with chloroform (300mL × 2), and then the moisture of the organic layer was removed and the solvent was removed. Compound 2 was obtained by column chromatography, and the obtained compound 1 was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.83 (d, 2H), 7.98-8.11 (m, 4H), 7.75-7.78 (d, 2H), 7.63-7.69 (m, 51H), 7.49-7.51 (d, 2H), 7.34-7.44 (m, 5H), 7.29 (s, 1H), 2.40 (s, 3H), 1.98 (s, 3H); HRMS (EI) m/z calcd for C37H27N (M+): 485.2143; found 465.2144 1 H NMR (300 MHz, CDCl 3 ): δ 8.83 (d, 2H), 7.98-8.11 (m, 4H), 7.75-7.78 (d, 2H), 7.63-7.69 (m, 51H), 7.49-7.51 ( d, 2H), 7.34-7.44 (m, 5H), 7.29 (s, 1H), 2.40 (s, 3H), 1.98 (s, 3H); HRMS (EI) m / z calcd for C 37 H 27 N (M + ): 485.2143; found 465.2144
[실시예 3] 화합물 3의 제조Example 3 Preparation of Compound 3
Figure PCTKR2014005421-appb-I000017
Figure PCTKR2014005421-appb-I000017
화합물 A의 제조Preparation of Compound A
500 mL 3구 플라스크에 2-브로모나프탈렌(20.0 g, 96.6 mmol)와 테트라하이드로퓨란(THF;tetrahydrofuran) (100 mL)를 첨가하였다. 그리고 -78 ℃까지 냉각시킨 후 주사기를 이용하여 n-부틸리튬(n-Butyllithium) (2.5 M in hexanes, 42.4 mL, 106.2 mmol)를 30분 동안 반응기 안에 천천히 첨가하고, 1시간 후 트리에틸보레이트 (18 mL, 106.2 mmol)를 넣고 12시간 더 교반시켰다. 반응을 종결시키기 위해 2 M 염산용액을 100 mL를 첨가하고, 1시간 후 메틸렌클로라이드 200mL 와 증류수 150mL 를 첨가하여 추출하였다. 추출된 유기층을 마그네슘설페이트으로 수분을 제거 한 뒤 evaporate 시켰다. 그리고 과량의 n-헥산으로 씻어준 후 글라스필터로 필터하여 흰색의 화합물 A(2.85 g, 77,4%)을 얻었으며, 얻어진 화합물 A의 구조는 1H-NMR로 확인하였다.To a 500 mL three necked flask was added 2-bromonaphthalene (20.0 g, 96.6 mmol) and tetrahydrofuran (THF; tetrahydrofuran) (100 mL). After cooling to −78 ° C., n-Butyllithium (2.5 M in hexanes, 42.4 mL, 106.2 mmol) was slowly added to the reactor for 30 minutes by using a syringe. After 1 hour, triethylborate ( 18 mL, 106.2 mmol) was added thereto, followed by further stirring for 12 hours. In order to terminate the reaction, 100 mL of 2 M hydrochloric acid solution was added, and after 1 hour, 200 mL of methylene chloride and 150 mL of distilled water were added and extracted. The extracted organic layer was evaporated after removing moisture with magnesium sulfate. After washing with excess n-hexane, the resultant was filtered with a glass filter to obtain a white Compound A (2.85 g, 77,4%). The structure of the obtained Compound A was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.38 (s, 1H), 8.17 (s, 2H), 7.83-7.94 (m, 4H), 7.47-7.55 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.38 (s, 1H), 8.17 (s, 2H), 7.83-7.94 (m, 4H), 7.47-7.55 (m, 2H)
화합물 B의 제조Preparation of Compound B
500 mL 3구 플라스크에 화합물A (30.10 g, 175.01 mmol), 9-브로모안트라센(30.0 g, 116.67 mmol), Pd(PPh3)4 (1.02 g, 0.01 mmol) 및 포타슘카보네이트 용액(2 M, 100 mL)를 첨가하고, 테트라하이드로퓨란(THF;tetrahydrofuran) (250 mL)를 첨가하여 용해시킨 후 온도 85 ℃에서 24시간 반응시켰다. 반응 종결 후 클로로포름(300mL × 2)로 추출한 후 유기층의 수분을 제거한 후, 유기용매를 제거 하였다. 그리고 헥산을 이용하여 컬럼크로마토그래피로 분리하여 화합물 B(수율:67%)를 얻었으며, 얻어진 화합물 B의 구조는 1H-NMR로 확인하였다.In a 500 mL three-neck flask, Compound A (30.10 g, 175.01 mmol), 9-bromoanthracene (30.0 g, 116.67 mmol), Pd (PPh 3 ) 4 (1.02 g, 0.01 mmol) and potassium carbonate solution (2 M, 100 mL) was added, and tetrahydrofuran (THF; tetrahydrofuran) (250 mL) was added to dissolve and reacted at a temperature of 85 ° C. for 24 hours. After completion of the reaction, the mixture was extracted with chloroform (300mL × 2), and then the moisture of the organic layer was removed, and then the organic solvent was removed. Compound B (yield: 67%) was obtained by column chromatography using hexane. The structure of the obtained compound B was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.54 (s, 1H), 7.98-8.09(m, 4H), 7.89-7.95 (m, 2H), 7.69-7.72 (m, 2H), 7.57-7.61 (m, 3H), 7.44-7.50 (m, 2H), 7.30-7.34 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.54 (s, 1H), 7.98-8.09 (m, 4H), 7.89-7.95 (m, 2H), 7.69-7.72 (m, 2H), 7.57-7.61 ( m, 3H), 7.44-7.50 (m, 2H), 7.30-7.34 (m, 2H)
화합물 C의 제조Preparation of Compound C
500 mL 3구 플라스크에 화합물 B (9 g, 29.51 mmol)를 디메틸아마이드(50mL)에 용해시키고, N-브로모석신이미드(5.7 g, 32.46 mmol)가 용해된 디메틸아마이드(200 mL)용액을 천천히 첨가하였으며, 모두 첨가한 후 반응기를 2시간동안 교반시켰다. 그리고 증류수를 첨가하고 반응물을 글라스필터에 필터한 후 수득된 화합물을 증류수 2L로 씻어주고 건조시켜 화합물 C를 얻었으며, 얻어진 화합물 C의 구조는 1H-NMR로 확인하였다.In a 500 mL three neck flask, Compound B (9 g, 29.51 mmol) was dissolved in dimethylamide (50 mL), and dimethylamide (200 mL) solution containing N-bromosuccinimide (5.7 g, 32.46 mmol) was dissolved. The addition was slow and the reactor was stirred for 2 hours after all additions. After distilled water was added and the reaction product was filtered through a glass filter, the obtained compound was washed with 2 L of distilled water and dried to obtain Compound C. The structure of Compound C was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.67-8.65 (d, 2H), 7.99-8.07 (m, 2H), 7.84-7.89 (m, 2H), 7.64-7.66 (d, 2H), 7.56-7.60 (m, 4H), 7.50-7.52 (m, 1H), 7.32-7.35 (m, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 8.67-8.65 (d, 2H), 7.99-8.07 (m, 2H), 7.84-7.89 (m, 2H), 7.64-7.66 (d, 2H), 7.56- 7.60 (m, 4H), 7.50-7.52 (m, 1H), 7.32-7.35 (m, 2H)
화합물 D의 제조Preparation of Compound D
500mL 3구 플라스크에 화합물 C (20 g, 52.18 mmol)를 테트라하이드로퓨란(THF;tetrahydrofuran) (200 mL)에 첨가하여 용해 시켰다. 그리고 -78 ℃까지 냉각시킨 후 주사기를 이용하여 n-부틸리튬 (2.5 M in hexanes, 23.0 mL, 57.40 mmol)를 20분 동안 천천히 첨가하였다. 그리고 1시간 교반시킨 후 트리에틸보레이트(9.7 mL, 57.40 mmol)를 첨가하고, 12시간 더 교반시켰다. 반응을 종결시키기 위해 2 M 염산용액을 180 mL 첨가하고, 1시간 후 메틸렌 클로라이드 200mL와 증류수 150 mL을 첨가하여 유기층만 추출하였으며, 유기층을 마그네슘설페이트로 수분을 제거 한 뒤 evaporate 시켰다. 이렇게 얻은 물질을 과량의 n-헥산으로 씻어준 후 글라스필터로 필터하였으며, 50 ℃로 가열한 톨루엔으로 씻어 여과한 뒤 건조하여 흰색의 화합물 D를 얻었으며, 얻어진 화합물 D의 구조는 1H-NMR로 확인하였다.Compound C (20 g, 52.18 mmol) was added to tetrahydrofuran (THF; tetrahydrofuran) (200 mL) and dissolved in a 500 mL three neck flask. After cooling to −78 ° C., n-butyllithium (2.5 M in hexanes, 23.0 mL, 57.40 mmol) was slowly added using a syringe for 20 minutes. After stirring for 1 hour, triethyl borate (9.7 mL, 57.40 mmol) was added, followed by further stirring for 12 hours. In order to terminate the reaction, 180 mL of 2 M hydrochloric acid solution was added, and after 1 hour, 200 mL of methylene chloride and 150 mL of distilled water were added to extract only the organic layer, and the organic layer was evaporated after removing water with magnesium sulfate. The material thus obtained was washed with an excess of n-hexane, filtered with a glass filter, washed with toluene heated to 50 ° C., filtered, and dried to obtain a white Compound D. The obtained compound D had a structure of 1H-NMR. Confirmed.
1H NMR (300 MHz, CDCl3): δ 5.25 (s, 2H), 7.35 (t, 2H), 7.51-7.47 (m, 3H), 7.67 (t, 2H), 7.70 (d, 2H), 7.89 (m, 2H), 8.06-8.00 (m, 2H), 8.19 (d, 2H) 1 H NMR (300 MHz, CDCl 3 ): δ 5.25 (s, 2H), 7.35 (t, 2H), 7.51-7.47 (m, 3H), 7.67 (t, 2H), 7.70 (d, 2H), 7.89 (m, 2H), 8.06-8.00 (m, 2H), 8.19 (d, 2H)
화합물 E의 제조Preparation of Compound E
100mL 3구 플라스크에 화합물 D (1 g, 2.87 mmol), 2,5-디브로모-1,4-디메틸벤젠(1.12 g, 4.31 mmol), Pd(PPh3)4 (0.09 g, 0.03 mmol) 및 수산화나트륨 수용액(2 M, 4.3 mL)를 첨가한 후 테트라하이드로퓨란(20 mL) 및 톨루엔 (10 mL)를 첨가하여 혼합하였다. 그리고 온도 85℃에서 12시간 반응시킨다. 반응 종결 후 클로로포름(300mL × 2)로 추출하였으며, 추출한 유기층의 수분을 제거한 후 용매를 제거하였다. 그리고 시료에 에테르를 채워넣어 교반시켜 1차 정제한 뒤 헥산:클로로포름=5:1로 컬럼크로마토그래피하여 화합물 G를 얻었으며, 얻어진 화합물 G의 구조는 1H-NMR로 확인하였다.Compound D (1 g, 2.87 mmol), 2,5-dibromo-1,4-dimethylbenzene (1.12 g, 4.31 mmol), Pd (PPh 3 ) 4 (0.09 g, 0.03 mmol) in a 100 mL three neck flask And aqueous sodium hydroxide solution (2 M, 4.3 mL) were added followed by mixing with tetrahydrofuran (20 mL) and toluene (10 mL). And it is made to react at temperature 85 degreeC for 12 hours. After completion of the reaction was extracted with chloroform (300mL × 2), and the solvent was removed after removing the water of the extracted organic layer. Then, ether was charged to the sample, and the mixture was stirred and purified first, and then purified by column chromatography with hexane: chloroform = 5: 1 to obtain Compound G. The structure of Compound G was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.03-8.12 (m, 3H), 7.93-7.98 (m, 2H) 7.74-7.76 (m, 2H), 7.68 (s, 1H), 7.58-7.64 (m, 5H), 7.30-7.40 (m, 4H), 7.22(d, 1H), 2.48 (s, 1H), 1.58 (s, 1H); 1 H NMR (300 MHz, CDCl 3 ): δ 8.03-8.12 (m, 3H), 7.93-7.98 (m, 2H) 7.74-7.76 (m, 2H), 7.68 (s, 1H), 7.58-7.64 (m , 5H), 7.30-7.40 (m, 4H), 7.22 (d, 1H), 2.48 (s, 1H), 1.58 (s, 1H);
화합물 3의 제조Preparation of Compound 3
250 mL 3구 플라스크에 화합물 G (3.2 g, 6.57 mmol), 3-피리딘보로닉에시드 (1.6 g, 13.13 mmol), Pd(PPh3)4 (0.08 g, 0.06 mmol), 수산화나트륨 용액(2 M, 25 ml)을 첨가한 후 테트라하이드로퓨란(100 mL)를 첨가하여 용해시킨 후 온도를 90 ℃에서 36시간 반응시켰다. 반응 종결 후 클로로포름(300mL × 2)로 추출한 후 유기층의 수분을 제거하고, 용매를 제거하였다. 그리고 컬럼크로마토그래피로 분리하여 화합물 2를 얻었으며, 얻어진 화합물 1의 구조는 1H-NMR로 확인하였다. Compound G (3.2 g, 6.57 mmol), 3-pyridineboronic acid (1.6 g, 13.13 mmol), Pd (PPh 3 ) 4 (0.08 g, 0.06 mmol), sodium hydroxide solution (2 M, 25 ml) was added, followed by dissolution by addition of tetrahydrofuran (100 mL) and the reaction was carried out at 90 ° C. for 36 hours. After completion of the reaction, the mixture was extracted with chloroform (300mL × 2), and then the moisture of the organic layer was removed and the solvent was removed. Compound 2 was obtained by column chromatography, and the obtained compound 1 was confirmed by 1 H-NMR.
1H NMR (300 MHz, CDCl3): δ 8.86 (d, 2H), 7.98-8.11 (m, 4H), 7.75-7.78 (d, 2H), 7.63-7.69 (m, 51H), 7.49-7.51 (d, 2H), 7.34-7.44 (m, 5H), 7.29 (s, 1H), 2.40 (s, 3H), 1.98 (s, 3H); HRMS (EI) m/z calcd for C37H27N (M+): 485.2143; found 465.2144 1 H NMR (300 MHz, CDCl 3 ): δ 8.86 (d, 2H), 7.98-8.11 (m, 4H), 7.75-7.78 (d, 2H), 7.63-7.69 (m, 51H), 7.49-7.51 ( d, 2H), 7.34-7.44 (m, 5H), 7.29 (s, 1H), 2.40 (s, 3H), 1.98 (s, 3H); HRMS (EI) m / z calcd for C 37 H 27 N (M + ): 485.2143; found 465.2144
도 6에 실시예 2에서 제조된 화합물 2의 DFT를 나타내었으며, 도 7에 실시예 3에서 제조된 화합물 3의 DFT를 나타냈다.6 shows the DFT of Compound 2 prepared in Example 2, and FIG. 7 shows the DFT of Compound 3 prepared in Example 3. FIG.
도 6과 도 7에서 보이는 바와 같이 본 발명의 화합물 1과 마찬가지로 실시예 2 내지 3의 화합물 또한 안트라센골격의 한쪽에 피리디닐페닐기가 치환되어 있고 한쪽은 나프탈레닐기가 치환되어 있어 고도의 비틀린 구조를 가지면서도 전자밀도가 안트라센 골격에 집중되어 색순도와 발광효율이 매우 높다.As shown in Fig. 6 and 7, the compounds of Examples 2 to 3, like the compound 1 of the present invention, also have a pyridinylphenyl group substituted on one side of the anthracene skeleton and a naphthalenyl group on the other side, thus providing a highly twisted structure. The electron density is concentrated in the anthracene skeleton, but the color purity and luminous efficiency are very high.

Claims (7)

  1. 하기 화학식 1로 표시되는 페닐안트라센 유도체.A phenylanthracene derivative represented by the following formula (1).
    [화학식 1][Formula 1]
    Figure PCTKR2014005421-appb-I000018
    Figure PCTKR2014005421-appb-I000018
    [상기 화학식 1에서, [In Formula 1,
    R1 내지 R4는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시 또는 C6-C30아릴이며;R 1 to R 4 are independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
    X는
    Figure PCTKR2014005421-appb-I000019
    또는
    Figure PCTKR2014005421-appb-I000020
    이며, R11 및 R12는 서로 독립적으로 수소, C1-C30알킬 또는 C1-C30알콕시이며;
    X is
    Figure PCTKR2014005421-appb-I000019
    or
    Figure PCTKR2014005421-appb-I000020
    R 11 and R 12 independently of one another are hydrogen, C 1 -C 30 alkyl or C 1 -C 30 alkoxy;
    Y는 C6-C30아릴 또는 C3-C30헤테로아릴이며;Y is C 6 -C 30 aryl or C 3 -C 30 heteroaryl;
    p는 1 내지 7의 정수이며;p is an integer from 1 to 7;
    q는 1 내지 9의 정수이며, 상기 p 및 q가 2이상인 경우 R11 및 R12는 상이하거나 동일할 수 있으며;q is an integer from 1 to 9 and when p and q are 2 or more, R 11 and R 12 may be different or the same;
    Y의 아릴 또는 헤테로아릴은 C1-C30알킬, C1-C30알콕시, C3-C30헤테로아릴 또는 C6-C30아릴로 더 치환될 수 있다.]Aryl or heteroaryl of Y may be further substituted with C 1 -C 30 alkyl, C 1 -C 30 alkoxy, C 3 -C 30 heteroaryl or C 6 -C 30 aryl.]
  2. 제 1항에 있어서,The method of claim 1,
    상기 Y는 하기구조에서 선택되는 것인 페닐안트라센 유도체.Y is phenylanthracene derivative selected from the following structures.
    Figure PCTKR2014005421-appb-I000021
    Figure PCTKR2014005421-appb-I000021
    Figure PCTKR2014005421-appb-I000022
    Figure PCTKR2014005421-appb-I000022
    [상기 식에서 R21 내지 R25는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시 또는 C6-C30아릴이며;[Wherein R 21 to R 25 are each independently hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
    o 및 p는 1 내지 4의 정수이며;o and p are integers from 1 to 4;
    r은 1 내지 6의 정수이며, o, p 및 q가 둘이상인 경우 R21 내지 R25는 서로 동일하거나 상이할 수 있다.]r is an integer of 1 to 6, and when o, p and q are two or more, R 21 to R 25 may be the same or different from each other.]
  3. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1은 하기 화학식 2로 표시되는 것인 페닐안트라센 유도체.Formula 1 is a phenylanthracene derivative represented by the following formula (2).
    [화학식 2][Formula 2]
    Figure PCTKR2014005421-appb-I000023
    Figure PCTKR2014005421-appb-I000023
    [상기 화학식 2에서,[In Formula 2,
    R1 내지 R4는 서로 독립적으로 수소, C1-C30알킬, C1-C30알콕시 또는 C6-C30아릴이며;R 1 to R 4 are independently of each other hydrogen, C 1 -C 30 alkyl, C 1 -C 30 alkoxy or C 6 -C 30 aryl;
    R11 또는 R21은 서로 독립적으로 수소, C1-C30알킬 또는 C1-C30알콕시이며;R 11 or R 21 are independently of each other hydrogen, C 1 -C 30 alkyl or C 1 -C 30 alkoxy;
    r은 1 내지 4의 정수이며, r is an integer from 1 to 4,
    p는 1 내지 7의 정수이며, 상기 p 및 r이 2이상인 경우 각 R11 및 R21는 상이하거나 동일할 수 있다.]p is an integer of 1 to 7, and each of R 11 and R 21 may be different or the same when p and r are 2 or more.]
  4. 제 1항에 있어서,The method of claim 1,
    상기 R1 또는 R4는 수소이며;R 1 or R 4 is hydrogen;
    R2 내지 R3은 수소 또는 C1-C30알킬인 페닐안트라센 유도체.R 2 to R 3 are hydrogen or C 1 -C 30 alkyl.
  5. 제 1항에 있어서,The method of claim 1,
    상기 화학식 1은 하기 화합물로부터 선택되는 페닐안트라센 유도체.Formula 1 is a phenylanthracene derivative selected from the following compounds.
    Figure PCTKR2014005421-appb-I000024
    Figure PCTKR2014005421-appb-I000024
    Figure PCTKR2014005421-appb-I000025
    Figure PCTKR2014005421-appb-I000025
    Figure PCTKR2014005421-appb-I000026
    Figure PCTKR2014005421-appb-I000026
    Figure PCTKR2014005421-appb-I000027
    Figure PCTKR2014005421-appb-I000027
    Figure PCTKR2014005421-appb-I000028
    Figure PCTKR2014005421-appb-I000028
    Figure PCTKR2014005421-appb-I000029
    Figure PCTKR2014005421-appb-I000029
  6. 양극, 음극 및 양 전극 사이의 발광층을 포함하는 유기 발광 소자에 있어서, 청구항 제1항 내지 제5항에서 선택되는 어느 한 항에 따른 페닐안트라센 유도체를 발광층에 포함하는 유기 발광 소자. An organic light emitting device comprising a light emitting layer between an anode, a cathode and a positive electrode, the organic light emitting device comprising a phenylanthracene derivative according to any one of claims 1 to 5 in a light emitting layer.
  7. 제 6항에 있어서, The method of claim 6,
    상기 페닐안트라센 유도체를 호스트 물질로 사용 하는 것인 유기 발광 소자.An organic light emitting device using the phenylanthracene derivative as a host material.
PCT/KR2014/005421 2013-06-19 2014-06-19 Phenylanthracene derivative and organic light emitting device containing same WO2014204234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130070307 2013-06-19
KR10-2013-0070307 2013-06-19

Publications (1)

Publication Number Publication Date
WO2014204234A1 true WO2014204234A1 (en) 2014-12-24

Family

ID=52104890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005421 WO2014204234A1 (en) 2013-06-19 2014-06-19 Phenylanthracene derivative and organic light emitting device containing same

Country Status (2)

Country Link
KR (1) KR101751784B1 (en)
WO (1) WO2014204234A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608403A (en) * 2019-01-24 2019-04-12 吉林大学 One kind is based on the organic blue light small molecule of anthracene-tetraphenyl ethylene and its application in terms of preparing undoped organic electroluminescence device
CN112368267A (en) * 2018-12-03 2021-02-12 株式会社Lg化学 Novel heterocyclic compound and organic light-emitting device comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100007552A (en) * 2008-07-14 2010-01-22 덕산하이메탈(주) Asymmetric anthracene derivatives and electroluminescent devices comprising same
WO2012060374A1 (en) * 2010-11-04 2012-05-10 Jnc株式会社 Electron transport material and organic electroluminescence element using same
KR20120135501A (en) * 2012-10-29 2012-12-14 에스에프씨 주식회사 A condensed-cyclic compound and an organic light emitting diode comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100007552A (en) * 2008-07-14 2010-01-22 덕산하이메탈(주) Asymmetric anthracene derivatives and electroluminescent devices comprising same
WO2012060374A1 (en) * 2010-11-04 2012-05-10 Jnc株式会社 Electron transport material and organic electroluminescence element using same
KR20120135501A (en) * 2012-10-29 2012-12-14 에스에프씨 주식회사 A condensed-cyclic compound and an organic light emitting diode comprising the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368267A (en) * 2018-12-03 2021-02-12 株式会社Lg化学 Novel heterocyclic compound and organic light-emitting device comprising same
US11905245B2 (en) 2018-12-03 2024-02-20 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
CN109608403A (en) * 2019-01-24 2019-04-12 吉林大学 One kind is based on the organic blue light small molecule of anthracene-tetraphenyl ethylene and its application in terms of preparing undoped organic electroluminescence device
CN109608403B (en) * 2019-01-24 2021-07-30 吉林大学 Anthracene-tetraphenylethylene-based organic blue light small molecule and application thereof in preparation of non-doped organic electroluminescent device

Also Published As

Publication number Publication date
KR101751784B1 (en) 2017-06-29
KR20140147743A (en) 2014-12-30

Similar Documents

Publication Publication Date Title
WO2011019173A2 (en) Compound containing 5-membered heterocycles, organic light-emitting device using same, and terminal comprising the latter
WO2015041492A1 (en) Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2010151011A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010110553A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011126224A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012173370A2 (en) Novel compounds and organic electronic device using same
WO2011021803A2 (en) Compound having a thianthrene structure, organic light-emitting device using same, and terminal comprising the device
WO2011019156A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010126270A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011132866A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2010151006A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011136484A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010114256A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010114253A2 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2014061963A1 (en) Organic electroluminescence compounds and organic electroluminescence device comprising the same
WO2013109030A1 (en) Organic electroluminescent device comprising the organic electroluminescent compounds
WO2011071255A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010147319A2 (en) Acridine derivative and an organic electroluminescent element comprising the same
WO2011010839A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012015265A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011010843A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011126225A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2011093609A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011055914A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012030145A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813341

Country of ref document: EP

Kind code of ref document: A1