WO2014204042A1 - Method for forming carbon nanotube fine wiring, fine wiring board formed using same, and carbon nanotube dispersion solution for manufacturing fine wiring - Google Patents

Method for forming carbon nanotube fine wiring, fine wiring board formed using same, and carbon nanotube dispersion solution for manufacturing fine wiring Download PDF

Info

Publication number
WO2014204042A1
WO2014204042A1 PCT/KR2013/006152 KR2013006152W WO2014204042A1 WO 2014204042 A1 WO2014204042 A1 WO 2014204042A1 KR 2013006152 W KR2013006152 W KR 2013006152W WO 2014204042 A1 WO2014204042 A1 WO 2014204042A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
group
carbon nanotube
wiring
substrate
Prior art date
Application number
PCT/KR2013/006152
Other languages
French (fr)
Korean (ko)
Inventor
최웅수
고영건
오현철
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2014204042A1 publication Critical patent/WO2014204042A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires

Definitions

  • the present invention relates to a method for forming a carbon nanotube fine wiring, a micro wiring substrate formed thereby, and a carbon nanotube dispersion solution for use in manufacturing the substrate, wherein the wiring of the carbon nanotubes is formed long and has excellent connectivity.
  • the present invention relates to a method for forming a carbon nanotube fine wiring, which realizes a fine line width and shortens the time for forming the wiring.
  • Carbon nanotubes which are recognized as one of the nanomaterials that will lead the 21st century, are receiving great attention as materials with high industrial applications.
  • the carbon nanotubes (CNTs) are structurally anisotropic in nature and may have structures such as singlewall (SW) and multiwall (MW), such as strand form or bundle form. It can take many forms.
  • the structural shape may have the properties of a conductor or a semiconductor, the energy gap may vary depending on the diameter, and has a quasi one-dimensional structure of a thin and long tube form, showing a specific quantum effect.
  • Carbon nanotubes exhibiting such unique physical properties can be applied to materials such as flat panel display devices and highly integrated memory devices of information and communication devices, and have characteristics that can overcome the functional limitations of existing devices. Accordingly, the academic community has been paying attention to carbon nanotubes as a material for increasing the degree of integration of semiconductors.
  • the tubes can be arranged, there is a disadvantage in that uniform field emission characteristics cannot be obtained in a large area, and growth conditions (about 500 ° C.) are severe.
  • growth conditions about 500 ° C.
  • the wiring is formed through the method of growing the carbon nanotubes, the time required for forming the wiring is considerable, and the length of the wiring is limited within the length of one strand of carbon nanotubes.
  • Korean Patent Laid-Open Publication No. 10-2007-0104809 employs a method of aligning carbon nanotubes using electrophoresis, which also has a limitation that the length of the wiring does not exceed the length of one strand of carbon nanotubes.
  • inkjet technology which is useful for forming wiring on a flexible substrate. It is difficult to realize a fine line width when forming fine wires, and has a high electric resistance due to a low height compared to the wire width of the lead wire, Due to evaporation, there is a problem that the central portion of the wire cross section is not formed to a sufficient thickness.
  • a method of arranging the conductive lines on a substrate there are a method of forming a wiring through a process of repeatedly performing exposure, etching, and coating, a roll-to-roll printing method, an inkjet method, etc. There is a difficulty in forming the wiring.
  • the method for forming a carbon nanotube microwire the first step of preparing a dispersion solution containing carbon nanotubes dispersed in a solvent, using the dispersion solution A second step of forming a droplet on the substrate, a third step of applying an electric field to the droplet using two electrodes and arranging the carbon nanotubes in a rope-type, and in the droplet And evaporating the solvent of the dispersion solution included therein to form a linear carbon nanotube microwire.
  • the electric field may be applied at 0.1 to 5000 V / mm.
  • the carbon nanotubes may be any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof.
  • coated multi-walled carbon nanotubes or coated single-walled carbon nanotubes are any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. May be coated.
  • the conductive polymer material is any one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, poly sulfur nitride, and combinations thereof
  • the conductive metal material may be any one selected from the group consisting of gold, silver, copper, iron, aluminum, tungsten, and a combination thereof.
  • the solvent may be any one selected from the group consisting of deionized water, ethanol, methanol, silicon oil, benzene, a compound having a functional group bonded to a benzene compound, and a combination thereof, and the functional group is a halogen group, an amine group, an ether group. It may be any one selected from the group consisting of alcohol group, aldehyde group, carboxyl group, alkyl group and combinations thereof.
  • the dispersion solution may comprise 0.001 to 80% by weight of the carbon nanotubes.
  • the substrate is a material selected from the group consisting of glass, silicon wafers, polyimide, polyethylene terephthalate, polystyrene, polyethylene, polypropylene, polycarbonate, polyethersulfone, polynorbornene, polyethylene naphthalate, arlite and combinations thereof. It may be made of a surface consisting of.
  • the two electrodes may be selected from the group consisting of a rod-shaped electrode, a needle-shaped electrode, and a combination thereof.
  • evaporation of the solvent may be performed by natural evaporation, evaporation using heat, vacuum evaporation, and a combination thereof.
  • the carbon nanotube fine wiring may be formed to be substantially horizontal with the substrate.
  • the carbon nanotube fine wiring may have a line width of 100 ⁇ m or less.
  • the application of the electric field of the third step and the arrangement of the carbon nanotubes in the bundle form may be made within 5 seconds.
  • the substrate may be a flexible substrate.
  • the microwiring substrate according to another embodiment of the present invention includes a carbon nanotube microwiring including a base and a bundle of carbon nanotubes arranged on the substrate and arranged by an electric field.
  • the carbon nanotube microwires may have a line width of 100 ⁇ m or less, and a length direction thereof may be substantially parallel to the substrate.
  • the carbon nanotubes may be any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof.
  • Coated multi-walled carbon nanotubes or coated single-walled carbon nanotubes are any conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. It may be coated.
  • the substrate may be a flexible substrate.
  • the substrate is a material selected from the group consisting of glass, silicon wafers, polyimide, polyethylene terephthalate, polystyrene, polyethylene, polypropylene, polycarbonate, polyethersulfone, polynorbornene, polyethylene naphthalate, arlite and combinations thereof. It may be made of a surface consisting of.
  • the solvent may be any one selected from the group consisting of deionized water, ethanol, methanol, silicon oil, benzene, a compound having a functional group bonded to a benzene compound, and a combination thereof.
  • the functional group may be a halogen group, an amine group, an ether group, It may be any one selected from the group consisting of alcohol group, aldehyde group, carboxyl group, alkyl group and combinations thereof.
  • the carbon nanotubes may include any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof. Can be.
  • a first step of preparing a dispersion solution containing carbon nanotubes dispersed in a solvent, to form a droplet on the substrate using the dispersion solution The second step, applying an electric field to the droplet using two electrodes and the third step of arranging the carbon nanotubes in the form of a bundle and linear carbon nanotube fine by evaporating the solvent of the dispersion solution contained in the droplet.
  • a fourth step of forming the wiring is included.
  • the carbon nanotubes in the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes and combinations thereof Any one selected, that is, the carbon nanotubes included in the dispersion solution may be made of only coated, uncoated only, or may be a combination of coated and uncoated.
  • the coated material of the coated multi-walled or single-walled carbon nanotubes may be any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof.
  • the conductive polymer material may be any one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polysulfuride, and combinations thereof, and the conductive metal material may be, for example, gold, silver, copper, It may be any one selected from the group consisting of iron, aluminum, tungsten and combinations thereof.
  • the carbon nanotube microwiring formed by coating the carbon nanotubes with the above materials improves the electrical conductivity of the microwiring including the carbon nanotubes formed on the substrate, and provides smooth conduction of electricity even at the connection sites between the carbon nanotubes. It has the advantage of providing an effect that can be achieved.
  • the solvent of the dispersion solution it is preferable to use a solvent capable of excellent dispersion of carbon nanotubes or coated carbon nanotubes, and specifically, for example, deionized water, ethanol, methanol, silicon oil, Benzene, a compound in which a functional group is bonded to a benzene compound and any one selected from the group consisting of a combination thereof, the functional group consisting of a halogen group, amine group, ether group, alcohol group, aldehyde group, carboxyl group, alkyl group and combinations thereof It may be any one selected from the group.
  • the dispersion solution may include the carbon nanotubes in an amount of 0.001 to 80% by weight, preferably 0.005 to 40% by weight, and more preferably 0.01 to 2% by weight.
  • the substrate may be applied as long as it forms a wiring on the surface thereof and may be a substrate capable of forming a fine wiring including a bundle of carbon nanotubes using an electric field.
  • the droplets formed on the substrate there is no restriction on the amount or size of the droplets formed on the substrate, and the droplets may be formed using methods such as inkjet printing, ink plotter, syringe, capillary tube, and the like.
  • the electric field may be applied at 0.1 to 5000 V / mm, preferably 500 to 5000 V / mm, the strength of the electric field is the concentration of carbon nanotubes in the dispersion solution phase, carbon nano It can be applied differently depending on the conditions such as the amount of coating the tube, the amount of droplets, the shape of the electrode or the desired length of the wiring, and the carbon nanotubes can be effectively arranged when an electric field of at least about 500 V / mm is applied. have.
  • the time required from applying the electric field to arranging the carbon nanotubes in the form of a straight bundle may be made within 5 seconds.
  • This is a method of forming carbon nanotube microwiring, which is considerably shorter in forming a microwiring time and does not require a special reaction system, compared to the case of forming a wiring through a method of growing carbon nanotubes on a substrate. Can be.
  • the two electrodes used may be selected from the group consisting of a rod-shaped electrode, a needle-shaped electrode, and a combination thereof.
  • the wiring shape of the carbon nanotubes arranged may vary according to the shape of the electrode.
  • the wiring when using a rod-shaped electrode, the wiring may be arranged in a form of several wires. It can be arranged to form a fine line width.
  • the area of the electrode in contact with the surface of the substrate can be reduced, and the narrower the contact area, the more the electric field is concentrated in the unit area. It can form an electric field.
  • the carbon nanotubes dispersed in the droplets may form a pattern of carbon nanotubes at the shortest distance between the two electrodes by a relatively strong electric field, and apply a strong electric field even when the applied electric field is weak.
  • a straight line wiring similar to one case can be formed.
  • Carbon nanotubes arranged by applying the electric field may be arranged in the form of a bundle.
  • the wiring is arranged in a bundle form, since the connection between the carbon nanotubes is more stable and dense than the arrangement of the strands, the electrical resistance is low, a long wiring can be formed, and the electrical conductivity is better. It is possible to form a wiring with.
  • the wiring can be formed on a variety of substrates such as a flexible film by a simple method.
  • evaporation of the solvent may be performed by natural evaporation, evaporation using heat, vacuum evaporation, and a combination thereof.
  • the natural evaporation is a method of drying at room temperature (about 25 °C)
  • the evaporation using heat is a method of drying by indirectly applying heat to the substrate after the arrangement of carbon nanotubes.
  • the vacuum evaporation is to perform drying under reduced pressure.
  • the carbon nanotube microwiring formed by the above method may be formed horizontally with the substrate, wherein the horizontal is a concept that includes a substantially horizontal in a state not perpendicular to the plane, for example, horizontal or It includes any angle between horizontal and vertical, and does not mean only strict horizontal.
  • the line width of the carbon nanotube fine wiring can be formed by adjusting as necessary. Preferably, it may be 100 ⁇ m or less, 10 ⁇ m to 100 ⁇ m, and 70 ⁇ m to 100 ⁇ m.
  • the carbon nanotube fine wiring can form a wire having a fine line width smaller than the above-described line width, can form a wire having a line width of 10 ⁇ m or less, and can form a wire having a line width of 0.05 to 5 ⁇ m. have.
  • the height of the carbon nanotube microwires (meaning the height measured in a direction perpendicular to the substrate) may be a ratio (height / line width) based on the line width of the carbon nanotube microwires of 0.3 / 1 or more, and 0.3 / 1 to 1/1 may be.
  • the height of the fine wiring is sufficiently large as compared with the line width, it is possible to form the fine wiring having high electrical conductivity.
  • the substrate may be a flexible substrate, thereby forming the carbon nanotube microwiring on the flexible substrate can be applied to various fields.
  • the microwiring substrate according to another embodiment of the present invention includes a carbon nanotube microwiring including a base and a bundle of carbon nanotubes arranged on the substrate and arranged by an electric field.
  • the carbon nanotube microwiring of the microwiring substrate may have a line width of 100 ⁇ m or less and a line width of 0.05 to 10 ⁇ m.
  • the carbon nanotube microwiring may have any length between the substrate and the horizontal or horizontal and vertical in the longitudinal direction.
  • the micro wiring substrate may be a flexible substrate.
  • the carbon nanotubes of the microwiring substrate may be any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof. have.
  • the coated material of the coated multi-walled or single-walled carbon nanotubes may be any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof.
  • the conductive polymer material may be any one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polysulfuride, and combinations thereof, and the conductive metal material may be, for example, gold, silver, copper, It may be any one selected from the group consisting of iron, aluminum, tungsten and combinations thereof.
  • Carbon nanotube dispersion solution for producing a micro wiring a solvent and a carbon nanotube dispersed in the solvent.
  • the solvent may be used without limitation as long as it can be removed after dispersing the carbon nanotubes and forming a wiring, and specifically, for example, deionized water, ethanol, methanol, silicon oil, benzene, a benzene compound having a functional group bonded thereto. Any one selected from the group consisting of compounds and combinations thereof may be applied to the solvent.
  • the functional group may be any one selected from the group consisting of a halogen group, an amine group, an ether group, an alcohol group, an aldehyde group, a carboxyl group, an alkyl group and combinations thereof.
  • the dispersion solution, the carbon nanotubes may be included in 0.001 to 80% by weight, preferably 0.005 to 40% by weight, more preferably 0.01 to 2% by weight.
  • the carbon nanotube microwiring method of the present invention has a significantly shorter time compared to a method of forming a wiring by directly growing on a conventional substrate, and can form a wiring finely, and at the same time, it is arranged in a bundle form. Excellent electrical conductivity due to excellent connectivity and compactness, it is possible to make the wiring considerably longer by the desired length using the method of the present invention.
  • FIG. 1 is a flowchart illustrating a process of forming carbon nanotube microwiring using an electric field according to an embodiment of the present invention.
  • FIG. 2 is a transmission electron micrograph (a) of the multi-walled carbon nanotubes and an electron transmission micrograph (b) of the multi-walled carbon nanotubes coated with polyaniline.
  • FIG. 3 is an electron micrograph of a micro wiring board in which a solvent is evaporated and dried in a state where an electric field is applied at 500 V / mm in Example 1 of the present invention.
  • FIG. 4 is an electron micrograph of a microwiring substrate in which a solvent is evaporated and dried in a state in which an electric field is not applied (applied an electric field of 0 V / mm) in Comparative Example 1 of the present invention.
  • FIG. 5 is an electron micrograph of a micro wiring board in which a solvent is evaporated and dried in a state where an electric field is applied at 250 V / mm in Example 8 of the present invention.
  • Microwires were formed using multiwall carbon nanotubes (MWCNTs).
  • Figure 2 (a) is a transmission electron micrograph of the MWCNT used in Example 1, referring to the TEM photograph of Figure 2, the MWCNT used in the embodiment is a quasi-dimensional material having an elongated shape, a hollow inside It was found that there was a space and a carbon layer showing clear and regular lattice on both sides of the interior space.
  • the MWCNTs were formed after coating with polyaniline, and the MWCNTs coated with polyaniline are shown in FIG. 2 (b), and the MWCNTs were well coated on the surface of the MWCNT.
  • the MWCNTs coated with the polyaniline were dispersed in benzene, a dispersion solvent, to prepare a 0.5 wt% MWCNTs dispersion solution (first step).
  • the MWCNTs dispersion solution was dropped in a droplet state on a glass substrate having rod electrodes disposed on both sides, and an electric field of 500 V / mm was applied to the glass substrate using an electrode disposed on the glass substrate, thereby obtaining polyaniline in the dispersion solution.
  • a glass substrate is arranged multi-walled carbon nanotubes coated with (second step and third step).
  • the solvent contained in the dispersion solution was evaporated into air by natural evaporation to obtain carbon nanotube microwiring (step 4).
  • Example 3 The results of observing the microwires of Example 1 with a scanning electron microscope are shown in FIG. 3, and from FIG. 3, the microwires of Example 1 form bundles of MWCNTs, each having a width of about 100 ⁇ m and a length of about 2.5 mm. It was confirmed that it was formed. In addition, it was confirmed that the fine wiring had a cross-sectional area in the height direction of about 5000 ⁇ m 2 and a height measured in the direction perpendicular to the substrate was about 55 ⁇ m.
  • Example 2 Except for using a silicon wafer substrate instead of a glass substrate was carried out in the same manner as in Example 1 to obtain a carbon nanotube micro-wired silicon wafer substrate with a fine wiring formed of a bundle of carbon nanotubes coated with polyaniline.
  • the formed wiring of Example 2 was found to have a width of about 90 ⁇ m and a length of about 2 mm, and a cross-sectional area of about 5500 ⁇ m 2 , and that the carbon nanotube wiring was well formed on the silicon wafer substrate by the method of the present invention. It was confirmed.
  • Example 3 Except for using a polyimide film instead of a glass substrate was carried out in the same manner as in Example 1 to obtain a carbon nanotube micro-wiring polyimide film was formed with fine wiring of carbon nanotubes coated with polyaniline.
  • the wiring of Example 3 formed had a width of about 90 ⁇ m and a length of about 2.3 mm and a cross-sectional area of about 5200 ⁇ m. 2 Has been verified as It was confirmed that the carbon nanotube wiring was well formed by the method of the present invention on the polyimide film.
  • a carbon nanotube micro-wired glass substrate having a fine wiring of polypyrrole-coated carbon nanotubes was formed in the same manner as in Example 1 except that the carbon nanotubes were coated with polypyrrole instead of polyaniline.
  • the polypyrrole-coated carbon nanotube bundle was confirmed that the wiring is well formed, the wiring of Example 4 formed on the glass substrate was about 100 ⁇ m in width and about 2.4 mm in length, the cross-sectional area It was observed to be about 5000 ⁇ m 2 .
  • a carbon nanotube micro-wired glass substrate was formed in which fine wires of carbon nanotubes coated with polythiophene were formed in the same manner as in Example 1, except that the carbon nanotubes were coated with polythiophene instead of polyaniline. .
  • the polythiophene-coated carbon nanotube bundle was confirmed that the wiring is well formed, the wiring of Example 5 formed on the glass substrate was about 100 ⁇ m in width and about 2.5 mm in length, The cross-sectional area was observed to be about 5000 ⁇ m 2 .
  • the fine wiring glass substrate was obtained. Fine interconnections formed of bundles of polyaniline-coated carbon nanotubes were about 80 ⁇ m wide and about 2.5 mm long, with a cross-sectional area of about 6000 ⁇ m 2 .
  • the carbon nanotubes are finely formed by performing the same method as in Example 1 with the fine wiring of the polyaniline-coated carbon nanotubes.
  • a wiring glass substrate was obtained. Fine interconnections formed of bundles of polyaniline-coated single-walled carbon nanotubes were about 100 ⁇ m wide and about 2.5 mm long, with a cross-sectional area of about 5000 ⁇ m 2 .
  • Example 2 In the same manner as in Example 1, the dispersion solution in which the polyaniline-coated MWCNTs were dispersed in benzene at 0.5% by weight was dropped in a droplet state on a glass substrate having bar electrodes disposed on both sides, and no electric field was applied. Solvent was evaporated.
  • the wiring of Comparative Example 1 thus obtained is shown in FIG. 4.
  • the carbon nanotubes did not form an elongated bundle and the carbon nanotubes were arranged in the form of round droplets.
  • the carbon nanotubes are hardly arranged in the central portion of the round shape, because the carbon nanotubes are arranged to move to the edge of the droplet during the evaporation of the dispersion solvent.
  • Example 8 The scanning electron micrograph of the formed wiring of Example 8 is shown in FIG. 5 and formed of several strands, but each wiring was confirmed to have a wiring having a clearly connected form. From this result, it was confirmed that the shape of the wiring can be adjusted by adjusting the electric field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for forming carbon nanotube fine wiring and to a fine wiring board formed using same, the method comprising: a first step of preparing a dispersion solution comprising carbon nanotubes dispersed in a solvent; a second step of forming a droplet on a base material by using the dispersion solution; a third step of applying an electric field to the droplet by using two electrodes, and arranging the carbon nanotubes in multiple-strand form (rope-type); and a fourth step of evaporating the solvent of the dispersion solution contained in the droplet and thus forming linear carbon nanotube fine wiring. Also, the fine wiring board comprises the base material and carbon nanotube fine wiring comprising the carbon nanotubes of multiple-strand form which are located on the base material and have been arranged by the electric field. That is to say, when the wiring is arranged by the method of forming carbon nanotube fine wiring of the present invention, long wiring can be formed and simultaneously wiring having outstanding electrical conductivity can be formed, and the time taken to form the wiring can be shortened.

Description

탄소나노튜브 미세배선 형성방법, 이에 의하여 형성된 미세배선기판 및 이 미세배선 제조용 탄소나노튜브 분산용액Method for forming carbon nanotube microwires, microwire substrate formed thereby and carbon nanotube dispersion solution for manufacturing the microwires
본 발명은 탄소나노튜브 미세 배선을 형성하는 방법, 이에 의하여 형성된 미세배선기판 및 이 기판을 제조하는 용도로 쓰이는 탄소나노튜브 분산용액에 관한 것으로, 탄소나노튜브의 배선이 길게 형성되고, 연결성이 뛰어나며, 미세한 선폭을 구현함과 동시에 상기 배선을 형성하는 시간이 단축된 탄소나노튜브 미세 배선 형성방법에 관한 것이다.The present invention relates to a method for forming a carbon nanotube fine wiring, a micro wiring substrate formed thereby, and a carbon nanotube dispersion solution for use in manufacturing the substrate, wherein the wiring of the carbon nanotubes is formed long and has excellent connectivity. In addition, the present invention relates to a method for forming a carbon nanotube fine wiring, which realizes a fine line width and shortens the time for forming the wiring.
21세기를 이끌어갈 나노물질의 하나로 인식되고 있는 탄소나노튜브는 산업적 응용 가능성이 높은 물질로 크게 각광받고 있다. 이러한 탄소나노튜브(carbon nanotube: CNT)는 구조적으로 비등방성이 크고, 단일벽(singlewall, SW), 다중벽(multiwall, MW) 등의 구조를 가질 수 있으며, 가닥 형태 또는 다발(rope)형태 등 여러 가지 형태를 가질 수 있다. 또한, 구조적인 형태에 따라 도체 또는 반도체의 성질을 가질 수 있고, 직경에 따라 에너지 갭이 달라질 수 있으며, 얇고 긴 튜브 형태의 준일차원적 구조를 가지고 있어서 특이한 양자효과를 나타내는 물질이다.Carbon nanotubes, which are recognized as one of the nanomaterials that will lead the 21st century, are receiving great attention as materials with high industrial applications. The carbon nanotubes (CNTs) are structurally anisotropic in nature and may have structures such as singlewall (SW) and multiwall (MW), such as strand form or bundle form. It can take many forms. In addition, the structural shape may have the properties of a conductor or a semiconductor, the energy gap may vary depending on the diameter, and has a quasi one-dimensional structure of a thin and long tube form, showing a specific quantum effect.
이렇게 특이한 물성을 나타내는 탄소나노튜브는 정보통신기기의 평면표시소자, 고집적 메모리소자 등의 재료로 응용될 수 있으며, 기존의 소자가 갖는 기능적인 한계를 넘어설 수 있는 특성을 갖고 있다. 이에, 그 동안 학계에서는 반도체의 집적도를 높이기 위한 물질로 탄소나노튜브를 주목을 해왔다.Carbon nanotubes exhibiting such unique physical properties can be applied to materials such as flat panel display devices and highly integrated memory devices of information and communication devices, and have characteristics that can overcome the functional limitations of existing devices. Accordingly, the academic community has been paying attention to carbon nanotubes as a material for increasing the degree of integration of semiconductors.
탄소나노튜브를 소자에 응용하기 위해서는 탄소나노튜브를 이용하여 가늘고 긴 배선을 형성하는 기술이 필요한데, 그 동안 충분히 가늘고 긴 탄소나노튜브 배선을 형성하는데 기술적인 한계가 있었다.In order to apply carbon nanotubes to devices, a technique for forming thin and long wirings using carbon nanotubes is required, and there have been technical limitations in forming sufficiently long and long carbon nanotube wirings.
공개특허 10-2010-0123144에서는 탄소나노튜브를 기판 위에서 배열하고, 그 후 결정을 성장시키는 방식을 채용하고 있는데, 탄소나노튜브를 성장시킬 때 반도체 탄소나노튜브만을 선택적으로 성장시키기는 어렵고, 기판 위에 이미 성장된 탄소나노튜브들로부터 반도체 탄소나노튜브만을 정제해내기도 아주 어렵다는 문제점이 있었다. 문헌 [B. Peng, S. Jiang, Y. Zhang, J. Zhang, Carbon, 2011, 49, 2555 - 2560] 및 미국 공개특허 US 2005/0230270에서 탄소나노튜브를 플라즈마 상태에서 성장시키는 방법으로 기판에 수직인 탄소나노튜브를 배열시킬 수 있다고 개시하고 있으나, 대면적에서 균일한 전계방출 특성을 얻을 수 없으며, 성장 조건(약 500℃)이 가혹하다는 단점이 있다. 또한, 이처럼 탄소나노튜브를 성장하는 방식을 통해서는 배선을 형성할 경우에는, 배선 형성에 소요되는 시간이 상당하며, 배선의 길이가 탄소나노튜브 한 가닥의 길이 내에서 이루어진다는 한계가 있다.In Korean Patent Laid-Open Publication No. 10-2010-0123144, carbon nanotubes are arranged on a substrate and then crystals are grown. However, when growing carbon nanotubes, it is difficult to selectively grow only semiconductor carbon nanotubes, It was also very difficult to purify only semiconductor carbon nanotubes from already grown carbon nanotubes. See, B. Peng, S. Jiang, Y. Zhang, J. Zhang, Carbon, 2011, 49 , 2555-2560] and US Patent Publication No. 2005/0230270, carbon nanotubes perpendicular to a substrate by growing carbon nanotubes in a plasma state. Although it is disclosed that the tubes can be arranged, there is a disadvantage in that uniform field emission characteristics cannot be obtained in a large area, and growth conditions (about 500 ° C.) are severe. In addition, when the wiring is formed through the method of growing the carbon nanotubes, the time required for forming the wiring is considerable, and the length of the wiring is limited within the length of one strand of carbon nanotubes.
한국공개특허 10-2007-0104809에서는 전기영동을 이용하여 탄소나노튜브를 정렬하는 방식을 채용하고 있는데, 이 역시도 배선의 길이가 탄소나노튜브 한가닥의 길이를 벗어나지 못한다는 한계를 안고 있다.Korean Patent Laid-Open Publication No. 10-2007-0104809 employs a method of aligning carbon nanotubes using electrophoresis, which also has a limitation that the length of the wiring does not exceed the length of one strand of carbon nanotubes.
한편, 유연(flexible)기판 상에 배선 형성에 유용한 잉크젯 기술의 응용도 시도되고 있는데, 미세 배선 형성시 선폭을 미세하게 구현하는 것이 어려우며, 도선의 선폭에 비해 높이가 낮아 전기저항이 크고, 용매의 증발로 인해 도선 단면의 중심부분이 충분한 두께로 형성되지 않는 문제점이 있다. 이 외에 기판 위에 도선을 배열하는 방법으로는, 노광, 식각 및 코팅 등을 반복적으로 수행하는 과정을 거쳐 배선을 형성시키는 방법, 롤투롤 인쇄기법 및 잉크젯 방법 등이 있으나, 충분한 전기전도도를 가지면서 미세한 배선을 형성시키는 데에는 어려움이 있다.On the other hand, application of inkjet technology, which is useful for forming wiring on a flexible substrate, has also been attempted. It is difficult to realize a fine line width when forming fine wires, and has a high electric resistance due to a low height compared to the wire width of the lead wire, Due to evaporation, there is a problem that the central portion of the wire cross section is not formed to a sufficient thickness. In addition, as a method of arranging the conductive lines on a substrate, there are a method of forming a wiring through a process of repeatedly performing exposure, etching, and coating, a roll-to-roll printing method, an inkjet method, etc. There is a difficulty in forming the wiring.
본 발명의 목적은 짧은 시간 내에 배선의 길이가 길고, 탄소나노튜브들 사이의 연결성이 뛰어나며, 선폭이 미세한 탄소나노튜브 배선을 형성하는 방법을 제공하는 것이다. 본 발명의 다른 목적은, 긴 배선과 미세한 선폭을 가지면서도 충분한 전기전도도를 가지는 탄소나노튜브가 배열된 기재를 제공하는 것이다.An object of the present invention is to provide a method for forming a carbon nanotube wiring having a long wire length, excellent connectivity between carbon nanotubes, and a fine line width within a short time. Another object of the present invention is to provide a substrate in which carbon nanotubes having a long wiring and a fine line width and having sufficient electric conductivity are arranged.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 탄소나노튜브 미세배선의 형성방법은, 용매에 분산된 탄소나노튜브들을 포함하는 분산용액을 준비하는 제1단계, 상기 분산용액을 이용하여 기재 상에 액적(droplet)을 형성하는 제2단계, 두 개의 전극을 이용하여 상기 액적에 전기장을 인가하고 탄소나노튜브들을 다발의 형태(rope-type)로 배열시키는 제3단계, 그리고 상기 액적에 포함되어 있는 분산용액의 용매를 증발시켜 선형의 탄소나노튜브 미세배선을 형성하는 제4단계를 포함한다.In order to achieve the above object, the method for forming a carbon nanotube microwire according to an embodiment of the present invention, the first step of preparing a dispersion solution containing carbon nanotubes dispersed in a solvent, using the dispersion solution A second step of forming a droplet on the substrate, a third step of applying an electric field to the droplet using two electrodes and arranging the carbon nanotubes in a rope-type, and in the droplet And evaporating the solvent of the dispersion solution included therein to form a linear carbon nanotube microwire.
상기 제3단계에서 전기장은 0.1 내지 5000 V/mm로 인가되는 것일 수 있다.In the third step, the electric field may be applied at 0.1 to 5000 V / mm.
상기 탄소나노튜브들은 다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있다.The carbon nanotubes may be any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof.
상기 코팅된 다중벽 탄소나노튜브 또는 코팅된 단일벽 탄소나노튜브는 전도성 고분자 재료, 전도성 금속 재료 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 전도성 재료로 다중벽 탄소나노튜브 또는 단일벽 탄소나노튜브가 코팅된 것일 수 있다.The coated multi-walled carbon nanotubes or coated single-walled carbon nanotubes are any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. May be coated.
상기 전도성 고분자 재료는 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), 폴리티오펜(polythiophene), 폴리아세틸렌(polyacethylene), 폴리설퍼니트라이드(poly sulfur nitride) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있고, 상기 전도성 금속 재료는 금, 은, 구리, 철, 알루미늄, 텅스텐 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있다.The conductive polymer material is any one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, poly sulfur nitride, and combinations thereof The conductive metal material may be any one selected from the group consisting of gold, silver, copper, iron, aluminum, tungsten, and a combination thereof.
상기 용매는, 탈이온수, 에탄올, 메탄올, 실리콘오일, 벤젠, 벤젠화합물에 기능기가 결합된 화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있고, 상기 기능기는 할로겐기, 아민기, 에테르기, 알코올기, 알데하이드기, 카르복실기, 알킬기 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있다.The solvent may be any one selected from the group consisting of deionized water, ethanol, methanol, silicon oil, benzene, a compound having a functional group bonded to a benzene compound, and a combination thereof, and the functional group is a halogen group, an amine group, an ether group. It may be any one selected from the group consisting of alcohol group, aldehyde group, carboxyl group, alkyl group and combinations thereof.
상기 분산용액은 상기 탄소나노튜브들을 0.001 내지 80 중량%로 포함할 수 있다.The dispersion solution may comprise 0.001 to 80% by weight of the carbon nanotubes.
상기 기재는 유리, 실리콘웨이퍼, 폴리이미드, 폴리에틸렌 테레프탈레이트, 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에테르설폰, 폴리노보넨, 폴리에틸렌 나프탈레이트, 아릴라이트 및 이들의 조합으로 이루어진 군에서 선택된 재료로 이루어진 표면을 포함하는 것일 수 있다.The substrate is a material selected from the group consisting of glass, silicon wafers, polyimide, polyethylene terephthalate, polystyrene, polyethylene, polypropylene, polycarbonate, polyethersulfone, polynorbornene, polyethylene naphthalate, arlite and combinations thereof. It may be made of a surface consisting of.
상기 두 개의 전극은 막대형 전극, 바늘형 전극 및 이들의 조합으로 이루어진 군에서 선택된 것일 수 있다.The two electrodes may be selected from the group consisting of a rod-shaped electrode, a needle-shaped electrode, and a combination thereof.
상기 제4단계에서 용매의 증발은, 자연증발, 열을 이용한 증발, 진공 증발 및 이들의 조합에 의하여 이루어지는 것일 수 있다.In the fourth step, evaporation of the solvent may be performed by natural evaporation, evaporation using heat, vacuum evaporation, and a combination thereof.
상기 탄소나노튜브 미세배선은 상기 기재와 실질적으로 수평으로 형성되는 것일 수 있다.The carbon nanotube fine wiring may be formed to be substantially horizontal with the substrate.
상기 탄소나노튜브 미세배선은 선폭이 100 ㎛ 이하인 것일 수 있다.The carbon nanotube fine wiring may have a line width of 100 μm or less.
상기 제3단계의 전기장의 인가 및 탄소나노튜브들의 다발 형태로의 배열은 5초 이내에 이루어지는 것일 수 있다.The application of the electric field of the third step and the arrangement of the carbon nanotubes in the bundle form may be made within 5 seconds.
상기 기재는 유연기판(flexible substrate)인 것일 수 있다.The substrate may be a flexible substrate.
본 발명의 다른 일 실시예에 따른 미세배선기판은, 기재 및 상기 기재 상에 위치하며, 전기장에 의하여 배열된 다발 형태의 탄소나노튜브들을 포함하는 탄소나노튜브 미세배선을 포함한다.The microwiring substrate according to another embodiment of the present invention includes a carbon nanotube microwiring including a base and a bundle of carbon nanotubes arranged on the substrate and arranged by an electric field.
상기 탄소나노튜브 미세배선은 선폭이 100 ㎛ 이하일 수 있고, 길이 방향이 기재와 실질적으로 수평인 것일 수 있다.The carbon nanotube microwires may have a line width of 100 μm or less, and a length direction thereof may be substantially parallel to the substrate.
상기 탄소나노튜브는, 다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있고, 상기 코팅된 다중벽 탄소나노튜브 또는 코팅된 단일벽 탄소나노튜브는 전도성 고분자 재료, 전도성 금속 재료 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 전도성 재료로 다중벽 탄소나노튜브 또는 단일벽 탄소나노튜브가 코팅된 것일 수 있다.The carbon nanotubes may be any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof. Coated multi-walled carbon nanotubes or coated single-walled carbon nanotubes are any conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. It may be coated.
상기 기재는 유연기판인 것일 수 있다.The substrate may be a flexible substrate.
상기 기재는 유리, 실리콘웨이퍼, 폴리이미드, 폴리에틸렌 테레프탈레이트, 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에테르설폰, 폴리노보넨, 폴리에틸렌 나프탈레이트, 아릴라이트 및 이들의 조합으로 이루어진 군에서 선택된 재료로 이루어진 표면을 포함하는 것일 수 있다.The substrate is a material selected from the group consisting of glass, silicon wafers, polyimide, polyethylene terephthalate, polystyrene, polyethylene, polypropylene, polycarbonate, polyethersulfone, polynorbornene, polyethylene naphthalate, arlite and combinations thereof. It may be made of a surface consisting of.
본 발명의 또 다른 일 실시예에 따른 미세배선 제조용 탄소나노튜브 분산용액은, 용매 및 탄소나노튜브를 포함한다. 상기 용매는 탈이온수, 에탄올, 메탄올, 실리콘오일, 벤젠, 벤젠화합물에 기능기가 결합된 화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있고, 상기 기능기는 할로겐기, 아민기, 에테르기, 알코올기, 알데하이드기, 카르복실기, 알킬기 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있다.Carbon nanotube dispersion solution for producing a micro wiring according to another embodiment of the present invention, the solvent and the carbon nanotubes. The solvent may be any one selected from the group consisting of deionized water, ethanol, methanol, silicon oil, benzene, a compound having a functional group bonded to a benzene compound, and a combination thereof. The functional group may be a halogen group, an amine group, an ether group, It may be any one selected from the group consisting of alcohol group, aldehyde group, carboxyl group, alkyl group and combinations thereof.
상기 탄소나노튜브는 다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 탄소나노튜브를 포함할 수 있다.The carbon nanotubes may include any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof. Can be.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 실시예에 따른 탄소나노튜브 미세배선의 형성방법은, 용매에 분산된 탄소나노튜브들을 포함하는 분산용액을 준비하는 제1단계, 상기 분산용액을 이용하여 기재 상에 액적을 형성하는 제2단계, 두 개의 전극을 이용하여 상기 액적에 전기장을 인가하고 탄소나노튜브들을 다발의 형태로 배열시키는 제3단계 및 상기 액적에 포함되어 있는 분산용액의 용매를 증발시켜 선형의 탄소나노튜브 미세배선을 형성하는 제4단계를 포함한다.In the method for forming carbon nanotube microwiring according to an embodiment of the present invention, a first step of preparing a dispersion solution containing carbon nanotubes dispersed in a solvent, to form a droplet on the substrate using the dispersion solution The second step, applying an electric field to the droplet using two electrodes and the third step of arranging the carbon nanotubes in the form of a bundle and linear carbon nanotube fine by evaporating the solvent of the dispersion solution contained in the droplet A fourth step of forming the wiring is included.
상기 제1단계의 분산용액에 있어서, 상기 탄소나노튜브들은 다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나, 즉 분산용액에 포함되는 탄소나노튜브는 코팅된 것만으로 이루어질 수도 있고, 코팅되지 않은 것만으로도 이루어질 수도 있으며, 코팅된 것과 코팅되지 않은 것의 조합일 수도 있다.In the dispersion solution of the first step, the carbon nanotubes in the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes and combinations thereof Any one selected, that is, the carbon nanotubes included in the dispersion solution may be made of only coated, uncoated only, or may be a combination of coated and uncoated.
상기 코팅된 다중벽 또는 단일벽 탄소나노튜브의 코팅 재료는, 전도성 고분자 재료, 전도성 금속 재료 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 전도성 재료일 수 있다. 상기 전도성 고분자 재료는, 예컨대 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리설퍼니트라이드 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있고, 상기 전도성 금속 재료는, 예컨대 금, 은, 구리, 철, 알루미늄, 텅스텐 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. The coated material of the coated multi-walled or single-walled carbon nanotubes may be any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. The conductive polymer material may be any one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polysulfuride, and combinations thereof, and the conductive metal material may be, for example, gold, silver, copper, It may be any one selected from the group consisting of iron, aluminum, tungsten and combinations thereof.
상기 재료들로 탄소나노튜브를 코팅함으로써 형성된 탄소나노튜브 미세배선은, 기재 위에 형성되는 탄소나노튜브들을 포함하는 미세배선의 전기전도도를 향상시키고, 탄소나노튜브들간의 연결 부위에서도 원활한 전기의 전도를 이루어낼 수 있는 효과를 제공하는 장점이 있다. The carbon nanotube microwiring formed by coating the carbon nanotubes with the above materials improves the electrical conductivity of the microwiring including the carbon nanotubes formed on the substrate, and provides smooth conduction of electricity even at the connection sites between the carbon nanotubes. It has the advantage of providing an effect that can be achieved.
또한, 상기 분산용액의 용매로는, 탄소나노튜브나 코팅된 탄소나노튜브를 우수하게 분산시킬 수 있는 용매를 사용하는 것이 바람직하고, 구체적으로 예를 들면, 탈이온수, 에탄올, 메탄올, 실리콘오일, 벤젠, 벤젠화합물에 기능기가 결합된 화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며, 상기 기능기는 할로겐기, 아민기, 에테르기, 알코올기, 알데하이드기, 카르복실기, 알킬기 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있다. 상기 분산용액은 상기 탄소나노튜브들을 0.001 내지 80 중량%로 포함하는 것이며, 바람직하게는 0.005 내지 40 중량%, 더욱 바람직하게는 0.01 내지 2 중량%로 포함할 수 있다. In addition, as the solvent of the dispersion solution, it is preferable to use a solvent capable of excellent dispersion of carbon nanotubes or coated carbon nanotubes, and specifically, for example, deionized water, ethanol, methanol, silicon oil, Benzene, a compound in which a functional group is bonded to a benzene compound and any one selected from the group consisting of a combination thereof, the functional group consisting of a halogen group, amine group, ether group, alcohol group, aldehyde group, carboxyl group, alkyl group and combinations thereof It may be any one selected from the group. The dispersion solution may include the carbon nanotubes in an amount of 0.001 to 80% by weight, preferably 0.005 to 40% by weight, and more preferably 0.01 to 2% by weight.
상기 제2단계에 있어서, 상기 기재로는 그 표면에 배선을 형성시키는 것이고 전기장을 이용하여 탄소나노튜브의 다발을 포함하는 미세배선을 형성할 수 있는 기재라면 적용할 수 있다. 예컨대 유리, 실리콘웨이퍼, 폴리이미드, 폴리에틸렌 테레프탈레이트, 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에테르설폰, 폴리노보넨, 폴리에틸렌 나프탈레이트, 아릴라이트 및 이들의 조합으로 이루어진 군에서 선택된 재료로 이루어진 표면을 포함하는 것일 수 있다. In the second step, the substrate may be applied as long as it forms a wiring on the surface thereof and may be a substrate capable of forming a fine wiring including a bundle of carbon nanotubes using an electric field. For example, a surface made of a material selected from the group consisting of glass, silicon wafers, polyimide, polyethylene terephthalate, polystyrene, polyethylene, polypropylene, polycarbonate, polyethersulfone, polynorbornene, polyethylene naphthalate, arlite and combinations thereof It may be to include.
이 경우에 있어서, 기재 위에 형성시키는 액적의 양 또는 크기에 대한 제한은 특별히 존재하지 않으며, 상기 액적은 잉크젯 프린팅, 잉크 프롯터(plotter), 주사기, 모세관 등의 방법들을 이용하여 형성시킬 수 있다.In this case, there is no restriction on the amount or size of the droplets formed on the substrate, and the droplets may be formed using methods such as inkjet printing, ink plotter, syringe, capillary tube, and the like.
상기 제3단계에서는, 전기장을 0.1 내지 5000 V/mm로 인가할 수 있고, 바람직하게는 500 내지 5000 V/mm로 인가할 수 있으며, 전기장의 세기는 분산용액상의 탄소나노튜브의 농도, 탄소나노튜브를 코팅한 양, 액적의 양, 전극의 형태 또는 원하는 배선의 길이 등등의 조건에 따라 다르게 인가될 수 있고, 적어도 약 500 V/mm 이상의 전기장을 인가해 줄 경우 탄소나노튜브를 효과적으로 배열시킬 수 있다. In the third step, the electric field may be applied at 0.1 to 5000 V / mm, preferably 500 to 5000 V / mm, the strength of the electric field is the concentration of carbon nanotubes in the dispersion solution phase, carbon nano It can be applied differently depending on the conditions such as the amount of coating the tube, the amount of droplets, the shape of the electrode or the desired length of the wiring, and the carbon nanotubes can be effectively arranged when an electric field of at least about 500 V / mm is applied. have.
상기 전기장의 인가가 충분히 이루어지는 경우, 전기장 인가에서부터 탄소나노튜브들이 직선 다발의 형태로 배열되기까지 소요되는 시간은, 바람직하게는 5초 이내에 이루어지는 것일 수 있다. 이는 전술한 종래기술인, 기판 위에서 탄소나노튜브를 성장시키는 방식을 통하여 배선을 형성시키는 경우와 비교하여, 미세배선 형성 시간이 상당히 단축되고, 특별한 반응 시스템이 필요 없는 탄소나노튜브 미세배선 형성방법이라 할 수 있다.When the application of the electric field is sufficiently made, the time required from applying the electric field to arranging the carbon nanotubes in the form of a straight bundle may be made within 5 seconds. This is a method of forming carbon nanotube microwiring, which is considerably shorter in forming a microwiring time and does not require a special reaction system, compared to the case of forming a wiring through a method of growing carbon nanotubes on a substrate. Can be.
이 때 사용되는 두 개의 전극으로는, 막대형 전극, 바늘형 전극 및 이들의 조합으로 이루어진 군에서 선택된 것일 수 있다. 전극의 형태에 따라 배열되는 탄소나노튜브의 배선모양이 달라질 수 있는데, 예를 들면, 막대형 전극을 사용할 경우에는 여러 개의 배선을 이루는 형태로 배열될 수 있고, 바늘형 전극을 세워서 사용할 경우, 일직선으로 미세한 선폭을 형성하도록 배열될 수 있다.In this case, the two electrodes used may be selected from the group consisting of a rod-shaped electrode, a needle-shaped electrode, and a combination thereof. The wiring shape of the carbon nanotubes arranged may vary according to the shape of the electrode. For example, when using a rod-shaped electrode, the wiring may be arranged in a form of several wires. It can be arranged to form a fine line width.
전극의 모양, 기재의 표면과 전극 사이의 접촉 형태 등을 변경하여 상기 전극이 상기 기재의 표면에 접촉하는 면적을 줄일 수 있고, 접촉하는 면적이 좁을수록 단위면적에 전기장이 집중되어, 상대적으로 강한 전기장을 형성시킬 수 있다. 이때, 상기 액적에 분산되어 있는 탄소나노튜브들은 상대적으로 강한 전기장에 의하여 두 전극 사이의 거리가 가장 짧은 곳에서 탄소나노튜브의 패턴을 형성할 수 있고, 인가하는 전기장이 약한 경우라도 강한 전기장을 인가한 경우와 유사한 일직선의 배선을 형성할 수 있다. By changing the shape of the electrode, the contact form between the surface of the substrate and the electrode, and the like, the area of the electrode in contact with the surface of the substrate can be reduced, and the narrower the contact area, the more the electric field is concentrated in the unit area. It can form an electric field. In this case, the carbon nanotubes dispersed in the droplets may form a pattern of carbon nanotubes at the shortest distance between the two electrodes by a relatively strong electric field, and apply a strong electric field even when the applied electric field is weak. A straight line wiring similar to one case can be formed.
상기 전기장을 인가하여 배열되는 탄소나노튜브들은 다발의 형태로 배열되는 것일 수 있다. 배선이 다발 형태로 배열되는 경우에 있어서, 가닥으로 배열될 경우보다 탄소나노튜브들 간의 연결이 안정적이고 밀집도가 뛰어나므로, 전기저항이 낮고, 길이가 긴 배선을 형성할 수 있으며, 더 우수한 전기전도도를 가진 배선을 형성할 수 있다. 이러한 본 발명의 탄소나노튜브들로 미세한 배선이 형성된 기재를 실제 회로기판에 적용할 경우, 플렉서블 필름 등 다양한 기재 상에 간단한 방법으로 배선을 형성할 수 있다.Carbon nanotubes arranged by applying the electric field may be arranged in the form of a bundle. In the case where the wiring is arranged in a bundle form, since the connection between the carbon nanotubes is more stable and dense than the arrangement of the strands, the electrical resistance is low, a long wiring can be formed, and the electrical conductivity is better. It is possible to form a wiring with. When the substrate having fine wiring formed with the carbon nanotubes of the present invention is applied to an actual circuit board, the wiring can be formed on a variety of substrates such as a flexible film by a simple method.
상기 제4단계에서 용매의 증발은, 자연증발, 열을 이용한 증발, 진공 증발 및 이들의 조합에 의하여 이루어지는 것일 수 있다. 상기 자연증발은 상온(약 25℃)에서 건조시키는 방법이고, 상기 열을 이용한 증발은 탄소나노튜브의 배열 후 기재에 열을 간접적으로 가하여 건조시키는 방법이다. 또한, 상기 진공 증발은 감압 하에서 건조를 수행하는 것이다.In the fourth step, evaporation of the solvent may be performed by natural evaporation, evaporation using heat, vacuum evaporation, and a combination thereof. The natural evaporation is a method of drying at room temperature (about 25 ℃), the evaporation using heat is a method of drying by indirectly applying heat to the substrate after the arrangement of carbon nanotubes. In addition, the vacuum evaporation is to perform drying under reduced pressure.
상기와 같은 방법으로 형성된 상기 탄소나노튜브 미세배선은, 상기 기재와 수평으로 형성되는 것일 수 있는데, 상기 수평이라 함은 예컨대 평면과 수직을 이루지 않는 상태로써 실질적으로 수평을 포함하는 개념으로, 수평 또는 수평과 수직 사이의 임의의 각을 이루는 것을 포함하고, 엄격한 의미의 수평만을 의미하는 것은 아니다. The carbon nanotube microwiring formed by the above method may be formed horizontally with the substrate, wherein the horizontal is a concept that includes a substantially horizontal in a state not perpendicular to the plane, for example, horizontal or It includes any angle between horizontal and vertical, and does not mean only strict horizontal.
또한, 상기 탄소나노튜브 미세배선의 선폭은 필요에 따라 조절하여 형성할 수 있다. 바람직하게, 100 ㎛이하일 수 있고, 10 ㎛ 내지 100 ㎛일 수 있으며, 70 ㎛ 내지 100 ㎛ 인 것일 수 있다. 상기 탄소나노튜브 미세배선은 상기한 선폭보다 작은 미세한 선폭을 가진 배선을 형성할 수 있고, 10 ㎛ 이하의 선폭을 가지는 배선을 형성할 수 있으며, 0.05 내지 5 ㎛의 선폭을 가지는 배선을 형성할 수 있다.In addition, the line width of the carbon nanotube fine wiring can be formed by adjusting as necessary. Preferably, it may be 100 μm or less, 10 μm to 100 μm, and 70 μm to 100 μm. The carbon nanotube fine wiring can form a wire having a fine line width smaller than the above-described line width, can form a wire having a line width of 10 μm or less, and can form a wire having a line width of 0.05 to 5 μm. have.
상기 탄소나노튜브 미세배선의 높이(기판과 수직인 방향으로 측정한 높이를 의미함)는 상기 탄소나노튜브 미세배선의 선폭을 기준으로 한 비율(높이/선폭)이 0.3/1 이상일 수 있고, 0.3/1 내지 1/1인 것일 수 있다. 이러한 경우, 미세배선의 높이가 선폭에 비하여 충분히 크기 때문에 전기전도도가 높은 미세배선을 형성할 수 있다.The height of the carbon nanotube microwires (meaning the height measured in a direction perpendicular to the substrate) may be a ratio (height / line width) based on the line width of the carbon nanotube microwires of 0.3 / 1 or more, and 0.3 / 1 to 1/1 may be. In this case, since the height of the fine wiring is sufficiently large as compared with the line width, it is possible to form the fine wiring having high electrical conductivity.
상기 기재는 유연기판인 것일 수 있어, 이러한 유연기판에 상기 탄소나노튜브 미세배선을 형성시켜 다양한 분야로의 응용을 꾀할 수 있다.The substrate may be a flexible substrate, thereby forming the carbon nanotube microwiring on the flexible substrate can be applied to various fields.
본 발명의 다른 실시예에 따른 미세배선기판은, 기재 및 상기 기재 상에 위치하며, 전기장에 의하여 배열된 다발 형태의 탄소나노튜브들을 포함하는 탄소나노튜브 미세배선을 포함한다. 이러한 미세배선기판의 상기 탄소나노튜브 미세배선은 선폭이 100 ㎛ 이하일 수 있고, 선폭이 0.05 내지 10 ㎛ 있다.The microwiring substrate according to another embodiment of the present invention includes a carbon nanotube microwiring including a base and a bundle of carbon nanotubes arranged on the substrate and arranged by an electric field. The carbon nanotube microwiring of the microwiring substrate may have a line width of 100 μm or less and a line width of 0.05 to 10 μm.
상기 탄소나노튜브 미세배선은 길이 방향이 기재와 수평 또는 수평과 수직 사이의 임의의 각을 형성할 수 있다. 상기 미세배선기판은 유연기판일 수 있다.The carbon nanotube microwiring may have any length between the substrate and the horizontal or horizontal and vertical in the longitudinal direction. The micro wiring substrate may be a flexible substrate.
상기 미세배선기판의 탄소나노튜브는, 다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. The carbon nanotubes of the microwiring substrate may be any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof. have.
상기 코팅된 다중벽 또는 단일벽 탄소나노튜브의 코팅 재료는, 전도성 고분자 재료, 전도성 금속 재료 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 전도성 재료일 수 있다. 상기 전도성 고분자 재료는, 예컨대 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리설퍼니트라이드 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있고, 상기 전도성 금속 재료는, 예컨대 금, 은, 구리, 철, 알루미늄, 텅스텐 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나일 수 있다. 상기 재료들로 코팅을 함으로써, 탄소나노튜브들로 형성된 배선의 전기전도도를 향상시키고, 탄소나노튜브 다발들이 긴 길이의 배선을 형성하더라도 우수한 전기전도도를 가지는 배선을 형성할 수 있다.The coated material of the coated multi-walled or single-walled carbon nanotubes may be any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. The conductive polymer material may be any one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polysulfuride, and combinations thereof, and the conductive metal material may be, for example, gold, silver, copper, It may be any one selected from the group consisting of iron, aluminum, tungsten and combinations thereof. By coating with the above materials, it is possible to improve the electrical conductivity of the wiring formed of carbon nanotubes, and to form a wiring having excellent electrical conductivity even when the carbon nanotube bundles form a long length of wiring.
본 발명의 또 다른 일 실시예에 따른 미세배선 제조용 탄소나노튜브 분산용액은, 용매 및 상기 용매에 분산된 탄소나노튜브를 포함한다. 상기 용매는 탄소나노튜브를 분산시키고 배선을 형성한 후에 제거될 수 있는 것이라면 제한 없이 사용될 수 있으며, 구체적으로 예를 들면, 탈이온수, 에탄올, 메탄올, 실리콘오일, 벤젠, 벤젠화합물에 기능기가 결합된 화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나가 상기 용매로 적용될 수 있다. 또한, 상기 기능기는 할로겐기, 아민기, 에테르기, 알코올기, 알데하이드기, 카르복실기, 알킬기 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것일 수 있다.Carbon nanotube dispersion solution for producing a micro wiring according to another embodiment of the present invention, a solvent and a carbon nanotube dispersed in the solvent. The solvent may be used without limitation as long as it can be removed after dispersing the carbon nanotubes and forming a wiring, and specifically, for example, deionized water, ethanol, methanol, silicon oil, benzene, a benzene compound having a functional group bonded thereto. Any one selected from the group consisting of compounds and combinations thereof may be applied to the solvent. In addition, the functional group may be any one selected from the group consisting of a halogen group, an amine group, an ether group, an alcohol group, an aldehyde group, a carboxyl group, an alkyl group and combinations thereof.
또한 상기 분산용액에는, 상기 탄소나노튜브들이 0.001 내지 80 중량%로 포함될 수 있으며, 바람직하게는 0.005 내지 40 중량%, 더욱 바람직하게는 0.01 내지 2 중량%로 포함될 수 있다.In addition, the dispersion solution, the carbon nanotubes may be included in 0.001 to 80% by weight, preferably 0.005 to 40% by weight, more preferably 0.01 to 2% by weight.
상기 탄소나노튜브에 대한 설명은, 상기 본 발명의 일 실시예인 탄소나노튜브 미세배선 형성방법에 기재된 탄소나노튜브에 대한 설명과 중복되므로 그 기재를 생략한다.Since the description of the carbon nanotubes overlaps with the description of the carbon nanotubes described in the carbon nanotube microwiring method of an embodiment of the present invention, the description thereof is omitted.
본 발명의 탄소나노튜브 미세배선 형성방법은 기존의 기재 위에서 직접 성장시켜 배선을 형성하는 방법에 비하여 그 소요시간이 크게 단축되고, 배선을 상당히 미세하게 형성시킬 수 있으며, 이와 동시에 다발 형태로 배열됨으로써 연결성 및 밀집도가 우수하여 전기전도도가 뛰어나며, 본 발명의 방법을 이용할 경우 원하는 길이만큼 배선을 상당히 길게 형성시킬 수 있다.The carbon nanotube microwiring method of the present invention has a significantly shorter time compared to a method of forming a wiring by directly growing on a conventional substrate, and can form a wiring finely, and at the same time, it is arranged in a bundle form. Excellent electrical conductivity due to excellent connectivity and compactness, it is possible to make the wiring considerably longer by the desired length using the method of the present invention.
도 1은 본 발명의 일 실시예에 따른 전기장을 이용한 탄소나노튜브 미세배선 형성방법의 과정을 나타낸 순서도이다.1 is a flowchart illustrating a process of forming carbon nanotube microwiring using an electric field according to an embodiment of the present invention.
도 2는 다중벽 탄소나노튜브의 투과전자현미경 사진(a)과, 폴리아닐린이 코팅된 다중벽 탄소나노튜브의 전자투과현미경 사진(b)이다.2 is a transmission electron micrograph (a) of the multi-walled carbon nanotubes and an electron transmission micrograph (b) of the multi-walled carbon nanotubes coated with polyaniline.
도 3은 본 발명의 실시예 1에서 500 V/mm로 전기장을 인가한 상태에서 용매가 증발되어 건조된 미세배선기판의 전자현미경사진이다.FIG. 3 is an electron micrograph of a micro wiring board in which a solvent is evaporated and dried in a state where an electric field is applied at 500 V / mm in Example 1 of the present invention.
도 4은 본 발명의 비교예 1에서 전기장을 인가하지 않은 상태(0 V/mm의 전기장을 인가)에서 용매가 증발되어 건조된 미세배선기판의 전자현미경사진이다.FIG. 4 is an electron micrograph of a microwiring substrate in which a solvent is evaporated and dried in a state in which an electric field is not applied (applied an electric field of 0 V / mm) in Comparative Example 1 of the present invention.
도 5는 본 발명의 실시예 8에서 250 V/mm로 전기장을 인가한 상태에서 용매가 증발되어 건조된 미세배선기판의 전자현미경사진이다.FIG. 5 is an electron micrograph of a micro wiring board in which a solvent is evaporated and dried in a state where an electric field is applied at 250 V / mm in Example 8 of the present invention.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예 1. 유리 기재 위에서의 폴리아닐린이 코팅된 탄소나노튜브 배선 형성Example 1 Polyaniline Coated Carbon Nanotube Wiring on a Glass Substrate
다중벽 탄소나노튜브(MWCNTs, multiwall carbon nanotubes)를 이용하여 미세 배선을 형성시켰다. 도 2의 (a)는 실시예1에서 사용한 MWCNT의 투과전자현미경 사진으로, 도 2의 TEM 사진을 참고하면, 실시예에서 사용한 MWCNT는 가늘고 긴 형태를 가진 준1차원 물질로, 그 내부에 빈 공간이 있고, 내부 공간의 양측으로 뚜렷하고 규칙적인 격자를 보여주는 탄소층을 가지는 것으로 확인되었다. 상기 MWCNTs는 폴리아닐린으로 코팅한 후에 배선을 형성하였는데, 폴리아닐린으로 코팅한 상태의 MWCNTs를 도 2의 (b)에 나타냈으며, MWCNT의 표면에 전체적으로 코팅이 잘 이루어졌음을 확인하였다. 상기 폴리아닐린으로 코팅된 MWCNTs을 분산용매인 벤젠에 분산시켜 0.5 중량%의 MWCNTs 분산용액을 제조하였다(제1단계). Microwires were formed using multiwall carbon nanotubes (MWCNTs). Figure 2 (a) is a transmission electron micrograph of the MWCNT used in Example 1, referring to the TEM photograph of Figure 2, the MWCNT used in the embodiment is a quasi-dimensional material having an elongated shape, a hollow inside It was found that there was a space and a carbon layer showing clear and regular lattice on both sides of the interior space. The MWCNTs were formed after coating with polyaniline, and the MWCNTs coated with polyaniline are shown in FIG. 2 (b), and the MWCNTs were well coated on the surface of the MWCNT. The MWCNTs coated with the polyaniline were dispersed in benzene, a dispersion solvent, to prepare a 0.5 wt% MWCNTs dispersion solution (first step).
상기 MWCNTs 분산용액을 막대형 전극이 양쪽에 배치된 유리 기재 위에 액적 상태로 떨어뜨리고, 위 유리 기재에 배치된 전극을 이용하여 유리 기재에 500 V/mm의 전기장을 인가하여, 분산용액 내에서 폴리아닐린으로 코팅된 다중벽 탄소나노튜브가 배열된 유리기판을 얻었다(제2단계 및 제3단계). MWCNTs가 미세배선의 형태로 배열된 후 분산용액에 포함되어 있던 용매는 자연 증발법으로 공기 중으로 증발시켜 탄소나노튜브 미세배선을 얻었다(제4단계).The MWCNTs dispersion solution was dropped in a droplet state on a glass substrate having rod electrodes disposed on both sides, and an electric field of 500 V / mm was applied to the glass substrate using an electrode disposed on the glass substrate, thereby obtaining polyaniline in the dispersion solution. To obtain a glass substrate is arranged multi-walled carbon nanotubes coated with (second step and third step). After the MWCNTs were arranged in the form of microwiring, the solvent contained in the dispersion solution was evaporated into air by natural evaporation to obtain carbon nanotube microwiring (step 4).
상기 실시예 1의 미세 배선을 주사전자현미경으로 관찰한 결과를 도 3에 나타냈으며, 도 3으로부터 실시예 1의 미세 배선은 MWCNTs들이 다발을 형성하며 폭이 약 100 ㎛이고 길이가 약 2.5 mm로 형성된 것을 확인하였다. 또한, 상기 미세 배선은 그 높이 방향의 단면적이 약 5000 ㎛2인 것으로, 기재와 수직하는 방향으로 측정한 높이가 약 55 ㎛인 것으로 확인되었다.The results of observing the microwires of Example 1 with a scanning electron microscope are shown in FIG. 3, and from FIG. 3, the microwires of Example 1 form bundles of MWCNTs, each having a width of about 100 μm and a length of about 2.5 mm. It was confirmed that it was formed. In addition, it was confirmed that the fine wiring had a cross-sectional area in the height direction of about 5000 μm 2 and a height measured in the direction perpendicular to the substrate was about 55 μm.
실시예 2. 실리콘웨이퍼 기재 위에서의 폴리아닐린이 코팅된 탄소나노튜브 배선 형성Example 2 Polyaniline Coated Carbon Nanotube Wiring Formed on Silicon Wafer Substrate
유리 기재 대신 실리콘웨이퍼 기재를 사용한 것 외에는 상기 실시예 1과 동일한 방법을 수행하여 폴리아닐린으로 코팅된 탄소나노튜브의 다발로 형성된 미세 배선이 형성된 탄소나노튜브 미세 배선화 실리콘웨이퍼 기재를 얻었다. 형성된 실시예 2의 배선은 폭이 약 90 ㎛이고 길이가 약 2 mm이었으며, 단면적은 약 5500 ㎛2인 것으로 확인되었으며, 실리콘웨이퍼 기재 상에도 본 발명의 방법으로 탄소나노튜브 배선이 잘 형성된다는 점을 확인하였다.Except for using a silicon wafer substrate instead of a glass substrate was carried out in the same manner as in Example 1 to obtain a carbon nanotube micro-wired silicon wafer substrate with a fine wiring formed of a bundle of carbon nanotubes coated with polyaniline. The formed wiring of Example 2 was found to have a width of about 90 μm and a length of about 2 mm, and a cross-sectional area of about 5500 μm 2 , and that the carbon nanotube wiring was well formed on the silicon wafer substrate by the method of the present invention. It was confirmed.
실시예 3. 폴리이미드 필름 위에서의 폴리아닐린이 코팅된 탄소나노튜브 배선 형성Example 3 Polyaniline Coated Carbon Nanotube Wiring Formed on Polyimide Film
유리 기재 대신 폴리이미드 필름을 사용한 것 외에는 상기 실시예 1과 동일한 방법을 수행하여 폴리아닐린으로 코팅된 탄소나노튜브의 미세 배선이 형성된 탄소나노튜브 미세 배선화 폴리이미드 필름을 얻었다. 형성된 실시예 3의 배선은 폭이 약 90 ㎛이고 길이가 약 2.3 mm이었으며, 단면적은 약 5200 ㎛2인 것으로 확인되었으며, 폴리이미드 필름 상에도 본 발명의 방법으로 탄소나노튜브 배선이 잘 형성된다는 점을 확인하였다.Except for using a polyimide film instead of a glass substrate was carried out in the same manner as in Example 1 to obtain a carbon nanotube micro-wiring polyimide film was formed with fine wiring of carbon nanotubes coated with polyaniline. The wiring of Example 3 formed had a width of about 90 μm and a length of about 2.3 mm and a cross-sectional area of about 5200 μm.2Has been verified as It was confirmed that the carbon nanotube wiring was well formed by the method of the present invention on the polyimide film.
실시예 4. 유리 기재 위에서의 폴리피롤이 코팅된 탄소나노튜브 배선 형성Example 4 Polypyrrole-Coated Carbon Nanotube Wiring on a Glass Substrate
탄소나노튜브에 폴리아닐린으로 코팅하는 대신 폴리피롤로 코팅한 것 외에는 상기 실시예 1과 동일한 방법을 수행하여 폴리피롤로 코팅된 탄소나노튜브의 미세 배선이 형성된 탄소나노튜브 미세 배선화 유리 기재를 얻었다. 실시예 4에서 폴리피롤이 코팅된 탄소나노튜브 다발로도 배선이 잘 형성된다는 점을 확인하였으며, 유리 기재 상에 형성된 실시예 4의 배선은 폭이 약 100 ㎛이고 길이가 약 2.4 mm 이었으며, 단면적은 약 5000 ㎛2로 관찰되었다.A carbon nanotube micro-wired glass substrate having a fine wiring of polypyrrole-coated carbon nanotubes was formed in the same manner as in Example 1 except that the carbon nanotubes were coated with polypyrrole instead of polyaniline. In Example 4, the polypyrrole-coated carbon nanotube bundle was confirmed that the wiring is well formed, the wiring of Example 4 formed on the glass substrate was about 100 ㎛ in width and about 2.4 mm in length, the cross-sectional area It was observed to be about 5000 μm 2 .
실시예 5. 유리 기재 위에서의 폴리티오펜이 코팅된 탄소나노튜브 배선 형성Example 5 Polythiophene Coated Carbon Nanotube Wiring on a Glass Substrate
탄소나노튜브에 폴리아닐린으로 코팅하는 대신 폴리티오펜으로 코팅한 것 외에는 상기 실시예 1과 동일한 방법을 수행하여 폴리티오펜으로 코팅된 탄소나노튜브의 미세 배선이 형성된 탄소나노튜브 미세 배선화 유리 기재를 얻었다. 실시예 5에서 폴리티오펜이 코팅된 탄소나노튜브 다발로도 배선이 잘 형성된다는 점을 확인하였으며, 유리기판 상에 형성된 실시예 5의 배선은 폭이 약 100 ㎛이고 길이가 약 2.5 mm이었으며, 단면적은 약 5000 ㎛2로 관찰되었다.A carbon nanotube micro-wired glass substrate was formed in which fine wires of carbon nanotubes coated with polythiophene were formed in the same manner as in Example 1, except that the carbon nanotubes were coated with polythiophene instead of polyaniline. . In Example 5, the polythiophene-coated carbon nanotube bundle was confirmed that the wiring is well formed, the wiring of Example 5 formed on the glass substrate was about 100 ㎛ in width and about 2.5 mm in length, The cross-sectional area was observed to be about 5000 μm 2 .
실시예 6. 유리 기재 위에서의 바늘형 전극을 이용한 폴리아닐린이 코팅된 탄소나노튜브 배선 형성Example 6 Polyaniline Coated Carbon Nanotube Wiring Formation Using Needle Electrode on Glass Substrate
전기장을 인가하는 수단으로 실시예 1에서 사용한 막대형 전극이 아닌 바늘형 전극을 세워서 배치하고, 전기장을 반대 방향으로 인가한 것 외에는 상기 실시예 1과 동일한 방법을 수행하여 미세 배선이 형성된 탄소나노튜브 미세 배선화 유리 기재를 얻었다. 폴리아닐린으로 코팅된 탄소나노튜브의 다발로 형성된 미세 배선은 폭이 약 80 ㎛이고 길이가 약 2.5 mm이었으며, 단면적은 약 6000 ㎛2로 관찰되었다.As a means for applying an electric field, a carbon nanotube in which fine wiring was formed by performing the same method as in Example 1 except that the needle-shaped electrode, not the rod-shaped electrode used in Example 1, was placed upright and applied in the opposite direction. The fine wiring glass substrate was obtained. Fine interconnections formed of bundles of polyaniline-coated carbon nanotubes were about 80 μm wide and about 2.5 mm long, with a cross-sectional area of about 6000 μm 2 .
실시예 7. 유리 기재 위에서의 폴리아닐린이 코팅된 단일벽 탄소나노튜브 배선 형성Example 7 Polyaniline Coated Single-Walled Carbon Nanotube Wiring on a Glass Substrate
다중벽 탄소나노튜브가 아닌 단일벽 탄소나노튜브(single wall carbon nanotube)를 적용한 것을 제외하면, 상기 실시예 1과 동일한 방법을 수행하여 폴리아닐린으로 코팅된 탄소나노튜브의 미세 배선이 형성된 탄소나노튜브 미세 배선화 유리 기재를 얻었다. 폴리아닐린으로 코팅된 단일벽 탄소나노튜브의 다발로 형성된 미세 배선은 폭이 약 100 ㎛이고 길이가 약 2.5 mm이었으며, 단면적은 약 5000 ㎛2로 관찰되었다.Except for applying the single wall carbon nanotubes instead of the multi-walled carbon nanotubes, the carbon nanotubes are finely formed by performing the same method as in Example 1 with the fine wiring of the polyaniline-coated carbon nanotubes. A wiring glass substrate was obtained. Fine interconnections formed of bundles of polyaniline-coated single-walled carbon nanotubes were about 100 μm wide and about 2.5 mm long, with a cross-sectional area of about 5000 μm 2 .
비교예 1. 전기장을 인가하지 않은 상태에서의 배선 형성Comparative Example 1. Wiring Formation Without Electric Field Applied
실시예 1에서 사용한 것과 동일하게, 폴리아닐린으로 코팅된 MWCNTs가 0.5 중량%로 벤젠에 분산된 분산용액을 막대형 전극이 양쪽에 배치된 유리기판 상에 액적 상태로 떨어뜨리고, 전기장을 인가하지 않은 상태로 용매를 증발시켰다.In the same manner as in Example 1, the dispersion solution in which the polyaniline-coated MWCNTs were dispersed in benzene at 0.5% by weight was dropped in a droplet state on a glass substrate having bar electrodes disposed on both sides, and no electric field was applied. Solvent was evaporated.
이렇게 얻어진 비교예 1의 배선은 도 4에 나타냈다. 상기 도 4을 참고하면, 전기장을 인가하지 않은 비교예 1의 배선은, 탄소나노튜브들이 가늘고 긴 다발을 형성하지 못하고 둥근 액적의 형태 그대로 탄소나노튜브들이 배치되어 있는 것을 확인할 수 있었다. 특히, 둥근 형태의 중앙 부분에는 탄소나노튜브들이 거의 배열되지 않은 것을 확인할 수 있었으며, 이는 분산용매의 증발 과정에서 탄소나노튜브들이 액적의 가장자리 부분으로 이동하여 배열된 것이기 때문으로 생각된다.The wiring of Comparative Example 1 thus obtained is shown in FIG. 4. Referring to FIG. 4, in the wiring of Comparative Example 1 without applying an electric field, the carbon nanotubes did not form an elongated bundle and the carbon nanotubes were arranged in the form of round droplets. In particular, it can be seen that the carbon nanotubes are hardly arranged in the central portion of the round shape, because the carbon nanotubes are arranged to move to the edge of the droplet during the evaporation of the dispersion solvent.
실시예 8. 전기장을 약하게 인가한 상태의 배선 형성Example 8 Wiring Formation with a Lowly Applied Electric Field
제3단계에서 전기장을 500 V/mm으로 인가한 것 대신에 250 V/mm로 인가한 것을 제외하면 실시예 1과 동일하게 MWCNTs 다발로 이루어진 배선을 형성하였다.In the third step, except that an electric field was applied at 250 V / mm instead of 500 V / mm, a wiring was formed of MWCNTs bundles in the same manner as in Example 1.
형성된 실시예 8의 배선의 주사전자현미경 사진을 도 5에 나타냈으며, 여러 가닥으로 형성되었지만, 각 배선들은 뚜렷하게 연결된 형태를 가지는 배선이 형성되었다는 점을 확인할 수 있었다. 이 결과로부터, 전기장을 조절하여 배선의 형태를 조절할 수 있다는 점을 확인할 수 있었다.The scanning electron micrograph of the formed wiring of Example 8 is shown in FIG. 5 and formed of several strands, but each wiring was confirmed to have a wiring having a clearly connected form. From this result, it was confirmed that the shape of the wiring can be adjusted by adjusting the electric field.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (20)

  1. 용매에 분산된 탄소나노튜브들을 포함하는 분산용액을 준비하는 제1단계; Preparing a dispersion solution including carbon nanotubes dispersed in a solvent;
    상기 분산용액을 이용하여 기재 상에 액적(droplet)을 형성하는 제2단계; A second step of forming droplets on the substrate using the dispersion solution;
    두 개의 전극을 이용하여 상기 액적에 전기장을 인가하고 탄소나노튜브들을 다발의 형태(rope-type)로 배열시키는 제3단계; 그리고A third step of applying an electric field to the droplet using two electrodes and arranging carbon nanotubes in a rope-type; And
    상기 액적에 포함되어 있는 분산용액의 용매를 증발시켜 선형의 탄소나노튜브 미세배선을 형성하는 제4단계;를 포함하는, 탄소나노튜브 미세배선의 형성방법.And evaporating the solvent of the dispersion solution contained in the droplet to form linear carbon nanotube microwiring.
  2. 제1항에 있어서, The method of claim 1,
    상기 제3단계에서 전기장은 0.1 내지 5000 V/mm로 인가되는 것인, 탄소나노튜브 미세배선의 형성방법.In the third step, the electric field is applied to 0.1 to 5000 V / mm, the formation method of the carbon nanotube fine wiring.
  3. 제1항에 있어서, The method of claim 1,
    상기 탄소나노튜브들은 다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인, 탄소나노튜브 미세배선의 형성방법.The carbon nanotubes are any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof. Formation method of fine wiring.
  4. 제3항에 있어서,The method of claim 3,
    상기 코팅된 다중벽 탄소나노튜브 또는 코팅된 단일벽 탄소나노튜브는 전도성 고분자 재료, 전도성 금속 재료 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 전도성 재료로 다중벽 탄소나노튜브 또는 단일벽 탄소나노튜브가 코팅된 것인, 탄소나노튜브 미세배선의 형성방법.The coated multi-walled carbon nanotubes or coated single-walled carbon nanotubes are any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. Is coated, carbon nanotube microwire formation method.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 전도성 고분자 재료는 폴리아닐린(polyaniline), 폴리피롤(polypyrrole), 폴리티오펜(polythiophene), 폴리아세틸렌(polyacethylene), 폴리설퍼니트라이드(poly sulfur nitride) 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것이고, 상기 전도성 금속 재료는 금, 은, 구리, 철, 알루미늄, 텅스텐 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인, 탄소나노튜브 미세배선의 형성방법.The conductive polymer material is any one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polysulfitride, and combinations thereof. , The conductive metal material is any one selected from the group consisting of gold, silver, copper, iron, aluminum, tungsten, and combinations thereof.
  6. 제1항에 있어서,The method of claim 1,
    상기 용매는, 탈이온수, 에탄올, 메탄올, 실리콘오일, 벤젠, 벤젠화합물에 기능기가 결합된 화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나이며, The solvent is any one selected from the group consisting of deionized water, ethanol, methanol, silicon oil, benzene, a compound having a functional group bonded to a benzene compound, and a combination thereof,
    상기 기능기는 할로겐기, 아민기, 에테르기, 알코올기, 알데하이드기, 카르복실기, 알킬기 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인, 탄소나노튜브 미세배선의 형성방법.The functional group is any one selected from the group consisting of a halogen group, an amine group, an ether group, an alcohol group, an aldehyde group, a carboxyl group, an alkyl group, and combinations thereof.
  7. 제1항에 있어서,The method of claim 1,
    상기 분산용액은 상기 탄소나노튜브들을 0.001 내지 80 중량%로 포함하는 것인, 탄소나노튜브 미세배선의 형성방법.Wherein the dispersion solution comprises the carbon nanotubes of 0.001 to 80% by weight, the formation method of carbon nanotube microwires.
  8. 제1항에 있어서,The method of claim 1,
    상기 제2단계에서 액적은 잉크젯 프린팅, 잉크 프롯터(plotter), 주사기 및 모세관을 이용하여 형성되는 것인, 탄소나노튜브 미세배선의 형성방법.In the second step, the droplets are formed using inkjet printing, an ink plotter, a syringe, and a capillary, the method of forming carbon nanotube microwiring.
  9. 제1항에 있어서,The method of claim 1,
    상기 기재는 유리, 실리콘웨이퍼, 폴리이미드, 폴리에틸렌 테레프탈레이트, 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리카보네이트, 폴리에테르설폰, 폴리노보넨, 폴리에틸렌 나프탈레이트, 아릴라이트 및 이들의 조합으로 이루어진 군에서 선택된 재료로 이루어진 표면을 포함하는 것, 탄소나노튜브 미세배선의 형성 방법.The substrate is made of a material selected from the group consisting of glass, silicon wafers, polyimide, polyethylene terephthalate, polystyrene, polyethylene, polypropylene, polycarbonate, polyethersulfone, polynorbornene, polyethylene naphthalate, arlite and combinations thereof. A method comprising forming a carbon nanotube microwire, comprising a surface consisting of.
  10. 제1항에 있어서,The method of claim 1,
    상기 두 개의 전극은 막대형 전극, 바늘형 전극 및 이들의 조합으로 이루어진 군에서 선택된 것인, 탄소나노튜브 미세배선의 형성 방법.The two electrodes are selected from the group consisting of a rod-shaped electrode, a needle-like electrode and a combination thereof, the method of forming carbon nanotube microwiring.
  11. 제1항에 있어서,The method of claim 1,
    상기 제4단계에서 용매의 증발은, 자연증발, 열을 이용한 증발, 진공 증발 및 이들의 조합에 의하여 이루어지는 것인, 탄소나노튜브 미세배선의 형성방법.The evaporation of the solvent in the fourth step, natural evaporation, evaporation using heat, vacuum evaporation, and a combination thereof, the method of forming a carbon nanotube fine wiring.
  12. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브 미세배선은 상기 기재와 수평으로 형성되는 것인, 탄소나노튜브 미세배선의 형성방법.The carbon nanotube microwiring is formed horizontally with the substrate, the carbon nanotube microwiring forming method.
  13. 제1항에 있어서, The method of claim 1,
    상기 탄소나노튜브 미세배선은 선폭이 100 ㎛ 이하인 것인, 탄소나노튜브 미세배선의 형성방법.The carbon nanotube microwire is a line width of 100 ㎛ or less, the carbon nanotube microwire formation method.
  14. 제1항에 있어서, The method of claim 1,
    상기 제3단계의 전기장의 인가 및 탄소나노튜브들의 다발 형태로의 배열은 5초 이내에 이루어지는 것인, 탄소나노튜브 미세배선의 형성방법.The application of the electric field of the third step and the arrangement of the carbon nanotubes in the bundle form is made within 5 seconds, the carbon nanotube micro-wiring method.
  15. 제1항에 있어서, The method of claim 1,
    상기 기재는 유연기판(flexible substrate)인 것인, 탄소나노튜브 미세배선의 형성방법.Wherein the substrate is a flexible substrate (flexible substrate), the carbon nanotube microwire formation method.
  16. 기재; 및materials; And
    상기 기재 상에 위치하며, 전기장에 의하여 배열된 다발 형태의 탄소나노튜브들을 포함하는 탄소나노튜브 미세배선;을 포함하는, 미세배선기판.And fine carbon nanotubes disposed on the substrate, the carbon nanotubes including bundles of carbon nanotubes arranged by an electric field.
  17. 제16항에 있어서, The method of claim 16,
    상기 탄소나노튜브 미세배선은 선폭이 100 ㎛ 이하이고, 길이 방향이 기재와 수평인 것인, 미세배선기판.The carbon nanotube microwire has a line width of 100 μm or less, and the longitudinal direction thereof is parallel to the substrate.
  18. 제16항에 있어서, The method of claim 16,
    상기 탄소나노튜브는, 다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것이고, The carbon nanotubes are any one selected from the group consisting of multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes, and combinations thereof.
    상기 코팅된 다중벽 탄소나노튜브 또는 코팅된 단일벽 탄소나노튜브는 전도성 고분자 재료, 전도성 금속 재료 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나의 전도성 재료로 다중벽 탄소나노튜브 또는 단일벽 탄소나노튜브가 코팅된 것인, 미세배선기판.The coated multi-walled carbon nanotubes or coated single-walled carbon nanotubes are any one conductive material selected from the group consisting of a conductive polymer material, a conductive metal material, and a combination thereof. Is coated, micro wiring board.
  19. 제16항에 있어서, The method of claim 16,
    상기 기재는 유연기판(flexible substrate)인 것인, 미세배선기판.The substrate is a flexible substrate (flexible substrate), a fine wiring substrate.
  20. 탈이온수, 에탄올, 메탄올, 실리콘오일, 벤젠, 벤젠화합물에 기능기가 결합된 화합물 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 용매로, 상기 기능기는 할로겐기, 아민기, 에테르기, 알코올기, 알데하이드기, 카르복실기, 알킬기 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 것인 용매; 및 Deionized water, ethanol, methanol, silicon oil, benzene, any one selected from the group consisting of a compound having a functional group bonded to a benzene compound and a combination thereof, the functional group is a halogen group, amine group, ether group, alcohol group, A solvent which is any one selected from the group consisting of an aldehyde group, a carboxyl group, an alkyl group and a combination thereof; And
    다중벽 탄소나노튜브, 단일벽 탄소나토튜브, 코팅된 다중벽 탄소나노튜브, 코팅된 단일벽 탄소나노튜브 및 이들의 조합으로 이루어진 군에서 선택된 어느 하나인 탄소나노튜브;를 포함하는, 미세배선 제조용 탄소나노튜브 분산용액.Including a multi-walled carbon nanotubes, single-walled carbon nanotubes, coated multi-walled carbon nanotubes, coated single-walled carbon nanotubes and carbon nanotubes selected from the group consisting of a combination thereof; Carbon nanotube dispersion solution.
PCT/KR2013/006152 2013-06-19 2013-07-10 Method for forming carbon nanotube fine wiring, fine wiring board formed using same, and carbon nanotube dispersion solution for manufacturing fine wiring WO2014204042A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0070550 2013-06-19
KR1020130070550A KR101522225B1 (en) 2013-06-19 2013-06-19 Method for fine alignment of carbon nanotubes, fine alignment substrates thereof and dispersion solution of preparing the fine alignment

Publications (1)

Publication Number Publication Date
WO2014204042A1 true WO2014204042A1 (en) 2014-12-24

Family

ID=52104754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006152 WO2014204042A1 (en) 2013-06-19 2013-07-10 Method for forming carbon nanotube fine wiring, fine wiring board formed using same, and carbon nanotube dispersion solution for manufacturing fine wiring

Country Status (2)

Country Link
KR (1) KR101522225B1 (en)
WO (1) WO2014204042A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018004092A1 (en) 2016-06-29 2018-01-04 한양대학교에리카산학협력단 Nanostructure network and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506938A2 (en) * 2003-07-24 2005-02-16 Fuji Xerox Co., Ltd. Carbon nanotube structure, method and liquid solution for manufacturing the same and carbon nanotube transfer body
KR20070068972A (en) * 2005-12-27 2007-07-02 삼성에스디아이 주식회사 Method of growing carbon nanotubes and method of forming conductive line of semiconductor device therewith
KR20100025502A (en) * 2009-11-18 2010-03-09 이환철 Insulated metal components and method of manufacturing the same
KR20110089222A (en) * 2010-01-30 2011-08-05 전자부품연구원 Interlayer wiring of micro-electro mechanical device using carbon nanotube

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801670B1 (en) * 2006-10-13 2008-02-11 한국기계연구원 Fine electrode pattren manufacturing methode by the ink jet printing
KR100823554B1 (en) * 2006-10-31 2008-04-22 (주) 파루 Single walled carbon nanotubes coated with dielectric substance and tft using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506938A2 (en) * 2003-07-24 2005-02-16 Fuji Xerox Co., Ltd. Carbon nanotube structure, method and liquid solution for manufacturing the same and carbon nanotube transfer body
KR20070068972A (en) * 2005-12-27 2007-07-02 삼성에스디아이 주식회사 Method of growing carbon nanotubes and method of forming conductive line of semiconductor device therewith
KR20100025502A (en) * 2009-11-18 2010-03-09 이환철 Insulated metal components and method of manufacturing the same
KR20110089222A (en) * 2010-01-30 2011-08-05 전자부품연구원 Interlayer wiring of micro-electro mechanical device using carbon nanotube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHASHANK SHEKHAR ET AL.: "Ultrahigh density alignment of carbon nanotubes array by dielectrophoresis", ACS NANO, vol. 5, no. 3, 16 February 2011 (2011-02-16), pages 1739 - 1746 *

Also Published As

Publication number Publication date
KR20140147393A (en) 2014-12-30
KR101522225B1 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
WO2015008905A1 (en) Graphene/silicon nanowire molecular sensor or method for manufacturing same and method for identifying molecule using same
WO2014163236A1 (en) Highly conductive material formed by hybridization of metal nanomaterial and carbon nanomaterial having higher-order structure due to multiple hydrogen bonding, and manufacturing method therefor
Hirotani et al. Carbon nanotube thin films for high-performance flexible electronics applications
Choi et al. Patterning of Hierarchically Aligned Single-Walled Carbon Nanotube Langmuir− Blodgett Films by Microcontact Printing
TW200307574A (en) Method for assembling nano objects
WO2018016680A1 (en) Method for 3d printing carbon nanotube microstructure having high conductivity, and ink to be used therein
US7122461B2 (en) Method to assemble structures from nano-materials
CN1946634A (en) Nanostructures and method for making such nanostructures
WO2010076374A1 (en) Fabrication method of electronic devices based on aligned high aspect ratio nanoparticle networks
JP2013523591A5 (en)
WO2018008830A1 (en) Three-dimensional printable composite material for flexible electrode
CN108831904A (en) A kind of vertical structure organic thin film transistor array and preparation method thereof
US10115915B1 (en) Organic thin film transistor and method for making the same
WO2014021640A1 (en) Method for bidirectional doping of graphene, bidirectionally doped graphene, and device comprising same
Yin et al. Highly conductive and flexible thin film electrodes based on silver nanowires wrapped carbon fiber networks for supercapacitor applications
WO2014204042A1 (en) Method for forming carbon nanotube fine wiring, fine wiring board formed using same, and carbon nanotube dispersion solution for manufacturing fine wiring
CN113322048B (en) Carbon nano tube-based film material prepared at normal pressure and preparation method and application thereof
KR101580383B1 (en) Method of large area metal nano wire electrode array using aligned metal nano wire
KR100801670B1 (en) Fine electrode pattren manufacturing methode by the ink jet printing
Mariano et al. Electrical and morphological study of carbon nanotubes/polyaniline composite films: A model to explain different tunneling regimes induced by a vertical electric field
WO2010140789A2 (en) Nano device
Youn et al. Arbitrary alignment-angle control method of electrospun fibers: potential for a stretchable electrode material
US10388896B2 (en) Apparatus and method for forming organic thin film transistor
KR20040011178A (en) π-conjugated polymer nano-tube, nano-wier and method for preparing the same
KR20100010295A (en) Method for coating a substrate with a nanostructure, circuit board comprising a plurality of nanostructures and apparatus for coating a substrate with a nanostructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887170

Country of ref document: EP

Kind code of ref document: A1