WO2014203918A1 - Method of predicting therapeutic effect of epidermal growth factor receptor tyrosine kinase inhibitors - Google Patents

Method of predicting therapeutic effect of epidermal growth factor receptor tyrosine kinase inhibitors Download PDF

Info

Publication number
WO2014203918A1
WO2014203918A1 PCT/JP2014/066100 JP2014066100W WO2014203918A1 WO 2014203918 A1 WO2014203918 A1 WO 2014203918A1 JP 2014066100 W JP2014066100 W JP 2014066100W WO 2014203918 A1 WO2014203918 A1 WO 2014203918A1
Authority
WO
WIPO (PCT)
Prior art keywords
egfr
peptide
antibody
tyrosine kinase
amount
Prior art date
Application number
PCT/JP2014/066100
Other languages
French (fr)
Japanese (ja)
Inventor
公一 東
星野 友昭
服部 聡
伊東 恭悟
哲朗 笹田
誠和 小松
智子 松枝
Original Assignee
学校法人 久留米大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 久留米大学 filed Critical 学校法人 久留米大学
Priority to JP2015522950A priority Critical patent/JP6463675B2/en
Publication of WO2014203918A1 publication Critical patent/WO2014203918A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to a method for predicting the therapeutic effect of an epidermal growth factor receptor tyrosine kinase inhibitor, a peptide used in the method, a diagnostic composition, and a kit.
  • EGFR epidermal growth factor receptor
  • Non-patent Documents 1 and 2 Non-patent Documents 1 and 2; Some). Analysis of such gene mutations is usually performed using tissue or cytological specimens collected from cancer patients, but in advanced cancer patients, only a small amount of specimens can be collected, and there are situations where analysis is difficult.
  • An object of the present invention is to provide a method for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor.
  • the present inventors measured the antibody (IgG) titer against 60 kinds of peptides consisting of 20 mer derived from the amino acid sequence of EGFR using the plasma of 42 non-small cell lung cancer patients before gefitinib treatment.
  • three types of peptides (EGFR41-60, EGFR61-80, EGFR481-500) significantly correlated with progression-free survival (PFS).
  • PFS progression-free survival
  • three peptides EGFR41-60, EGFR481-500, EGFR881-900
  • OS overall survival
  • these antibody titers were found to be independent prognostic factors regardless of other clinicopathological factors (age, smoking history, EGFR gene mutation). From the above results, the present invention was completed.
  • the present invention is a method for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor, which comprises the following steps: (1) a step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an EGFR tyrosine kinase inhibitor; and (2) Comparing the amount of antibody with a reference value;
  • a method comprising:
  • the present invention provides a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof.
  • the present invention provides a bead or plate to which a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof is bound.
  • the present invention predicts the therapeutic effect of an EGFR tyrosine kinase inhibitor comprising a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, or a bead to which the peptide or derivative is bound.
  • a diagnostic composition is provided.
  • the present invention provides a therapeutic effect of an EGFR tyrosine kinase inhibitor comprising a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, or a bead or plate to which the peptide or derivative is bound.
  • an EGFR tyrosine kinase inhibitor comprising a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, or a bead or plate to which the peptide or derivative is bound.
  • the present invention makes it possible to select patients who can expect a therapeutic effect of an EGFR tyrosine kinase inhibitor, and contributes to improving the response rate of the therapeutic agent and preventing serious side effects due to unnecessary treatment.
  • the present invention can further improve the accuracy of prediction of therapeutic effect by using in combination with conventional gene mutation analysis.
  • FIG. 1 shows Kaplan-Meier analysis for PFS and OS after initiation of gefitinib treatment.
  • FIG. 2 shows the amino acid sequence of the EGFR protein. The wavy lines represent the peptides that correlate with the EGFR mutation eg egfr — 481 — 500, egfr — 721 — 740, egfr — 741 — 760, egfr — 841 — 860, and egfr — 1001 — 1020.
  • FIG. 3 shows Kaplan-Meier plots for PFS and OS in the high and low antibody titers for the selected peptides. High and low antibody titers were defined by median values.
  • FIG. 4 shows ROC curves for PFS and OS using antibody amounts against peptides and clinicopathological features (solid line) or clinicopathological features only (dashed line).
  • FIG. 5 shows the Cox regression solution path with lasso penalty for PFS (A) and OS (B).
  • the epidermal growth factor receptor (EGFR) -derived peptide means a peptide consisting of a part of the amino acid sequence of EGFR (SEQ ID NO: 1).
  • EGFRx-y or “egfr_x_y” means a peptide consisting of the amino acid sequence from amino acid position x to y of SEQ ID NO: 1.
  • EGFR41-60 or “egfr_41_60” means a peptide consisting of the 41st to 60th amino acid sequences of SEQ ID NO: 1.
  • the methods of the present invention include EGFR41-60 (LGTFEDHFLSLQRMFNNCEV: SEQ ID NO: 2) EGFR61-80 (VLGNLEITYVQRNYDLSFLK: SEQ ID NO: 3), EGFR481-500 (FGTSGQKTKIISNRGENSCK: SEQ ID NO: 4), and EGFR881-900 (MALESILHRIYTHQSDVWS: SEQ ID NO: 5) Measuring the amount of an antibody against a selected EGFR-derived peptide (ie, a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5). In the method of the present invention, the amount of antibody against two or more kinds of peptides may be measured.
  • the methods of the invention measure the amount of antibody to an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR61-80 (SEQ ID NO: 3), and EGFR481-500 (SEQ ID NO: 4). Including doing.
  • the method of the invention comprises an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR481-500 (SEQ ID NO: 4), and EGFR881-900 (SEQ ID NO: 5), preferably EGFR41- Measuring the amount of antibody against an EGFR-derived peptide selected from 60 (SEQ ID NO: 2) and EGFR481-500 (SEQ ID NO: 4).
  • EGFR tyrosine kinase inhibitors include gefitinib and erlotinib.
  • the EGFR tyrosine kinase inhibitor is gefitinib.
  • Patients in the method of the present invention include patients with cancer types that can be expected to have therapeutic effects by EGFR-TKI, such as non-small cell lung cancer, brain glioblastoma, squamous cell carcinoma of the head and neck, and pancreatic cancer.
  • the patient is a non-small cell lung cancer patient.
  • the patient's blood sample is collected prior to the treatment from the patient undergoing treatment with the EGFR tyrosine kinase inhibitor.
  • Patients receiving treatment with an EGFR tyrosine kinase inhibitor include those patients who are scheduled to receive such treatment and patients who are considered an option for such treatment.
  • Blood samples include whole blood, serum and plasma.
  • the blood sample is serum or plasma, more preferably plasma.
  • the blood sample may be stored frozen after measurement from the patient until measurement, or may be treated with a reagent or the like as necessary. Blood samples can be prepared by routine methods known in the art.
  • the amount of antibody may be measured by any method known in the art.
  • ELISA method Pedersen MK, et al., J Immunol Methods. 2006 Apr 20; 311 (1-2): 198-206. Epub 2006 Mar 6.
  • RIA method Maruta T, et al. , Immunol Invest. 2006; 35 (2): 137-48.
  • a method using the Luminex (registered trademark) system Komatsu N, et al., Scand J Clin Lab Invest 64, 535-546, 2004.
  • the anti-peptide antibody to be measured is not particularly limited, but is usually IgG.
  • Luminex registered trademark
  • the method using the Luminex (registered trademark) system is suitable for the present invention because a high-sensitivity and high-throughput analysis is possible with a very small amount (several microliters) of blood sample.
  • an antibody in a patient blood sample that binds to a bead to which an EGFR-derived peptide is bound is measured by fluorescence or the like.
  • a blood sample collected from a patient is diluted as necessary, and incubated with beads to which an EGFR-derived peptide is bound, so that the anti-peptide antibody in the blood sample is bound to the EGFR-derived peptide on the beads.
  • the beads are then incubated with biotinylated anti-human IgG to bind the anti-human IgG to the anti-peptide antibody bound to the beads. Furthermore, the amount of the anti-peptide antibody can be measured by incubating the beads with streptavidin-PE and measuring the fluorescence intensity of the PE bound to the beads. The fluorescence intensity can be measured by a multiplex bead suspension array (Luminex® system).
  • a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof can be used.
  • a peptide derivative means that its amino acid sequence has been altered by deletion, substitution, or addition of one or several, preferably one or two amino acid residues, but is present in a blood sample. It means a peptide that maintains reactivity with anti-peptide antibodies.
  • the amino group and carboxyl group of the peptide and its derivative may be modified as long as recognition by the antibody is not impaired.
  • the peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof may be bound to beads or a plate.
  • Peptides and derivatives may be bound directly to beads or plates, or indirectly via a linker or the like.
  • the beads include polystyrene beads and magnetic beads.
  • the size of the beads is not particularly limited, but for example, the diameter is 5 to 7 ⁇ m.
  • the beads may be Luminex® beads that can be used in the Luminex® system.
  • Examples of the plate include a polystyrene plate.
  • the number of wells is, for example, 6, 24, 96, and 384, preferably 96.
  • the plate may be a plate conventionally used for ELISA or RIA.
  • the peptide or derivative can be bound to beads or plates as appropriate by those skilled in the art. There may be one kind or plural kinds of peptides or derivatives bound to one well of one bead or plate.
  • Measured antibody amount is compared with a reference value.
  • the reference value is, for example, a value determined in advance based on the amount of antibody before the treatment of a patient group in which disease has progressed and / or a patient group in which disease has not progressed within a certain period after the start of treatment with an EGFR tyrosine kinase inhibitor.
  • the reference value may be the median antibody amount in the patient group before the start of treatment with the EGFR tyrosine kinase inhibitor.
  • the patient when the measured antibody amount is higher than the reference value, the patient is predicted to have a high therapeutic effect by the EGFR tyrosine kinase inhibitor.
  • the greater the amount of antibody the higher the therapeutic effect.
  • “therapeutic effect of an EGFR tyrosine kinase inhibitor is high” means that the overall survival or progression-free survival is greater when treated with an EGFR tyrosine kinase inhibitor than when the treatment is not performed. It means being extended.
  • the methods of the invention measure the amount of antibody to an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR61-80 (SEQ ID NO: 3), and EGFR481-500 (SEQ ID NO: 4).
  • an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR61-80 (SEQ ID NO: 3), and EGFR481-500 (SEQ ID NO: 4).
  • the patient is treated with an EGFR tyrosine kinase inhibitor to prolong progression-free survival compared with the case where the treatment is not performed. is expected.
  • the method of the invention comprises an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR481-500 (SEQ ID NO: 4), and EGFR881-900 (SEQ ID NO: 5), preferably EGFR41- Measuring the amount of an antibody against an EGFR-derived peptide selected from 60 (SEQ ID NO: 2) and EGFR481-500 (SEQ ID NO: 4), and if the measured antibody amount is higher than a reference value, the patient is treated with EGFR tyrosine Treatment with a kinase inhibitor is expected to extend overall survival compared to the absence of such treatment.
  • the diagnostic composition of the present invention comprises a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5, or a derivative thereof, or beads to which the peptide or derivative is bound.
  • the diagnostic composition of the present invention is used according to the method for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor described herein.
  • the diagnostic composition of the present invention may further contain an appropriate carrier and additives such as a buffer and an isotonic agent, and may be provided in a lyophilized state and prepared at the time of use.
  • the diagnostic composition of the present invention may be provided with instructions for use along the method of the present invention.
  • the kit of the present invention comprises a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, or a bead or plate to which the peptide or derivative is bound.
  • the kits of the invention are used according to the methods described herein for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor.
  • a kit is a kit for performing the method by ELISA method, RIA method, or Luminex (trademark) system, for example.
  • the kit may further include a blocking solution, a washing solution, a diluent, a detection antibody, a control sample, a plate, and instructions for use according to the method of the present invention.
  • the peptides and derivatives used in the present invention may be modified at their amino groups or carboxyl groups as long as recognition by the antibody is not impaired.
  • the peptides and derivatives thereof used in the present invention can be produced by conventional peptide synthesis methods (Peptide Synthesis, Interscience, New York, 1966; The Proteins, Vol2, Academic Press Inc., New York, 1976; Maruzen Co., Ltd., 1975; Fundamentals and experiments of peptide synthesis, Maruzen Co., Ltd., 1985;
  • the present invention is a method of collecting data for predicting the therapeutic effect of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor comprising the following steps: (1) a step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an EGFR tyrosine kinase inhibitor; and (2) Comparing the amount of antibody with a reference value;
  • the amount of the antibody is higher than a reference value, the patient is predicted to have a high therapeutic effect by an EGFR tyrosine kinase inhibitor.
  • a method comprising:
  • the present invention is a method of treating cancer comprising the following steps: (1) a step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an EGFR tyrosine kinase inhibitor; (2) comparing the measured antibody amount with a reference value; and (3) treating a patient whose antibody amount is higher than the reference value with an EGFR tyrosine kinase inhibitor;
  • a method comprising:
  • the present invention provides a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, for the manufacture of a diagnostic composition for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor, or Use of beads to which the peptide or derivative is bound is provided.
  • the present invention relates to a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof for the manufacture of a kit for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor, or the peptide Alternatively, the use of a derivative or bound bead or plate is provided.
  • Tumor reduction effect tumor response
  • CT computed tomography
  • RECIST Response Evaluation Criteria in Solid Tumors
  • the reduction effect was confirmed at least 4 weeks (in case of complete or partial response) or 6 weeks (in case of disease stability) from the first recording.
  • PFS progression-free survival
  • Serum or plasma was collected from NSCLC patients treated with gefitinib before gefitinib treatment. Explanation consent documents were obtained from all subjects. Once serum or plasma was obtained, it was frozen at -80 degrees until use.
  • the amount of antibody was expressed by fluorescence intensity, and the value was shown by fluorescence intensity unit (FIU) as previously reported (24). Since the FIU linear curve obtained from the sample dilution assay was 5-10,000 FIU (data not shown), the cut-off level was set to 10 FIU. The amount of antibody reactive to each of the 60 different peptides was measured.
  • fluorescence intensity unit FIU
  • a regression coefficient of a peptide that does not correlate with PFS can be evaluated as zero.
  • OS PFS
  • the inventors have identified several peptides that are expected to be useful in predicting patient prognosis.
  • Cox regression analysis and time-dependent ROC analysis (27) were applied to determine if the amount of antibody reactive to the selected peptides is actually useful for predicting patient prognosis.
  • the area under the ROC curve (AUC) was assessed for risk score through Cox regression by clinicopathologic features alone and Cox regression by both the amount of antibody reactive to each peptide and clinicopathological features. .
  • AUCs were compared by calculating P values for 1000 iterations by the bootstrap method and testing for AUC equivalence.
  • Statistical analysis was performed with R version 2.13 software and SAS version 9.3 software (SAS Institute, Cary, NC).
  • Table 1 shows the clinical characteristics of 42 patients. Twenty-five (59%) patients were women, 24 (57%) were non-smokers, and the median age of all patients was 63.5 years (range: 38-82 years). 38 (90%) patients have adenocarcinoma, 34 (80%) are in good general condition (Eastern Cooperative Oncology Group rating scale is 0), 15 patients (32%) EGFR-TKI treatment was given as first-line chemotherapy. To describe the types of EGFR mutations, 8 patients have a deletion in exon 19, 13 patients have a L858R missense mutation in exon 21, and 21 patients have the wild type. It was.
  • FIG. 1B Became clear. This PFS difference between patients with mutations and wild type patients was evident for both types of EGFR mutations (FIGS. 1C, D).
  • FIGS. 3A and 3B Kaplan-Meier plots for PFS and OS in the high value group and the low value group of the antibody amount against the selected peptide are shown in FIGS. 3A and 3B, respectively.
  • the effects of clinicopathological features have not been adjusted).
  • time-dependent ROC analysis it was examined whether the prognosis prediction of patients can be improved by adding the amount of antibody against the peptide to the clinicopathological characteristics.
  • 4A and 4B were evaluated by Cox regression as shown in Table 2A (for PFS) and Table 2B (for OS) using only the amount of antibody to the peptide and clinicopathological features, and clinicopathological features.
  • ROC curves of annual and 2-year risk scores Shown are ROC curves of annual and 2-year risk scores.
  • the ROC curve shows that the diagnosis for 1-year and 2-year PFS is substantially improved (P ⁇ 0.001 for the AUC comparison).
  • the AUC of the 1-year and 2-year time-dependent ROC curves was significantly increased by adding the amount of antibody against the peptide (P ⁇ 0.001).
  • FIGGS. 4C and 4D time-dependent ROC analysis showed that the patient prognosis can be predicted more accurately for both PFS and OS by adding the amount of antibody against the peptide to the clinicopathological features.
  • Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccine with peptides based on pre-existing, peptide-specific cellular responses.Clin Cancer Res 2004; 10: 929- 37. 16.
  • Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 2008; 13: 365-373. 37. Kimura H, Kasahara K, Kawanishi M, et al. Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 2006; 12: 3915 -twenty one.
  • SEQ ID NO: 1 human EGFR SEQ ID NO: 2: EGFR-derived peptide (EGFR41-60)
  • SEQ ID NO: 3 EGFR-derived peptide (EGFR61-80)
  • SEQ ID NO: 4 EGFR-derived peptide (EGFR481-500)
  • SEQ ID NO: 5 EGFR-derived peptide (EGFR 881-900)

Abstract

The present invention provides a method of predicting the therapeutic effect of EGFR tyrosine kinase inhibitors, said method including the following steps: (1) measuring the quantity of antibodies against a peptide comprising an amino acid sequence selected from SEQ ID NO: 2-5 in a blood sample taken from a patient before treatment with an EGFR tyrosine kinase inhibitor; and (2) comparing the measured quantity of antibodies with a reference value, whereby the EGFR tyrosine kinase inhibitors are predicted to have a high therapeutic effect in the patient if the quantity of antibodies is higher than the reference value.

Description

上皮成長因子受容体チロシンキナーゼ阻害薬の治療効果を予測する方法Methods for predicting therapeutic effects of epidermal growth factor receptor tyrosine kinase inhibitors
 本発明は、上皮成長因子受容体チロシンキナーゼ阻害薬の治療効果を予測する方法、当該方法に用いられるペプチド、診断用組成物、およびキットに関する。 The present invention relates to a method for predicting the therapeutic effect of an epidermal growth factor receptor tyrosine kinase inhibitor, a peptide used in the method, a diagnostic composition, and a kit.
 癌の発生および病態進展において、上皮成長因子受容体(EGFR)などのチロシンキナーゼの活性化が重要な役割を果たすことが判明し、それらを標的とする分子標的治療薬の研究、開発が進んでいる。特に、EGFRチロシンキナーゼ阻害薬(EGFR-TKI)の登場により、切除不能で従来の化学療法に抵抗性の非小細胞肺癌患者の予後が飛躍的に改善している。しかしながら、その臨床効果は個体間で一定ではなく、最初から治療抵抗性を示す患者が少なからず存在する。 It has been found that activation of tyrosine kinases such as epidermal growth factor receptor (EGFR) plays an important role in cancer development and pathological progress, and research and development of molecular targeted therapeutic agents targeting them have progressed. Yes. In particular, the advent of EGFR tyrosine kinase inhibitors (EGFR-TKI) has dramatically improved the prognosis of patients with non-small cell lung cancer who are unresectable and resistant to conventional chemotherapy. However, the clinical effect is not constant among individuals, and there are not a few patients who show resistance to treatment from the beginning.
 非小細胞肺癌患者の国内での年間罹患者数は約9万人(悪性腫瘍の中で第3位)、年間死亡者数は約6万5千人(悪性腫瘍の中で第1位)であり、進行期の非小細胞肺癌患者の約40%はEGFR-TKI治療の対象となるEGFR突然変異を有している。現在、EGFR-TKIであるゲフィチニブの治療効果を予測するためのバイオマーカーとしては、主として、EGFR遺伝子変異の解析が一般的に実施されている(非特許文献1,2、参照により本願明細書の一部となす)。こうした遺伝子変異の解析は、癌患者より採取した組織または細胞診検体を用いて通常行われるが、進行癌患者においては検体が少量しか採取できず、解析が困難な状況もある。 About 90,000 cases of non-small cell lung cancer patients in Japan (third place among malignant tumors) and about 65,000 deaths per year (first place among malignant tumors) And approximately 40% of advanced stage non-small cell lung cancer patients have an EGFR mutation that is subject to EGFR-TKI treatment. Currently, as a biomarker for predicting the therapeutic effect of EGFR-TKI gefitinib, analysis of EGFR gene mutation is mainly carried out generally (Non-patent Documents 1 and 2; Some). Analysis of such gene mutations is usually performed using tissue or cytological specimens collected from cancer patients, but in advanced cancer patients, only a small amount of specimens can be collected, and there are situations where analysis is difficult.
 本発明は、EGFRチロシンキナーゼ阻害薬の治療効果を予測する方法を提供することを目的とする。 An object of the present invention is to provide a method for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor.
 本発明者らは、ゲフィチニブ治療前の非小細胞肺癌患者42人の血漿を用いて、EGFRのアミノ酸配列に由来する20merからなる60種類のペプチドに対する抗体(IgG)価を測定した。測定した抗体価とゲフィチニブ治療後の患者予後との相関を調べたところ、3種類のペプチド(EGFR41-60,EGFR61-80,EGFR481-500)が無増悪生存率(PFS)と有意に相関した。さらに、3種類のペプチド(EGFR41-60,EGFR481-500,EGFR881-900)が全生存率(OS)と有意に相関した。多変量解析において、これらの抗体価は、他の臨床病理学的因子(年齢、喫煙歴、EGFR遺伝子変異)に関わらず独立した予後規定因子であることが判明した。以上の結果から、本発明を完成した。 The present inventors measured the antibody (IgG) titer against 60 kinds of peptides consisting of 20 mer derived from the amino acid sequence of EGFR using the plasma of 42 non-small cell lung cancer patients before gefitinib treatment. When the correlation between the measured antibody titer and the patient prognosis after gefitinib treatment was examined, three types of peptides (EGFR41-60, EGFR61-80, EGFR481-500) significantly correlated with progression-free survival (PFS). In addition, three peptides (EGFR41-60, EGFR481-500, EGFR881-900) were significantly correlated with overall survival (OS). In multivariate analysis, these antibody titers were found to be independent prognostic factors regardless of other clinicopathological factors (age, smoking history, EGFR gene mutation). From the above results, the present invention was completed.
 本発明は、EGFRチロシンキナーゼ阻害薬の治療効果を予測する方法であって、以下の工程:
(1)患者からEGFRチロシンキナーゼ阻害薬による治療前に採取された血液試料における、配列番号2~5から選択されるアミノ酸配列からなるペプチドに対する抗体の量を測定する工程;および
(2)測定した抗体量を基準値と比較する工程、
 ここで、該抗体量が基準値より高い場合、該患者はEGFRチロシンキナーゼ阻害薬による治療効果が高いと予測される、
 を含む方法を提供する。
The present invention is a method for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor, which comprises the following steps:
(1) a step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an EGFR tyrosine kinase inhibitor; and (2) Comparing the amount of antibody with a reference value;
Here, when the amount of the antibody is higher than a reference value, the patient is predicted to have a high therapeutic effect by an EGFR tyrosine kinase inhibitor.
A method comprising:
 別の態様において、本発明は、配列番号2~5から選択されるアミノ酸配列からなるペプチドまたはその誘導体を提供する。 In another aspect, the present invention provides a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof.
 別の態様において、本発明は、配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体が結合したビーズまたはプレートを提供する。 In another aspect, the present invention provides a bead or plate to which a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof is bound.
 別の態様において、本発明は、配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体、または前記ペプチド若しくは誘導体が結合したビーズを含む、EGFRチロシンキナーゼ阻害薬の治療効果を予測するための診断用組成物を提供する。 In another aspect, the present invention predicts the therapeutic effect of an EGFR tyrosine kinase inhibitor comprising a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, or a bead to which the peptide or derivative is bound. A diagnostic composition is provided.
 別の態様において、本発明は、配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体、または前記ペプチド若しくは誘導体が結合したビーズ若しくはプレートを含む、EGFRチロシンキナーゼ阻害薬の治療効果を予測するためのキットを提供する。 In another embodiment, the present invention provides a therapeutic effect of an EGFR tyrosine kinase inhibitor comprising a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, or a bead or plate to which the peptide or derivative is bound. Providing kits for prediction.
 本発明は、EGFRチロシンキナーゼ阻害薬の治療効果を期待できる患者の選別を可能とし、当該治療薬の奏効率の向上や、不必要な治療による重篤な副作用の防止に寄与する。本発明は、従来の遺伝子変異解析と併用することにより、治療効果予測の精度をさらに高めることができる。 The present invention makes it possible to select patients who can expect a therapeutic effect of an EGFR tyrosine kinase inhibitor, and contributes to improving the response rate of the therapeutic agent and preventing serious side effects due to unnecessary treatment. The present invention can further improve the accuracy of prediction of therapeutic effect by using in combination with conventional gene mutation analysis.
図1は、ゲフィチニブ治療の開始後におけるPFSおよびOSについてのカプラン-マイヤー解析を示す。FIG. 1 shows Kaplan-Meier analysis for PFS and OS after initiation of gefitinib treatment. 図2は、EGFRタンパク質のアミノ酸配列を示す。波線は、EGFR突然変異と相関するペプチドであるegfr_481_500、egfr_721_740、egfr_741_760、egfr_841_860、およびegfr_1001_1020を表す。囲み線は、生存(PFSあるいはOS)と相関するペプチドであるegfr_41_60、egfr_61_80、egfr_481_500、egfr_881_900を表す。FIG. 2 shows the amino acid sequence of the EGFR protein. The wavy lines represent the peptides that correlate with the EGFR mutation eg egfr — 481 — 500, egfr — 721 — 740, egfr — 741 — 760, egfr — 841 — 860, and egfr — 1001 — 1020. The encircled lines represent egfr_41_60, egfr_61_80, egfr_481_500, and egfr_881_900, which are peptides that correlate with survival (PFS or OS). 図3は、選択したペプチドに対する抗体価の高値群および低値群における、PFSおよびOSについてのカプラン-マイヤープロットを示す。抗体価の高値群および低値群は、中央値により定義した。FIG. 3 shows Kaplan-Meier plots for PFS and OS in the high and low antibody titers for the selected peptides. High and low antibody titers were defined by median values. 図4は、ペプチドに対する抗体量と臨床病理学的特徴(実線)または臨床病理学的特徴のみ(破線)を用いた、PFSおよびOSについてのROC曲線を示す。AおよびBのペプチド:EGFR481-500、EGFR41-60、およびEGFR61-80;CおよびDのペプチド:EGFR481-500およびEGFR41-60。FIG. 4 shows ROC curves for PFS and OS using antibody amounts against peptides and clinicopathological features (solid line) or clinicopathological features only (dashed line). A and B peptides: EGFR481-500, EGFR41-60, and EGFR61-80; C and D peptides: EGFR481-500 and EGFR41-60. 図5は、PFS(A)およびOS(B)についてのラッソペナルティーを伴うコックス回帰のソリューションパスを示す。FIG. 5 shows the Cox regression solution path with lasso penalty for PFS (A) and OS (B).
 本明細書において、上皮成長因子受容体(EGFR)由来ペプチドとは、EGFRのアミノ酸配列(配列番号1)の一部からなるペプチドを意味する。本明細書中、「EGFRx-y」または「egfr_x_y」とは、配列番号1のアミノ酸位置xからyまでのアミノ酸配列からなるペプチドを意味する。例えば、「EGFR41-60」または「egfr_41_60」とは、配列番号1の41番目から60番目のアミノ酸配列からなるペプチドを意味する。本発明の方法は、EGFR41-60(LGTFEDHFLSLQRMFNNCEV:配列番号2)EGFR61-80(VLGNLEITYVQRNYDLSFLK:配列番号3)、EGFR481-500(FGTSGQKTKIISNRGENSCK:配列番号4)、およびEGFR881-900(MALESILHRIYTHQSDVWSY:配列番号5)から選択されるEGFR由来ペプチド(すなわち、配列番号2~5から選択されるアミノ酸配列からなるペプチド)に対する抗体の量を測定することを含む。本発明の方法では、2種類以上のペプチドに対する抗体の量を測定してもよい。ある態様において、本発明の方法は、EGFR41-60(配列番号2)、EGFR61-80(配列番号3)、およびEGFR481-500(配列番号4)から選択されるEGFR由来ペプチドに対する抗体の量を測定することを含む。別の態様において、本発明の方法は、EGFR41-60(配列番号2)、EGFR481-500(配列番号4)、およびEGFR881-900(配列番号5)から選択されるEGFR由来ペプチド、好ましくはEGFR41-60(配列番号2)およびEGFR481-500(配列番号4)から選択されるEGFR由来ペプチドに対する抗体の量を測定することを含む。 In the present specification, the epidermal growth factor receptor (EGFR) -derived peptide means a peptide consisting of a part of the amino acid sequence of EGFR (SEQ ID NO: 1). In the present specification, “EGFRx-y” or “egfr_x_y” means a peptide consisting of the amino acid sequence from amino acid position x to y of SEQ ID NO: 1. For example, “EGFR41-60” or “egfr_41_60” means a peptide consisting of the 41st to 60th amino acid sequences of SEQ ID NO: 1. The methods of the present invention include EGFR41-60 (LGTFEDHFLSLQRMFNNCEV: SEQ ID NO: 2) EGFR61-80 (VLGNLEITYVQRNYDLSFLK: SEQ ID NO: 3), EGFR481-500 (FGTSGQKTKIISNRGENSCK: SEQ ID NO: 4), and EGFR881-900 (MALESILHRIYTHQSDVWS: SEQ ID NO: 5) Measuring the amount of an antibody against a selected EGFR-derived peptide (ie, a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5). In the method of the present invention, the amount of antibody against two or more kinds of peptides may be measured. In certain embodiments, the methods of the invention measure the amount of antibody to an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR61-80 (SEQ ID NO: 3), and EGFR481-500 (SEQ ID NO: 4). Including doing. In another embodiment, the method of the invention comprises an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR481-500 (SEQ ID NO: 4), and EGFR881-900 (SEQ ID NO: 5), preferably EGFR41- Measuring the amount of antibody against an EGFR-derived peptide selected from 60 (SEQ ID NO: 2) and EGFR481-500 (SEQ ID NO: 4).
 EGFRチロシンキナーゼ阻害薬(以下、EGFR-TKIとも称する)には、ゲフィニチブおよびエルロチニブが含まれる。好ましくは、EGFRチロシンキナーゼ阻害薬はゲフィニチブである。 EGFR tyrosine kinase inhibitors (hereinafter also referred to as EGFR-TKI) include gefitinib and erlotinib. Preferably, the EGFR tyrosine kinase inhibitor is gefitinib.
 本発明の方法における患者には、非小細胞肺癌、脳神経膠芽腫、頭頸部扁平上皮癌、膵臓癌などEGFR-TKIにより治療効果の期待できる癌種の患者が含まれる。好ましくは、患者は、非小細胞肺癌患者である。 Patients in the method of the present invention include patients with cancer types that can be expected to have therapeutic effects by EGFR-TKI, such as non-small cell lung cancer, brain glioblastoma, squamous cell carcinoma of the head and neck, and pancreatic cancer. Preferably, the patient is a non-small cell lung cancer patient.
 患者の血液試料は、EGFRチロシンキナーゼ阻害薬による治療を受ける患者から、当該治療前に採取される。EGFRチロシンキナーゼ阻害薬による治療を受ける患者には、当該治療を受ける予定の患者および当該治療が選択肢として考えられる患者が含まれる。血液試料には、全血、血清および血漿が含まれる。好ましくは、血液試料は血清または血漿であり、より好ましくは血漿である。血液試料は、患者からの採取後、測定まで凍結保存してもよく、必要に応じて試薬等により処理してもよい。血液試料は、当業界にて知られる常套的方法によって調製することができる。 The patient's blood sample is collected prior to the treatment from the patient undergoing treatment with the EGFR tyrosine kinase inhibitor. Patients receiving treatment with an EGFR tyrosine kinase inhibitor include those patients who are scheduled to receive such treatment and patients who are considered an option for such treatment. Blood samples include whole blood, serum and plasma. Preferably, the blood sample is serum or plasma, more preferably plasma. The blood sample may be stored frozen after measurement from the patient until measurement, or may be treated with a reagent or the like as necessary. Blood samples can be prepared by routine methods known in the art.
 抗体量は、当業界に知られるいずれの方法により測定してもよい。測定方法としては、ELISA法(Pedersen MK, et al., J Immunol Methods. 2006 Apr 20;311(1-2):198-206. Epub 2006 Mar 6.)、RIA法(Maruta T, et al., Immunol Invest. 2006;35(2):137-48.)、Luminex(登録商標)システムによる方法(Komatsu N, et al., Scand J Clin Lab Invest 64, 535-546, 2004)が挙げられる。測定する抗ペプチド抗体は、特に限定されないが、通常IgGである。 The amount of antibody may be measured by any method known in the art. As a measuring method, ELISA method (Pedersen MK, et al., J Immunol Methods. 2006 Apr 20; 311 (1-2): 198-206. Epub 2006 Mar 6.), RIA method (Maruta T, et al. , Immunol Invest. 2006; 35 (2): 137-48.), A method using the Luminex (registered trademark) system (Komatsu N, et al., Scand J Clin Lab Invest 64, 535-546, 2004). The anti-peptide antibody to be measured is not particularly limited, but is usually IgG.
 Luminex(登録商標)システムによる方法は、微量(数マイクロリットル)の血液試料により高感度でハイスループットな解析が可能であるため、本発明に好適である。簡単に説明すると、EGFR由来ペプチドが結合したビーズに対して結合する、患者の血液試料中の抗体を蛍光等によって測定する。例えば、患者より採取した血液試料を必要に応じて希釈し、EGFR由来ペプチドが結合したビーズと共にインキュベートして、血液試料中の抗ペプチド抗体をビーズ上のEGFR由来ペプチドに結合させる。次いで、このビーズをビオチン化抗ヒトIgGと共にインキュベートして、ビーズに結合した抗ペプチド抗体に当該抗ヒトIgGを結合させる。さらに、ビーズをストレプトアビジン-PEとインキュベートして、ビーズに結合したPEの蛍光強度を測定することにより、抗ペプチド抗体の量を測定することができる。蛍光強度は、マルチプレックスビーズ懸濁アレイ(Luminex(登録商標)システム)により測定することができる。 The method using the Luminex (registered trademark) system is suitable for the present invention because a high-sensitivity and high-throughput analysis is possible with a very small amount (several microliters) of blood sample. Briefly, an antibody in a patient blood sample that binds to a bead to which an EGFR-derived peptide is bound is measured by fluorescence or the like. For example, a blood sample collected from a patient is diluted as necessary, and incubated with beads to which an EGFR-derived peptide is bound, so that the anti-peptide antibody in the blood sample is bound to the EGFR-derived peptide on the beads. The beads are then incubated with biotinylated anti-human IgG to bind the anti-human IgG to the anti-peptide antibody bound to the beads. Furthermore, the amount of the anti-peptide antibody can be measured by incubating the beads with streptavidin-PE and measuring the fluorescence intensity of the PE bound to the beads. The fluorescence intensity can be measured by a multiplex bead suspension array (Luminex® system).
 抗体量の測定には、配列番号2~5から選択されるアミノ酸配列からなるペプチド、またはその誘導体を用いることができる。本明細書において、ペプチドの誘導体とは、1または数個、好ましくは1または2個のアミノ酸残基の欠失、置換、または付加によりそのアミノ酸配列が改変されているが、血液試料中に存在する抗ペプチド抗体に対する反応性を維持するペプチドを意味する。ペプチドおよびその誘導体は、抗体による認識を損なわない範囲で、そのアミノ基やカルボキシル基が修飾されていてもよい。 For measurement of the amount of antibody, a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof can be used. In the present specification, a peptide derivative means that its amino acid sequence has been altered by deletion, substitution, or addition of one or several, preferably one or two amino acid residues, but is present in a blood sample. It means a peptide that maintains reactivity with anti-peptide antibodies. The amino group and carboxyl group of the peptide and its derivative may be modified as long as recognition by the antibody is not impaired.
 配列番号2~5から選択されるアミノ酸配列からなるペプチドまたはその誘導体は、ビーズまたはプレートに結合していてもよい。ペプチドおよび誘導体は、直接ビーズまたはプレートに結合していても、リンカーなどを介して間接的に結合していてもよい。ビーズとしては、例えばポリスチレンビーズおよび磁気ビーズが挙げられる。ビーズの大きさは、特に限定はされないが、例えば、直径が5~7μmである。ビーズは、Luminex(登録商標)システムに使用可能なLuminex(登録商標)ビーズであってもよい。プレートとしては、ポリスチレン製のプレートが例示される。ウェルの数は、例えば6、24、96、および384であり、好ましくは96である。プレートは、ELISA法またはRIA法に慣用されるプレートであってよい。ペプチドまたは誘導体のビーズまたはプレートへの結合は、当業者が適宜実施できる。1つのビーズまたはプレートの1つのウェルに結合しているペプチドまたは誘導体は、1種類であっても、複数種類であってもよい。 The peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof may be bound to beads or a plate. Peptides and derivatives may be bound directly to beads or plates, or indirectly via a linker or the like. Examples of the beads include polystyrene beads and magnetic beads. The size of the beads is not particularly limited, but for example, the diameter is 5 to 7 μm. The beads may be Luminex® beads that can be used in the Luminex® system. Examples of the plate include a polystyrene plate. The number of wells is, for example, 6, 24, 96, and 384, preferably 96. The plate may be a plate conventionally used for ELISA or RIA. The peptide or derivative can be bound to beads or plates as appropriate by those skilled in the art. There may be one kind or plural kinds of peptides or derivatives bound to one well of one bead or plate.
 測定した抗体量は、基準値と比較される。基準値は、例えば、EGFRチロシンキナーゼ阻害薬による治療開始後一定期間内に疾患の進行した患者群および/または進行しなかった患者群の当該治療前の抗体量に基づき予め決定した値である。あるいは、基準値は、EGFRチロシンキナーゼ阻害薬による治療開始前の患者群における抗体量の中央値であってもよい。 Measured antibody amount is compared with a reference value. The reference value is, for example, a value determined in advance based on the amount of antibody before the treatment of a patient group in which disease has progressed and / or a patient group in which disease has not progressed within a certain period after the start of treatment with an EGFR tyrosine kinase inhibitor. Alternatively, the reference value may be the median antibody amount in the patient group before the start of treatment with the EGFR tyrosine kinase inhibitor.
 本発明において、測定した抗体量が基準値より高い場合、当該患者はEGFRチロシンキナーゼ阻害薬による治療効果が高いと予測される。また、抗体量が多ければ多いほど、治療効果がより高いと予測することができる。本明細書において、「EGFRチロシンキナーゼ阻害薬による治療効果が高い」とは、EGFRチロシンキナーゼ阻害薬による治療により、当該治療を行わなかった場合と比較して、全生存期間または無増悪生存期間が延長されることを意味する。 In the present invention, when the measured antibody amount is higher than the reference value, the patient is predicted to have a high therapeutic effect by the EGFR tyrosine kinase inhibitor. In addition, it can be predicted that the greater the amount of antibody, the higher the therapeutic effect. In the present specification, “therapeutic effect of an EGFR tyrosine kinase inhibitor is high” means that the overall survival or progression-free survival is greater when treated with an EGFR tyrosine kinase inhibitor than when the treatment is not performed. It means being extended.
 ある態様において、本発明の方法は、EGFR41-60(配列番号2)、EGFR61-80(配列番号3)、およびEGFR481-500(配列番号4)から選択されるEGFR由来ペプチドに対する抗体の量を測定することを含み、測定した抗体量が基準値より高い場合、当該患者は、EGFRチロシンキナーゼ阻害薬による治療により、当該治療を行わなかった場合と比較して、無増悪生存期間が延長されると予測される。 In certain embodiments, the methods of the invention measure the amount of antibody to an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR61-80 (SEQ ID NO: 3), and EGFR481-500 (SEQ ID NO: 4). When the measured antibody amount is higher than the reference value, the patient is treated with an EGFR tyrosine kinase inhibitor to prolong progression-free survival compared with the case where the treatment is not performed. is expected.
 別の態様において、本発明の方法は、EGFR41-60(配列番号2)、EGFR481-500(配列番号4)、およびEGFR881-900(配列番号5)から選択されるEGFR由来ペプチド、好ましくはEGFR41-60(配列番号2)およびEGFR481-500(配列番号4)から選択されるEGFR由来ペプチドに対する抗体の量を測定することを含み、測定した抗体量が基準値より高い場合、当該患者は、EGFRチロシンキナーゼ阻害薬による治療により、当該治療を行わなかった場合と比較して、全生存期間が延長されると予測される。 In another embodiment, the method of the invention comprises an EGFR-derived peptide selected from EGFR41-60 (SEQ ID NO: 2), EGFR481-500 (SEQ ID NO: 4), and EGFR881-900 (SEQ ID NO: 5), preferably EGFR41- Measuring the amount of an antibody against an EGFR-derived peptide selected from 60 (SEQ ID NO: 2) and EGFR481-500 (SEQ ID NO: 4), and if the measured antibody amount is higher than a reference value, the patient is treated with EGFR tyrosine Treatment with a kinase inhibitor is expected to extend overall survival compared to the absence of such treatment.
 本発明の診断用組成物は、配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体または前記ペプチド若しくは誘導体が結合したビーズを含む。本発明の診断用組成物は、本明細書に記載の、EGFRチロシンキナーゼ阻害薬の治療効果を予測する方法に従って使用される。本発明の診断用組成物はさらに、適当な担体および緩衝剤、等張化剤などの添加剤を含んでいてもよく、凍結乾燥状態で提供され用時調製されるものであってもよい。本発明の診断用組成物は、本発明の方法に沿った使用説明書ともに提供されてもよい。 The diagnostic composition of the present invention comprises a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5, or a derivative thereof, or beads to which the peptide or derivative is bound. The diagnostic composition of the present invention is used according to the method for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor described herein. The diagnostic composition of the present invention may further contain an appropriate carrier and additives such as a buffer and an isotonic agent, and may be provided in a lyophilized state and prepared at the time of use. The diagnostic composition of the present invention may be provided with instructions for use along the method of the present invention.
 本発明のキットは、配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体、または前記ペプチド若しくは誘導体が結合したビーズ若しくはプレートを含む。本発明のキットは、本明細書に記載の、EGFRチロシンキナーゼ阻害薬の治療効果を予測する方法に従って使用される。キットは、例えば、ELISA法、RIA法、またはLuminex(登録商標)システムによる方法を実施するためのキットである。キットはさらに、ブロッキング液、洗浄液、希釈液、検出用抗体、対照試料、プレート、および本発明の方法に沿った使用説明書などを含んでも良い。 The kit of the present invention comprises a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, or a bead or plate to which the peptide or derivative is bound. The kits of the invention are used according to the methods described herein for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor. A kit is a kit for performing the method by ELISA method, RIA method, or Luminex (trademark) system, for example. The kit may further include a blocking solution, a washing solution, a diluent, a detection antibody, a control sample, a plate, and instructions for use according to the method of the present invention.
 本発明に用いられるペプチドおよび誘導体は、抗体による認識を損なわない範囲で、そのアミノ基やカルボキシル基が修飾されていてもよい。本発明に用いるペプチドおよびその誘導体は、通常のペプチド合成方法により製造することができる(Peptide Synthesis, Interscience, New York,1966; The Proteins, Vol2, Academic Press Inc.,New York, 1976;ペプチド合成、丸善(株)、1975;ペプチド合成の基礎と実験、丸善(株)、1985;医薬品の開発続 第十四巻・ペプチド合成、広川書店、1991)。 The peptides and derivatives used in the present invention may be modified at their amino groups or carboxyl groups as long as recognition by the antibody is not impaired. The peptides and derivatives thereof used in the present invention can be produced by conventional peptide synthesis methods (Peptide Synthesis, Interscience, New York, 1966; The Proteins, Vol2, Academic Press Inc., New York, 1976; Maruzen Co., Ltd., 1975; Fundamentals and experiments of peptide synthesis, Maruzen Co., Ltd., 1985;
 別の態様において、本発明は、上皮成長因子受容体(EGFR)チロシンキナーゼ阻害薬の治療効果を予測するためのデータを収集する方法であって、以下の工程:
(1)患者からEGFRチロシンキナーゼ阻害薬による治療前に採取された血液試料における、配列番号2~5から選択されるアミノ酸配列からなるペプチドに対する抗体の量を測定する工程;および
(2)測定した抗体量を基準値と比較する工程、
 ここで、該抗体量が基準値より高い場合、該患者はEGFRチロシンキナーゼ阻害薬による治療効果が高いと予測される、
 を含む方法を提供する。
In another aspect, the present invention is a method of collecting data for predicting the therapeutic effect of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor comprising the following steps:
(1) a step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an EGFR tyrosine kinase inhibitor; and (2) Comparing the amount of antibody with a reference value;
Here, when the amount of the antibody is higher than a reference value, the patient is predicted to have a high therapeutic effect by an EGFR tyrosine kinase inhibitor.
A method comprising:
 別の態様において、本発明は、癌を治療する方法であって、以下の工程:
(1)患者からEGFRチロシンキナーゼ阻害薬による治療前に採取された血液試料における、配列番号2~5から選択されるアミノ酸配列からなるペプチドに対する抗体の量を測定する工程;
(2)測定した抗体量を基準値と比較する工程;および
(3)該抗体量が基準値より高かった患者をEGFRチロシンキナーゼ阻害薬により治療する工程、
 を含む方法を提供する。
In another embodiment, the present invention is a method of treating cancer comprising the following steps:
(1) a step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an EGFR tyrosine kinase inhibitor;
(2) comparing the measured antibody amount with a reference value; and (3) treating a patient whose antibody amount is higher than the reference value with an EGFR tyrosine kinase inhibitor;
A method comprising:
 別の態様において、本発明は、EGFRチロシンキナーゼ阻害薬の治療効果を予測するための診断用組成物の製造のための、配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体または前記ペプチド若しくは誘導体が結合したビーズの使用を提供する。 In another aspect, the present invention provides a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof, for the manufacture of a diagnostic composition for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor, or Use of beads to which the peptide or derivative is bound is provided.
 別の態様において、本発明は、EGFRチロシンキナーゼ阻害薬の治療効果を予測するためのキットの製造のための、配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体、または前記ペプチド若しくは誘導体が結合したビーズ若しくはプレートの使用を提供する。 In another aspect, the present invention relates to a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof for the manufacture of a kit for predicting the therapeutic effect of an EGFR tyrosine kinase inhibitor, or the peptide Alternatively, the use of a derivative or bound bead or plate is provided.
 以下、実施例により本発明をさらに説明するが、如何なる意味においても本発明は以下の実施例により限定されない。 Hereinafter, the present invention will be further described with reference to examples. However, the present invention is not limited to the following examples in any way.
1.材料および方法
(1)患者、治療、および試料の回収
 本研究では、ゲフィチニブによる治療を受けた42例の非小細胞肺癌(NSCLC)患者を、2006年1月~2008年12月、単一の施設(日本、久留米市、久留米大学附属病院)においてスクリーニングした。年齢、性別、組織像、喫煙の状態、全身状態(PS)、病期、および治療法を含めた患者の臨床病理学的特徴の詳細は、臨床経過について知らされていない独立の審査者によるカルテ審査から得た(表1)。進行したNSCLCのため、いずれの患者も、毎日1回、経口によりゲフィチニブ(250mg)を投与された。記録した患者の特徴には、性別、年齢、Eastern Cooperative Oncology Group(ECOG)による全身状態(PS)、腫瘍組織像、喫煙歴、先行の化学療法、およびEGFR突然変異の種類が含まれた。腫瘍縮小効果(tumor response)は、コンピュータ断層撮影(CT)を介して調べ、RECIST(Response Evaluation Criteria in Solid Tumors)に従い評価した。縮小効果は、最初の記録から少なくとも4週間(完全奏功または部分奏功の場合)または6週間(疾患安定の場合)後に確認した。PFS(無増悪生存期間)は、EGFR-TKI治療の開始日から疾患進行日または最終診療日までを計算した。本研究はまた、ヘルシンキ宣言の条項も遵守する。本研究は、久留米大学の治験審査委員会による承認を受けた。
1. Materials and Methods (1) Patient, Treatment, and Sample Collection In this study, 42 non-small cell lung cancer (NSCLC) patients treated with gefitinib were treated as single patients from January 2006 to December 2008. Screening was conducted at institutions (Kurume City, Japan, Kurume University Hospital). Details of the patient's clinicopathological features, including age, gender, histology, smoking status, general condition (PS), stage, and treatment, are provided by an independent reviewer who is not informed about the clinical course. Obtained from the examination (Table 1). Because of advanced NSCLC, all patients received gefitinib (250 mg) orally once daily. Patient characteristics recorded included gender, age, general condition (PS) by the Eastern Cooperative Oncology Group (ECOG), tumor histology, smoking history, prior chemotherapy, and type of EGFR mutation. Tumor reduction effect (tumor response) was examined via computed tomography (CT) and evaluated according to RECIST (Response Evaluation Criteria in Solid Tumors). The reduction effect was confirmed at least 4 weeks (in case of complete or partial response) or 6 weeks (in case of disease stability) from the first recording. PFS (progression-free survival) was calculated from the date of initiation of EGFR-TKI treatment to the date of disease progression or the date of last treatment. The study also complies with the provisions of the Declaration of Helsinki. This study was approved by the Institutional Review Board of Kurume University.
 血清または血漿は、ゲフィチニブ治療を受けたNSCLC患者から、ゲフィチニブ治療前に回収した。説明同意文書は、全ての対象から得た。血清または血漿を得たら、使用まで-80度で凍結した。 Serum or plasma was collected from NSCLC patients treated with gefitinib before gefitinib treatment. Explanation consent documents were obtained from all subjects. Once serum or plasma was obtained, it was frozen at -80 degrees until use.
(2)EGFR突然変異解析
 EGFR遺伝子の突然変異は、エクソン19(E746-A750del)および21(L858R)において、既報のとおりペプチド核酸-ロックト核酸(PNA-LNA)PCRクランプ(22)により調べた。略述すると、ゲノムDNAを、QIAamp DNA Microキット(QIAGEN)を用いてパラフィン包埋した組織から精製した。使用したPCRプライマーは、Invitrogen Inc.に委託して合成させた。PNAクランプのプライマーおよびLNAの突然変異体プローブは、それぞれ、FASMEC(日本、神奈川県)およびIDT(Coralville、IA)から購入した。PNA-LNA PCRクランプは、SDS-7500 System(Applied BioSystems)を用いて行った。
(2) EGFR mutation analysis Mutations in the EGFR gene were examined in exons 19 (E746-A750del) and 21 (L858R) by peptide nucleic acid-locked nucleic acid (PNA-LNA) PCR clamp (22) as previously reported. Briefly, genomic DNA was purified from paraffin-embedded tissue using the QIAamp DNA Micro kit (QIAGEN). The PCR primers used were from Invitrogen Inc. I was commissioned to synthesize. PNA clamp primers and LNA mutant probes were purchased from FASMEC (Kanagawa, Japan) and IDT (Coralville, IA), respectively. PNA-LNA PCR clamps were performed using an SDS-7500 System (Applied BioSystems).
(3)EGFR由来ペプチドおよびEGFR由来ペプチドに対して反応性のある抗体量の測定
 図2に示すように、EGFRタンパク質の配列から設計した60種類の異なる20merのペプチドを合成し、Sigma Aldrichから購入した。ペプチドは、既報のとおり(23)、DMSOにより溶解した。EGFR由来ペプチドに特異的な抗体量は、既報のとおり(24)、Luminex(登録商標)システムを用いるマルチプレックスビーズ懸濁アレイを介して測定した。略述すると、100μlの希釈した血漿を、EGFR由来ペプチドが結合したxMAPビーズ(Luminex Corp.、Austin、TX)と共に、プレートシェーカー上の96ウェルフィルタープレート(MABVN1250;Millipore Corp.、Bedford、MA)内で、室温で2時間インキュベートした。2時間後、プレートをT-PBSにより洗浄し、100μlのビオチン化ヤギ抗ヒトIgG(BA-3080;Vector Laboratories、Burlingame、CA)と共に、プレートシェーカー上で、室温において1時間インキュベートした。洗浄の後、100μlのストレプトアビジン-PEをウェルへと添加し、プレートを、プレートシェーカー上で、室温で30分間インキュベートした。結合したビーズを3回洗浄した後、100μlのPBSを各ウェルに添加した。各試料50μlずつを用いて、Luminex(登録商標)システムでビーズ上の蛍光を検出した。抗体量は、蛍光強度により表し、値は、既報のとおり(24)、蛍光強度単位(FIU)により示した。試料希釈アッセイから得たFIUの線形曲線が5~10,000FIUであった(データ非提示)ため、カットオフレベルは10FIUに設定した。60種類の異なるペプチドの各々に対して反応性のある抗体の量を測定した。
(3) Measurement of EGFR-derived peptide and amount of antibody reactive to EGFR-derived peptide As shown in FIG. 2, 60 different 20-mer peptides designed from the sequence of EGFR protein were synthesized and purchased from Sigma Aldrich did. The peptide was dissolved in DMSO as previously reported (23). The amount of antibody specific for the EGFR-derived peptide was measured via a multiplex bead suspension array using the Luminex® system as previously reported (24). Briefly, 100 μl of diluted plasma is placed in 96-well filter plates (MABVN1250; Millipore Corp., Bedford, MA) on a plate shaker with xMAP beads (Luminex Corp., Austin, TX) conjugated with EGFR-derived peptides. And incubated at room temperature for 2 hours. After 2 hours, the plates were washed with T-PBS and incubated with 100 μl of biotinylated goat anti-human IgG (BA-3080; Vector Laboratories, Burlingame, Calif.) For 1 hour at room temperature on a plate shaker. After washing, 100 μl streptavidin-PE was added to the wells and the plates were incubated for 30 minutes at room temperature on a plate shaker. After washing the bound beads three times, 100 μl PBS was added to each well. Fluorescence on the beads was detected with the Luminex® system using 50 μl of each sample. The amount of antibody was expressed by fluorescence intensity, and the value was shown by fluorescence intensity unit (FIU) as previously reported (24). Since the FIU linear curve obtained from the sample dilution assay was 5-10,000 FIU (data not shown), the cut-off level was set to 10 FIU. The amount of antibody reactive to each of the 60 different peptides was measured.
(4)統計学的解析
 60種類の異なるペプチドの各々に対して反応性のある抗体量が突然変異状態と相関するかについて調べた。この目的のため、ウィルコクソン順位和検定を用いて、60種類のペプチドの各々に対して反応性のある抗体量の中央値を、EGFRの突然変異体(delE746-A750およびL858R)と野生型とで比較した。PFS(無増悪生存期間)は、ゲフィチニブ治療の開始日から疾患進行日までの期間として定義した。OS(全生存期間)は、ゲフィチニブ治療の開始日から、死因に関わらず死亡日までの期間として定義した。PFSまたはOSを決定できなかった患者は、最終診療日を観察打ち切りとして取り扱った。次に、60種類の異なるペプチドの各々に対して反応性のある抗体量がPFSまたはOSと相関するかについて調べた。説明変数としての各ペプチドに対して反応性のある抗体量、突然変異状態、喫煙の状態、性別、および全身状態と共に、コックスの比例ハザードモデルを適用した。また、60種類の異なるペプチドの各々に対して反応性のある抗体量が腫瘍縮小効果と関連するかどうかを、ロジスティック回帰を適用することにより調べ、CR(完全奏功)およびPR(部分奏功)を奏功するとみなした。60種類のペプチドを用いたため、困難な多重度の問題が生じた。本発明者らは、偽発見率(FDR)を5%のレベルに制御する、PFS(OSまたは腫瘍縮小効果)と有意に相関するペプチドを同定した。
(4) Statistical analysis It was investigated whether the amount of antibody reactive to each of 60 different peptides correlated with the mutation status. To this end, using the Wilcoxon rank sum test, the median amount of antibody reactive to each of the 60 peptides was determined for EGFR mutants (delE746-A750 and L858R) and wild type. Compared. PFS (progression free survival) was defined as the period from the start of gefitinib treatment to the day of disease progression. OS (overall survival) was defined as the period from the start of gefitinib treatment to the date of death regardless of the cause of death. Patients who could not determine PFS or OS were treated as observational censorship at the last visit date. Next, it was examined whether the amount of antibody reactive to each of 60 different peptides correlates with PFS or OS. Cox's proportional hazards model was applied with the amount of antibody reactive to each peptide as an explanatory variable, mutation status, smoking status, gender, and general status. In addition, whether or not the amount of antibody reactive to each of 60 different peptides is related to the tumor reduction effect was examined by applying logistic regression, and CR (complete response) and PR (partial response) were determined. Considered to be successful. Since 60 types of peptides were used, a difficult multiplicity problem occurred. We have identified peptides that significantly correlate with PFS (OS or tumor reduction effect), which controls the false discovery rate (FDR) to a level of 5%.
 解析結果の説明として、臨床病理学的特徴のみを用いるよりも正確な患者の予後予測に有用なペプチドの同定を試みた。患者数より多いペプチドを用いたため標準的な多変量コックス回帰(多重回帰)を適用することができなかったが、これは本研究における極めて困難な問題であった。影響が大きい観察を回避するため、本発明者らは、各ペプチドに対して反応性のある抗体量をlog(ペプチドに対する抗体量+1)により変換し、ゼロ平均および単位標準偏差へと標準化した。本発明者らは、ラッソ型のペナルティーによるコックス回帰(25、26)を適用した。ラッソ法は有用であり、高次元データを解析するのによく用いられるようになりつつある。ラッソ法の注目すべき特徴は、疎らさである。すなわち、PFS(OS)と相関しないペプチドの回帰係数であれば、ゼロとして評価しうる。この特徴に基づき、本発明者らは、患者の予後予測に有用であると期待されるいくつかのペプチドを同定した。選択されたペプチドに対して反応性のある抗体量が患者の予後予測に実際に有用であるかを調べるために、コックス回帰解析および時間依存的ROC解析(27)を適用した。臨床病理学的特徴のみによるコックス回帰ならびに各ペプチドに対して反応性のある抗体量と臨床病理学的特徴の両方によるコックス回帰を介して、ROC曲線下面積(AUC)を危険性スコアについて評価した。ブートストラップ法による1000回の反復についてのP値を計算してAUCの同等性を検定することにより、AUCを比較した。統計学的解析は、R version 2.13ソフトウェアおよびSAS version 9.3ソフトウェア(SAS Institute、Cary、NC)により実施した。 As an explanation of the analysis results, we attempted to identify peptides useful for predicting the prognosis of patients more accurately than using only clinicopathological features. Standard multivariate Cox regression (multiple regression) could not be applied due to the use of more peptides than the number of patients, which was a very difficult problem in this study. In order to avoid high-impact observations, we converted the amount of antibody reactive to each peptide by log (antibody amount to peptide + 1) and normalized to zero mean and unit standard deviation. We applied Cox regression (25, 26) with a lasso-type penalty. The lasso method is useful and is increasingly being used to analyze high-dimensional data. A notable feature of the Rasso method is sparseness. That is, a regression coefficient of a peptide that does not correlate with PFS (OS) can be evaluated as zero. Based on this feature, the inventors have identified several peptides that are expected to be useful in predicting patient prognosis. Cox regression analysis and time-dependent ROC analysis (27) were applied to determine if the amount of antibody reactive to the selected peptides is actually useful for predicting patient prognosis. The area under the ROC curve (AUC) was assessed for risk score through Cox regression by clinicopathologic features alone and Cox regression by both the amount of antibody reactive to each peptide and clinicopathological features. . AUCs were compared by calculating P values for 1000 iterations by the bootstrap method and testing for AUC equivalence. Statistical analysis was performed with R version 2.13 software and SAS version 9.3 software (SAS Institute, Cary, NC).
2.結果
(1)患者の特徴および生存解析
 42例の患者の臨床学的特徴を、表1に示す。25例(59%)の患者が女性であり、24例(57%)が非喫煙者であり、全患者の年齢の中央値は63.5歳(範囲:38~82歳)であった。38例(90%)の患者が腺がんを有し、34例(80%)は全身状態良好であり(Eastern Cooperative Oncology Groupによる評定尺度が0)、15例の患者(32%)には第一選択の化学療法としてEGFR-TKI治療が施された。EGFR突然変異の種類について述べると、8例の患者がエクソン19に欠失を有し、13例の患者がエクソン21にL858Rミスセンス突然変異を有し、21例の患者が野生型を有していた。
2. Results (1) Patient characteristics and survival analysis Table 1 shows the clinical characteristics of 42 patients. Twenty-five (59%) patients were women, 24 (57%) were non-smokers, and the median age of all patients was 63.5 years (range: 38-82 years). 38 (90%) patients have adenocarcinoma, 34 (80%) are in good general condition (Eastern Cooperative Oncology Group rating scale is 0), 15 patients (32%) EGFR-TKI treatment was given as first-line chemotherapy. To describe the types of EGFR mutations, 8 patients have a deletion in exon 19, 13 patients have a L858R missense mutation in exon 21, and 21 patients have the wild type. It was.
 解析の時点において、追跡期間の中央値は、418日間(範囲:16~1532日間)であった。PFSの中央値は、201日間(範囲:11~1379日間)であり、OSの中央値は、418日間(範囲:16~1532日間)であった。ゲフィチニブ治療の開始後におけるPFSおよびOSについてのカプラン-マイヤー解析を、図1に示す。ログランク検定により、ゲフィチニブ治療の結果として、EGFR突然変異を有する患者におけるPFSは、突然変異を有さない患者におけるPFSより有意に延長された(中央値347日に対して54日、P=0.0029)(図1A)が、これら2つの患者群のOSの間には有意差が認められない(それぞれ、中央値314日に対して128日、P=0.1095)(図1B)ことが明らかとなった。突然変異を有する患者と野生型の患者との間におけるこのPFSの相違は、いずれの種類のEGFR突然変異についても明らかであった(図1C、D)。 At the time of analysis, the median follow-up period was 418 days (range: 16-1532 days). The median PFS was 201 days (range: 11-1379 days) and the median OS was 418 days (range: 16-1532 days). A Kaplan-Meier analysis for PFS and OS after initiation of gefitinib treatment is shown in FIG. The log rank test significantly increased PFS in patients with EGFR mutations as a result of gefitinib treatment compared to PFS in patients without mutations (median 347 days versus 54 days, P = 0 .0029) (FIG. 1A) shows no significant difference between OS of these two patient groups (median 314 days vs. 128 days, P = 0.0.105, respectively) (FIG. 1B) Became clear. This PFS difference between patients with mutations and wild type patients was evident for both types of EGFR mutations (FIGS. 1C, D).
(2)EGFR由来ペプチドに対する抗体量とゲフィチニブによる治療を受けたNSCLC患者におけるEGFR突然変異との間の相関
 本発明者らはまず、60種類の異なるペプチドの各々に対して反応性のある抗体が、NSCLC患者に由来する血漿または血清において、Luminex(登録商標)システムによって定量可能であるかを調べた(表3、図3Aおよび3B)。各ペプチドに対して反応性のある抗体量がEGFR突然変異と相関するかについて解析し、エクソン21の突然変異を有する患者では、ペプチドegfr_481_500、egfr_721_740、egfr_741_760に対する抗体量が、エクソン21の突然変異を有さない患者におけるより有意に高いことを見出した(egfr_481_500についてP=0.017;egfr_721_740についてP=0.036;egfr_741_760についてP=0.007)。これらの3つのペプチドにおいて、エクソン21の突然変異を有する患者における抗ペプチド抗体量の中央値は、エクソン21の突然変異を有さない患者における抗ペプチド抗体量の中央値の約2倍であった(表3)。一方、egfr_841_860に対する抗体量は、エクソン19に欠失を有する患者では、欠失を有さない患者より有意に低かった(P=0.047)。egfr_1001_1020に対する抗体量は、エクソン19に欠失を有する患者において有意に高かった。その他のペプチドに対して反応性のある抗体量は、EGFR突然変異との相関を有さなかった。
(2) Correlation between the amount of antibody to EGFR-derived peptide and EGFR mutation in NSCLC patients treated with gefitinib. We first have antibodies reactive to each of 60 different peptides. The plasma or serum from NSCLC patients was examined for quantification by the Luminex® system (Table 3, FIGS. 3A and 3B). Analyzing whether the amount of antibody reactive to each peptide correlates with the EGFR mutation, and in patients with exon 21 mutations, the amount of antibody against peptides egfr_481_500, egfr_721_740, egfr_741_760 is a mutation in exon 21 It was found to be significantly higher in patients without (P = 0.017 for egfr_481_500; P = 0.036 for egfr_721_740; P = 0.007 for egfr_741_760). In these three peptides, the median anti-peptide antibody amount in patients with the exon 21 mutation was approximately twice the median anti-peptide antibody amount in patients without the exon 21 mutation. (Table 3). On the other hand, the amount of antibody against egfr — 841 — 860 was significantly lower in patients with deletion in exon 19 than in patients without deletion (P = 0.047). The amount of antibody against egfr — 1001 — 1020 was significantly higher in patients with a deletion in exon 19. The amount of antibody reactive against the other peptides did not correlate with the EGFR mutation.
(3)EGFR由来ペプチドに対する抗体量とゲフィチニブにより治療したNSCLC患者における生存との間の関係
 さらに、抗ペプチド抗体量が、ゲフィチニブによる治療後のNSCLC患者のPFSおよびOSと十分に相関するかどうかを調べた。本発明者らは、全ペプチドのうちの多くのp値が5%未満であり、コックス回帰において38種類および32種類のペプチドのp値が5%未満であり、さらにFDRを5%のレベルに制御しても、PFSについて有意な35種類のペプチドおよびOSについて有意な20のペプチドが同定されることを見出した(表4)。本発明者らはまた、各ペプチドに対する抗体量が腫瘍縮小効果(CRまたはPR)と相関するかについても調べた。ロジスティック回帰解析により、いずれのペプチドに対する抗体量も腫瘍縮小効果とは相関しないことが示された(データ非提示)。
(3) Relationship between the amount of antibody against EGFR-derived peptide and survival in NSCLC patients treated with gefitinib Furthermore, whether the amount of anti-peptide antibody correlates well with the PFS and OS of NSCLC patients after treatment with gefitinib Examined. We have many p-values of less than 5% of all peptides, p-values of 38 and 32 peptides in Cox regression are less than 5%, and FDR to 5% level It was found that even with control, 35 peptides significant for PFS and 20 peptides significant for OS were identified (Table 4). We also examined whether the amount of antibody against each peptide correlates with the tumor reduction effect (CR or PR). Logistic regression analysis showed that the amount of antibody against any peptide did not correlate with the tumor reduction effect (data not shown).
(4)患者の予後予測に有用なペプチドの同定
 前述のとおり、多くのペプチドに対する抗体量がPFSおよび/またはOSと有意に相関した。多くのペプチドに対する抗体量が、中程度または高度に相関していた(データ非提示)。これにより、比較的少数のペプチドに対する抗体量であっても、患者の予後予測に有用な規則の構築に十分でありうることが示唆された。ラッソペナルティーを伴うコックス回帰から、本発明者らは、egfr_41_60、egfr_61_80、およびegfr_481_500に対する抗体量がPFSに対して比較的大きな効果を及ぼし、egfr_41_60、egfr_481_500、およびegfr_881_900に対する抗体量がOSに対して比較的大きな効果を及ぼすことを見出した(PFSおよびOSについてのソリューションパス(solution path)を、それぞれ図5Aおよび5Bに示す)。PFSについての予測規則を構築するため、egfr_41_60、egfr_61_80、およびegfr_481_500に対する抗体量を用いた。また、egfr_41_60に対する抗体量およびegfr_881_900に対する抗体量は強く相関していた(スピアマンの順位相関係数は、0.71であり、P<0.001あった)ため、本発明者らは、OSについてはegfr_41_60およびegfr_481_500に対する抗体量を用いた。表2Aには、交絡因子となる可能性があるPS、年齢、性別、および喫煙の状態について調整した、egfr_41_60、egfr_61_80、およびegfr_481_500に対する抗体量を用いたPFSについてのコックス回帰の結果を示した。3つのペプチド全てが、臨床病理学的特徴とは独立した有意な予後規定因子であることが見出された(egfr_41_60についてはP=0.001であり、egfr_61_80についてはP=0.020であり、egfr_481_500についてはP=0.028であった)。表2Bには、egfr_41_60およびegfr_481_500に対する抗体量を用いたOSについてのコックス回帰の結果を示した。いずれのペプチドに対する抗体量も、臨床病理学的特徴とは独立した有意な予後規定因子であることが見出された(egfr_41_60についてはP=0.018であり、egfr_481_500についてはP=0.027であった)。選択したペプチドに対する抗体量の限界効果を把握するため、図3Aおよび図3Bのそれぞれに、選択したペプチドに対する抗体量の高値群および低値群における、PFSおよびOSについてのカプラン-マイヤープロットを示す(臨床病理学的特徴による影響については調整していない)。また、時間依存的ROC解析を用いて、臨床病理学的特徴にペプチドに対する抗体量を追加することにより、患者の予後予測が改善されるかを調べた。図4Aおよび4Bは、ペプチドに対する抗体量と臨床病理学的特徴、および臨床病理学的特徴のみを用いて、表2A(PFSに関する)および表2B(OSに関する)に示すコックス回帰により評価した、1年間および2年間の危険性スコアのROC曲線を示す。ROC曲線は、1年間および2年間のPFSについての診断が実質的に改善されることを示す(AUCの比較についてP<0.001)。OSについても、1年間および2年間の時間依存的ROC曲線のAUCが、ペプチドに対する抗体量を追加することにより、臨床病理学的特徴のみの場合より有意に大きくなった(P<0.001)(図4Cおよび4D)。したがって、時間依存的ROC解析は、臨床病理学的特徴にペプチドに対する抗体量を追加することにより、PFSとOSのいずれについても、より正確な患者の予後予測が可能となることを示した。
(4) Identification of peptides useful for predicting patient prognosis As described above, the amount of antibody against many peptides significantly correlated with PFS and / or OS. Antibody levels for many peptides were moderately or highly correlated (data not shown). Thus, it was suggested that an antibody amount against a relatively small number of peptides may be sufficient to construct rules useful for predicting the prognosis of patients. From Cox regression with a lasso penalty, we found that the amount of antibody against egfr_41_60, egfr_61_80, and egfr_481_500 had a relatively large effect on PFS, and the amount of antibody against egfr_41_60, egfr_481_500, and egfr_881_900 compared to OS (Solution paths for PFS and OS are shown in FIGS. 5A and 5B, respectively). To construct the prediction rules for PFS, antibody amounts against egfr_41_60, egfr_61_80, and egfr_481_500 were used. In addition, since the antibody amount against egfr_41_60 and the antibody amount against egfr_881_900 were strongly correlated (Spearman's rank correlation coefficient was 0.71 and P <0.001), the present inventors Used antibody amounts against egfr_41_60 and egfr_481_500. Table 2A shows the results of Cox regression for PFS using antibody amounts to egfr_41_60, egfr_61_80, and egfr_481_500 adjusted for possible confounding PS, age, gender, and smoking status. All three peptides were found to be significant prognostic factors independent of clinicopathological features (P = 0.001 for egfr_41_60 and P = 0.020 for egfr_61_80 , Egfr_481_500, P = 0.028). Table 2B shows the results of Cox regression for OS using antibody amounts against egfr_41_60 and egfr_481_500. The amount of antibody against any peptide was found to be a significant prognostic factor independent of clinicopathological features (P = 0.018 for egfr_41_60 and P = 0.027 for egfr_481_500). Met). In order to grasp the marginal effect of the antibody amount against the selected peptide, Kaplan-Meier plots for PFS and OS in the high value group and the low value group of the antibody amount against the selected peptide are shown in FIGS. 3A and 3B, respectively. The effects of clinicopathological features have not been adjusted). In addition, using time-dependent ROC analysis, it was examined whether the prognosis prediction of patients can be improved by adding the amount of antibody against the peptide to the clinicopathological characteristics. 4A and 4B were evaluated by Cox regression as shown in Table 2A (for PFS) and Table 2B (for OS) using only the amount of antibody to the peptide and clinicopathological features, and clinicopathological features. Shown are ROC curves of annual and 2-year risk scores. The ROC curve shows that the diagnosis for 1-year and 2-year PFS is substantially improved (P <0.001 for the AUC comparison). For OS, the AUC of the 1-year and 2-year time-dependent ROC curves was significantly increased by adding the amount of antibody against the peptide (P <0.001). (FIGS. 4C and 4D). Therefore, time-dependent ROC analysis showed that the patient prognosis can be predicted more accurately for both PFS and OS by adding the amount of antibody against the peptide to the clinicopathological features.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
参考文献
References 
1. Parkin DM, Bray FI, Devasa SS. Cancer burden in the year 2000: the global picture. Eur J Cancer 2001;37:4-66.
2. Yarden Y, and Sliwkowski MX. Untagling the ErbB signaling network. Nat  Rev Mol Cell Biol 2001; 2: 127-137.
3. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl Med 2004;350:2129-39.
4. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497-500.
5. Ono M, Kuwano M. Molecular mechanisms of epidermal growth factor receptor activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 2006;12:7242-51.
6. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010;362:2380-8.
7. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol 2010;11:121-8.
8. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009;361:947-57.
9. Sasada T, Komatsu N, Suekane S, Yamada A, Noguchi M, Itoh K. Overcoming the hurdles of randomised clinical trials of therapeutic cancer vaccines. Eur J Cancer 2010;46(9): 1514-9.
10. van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347(25): 1999-2009.
11. Bedognetti D, Wang E, Sertoli MR, Marincola FM. Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 2010;9(6): 555-65.
12. Bogunovic D, O'Neill DW, Belitskaya-Levy I, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci U S A 2009;106(48): 20429-34.
13. Pham MX, Teuteberg JJ, Kfoury AG, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med 2010;362(20): 1890-900.
14. Noguchi M, Kakuma T, Uemura H, et al. A randomized phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer. Cancer Immunol Immunother 2010;59(7): 1001-9.
15. Mine T, Sato Y, Noguchi M, et al. Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccine with peptides based on pre-existing, peptide-specific cellular responses. Clin Cancer Res 2004;10:929-37.
16. Ugurel S, Schrama D, Keller G, et al. Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol Immunother 2008;57(5): 685-91.
17. Liu D, O'Day SJ, Yang D, et al. Impact of gene polymorphisms on clinical outcome for stage IV melanoma patients treated with biochemotherapy: an exploratory study. Clin Cancer Res 2005;11(3): 1237-46.
18. Leibovici D, Grossman HB, Dinney CP, et al. Polymorphisms in inflammation genes and bladder cancer: from initiation to recurrence, progression, and survival. J Clin Oncol 2005;23(24): 5746-56.
19. Breunis WB, Tarazona-Santos E, Chen R, Kiley M, Rosenberg SA, Chanock SJ. Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J Immunother 2008;31(6): 586-90.
20. Yurkovetsky ZR, Kirkwood JM, Edington HD, et al. Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alpha2b. Clin Cancer Res 2007;13(8): 2422-8.
21. Sabatino M, Kim-Schulze S, Panelli MC, et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol 2009;27(16): 2645-52.
22. Nagai Y, Miyazawa H, Huqun, et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 2005;65:7276-82.
23. Harada M, Kobayashi K, Matsueda S, Nakagawa M, Noguchi M,Itho K. Prostate-specific antigen-derived epitopes capable of inducing cellular and humoral responses in HLA-24+ prostate cancer patients. Prostate 2003; 57(2): 152-9.
24. Komatsu N, Shichijo S, Nakagawa M, Itoh K. New multiplexed flow cytometric assay to measure anti-peptide antibody: a novel tool for monitoring immune responses to peptides used for immunization. Scand J Clin Lab Invest 2004; 64: 535-45.
25. Goeman JJ. L1 penalized estimation in the Cox proportional hazards model. Biometrical J 2010; 52: 1 70-84.
26. Everitt BS. An R and S-PLUS Companion to Multivariate Analysis. 2005. Springer-Verlag London Limited.
27. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. 2000; 56: 2 337-344.
28. Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of complex of human epidermal growth factor and receptor extracellular domains. Cell 2002; 110: 775-787.
29. Garrett PJ, Mckern NM, Lou M, et al. Crystal structure of truncated epidermal growth factor extracellular domain bound to transforming growth factor alpha. Cell 2002; 110: 763-773.
30. Leahy DJ, and Cho HS. Structure of extracellular region of HER3 reveals an interdomain tether. Science 2002; 297: 1330-1333.
31. Lemmon MA. Ligand-induced ErbB receptor dimerization. Exp Cell Res. 2009; 315:638-648.
32. Bose R, Zhang X. The ErbB kinase domain: structural perspectives into kinase activation and inhibition. Exp Cell Res 2009; 315: 649-658.
33. Zhang X, Dureasko J, Shen K, et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006; 125: 1137-1149.
34. Talavera A, Friemann R, Gomez-Puerta S, et al. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 2009; 69: 5851-9.
35. Li S, Schmitz KR, Jeffrey PD, et al. Structural basis for inhibition of epidermal growth factor receptor by cetuximab. Cancer Cel 2005; 7:301-311.
36. Schmiedel J, Blaukat A, Li S, et al. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 2008; 13:365-373.
37. Kimura H, Kasahara K, Kawanishi M, et al.Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 2006; 12: 3915-21.
References
References
1. Parkin DM, Bray FI, Devasa SS.Cancer burden in the year 2000: the global picture.Eur J Cancer 2001; 37: 4-66.
2. Yarden Y, and Sliwkowski MX. Untagling the ErbB signaling network. Nat Rev Mol Cell Biol 2001; 2: 127-137.
3. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N Engl Med 2004; 350: 2129-39.
4. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497-500.
5. Ono M, Kuwano M. Molecular mechanisms of epidermal growth factor receptor activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 2006; 12: 7242-51.
6. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR.N Engl J Med 2010; 362: 2380-8.
7. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol 2010; 11: 121-8.
8. Mok TS, Wu YL, Thongprasert S, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947-57.
9. Sasada T, Komatsu N, Suekane S, Yamada A, Noguchi M, Itoh K. Overcoming the hurdles of randomized clinical trials of therapeutic cancer vaccines. Eur J Cancer 2010; 46 (9): 1514-9.
10. van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer.N Engl J Med 2002; 347 (25): 1999-2009.
11. Bedognetti D, Wang E, Sertoli MR, Marincola FM. Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 2010; 9 (6): 555-65.
12. Bogunovic D, O'Neill DW, Belitskaya-Levy I, et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA 2009; 106 (48): 20429-34 .
13. Pham MX, Teuteberg JJ, Kfoury AG, et al. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med 2010; 362 (20): 1890-900.
14. Noguchi M, Kakuma T, Uemura H, et al. A randomized phase II trial of personalized peptide vaccine plus low dose estramustine phosphate (EMP) versus standard dose EMP in patients with castration resistant prostate cancer.Cancer Immunol Immunother 2010; 59 ( 7): 1001-9.
15. Mine T, Sato Y, Noguchi M, et al. Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccine with peptides based on pre-existing, peptide-specific cellular responses.Clin Cancer Res 2004; 10: 929- 37.
16. Ugurel S, Schrama D, Keller G, et al. Impact of the CCR5 gene polymorphism on the survival of metastatic melanoma patients receiving immunotherapy. Cancer Immunol Immunother 2008; 57 (5): 685-91.
17. Liu D, O'Day SJ, Yang D, et al. Impact of gene polymorphisms on clinical outcome for stage IV melanoma patients treated with biochemotherapy: an exploratory study.Clin Cancer Res 2005; 11 (3): 1237-46.
18. Leibovici D, Grossman HB, Dinney CP, et al. Polymorphisms in inflammation genes and bladder cancer: from initiation to recurrence, progression, and survival.J Clin Oncol 2005; 23 (24): 5746-56.
19. Breunis WB, Tarazona-Santos E, Chen R, Kiley M, Rosenberg SA, Chanock SJ. Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. Immunother 2008; 31 (6): 586-90.
20. Yurkovetsky ZR, Kirkwood JM, Edington HD, et al. Multiplex analysis of serum cytokines in melanoma patients treated with interferon-alpha2b.Clin Cancer Res 2007; 13 (8): 2422-8.
21. Sabatino M, Kim-Schulze S, Panelli MC, et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol 2009; 27 (16): 2645-52.
22.Nagai Y, Miyazawa H, Huqun, et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 2005; 65: 7276-82.
23. Harada M, Kobayashi K, Matsueda S, Nakagawa M, Noguchi M, Itho K. Prostate-specific antigen-derived epitopes capable of inducing cellular and humoral responses in HLA-24 + prostate cancer patients.Prostate 2003; 57 (2) : 152-9.
24. Komatsu N, Shichijo S, Nakagawa M, Itoh K. New multiplexed flow cytometric assay to measure anti-peptide antibody: a novel tool for monitoring immune responses to peptides used for immunization.Scand J Clin Lab Invest 2004; 64: 535- 45.
25. Goeman JJ. L1 penalized estimation in the Cox proportional hazards model. Biometrical J 2010; 52: 1 70-84.
26. Everitt BS. An R and S-PLUS Companion to Multivariate Analysis. 2005. Springer-Verlag London Limited.
27. Heagerty PJ, Lumley T, Pepe MS.Time-dependent ROC curves for censored survival data and a diagnostic marker. 2000; 56: 2 337-344.
28. Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of complex of human epidermal growth factor and receptor extracellular domains.Cell 2002; 110: 775-787.
29. Garrett PJ, Mckern NM, Lou M, et al. Crystal structure of truncated epidermal growth factor extracellular domain bound to transforming growth factor alpha.Cell 2002; 110: 763-773.
30. Leahy DJ, and Cho HS.Structure of extracellular region of HER3 reveals an interdomain tether. Science 2002; 297: 1330-1333.
31. Lemmon MA. Ligand-induced ErbB receptor dimerization. Exp Cell Res. 2009; 315: 638-648.
32. Bose R, Zhang X. The ErbB kinase domain: structural perspectives into kinase activation and inhibition. Exp Cell Res 2009; 315: 649-658.
33. Zhang X, Dureasko J, Shen K, et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor.Cell 2006; 125: 1137-1149.
34. Talavera A, Friemann R, Gomez-Puerta S, et al. Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 2009; 69: 5851-9.
35. Li S, Schmitz KR, Jeffrey PD, et al. Structural basis for inhibition of epidermal growth factor receptor by cetuximab. Cancer Cel 2005; 7: 301-311.
36. Schmiedel J, Blaukat A, Li S, et al. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 2008; 13: 365-373.
37. Kimura H, Kasahara K, Kawanishi M, et al. Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin Cancer Res 2006; 12: 3915 -twenty one.
配列番号1:ヒトEGFR
配列番号2:EGFR由来ペプチド(EGFR41-60)
配列番号3:EGFR由来ペプチド(EGFR61-80)
配列番号4:EGFR由来ペプチド(EGFR481-500)
配列番号5:EGFR由来ペプチド(EGFR881-900)
SEQ ID NO: 1 human EGFR
SEQ ID NO: 2: EGFR-derived peptide (EGFR41-60)
SEQ ID NO: 3: EGFR-derived peptide (EGFR61-80)
SEQ ID NO: 4: EGFR-derived peptide (EGFR481-500)
SEQ ID NO: 5: EGFR-derived peptide (EGFR 881-900)

Claims (10)

  1.  上皮成長因子受容体(EGFR)チロシンキナーゼ阻害薬の治療効果を予測する方法であって、以下の工程を含む方法:
    (1)患者からEGFRチロシンキナーゼ阻害薬による治療前に採取された血液試料における、配列番号2~5から選択されるアミノ酸配列からなるペプチドに対する抗体の量を測定する工程;および
    (2)測定した抗体量を基準値と比較する工程、
     ここで、該抗体量が基準値より高い場合、該患者はEGFRチロシンキナーゼ阻害薬による治療効果が高いと予測される。
    A method for predicting the therapeutic effect of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, comprising the following steps:
    (1) a step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an EGFR tyrosine kinase inhibitor; and (2) Comparing the amount of antibody with a reference value;
    Here, when the amount of the antibody is higher than the reference value, the patient is predicted to have a high therapeutic effect by the EGFR tyrosine kinase inhibitor.
  2.  EGFRチロシンキナーゼ阻害薬がゲフィニチブである、請求項1記載の方法。 The method according to claim 1, wherein the EGFR tyrosine kinase inhibitor is gefitinib.
  3.  患者が非小細胞肺癌患者である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the patient is a non-small cell lung cancer patient.
  4.  配列番号2~5から選択されるアミノ酸配列からなるペプチド若しくはその誘導体が結合したビーズまたはプレートを用いて抗体の量を測定する、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the amount of the antibody is measured using beads or a plate to which a peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof is bound.
  5.  配列番号2~5から選択されるアミノ酸配列からなるペプチドまたはその誘導体。 A peptide consisting of an amino acid sequence selected from SEQ ID NOs: 2 to 5 or a derivative thereof.
  6.  請求項5に記載のペプチドまたは誘導体が結合したビーズ。 A bead to which the peptide or derivative according to claim 5 is bound.
  7.  請求項5に記載のペプチドまたは誘導体が結合したプレート。 A plate to which the peptide or derivative according to claim 5 is bound.
  8.  請求項5に記載のペプチド若しくは誘導体または請求項6に記載のビーズを含む、上皮成長因子受容体(EGFR)チロシンキナーゼ阻害薬の治療効果を予測するための診断用組成物。 A diagnostic composition for predicting the therapeutic effect of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor comprising the peptide or derivative according to claim 5 or the bead according to claim 6.
  9.  請求項5に記載のペプチド若しくは誘導体、請求項6に記載のビーズ、または請求項7に記載のプレートを含む、上皮成長因子受容体(EGFR)チロシンキナーゼ阻害薬の治療効果を予測するためのキット。 A kit for predicting the therapeutic effect of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor comprising the peptide or derivative according to claim 5, the bead according to claim 6, or the plate according to claim 7. .
  10.  癌を治療する方法であって、以下の工程を含む方法:
    (1)患者から上皮成長因子受容体(EGFR)チロシンキナーゼ阻害薬による治療前に採取された血液試料における、配列番号2~5から選択されるアミノ酸配列からなるペプチドに対する抗体の量を測定する工程;
    (2)測定した抗体量を基準値と比較する工程;および
    (3)該抗体量が基準値より高かった患者をEGFRチロシンキナーゼ阻害薬により治療する工程。
    A method of treating cancer comprising the following steps:
    (1) A step of measuring the amount of an antibody against a peptide comprising an amino acid sequence selected from SEQ ID NOs: 2 to 5 in a blood sample collected from a patient before treatment with an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ;
    (2) comparing the measured antibody amount with a reference value; and (3) treating a patient whose antibody amount is higher than the reference value with an EGFR tyrosine kinase inhibitor.
PCT/JP2014/066100 2013-06-19 2014-06-18 Method of predicting therapeutic effect of epidermal growth factor receptor tyrosine kinase inhibitors WO2014203918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522950A JP6463675B2 (en) 2013-06-19 2014-06-18 Methods for predicting therapeutic effects of epidermal growth factor receptor tyrosine kinase inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-128714 2013-06-19
JP2013128714 2013-06-19

Publications (1)

Publication Number Publication Date
WO2014203918A1 true WO2014203918A1 (en) 2014-12-24

Family

ID=52104647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066100 WO2014203918A1 (en) 2013-06-19 2014-06-18 Method of predicting therapeutic effect of epidermal growth factor receptor tyrosine kinase inhibitors

Country Status (2)

Country Link
JP (1) JP6463675B2 (en)
WO (1) WO2014203918A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531525A (en) * 2004-03-31 2007-11-08 ザ ジェネラル ホスピタル コーポレーション Methods for determining cancer responsiveness to epidermal growth factor receptor targeting therapy
JP2007322211A (en) * 2006-05-31 2007-12-13 Green Peptide Co Ltd Method for predicting prognosis of cancer patient

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280493A1 (en) * 2006-09-08 2009-11-12 Siemens Healthcare Diagnostics Inc. Methods and Compositions for the Prediction of Response to Trastuzumab Containing Chemotherapy Regimen in Malignant Neoplasia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531525A (en) * 2004-03-31 2007-11-08 ザ ジェネラル ホスピタル コーポレーション Methods for determining cancer responsiveness to epidermal growth factor receptor targeting therapy
JP2007322211A (en) * 2006-05-31 2007-12-13 Green Peptide Co Ltd Method for predicting prognosis of cancer patient

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAWAHARA A ET AL.: "A diagnostic algorithm using EGFR mutation-specific antibodies for rapid response EGFR-TKI treatment in patients with non-small cell lung cancer", LUNG CANCER, vol. 8, no. 1, pages 39 - 44, XP055175337, doi:10.1016/j.lungcan.2012.07.002 *
KOICHI AZUMA ET AL.: "Humoral Immune Responses to EGFR-Derived Peptides Predict Progression-Free and Overall Survival of Non-Small Cell Lung Cancer Patients Receiving Gefitinib", PLOS ONE, vol. 9, no. ISSUE, 31 January 2014 (2014-01-31), pages 1 - 7 *
KOICHI AZUMA: "Analysis of peptide antibodies derived from EGFR in non-small cell carcinoma", KAGAKU KENKYUHI HOJOKIN KENKYU SEIKA HOKOKUSHO, 2009, Retrieved from the Internet <URL:http://kaken.nii.ac.jp/pdf/2009/seika/mext/37104/19790571seika.pdf> [retrieved on 20140904] *

Also Published As

Publication number Publication date
JP6463675B2 (en) 2019-02-06
JPWO2014203918A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
Mamdani et al. Blood-based tumor biomarkers in lung cancer for detection and treatment
JP5422120B2 (en) Methods for predicting clinical outcome for epidermal growth factor receptor inhibitors by cancer patients
AU2010262133B2 (en) Biomarkers and methods for determining efficacy of anti-EGFR antibodies in cancer therapy
KR101595305B1 (en) Compositions and Methods of Detecting TIABS
US20150218652A1 (en) Methods for diagnosis and treatment of cancer
US9846162B2 (en) Immune biomarkers and assays predictive of clinical response to immunotherapy for cancer
US20170114415A1 (en) Activating ntrk1 gene fusions predictive of kinase inhibitor therapy
Carden et al. Can molecular biomarker-based patient selection in Phase I trials accelerate anticancer drug development?
KR102097859B1 (en) Biomarkers for predicting the response of anticancer drugs to gastric cancer and their uses
US20100081666A1 (en) Src activation for determining cancer prognosis and as a target for cancer therapy
JP2020523022A (en) Methods of detecting and treating a class of hepatocellular carcinoma responsive to immunotherapy
AU2010203246A1 (en) Uses of bortezomib in predicting survival in multiple myeloma patients
WO2018102567A1 (en) Prediction of response to immune-modulatory therapies
US11022612B2 (en) BARD1 isoforms in lung and colorectal cancer and use thereof
Gharib et al. HER2+ mCRC patients with exon 20 R784G substitution mutation do not respond to the cetuximab therapy
JP6463675B2 (en) Methods for predicting therapeutic effects of epidermal growth factor receptor tyrosine kinase inhibitors
Tompa et al. DNA methylation and protein expression of Wnt pathway markers in progressive glioblastoma
Azuma et al. Humoral immune responses to EGFR-derived peptides predict progression-free and overall survival of non-small cell lung cancer patients receiving gefitinib
CA2510774A1 (en) Amplified cancer target genes useful in diagnosis and therapeutic screening
Mirtavoos-Mahyari et al. Cell free tumoral DNA versus paraffin block epidermal growth factor receptor mutation detection in patients with non-small cell lung cancer
CN103620412B (en) As the CXCR1 of the prediction thing of the response for the treatment of the agent of epidermal growth factor receptor treatment
Berardi et al. The role of angiogenetic single-nucleotide polymorphisms in thymic malignancies and thymic benign lesions
JP4908401B2 (en) PKP3 oncogene as a prognostic indicator of lung cancer
Johnson et al. Biomarkers in melanoma: where are we now?
Turna et al. The importance of programmed death ligand 1 gene expression, epidermal growth factor receptor gene mutations and serum epidermal growth factor receptor levels in Turkish non-small cell lung cancer patients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813828

Country of ref document: EP

Kind code of ref document: A1