WO2014203887A1 - Method for manufacturing n-type organic semiconductor thin film - Google Patents

Method for manufacturing n-type organic semiconductor thin film Download PDF

Info

Publication number
WO2014203887A1
WO2014203887A1 PCT/JP2014/066006 JP2014066006W WO2014203887A1 WO 2014203887 A1 WO2014203887 A1 WO 2014203887A1 JP 2014066006 W JP2014066006 W JP 2014066006W WO 2014203887 A1 WO2014203887 A1 WO 2014203887A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
semiconductor thin
type organic
sugar
Prior art date
Application number
PCT/JP2014/066006
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 大谷
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020157035781A priority Critical patent/KR102185609B1/en
Priority to JP2015522928A priority patent/JP6222229B2/en
Priority to CN201480034764.0A priority patent/CN105308729B/en
Publication of WO2014203887A1 publication Critical patent/WO2014203887A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an n-type organic semiconductor thin film, and more specifically, to a method for producing a thin film having a large surface area including an n-type semiconductor composed of a fullerene derivative having a monosaccharide or a sugar alcohol residue.
  • Fullerene has excellent electron transport properties (electron acceptability) and heat resistance, and is widely used as an n-type semiconductor material for organic devices such as organic thin-film solar cells.
  • unmodified fullerenes have poor solubility in various organic solvents, so that film formation by a wet process is difficult.
  • the film formation is usually performed by an evaporation method which is a dry process.
  • PCBM is known as a fullerene derivative that can be formed by a wet process.
  • PCBM can only be dissolved in a specific organic solvent, has a poor film-forming property as a single unit, and has an electron compared to unmodified fullerene. Inferior in transportability.
  • An organic thin film solar cell includes a p-type semiconductor having a hole transporting property (electron donating property) and an n-type semiconductor having an electron transporting property (electron accepting property), and the p-type semiconductor mainly absorbs light from the outside.
  • the excited excitons are diffused to the interface between these two semiconductors, and the electrons move to the n-type semiconductor where charge separation necessary for electromotive force occurs.
  • Increasing the efficiency of this charge separation leads to an improvement in the photoelectric conversion efficiency of the organic thin film solar cell, and one method for this is to increase the contact area between semiconductors.
  • Non-patent Document 1 The active layer obtained by this method is generally called bulk heterojunction because the donor / acceptor interface is formed in the entire bulk of the active layer.
  • Non-Patent Document 2 As another ideal structure capable of improving the photoelectric conversion efficiency, a super hierarchical nanostructure has been proposed (Non-Patent Document 2).
  • this structure in order to prevent recombination of carriers in the vicinity of the electrodes, unlike the heterojunction, each of the p-type semiconductor and the n-type semiconductor is separated and disposed on the electrode. It is said that since the contacts are in order at nano-order level intervals, high mobility can be expressed while suppressing recombination of the generated carriers, and the donor / acceptor interface can be formed at high density.
  • the above two techniques are well known as techniques for improving photoelectric conversion efficiency.
  • a liquid mixture of a p-type semiconductor material and an n-type semiconductor material is applied to the interface. Therefore, it is difficult to obtain a suitable interface with good reproducibility, and there is a problem that the interface changes due to the heat during firing necessary for film formation. Therefore, it can be said that the super-hierarchical nanostructure is suitable for improving the photoelectric conversion efficiency and improving the reliability of the device, but in order to realize the structure, the semiconductor layer is made porous or uneven. It is necessary to increase the surface area.
  • the present invention has been made in view of such circumstances, and has a suitable ionization potential and a method for producing an n-type organic semiconductor thin film using a wet process having minute irregularities and pores on a film formation surface.
  • the purpose is to provide.
  • Patent Documents 1 and 2 a varnish in which a fullerene compound having a sugar residue or the like is dissolved in an organic solvent is applied onto a substrate, and the solvent is removed by baking at 80 to 100 ° C. in the air or under vacuum. As a result, an n-type semiconductor thin film having good uniformity and flatness is formed.
  • Patent Documents 1 and 2 the inventor increases the firing temperature at the time of forming a thin film, thereby increasing minute irregularities and pores on the film formation surface as compared to the time of low temperature firing at about 100 ° C. Further, by further increasing the firing temperature, it was found that a thin film having an ionization potential suitable for use as an n-type semiconductor can be formed, and the present invention has been completed.
  • the present invention 1.
  • a method for producing an n-type organic semiconductor thin film characterized by applying a solution containing a fullerene derivative represented by the formula (1) to a substrate and firing at 450 ° C. or higher; (Wherein R 1 to R 5 each independently represents a hydrogen atom, a sugar group, or a substituted sugar group in which an arbitrary hydroxyl group of the sugar group is substituted with a substituent, and R 6 represents Represents an alkyl group having 1 to 5 carbon atoms, provided that at least one of R 1 to R 5 is the sugar group or the substituted sugar group. 2.
  • the substituent is an alkyl group having 1 to 10 carbon atoms, benzyl group, p-methoxybenzyl group, methoxymethyl group, 2-tetrahydropyranyl group, ethoxyethyl group, acetyl group, pivaloyl group, benzoyl group, trimethylsilyl group,
  • a method for producing an n-type organic semiconductor thin film of 1 or 2 which is a triethylsilyl group, a t-butyldimethylsilyl group, a triisopropylsilyl group, or a t-butyldiphenylsilyl group; 4).
  • An n-type organic semiconductor thin film obtained by any one of production methods 1 to 3, 5.
  • An n-type organic semiconductor thin film having an arithmetic average roughness Ra of 2% or more of the film thickness, a maximum height Rz of 40% or more of the film thickness, and an ionization potential of 6.0 eV or more, 6).
  • an organic solar cell having 4 or 5 n-type organic semiconductor thin films.
  • an n-type organic semiconductor thin film having a suitable ionization potential and having fine irregularities and pores formed on the film formation surface can be formed.
  • the area of the p / n junction interface with the adjacent p layer formed by the lamination method can be drastically maintained while maintaining an ideal energy level relationship. Since it becomes possible to improve, it can contribute to the conversion efficiency improvement of an organic solar cell.
  • a thin film produced by high-temperature firing is a large surface area n-type organic semiconductor thin film having an ionization potential equivalent to that of unmodified fullerenes. Therefore, it is directly characterized by an increase in contact area with electronic devices, particularly p-type semiconductors.
  • the fullerene derivative that can be easily led to various analogs by changing the substituent and the sugar skeleton is used,
  • the ionization potential and surface area can be controlled depending on the formation method. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture an organic solar cell having a higher conversion efficiency and having an optimized p / n junction interface. Furthermore, in the manufacturing method of the present invention, since the thin film is formed by the wet process, it is easy to increase the area of the element as compared with the dry process, and it is possible to reduce the manufacturing cost. As a result, the organic solar cell It can contribute to the cost reduction of the organic EL element.
  • FIG. 4 is a diagram showing an AFM observation result of a fullerene thin film produced in Example 1. It is a figure which shows the AFM observation result of the fullerene thin film produced in the comparative example 1. 6 is a diagram showing an AFM observation result of a fullerene thin film produced in Comparative Example 2.
  • FIG. 4 is a diagram showing an AFM observation result of a fullerene thin film produced in Example 1. It is a figure which shows the AFM observation result of the fullerene thin film produced in the comparative example 1.
  • 6 is a diagram showing an AFM observation result of a fullerene thin film produced in Comparative Example 2.
  • FIG. 4 is a diagram showing
  • a solution containing a fullerene derivative represented by the formula (1) is applied to a substrate and baked at 450 ° C. or higher.
  • R 1 to R 5 each independently represents a hydrogen atom, a sugar group, or a substituted sugar group in which any hydroxyl group of the sugar group is substituted with a substituent. At least one of 1 to R 5 is a sugar group or a substituted sugar group.
  • the sugar group or the substituted sugar group is not particularly limited, and any tetrose group, pentose group, hexose group, and substituted sugar group in which any of these hydroxyl groups is substituted can be employed.
  • Examples of the tetrose group include an erythrosyl group which is an erythrose group.
  • Examples of the pentose group include an arabinose group that is an arabinose group, a lyxosyl group that is a lyxose group, a ribosyl group that is a ribose group, and a xylosyl group that is a xylose group.
  • the hexose group includes an allose group, an allosyl group, a fructose group, a fructosyl group, a galactose group, a galactosyl group, a glucose group, a glucosyl group, a growth group, a grosyl group, a mannose group, a mannosyl group, and a tagarose group.
  • a tagarosyl group a tarose group, a tarosyl group, a sialic acid group, and the like.
  • a hexose group is preferable in the present invention, and a galactosyl group and a glucosyl group are particularly preferable.
  • a tetrose group, a pentose group and a hexose group represented by the formulas (2) to (4) are preferred, and a hexose group represented by the formula (4) is particularly preferred.
  • R 7 to R 15 are each independently a hydrogen atom, amino group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group, amide group, nitro group, A valent hydrocarbon group, an organoamino group, an organosilyl group, an organothio group, an acyl group, an alkyl ether group, or a sulfone group.
  • Examples of the monovalent hydrocarbon group include a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-hexyl group, and n-octyl group.
  • Alkyl groups such as 2-ethylhexyl group, decyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group, bicycloalkyl groups such as bicyclohexyl group, vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1 or 2 or 3-butenyl group, alkenyl group such as hexenyl group, aryl group such as phenyl group, xylyl group, tolyl group, biphenyl group, naphthyl group, benzyl group, phenylethyl group , Aralkyl groups such as phenylcyclohexyl groups, etc., and some or all of the hydrogen atoms of these monovalent hydrocarbon groups are halo Emissions atom (fluorine atom, chlorine atom, bromine atom, iodine atom),
  • organoamino group examples include a methylamino group, an ethylamino group, a propylamino group, a butylamino group, a pentylamino group, a hexylamino group, a heptylamino group, an octylamino group, a nonylamino group, a decylamino group, and a laurylamino group.
  • Dialkylamino groups such as alkylamino group, dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, dinonylamino group and didecylamino group, cyclohexyl
  • Examples thereof include cycloalkylamino groups such as amino groups, morpholino groups, and the like.
  • organosilyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, decyl A dimethylsilyl group etc. are mentioned.
  • organothio group examples include alkylthio groups such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, and laurylthio group.
  • alkylthio groups such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, and laurylthio group.
  • acyl group examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl
  • R 6 is an alkyl group having 1 to 5 carbon atoms, and specific examples thereof include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t Examples include a -butyl group and an n-pentyl group, with a methyl group being particularly preferred.
  • At least one hydroxyl group of the sugar residue is substituted with an arbitrary substituent, and all the hydroxyl groups are substituted. More preferably, it is substituted by.
  • R 7 to R 15 Specific examples thereof include the same substituents as those exemplified for R 7 to R 15 , and in particular, an alkyl group having 1 to 10 carbon atoms, a benzyl group, a p-methoxybenzyl group, a methoxymethyl group, 2 -Tetrahydropyranyl group, ethoxyethyl group, acetyl group, pivaloyl group, benzoyl group, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, triisopropylsilyl group, t-butyldiphenylsilyl group, etc. are preferred, acetyl group Is more preferable.
  • the fullerene derivative represented by the formula (1) is a monosaccharide group described in “Synthesis and Electrochemical Properties of Water-Soluble Fullerene Derivatives Having Sugar Units” (The 81st Spring Annual Meeting of the Chemical Society of Japan, March 2002). Can be synthesized in accordance with the method described in the synthesis method of fullerene compounds having the above, Patent Documents 1 and 2, International Publication No. 2011/108365, and the like. One example is as shown in the following scheme.
  • the organic solvent for preparing the solution containing the fullerene derivative represented by the formula (1) is not particularly limited as long as it has the ability to dissolve the fullerene derivative.
  • aromatic hydrocarbon solvents such as chlorobenzene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ketone solvents such as acetone; ester solvents such as ethyl acetate; halogens such as dichloroethane, chloroform and dichloromethane Hydrocarbon solvents such as carbon disulfide can be used.
  • the content of the fullerene derivative in the organic solution is not particularly limited as long as it is an amount that can be dissolved in an organic solvent, but is preferably 0.01 to 20% by mass in consideration of operability such as coating properties, 0.5 to 3% by mass is more preferable.
  • Examples of the method for applying the solution include, but are not limited to, a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method.
  • the firing method is not particularly limited, and for example, it may be heated in a suitable atmosphere, that is, in an inert gas such as nitrogen or in a vacuum using a hot plate or an oven. Heating under is preferred.
  • the firing temperature needs to be 450 ° C. or higher, and if it is lower than 450 ° C., sufficient surface irregularities may not be formed or a suitable ionization potential (Ip) may not be realized.
  • the firing temperature is preferably 460 ° C. or higher, more preferably 470 ° C. or higher, even more preferably 480 ° C. or higher, and further preferably 490 ° C. or higher.
  • the upper limit of the firing temperature is not particularly limited as long as the fullerene derivative is not decomposed, but is usually about 800 ° C.
  • two or more temperature changes may be applied for the purpose of accelerating the formation of surface irregularities.
  • the film thickness of the n-type organic semiconductor thin film obtained by the production method of the present invention cannot be unconditionally defined because it is appropriately determined according to the application, but when used as an n-type semiconductor of an organic thin film solar cell, it is preferably about 40 to 300 nm. It is.
  • As a method of changing the film thickness there are methods such as changing the solid content concentration in the organic solution or changing the amount of the solution on the substrate at the time of coating.
  • the thin film obtained by the manufacturing method described above has a feature that is particularly suitable for use in an n-type semiconductor having not only a large unevenness on the surface and therefore a large surface area but also an ionization potential of 6.0 eV or more.
  • the arithmetic average roughness Ra of the n-type organic semiconductor thin film obtained by the production method of the present invention is usually 2% or more, preferably 3% or more, more preferably 4% or more, even more with respect to the film thickness. Preferably it is 5% or more, More preferably, it is 6% or more.
  • the upper limit of Ra is not particularly limited, but is usually about 15%.
  • the maximum height Rz of the n-type organic semiconductor thin film obtained by the production method of the present invention is usually 40% or more, preferably 45% or more, more preferably 50% or more, more with respect to the film thickness. More preferably, it is 55% or more, more preferably 60% or more.
  • the upper limit of Rz is usually about 90%, and preferably 80% or less from the viewpoint of maintaining the strength of the thin film.
  • the arithmetic average roughness Ra and the maximum height Rz are values based on JIS B0601.
  • the lower limit value of the ionization potential of the n-type organic semiconductor thin film obtained by the production method of the present invention is usually 6.0 eV or more, preferably 6.025 eV or more, more preferably 6.05 eV or more, more More preferably, it is 6.075 eV or more, and the upper limit is usually 6.3 eV or less, preferably 6.275 eV or less, more preferably 6.25 eV or less, and even more preferably 6.225 eV or less. Yes, more preferably 6.2 eV.
  • the value of the ionization potential can be adjusted by changing the firing temperature.
  • the n-type semiconductor thin film obtained by the manufacturing method described above is suitable for use in an organic thin film solar cell, in particular, a solar cell having a semiconductor layer with a super hierarchical nanostructure because of its large surface area and ionization potential.
  • Example 1 A fullerene thin film was formed in the same manner as in Example 1 except that baking was performed at 350 ° C. for 10 minutes. As a result of confirming the cross section of the film thickness of the produced thin film, the film thickness was 220 nm.
  • Example 2 A fullerene thin film was formed in the same manner as in Example 1 except that baking was performed at 100 ° C. for 10 minutes.
  • the surface roughness (Ra and Rz) of the fullerene thin film of Example 1 and Comparative Example 1 is higher than that of the thin film of Comparative Example 2, and is baked at a high temperature of 350 ° C. or higher.
  • the thin film of Example 1 baked at 500 ° C. has an ionization potential suitable for n-type semiconductors of 6.0 eV or more, and an ionization potential (6.1 eV) similar to that of unmodified fullerene. It can also be seen that the ionization potential of the thin film is improved by baking at a higher temperature.
  • the n-type semiconductor of the present invention can be used in place of unmodified fullerene because of its ionization potential characteristics, and because of its high surface area, it can be used as the n-type of organic solar cells. By using it as a semiconductor, high conversion efficiency that could not be realized with unmodified fullerenes can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

In the present invention, by applying a solution containing the fullerene represented by formula (1) to a substrate and firing at 450°C or higher, an n-type organic semiconductor thin film that has favorable ionization potential and has microscopic irregularities and pores in the film surface can be obtained. (In the formula, R1-R5 each independently represent a hydrogen atom, a saccharide group, or a substituted saccharide group that is a saccharide group in which any given hydroxyl group of the saccharide group has been substituted with a substituent group, and R6 represents an alkyl group with a carbon number in the range 1-5. However, at least one of R1-R5 is the saccharide group or substituted saccharide group.)

Description

n型有機半導体薄膜の製造方法Method for producing n-type organic semiconductor thin film
 本発明は、n型有機半導体薄膜の製造方法に関し、さらに詳述すると、単糖や糖アルコール残基を有するフラーレン誘導体からなるn型半導体を含む、表面積の大きな薄膜の製造方法に関する。 The present invention relates to a method for producing an n-type organic semiconductor thin film, and more specifically, to a method for producing a thin film having a large surface area including an n-type semiconductor composed of a fullerene derivative having a monosaccharide or a sugar alcohol residue.
 フラーレンは、優れた電子輸送性(電子受容性)および耐熱性を有し、有機薄膜太陽電池等の有機デバイスのn型半導体材料として汎用されている。
 しかしながら、無修飾のフラーレンは各種の有機溶媒への溶解性が乏しいためウェットプロセスによる成膜は困難であり、その成膜は通常ドライプロセスである蒸着法によって行われる。
 また、ウェットプロセスで成膜可能なフラーレン誘導体としてPCBMが知られているが、PCBMは特定の有機溶媒にしか溶解せず、単体での成膜性が悪い上、無修飾のフラーレンと比べると電子輸送性に劣る。
Fullerene has excellent electron transport properties (electron acceptability) and heat resistance, and is widely used as an n-type semiconductor material for organic devices such as organic thin-film solar cells.
However, unmodified fullerenes have poor solubility in various organic solvents, so that film formation by a wet process is difficult. The film formation is usually performed by an evaporation method which is a dry process.
PCBM is known as a fullerene derivative that can be formed by a wet process. However, PCBM can only be dissolved in a specific organic solvent, has a poor film-forming property as a single unit, and has an electron compared to unmodified fullerene. Inferior in transportability.
 有機薄膜太陽電池は、正孔輸送性(電子供与性)を有するp型半導体と電子輸送性(電子受容性)を有するn型半導体とを備え、主にp型半導体が外部からの光を吸収して励起され、発生した励起子がこれら2つの半導体の界面まで拡散し、そこで電子がn型半導体に移動することで起電に必要な電荷分離が起こる。この電荷分離の効率を高めることが有機薄膜太陽電池の光電変換効率の向上につながり、そのための1つの方法として各半導体同士の接触面積の増大化が挙げられる。 An organic thin film solar cell includes a p-type semiconductor having a hole transporting property (electron donating property) and an n-type semiconductor having an electron transporting property (electron accepting property), and the p-type semiconductor mainly absorbs light from the outside. The excited excitons are diffused to the interface between these two semiconductors, and the electrons move to the n-type semiconductor where charge separation necessary for electromotive force occurs. Increasing the efficiency of this charge separation leads to an improvement in the photoelectric conversion efficiency of the organic thin film solar cell, and one method for this is to increase the contact area between semiconductors.
 このような観点から、例えば、p型半導体材料とn型半導体材料とを混合した溶液を調製し、塗布法によって活性層を形成することで、得られる太陽電池の変換効率が大幅に上昇することが報告されている(非特許文献1)。この手法によって得られる活性層は、ドナー/アクセプター界面が活性層のバルク全体に形成されることから、一般的にバルクへテロジャンクションと呼ばれる。
 また、光電変換効率向上を図ることができるその他の理想的な構造として、超階層ナノ構造が提案されている(非特許文献2)。この構造では、電極近傍におけるキャリアの再結合を防止するため、ヘテロジャンクションとは異なり、p型半導体とn型半導体のそれぞれが分離して電極に配置されている一方で、これら2つの半導体同士がナノオーダーレベルの間隔で整然と接触していることから、発生したキャリアの再結合を抑制しつつ高移動度を発現し得、かつ、ドナー/アクセプター界面を高密度に形成できるといわれている。
From such a viewpoint, for example, by preparing a solution in which a p-type semiconductor material and an n-type semiconductor material are mixed and forming an active layer by a coating method, the conversion efficiency of the obtained solar cell is significantly increased. Has been reported (Non-patent Document 1). The active layer obtained by this method is generally called bulk heterojunction because the donor / acceptor interface is formed in the entire bulk of the active layer.
As another ideal structure capable of improving the photoelectric conversion efficiency, a super hierarchical nanostructure has been proposed (Non-Patent Document 2). In this structure, in order to prevent recombination of carriers in the vicinity of the electrodes, unlike the heterojunction, each of the p-type semiconductor and the n-type semiconductor is separated and disposed on the electrode. It is said that since the contacts are in order at nano-order level intervals, high mobility can be expressed while suppressing recombination of the generated carriers, and the donor / acceptor interface can be formed at high density.
 以上の2つの技術は、光電変換効率を向上させる手法としてよく知られているものであるが、バルクへテロジャンクションにおいては、p型半導体材料とn型半導体材料との混合液を塗布して界面を形成することから、好適な界面を再現性よく得ることが困難であるだけでなく、膜形成に必要な焼成時の熱によって、界面の変化が起こるという問題がある。
 それゆえ、光電変換効率の向上と素子の信頼性の向上のためには、超階層ナノ構造が好適であるといえるが、その構造を実現するためには半導体層の多孔質化や凹凸化等の表面積の増大化が必要となる。
The above two techniques are well known as techniques for improving photoelectric conversion efficiency. In bulk heterojunction, a liquid mixture of a p-type semiconductor material and an n-type semiconductor material is applied to the interface. Therefore, it is difficult to obtain a suitable interface with good reproducibility, and there is a problem that the interface changes due to the heat during firing necessary for film formation.
Therefore, it can be said that the super-hierarchical nanostructure is suitable for improving the photoelectric conversion efficiency and improving the reliability of the device, but in order to realize the structure, the semiconductor layer is made porous or uneven. It is necessary to increase the surface area.
国際公開第2010/055898号International Publication No. 2010/055898 特開2011-258944号公報JP 2011-258944 A
 本発明は、このような事情に鑑みてなされたものであり、好適なイオン化ポテンシャルを有するとともに成膜面に微小な凹凸や細孔を有する、ウェットプロセスを用いたn型有機半導体薄膜の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and has a suitable ionization potential and a method for producing an n-type organic semiconductor thin film using a wet process having minute irregularities and pores on a film formation surface. The purpose is to provide.
 本出願人は、糖残基や糖アルコール残基を有するフラーレン化合物が、有機溶媒に対する溶解性が良好であり、この化合物を含むワニスから得られた薄膜の均一性が良好であること、および当該化合物がn型半導体として駆動し、有機薄膜太陽電池に適用できることをすでに報告している(特許文献1,2)。この特許文献1,2の技術では、糖残基等を有するフラーレン化合物を有機溶媒に溶かしたワニスを基材上に塗布し、大気下または真空下、80~100℃で焼成して溶媒を除去することで均一性および平坦性の良好なn型半導体薄膜を形成している。
 本発明者は、この特許文献1,2の技術において、薄膜形成時の焼成温度を高めることで、100℃程度の低温焼成時に比べ、成膜面の微小な凹凸や細孔が増加すること、および焼成温度をさらに高めていくことで、n型半導体として用いるのに好適なイオン化ポテンシャルを有する薄膜をも形成できることを見出し、本発明を完成した。
The Applicant has found that the fullerene compound having a sugar residue or a sugar alcohol residue has good solubility in an organic solvent, and that the thin film obtained from the varnish containing this compound has good uniformity, and It has already been reported that a compound is driven as an n-type semiconductor and can be applied to an organic thin film solar cell (Patent Documents 1 and 2). In the techniques of Patent Documents 1 and 2, a varnish in which a fullerene compound having a sugar residue or the like is dissolved in an organic solvent is applied onto a substrate, and the solvent is removed by baking at 80 to 100 ° C. in the air or under vacuum. As a result, an n-type semiconductor thin film having good uniformity and flatness is formed.
In the techniques of Patent Documents 1 and 2, the inventor increases the firing temperature at the time of forming a thin film, thereby increasing minute irregularities and pores on the film formation surface as compared to the time of low temperature firing at about 100 ° C. Further, by further increasing the firing temperature, it was found that a thin film having an ionization potential suitable for use as an n-type semiconductor can be formed, and the present invention has been completed.
 すなわち、本発明は、
1. 式(1)で表されるフラーレン誘導体を含む溶液を基材に塗布し、450℃以上で焼成することを特徴とするn型有機半導体薄膜の製造方法、
Figure JPOXMLDOC01-appb-C000003
(式中、R1~R5は、それぞれ独立して、水素原子、糖基、または糖基の任意の水酸基が置換基によって置換された糖基である置換糖基を表し、R6は、炭素数1~5のアルキル基を表す。ただし、R1~R5のうちの少なくとも1つは、前記糖基または置換糖基である。)
2. 前記糖基または置換糖基が、式(2)、式(3)および式(4)から選ばれる少なくとも1つの基である1のn型有機半導体薄膜の製造方法、
Figure JPOXMLDOC01-appb-C000004
(式中、R7~R15は、それぞれ独立して、水素原子、アミノ基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、アルキルエーテル基、またはスルホン基を示す。)
3. 前記置換基が、炭素数1~10のアルキル基、ベンジル基、p-メトキシベンジル基、メトキシメチル基、2-テトラヒドロピラニル基、エトキシエチル基、アセチル基、ピバロイル基、ベンゾイル基、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、またはt-ブチルジフェニルシリル基である1または2のn型有機半導体薄膜の製造方法、
4. 1~3のいずれかの製造方法で得られたn型有機半導体薄膜、
5. 算術平均粗さRaが膜厚の2%以上であり、最大高さRzが膜厚の40%以上であり、イオン化ポテンシャルが6.0eV以上であるn型有機半導体薄膜、
6. 4または5のn型有機半導体薄膜を有する有機太陽電池
を提供する。
That is, the present invention
1. A method for producing an n-type organic semiconductor thin film characterized by applying a solution containing a fullerene derivative represented by the formula (1) to a substrate and firing at 450 ° C. or higher;
Figure JPOXMLDOC01-appb-C000003
(Wherein R 1 to R 5 each independently represents a hydrogen atom, a sugar group, or a substituted sugar group in which an arbitrary hydroxyl group of the sugar group is substituted with a substituent, and R 6 represents Represents an alkyl group having 1 to 5 carbon atoms, provided that at least one of R 1 to R 5 is the sugar group or the substituted sugar group.
2. The method for producing an n-type organic semiconductor thin film according to 1, wherein the sugar group or substituted sugar group is at least one group selected from Formula (2), Formula (3), and Formula (4);
Figure JPOXMLDOC01-appb-C000004
(Wherein R 7 to R 15 are each independently a hydrogen atom, amino group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group, amide group, nitro group, A valent hydrocarbon group, an organoamino group, an organosilyl group, an organothio group, an acyl group, an alkyl ether group, or a sulfone group.)
3. The substituent is an alkyl group having 1 to 10 carbon atoms, benzyl group, p-methoxybenzyl group, methoxymethyl group, 2-tetrahydropyranyl group, ethoxyethyl group, acetyl group, pivaloyl group, benzoyl group, trimethylsilyl group, A method for producing an n-type organic semiconductor thin film of 1 or 2 which is a triethylsilyl group, a t-butyldimethylsilyl group, a triisopropylsilyl group, or a t-butyldiphenylsilyl group;
4). An n-type organic semiconductor thin film obtained by any one of production methods 1 to 3,
5. An n-type organic semiconductor thin film having an arithmetic average roughness Ra of 2% or more of the film thickness, a maximum height Rz of 40% or more of the film thickness, and an ionization potential of 6.0 eV or more,
6). Provided is an organic solar cell having 4 or 5 n-type organic semiconductor thin films.
 本発明の製造方法によれば、好適なイオン化ポテンシャルを有する、成膜面に微小な凹凸や細孔が形成されたn型有機半導体薄膜を形成できる。本発明の製造方法で得られた薄膜を用いれば、積層法によって隣接して形成されるp層とのp/n接合界面の面積を、理想的なエネルギー準位の関係を保ちながら飛躍的に向上させることが可能となるため、有機太陽電池の変換効率向上に寄与し得る。特に高温焼成にて作製した薄膜は、無修飾フラーレンと同等のイオン化ポテンシャルを有する大表面積n型有機半導体薄膜であることから、電子デバイス、特に、p型半導体との接触面積増大によって直接的に特性向上が期待される有機太陽電池のn型半導体として好適である。
 また、本発明の製造方法においては、その置換基および糖骨格を変更して種々の類縁体へ容易に導くことができるフラーレン誘導体を用いているため、隣接して形成されるp層の種類やその形成方法に応じてそのイオン化ポテンシャルや表面積のコントロールが可能である。そのため、本発明の製造方法によれば、最適化されたp/n接合界面を有する、より高変換効率の有機太陽電池を製造できる。
 さらに、本発明の製造方法においては、ウェットプロセスによって薄膜化することから、ドライプロセスと比較して素子の大面積化が容易になるとともに、製造コストの低減が可能となり、その結果、有機太陽電池、有機EL素子の低コスト化に寄与し得る。
According to the production method of the present invention, an n-type organic semiconductor thin film having a suitable ionization potential and having fine irregularities and pores formed on the film formation surface can be formed. By using the thin film obtained by the manufacturing method of the present invention, the area of the p / n junction interface with the adjacent p layer formed by the lamination method can be drastically maintained while maintaining an ideal energy level relationship. Since it becomes possible to improve, it can contribute to the conversion efficiency improvement of an organic solar cell. In particular, a thin film produced by high-temperature firing is a large surface area n-type organic semiconductor thin film having an ionization potential equivalent to that of unmodified fullerenes. Therefore, it is directly characterized by an increase in contact area with electronic devices, particularly p-type semiconductors. It is suitable as an n-type semiconductor of an organic solar cell expected to be improved.
Further, in the production method of the present invention, since the fullerene derivative that can be easily led to various analogs by changing the substituent and the sugar skeleton is used, The ionization potential and surface area can be controlled depending on the formation method. Therefore, according to the manufacturing method of the present invention, it is possible to manufacture an organic solar cell having a higher conversion efficiency and having an optimized p / n junction interface.
Furthermore, in the manufacturing method of the present invention, since the thin film is formed by the wet process, it is easy to increase the area of the element as compared with the dry process, and it is possible to reduce the manufacturing cost. As a result, the organic solar cell It can contribute to the cost reduction of the organic EL element.
実施例1で作製したフラーレン薄膜のAFM観察結果を示す図である。FIG. 4 is a diagram showing an AFM observation result of a fullerene thin film produced in Example 1. 比較例1で作製したフラーレン薄膜のAFM観察結果を示す図である。It is a figure which shows the AFM observation result of the fullerene thin film produced in the comparative example 1. 比較例2で作製したフラーレン薄膜のAFM観察結果を示す図である。6 is a diagram showing an AFM observation result of a fullerene thin film produced in Comparative Example 2. FIG.
 以下、本発明についてさらに詳しく説明する。
 本発明に係るn型有機半導体薄膜の製造方法は、式(1)で表されるフラーレン誘導体を含む溶液を基材に塗布し、450℃以上で焼成するものである。
Hereinafter, the present invention will be described in more detail.
In the method for producing an n-type organic semiconductor thin film according to the present invention, a solution containing a fullerene derivative represented by the formula (1) is applied to a substrate and baked at 450 ° C. or higher.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)において、R1~R5は、それぞれ独立して、水素原子、糖基、または糖基の任意の水酸基が置換基によって置換された糖基である置換糖基を表すが、R1~R5のうちの少なくとも1つは、糖基または置換糖基である。
 ここで、糖基または置換糖基としては、特に限定されるものではなく、任意のテトロース基、ペントース基、ヘキソース基およびそれらの任意の水酸基が置換された置換糖基を採用できる。
In the formula (1), R 1 to R 5 each independently represents a hydrogen atom, a sugar group, or a substituted sugar group in which any hydroxyl group of the sugar group is substituted with a substituent. At least one of 1 to R 5 is a sugar group or a substituted sugar group.
Here, the sugar group or the substituted sugar group is not particularly limited, and any tetrose group, pentose group, hexose group, and substituted sugar group in which any of these hydroxyl groups is substituted can be employed.
 テトロース基としては、エリトロース基であるエリトロシル基等が挙げられる。
 ペントース基としては、アラビノース基であるアラビノシル基、リキソース基であるリキソシル基、リボース基であるリボシル基、キシロース基であるキシロシル基等が挙げられる。
 ヘキソース基としては、アロース基であるアロシル基、フルクトース基であるフルクトシル基、ガラクトース基であるガラクトシル基、グルコース基であるグルコシル基、グロース基であるグロシル基、マンノース基であるマンノシル基、タガロース基であるタガロシル基、タロース基であるタロシル基、シアル酸基等が挙げられる。
 これらの中でも、本発明においては、ヘキソース基が好ましく、特に、ガラクトシル基、グルコシル基が好適である。
Examples of the tetrose group include an erythrosyl group which is an erythrose group.
Examples of the pentose group include an arabinose group that is an arabinose group, a lyxosyl group that is a lyxose group, a ribosyl group that is a ribose group, and a xylosyl group that is a xylose group.
The hexose group includes an allose group, an allosyl group, a fructose group, a fructosyl group, a galactose group, a galactosyl group, a glucose group, a glucosyl group, a growth group, a grosyl group, a mannose group, a mannosyl group, and a tagarose group. There may be mentioned a tagarosyl group, a tarose group, a tarosyl group, a sialic acid group, and the like.
Among these, a hexose group is preferable in the present invention, and a galactosyl group and a glucosyl group are particularly preferable.
 より具体的には、式(2)~(4)で示されるテトロース基、ペントース基、ヘキソース基が好適であり、特に、式(4)で示されるヘキソース基が好ましい。 More specifically, a tetrose group, a pentose group and a hexose group represented by the formulas (2) to (4) are preferred, and a hexose group represented by the formula (4) is particularly preferred.
Figure JPOXMLDOC01-appb-C000006
(式中、R7~R15は、それぞれ独立して、水素原子、アミノ基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、アルキルエーテル基、またはスルホン基を示す。)
Figure JPOXMLDOC01-appb-C000006
(Wherein R 7 to R 15 are each independently a hydrogen atom, amino group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group, amide group, nitro group, A valent hydrocarbon group, an organoamino group, an organosilyl group, an organothio group, an acyl group, an alkyl ether group, or a sulfone group.)
 一価炭化水素基としては、例えば、メチル基,エチル基,n-プロピル基,i-プロピル基,n-ブチル基,i-ブチル基,t-ブチル基,n-ヘキシル基,n-オクチル基,2-エチルヘキシル基,デシル基等のアルキル基、シクロペンチル基,シクロヘキシル基等のシクロアルキル基、ビシクロヘキシル基等のビシクロアルキル基、ビニル基,1-プロペニル基,2-プロペニル基,イソプロペニル基,1-メチル-2-プロペニル基,1または2または3-ブテニル基,ヘキセニル基等のアルケニル基、フェニル基,キシリル基,トリル基,ビフェニル基,ナフチル基等のアリール基、ベンジル基,フェニルエチル基,フェニルシクロヘキシル基等のアラルキル基などや、これらの一価炭化水素基の水素原子の一部または全部がハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、水酸基、アルコキシ基(メトキシ基、エトキシ基等)などで置換されたものが挙げられる。 Examples of the monovalent hydrocarbon group include a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-hexyl group, and n-octyl group. , Alkyl groups such as 2-ethylhexyl group, decyl group, cycloalkyl groups such as cyclopentyl group, cyclohexyl group, bicycloalkyl groups such as bicyclohexyl group, vinyl group, 1-propenyl group, 2-propenyl group, isopropenyl group, 1-methyl-2-propenyl group, 1 or 2 or 3-butenyl group, alkenyl group such as hexenyl group, aryl group such as phenyl group, xylyl group, tolyl group, biphenyl group, naphthyl group, benzyl group, phenylethyl group , Aralkyl groups such as phenylcyclohexyl groups, etc., and some or all of the hydrogen atoms of these monovalent hydrocarbon groups are halo Emissions atom (fluorine atom, chlorine atom, bromine atom, iodine atom), a hydroxyl group, an alkoxy group (methoxy group, ethoxy group, etc.) include those substituted with such.
 オルガノアミノ基としては、例えば、メチルアミノ基,エチルアミノ基,プロピルアミノ基,ブチルアミノ基,ペンチルアミノ基,ヘキシルアミノ基,ヘプチルアミノ基,オクチルアミノ基,ノニルアミノ基,デシルアミノ基,ラウリルアミノ基等のアルキルアミノ基、ジメチルアミノ基,ジエチルアミノ基,ジプロピルアミノ基,ジブチルアミノ基,ジペンチルアミノ基,ジヘキシルアミノ基,ジヘプチルアミノ基,ジオクチルアミノ基,ジノニルアミノ基,ジデシルアミノ基等のジアルキルアミノ基、シクロヘキシルアミノ基等のシクロアルキルアミノ基、モルホリノ基などが挙げられる。 Examples of the organoamino group include a methylamino group, an ethylamino group, a propylamino group, a butylamino group, a pentylamino group, a hexylamino group, a heptylamino group, an octylamino group, a nonylamino group, a decylamino group, and a laurylamino group. Dialkylamino groups such as alkylamino group, dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, dipentylamino group, dihexylamino group, diheptylamino group, dioctylamino group, dinonylamino group and didecylamino group, cyclohexyl Examples thereof include cycloalkylamino groups such as amino groups, morpholino groups, and the like.
 オルガノシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、デシルジメチルシリル基などが挙げられる。
 オルガノチオ基としては、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基等のアルキルチオ基などが挙げられる。
 アシル基としては、例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基等が挙げられる。
Examples of the organosilyl group include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group, decyl A dimethylsilyl group etc. are mentioned.
Examples of the organothio group include alkylthio groups such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, and laurylthio group.
Examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 また、R6は、炭素数1~5のアルキル基であり、その具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基等が挙げられるが、特に、メチル基が好ましい。 R 6 is an alkyl group having 1 to 5 carbon atoms, and specific examples thereof include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t Examples include a -butyl group and an n-pentyl group, with a methyl group being particularly preferred.
 特に、上記フラーレン誘導体の有機溶媒に対する溶解性をより向上させることを考慮すると、糖残基の有する水酸基の少なくとも1つが、任意の置換基によって置換されていることが好ましく、全ての水酸基が置換基によって置換されていることがより好ましい。
 その具体例としては、R7~R15で例示したものと同様の置換基が挙げられるが、特に、炭素数1~10のアルキル基、ベンジル基、p-メトキシベンジル基、メトキシメチル基、2-テトラヒドロピラニル基、エトキシエチル基、アセチル基、ピバロイル基、ベンゾイル基、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、t-ブチルジフェニルシリル基等が好ましく、アセチル基がより好ましい。
In particular, in consideration of further improving the solubility of the fullerene derivative in an organic solvent, it is preferable that at least one hydroxyl group of the sugar residue is substituted with an arbitrary substituent, and all the hydroxyl groups are substituted. More preferably, it is substituted by.
Specific examples thereof include the same substituents as those exemplified for R 7 to R 15 , and in particular, an alkyl group having 1 to 10 carbon atoms, a benzyl group, a p-methoxybenzyl group, a methoxymethyl group, 2 -Tetrahydropyranyl group, ethoxyethyl group, acetyl group, pivaloyl group, benzoyl group, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, triisopropylsilyl group, t-butyldiphenylsilyl group, etc. are preferred, acetyl group Is more preferable.
 式(1)で示されるフラーレン誘導体は、“糖単位を持つ水溶性フラーレン誘導体の合成と電気化学特性”(2002年3月日本化学会第81回春季年会)に掲載されている単糖基を有するフラーレン化合物の合成方法、特許文献1,2、国際公開第2011/108365号等に記載の方法に準じて合成することができる。その一例を挙げると、以下のスキームのとおりである。 The fullerene derivative represented by the formula (1) is a monosaccharide group described in “Synthesis and Electrochemical Properties of Water-Soluble Fullerene Derivatives Having Sugar Units” (The 81st Spring Annual Meeting of the Chemical Society of Japan, March 2002). Can be synthesized in accordance with the method described in the synthesis method of fullerene compounds having the above, Patent Documents 1 and 2, International Publication No. 2011/108365, and the like. One example is as shown in the following scheme.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(1)で表されるフラーレン誘導体を含む溶液を調製するための有機溶媒としては、上記フラーレン誘導体の溶解能を有するものであれば特に限定されるものではなく、例えば、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族またはハロゲン化芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、アセトン等のケトン系溶媒、酢酸エチル等のエステル系溶媒;ジクロロエタン、クロロホルム、ジクロロメタン等のハロゲン化炭化水素溶媒;二硫化炭素などを用いることができる。 The organic solvent for preparing the solution containing the fullerene derivative represented by the formula (1) is not particularly limited as long as it has the ability to dissolve the fullerene derivative. For example, benzene, toluene, xylene Aromatic or halogenated aromatic hydrocarbon solvents such as chlorobenzene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; ketone solvents such as acetone; ester solvents such as ethyl acetate; halogens such as dichloroethane, chloroform and dichloromethane Hydrocarbon solvents such as carbon disulfide can be used.
 有機溶液中のフラーレン誘導体の含有量は、有機溶媒に溶解する量であれば特に限定されるものではないが、塗布性等の操作性などを考慮すると、0.01~20質量%が好ましく、0.5~3質量%がより好ましい。 The content of the fullerene derivative in the organic solution is not particularly limited as long as it is an amount that can be dissolved in an organic solvent, but is preferably 0.01 to 20% by mass in consideration of operability such as coating properties, 0.5 to 3% by mass is more preferable.
 溶液を塗布する方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されるわけではない。 Examples of the method for applying the solution include, but are not limited to, a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method.
 焼成方法としては、特に限定されるものではなく、例えば、ホットプレートやオーブン等を用いて、適切な雰囲気下、すなわち、窒素等の不活性ガス、真空中等で加熱すればよいが、不活性ガス下で加熱することが好ましい。
 焼成温度は、450℃以上とする必要があり、450℃未満であると、表面の凹凸が十分に形成されなかったり、好適なイオン化ポテンシャル(Ip)が実現できなかったりすることがある。焼成温度は、好ましくは460℃以上、より好ましくは470℃以上、より一層好ましくは480℃以上、さらに好ましくは490℃以上である。一方、焼成温度の上限値は、フラーレン誘導体が分解しない限りにおいて特に限定されるものではないが、通常800℃程度である。
 なお、焼成の際に、表面の凹凸形成を促進することなどを目的として、2段階以上の温度変化をつけてもよい。
The firing method is not particularly limited, and for example, it may be heated in a suitable atmosphere, that is, in an inert gas such as nitrogen or in a vacuum using a hot plate or an oven. Heating under is preferred.
The firing temperature needs to be 450 ° C. or higher, and if it is lower than 450 ° C., sufficient surface irregularities may not be formed or a suitable ionization potential (Ip) may not be realized. The firing temperature is preferably 460 ° C. or higher, more preferably 470 ° C. or higher, even more preferably 480 ° C. or higher, and further preferably 490 ° C. or higher. On the other hand, the upper limit of the firing temperature is not particularly limited as long as the fullerene derivative is not decomposed, but is usually about 800 ° C.
In firing, two or more temperature changes may be applied for the purpose of accelerating the formation of surface irregularities.
 本発明の製造方法で得られるn型有機半導体薄膜の膜厚は、用途に応じて適宜決定するため一概に規定できないが、有機薄膜太陽電池のn型半導体として用いる場合、40~300nm程度が好適である。膜厚を変化させる方法としては、有機溶液中の固形分濃度を変化させたり、塗布時の基材上の溶液量を変化させたりする等の方法がある。 The film thickness of the n-type organic semiconductor thin film obtained by the production method of the present invention cannot be unconditionally defined because it is appropriately determined according to the application, but when used as an n-type semiconductor of an organic thin film solar cell, it is preferably about 40 to 300 nm. It is. As a method of changing the film thickness, there are methods such as changing the solid content concentration in the organic solution or changing the amount of the solution on the substrate at the time of coating.
 以上説明した製造方法によって得られる薄膜は、表面に多くの凹凸を有し、それゆえ大きな表面積を有するだけでなく、イオン化ポテンシャルが6.0eV以上というn型半導体に用いるのに特に適した特徴を有する。
 本発明の製造方法で得られるn型有機半導体薄膜の算術平均粗さRaは、膜厚に対して、通常2%以上であるが、好ましくは3%以上、より好ましくは4%以上、より一層好ましくは5%以上、さらに好ましくは6%以上である。一方、Raの上限値は特に限定されるものではないが、通常15%程度である。
 また、本発明の製造方法で得られるn型有機半導体薄膜の最大高さRzは、膜厚に対して、通常40%以上であるが、好ましくは45%以上、より好ましくは50%以上、より一層好ましくは55%以上、さらに好ましくは60%以上である。一方、Rzの上限値は、通常90%程度であり、薄膜の強度を維持する観点から80%以下が好ましい。
 なお、算術平均粗さRaおよび最大高さRzは、JIS B0601に基づく値である。
The thin film obtained by the manufacturing method described above has a feature that is particularly suitable for use in an n-type semiconductor having not only a large unevenness on the surface and therefore a large surface area but also an ionization potential of 6.0 eV or more. Have.
The arithmetic average roughness Ra of the n-type organic semiconductor thin film obtained by the production method of the present invention is usually 2% or more, preferably 3% or more, more preferably 4% or more, even more with respect to the film thickness. Preferably it is 5% or more, More preferably, it is 6% or more. On the other hand, the upper limit of Ra is not particularly limited, but is usually about 15%.
Further, the maximum height Rz of the n-type organic semiconductor thin film obtained by the production method of the present invention is usually 40% or more, preferably 45% or more, more preferably 50% or more, more with respect to the film thickness. More preferably, it is 55% or more, more preferably 60% or more. On the other hand, the upper limit of Rz is usually about 90%, and preferably 80% or less from the viewpoint of maintaining the strength of the thin film.
The arithmetic average roughness Ra and the maximum height Rz are values based on JIS B0601.
 本発明の製造方法で得られるn型有機半導体薄膜のイオン化ポテンシャルの下限値は、通常6.0eV以上であるが、好ましくは6.025eV以上であり、より好ましくは6.05eV以上であり、より一層好ましくは6.075eV以上であり、上限値は、通常6.3eV以下であり、好ましくは6.275eV以下であり、より好ましくは6.25eV以下であり、より一層好ましくは6.225eV以下であり、さらに好ましくは6.2eVである。イオン化ポテンシャルの値は、焼成温度を変更することによって、調整することが可能である。 The lower limit value of the ionization potential of the n-type organic semiconductor thin film obtained by the production method of the present invention is usually 6.0 eV or more, preferably 6.025 eV or more, more preferably 6.05 eV or more, more More preferably, it is 6.075 eV or more, and the upper limit is usually 6.3 eV or less, preferably 6.275 eV or less, more preferably 6.25 eV or less, and even more preferably 6.225 eV or less. Yes, more preferably 6.2 eV. The value of the ionization potential can be adjusted by changing the firing temperature.
 以上説明した製造方法によって得られるn型半導体薄膜は、その大きな表面積およびイオン化ポテンシャルのため、有機薄膜太陽電池、特に、超階層ナノ構造の半導体層を有する太陽電池に用いるのに適している。 The n-type semiconductor thin film obtained by the manufacturing method described above is suitable for use in an organic thin film solar cell, in particular, a solar cell having a semiconductor layer with a super hierarchical nanostructure because of its large surface area and ionization potential.
 以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[1]使用した装置
(1)表面観察:Dimension ICON(ブルカー・エイ・エックス・エス社製)
(2)イオン化ポテンシャル測定:AC-3(理研計器(株)製)
(3)膜厚測定:S-4300形電解放出形走査電子顕微鏡((株)日立ハイテクノロジーズ製)
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
[1] Equipment used (1) Surface observation: Dimension ICON (manufactured by Bruker AXS)
(2) Ionization potential measurement: AC-3 (Riken Keiki Co., Ltd.)
(3) Film thickness measurement: S-4300 type field emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation)
[2]薄膜の作製
[実施例1]
 窒素雰囲気下で、国際公開第2010/055898号記載の方法で合成した式(4a)で表されるフラーレン誘導体50mgとクロロホルム1.0mLとを混合し、室温でよく撹拌して溶液を調製した。同様の雰囲気下で、得られた濃褐色透明溶液を、スピンコート法(1500rpm、30秒)によりシリコンウェハ上に塗布し、ホットプレートを用い、500℃で10分間焼成してフラーレン薄膜を形成した。
 作製した薄膜の膜厚の断面を確認した結果、膜厚は170nmだった。
[2] Fabrication of thin film [Example 1]
Under a nitrogen atmosphere, 50 mg of the fullerene derivative represented by the formula (4a) synthesized by the method described in International Publication No. 2010/0555898 and 1.0 mL of chloroform were mixed, and the solution was prepared by thoroughly stirring at room temperature. Under the same atmosphere, the obtained dark brown transparent solution was applied on a silicon wafer by a spin coating method (1500 rpm, 30 seconds) and baked at 500 ° C. for 10 minutes using a hot plate to form a fullerene thin film. .
As a result of confirming the cross section of the film thickness of the produced thin film, the film thickness was 170 nm.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[比較例1]
 350℃で10分間焼成した以外は、実施例1と同様の方法でフラーレン薄膜を形成した。
 作製した薄膜の膜厚の断面を確認した結果、膜厚は220nmだった。
[Comparative Example 1]
A fullerene thin film was formed in the same manner as in Example 1 except that baking was performed at 350 ° C. for 10 minutes.
As a result of confirming the cross section of the film thickness of the produced thin film, the film thickness was 220 nm.
[比較例2]
 100℃で10分間焼成した以外は、実施例1と同様の方法でフラーレン薄膜を形成した。
[Comparative Example 2]
A fullerene thin film was formed in the same manner as in Example 1 except that baking was performed at 100 ° C. for 10 minutes.
[3]表面観察およびイオン化ポテンシャルの測定
 実施例1および比較例1,2で作製したフラーレン薄膜の表面の観察およびイオン化ポテンシャルの測定を行った。実施例1および比較例1,2のフラーレン薄膜の表面写真を図1~3にそれぞれ示す。また、各薄膜の算術平均粗さ(Ra)、最大高さ(Rz)およびイオン化ポテンシャルを表1に示す。
[3] Surface observation and measurement of ionization potential The surface of the fullerene thin film prepared in Example 1 and Comparative Examples 1 and 2 was observed and the ionization potential was measured. Surface photographs of the fullerene thin films of Example 1 and Comparative Examples 1 and 2 are shown in FIGS. 1 to 3, respectively. Table 1 shows the arithmetic average roughness (Ra), maximum height (Rz), and ionization potential of each thin film.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1および図1~3に示されるとおり、実施例1および比較例1のフラーレン薄膜の表面粗さ(RaおよびRz)は、比較例2の薄膜よりも高く、350℃以上という高温で焼成することで、より高低差のある凹凸がより多数形成されることがわかる。
 その上、500℃で焼成した実施例1の薄膜は、6.0eV以上というn型半導体に適したイオン化ポテンシャルを有しており、無修飾フラーレンと同程度のイオン化ポテンシャル(6.1eV)であることもわかり、さらに高温で焼成することで薄膜のイオン化ポテンシャルが向上することもわかる。
 以上のことから、本発明のn型半導体は、そのイオン化ポテンシャル特性のために無修飾フラーレンの代わりに用いることが可能であり、また、その高い表面積のために、これを有機太陽電池のn型半導体として用いることで、無修飾フラーレンでは実現できなかった高変換効率が期待できる。
As shown in Table 1 and FIGS. 1 to 3, the surface roughness (Ra and Rz) of the fullerene thin film of Example 1 and Comparative Example 1 is higher than that of the thin film of Comparative Example 2, and is baked at a high temperature of 350 ° C. or higher. Thus, it can be seen that a larger number of irregularities with different heights are formed.
In addition, the thin film of Example 1 baked at 500 ° C. has an ionization potential suitable for n-type semiconductors of 6.0 eV or more, and an ionization potential (6.1 eV) similar to that of unmodified fullerene. It can also be seen that the ionization potential of the thin film is improved by baking at a higher temperature.
From the above, the n-type semiconductor of the present invention can be used in place of unmodified fullerene because of its ionization potential characteristics, and because of its high surface area, it can be used as the n-type of organic solar cells. By using it as a semiconductor, high conversion efficiency that could not be realized with unmodified fullerenes can be expected.

Claims (6)

  1.  式(1)で表されるフラーレン誘導体を含む溶液を基材に塗布し、450℃以上で焼成することを特徴とするn型有機半導体薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R5は、それぞれ独立して、水素原子、糖基、または糖基の任意の水酸基が置換基によって置換された糖基である置換糖基を表し、R6は、炭素数1~5のアルキル基を表す。ただし、R1~R5のうちの少なくとも1つは、前記糖基または置換糖基である。)
    The manufacturing method of the n-type organic-semiconductor thin film characterized by apply | coating the solution containing the fullerene derivative represented by Formula (1) to a base material, and baking at 450 degreeC or more.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 to R 5 each independently represents a hydrogen atom, a sugar group, or a substituted sugar group in which an arbitrary hydroxyl group of the sugar group is substituted with a substituent, and R 6 represents Represents an alkyl group having 1 to 5 carbon atoms, provided that at least one of R 1 to R 5 is the sugar group or the substituted sugar group.
  2.  前記糖基または置換糖基が、式(2)、式(3)および式(4)から選ばれる少なくとも1つの基である請求項1記載のn型有機半導体薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R7~R15は、それぞれ独立して、水素原子、アミノ基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チオエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノアミノ基、オルガノシリル基、オルガノチオ基、アシル基、アルキルエーテル基、またはスルホン基を示す。)
    The method for producing an n-type organic semiconductor thin film according to claim 1, wherein the sugar group or the substituted sugar group is at least one group selected from Formula (2), Formula (3), and Formula (4).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 7 to R 15 are each independently a hydrogen atom, amino group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group, amide group, nitro group, A valent hydrocarbon group, an organoamino group, an organosilyl group, an organothio group, an acyl group, an alkyl ether group, or a sulfone group.)
  3.  前記置換基が、炭素数1~10のアルキル基、ベンジル基、p-メトキシベンジル基、メトキシメチル基、2-テトラヒドロピラニル基、エトキシエチル基、アセチル基、ピバロイル基、ベンゾイル基、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、またはt-ブチルジフェニルシリル基である請求項1または2記載のn型有機半導体薄膜の製造方法。 The substituent is an alkyl group having 1 to 10 carbon atoms, benzyl group, p-methoxybenzyl group, methoxymethyl group, 2-tetrahydropyranyl group, ethoxyethyl group, acetyl group, pivaloyl group, benzoyl group, trimethylsilyl group, The method for producing an n-type organic semiconductor thin film according to claim 1 or 2, which is a triethylsilyl group, a t-butyldimethylsilyl group, a triisopropylsilyl group, or a t-butyldiphenylsilyl group.
  4.  請求項1~3のいずれか1項記載の製造方法で得られたn型有機半導体薄膜。 An n-type organic semiconductor thin film obtained by the production method according to any one of claims 1 to 3.
  5.  算術平均粗さRaが膜厚の2%以上であり、最大高さRzが膜厚の40%以上であり、イオン化ポテンシャルが6.0eV以上であるn型有機半導体薄膜。 An n-type organic semiconductor thin film having an arithmetic average roughness Ra of 2% or more of the film thickness, a maximum height Rz of 40% or more of the film thickness, and an ionization potential of 6.0 eV or more.
  6.  請求項4または5記載のn型有機半導体薄膜を有する有機太陽電池。 An organic solar cell comprising the n-type organic semiconductor thin film according to claim 4 or 5.
PCT/JP2014/066006 2013-06-20 2014-06-17 Method for manufacturing n-type organic semiconductor thin film WO2014203887A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157035781A KR102185609B1 (en) 2013-06-20 2014-06-17 Method for manufacturing n-type organic semiconductor thin film
JP2015522928A JP6222229B2 (en) 2013-06-20 2014-06-17 Method for producing n-type organic semiconductor thin film
CN201480034764.0A CN105308729B (en) 2013-06-20 2014-06-17 The manufacturing method of N-shaped organic semiconductor thin-film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013129443 2013-06-20
JP2013-129443 2013-06-20

Publications (1)

Publication Number Publication Date
WO2014203887A1 true WO2014203887A1 (en) 2014-12-24

Family

ID=52104619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066006 WO2014203887A1 (en) 2013-06-20 2014-06-17 Method for manufacturing n-type organic semiconductor thin film

Country Status (5)

Country Link
JP (1) JP6222229B2 (en)
KR (1) KR102185609B1 (en)
CN (1) CN105308729B (en)
TW (1) TWI602809B (en)
WO (1) WO2014203887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463564A (en) * 2014-07-31 2017-02-22 富士胶片株式会社 Photoelectric conversion element and imaging element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210153243A (en) 2020-06-10 2021-12-17 박문석 A mixture for the production of the N-type semiconductor of piezoelectric element of P, N semiconductor type

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034764A (en) * 2006-08-01 2008-02-14 National Institute Of Advanced Industrial & Technology Organic thin-film solar cell
WO2009084078A1 (en) * 2007-12-27 2009-07-09 Pioneer Corporation Organic semiconductor device, organic solar cell and display panel
WO2010055898A1 (en) * 2008-11-14 2010-05-20 学校法人君が淵学園 崇城大学 N-type semiconductor composed of fullerene compound
JP2011258944A (en) * 2010-05-13 2011-12-22 Nissan Chem Ind Ltd Organic solar cell prepared using fullerene derivative
JP2013216638A (en) * 2012-04-12 2013-10-24 Nissan Chem Ind Ltd Fullerene derivative and organic solar cell using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7850778B2 (en) * 2005-09-06 2010-12-14 Lemaire Charles A Apparatus and method for growing fullerene nanotube forests, and forming nanotube films, threads and composite structures therefrom
CA2795742A1 (en) * 2010-04-08 2011-10-13 University Of Southern California Enhanced bulk heterojunction devices prepared by thermal and solvent vapor annealing processes
WO2011136800A1 (en) * 2010-04-30 2011-11-03 Northwestern University Organic photovoltaic device with interfacial layer and method of fabricating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034764A (en) * 2006-08-01 2008-02-14 National Institute Of Advanced Industrial & Technology Organic thin-film solar cell
WO2009084078A1 (en) * 2007-12-27 2009-07-09 Pioneer Corporation Organic semiconductor device, organic solar cell and display panel
WO2010055898A1 (en) * 2008-11-14 2010-05-20 学校法人君が淵学園 崇城大学 N-type semiconductor composed of fullerene compound
JP2011258944A (en) * 2010-05-13 2011-12-22 Nissan Chem Ind Ltd Organic solar cell prepared using fullerene derivative
JP2013216638A (en) * 2012-04-12 2013-10-24 Nissan Chem Ind Ltd Fullerene derivative and organic solar cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463564A (en) * 2014-07-31 2017-02-22 富士胶片株式会社 Photoelectric conversion element and imaging element

Also Published As

Publication number Publication date
KR102185609B1 (en) 2020-12-02
TWI602809B (en) 2017-10-21
KR20160022824A (en) 2016-03-02
JPWO2014203887A1 (en) 2017-02-23
JP6222229B2 (en) 2017-11-01
CN105308729B (en) 2018-08-03
CN105308729A (en) 2016-02-03
TW201500346A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
Li et al. Perovskite single‐crystal microwire‐array photodetectors with performance stability beyond 1 year
Niu et al. Interfacial engineering at the 2D/3D heterojunction for high-performance perovskite solar cells
Roß et al. Co-evaporated pin perovskite solar cells beyond 20% efficiency: impact of substrate temperature and hole-transport layer
Yang et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications
Zhang et al. Overcoming the Thermal Instability of Efficient Polymer Solar Cells by Employing Novel Fullerene-Based Acceptors.
KR101761274B1 (en) Copper complexes for optoelectronic applications
Luo et al. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions
US20160225991A1 (en) Amine precursors for depositing graphene
TWI435888B (en) Fullerene derivatives based on fullerene derivatives and fullerene polymers and their manufacturing methods
Lin et al. Polyaromatic nanotweezers on semiconducting carbon nanotubes for the growth and interfacing of lead halide perovskite crystal grains in solar cells
KR102550275B1 (en) Composition comprising an organic semiconductor and a metal complex
US20140147602A1 (en) Attachment of Conducting Graphene Electrode Layer to an Organic Polymer
TW201512320A (en) Liquid compositions for inkjet printing of organic layers or other uses
Dai et al. Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC 71 BM in planar perovskite solar cells
JP6222229B2 (en) Method for producing n-type organic semiconductor thin film
Guo et al. Multi‐channel pumped ultrasonic spray‐coating for high‐throughput and scalable mixed halide perovskite solar cells
JP5402635B2 (en) Phthalocyanine compounds
Yi et al. Molecular design of diazo compound for carbene-mediated cross-linking of hole-transport polymer in QLED with reduced energy barrier and improved charge balance
JP5979710B2 (en) Fullerene derivative and organic solar cell using the same
US20130025662A1 (en) Water Soluble Dopant for Carbon Films
US9233852B2 (en) Method of producing highly dispersed graphene organic dispersion and application thereof
EP3160974B1 (en) Binuclear metal (i) complexes with tetradentate ligands for optoelectronic applications
JP2011258944A (en) Organic solar cell prepared using fullerene derivative
JP2013168612A (en) Organic thin film photoelectric conversion element and organic thin film solar cell including the same
Beaumont Investigating new materials and understanding the ambipolar qualities of organic small molecules for use in organic photovoltaics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034764.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522928

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157035781

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814304

Country of ref document: EP

Kind code of ref document: A1