WO2014204138A1 - Stabilizer of optical touch detection device - Google Patents

Stabilizer of optical touch detection device Download PDF

Info

Publication number
WO2014204138A1
WO2014204138A1 PCT/KR2014/005202 KR2014005202W WO2014204138A1 WO 2014204138 A1 WO2014204138 A1 WO 2014204138A1 KR 2014005202 W KR2014005202 W KR 2014005202W WO 2014204138 A1 WO2014204138 A1 WO 2014204138A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
detection device
screen
touch detection
optical
Prior art date
Application number
PCT/KR2014/005202
Other languages
French (fr)
Korean (ko)
Inventor
정승태
Original Assignee
주식회사 아이택투스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이택투스 filed Critical 주식회사 아이택투스
Publication of WO2014204138A1 publication Critical patent/WO2014204138A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • G06F3/0423Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen using sweeping light beams, e.g. using rotating or vibrating mirror
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention is an optical touch detection device for improving the position error according to the change of the optical head and motor axis in recognizing the position corresponding to the instruction, when instructing a predetermined point on the optical touch screen with a finger or an indicator rod, etc. It relates to a stabilization device of.
  • Touch screen is a technology that has been used for guidance in ATM systems, museums, etc. Recently, with the spread of smartphones, it is becoming more familiar to the general public. Touch screen technologies used in mobile phones, PCs, smart TVs or various displays include resistive films, capacitive and optical technologies, and their advantages and disadvantages are as follows.
  • Resistive touchscreens use a controller and a special coated glass plate on the display surface to create a touch connection.
  • the touch screen panel consists of two thin electrically conducting plates, and the two plates are separated with a narrow gap between them, and when a certain point is pressed on the outer surface of the panel by an input means such as a finger, the two plates are connected and a touch event is applied to the electric current. Causes a perceived change.
  • the advantage of the resistive coating is that it can be accessed using a finger (with or without gloves), a pen, a stylus, or a hard object, but the image is degraded and wear of the resistive plate requires periodic recalibration and scratches. Due to this point, it may not be appropriate in public places, and it is easy to be damaged, and there is a disadvantage in that the touch is not recognized when the resistance plate is broken or scratched.
  • Capacitive touchscreens are all made of glass and are sharper and more durable than resistive technology. It is a weak point in noise signal by detecting the minute current flowing in accordance with the change of capacitance between sensor electrode and finger. However, it is strong in environmental reliability and mechanical reliability can be freely changed by changing upper barrier layer. There is an advantage.
  • the capacitive touchscreen is only active when you touch it with a human finger, so scratching the screen coating will create a dead spot on the screen that will not recognize a gloved finger, a pen, a stylus, or a hard object and will not scale easily to large screens. There are disadvantages.
  • the optical touch screen tracks the movement of all objects adjacent to the screen by detecting the interference of the light source and two light sensors emitted horizontally on the screen surface.
  • the object is highly accurate, without the need for finger presses, and no special coating or film is required, eliminating scratches, wear, or blur on the display image. This is because an optical touch with an optical sensor on each corner or a specific surface of the screen is to see an object touching the screen from both angles.
  • optical touch technology allows you to touch the screen with your finger, pen, credit card, etc., thanks to its excellent precision, and can be recognized with just a touch.
  • optical touch technology is an economical way to add touch functionality to any display, and because the same technology is used for large and small screens regardless of the screen size, it can be expected to be particularly cost effective on large screens.
  • the optical method is a technology that can be installed in addition to a desktop PC or a copyboard because it can be economically and easily changed to a touch screen without sacrificing the quality and performance of the existing display. It has the advantage of providing touch accuracy and stability even in adverse conditions or outdoors.
  • a general optical touch detection device such as Korean Patent Publication No. 2010-0129015 has a structure as shown in FIG. 1. 1 is related to an object detecting means according to the prior art, the laser beam is made by the semiconductor laser 110, the laser beam passes through the refraction means 120 through the regular polygon mirror 310 of the scanning means 300 The entire laser beam is irradiated onto the entire area of the screen 50. At this time, the laser beam is located in the form of the laser beam point 400 on the reflecting means located on the left, right and bottom of the screen 50, the rotation axis of the motor 320 for rotating the regular polygon mirror 310 is shock or external There is a problem that the coordinate recognition error occurs when the change by the factor.
  • the present invention devised to solve the problems of the prior art as described above, since the width of the laser beam irradiated to the reflecting means can be formed by adding a cylindrical lens to the object detecting means, the rotation axis of the motor by an external impact Even with this change, there is a purpose to increase the accuracy of the touch coordinate.
  • the object of the present invention is located on the top of the screen, irradiates the laser beam toward the reflecting means, and analyzes the change in the amount of light with respect to the laser beam retroreflected from the reflecting means to the indicator on the plane of the screen It comprises a two or more object detection means to detect the position coordinates of the and the reflective means for retroreflecting the laser beam irradiated from the object detection means is installed along the left, right and lower edge of the screen
  • the object detecting means is achieved by a cylindrical lens for extending the width of the laser beam reaching the reflecting means.
  • the stabilization device of the optical touch detection device of the present invention has an effect of increasing the accuracy of the pointing position even if an external impact occurs in the object detection means.
  • FIG. 4 is an object detecting means in which a cylindrical lens is coupled to the front of the equilateral triangle mirror according to the present invention
  • 6 is an object detecting means having a cylindrical lens coupled to the front of the square mirror according to the present invention.
  • FIG. 13 is a detailed view of the retroreflective film according to the present invention.
  • FIG. 14 is a detailed view of a retroreflective film according to another embodiment of the present invention.
  • the position recognizing apparatus may recognize the position of a touch point located on an upper portion of a display device to which a touch screen is not applied, such as a screen 50, a television monitor, a desktop monitor, or the like by using an optical method. .
  • the position recognition device of the optical touch screen used in the present invention is located on the top of the screen 50 to irradiate the laser beam toward the reflecting means 200, and receives the laser beam reflected back from the reflecting means 200,
  • the object detecting means 100 and the left, right, and bottom of the screen and the object detecting means 100 made up of two or more to detect the positional coordinates of the indicator on the plane of the screen 50 by analyzing the change in the amount of light with respect to the time of the retroreflected laser beam It is provided with a reflecting means 200 is installed along the rim so as to retroreflect the laser beam irradiated from the object detecting means 100.
  • the object detecting means 100 is installed on the front surface of the semiconductor laser 110 and the semiconductor laser 110 for irradiating the laser beam to determine the traveling direction of the laser beam irradiated from the semiconductor laser 110.
  • the refraction means 120 is positioned to be parallel to the screen 50, and the refraction means is any one of a half mirror, a polarizing beam splitter, or a total reflection mirror.
  • the cylindrical lens 330 is located between the scanning means 300 and the refraction means 120, or is positioned between the scanning means 300 and the reflecting means 200.
  • the scan means 300 includes a drive configured to include a regular polygon mirror 310 for irradiating a laser beam radiated from the semiconductor laser 110 to the reflection means 200 and a motor for rotating the regular polygon mirror 310 by 360 °.
  • the module 320, the regular polygon mirror 310 may be used as an equilateral triangle mirror 311, a square mirror 312, a pentaprism 313.
  • the size of the laser beam point 400 irradiated to the reflecting means 200 is increased, so that the driving module 320 of the driving module 320 located in the scanning means 300 is increased. Even if the axis changes due to external shock, it can recognize the exact position coordinate.
  • FIG. 4 is an object detecting means in which a cylindrical lens is coupled to the front of the equilateral triangle mirror according to the present invention
  • FIG. 5 is an object detecting means in which a cylindrical lens is coupled to the rear of the equilateral triangle mirror according to the present invention.
  • the cylindrical lens 330 may be integrally formed with the regular polygonal mirror 310. It consisted of
  • FIG. 4 shows the cylindrical lens 330 located in front of the equilateral triangle mirror 311 to enlarge the width of the laser beam irradiated from the semiconductor laser 140
  • FIG. 5 shows the cylindrical lens 330 of the equilateral triangle mirror. Located at the rear of 311, the width of the laser beam irradiated from the semiconductor laser 140 is increased to increase the accuracy of the optical type touch detection device.
  • FIG. 6 is an object detecting means in which a cylindrical lens is coupled to the front of the square mirror according to the present invention
  • FIG. 7 is an object detecting means in which a cylindrical lens is coupled to the rear of the square mirror according to the present invention.
  • the cylindrical lens 330 may be integrally formed with the regular polygon mirror 310, and in FIGS. 6 and 7 are integral with the square mirror 311 among the regular polygon mirrors 310. It consisted of
  • FIG. 6 illustrates that the cylindrical lens 330 is located in front of the square mirror 312 to enlarge the width of the laser beam irradiated from the semiconductor laser 140.
  • FIG. 7 shows that the cylindrical lens 330 is a square mirror. Located at the rear of the 312, the width of the laser beam irradiated from the semiconductor laser 140 is increased to increase the accuracy of the optical type touch detection device.
  • pentaprism 313 is a reflective prism with five sides and is used to refract light at 90 °.
  • the incident light is reflected twice inside the prism and does not cause total internal reflection since the angle of incidence is smaller than the minimum angle that can cause total reflection.
  • FIG. 9 is an object detecting means in which the cylindrical lens is coupled to the front of the penta prism according to the present invention
  • FIG. 10 is an object detecting means in which the cylindrical lens is coupled to the rear of the penta prism according to the present invention.
  • the cylindrical lens 330 may be integrally formed with the regular polygonal mirror 310
  • the cylindrical lens 330 is integrally formed with the pentaprism 313 of the regular polygonal mirror 310.
  • FIG. 9 illustrates that the cylindrical lens 330 is located in front of the pentaprism 313 to enlarge the width of the laser beam irradiated from the semiconductor laser 140.
  • the cylindrical lens 330 is pentaprism.
  • the width of the laser beam irradiated from the semiconductor laser 140 is increased to increase the accuracy of the optical type touch detection device.
  • the support part 340 for fixing the pentaprism 313 coupled to the motor 320 is positioned between the pentaprism 313 and the motor 320.
  • FIG. 11 is an object detecting means using a 45 degree curved mirror according to the present invention. As shown in FIG. 11, the 45 degree curved mirror 314 is mounted on the motor 320 to expand the width of the laser beam irradiated to the reflecting means 200.
  • the 45 degree curved mirror 314 is mounted on the motor 320 while the parts are integrated to facilitate assembly and reduce manufacturing costs.
  • FIG. 12 is a detailed view of the reflecting means according to the present invention. As shown in FIG. 12, the reflecting means 200 is installed along the left, right, and bottom edges of the screen, so that the line beam irradiated from the object sensing means 100 is returned back to the object sensing means 100. Is formed.
  • the reflecting means 200 is installed at the edge of the screen 50 and formed on the upper surface of the sponge 210 and the rectangular pillar-shaped sponge 210 attached with a double-sided tape so as to be cut and used according to the size of the screen 50, the object
  • the rare reflecting film on the surface intersecting the surface where the rare reflecting film 230 and the rare reflecting film 230 for retroreflecting the laser beam incident from the sensing means 100 back to the object sensing means 100 It is installed higher than 230 and consists of a protective film 250 to prevent the light flowing from the entrance to the retroreflective film 230, and to prevent the scattered light of the line beam to enter the human eye toward the front do.
  • the retroreflective film 230 has a saw blade-shaped base film layer 231 and a reflective layer 233 formed on the base film layer 231 and an upper portion of the reflective layer 233.
  • the protective layer 250 is formed.
  • the retroreflective film 230 includes a reflective layer 233 formed on the base film layer 231 and the base film layer 231, and a high refractive index formed on the reflective layer 233. It may be made of a glass egg layer 237.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a stabilizer of an optical touch detection device for preventing a position error caused by changes in an optical head and a motor shaft in the recognition of an indicated position when a certain position is indicated at on an optical touchscreen by using a finger or a pointer and the like. The stabilizer of the optical touch detection device of the present invention comprises: two or more object sensing means, which are positioned at an upper part of a screen, emit a laser beam toward a reflecting means and analyze a light intensity variation according to the time of a laser beam retro-reflected from the reflecting means so as to sense position coordinates of an indicated object on the plane of the screen; and the reflecting means provided to left, right and lower edges of the screen to retro-reflect the laser beam emitted from the object sensing means, wherein the object sensing means include a cylindrical lens for extending the width of the laser beam reaching the reflecting means.

Description

광학방식 터치검출장치의 안정화 장치Stabilizer of Optical Touch Detection Device
본 발명은 광학 터치스크린에서 소정의 지점에 손가락이나 지시봉 등으로 지시하는 경우, 그 지시에 해당하는 위치를 인식하는 것에 있어서 광학 헤드 및 모터 축 변화에 따른 위치에러를 개선하기 위한 광학방식 터치검출장치의 안정화 장치에 관한 것이다.The present invention is an optical touch detection device for improving the position error according to the change of the optical head and motor axis in recognizing the position corresponding to the instruction, when instructing a predetermined point on the optical touch screen with a finger or an indicator rod, etc. It relates to a stabilization device of.
터치스크린(Touch Screen)은 ATM시스템 이나, 박물관 등에서 안내를 위해 사용되어온 기술로, 최근 스마트폰의 보급확산에 따라 일반인에게 더욱 친숙한 기술로 다가오고 있다. 휴대폰, PC, 스마트TV 또는 다양한 디스플레이에 사용되고 있는 터치스크린 기술은 저항막, 정전용량 및 광학방식 기술 등이 있으며 각각의 장단점은 다음과 같다. Touch screen is a technology that has been used for guidance in ATM systems, museums, etc. Recently, with the spread of smartphones, it is becoming more familiar to the general public. Touch screen technologies used in mobile phones, PCs, smart TVs or various displays include resistive films, capacitive and optical technologies, and their advantages and disadvantages are as follows.
저항막방식 터치스크린은 디스플레이 표면에 컨트롤러와 특별 코팅 유리판을 사용하여 터치 연결을 생성한다. 터치스크린 패널은 2개의 얇은 전기 전도판으로 이루어져 있으며 두 판은 좁은 틈을 사이에 두고 분리되어 있으며, 손가락 등의 입력 수단으로 패널의 외부 표면에 특정 지점을 누르면 두 판이 연결된 후 전기 전류에 터치 이벤트로 인식되는 변화를 야기한다.Resistive touchscreens use a controller and a special coated glass plate on the display surface to create a touch connection. The touch screen panel consists of two thin electrically conducting plates, and the two plates are separated with a narrow gap between them, and when a certain point is pressed on the outer surface of the panel by an input means such as a finger, the two plates are connected and a touch event is applied to the electric current. Causes a perceived change.
저항막방식의 장점은 손가락(장갑 착용에 관계없이), 펜, 스타일러스 또는 딱딱한 물체를 사용하여 액세스할 수 있다는 것이나, 이미지 선명도가 저하되고 저항막판의 마모로 인해 주기적으로 재보정이 필요하며 잘 긁히는 점 때문에 공공장소에서는 적절하지 않을 수 있으며, 파손되기 쉽고 저항막판이 깨지거나 흠집이 생기면 터치가 인식되지 않는다는 단점이 있다. The advantage of the resistive coating is that it can be accessed using a finger (with or without gloves), a pen, a stylus, or a hard object, but the image is degraded and wear of the resistive plate requires periodic recalibration and scratches. Due to this point, it may not be appropriate in public places, and it is easy to be damaged, and there is a disadvantage in that the touch is not recognized when the resistance plate is broken or scratched.
정전용량 터치스크린은 모두 유리로 되어 있으며 저항막 기술보다 선명도가 높고 내구성이 좋다. 센서전극과 손가락 사이에 정전용량변화에 따라 흐르는 미세한 전류를 감지하여 위치를 판별하는 방식으로 노이즈 신호에 취약한 단점이 있으나, 환경적 신뢰성에 강하고 상부 Barrier Layer를 변경함에 따라 기계적 신뢰성도 자유롭게 바꿀 수가 있는 장점이 있다. 정전용량 터치스크린은 사람의 손가락으로 터치할 때만 활성화되므로, 스크린 코팅을 긁으면 화면에 데드 스팟이 생겨 장갑을 낀 손가락, 펜, 스타일러스 또는 딱딱한 물체를 인식하지 않는 문제와 대형 화면으로 쉽게 확장할 수 없다는 단점이 있다. Capacitive touchscreens are all made of glass and are sharper and more durable than resistive technology. It is a weak point in noise signal by detecting the minute current flowing in accordance with the change of capacitance between sensor electrode and finger. However, it is strong in environmental reliability and mechanical reliability can be freely changed by changing upper barrier layer. There is an advantage. The capacitive touchscreen is only active when you touch it with a human finger, so scratching the screen coating will create a dead spot on the screen that will not recognize a gloved finger, a pen, a stylus, or a hard object and will not scale easily to large screens. There are disadvantages.
광학방식 터치스크린은 스크린 표면에 수평으로 방출되는 광원과 두 개의 광학 센서가 광원의 간섭을 감지하여 화면에 인접한 모든 물체의 움직임을 추적한다. 손가락으로 누르지 않아도 매우 정확하게 대상을 인식하고, 특수한 코팅이나 필름이 필요하지 않으므로, 디스플레이 이미지에 흠집이 생기거나 마모 또는 흐려질 일이 없다. 화면의 양쪽 모서리 또는 특정 면에 광학 센서를 탑재한 광학터치는 양쪽 각도에서 스크린을 터치하는 물체를 보는 것이기 때문이다.The optical touch screen tracks the movement of all objects adjacent to the screen by detecting the interference of the light source and two light sensors emitted horizontally on the screen surface. The object is highly accurate, without the need for finger presses, and no special coating or film is required, eliminating scratches, wear, or blur on the display image. This is because an optical touch with an optical sensor on each corner or a specific surface of the screen is to see an object touching the screen from both angles.
광학방식 터치기술은 탁월한 정밀도로 인하여 손가락, 펜, 신용카드 등 무엇으로든 스크린을 터치할 수 있고, 살짝만 눌러도 인식이 된다. 또한, 광학터치 기술은 어떤 디스플레이에도 터치 기능을 추가할 수 있는 경제적인 방법으로, 스크린의 크기에 상관없이 대형 및 소형 스크린에 동일 기술을 사용하므로 대형 스크린에서 특히 뛰어난 비용 효율성을 기대할 수 있다. Optical touch technology allows you to touch the screen with your finger, pen, credit card, etc., thanks to its excellent precision, and can be recognized with just a touch. In addition, optical touch technology is an economical way to add touch functionality to any display, and because the same technology is used for large and small screens regardless of the screen size, it can be expected to be particularly cost effective on large screens.
광학방식은 기존 디스플레이의 품질과 성능을 저해하지 않으면서, 경제적이고 손쉽게 일반 디스플레이를 터치스크린으로 바꿀 수 있기 때문에 데스크탑 PC 또는 전자 칠판에 부가하여 설치 가능한 기술이기도 하다. 악조건의 환경이나 실외에서도 터치 정확도 및 안정성을 제공한다는 장점이 있다.The optical method is a technology that can be installed in addition to a desktop PC or a copyboard because it can be economically and easily changed to a touch screen without sacrificing the quality and performance of the existing display. It has the advantage of providing touch accuracy and stability even in adverse conditions or outdoors.
그러나 한국공개특허 제2010-0129015호와 같이 일반적인 광학방식의 터치검출장치는 도 1과 같은 구조를 가지게 된다. 도 1은 종래 기술에 따른 물체감지수단에 관한 것으로, 반도체레이저(110)에 의해서 레이저빔이 만들어지고, 레이저빔은 굴절수단(120)을 지나 스캔수단(300)의 정다각형미러(310)를 거쳐 스크린(50)의 전체 영역에 레이저빔을 조사하게 된다. 이때, 레이저빔은 스크린(50)의 좌, 우 및 하부에 위치한 반사수단에 레이저빔 포인트(400)형태로 위치하게 되는데, 정다각형미러(310)를 회전시키는 모터(320)의 회전축이 충격이나 외부요인에 의해 변화게 되면 좌표인식 에러가 발생하게 되는 문제점이 있다. However, a general optical touch detection device such as Korean Patent Publication No. 2010-0129015 has a structure as shown in FIG. 1. 1 is related to an object detecting means according to the prior art, the laser beam is made by the semiconductor laser 110, the laser beam passes through the refraction means 120 through the regular polygon mirror 310 of the scanning means 300 The entire laser beam is irradiated onto the entire area of the screen 50. At this time, the laser beam is located in the form of the laser beam point 400 on the reflecting means located on the left, right and bottom of the screen 50, the rotation axis of the motor 320 for rotating the regular polygon mirror 310 is shock or external There is a problem that the coordinate recognition error occurs when the change by the factor.
상기와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 본 발명은 물체감지수단에 실린더리컬렌즈를 추가함으로써 반사수단에 조사되는 레이저빔의 폭을 크게 형성할 수 있기 때문에, 외부충격에 의해 모터의 회전축이 변하더라도 터치좌표의 정확도를 높이기 위한 목적이 있다.The present invention devised to solve the problems of the prior art as described above, since the width of the laser beam irradiated to the reflecting means can be formed by adding a cylindrical lens to the object detecting means, the rotation axis of the motor by an external impact Even with this change, there is a purpose to increase the accuracy of the touch coordinate.
본 발명의 상기 목적은 스크린의 상부에 위치하여, 반사수단을 향해 레이저빔을 조사하고, 상기 반사수단으로부터 회귀반사되는 상기 레이저빔의 시간에 따른 광량 변화를 분석하여 상기 스크린의 평면상에 지시물체의 위치좌표를 감지하도록 2개 이상으로 이루어진 물체감지수단 및 상기 스크린의 좌, 우 및 하부 테두리를 따라 설치되어 상기 물체감지수단으로부터 조사되는 상기 레이저빔을 회귀반사하도록 하는 반사수단을 포함하여 구성되며, 상기 물체감지수단에는 상기 반사수단에 도달하는 상기 레이저빔의 폭을 확장시키기 위한 실린더리컬렌즈에 의해 달성된다.The object of the present invention is located on the top of the screen, irradiates the laser beam toward the reflecting means, and analyzes the change in the amount of light with respect to the laser beam retroreflected from the reflecting means to the indicator on the plane of the screen It comprises a two or more object detection means to detect the position coordinates of the and the reflective means for retroreflecting the laser beam irradiated from the object detection means is installed along the left, right and lower edge of the screen The object detecting means is achieved by a cylindrical lens for extending the width of the laser beam reaching the reflecting means.
따라서, 본 발명의 광학방식 터치검출장치의 안정화 장치는 물체감지수단에 외부 충격이 발생하더라도 포인팅한 위치에 대한 정확도를 높이는 효과가 있다.Therefore, the stabilization device of the optical touch detection device of the present invention has an effect of increasing the accuracy of the pointing position even if an external impact occurs in the object detection means.
도 1는 종래 기술에 따른 물체감지수단, 1 is an object detecting means according to the prior art,
도 2은 본 발명에 따른 물체감지수단이 장착된 광학 터치스크린, 2 is an optical touch screen equipped with an object detecting means according to the present invention,
도 3은 본 발명에 따른 물체감지수단,3 is an object detecting means according to the present invention,
도 4는 본 발명에 따른 정삼각형미러의 전방에 실린더리컬렌즈가 결합된 물체감지수단,4 is an object detecting means in which a cylindrical lens is coupled to the front of the equilateral triangle mirror according to the present invention;
도 5는 본 발명에 따른 정삼각형미러의 후방에 실린더리컬렌즈가 결합된 물체감지수단,5 is an object detecting means coupled to the cylindrical lens on the rear of the equilateral triangle mirror according to the present invention,
도 6은 본 발명에 따른 정사각형미러의 전방에 실린더리컬렌즈가 결합된 물체감지수단,6 is an object detecting means having a cylindrical lens coupled to the front of the square mirror according to the present invention;
도 7은 본 발명에 따른 정사각형미러의 후방에 실린더리컬렌즈가 결합된 물체감지수단,7 is an object detecting means coupled to the cylindrical lens in the rear of the square mirror according to the present invention,
도 8은 본 발명에 따른 펜타프리즘의 원리를 나타낸 그림,8 is a view showing the principle of the pentaprism according to the present invention,
도 9는 본 발명에 따른 펜타프리즘의 전방에 실린더리컬렌즈가 결합된 물체감지수단,9 is an object detecting means coupled to the cylindrical lens in front of the penta prism according to the present invention;
도 10은 본 발명에 따른 펜타프리즘의 후방에 실린더리컬렌즈가 결합된 물체감지수단,10 is an object detecting means coupled to the cylindrical lens on the rear of the penta prism according to the present invention;
도 11은 본 발명에 따른 45도 곡면미러를 이용한 물체감지수단,11 is an object detecting means using a 45 degree curved mirror according to the present invention,
도 12는 본 발명에 따른 반사수단의 상세도,12 is a detailed view of the reflecting means according to the present invention;
도 13은 본 발명에 따른 회귀반사필름의 상세도,13 is a detailed view of the retroreflective film according to the present invention;
도 14는 본 발명에 따른 다른예의 회귀반사필름 상세도이다.14 is a detailed view of a retroreflective film according to another embodiment of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 물체감지수단이 장착된 광학 터치스크린이다. 도 2에 도시된 바와 같이, 위치인식장치는 스크린(50), 텔레비젼 모니터, 데스크탑 모니터 등 터치스크린이 적용되지 않은 디스플레이장치의 상부에 위치하고 광학 방식을 이용하여 터치하는 지점의 위치를 인식할 수 있다. 2 is an optical touch screen equipped with an object detecting means according to the present invention. As shown in FIG. 2, the position recognizing apparatus may recognize the position of a touch point located on an upper portion of a display device to which a touch screen is not applied, such as a screen 50, a television monitor, a desktop monitor, or the like by using an optical method. .
본 발명에 사용되는 광학 터치스크린의 위치인식장치는 스크린(50)의 상부에 위치하여 반사수단(200)을 향해 레이저빔을 조사하고, 반사수단(200)으로부터 회귀반사되는 레이저빔을 수광하고, 회귀반사되는 레이저빔의 시간에 따른 광량 변화를 분석하여 스크린(50)의 평면상에 지시물체의 위치좌표를 감지하도록 2개 이상으로로 이루어지는 물체감지수단(100)과 스크린의 좌, 우 및 하부 테두리를 따라 설치되어 물체감지수단(100)으로부터 조사되는 레이저빔을 회귀반사하도록 하는 반사수단(200)으로 이루어진다.The position recognition device of the optical touch screen used in the present invention is located on the top of the screen 50 to irradiate the laser beam toward the reflecting means 200, and receives the laser beam reflected back from the reflecting means 200, The object detecting means 100 and the left, right, and bottom of the screen and the object detecting means 100 made up of two or more to detect the positional coordinates of the indicator on the plane of the screen 50 by analyzing the change in the amount of light with respect to the time of the retroreflected laser beam It is provided with a reflecting means 200 is installed along the rim so as to retroreflect the laser beam irradiated from the object detecting means 100.
도 3은 본 발명에 따른 물체감지수단이다. 도 3에 도시된 바와 같이, 물체감지수단(100)은 레이저빔을 조사하는 반도체레이저(110)와 반도체레이저(110)의 전면에 설치되어 반도체레이저(110)로부터 조사되는 레이저빔의 진행방향을 스크린(50)과 평행으로 만들기 위한 굴절수단(120)이 위치하게 되며, 굴절수단은 하프미러, 편광빔스플리터 또는 전반사거울 중 어느 하나가 사용된다.3 is an object detecting means according to the present invention. As shown in FIG. 3, the object detecting means 100 is installed on the front surface of the semiconductor laser 110 and the semiconductor laser 110 for irradiating the laser beam to determine the traveling direction of the laser beam irradiated from the semiconductor laser 110. The refraction means 120 is positioned to be parallel to the screen 50, and the refraction means is any one of a half mirror, a polarizing beam splitter, or a total reflection mirror.
그리고, 굴절수단(120)의 전면에 설치되어 레이저빔의 폭을 확대시키기 위한 실린더리컬렌즈(330)와 실린더리컬렌즈(330)를 지난 레이저빔을 스크린(50)에 위치한 반사수단(200)으로 조사하기 위한 스캔수단(300)이 있다. 실린더리컬렌즈(330)는 스캔수단(300)과 굴절수단(120) 사이에 위치하거나, 스캔수단(300)과 반사수단(200) 사이에 위치하게 된다. 스캔수단(300)은 반도체레이저(110)로부터 조사되는 레이저빔을 반사수단(200)으로 조사하기 위한 정다각형미러(310)와 정다각형미러(310)를 360°회전시키기 위한 모터를 포함하여 구성되는 구동모듈(320)로 이루어져 있으며, 정다각형미러(310)는 정삼각형미러(311), 정사각형미러(312), 펜타프리즘(313) 등이 사용될 수 있다.Then, the laser beam passing through the cylindrical lens 330 and the cylindrical lens 330 to enlarge the width of the laser beam is provided in the front of the refractive means 120 to the reflecting means 200 located on the screen 50 There is a scanning means 300 for irradiation. The cylindrical lens 330 is located between the scanning means 300 and the refraction means 120, or is positioned between the scanning means 300 and the reflecting means 200. The scan means 300 includes a drive configured to include a regular polygon mirror 310 for irradiating a laser beam radiated from the semiconductor laser 110 to the reflection means 200 and a motor for rotating the regular polygon mirror 310 by 360 °. The module 320, the regular polygon mirror 310 may be used as an equilateral triangle mirror 311, a square mirror 312, a pentaprism 313.
반도체레이저(110)로부터 조사되는 레이저빔은 실린더리컬렌즈(330)를 지나면 반사수단(200)에 조사되는 레이저빔 포인트(400)의 크기가 커져 스캔수단(300)에 위치한 구동모듈(320)의 축이 외부충격에 의해 변화가 오더라도 정확한 위치좌표를 인식할 수 있게 된다. When the laser beam irradiated from the semiconductor laser 110 passes through the cylindrical lens 330, the size of the laser beam point 400 irradiated to the reflecting means 200 is increased, so that the driving module 320 of the driving module 320 located in the scanning means 300 is increased. Even if the axis changes due to external shock, it can recognize the exact position coordinate.
그리고, 반사수단(200)으로부터 회귀반사되는 레이저빔을 수광하여 레이저빔의 세기를 전기신호로 변환하는 광검출기(130) 및 광검출기(130)로부터 받은 레이저빔의 전기신호를 분석하여 위치좌표를 계산하는 마이콤(140)으로 이루어져 있다.  And, by receiving the laser beam retroreflected from the reflecting means 200 to convert the intensity of the laser beam into an electrical signal and the electrical signal of the laser beam received from the photodetector 130 and the position coordinates are analyzed It consists of a microcomputer 140 to calculate.
도 4는 본 발명에 따른 정삼각형미러의 전방에 실린더리컬렌즈가 결합된 물체감지수단이고, 도 5는 본 발명에 따른 정삼각형미러의 후방에 실린더리컬렌즈가 결합된 물체감지수단이다. 도 4와 도 5에 도시된 바와 같이, 실린더리컬렌즈(330)는 정다각형미러(310)와 일체형으로 구성될 수 있으며, 도 4와 도 5에서는 정다각형미러(310) 중에서 정삼각형미러(311)와 일체형으로 구성되었다.4 is an object detecting means in which a cylindrical lens is coupled to the front of the equilateral triangle mirror according to the present invention, and FIG. 5 is an object detecting means in which a cylindrical lens is coupled to the rear of the equilateral triangle mirror according to the present invention. As shown in FIGS. 4 and 5, the cylindrical lens 330 may be integrally formed with the regular polygonal mirror 310. It consisted of
도 4는 실린더리컬렌즈(330)가 정삼각형미러(311)의 전방에 위치하여, 반도체레이저(140)에서 조사되는 레이저빔의 폭을 확대하게 되고, 도 5는 실린더리컬렌즈(330)가 정삼각형미러(311)의 후방에 위치하여 반도체레이저(140)에서 조사되는 레이저빔의 폭을 확대하여 광학방식의 터치검출장치의 정확도를 높이고 있다.4 shows the cylindrical lens 330 located in front of the equilateral triangle mirror 311 to enlarge the width of the laser beam irradiated from the semiconductor laser 140, and FIG. 5 shows the cylindrical lens 330 of the equilateral triangle mirror. Located at the rear of 311, the width of the laser beam irradiated from the semiconductor laser 140 is increased to increase the accuracy of the optical type touch detection device.
도 6은 본 발명에 따른 정사각형미러의 전방에 실린더리컬렌즈가 결합된 물체감지수단이고, 도 7은 본 발명에 따른 정사각형미러의 후방에 실린더리컬렌즈가 결합된 물체감지수단이다. 도 6과 도 7에 도시된 바와 같이, 실린더리컬렌즈(330)는 정다각형미러(310)와 일체형으로 구성될 수 있으며, 도 6과 도 7에서는 정다각형미러(310) 중에서 정사각형미러(311)와 일체형으로 구성되었다.6 is an object detecting means in which a cylindrical lens is coupled to the front of the square mirror according to the present invention, and FIG. 7 is an object detecting means in which a cylindrical lens is coupled to the rear of the square mirror according to the present invention. As shown in FIGS. 6 and 7, the cylindrical lens 330 may be integrally formed with the regular polygon mirror 310, and in FIGS. 6 and 7 are integral with the square mirror 311 among the regular polygon mirrors 310. It consisted of
도 6은 실린더리컬렌즈(330)가 정사각형미러(312)의 전방에 위치하여, 반도체레이저(140)에서 조사되는 레이저빔의 폭을 확대하게 되고, 도 7은 실린더리컬렌즈(330)가 정사각형미러(312)의 후방에 위치하여 반도체레이저(140)에서 조사되는 레이저빔의 폭을 확대하여 광학방식의 터치검출장치의 정확도를 높이고 있다.FIG. 6 illustrates that the cylindrical lens 330 is located in front of the square mirror 312 to enlarge the width of the laser beam irradiated from the semiconductor laser 140. FIG. 7 shows that the cylindrical lens 330 is a square mirror. Located at the rear of the 312, the width of the laser beam irradiated from the semiconductor laser 140 is increased to increase the accuracy of the optical type touch detection device.
도 8은 본 발명에 따른 펜타프리즘의 원리를 나타낸 그림이다. 도 8에 도시된 바와 같이, 펜타프리즘(313)은 다섯 면을 갖는 반사 프리즘이며, 빛을 90°로 굴절시키는데 사용된다. 입사되는 빛은 프리즘 내부에서 두 번 반사되며, 입사각이 전반사를 일으킬 수 있는 최소각 보다 작기 때문에, 내부 전반사를 일으키지 않는다. 8 is a view showing the principle of the pentaprism according to the present invention. As shown in FIG. 8, pentaprism 313 is a reflective prism with five sides and is used to refract light at 90 °. The incident light is reflected twice inside the prism and does not cause total internal reflection since the angle of incidence is smaller than the minimum angle that can cause total reflection.
도 9는 본 발명에 따른 펜타프리즘의 전방에 실린더리컬렌즈가 결합된 물체감지수단이고, 도 10은 본 발명에 따른 펜타프리즘의 후방에 실린더리컬렌즈가 결합된 물체감지수단이다.도 9와 도 10에 도시된 바와 같이, 실린더리컬렌즈(330)는 정다각형미러(310)와 일체형으로 구성될 수 있으며, 도 9와 도 10에서는 정다각형미러(310) 중에서 펜타프리즘(313)과 일체형으로 구성되었다.9 is an object detecting means in which the cylindrical lens is coupled to the front of the penta prism according to the present invention, and FIG. 10 is an object detecting means in which the cylindrical lens is coupled to the rear of the penta prism according to the present invention. As shown in FIG. 10, the cylindrical lens 330 may be integrally formed with the regular polygonal mirror 310, and in FIGS. 9 and 10, the cylindrical lens 330 is integrally formed with the pentaprism 313 of the regular polygonal mirror 310.
도 9은 실린더리컬렌즈(330)가 펜타프리즘(313)의 전방에 위치하여, 반도체레이저(140)에서 조사되는 레이저빔의 폭을 확대하게 되고, 도 10은 실린더리컬렌즈(330)가 펜타프리즘(313)의 후방에 위치하여 반도체레이저(140)에서 조사되는 레이저빔의 폭을 확대하여 광학방식의 터치검출장치의 정확도를 높이고 있다. 또한, 본 발명에서는 모터(320)에 결합한 펜타프리즘(313)을 고정시키기 위한 지지부(340)를 펜타프리즘(313)과 모터(320)사이에 위치하게 하였다.9 illustrates that the cylindrical lens 330 is located in front of the pentaprism 313 to enlarge the width of the laser beam irradiated from the semiconductor laser 140. In FIG. 10, the cylindrical lens 330 is pentaprism. Located at the rear of 313, the width of the laser beam irradiated from the semiconductor laser 140 is increased to increase the accuracy of the optical type touch detection device. In addition, in the present invention, the support part 340 for fixing the pentaprism 313 coupled to the motor 320 is positioned between the pentaprism 313 and the motor 320.
도 11은 본 발명에 따른 45도 곡면미러를 이용한 물체감지수단이다. 도 11에 도시된 바와 같이, 45도 곡면미러(314)를 모터(320)상부에 장착하여 반사수단(200)에 조사되는 레이저빔의 폭을 확대하게 된다. 11 is an object detecting means using a 45 degree curved mirror according to the present invention. As shown in FIG. 11, the 45 degree curved mirror 314 is mounted on the motor 320 to expand the width of the laser beam irradiated to the reflecting means 200.
또한, 45도 곡면미러(314)를 모터(320)상부에 장착하면서 부품을 일체화하여 조립이 용이하고, 제조비용을 절감하는 효과가 있다. In addition, the 45 degree curved mirror 314 is mounted on the motor 320 while the parts are integrated to facilitate assembly and reduce manufacturing costs.
도 12는 본 발명에 따른 반사수단의 상세도이다. 도 12에 도시된 바와 같이, 반사수단(200)은 스크린의 좌, 우 및 하부 테두리를 따라 설치되며, 물체감지수단(100)으로부터 조사되는 라인빔을 다시 물체감지수단(100)으로 회귀반사하도록 형성된다. 반사수단(200)은 스크린(50)의 테두리에 설치되며 스크린(50)의 크기에 맞게 잘라 쓸수 있도록 양면테이프를 부착한 사각기둥형상의 스펀지(210)와 스펀지(210)의 상면에 형성되어 물체감지수단(100)으로부터 입사받은 레이저빔을 다시 물체감지수단(100)으로 회귀반사시키기 위한 희귀반사필름(230)과 희귀반사필름(230)이 형성되는 면과 교차되는 면에 그 희귀반사필름(230)보다 높게 설치되며 회부에서 유입되는 빛이 회귀반사필름(230)으로 진입하는 것을 방지하고, 라인빔의 산란광이 전면으로 향하여 사람의 눈으로 입사되는 것을 방지하도록 하는 보호필름(250)으로 구성된다.12 is a detailed view of the reflecting means according to the present invention. As shown in FIG. 12, the reflecting means 200 is installed along the left, right, and bottom edges of the screen, so that the line beam irradiated from the object sensing means 100 is returned back to the object sensing means 100. Is formed. The reflecting means 200 is installed at the edge of the screen 50 and formed on the upper surface of the sponge 210 and the rectangular pillar-shaped sponge 210 attached with a double-sided tape so as to be cut and used according to the size of the screen 50, the object The rare reflecting film on the surface intersecting the surface where the rare reflecting film 230 and the rare reflecting film 230 for retroreflecting the laser beam incident from the sensing means 100 back to the object sensing means 100 ( It is installed higher than 230 and consists of a protective film 250 to prevent the light flowing from the entrance to the retroreflective film 230, and to prevent the scattered light of the line beam to enter the human eye toward the front do.
도 13은 본 발명에 따른 회귀반사필름의 상세도이다. 도 13에 도시된 바와 같이, 회귀반사필름(230)은 톱날형상의 베이스필름층(231)과 그 베이스필름층(231)의 상부에 형성되는 반사층(233)과 그 반사층(233)의 상부에 형성되는 보호층(250)으로 이루어진다. 13 is a detailed view of the retroreflective film according to the present invention. As shown in FIG. 13, the retroreflective film 230 has a saw blade-shaped base film layer 231 and a reflective layer 233 formed on the base film layer 231 and an upper portion of the reflective layer 233. The protective layer 250 is formed.
도 14는 본 발명에 따른 다른예의 회귀반사필름 상세도이다. 도 14에 도시된 바와 같이, 회귀반사필름(230)은 베이스필름층(231)과 그 베이스필름층(231)의 상부에 형성되는 반사층(233)과 그 반사층(233)의 상부에 형성되는 고굴절유리알층(237)으로 이루어질 수도 있다.14 is a detailed view of a retroreflective film according to another embodiment of the present invention. As shown in FIG. 14, the retroreflective film 230 includes a reflective layer 233 formed on the base film layer 231 and the base film layer 231, and a high refractive index formed on the reflective layer 233. It may be made of a glass egg layer 237.
본 발명은 이상에서 살펴본 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.Although the present invention has been shown and described with reference to the preferred embodiments as described above, it is not limited to the above embodiments and those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.

Claims (11)

  1. 광학부에서 조사되는 레이저 빔의 폭을 확대하여 터치검출장치의 정확도를 높일 수 있는 안정화 장치에 있어서,In the stabilization device that can increase the accuracy of the touch detection device by expanding the width of the laser beam irradiated from the optical unit,
    스크린의 상부에 위치하여, 반사수단을 향해 레이저빔을 조사하고, 상기 반사수단으로부터 회귀반사되는 상기 레이저빔의 시간에 따른 광량 변화를 분석하여 상기 스크린의 평면상에 위치하는 지시물체의 위치좌표를 감지하도록 2개 이상으로 이루어진 물체감지수단; 및Located at the top of the screen, irradiates the laser beam toward the reflecting means, and analyzes the change in the amount of light of the laser beam reflected back from the reflecting means over time to determine the position coordinates of the pointer on the plane of the screen Two or more object sensing means for sensing; And
    상기 스크린의 좌, 우 및 하부 테두리를 따라 설치되어 상기 물체감지수단으로부터 조사되는 상기 레이저빔을 회귀반사하도록 하는 반사수단Reflecting means provided along the left, right and bottom edges of the screen to retroreflect the laser beam irradiated from the object detecting means.
    을 포함하여 구성되며, 상기 물체감지수단에는 상기 반사수단에 도달하는 상기 레이저빔의 폭을 확장시키기 위한 실린더리컬렌즈를 더 포함하여 이루어지는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.And the object detecting means further comprises a cylindrical lens for extending the width of the laser beam reaching the reflecting means.
  2. 제 1항에 있어서, The method of claim 1,
    상기 물체감지수단은, The object detecting means,
    상기 레이저빔을 조사하는 반도체레이저;A semiconductor laser for irradiating the laser beam;
    상기 반도체레이저의 전면에 설치되어 상기 반도체레이저로부터 조사되는 상기 레이저빔의 진행방향을 상기 스크린과 평행으로 만들기 위한 굴절수단;Refraction means installed on the front surface of the semiconductor laser to make the traveling direction of the laser beam irradiated from the semiconductor laser parallel to the screen;
    상기 굴절수단을 지난 상기 레이저빔을 상기 스크린에 위치한 상기 반사수단으로 조사하기 위한 스캔수단;Scanning means for irradiating said laser beam past said refracting means to said reflecting means located on said screen;
    상기 반사수단으로부터 회귀반사되는 상기 레이저빔을 수광하여 상기 레이저빔의 세기를 전기신호로 변환하는 광검출기; 및A photodetector for receiving the laser beam retroreflected from the reflecting means and converting the intensity of the laser beam into an electrical signal; And
    상기 광검출기로부터 받은 상기 레이저빔의 전기신호를 분석하여 위치좌표를 계산하는 마이콤Microcomputer to calculate the position coordinate by analyzing the electrical signal of the laser beam received from the photodetector
    을 더 포함하여 이루어지는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.Stabilizer of the optical type touch detection apparatus further comprises a.
  3. 제 2항에 있어서,The method of claim 2,
    상기 굴절수단은 하프미러, 편광빔스플리터 또는 전반사거울 중 어느 하나인 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The refraction means is a stabilizing device of the optical touch detection device, characterized in that any one of a half mirror, a polarizing beam splitter or a total reflection mirror.
  4. 제 2항에 있어서,The method of claim 2,
    상기 스캔수단은 상기 실린더리컬렌즈를 지난 상기 레이저빔의 진행방향을 상기 반사수단으로 바꾸기 위한 정다각형미러와 상기 정다각형미러를 360°회전시키기 위한 모터를 포함하는 구동모듈로 이루어지는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The scanning means includes an optical type touch module including a regular polygon mirror for changing the traveling direction of the laser beam passing through the cylindrical lens to the reflecting means, and a motor for rotating the regular polygon mirror by 360 °. Stabilization device of the detection device.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 정다각형미러는 정삼각형미러, 정사각형미러, 45도 곡면미러 또는 펜타프리즘 중 어느 하나인 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The regular polygon mirror is a stabilization device of the optical touch detection device, characterized in that any one of an equilateral triangle mirror, a square mirror, a 45 degree curved mirror or a penta prism.
  6. 제 2항에 있어서,The method of claim 2,
    상기 실린더리컬렌즈는 상기 굴절수단의 앞쪽 또는 뒤쪽에 설치되는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The cylindrical lens is stabilized device of the optical touch detection device, characterized in that installed in front of or behind the refraction means.
  7. 제 4항에 있어서,The method of claim 4, wherein
    상기 실린더리컬렌즈는 상기 정다각형미러와 일체형 또는 분리형으로 구성되는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The cylindrical lens is a stabilizing device of the optical type touch detection device, characterized in that configured with the regular polygon mirror integrally or separately.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 일체형으로 구성된 상기 실린더리컬렌즈는 상기 정다각형미러의 전면 또는 후면에 위치하는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The integrated cylindrical lens is a stabilization device of the optical touch detection device, characterized in that located on the front or rear of the regular polygon mirror.
  9. 제 1항에 있어서,The method of claim 1,
    상기 반사수단은 상기 스크린의 테두리에 설치되어 상기 스크린의 크기에 맞게 잘라쓸 수 있도록 한 사각기둥형상의 스펀지;The reflecting means is installed on the edge of the screen sponge to be cut to fit the size of the screen sponge;
    상기 스펀지의 상면에 형성되며 상기 물체감지수단으로부터 입사받은 레이저빔을 다시 상기 물체감지수단으로 회귀반사하도록 하는 회귀반사필름; 및A retroreflective film formed on an upper surface of the sponge to retroreflect the laser beam incident from the object sensing means back to the object sensing means; And
    상기 회귀반사필름보다 높게 설치되어 외부에서 유입되는 빛이 상기 회귀반사필름으로 진입하는 것을 방지하고, 상기 레이저빔의 산란광이 전면으로 향하여 사람의 눈으로 입사되는 것을 방지하기위한 보호필름The protective film is installed higher than the retroreflective film to prevent the light from entering the retroreflective film and to prevent the scattered light of the laser beam from entering the human eye.
    으로 이루어지는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.Stabilizer of the optical type touch detection device, characterized in that consisting of.
  10. 제 9항에 있어서,The method of claim 9,
    상기 회귀반사필름은 톱날형상의 베이스필름층과 상기 베이스필름층의 상부에 형성되는 반사층과 상기 반사층의 상부에 형성되는 보호층으로 이루어지는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The retroreflective film comprises a saw blade-shaped base film layer, a reflective layer formed on the base film layer and a protective layer formed on the reflective layer, stabilizing apparatus of the optical type touch detection device.
  11. 제 9항에 있어서,The method of claim 9,
    상기 회귀반사필름은 톱날형상의 베이스필름층과 상기 베이스필름층의 상부에 형성되는 반사층과 상기 반사층의 상부에 형성되는 고굴절유리알층으로 이루어지는 것을 특징으로 하는 광학방식 터치검출장치의 안정화 장치.The retroreflective film comprises a saw blade-shaped base film layer, a reflection layer formed on the base film layer and a high refractive glass egg layer formed on the reflection layer, stabilizing apparatus of the optical type touch detection device.
PCT/KR2014/005202 2013-06-19 2014-06-13 Stabilizer of optical touch detection device WO2014204138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0070431 2013-06-19
KR1020130070431A KR101504608B1 (en) 2013-06-19 2013-06-19 Stabilization equipment of optical type touch sensing device

Publications (1)

Publication Number Publication Date
WO2014204138A1 true WO2014204138A1 (en) 2014-12-24

Family

ID=52104817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005202 WO2014204138A1 (en) 2013-06-19 2014-06-13 Stabilizer of optical touch detection device

Country Status (2)

Country Link
KR (1) KR101504608B1 (en)
WO (1) WO2014204138A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514766A (en) * 2016-02-29 2016-04-20 北京仁光科技有限公司 Large-angle uniform line laser sector modulation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005182205A (en) * 2003-12-16 2005-07-07 Fuji Xerox Co Ltd Coordinate inputting device
KR20100120556A (en) * 2009-05-06 2010-11-16 최영순 Apparatus for determining touch position in line-type beam
KR20100127205A (en) * 2009-03-27 2010-12-03 티피케이 터치 솔루션스 인코포레이션 Touching device and light source structure thereof
KR20110049454A (en) * 2009-11-05 2011-05-12 정승태 The pointing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005182205A (en) * 2003-12-16 2005-07-07 Fuji Xerox Co Ltd Coordinate inputting device
KR20100127205A (en) * 2009-03-27 2010-12-03 티피케이 터치 솔루션스 인코포레이션 Touching device and light source structure thereof
KR20100120556A (en) * 2009-05-06 2010-11-16 최영순 Apparatus for determining touch position in line-type beam
KR20110049454A (en) * 2009-11-05 2011-05-12 정승태 The pointing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514766A (en) * 2016-02-29 2016-04-20 北京仁光科技有限公司 Large-angle uniform line laser sector modulation device

Also Published As

Publication number Publication date
KR20140147348A (en) 2014-12-30
KR101504608B1 (en) 2015-03-27

Similar Documents

Publication Publication Date Title
US8659561B2 (en) Display device including optical sensing frame and method of sensing touch
JP5341057B2 (en) Touch sensing method and display device using the same
ES2888934T3 (en) Optical touch screen with a lossy dispersive FTIR coating
EP2339438B1 (en) Optical touch input system and method of establishing reference in the same
KR20060135610A (en) Touch input screen using a light guide
JP2017514232A5 (en)
US20110187678A1 (en) Touch system using optical components to image multiple fields of view on an image sensor
JP2011065620A (en) Optical touch device, method of detecting location of light shielding object and linear light source module
JPWO2010137219A1 (en) Touch panel, liquid crystal panel, liquid crystal display device, and touch panel integrated liquid crystal display device
JP2010277122A (en) Optical position detection apparatus
TW201229860A (en) Optical touch screen and method for assembling the same
CN101609381A (en) Use the touch-detection sensing device of camera and reflective mirror
TW201120710A (en) Optical sensing unit, display module and display device using the same
JP2012133452A (en) Reflective plate and reflective frame
TWI559193B (en) Optical touch screens
WO2014204138A1 (en) Stabilizer of optical touch detection device
JP4637884B2 (en) Optical digitizer
US20120154825A1 (en) Location identification sensor, electronic device, and display device
CN102063228B (en) Optical sensing system and touch screen applying same
KR101308477B1 (en) Method for Detecting Touch and Display Device Using the Same
KR101310827B1 (en) Electric board
KR101322281B1 (en) Touch Sensor Module with Transparent Lens for Display and Optical Device containing the same
KR20130084734A (en) Touch sensor module with reflective mirror for display and optical device containing the same
KR101409818B1 (en) Optical Device for Display and Driving Method thereof
TW201437883A (en) Method for detecting touch position and optical touch apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 10.05.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14814079

Country of ref document: EP

Kind code of ref document: A1