WO2014203863A1 - Glass ceramic material, method for producing same, and dental prosthesis - Google Patents

Glass ceramic material, method for producing same, and dental prosthesis Download PDF

Info

Publication number
WO2014203863A1
WO2014203863A1 PCT/JP2014/065933 JP2014065933W WO2014203863A1 WO 2014203863 A1 WO2014203863 A1 WO 2014203863A1 JP 2014065933 W JP2014065933 W JP 2014065933W WO 2014203863 A1 WO2014203863 A1 WO 2014203863A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
ceramic material
glass
less
peak
Prior art date
Application number
PCT/JP2014/065933
Other languages
French (fr)
Japanese (ja)
Inventor
市朗 鈴木
加藤 新一郎
肇男 榊原
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Publication of WO2014203863A1 publication Critical patent/WO2014203863A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine

Definitions

  • the present invention is based on a Japanese patent application: Japanese Patent Application No. 2013-127098 (filed on June 18, 2013), and the entire contents of this application are incorporated herein by reference.
  • the present invention relates to a glass-ceramic (crystallized glass) material containing mica (mica) microcrystals as a crystal phase and a method for producing the same.
  • the present invention also relates to a dental prosthesis having the glass ceramic material.
  • mica ceramics Ceramic materials containing mica crystals as a crystal phase (hereinafter referred to as “mica ceramics”) have cleavage properties, and therefore have excellent workability among ceramic materials. Mica ceramics are also excellent in high strength, insulation, corrosion resistance and the like. Therefore, the use of mica ceramics for various products has been studied (see, for example, Patent Documents 1 to 6 and Non-Patent Document 1).
  • the cleavage of mica ceramics is attributed to the crystal structure of mica crystals.
  • the crystal structure of mica and its X-ray diffraction pattern are disclosed in Patent Documents 5 and 6, for example.
  • mica ceramic whose composition formula is KMg 3 AlSi 3 O 10 F 2
  • two SiO 2 tetrahedral layers are composed of one Al, Mg, etc.
  • One unit layer is formed in a structure sandwiching the face layer, and this unit layer is also regularly stacked.
  • Interlayer cations such as K ions are interposed between adjacent layers, and the adjacent layers are bonded by interlayer cations. Since the binding force due to the interlayer cation is weak, it is considered that cleavage is manifested between the layers.
  • Mica ceramics may be used under acidic conditions depending on the application. For example, when using mica ceramics as a dental material such as a prosthetic material, certain acid resistance is required.
  • Patent Document 1 describes an example relating to acid resistance.
  • the glass ceramics described in Patent Document 1 cannot obtain acid resistance applicable to industrial materials and dental materials.
  • mica ceramics generally have a low bending strength, for example, less than 200 MPa.
  • a dental material such as a prosthetic material
  • a glass ceramic material containing finely precipitated mica crystals as a crystal phase is provided.
  • the amount of dissolution measured according to ISO6872 is 100 ⁇ g / cm 2 or less.
  • the bending strength measured according to ISO6872 is 220 MPa or more.
  • a second aspect of the present invention 43 wt% or more 63 wt% or less of SiO 2, 4 wt% or less than 0.4 wt% Li 2 O, 8 wt% or more 19 wt% or less of Al 2 O 3 0.5% by mass or more and 4% by mass or less K 2 O, 10% by mass or more and 27% by mass or less MgO, 2% by mass or more and 6.5% by mass or less CaO, and 3% by mass or more and 11% by mass or less.
  • a glass-ceramic material containing F 2 is provided.
  • the mixture is based on the total mass of SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 , from 42 mass% to 60 mass% of SiO 2 , 7 Al 2 O 3 of not less than 19% by mass and not more than 19% by mass, K 2 CO 3 of not less than 0.5% by mass and not more than 6% by mass, MgO of not less than 4% by mass and not more than 19% by mass, 3% by mass to 12% by mass % CaCO 3 , 7% by mass to 20% by mass MgF 2 , and 1% by mass to 10% by mass Li 2 CO 3 .
  • a dental prosthesis comprising the glass ceramic material of the first viewpoint or the second viewpoint is provided.
  • a dental prosthesis comprising a glass ceramic material manufactured by the manufacturing method according to the third aspect.
  • the glass ceramic material of the present invention has high acid resistance and high bending strength even if it contains mica crystals. Thereby, this glass ceramic material can be applied to industrial materials and dental materials that are used under acidic conditions and require high strength.
  • the X-ray-diffraction pattern of the glass-ceramic material in Comparative Example 5-2. 3 is an SEM photograph of the glass ceramic material in Example 2.
  • 6 is an SEM photograph of the glass ceramic material in Example 5.
  • 6 is an SEM photograph of the glass ceramic material in Example 6.
  • 10 is an SEM photograph of the glass ceramic material in Example 12.
  • 3 is an SEM photograph of a glass ceramic material in Comparative Example 2.
  • 3 is an SEM photograph of a glass ceramic material in Comparative Example 2.
  • 4 is an SEM photograph of a glass ceramic material in Comparative Example 4.
  • the glass ceramic material contains 43% by mass or more and 63% by mass or less of SiO 2 .
  • the glass ceramic material contains 0.4% by mass or more and 4% by mass or less of Li 2 O.
  • the glass ceramic material contains SiO 2 and Li 2 O. (SiO 2 content / Li 2 O content) is 15 or more and 120 or less.
  • the glass ceramic material is 8% by mass or more and 19% by mass or less Al 2 O 3 , 0.5% by mass or more and 4% by mass or less K 2 O, 10% by mass or more and 27% by mass. It contains MgO of 2 mass% or less, CaO of 2 mass% or more and 6.5 mass% or less, and F 2 of 3 mass% or more and 11 mass% or less.
  • the X-ray diffraction pattern of the glass ceramic material by CuK ⁇ rays has a 2 ⁇ of 19 ° to 21 °, a sharp first peak attributed to a mica crystal, and 2 ⁇ It exists at 27 ° to 29 ° and connects both the sharp second peak attributed to the mica crystal and at least the first peak from the high angle side to the low angle side of the second peak, and is attributed to the mica crystal or amorphous. And a broad third peak.
  • the intensity of the third peak is lower than that of the first peak and the second peak, and tends to attenuate toward the high angle side.
  • the glass ceramic material further contains finely precipitated lithium aluminosilicate crystals as a crystal phase.
  • the intensity of the fourth peak is 8 or less.
  • the X-ray diffraction pattern further has a sharp fifth peak that is adjacent to the first peak at 2 ⁇ of 19 ° to 21 ° and is attributed to the mica crystal.
  • the transmittance of light having a color temperature of 2850 K is 33% or more for a sample having a thickness of 1.5 mm.
  • the hardness is 300 Hv to 600 Hv.
  • the glass ceramic material is further subjected to a heat treatment at 550 ° C. to 700 ° C. after the melted and solidified glass ceramic material is subjected to a heat treatment at 750 ° C. to 1000 ° C. It is made by applying.
  • the glass ceramic material of the present invention has mica microcrystals as a crystal phase.
  • the glass ceramic material has a mica crystal as a main crystal phase (in this case, “mica-based glass ceramic material”).
  • the presence of mica crystals can be confirmed by an X-ray diffraction (XRD) pattern.
  • XRD X-ray diffraction
  • the glass ceramic material may not be able to detect a crystal phase other than mica crystal by the XRD pattern.
  • Ca and K are considered to act as interlayer cations.
  • a part of Li is considered to act as an interlayer cation.
  • the glass ceramic material may have lithium aluminosilicate crystals as crystal phases in addition to mica crystals.
  • the content of lithium aluminosilicate crystals may be higher than the content of mica crystals.
  • the presence of the lithium aluminosilicate crystal can be confirmed by the XRD pattern.
  • composition formula of the lithium aluminosilicate crystal in the glass ceramic material of the present invention is considered to be at least one of, for example, LiAlSiO 4 , LiAlSi 3 O 8 , and Li 2 Al 2 Si 3 O 10 from the XRD pattern. However, there may be other composition formulas.
  • the glass ceramic material may contain an amorphous phase in addition to the crystalline phase.
  • the XRD pattern of the glass ceramic material of the present invention when the peak of the lithium aluminosilicate crystal cannot be confirmed, the XRD pattern of the glass ceramic material has a broad peak at a position where 2 ⁇ is 20 ° to 30 °.
  • This broad (continuous) peak often appears to connect both peaks from the high angle side of the peak present at 19 ° to 21 ° to the high angle side of the peak present at 27 ° to 29 °. .
  • This broad peak is lower than the peak existing at 19 ° to 21 ° and the peak existing at 27 ° to 29 °, and the intensity tends to decrease linearly toward the high angle side.
  • the intensity of this broad peak is 1/6 to 1/2 that of the peak existing at 19 ° to 21 °.
  • no significant sharp peak is detected when 2 ⁇ is 30 ° to 31 °.
  • the intensity ratio with respect to “lithium aluminosilicate peak” is preferably 8 or less, more preferably 3 or less, when the mica peak intensity is 1.
  • the content of the lithium aluminosilicate crystal increases two overlapping peaks appear at 19 ° to 21 °.
  • the jagged peaks that existed at about 20 ° to 30 ° tend to attenuate compared to the case where no peaks attributed to the lithium aluminosilicate crystal exist.
  • each peak is associated with the shift taken into consideration.
  • Glass ceramic materials have high acid resistance.
  • the amount of dissolution measured according to ISO (International Organization for Standardization) 6872, “Dentistry-ceramic materials” (2008) is 100 ⁇ g / cm 2 or less, and is 50 ⁇ g / cm 2 or less. Preferably, it is 20 ⁇ g / cm 2 or less, more preferably 15 ⁇ g / cm 2 or less.
  • the dissolution amount of the glass ceramic material may be measured in accordance with JDMAS (Japan Dental Material Manufacturers Association Standards) 222, “Dental Ceramic Material” (2010). Glass ceramic materials have high acid resistance and can be applied to products used under acidic conditions. For example, in dental materials, acid resistance with a dissolution amount of 100 ⁇ g / cm 2 or less is required for practical use, but glass ceramic materials can satisfy this requirement.
  • Glass ceramic material has high bending strength.
  • the three-point bending strength measured in accordance with ISO6872 (2008) is preferably 220 MPa or more, more preferably 250 MPa or more, more preferably 280 MPa or more, and further preferably 300 MPa or more.
  • the three-point bending strength of the glass ceramic material may be measured according to JDMAS222 (2010). The bending strength can be obtained without including an auxiliary material for increasing the strength. Since the glass ceramic material has high strength, it can be used for various products. For example, a glass ceramic material can be suitably used for a dental material.
  • Glass ceramic material has high light transmittance.
  • the transmittance of light having a color temperature of 2850 K can be measured, for example, using a visual transmission densitometer manufactured by X-Rite Co., Ltd. for a sample having a thickness of 1.5 mm.
  • the transmittance of the glass ceramic material is preferably 33% or more, more preferably 35% or more, more preferably 37% or more, and further preferably 40% or more.
  • an aesthetic property similar to that of a natural tooth can be obtained when the thickness is 1.5 mm and the transmittance is 33% or more.
  • the hardness of the glass ceramic material is, for example, preferably from 300 Hv to 600 Hv, more preferably from 300 Hv to 500 Hv, and even more preferably from 300 Hv to 450 Hv, when measured according to JISZ2244.
  • the glass ceramic material has a hardness equivalent to that of natural teeth.
  • the glass ceramic material can be suitably applied to a dental material.
  • the shape of one crystal of the glass-ceramic material looks like a plate shape (flaky shape) or a needle shape when observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a three-dimensional structure in which a plurality of plate-like (flaky) or needle-like crystallites are gathered two-dimensionally or three-dimensionally around one point is shown. It is presumed that crystal nuclei formed in the crystal nucleation process exist at this center.
  • the size of the crystallite aggregate is, for example, 1 ⁇ m to 10 ⁇ m. When the size of the crystallite aggregate is reduced, the bending strength tends to be increased.
  • One crystallite is considered to be at least one of a mica crystal and a lithium aluminosilicate crystal.
  • the glass ceramic material contains SiO 2 and Li 2 O.
  • the glass ceramic material preferably further contains at least one of Al 2 O 3 , K 2 O, MgO, CaO, and F 2 . These can be contained in the glass ceramic material so as to obtain a composition capable of obtaining mica crystals in combination with the above-described SiO 2 and Li 2 O.
  • the content of SiO 2 is preferably 43% by mass or more, and is 48% by mass or more. More preferably, it is further more preferable in it being 50 mass% or more.
  • SiO 2 is considered to contribute to acid resistance, and in order to obtain the acid resistance, the content is preferably 43% by mass or more.
  • the content of SiO 2 is preferably 63% by mass or less, more preferably 60% by mass or less, and further preferably 58% by mass or less.
  • SiO 2 is considered to have an effect on crystallization, and if SiO 2 is added so that the content exceeds 63% by mass, it is difficult to grow mica crystals in the precursor of the molten glass ceramic material. Become. When the content is 63% by mass or less, fine mica crystals can be precipitated by the addition of Li 2 O, thereby realizing high strength.
  • the content of Li 2 O is preferably 0.4% by mass or more, and 0.7 More preferably, it is more than 1% by mass and more preferably 1% by mass or more.
  • Li 2 O is considered to contribute to the crystal growth of mica crystals. Even if the generation of crystal nuclei is hindered by increasing the content of SiO 2, the addition of 0.4% by mass or more of Li 2 O can promote the generation of crystal nuclei.
  • the content of Li 2 O is preferably 4% by mass or less, more preferably 3.5% by mass or less, and further preferably 3% by mass or less. If the amount of Li 2 O exceeds 4% by mass, the formation of lithium aluminosilicate crystals increases. For example, problems such as reduction in acid resistance and light transmittance occur.
  • the component ratio of SiO 2 and Li 2 O in the glass ceramic material is preferably 15 or more and 120 or less, more preferably 17 or more and 60 or less, and 18 More preferably, it is 45 or less. Thereby, the bending strength of the glass ceramic material can be increased.
  • the content of Al 2 O 3 is preferably 8% by mass or more, and 10% by mass or more. More preferably, it is more preferably 11% by mass or more.
  • the content of Al 2 O 3 is preferably 19% by mass or less, more preferably 17% by mass or less, and further preferably 16% by mass or less.
  • the content of K 2 O is preferably 0.5% by mass or more. Further, the content of K 2 O is preferably 4% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less.
  • the content of MgO is preferably 10% by mass or more, and is 12% by mass or more. More preferably, it is more preferably 14% by mass or more.
  • the MgO content is preferably 27% by mass or less, more preferably 26% by mass or less, and further preferably 24% by mass or less.
  • the CaO content is preferably 2% by mass or more, and 2.5% by mass or more. More preferably.
  • the CaO content is preferably 6.5% by mass or less, more preferably 5.5% by mass or less, and further preferably 5% by mass or less.
  • the content of F 2 is preferably 3% by mass or more, and 3.5% by mass or more. Is more preferable. Further, the content of F 2 is preferably 11% by mass or less, more preferably 10% by mass or less, and further preferably 9% by mass or less.
  • the glass-ceramic material may contain components derived from elements other than mica crystals and lithium aluminosilicate crystals.
  • the glass ceramic material may further contain a coloring component.
  • glass ceramic materials include P, Ag, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Sn, Ta, Pr, Sm, Eu, Tb, Er as coloring components.
  • One or more oxides may be contained within a range of 5% by mass or less.
  • the content of SiO 2 , Al 2 O 3 , K 2 O, MgO and CaO in the glass ceramic material can be measured by fluorescent X-ray analysis.
  • the content of Li 2 O in the glass ceramic material can be measured by atomic absorption spectroscopy.
  • the content of F 2 in the glass ceramic material can be measured by absorptiometry.
  • a glass material is prepared by mixing each compound containing Si element, Al element, K element, Mg element, Ca element, F element and Li element so as to have a desired composition.
  • the glass raw material preferably contains SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 .
  • SiO 2 is preferably 42% by mass or more, More preferably, it is 47 mass% or more, and it is further more preferable that it is 49 mass% or more.
  • SiO 2 is preferably 60% by mass or less, more preferably 57% by mass or less, and further preferably 55% by mass or less.
  • Al 2 O 3 is preferably 7% by mass or more, more preferably 9% by mass or more, and further preferably 10% by mass or more.
  • Al 2 O 3 is preferably 19% by mass or less, more preferably 17% by mass or less, and further preferably 16% by mass or less.
  • K 2 CO 3 is preferably 0.5% by mass or more. Further, K 2 CO 3 is preferably 6% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • MgO is preferably 4% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more. MgO is preferably 19% by mass or less, more preferably 18% by mass or less, and further preferably 17% by mass or less.
  • CaCO 3 is preferably 3% by mass or more, and more preferably 4% by mass or more. Further, CaCO 3 is preferably 12% by mass or less, more preferably 10% by mass or less, and further preferably 9% by mass or less.
  • MgF 2 is preferably 7% by mass or more, and more preferably 8% by mass or more.
  • MgF 2 is preferably 20% by mass or less, more preferably 18% by mass or less, and further preferably 17% by mass or less.
  • Li 2 CO 3 is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more.
  • Li 2 CO 3 is preferably 10% by mass or less, more preferably 9% by mass or less, and further preferably 7% by mass or less.
  • the glass raw material is not limited to the above compounds, and carbonates, nitrates, hydroxides, fluorides and the like of each element can be used as long as the desired composition can be obtained. In this case, the mass balance is appropriately changed according to the compound used.
  • raw materials K 2 CO 3 , CaCO 3 and Li 2 CO 3 are detected as K 2 O, CaO and Li 2 O, respectively.
  • F component in MgF 2 is detected as F 2
  • a portion of the F component results in volatilization in the heat treatment step.
  • the Mg component of MgF 2 is detected as MgO.
  • the addition amount of SiO 2 and Li 2 CO 3 in the glass raw material is the ratio of the content ratio of SiO 2 and Li 2 O in the product glass ceramic material (content ratio of SiO 2 / content ratio of Li 2 O). Is preferably 15 to 120, more preferably 17 to 60, and even more preferably 18 to 45.
  • ⁇ Coloring components may be added to the glass raw material in a range of 5% by mass or less.
  • coloring components include oxides of P, Ag, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Sn, Ta, Pr, Sm, Eu, Tb, and Er. Can be mentioned.
  • this glass raw material is heated and melted.
  • the melting conditions can be, for example, 1100 ° C. to 1600 ° C. and 0.5 hours to 10 hours.
  • the melted glass raw material is poured into a mold and molded into a desired shape.
  • Crystal nucleation conditions can be, for example, 550 ° C. to 700 ° C. and 0.5 hours to 10 hours.
  • the heat treatment temperature is further raised to grow mica crystals.
  • the crystal growth conditions can be, for example, 750 ° C. to 1000 ° C. and 0.5 hours to 10 hours. Thereby, a glass ceramic material can be manufactured.
  • the prosthesis having the glass ceramic material of the present invention and the prosthesis having the glass ceramic material manufactured by the above-described manufacturing method can be used, for example, for dental treatment.
  • Examples 1 to 18 and Comparative Examples 1 to 5 [Production method and measurement method] In Examples 1 to 18, a plurality of glass ceramic materials having different composition ratios were produced. Tables 1 to 4 show the blending ratio of the raw materials and heat treatment conditions in each example. The numerical values in the blending column indicate the ratio of the total mass of SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 .
  • SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 are mixed in the mixing ratios shown in Tables 1 to 4, and the melting process is performed under the heat treatment conditions shown in Tables 1 to 4 Then, a crystal nucleation step and a crystal growth step were performed to produce a glass ceramic material containing mica crystals.
  • Comparative Examples 1 and 2 a glass ceramic material was prepared without adding Li 2 CO 3 .
  • Comparative Example 3 a glass ceramic material was produced by increasing the addition ratio of SiO 2 and Li 2 CO 3 as compared with the Example.
  • Table 5 shows the mixing ratio of the raw materials and heat treatment conditions of each comparative example.
  • the mica ceramic described in Patent Document 1 is also considered to have the same properties as the glass ceramic material produced based on the description of Non-Patent Document 1.
  • Table 5 shows the mixing ratio of the raw materials and heat treatment conditions of each comparative example.
  • a glass ceramic material was prepared based on the method described in Patent Document 4.
  • Table 6 shows the mixing ratio of the raw materials and heat treatment conditions of each comparative example.
  • a raw material was prepared by mixing with the composition shown in Table 6, and the raw material was melted by heating at 1500 ° C. for 1.5 hours.
  • the melted raw material was introduced into water and rapidly cooled to produce a raw material glass cullet.
  • the glass cullet was pulverized with a ball mill to an average particle size of about 20 ⁇ m.
  • the glass cullet was put into a mold and press-molded.
  • the molded body was heat treated at 650 ° C. and then heat treated at 1100 ° C.
  • Comparative Example 5-1 the glass ceramic material was produced by changing the heat treatment at 1100 ° C. to the heat treatment at 1250 ° C. This is shown as Comparative Example 5-2.
  • composition, crystal system, acid resistance, bending strength, light transmittance, hardness, and crystallite aggregate size were measured for the glass ceramic materials of each Example and each Comparative Example. Tables 7 to 12 show the measurement results.
  • the composition of the glass ceramic material is a calibration curve method using SiO 2 , Al 2 O 3 , K 2 O, MgO and CaO with a measurement sample made of glass beads and using a fluorescent X-ray analyzer (ZSX100e) manufactured by Rigaku Corporation.
  • ZSX100e fluorescent X-ray analyzer
  • a solution in which a measurement sample was dissolved in hydrofluoric acid was prepared and measured with an atomic absorption spectrophotometer (Z-5310) manufactured by Hitachi.
  • the F 2 a measurement sample is alkali fusion, distilled, was measured using a spectrophotometric method.
  • the distillation operation and the spectrophotometric method were in accordance with JISK0102.34.1 Lanthanum-alizarin complexone spectrophotometric method.
  • the crystal system of the glass ceramic material was confirmed based on the X-ray diffraction pattern.
  • the X-ray diffraction pattern was measured with CuK ⁇ rays (50 kV, 50 mA).
  • “LiAlSi” in the crystal system column of the table indicates that the crystal phase of lithium aluminosilicate was confirmed.
  • FIG. 1 the X-ray-diffraction pattern of the glass-ceramic material in Example 6 is shown.
  • the X-ray-diffraction pattern of the glass-ceramic material in Example 7 is shown.
  • FIG. 3 the X-ray-diffraction pattern of the glass-ceramic material in Example 10 is shown.
  • FIG. 4 shows an X-ray diffraction pattern of the glass ceramic material in Example 11.
  • FIG. 5 the X-ray-diffraction pattern of the glass-ceramic material in the comparative example 3 is shown.
  • FIG. 6 the X-ray-diffraction pattern of the glass-ceramic material in the comparative example 4 is shown.
  • FIG. 7 shows an X-ray diffraction pattern of the glass ceramic material in Comparative Example 5-1.
  • FIG. 8 shows an X-ray diffraction pattern of the glass ceramic material in Comparative Example 5-2.
  • the acid resistance was measured by two methods. One is a method based on ISO6872 (2008), and the other is a method based on the description of Patent Document 1. In the columns of acid resistance in Tables 7 to 12, “ISO” and “Patent Document 1” are shown, respectively.
  • the sample was immersed in 90 ml of 10% HCl solution at room temperature for 24 hours, and the weight loss was measured. Since the size of the sample was not described in Patent Document 1, it was 15 mm in diameter and 1.5 mm in thickness.
  • the light transmittance was measured on a sample having a thickness of 1.5 mm using an X-Rite 361T (V) visual transmission densitometer manufactured by X-rite, with a color temperature of the light source of 2850K.
  • the size of the aggregate of crystallites was measured based on a scanning electron micrograph (SEM photograph). The SEM photograph was taken after etching the sample surface to be observed with acid.
  • SEM photograph SEM photograph of the glass-ceramic material in Example 2
  • FIG. 10 the SEM photograph of the glass-ceramic material in Example 5 is shown.
  • FIG. 11 the SEM photograph of the glass-ceramic material in Example 6 is shown.
  • FIG. 12 the SEM photograph of the glass-ceramic material in Example 12 is shown.
  • FIG.13 and FIG.14 the SEM photograph of the glass-ceramic material in the comparative example 2 is shown.
  • FIG. 15 the SEM photograph of the glass-ceramic material in the comparative example 4 is shown.
  • the photographs other than FIG. 13 are 5,000 times as many photographs, and FIG. 13 is a 1,000 times as many photographs.
  • the circles attached to the photographs indicate a single group regarded as an aggregate of crystallites.
  • the dissolution amount could be 100 ⁇ g / cm 2 or less in the acid resistance test based on ISO. In particular, when the content of SiO 2 was 50% by mass or more, the dissolution amount could be reduced to 20 ⁇ g / cm 2 or less.
  • Comparative Example 4 when the content of SiO 2 in the glass ceramic material is less than 43% by mass, the dissolution amount is 100 ⁇ g / cm 2 or more, and for example, acid resistance that can be used for dental materials is obtained. I could't. Similar results were obtained in the acid resistance test based on Patent Document 1. From this, it was found that the glass ceramic material of the present invention has better acid resistance than the glass ceramic materials described in Patent Document 1 and Non-Patent Document 1 in Comparative Example 4.
  • a broad peak with 2 ⁇ of 20 ° to 28 ° is hardly detectable.
  • Comparative Example 4 as shown in FIG. 6, since no lithium was added, no peak of lithium aluminosilicate crystal was detected, but a broad peak with 2 ⁇ of 20 ° to 28 ° was compared to the example. It is low. In particular, it is particularly low from 22 ° to 28 °. Although a peak is confirmed at a position where 2 ⁇ is about 31 °, no peak is detected at this position in the X-ray diffraction pattern of the example. The peaks at 2 ⁇ of about 40 ° and 53 ° in Comparative Example 4 are relatively higher than the peaks of the X-ray diffraction patterns of the examples. In addition, a broad peak with 2 ⁇ between 34 ° and 38 ° appears to be split into two in the example, but does not appear to be split in Comparative Example 4.
  • the size of the crystallite aggregate could be 10 ⁇ m or less, and in many examples, 5 ⁇ m or less.
  • the size of the crystallite aggregate was 8 ⁇ m or more.
  • the composition of the glass ceramic material particularly the ratio of the content ratio of SiO 2 and the content ratio of Li 2 O, is suitable, the size of the crystallite aggregate can be reduced. This is considered to have improved the bending strength.
  • Comparative Example 5 In Comparative Example 5-1, a fully sintered glass ceramic material could not be obtained. From this, it is thought that the glass ceramic material which can be used as an industrial product cannot be obtained with the composition and manufacturing method described in Patent Document 4. Further, in Comparative Example 5-2, the crystal growth conditions were changed so as to sinter, but the glass ceramic material thus obtained was forsterite crystal (2MgO.SiO 2 ) as shown in FIG. And the presence of lithium aluminosilicate crystals was not observed. Forsterite is lower in intensity and light transmittance than mica. The bending strength of the glass ceramic material obtained in Comparative Example 5-2 was as low as 72 MPa. For example, bending strength usable for dental materials was not obtained.
  • the light transmittance of the glass ceramic material obtained in Comparative Example 5-2 was lower than that of the Example. Therefore, it is considered difficult to obtain a glass ceramic material containing mica crystals or lithium aluminosilicate crystals, particularly the glass ceramic material of the present invention, by the blending and manufacturing method described in Patent Document 4.
  • Glass ceramic material can be suitably applied to dental materials such as prosthetic materials. Further, the glass ceramic material can be suitably applied to electronic parts and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Dental Preparations (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Provided is a glass ceramic material having high acid resistance and high flexural strength. The glass ceramic material contains minute precipitated mica crystals as a crystal phase. The amount of dissolution measured in accordance with ISO 6872 is no greater than 100 μg/cm2. The flexural strength measured in accordance with ISO 6872 is at least 220 MPa.

Description

ガラスセラミック材料及びその製造方法、並びに歯科用補綴物Glass-ceramic material, method for producing the same, and dental prosthesis
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2013-127098号(2013年 6月18日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、マイカ(雲母)微結晶を結晶相として含有するガラスセラミック(結晶化ガラス)材料及びその製造方法に関する。また、本発明は、当該ガラスセラミック材料を有する歯科用補綴物に関する。
[Description of related applications]
The present invention is based on a Japanese patent application: Japanese Patent Application No. 2013-127098 (filed on June 18, 2013), and the entire contents of this application are incorporated herein by reference.
The present invention relates to a glass-ceramic (crystallized glass) material containing mica (mica) microcrystals as a crystal phase and a method for producing the same. The present invention also relates to a dental prosthesis having the glass ceramic material.
 マイカ結晶を結晶相として含有するセラミック材料(以下、「マイカセラミックス」という。)は、へき開性を有するため、セラミック材料の中でも優れた加工性を有する。また、マイカセラミックスは、高強度、絶縁性、耐食性等にも優れている。そこで、マイカセラミックを各種製品に利用することが検討されている(例えば、特許文献1~6及び非特許文献1参照)。 Ceramic materials containing mica crystals as a crystal phase (hereinafter referred to as “mica ceramics”) have cleavage properties, and therefore have excellent workability among ceramic materials. Mica ceramics are also excellent in high strength, insulation, corrosion resistance and the like. Therefore, the use of mica ceramics for various products has been studied (see, for example, Patent Documents 1 to 6 and Non-Patent Document 1).
 マイカセラミックスのへき開性は、マイカ結晶の結晶構造によるものとされている。マイカの結晶構造及びそのX線回折パターンは、例えば特許文献5及び6に開示されている。例えば、組成式がKMgAlSi10であるマイカセラミックの場合、マイカセラミックスの結晶構造においては、2枚のSiO四面体層が、1枚のAl、Mg等から構成される八面体層を挟む構造にて1つの単位層を形成し、この単位層も規則的に積層している。隣接する層間にはKイオン等の層間陽イオンが介在し、隣接する層は層間陽イオンによって結合されている。この層間陽イオンによる結合力は弱いので、層間にへき開性が発現するものと考えられている。 The cleavage of mica ceramics is attributed to the crystal structure of mica crystals. The crystal structure of mica and its X-ray diffraction pattern are disclosed in Patent Documents 5 and 6, for example. For example, in the case of mica ceramic whose composition formula is KMg 3 AlSi 3 O 10 F 2 , in the crystal structure of mica ceramics, two SiO 2 tetrahedral layers are composed of one Al, Mg, etc. One unit layer is formed in a structure sandwiching the face layer, and this unit layer is also regularly stacked. Interlayer cations such as K ions are interposed between adjacent layers, and the adjacent layers are bonded by interlayer cations. Since the binding force due to the interlayer cation is weak, it is considered that cleavage is manifested between the layers.
特開平3-174340号公報Japanese Patent Laid-Open No. 3-174340 特開平4-231334号公報JP-A-4-231334 特開平4-254439号公報JP-A-4-254439 米国特許第6,375,729号明細書US Pat. No. 6,375,729 特表2011-519339号公報Special table 2011-519339 特開平8-175846号公報Japanese Patent Laid-Open No. 8-17584
 以下の分析は、本発明の観点から与えられる。 The following analysis is given from the viewpoint of the present invention.
 マイカセラミックスは、用途に応じては、酸性条件下で使用されることがある。例えば、マイカセラミックスを補綴材等の歯科用材料として使用しようとする場合には、一定の耐酸性が要求される。 Mica ceramics may be used under acidic conditions depending on the application. For example, when using mica ceramics as a dental material such as a prosthetic material, certain acid resistance is required.
 特許文献1には耐酸性に関する実施例が記載されている。しかしながら、特許文献1に記載のガラスセラミックスでは、工業用材料や歯科用材料に適用可能な耐酸性を得ることができていない。 Patent Document 1 describes an example relating to acid resistance. However, the glass ceramics described in Patent Document 1 cannot obtain acid resistance applicable to industrial materials and dental materials.
 また、マイカセラミックスは、一般的に、曲げ強度が低い、例えば200MPa未満である。曲げ強度が低いマイカセラミックスを補綴材等の歯科用材料として使用しようとする場合には、耐久性に問題が生じることになる。 Further, mica ceramics generally have a low bending strength, for example, less than 200 MPa. When using mica ceramics having low bending strength as a dental material such as a prosthetic material, a problem arises in durability.
 そこで、マイカ結晶を含有していても、高い耐酸性と高い曲げ強度を兼ね備えるガラスセラミック材料が必要とされている。 Therefore, there is a need for a glass ceramic material that combines high acid resistance and high bending strength even if it contains mica crystals.
 本発明の第1視点によれば、微細析出したマイカ結晶を結晶相として含有するガラスセラミック材料が提供される。ISO6872に準拠して測定された溶解量が100μg/cm以下である。ISO6872に準拠して測定された曲げ強度が220MPa以上である。 According to the first aspect of the present invention, a glass ceramic material containing finely precipitated mica crystals as a crystal phase is provided. The amount of dissolution measured according to ISO6872 is 100 μg / cm 2 or less. The bending strength measured according to ISO6872 is 220 MPa or more.
 本発明の第2視点によれば、43質量%以上63質量%以下のSiO、0.4質量%以上4質量%以下のLiO、8質量%以上19質量%以下のAl、0.5質量%以上4質量%以下のKO、10質量%以上27質量%以下のMgO、2質量%以上6.5質量%以下のCaO、及び3質量%以上11質量%以下のF、を含有するガラスセラミック材料が提供される。 According to a second aspect of the present invention, 43 wt% or more 63 wt% or less of SiO 2, 4 wt% or less than 0.4 wt% Li 2 O, 8 wt% or more 19 wt% or less of Al 2 O 3 0.5% by mass or more and 4% by mass or less K 2 O, 10% by mass or more and 27% by mass or less MgO, 2% by mass or more and 6.5% by mass or less CaO, and 3% by mass or more and 11% by mass or less. A glass-ceramic material containing F 2 is provided.
 本発明の第3視点によれば、SiO、Al、KCO、MgO、CaCO、MgF、及びLiCOを混合して混合物を作製する工程と、混合物を1100℃~1600℃で熔解して熔解物を作製する工程と、熔解物を成型して成型物を作製する工程と、成型物を550℃~700℃で熱処理する工程と、熱処理後、成型物を750℃~1000℃でさらに熱処理する工程と、を含むガラスセラミック材料の製造方法が提供される。混合物は、SiO、Al、KCO、MgO、CaCO、MgF、及びLiCOの合計質量を基本として、42質量%以上~60質量%以下のSiO、7質量%以上~19質量%以下のAl、0.5質量%以上~6質量%以下のKCO、4質量%以上~19質量%以下のMgO、3質量%以上~12質量%以下のCaCO、7質量%以上~20質量%以下のMgF、及び1質量%以上~10質量%以下のLiCOを含有する。 According to the third aspect of the present invention, a process of preparing a mixture by mixing SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 ; A step of melting at 1 ° C to 1600 ° C to prepare a melt, a step of forming a melt by molding the melt, a step of heat-treating the molded product at 550 ° C to 700 ° C, and after the heat treatment, And a further heat treatment at 750 ° C. to 1000 ° C. to provide a method for producing a glass ceramic material. The mixture is based on the total mass of SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 , from 42 mass% to 60 mass% of SiO 2 , 7 Al 2 O 3 of not less than 19% by mass and not more than 19% by mass, K 2 CO 3 of not less than 0.5% by mass and not more than 6% by mass, MgO of not less than 4% by mass and not more than 19% by mass, 3% by mass to 12% by mass % CaCO 3 , 7% by mass to 20% by mass MgF 2 , and 1% by mass to 10% by mass Li 2 CO 3 .
 本発明の第4視点によれば、第1視点又は第2視点のガラスセラミック材料を備える歯科用補綴物が提供される。 According to the fourth aspect of the present invention, a dental prosthesis comprising the glass ceramic material of the first viewpoint or the second viewpoint is provided.
 本発明の第5視点によれば、第3視点の製造方法によって製造されたガラスセラミック材料を備える歯科用補綴物が提供される。 According to the fifth aspect of the present invention, there is provided a dental prosthesis comprising a glass ceramic material manufactured by the manufacturing method according to the third aspect.
 本発明のガラスセラミック材料は、マイカ結晶を含有していても高い耐酸性及び高い曲げ強度を有する。これにより、このガラスセラミック材料は、酸性条件下で使用され、かつ高強度が要求される工業用材料や歯科用材料に適用することができる。 The glass ceramic material of the present invention has high acid resistance and high bending strength even if it contains mica crystals. Thereby, this glass ceramic material can be applied to industrial materials and dental materials that are used under acidic conditions and require high strength.
実施例6におけるガラスセラミック材料のX線回折パターン。The X-ray diffraction pattern of the glass-ceramic material in Example 6. 実施例7におけるガラスセラミック材料のX線回折パターン。The X-ray diffraction pattern of the glass-ceramic material in Example 7. 実施例10におけるガラスセラミック材料のX線回折パターン。The X-ray diffraction pattern of the glass-ceramic material in Example 10. 実施例11におけるガラスセラミック材料のX線回折パターン。The X-ray diffraction pattern of the glass-ceramic material in Example 11. 比較例3におけるガラスセラミック材料のX線回折パターン。The X-ray-diffraction pattern of the glass ceramic material in the comparative example 3. 比較例4におけるガラスセラミック材料のX線回折パターン。The X-ray-diffraction pattern of the glass ceramic material in the comparative example 4. 比較例5-1におけるガラスセラミック材料のX線回折パターン。The X-ray-diffraction pattern of the glass-ceramic material in Comparative Example 5-1. 比較例5-2におけるガラスセラミック材料のX線回折パターン。The X-ray-diffraction pattern of the glass-ceramic material in Comparative Example 5-2. 実施例2におけるガラスセラミック材料のSEM写真。3 is an SEM photograph of the glass ceramic material in Example 2. 実施例5におけるガラスセラミック材料のSEM写真。6 is an SEM photograph of the glass ceramic material in Example 5. 実施例6におけるガラスセラミック材料のSEM写真。6 is an SEM photograph of the glass ceramic material in Example 6. 実施例12におけるガラスセラミック材料のSEM写真。10 is an SEM photograph of the glass ceramic material in Example 12. 比較例2におけるガラスセラミック材料のSEM写真。3 is an SEM photograph of a glass ceramic material in Comparative Example 2. 比較例2におけるガラスセラミック材料のSEM写真。3 is an SEM photograph of a glass ceramic material in Comparative Example 2. 比較例4におけるガラスセラミック材料のSEM写真。4 is an SEM photograph of a glass ceramic material in Comparative Example 4.
 上記各視点の好ましい形態を以下に記載する。 Favorable forms from the above viewpoints are described below.
 上記第1視点の好ましい形態によれば、ガラスセラミック材料は、43質量%以上63質量%以下のSiOを含有する。 According to a preferred embodiment of the first aspect, the glass ceramic material contains 43% by mass or more and 63% by mass or less of SiO 2 .
 上記第1視点の好ましい形態によれば、ガラスセラミック材料は、0.4質量%以上4質量%以下のLiOを含有する。 According to the preferable form of the first aspect, the glass ceramic material contains 0.4% by mass or more and 4% by mass or less of Li 2 O.
 上記第1視点の好ましい形態によれば、ガラスセラミック材料は、SiO及びLiOを含有する。(SiOの含有率/LiOの含有率)が15以上120以下である。 According to a preferred embodiment of the first aspect, the glass ceramic material contains SiO 2 and Li 2 O. (SiO 2 content / Li 2 O content) is 15 or more and 120 or less.
 上記第1視点の好ましい形態によれば、ガラスセラミック材料は、8質量%以上19質量%以下のAl、0.5質量%以上4質量%以下のKO、10質量%以上27質量%以下のMgO、2質量%以上6.5質量%以下のCaO、及び3質量%以上11質量%以下のFを含有する。 According to a preferred embodiment of the first aspect, the glass ceramic material is 8% by mass or more and 19% by mass or less Al 2 O 3 , 0.5% by mass or more and 4% by mass or less K 2 O, 10% by mass or more and 27% by mass. It contains MgO of 2 mass% or less, CaO of 2 mass% or more and 6.5 mass% or less, and F 2 of 3 mass% or more and 11 mass% or less.
 上記第1視点の好ましい形態によれば、CuKα線によるガラスセラミック材料のX線回折パターンは、2θが19°~21°に存在し、マイカ結晶に帰属されるシャープな第1ピークと、2θが27°~29°に存在し、マイカ結晶に帰属されるシャープな第2ピークと、少なくとも第1ピーク高角側から第2ピークの低角側にかけて両ピークを連結し、マイカ結晶又はアモルファスに帰属されるブロードな第3ピークと、を有する。 According to the preferred form of the first aspect, the X-ray diffraction pattern of the glass ceramic material by CuKα rays has a 2θ of 19 ° to 21 °, a sharp first peak attributed to a mica crystal, and 2θ It exists at 27 ° to 29 ° and connects both the sharp second peak attributed to the mica crystal and at least the first peak from the high angle side to the low angle side of the second peak, and is attributed to the mica crystal or amorphous. And a broad third peak.
 上記第1視点の好ましい形態によれば、第3ピークの強度は、第1ピーク及び第2ピークよりも低く、高角側に向けて減衰傾向にある。 According to the preferred form of the first viewpoint, the intensity of the third peak is lower than that of the first peak and the second peak, and tends to attenuate toward the high angle side.
 上記第1視点の好ましい形態によれば、ガラスセラミック材料は、微細析出したリチウムアルミノシリケート結晶を結晶相としてさらに含有する。X線回折パターンにおいて、2θ=25°~27°においてリチウムアルミノシリケート結晶に帰属されるピークが顕出していない。 According to a preferred form of the first aspect, the glass ceramic material further contains finely precipitated lithium aluminosilicate crystals as a crystal phase. In the X-ray diffraction pattern, no peak attributed to the lithium aluminosilicate crystal appears at 2θ = 25 ° to 27 °.
 上記第1視点の好ましい形態によれば、X線回折パターンは、2θ=25°~27°に存在し、リチウムアルミノシリケート結晶に帰属される第4ピークをさらに有する。 According to the preferred form of the first viewpoint, the X-ray diffraction pattern is present at 2θ = 25 ° to 27 ° and further has a fourth peak attributed to the lithium aluminosilicate crystal.
 上記第1視点の好ましい形態によれば、第2ピークの強度を1とした場合、第4ピークの強度は8以下である。 According to a preferred form of the first viewpoint, when the intensity of the second peak is 1, the intensity of the fourth peak is 8 or less.
 上記第1視点の好ましい形態によれば、X線回折パターンは、2θが19°~21°に第1ピークに隣接して存在し、マイカ結晶に帰属されるシャープな第5ピークをさらに有する。 According to a preferred form of the first viewpoint, the X-ray diffraction pattern further has a sharp fifth peak that is adjacent to the first peak at 2θ of 19 ° to 21 ° and is attributed to the mica crystal.
 上記第1視点の好ましい形態によれば、厚さ1.5mmの試料について色温度2850Kの光の透過率が33%以上である。 According to a preferred embodiment of the first aspect, the transmittance of light having a color temperature of 2850 K is 33% or more for a sample having a thickness of 1.5 mm.
 上記第1視点の好ましい形態によれば、硬度が300Hv~600Hvである。 According to a preferred form of the first aspect, the hardness is 300 Hv to 600 Hv.
 上記第1視点の好ましい形態によれば、ガラスセラミック材料は、熔融固化したガラスセラミック材料の熔融固化体に対し、550℃~700℃の熱処理を施した後、750℃~1000℃の熱処理をさらに施して作製される。 According to a preferred embodiment of the first aspect, the glass ceramic material is further subjected to a heat treatment at 550 ° C. to 700 ° C. after the melted and solidified glass ceramic material is subjected to a heat treatment at 750 ° C. to 1000 ° C. It is made by applying.
 本発明のガラスセラミック材料は、マイカ微結晶を結晶相として有する。好ましくは、ガラスセラミック材料は、マイカ結晶を主たる結晶相として有する(この場合、「マイカ系ガラスセラミック材料」となる)。マイカ結晶の存在は、X線回折(XRD;X-Ray Diffraction)パターンによって確認することができる。ガラスセラミック材料は、XRDパターンによってマイカ結晶以外の結晶相を検出できなくてもよい。 The glass ceramic material of the present invention has mica microcrystals as a crystal phase. Preferably, the glass ceramic material has a mica crystal as a main crystal phase (in this case, “mica-based glass ceramic material”). The presence of mica crystals can be confirmed by an X-ray diffraction (XRD) pattern. The glass ceramic material may not be able to detect a crystal phase other than mica crystal by the XRD pattern.
 本発明のガラスセラミック材料におけるマイカ結晶の組成式は、例えば、CaLiMg(SiAlO10)F(ただし、2x+y+z=1)と表記することができる。Ca及びKは、層間陽イオンとして作用していると考えられる。また、Liの一部も層間陽イオンとして作用していると考えられる。 The composition formula of mica crystal in the glass-ceramic material of the present invention can be expressed as, for example, Ca x K y Li z Mg 3 (Si 3 AlO 10 ) F 2 (2x + y + z = 1). Ca and K are considered to act as interlayer cations. Also, a part of Li is considered to act as an interlayer cation.
 ガラスセラミック材料は、マイカ結晶の他に、リチウムアルミノシリケート結晶を結晶相として有してもよい。この場合、リチウムアルミノシリケート結晶の含有率がマイカ結晶の含有率より高くてもよい。リチウムアルミノシリケート結晶の存在は、XRDパターンによって確認することができる。 The glass ceramic material may have lithium aluminosilicate crystals as crystal phases in addition to mica crystals. In this case, the content of lithium aluminosilicate crystals may be higher than the content of mica crystals. The presence of the lithium aluminosilicate crystal can be confirmed by the XRD pattern.
 本発明のガラスセラミック材料におけるリチウムアルミノシリケート結晶の組成式は、XRDパターンより、例えば、LiAlSiO、LiAlSi、及びLiAlSi10のうちの少なくとも1つであると考えられるが、他の組成式である可能性もある。 The composition formula of the lithium aluminosilicate crystal in the glass ceramic material of the present invention is considered to be at least one of, for example, LiAlSiO 4 , LiAlSi 3 O 8 , and Li 2 Al 2 Si 3 O 10 from the XRD pattern. However, there may be other composition formulas.
 ガラスセラミック材料は、結晶相の他に、アモルファス相を含有してもよい。 The glass ceramic material may contain an amorphous phase in addition to the crystalline phase.
 図1~図4に、本発明のガラスセラミック材料のXRDパターンを示す。CuKα線によって測定した本発明のガラスセラミック材料のXRDパターンは、マイカ結晶に帰属されるピークは、2θ=9°~10°に存在するシャープなピーク、19°~21°に存在するシャープなピーク、27°~29°に存在するシャープなピーク、34°~38°に存在するブロードなピーク、60°~62°に存在するシャープなピーク、及び71°~73°に存在するシャープなピークを有する。19°~21°に存在するピークは2つピークが重なっており、分裂して見えることもある。 1 to 4 show XRD patterns of the glass ceramic material of the present invention. The XRD pattern of the glass ceramic material of the present invention measured by CuKα ray shows that the peak attributed to the mica crystal is a sharp peak existing at 2θ = 9 ° to 10 °, a sharp peak existing at 19 ° to 21 °. A sharp peak at 27 ° to 29 °, a broad peak at 34 ° to 38 °, a sharp peak at 60 ° to 62 °, and a sharp peak at 71 ° to 73 °. Have. Two peaks at 19 ° to 21 ° overlap and may appear to be split.
 また、本発明のガラスセラミック材料のXRDにおいて、リチウムアルミノシリケート結晶のピークが確認できない場合、ガラスセラミック材料のXRDパターンは、2θが20°~30°の位置にブロードなピークを有する。このブロード(連続的)なピークは、19°~21°に存在するピークの高角側から27°~29°に存在するピークの高角側にかけて、両ピークを連結しているように見えることが多い。このブロードなピークは、19°~21°に存在するピーク及び27°~29°に存在するピークよりも低く、高角側に向けて直線的に強度が低下する傾向にある。このブロードなピークの強度は、19°~21°に存在するピークの6分の1~2分の1である。本発明のガラスセラミック材料のXRDパターンにおいては、2θが30°~31°において有意なシャープなピークは検出されない。 Further, in the XRD of the glass ceramic material of the present invention, when the peak of the lithium aluminosilicate crystal cannot be confirmed, the XRD pattern of the glass ceramic material has a broad peak at a position where 2θ is 20 ° to 30 °. This broad (continuous) peak often appears to connect both peaks from the high angle side of the peak present at 19 ° to 21 ° to the high angle side of the peak present at 27 ° to 29 °. . This broad peak is lower than the peak existing at 19 ° to 21 ° and the peak existing at 27 ° to 29 °, and the intensity tends to decrease linearly toward the high angle side. The intensity of this broad peak is 1/6 to 1/2 that of the peak existing at 19 ° to 21 °. In the XRD pattern of the glass ceramic material of the present invention, no significant sharp peak is detected when 2θ is 30 ° to 31 °.
 本発明のガラスセラミック材料のXRDにおいて、リチウムアルミノシリケート結晶のピークが確認できる場合、本発明のガラスセラミック材料のXRDパターンは、2θ=25°~27°の位置に、リチウムアルミノシリケート結晶に帰属されるシャープなピークを有する。ガラスセラミック材料において、2θ=27°~29°に存在するマイカ結晶のピーク(ここでは「マイカピーク」と表記する)と、2θ=25°~27°に存在するリチウムアルミノシリケート結晶のピーク(ここでは「リチウムアルミノシリケートピーク」と表記する)との強度比は、マイカピークの強度を1としたとき、リチウムアルミノシリケートピークの強度が8以下であると好ましく、3以下であるとより好ましく、1以下であるとさらに好ましい。リチウムアルミノシリケートピークの強度がより低いほうがガラスセラミック材料の曲げ強度が高くなる傾向がある。リチウムアルミノシリケート結晶の含有率が高くなると、19°~21°において重なっている2つピークが顕在化する。また、約20°~30°にかけて存在していたギザギザなピークは、リチウムアルミノシリケート結晶に帰属されるピークが存在していない場合と比べて減衰する傾向にある。 When the peak of the lithium aluminosilicate crystal can be confirmed in the XRD of the glass ceramic material of the present invention, the XRD pattern of the glass ceramic material of the present invention is attributed to the lithium aluminosilicate crystal at a position of 2θ = 25 ° to 27 °. It has a sharp peak. In a glass ceramic material, a peak of mica crystal existing at 2θ = 27 ° to 29 ° (herein referred to as “mica peak”) and a peak of lithium aluminosilicate crystal existing at 2θ = 25 ° to 27 ° (here The intensity ratio with respect to “lithium aluminosilicate peak” is preferably 8 or less, more preferably 3 or less, when the mica peak intensity is 1. More preferably, it is as follows. The lower the lithium aluminosilicate peak strength, the higher the bending strength of the glass ceramic material. When the content of the lithium aluminosilicate crystal increases, two overlapping peaks appear at 19 ° to 21 °. Also, the jagged peaks that existed at about 20 ° to 30 ° tend to attenuate compared to the case where no peaks attributed to the lithium aluminosilicate crystal exist.
 測定条件等によってXRDパターンのピーク位置がシフトし、ピーク位置が上記2θの数値と合致しない場合には、そのシフトを考慮して各ピークを対応させる。 When the peak position of the XRD pattern is shifted depending on the measurement conditions and the peak position does not match the 2θ value, each peak is associated with the shift taken into consideration.
 ガラスセラミック材料は高い耐酸性を有する。例えば、ISO(国際標準化機構;International Organization for Standardization)6872、「Dentistry-ceramic materials」(2008年)に準拠して測定した溶解量が100μg/cm以下であり、50μg/cm以下であると好ましく、20μg/cm以下であるとより好ましく、15μg/cm以下であるとさらに好ましい。ガラスセラミック材料の溶解量はJDMAS(日本歯科材料工業共同組合規格;Japan Dental Material Manufacturers Association Standards)222、「歯科用セラミック材料」(2010年)に準拠して測定してもよい。ガラスセラミック材料は、高い耐酸性を有しているので、酸性条件下で使用する製品に適用することができる。例えば、歯科材料では、実用上、溶解量が100μg/cm以下の耐酸性が要求されているが、ガラスセラミック材料はこの要件を満たすことができる。 Glass ceramic materials have high acid resistance. For example, the amount of dissolution measured according to ISO (International Organization for Standardization) 6872, “Dentistry-ceramic materials” (2008) is 100 μg / cm 2 or less, and is 50 μg / cm 2 or less. Preferably, it is 20 μg / cm 2 or less, more preferably 15 μg / cm 2 or less. The dissolution amount of the glass ceramic material may be measured in accordance with JDMAS (Japan Dental Material Manufacturers Association Standards) 222, “Dental Ceramic Material” (2010). Glass ceramic materials have high acid resistance and can be applied to products used under acidic conditions. For example, in dental materials, acid resistance with a dissolution amount of 100 μg / cm 2 or less is required for practical use, but glass ceramic materials can satisfy this requirement.
 ガラスセラミック材料は高い曲げ強度を有する。例えば、ISO6872(2008年)に準拠して測定した3点曲げ強度が220MPa以上であると好ましく、250MPa以上であるとより好ましく、280MPa以上であるとより好ましく、300MPa以上であるとさらに好ましい。ガラスセラミック材料の3点曲げ強度はJDMAS222(2010年)に準拠して測定してもよい。上記曲げ強度は、強度を高めるための補助材料を含有させなくとも得ることができる。ガラスセラミック材料は高強度を有するので、各種製品に使用することができる。例えば、ガラスセラミック材料は、歯科材料に好適に使用することができる。 Glass ceramic material has high bending strength. For example, the three-point bending strength measured in accordance with ISO6872 (2008) is preferably 220 MPa or more, more preferably 250 MPa or more, more preferably 280 MPa or more, and further preferably 300 MPa or more. The three-point bending strength of the glass ceramic material may be measured according to JDMAS222 (2010). The bending strength can be obtained without including an auxiliary material for increasing the strength. Since the glass ceramic material has high strength, it can be used for various products. For example, a glass ceramic material can be suitably used for a dental material.
 ガラスセラミック材料は高い光透過率を有する。色温度2850Kの光の透過率は、例えば、厚さ1.5mmの試料についてエックスライト(X-Rite)社製ビジュアル透過濃度計を用いて測定することができる。この場合、ガラスセラミック材料の透過率は、33%以上であると好ましく、35%以上であるとより好ましく、37%以上であるとより好ましく、40%以上であるとさらに好ましい。ガラスセラミック材料を歯科材料に使用する場合、厚さ1.5mmで33%以上の透過率を有すると天然歯のような審美性を得ることができる。 Glass ceramic material has high light transmittance. The transmittance of light having a color temperature of 2850 K can be measured, for example, using a visual transmission densitometer manufactured by X-Rite Co., Ltd. for a sample having a thickness of 1.5 mm. In this case, the transmittance of the glass ceramic material is preferably 33% or more, more preferably 35% or more, more preferably 37% or more, and further preferably 40% or more. When a glass ceramic material is used for a dental material, an aesthetic property similar to that of a natural tooth can be obtained when the thickness is 1.5 mm and the transmittance is 33% or more.
 ガラスセラミック材料の硬度は、JISZ2244に準拠して測定したとき、例えば、300Hv以上~600Hvであると好ましく、300Hv~500Hvであるとより好ましく、300Hv~450Hvであるとさらに好ましい。ガラスセラミック材料が天然歯と同等の硬度を有することになり、例えば、ガラスセラミック材料を歯科材料に好適に適用することができる。 The hardness of the glass ceramic material is, for example, preferably from 300 Hv to 600 Hv, more preferably from 300 Hv to 500 Hv, and even more preferably from 300 Hv to 450 Hv, when measured according to JISZ2244. The glass ceramic material has a hardness equivalent to that of natural teeth. For example, the glass ceramic material can be suitably applied to a dental material.
 ガラスセラミック材料の1つの結晶の形は、走査型電子顕微鏡(SEM;Scanning Electron Microscope)で観察すると、板状(薄片状)又は針状のように見える。そして、板状(薄片状)又は針状の複数の結晶子が1点を中心にして2次元的又は3次元的に集合した立体構造を示している。この中心には、結晶核生成工程において形成された結晶核が存在していると推定される。結晶子の集合体の大きさは、例えば、1μm~10μmである。結晶子の集合体の大きさが小さくなると、曲げ強度を高められる傾向がある。1つの結晶子は、マイカ結晶及びリチウムアルミノシリケート結晶のうちの少なくともいずれかであると考えられる。 The shape of one crystal of the glass-ceramic material looks like a plate shape (flaky shape) or a needle shape when observed with a scanning electron microscope (SEM). A three-dimensional structure in which a plurality of plate-like (flaky) or needle-like crystallites are gathered two-dimensionally or three-dimensionally around one point is shown. It is presumed that crystal nuclei formed in the crystal nucleation process exist at this center. The size of the crystallite aggregate is, for example, 1 μm to 10 μm. When the size of the crystallite aggregate is reduced, the bending strength tends to be increased. One crystallite is considered to be at least one of a mica crystal and a lithium aluminosilicate crystal.
 ガラスセラミック材料は、SiO及びLiOを含有する。また、ガラスセラミック材料は、Al、KO、MgO、CaO、及びFのうち、少なくとも1つをさらに含有すると好ましい。これらは、上述のSiO及びLiOと合わせてマイカ結晶を得られる組成となるようにガラスセラミック材料に含有させることができる。 The glass ceramic material contains SiO 2 and Li 2 O. The glass ceramic material preferably further contains at least one of Al 2 O 3 , K 2 O, MgO, CaO, and F 2 . These can be contained in the glass ceramic material so as to obtain a composition capable of obtaining mica crystals in combination with the above-described SiO 2 and Li 2 O.
 ガラスセラミック材料の組成について説明する。SiO、LiO、Al、KO、MgO、CaO、及びFの合計質量において、SiOの含有率は43質量%以上であると好ましく、48質量%以上であるとより好ましく、50質量%以上であるとさらに好ましい。SiOは耐酸性に寄与しているものと考えられ、上記耐酸性を得るためには含有率を43質量%以上とする好ましい。また、SiOの含有率は63質量%以下であると好ましく、60質量%以下であるとより好ましく、58質量%以下であるとさらに好ましい。SiOは結晶化にも影響を及ぼしているものと考えられ、含有率が63質量%を超えるようにSiOを添加すると、熔融状態のガラスセラミック材料の前駆体におけるマイカ結晶の成長が困難となる。含有率が63質量%以下であれば、LiOの添加によって、微細なマイカ結晶を析出させることができ、これにより高強度を実現することができる。 The composition of the glass ceramic material will be described. In the total mass of SiO 2 , Li 2 O, Al 2 O 3 , K 2 O, MgO, CaO, and F 2 , the content of SiO 2 is preferably 43% by mass or more, and is 48% by mass or more. More preferably, it is further more preferable in it being 50 mass% or more. SiO 2 is considered to contribute to acid resistance, and in order to obtain the acid resistance, the content is preferably 43% by mass or more. The content of SiO 2 is preferably 63% by mass or less, more preferably 60% by mass or less, and further preferably 58% by mass or less. SiO 2 is considered to have an effect on crystallization, and if SiO 2 is added so that the content exceeds 63% by mass, it is difficult to grow mica crystals in the precursor of the molten glass ceramic material. Become. When the content is 63% by mass or less, fine mica crystals can be precipitated by the addition of Li 2 O, thereby realizing high strength.
 SiO、LiO、Al、KO、MgO、CaO、及びFの合計質量において、LiOの含有率は、0.4質量%以上であると好ましく、0.7質量%以上であるとより好ましく、1質量%以上であるとさらに好ましい。LiOはマイカ結晶の結晶成長に寄与しているものと考えられている。SiOの含有率を高くしたために結晶核の生成が阻害されたとしても、LiOを0.4質量%以上添加することにより、結晶核の生成を促すことができる。また、LiOの含有率は、4質量%以下であると好ましく、3.5質量%以下であるとより好ましく、3質量%以下であるとさらに好ましい。LiOが4質量%より多くなると、リチウムアルミノシリケート結晶の形成が多くなってしまう。例えば、耐酸性及び光透過率が低下するなどの問題が生じる。 In the total mass of SiO 2 , Li 2 O, Al 2 O 3 , K 2 O, MgO, CaO, and F 2 , the content of Li 2 O is preferably 0.4% by mass or more, and 0.7 More preferably, it is more than 1% by mass and more preferably 1% by mass or more. Li 2 O is considered to contribute to the crystal growth of mica crystals. Even if the generation of crystal nuclei is hindered by increasing the content of SiO 2, the addition of 0.4% by mass or more of Li 2 O can promote the generation of crystal nuclei. Further, the content of Li 2 O is preferably 4% by mass or less, more preferably 3.5% by mass or less, and further preferably 3% by mass or less. If the amount of Li 2 O exceeds 4% by mass, the formation of lithium aluminosilicate crystals increases. For example, problems such as reduction in acid resistance and light transmittance occur.
 ガラスセラミック材料中のSiOとLiOの成分比(SiOの含有率/LiOの含有率)は、15以上120以下であると好ましく、17以上60以下であるとより好ましく、18以上45以下であるとさらに好ましい。これにより、ガラスセラミック材料の曲げ強度を高めることができる。 The component ratio of SiO 2 and Li 2 O in the glass ceramic material (SiO 2 content / Li 2 O content) is preferably 15 or more and 120 or less, more preferably 17 or more and 60 or less, and 18 More preferably, it is 45 or less. Thereby, the bending strength of the glass ceramic material can be increased.
 SiO、LiO、Al、KO、MgO、CaO、及びFの合計質量において、Alの含有率は、8質量%以上であると好ましく、10質量%以上であるとより好ましく、11質量%以上であるとさらに好ましい。また、Alの含有率は、19質量%以下であると好ましく、17質量%以下であるとより好ましく、16質量%以下であるとさらに好ましい。 In the total mass of SiO 2 , Li 2 O, Al 2 O 3 , K 2 O, MgO, CaO, and F 2 , the content of Al 2 O 3 is preferably 8% by mass or more, and 10% by mass or more. More preferably, it is more preferably 11% by mass or more. The content of Al 2 O 3 is preferably 19% by mass or less, more preferably 17% by mass or less, and further preferably 16% by mass or less.
 SiO、LiO、Al、KO、MgO、CaO、及びFの合計質量において、KOの含有率は、0.5質量%以上であると好ましい。また、KOの含有率は、4質量%以下であると好ましく、3質量%以下であるとより好ましく、2質量%以下であるとさらに好ましい。 In the total mass of SiO 2 , Li 2 O, Al 2 O 3 , K 2 O, MgO, CaO, and F 2 , the content of K 2 O is preferably 0.5% by mass or more. Further, the content of K 2 O is preferably 4% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less.
 SiO、LiO、Al、KO、MgO、CaO、及びFの合計質量において、MgOの含有率は、10質量%以上であると好ましく、12質量%以上であるとより好ましく、14質量%以上であるとさらに好ましい。また、MgOの含有率は、27質量%以下であると好ましく、26質量%以下であるとより好ましく、24質量%以下であるとさらに好ましい。 In the total mass of SiO 2 , Li 2 O, Al 2 O 3 , K 2 O, MgO, CaO, and F 2 , the content of MgO is preferably 10% by mass or more, and is 12% by mass or more. More preferably, it is more preferably 14% by mass or more. The MgO content is preferably 27% by mass or less, more preferably 26% by mass or less, and further preferably 24% by mass or less.
 SiO、LiO、Al、KO、MgO、CaO、及びFの合計質量において、CaOの含有率は、2質量%以上であると好ましく、2.5質量%以上であるとより好ましい。また、CaOの含有率は、6.5質量%以下であると好ましく、5.5質量%以下であるとより好ましく、5質量%以下であるとさらに好ましい。 In the total mass of SiO 2 , Li 2 O, Al 2 O 3 , K 2 O, MgO, CaO, and F 2 , the CaO content is preferably 2% by mass or more, and 2.5% by mass or more. More preferably. The CaO content is preferably 6.5% by mass or less, more preferably 5.5% by mass or less, and further preferably 5% by mass or less.
 SiO、LiO、Al、KO、MgO、CaO、及びFの合計質量において、Fの含有率は、3質量%以上であると好ましく、3.5質量%以上であるとより好ましい。また、Fの含有率は、11質量%以下であると好ましく、10質量%以下であるとより好ましく、9質量%以下であるとさらに好ましい。 In the total mass of SiO 2 , Li 2 O, Al 2 O 3 , K 2 O, MgO, CaO, and F 2 , the content of F 2 is preferably 3% by mass or more, and 3.5% by mass or more. Is more preferable. Further, the content of F 2 is preferably 11% by mass or less, more preferably 10% by mass or less, and further preferably 9% by mass or less.
 ガラスセラミック材料は、マイカ結晶及びリチウムアルミノシリケート結晶以外の要素から由来する成分を含んでもよい。例えば、ガラスセラミック材料は、さらに着色成分を含有してもよい。例えば、ガラスセラミック材料は、着色成分としてP、Ag、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Y、Zr、Nb、Sn、Ta、Pr、Sm、Eu、Tb、Erの酸化物を1種又は2種以上を5質量%以下の範囲内で含有してもよい。 The glass-ceramic material may contain components derived from elements other than mica crystals and lithium aluminosilicate crystals. For example, the glass ceramic material may further contain a coloring component. For example, glass ceramic materials include P, Ag, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Sn, Ta, Pr, Sm, Eu, Tb, Er as coloring components. One or more oxides may be contained within a range of 5% by mass or less.
 ガラスセラミック材料におけるSiO、Al、KO、MgO及びCaOの含有率は、蛍光X線分析法で測定することができる。ガラスセラミック材料におけるLiOの含有率は、原子吸光分光法で測定することができる。ガラスセラミック材料におけるFの含有率は、吸光光度法で測定することができる。 The content of SiO 2 , Al 2 O 3 , K 2 O, MgO and CaO in the glass ceramic material can be measured by fluorescent X-ray analysis. The content of Li 2 O in the glass ceramic material can be measured by atomic absorption spectroscopy. The content of F 2 in the glass ceramic material can be measured by absorptiometry.
 ガラスセラミック材料の製造方法について説明する。まず、所望の組成を有するように、Si元素、Al元素、K元素、Mg元素、Ca元素、F元素及びLi元素を含有する各化合物を混合してガラス原料を作製する。ガラス原料は、SiO、Al、KCO、MgO、CaCO、MgF、及びLiCOを含有すると好ましい。ガラス原料中、SiO、Al、KCO、MgO、CaCO、MgF、及びLiCOの合計質量を基本とすると、SiOは42質量%以上であると好ましく、47質量%以上であるとより好ましく、49質量%以上であるとさらに好ましい。また、SiOは60質量%以下であると好ましく、57質量%以下であるとより好ましく、55質量%以下であるとさらに好ましい。同様にして、Alは7質量%以上であると好ましく、9質量%以上であるとより好ましく、10質量%以上であるとさらに好ましい。また、Alは19質量%以下であると好ましく、17質量%以下であるとより好ましく、16質量%以下であるとさらに好ましい。同様にして、KCOは0.5質量%以上であると好ましい。また、KCOは6質量%以下であると好ましく、5質量%以下であるとより好ましく、3質量%以下であるとさらに好ましい。同様にして、MgOは4質量%以上であると好ましく、5質量%以上であるとより好ましく、6質量%以上であるとさらに好ましい。また、MgOは19質量%以下であると好ましく、18質量%以下であるとより好ましく、17質量%以下であるとさらに好ましい。同様にして、CaCOは3質量%以上であると好ましく、4質量%以上であるとより好ましい。また、CaCOは12質量%以下であると好ましく、10質量%以下であるとより好ましく、9質量%以下であるとさらに好ましい。同様にして、MgFは7質量%以上であると好ましく、8質量%以上であるとより好ましい。また、MgFは20質量%以下であると好ましく、18質量%以下であるとより好ましく、17質量%以下であるとさらに好ましい。同様にして、LiCOは1質量%以上であると好ましく、1.5質量%以上であるとより好ましく、2質量%以上であるとさらに好ましい。また、LiCOは10質量%以下であると好ましく、9質量%以下であるとより好ましく、7質量%以下であるとさらに好ましい。なお、ガラス原料は上記化合物に限定されることはなく、目的の組成が得られるのであれば、各元素の炭酸塩、硝酸塩、水酸化物、フッ化物等を使用することができる。この場合には、上記質量バランスは、使用する化合物に応じて適宜変更する。 A method for producing the glass ceramic material will be described. First, a glass material is prepared by mixing each compound containing Si element, Al element, K element, Mg element, Ca element, F element and Li element so as to have a desired composition. The glass raw material preferably contains SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 . Based on the total mass of SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 in the glass raw material, SiO 2 is preferably 42% by mass or more, More preferably, it is 47 mass% or more, and it is further more preferable that it is 49 mass% or more. In addition, SiO 2 is preferably 60% by mass or less, more preferably 57% by mass or less, and further preferably 55% by mass or less. Similarly, Al 2 O 3 is preferably 7% by mass or more, more preferably 9% by mass or more, and further preferably 10% by mass or more. Al 2 O 3 is preferably 19% by mass or less, more preferably 17% by mass or less, and further preferably 16% by mass or less. Similarly, K 2 CO 3 is preferably 0.5% by mass or more. Further, K 2 CO 3 is preferably 6% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. Similarly, MgO is preferably 4% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more. MgO is preferably 19% by mass or less, more preferably 18% by mass or less, and further preferably 17% by mass or less. Similarly, CaCO 3 is preferably 3% by mass or more, and more preferably 4% by mass or more. Further, CaCO 3 is preferably 12% by mass or less, more preferably 10% by mass or less, and further preferably 9% by mass or less. Similarly, MgF 2 is preferably 7% by mass or more, and more preferably 8% by mass or more. MgF 2 is preferably 20% by mass or less, more preferably 18% by mass or less, and further preferably 17% by mass or less. Similarly, Li 2 CO 3 is preferably 1% by mass or more, more preferably 1.5% by mass or more, and further preferably 2% by mass or more. Li 2 CO 3 is preferably 10% by mass or less, more preferably 9% by mass or less, and further preferably 7% by mass or less. The glass raw material is not limited to the above compounds, and carbonates, nitrates, hydroxides, fluorides and the like of each element can be used as long as the desired composition can be obtained. In this case, the mass balance is appropriately changed according to the compound used.
 ガラスセラミック材料においては、原料のKCO、CaCO及びLiCOは、それぞれ、KO、CaO及びLiOとして検出される。また、MgFにおけるF成分はFとして検出されるが、F成分の一部は熱処理工程において揮散してしまう。また、MgFのMg成分はMgOとして検出される。 In the glass ceramic material, raw materials K 2 CO 3 , CaCO 3 and Li 2 CO 3 are detected as K 2 O, CaO and Li 2 O, respectively. Further, F component in MgF 2 is detected as F 2, a portion of the F component results in volatilization in the heat treatment step. Further, the Mg component of MgF 2 is detected as MgO.
 ガラス原料中のSiO及びLiCOの添加量は、生成物であるガラスセラミック材料中のSiOとLiOの含有率の比(SiOの含有率/LiOの含有率)が好ましくは15以上120以下、より好ましくは17以上60以下、さらに好ましくは18以上45以下となるように調整すると好ましい。 The addition amount of SiO 2 and Li 2 CO 3 in the glass raw material is the ratio of the content ratio of SiO 2 and Li 2 O in the product glass ceramic material (content ratio of SiO 2 / content ratio of Li 2 O). Is preferably 15 to 120, more preferably 17 to 60, and even more preferably 18 to 45.
 ガラス原料に、着色成分を5質量%以下の範囲で添加してもよい。着色成分としては、例えば、P、Ag、Au、Ti、V、Cr、Mn、Fe、Co、Ni、Y、Zr、Nb、Sn、Ta、Pr、Sm、Eu、Tb、Erの酸化物が挙げられる。 ¡Coloring components may be added to the glass raw material in a range of 5% by mass or less. Examples of coloring components include oxides of P, Ag, Au, Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zr, Nb, Sn, Ta, Pr, Sm, Eu, Tb, and Er. Can be mentioned.
 次に、このガラス原料を加熱して熔解する。熔解条件は、例えば、1100℃~1600℃で0.5時間~10時間とすることができる。次に、熔解したガラス原料を型に流し込み、所望の形状に成型する。 Next, this glass raw material is heated and melted. The melting conditions can be, for example, 1100 ° C. to 1600 ° C. and 0.5 hours to 10 hours. Next, the melted glass raw material is poured into a mold and molded into a desired shape.
 次に、成型したガラス原料を熱処理してマイカ結晶の核を生成させる。結晶核生成条件は、例えば、550℃~700℃で0.5時間~10時間とすることができる。 Next, the molded glass material is heat-treated to generate mica crystal nuclei. Crystal nucleation conditions can be, for example, 550 ° C. to 700 ° C. and 0.5 hours to 10 hours.
 次に、さらに熱処理温度を上げて、マイカ結晶を成長させる。結晶成長条件は、例えば、750℃~1000℃で0.5時間~10時間とすることができる。これにより、ガラスセラミック材料を製造することができる。 Next, the heat treatment temperature is further raised to grow mica crystals. The crystal growth conditions can be, for example, 750 ° C. to 1000 ° C. and 0.5 hours to 10 hours. Thereby, a glass ceramic material can be manufactured.
 本発明のガラスセラミック材料を有する補綴物、及び上記製造方法によって製造されたガラスセラミック材料を有する補綴物は、例えば、歯科治療に用いることができる。 The prosthesis having the glass ceramic material of the present invention and the prosthesis having the glass ceramic material manufactured by the above-described manufacturing method can be used, for example, for dental treatment.
[実施例1~18及び比較例1~5]
[製造方法及び測定方法]
 実施例1~18において、組成比の異なる複数のガラスセラミック材料を作製した。表1~4に、各実施例の原料の配合割合及び熱処理条件を示す。配合欄の数値は、SiO、Al、KCO、MgO、CaCO、MgF、及びLiCOの合計質量における割合を示している。表1~4に示す配合割合でSiO、Al、KCO、MgO、CaCO、MgF、及びLiCOを混合し、表1~4に示す熱処理条件で熔解工程、結晶核生成工程及び結晶成長工程を実施し、マイカ結晶を含有するガラスセラミック材料を作製した。
[Examples 1 to 18 and Comparative Examples 1 to 5]
[Production method and measurement method]
In Examples 1 to 18, a plurality of glass ceramic materials having different composition ratios were produced. Tables 1 to 4 show the blending ratio of the raw materials and heat treatment conditions in each example. The numerical values in the blending column indicate the ratio of the total mass of SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 . SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 are mixed in the mixing ratios shown in Tables 1 to 4, and the melting process is performed under the heat treatment conditions shown in Tables 1 to 4 Then, a crystal nucleation step and a crystal growth step were performed to produce a glass ceramic material containing mica crystals.
 比較例1及び2においては、LiCOを添加せずに、ガラスセラミック材料を作製した。比較例3においては、実施例よりもSiO及びLiCOの添加割合を多くして、ガラスセラミック材料を作製した。表5に、各比較例の原料の配合割合及び熱処理条件を示す。 In Comparative Examples 1 and 2, a glass ceramic material was prepared without adding Li 2 CO 3 . In Comparative Example 3, a glass ceramic material was produced by increasing the addition ratio of SiO 2 and Li 2 CO 3 as compared with the Example. Table 5 shows the mixing ratio of the raw materials and heat treatment conditions of each comparative example.
 比較例4においては、非特許文献1に記載の方法に基づいてガラスセラミック材料を作製した。具体的には、非特許文献1に記載の実験方法に従い、Ca(1-2x)Mg(SiAlO10)F(x=0.43)の組成を有するマイカセラミックスを作製した。特許文献1に記載のマイカセラミックスも非特許文献1の記載に基づいて作製したガラスセラミック材料と同様の性状を有すると考えられる。表5に、各比較例の原料の配合割合及び熱処理条件を示す。 In Comparative Example 4, a glass ceramic material was produced based on the method described in Non-Patent Document 1. Specifically, mica ceramics having a composition of Ca x K (1-2x) Mg 3 (Si 3 AlO 10 ) F 2 (x = 0.43) was produced according to the experimental method described in Non-Patent Document 1. . The mica ceramic described in Patent Document 1 is also considered to have the same properties as the glass ceramic material produced based on the description of Non-Patent Document 1. Table 5 shows the mixing ratio of the raw materials and heat treatment conditions of each comparative example.
 比較例5においては、特許文献4に記載の方法の方法に基づいてガラスセラミック材料を作製した。表6に、各比較例の原料の配合割合及び熱処理条件を示す。まず、表6に記載の配合で混合して原料を作製し、当該原料を1500℃で1時間半加熱して熔解させた。次に、熔融した原料を水中に導入して急冷し、原料のガラスカレットを作製した。次に、ガラスカレットをボールミルで平均粒度が20μm程度まで粉砕した。次に、ガラスカレットを型に入れ、プレス成型した。次に、特許文献4に記載の通り、成型体を650℃で熱処理した後、1100℃で熱処理した。しかしながら、焼結が不十分な状態であり、物性を測定可能な試料を得ることができなかった。これを比較例5-1として示す。そこで、1100℃の熱処理を1250℃の熱処理に変更して、ガラスセラミック材料を作製した。これを比較例5-2として示す。 In Comparative Example 5, a glass ceramic material was prepared based on the method described in Patent Document 4. Table 6 shows the mixing ratio of the raw materials and heat treatment conditions of each comparative example. First, a raw material was prepared by mixing with the composition shown in Table 6, and the raw material was melted by heating at 1500 ° C. for 1.5 hours. Next, the melted raw material was introduced into water and rapidly cooled to produce a raw material glass cullet. Next, the glass cullet was pulverized with a ball mill to an average particle size of about 20 μm. Next, the glass cullet was put into a mold and press-molded. Next, as described in Patent Document 4, the molded body was heat treated at 650 ° C. and then heat treated at 1100 ° C. However, the sintering was insufficient, and a sample capable of measuring physical properties could not be obtained. This is shown as Comparative Example 5-1. Therefore, the glass ceramic material was produced by changing the heat treatment at 1100 ° C. to the heat treatment at 1250 ° C. This is shown as Comparative Example 5-2.
 各実施例及び各比較例のガラスセラミック材料について、組成、結晶系、耐酸性、曲げ強度、光透過率、硬度及び結晶子の集合体の大きさを測定した。表7~12に、測定結果を示す。 The composition, crystal system, acid resistance, bending strength, light transmittance, hardness, and crystallite aggregate size were measured for the glass ceramic materials of each Example and each Comparative Example. Tables 7 to 12 show the measurement results.
 ガラスセラミック材料の組成は、SiO、Al、KO、MgO及びCaOについては、測定試料をガラスビードにして、リガク社製蛍光X線分析装置(ZSX100e)を用いて検量線法にて測定した。LiOについては、測定試料をフッ酸に溶解した溶液を作製して日立製作所製原子吸光分光光度計(Z-5310)にて測定した。Fについては、測定試料をアルカリ溶融させ、蒸留し、吸光光度法を用いて測定した。蒸留操作及び吸光光度法はJISK0102.34.1ランタン-アリザリンコンプレキソン吸光光度法に準拠した。 The composition of the glass ceramic material is a calibration curve method using SiO 2 , Al 2 O 3 , K 2 O, MgO and CaO with a measurement sample made of glass beads and using a fluorescent X-ray analyzer (ZSX100e) manufactured by Rigaku Corporation. Measured with For Li 2 O, a solution in which a measurement sample was dissolved in hydrofluoric acid was prepared and measured with an atomic absorption spectrophotometer (Z-5310) manufactured by Hitachi. The F 2, a measurement sample is alkali fusion, distilled, was measured using a spectrophotometric method. The distillation operation and the spectrophotometric method were in accordance with JISK0102.34.1 Lanthanum-alizarin complexone spectrophotometric method.
 ガラスセラミック材料の結晶系は、X線回折パターンに基づいて確認した。X線回折パターンは、CuKα線(50kV、50mA)で測定した。表の結晶系欄の「LiAlSi」はリチウムアルミノシリケートの結晶相が確認されたことを示す。結晶相のピーク比は、マイカ結晶の2θ=28°付近のピークの高さと、リチウムアルミノシリケート結晶の2θ=26°付近のピークの高さの比である。図1に、実施例6におけるガラスセラミック材料のX線回折パターンを示す。図2に、実施例7におけるガラスセラミック材料のX線回折パターンを示す。図3に、実施例10におけるガラスセラミック材料のX線回折パターンを示す。図4に、実施例11におけるガラスセラミック材料のX線回折パターンを示す。図5に、比較例3におけるガラスセラミック材料のX線回折パターンを示す。図6に、比較例4におけるガラスセラミック材料のX線回折パターンを示す。図7に、比較例5-1におけるガラスセラミック材料のX線回折パターンを示す。図8に、比較例5-2におけるガラスセラミック材料のX線回折パターンを示す。 The crystal system of the glass ceramic material was confirmed based on the X-ray diffraction pattern. The X-ray diffraction pattern was measured with CuKα rays (50 kV, 50 mA). “LiAlSi” in the crystal system column of the table indicates that the crystal phase of lithium aluminosilicate was confirmed. The peak ratio of the crystal phase is the ratio of the peak height around 2θ = 28 ° of the mica crystal to the peak height around 2θ = 26 ° of the lithium aluminosilicate crystal. In FIG. 1, the X-ray-diffraction pattern of the glass-ceramic material in Example 6 is shown. In FIG. 2, the X-ray-diffraction pattern of the glass-ceramic material in Example 7 is shown. In FIG. 3, the X-ray-diffraction pattern of the glass-ceramic material in Example 10 is shown. FIG. 4 shows an X-ray diffraction pattern of the glass ceramic material in Example 11. In FIG. 5, the X-ray-diffraction pattern of the glass-ceramic material in the comparative example 3 is shown. In FIG. 6, the X-ray-diffraction pattern of the glass-ceramic material in the comparative example 4 is shown. FIG. 7 shows an X-ray diffraction pattern of the glass ceramic material in Comparative Example 5-1. FIG. 8 shows an X-ray diffraction pattern of the glass ceramic material in Comparative Example 5-2.
 耐酸性の測定は2種類の方法で実施した。1つはISO6872(2008年)に準拠した方法であり、もう1つは特許文献1の記載に基づく方法である。表7~12の耐酸性の欄には、それぞれ「ISO」及び「特許文献1」と表記してある。特許文献1に記載の耐酸性試験方法においては、10%HCl溶液90mlに試料を24時間室温で浸漬し、重量減少量を測定した。試料の大きさは、特許文献1には記載が無かったので、直径15mm、厚さ1.5mmとした。 The acid resistance was measured by two methods. One is a method based on ISO6872 (2008), and the other is a method based on the description of Patent Document 1. In the columns of acid resistance in Tables 7 to 12, “ISO” and “Patent Document 1” are shown, respectively. In the acid resistance test method described in Patent Document 1, the sample was immersed in 90 ml of 10% HCl solution at room temperature for 24 hours, and the weight loss was measured. Since the size of the sample was not described in Patent Document 1, it was 15 mm in diameter and 1.5 mm in thickness.
 曲げ強度は、ISO6872(2008年)に準拠して測定した。 Bending strength was measured according to ISO6872 (2008).
 光透過率は、エックスライト(X-rite)社製X-Rite361T(V)ビジュアル透過濃度計を使用して、光源の色温度は2850Kとして、厚さ1.5mmの試料について測定した。 The light transmittance was measured on a sample having a thickness of 1.5 mm using an X-Rite 361T (V) visual transmission densitometer manufactured by X-rite, with a color temperature of the light source of 2850K.
 硬度はJISZ2244に準拠して測定した。 Hardness was measured according to JISZ2244.
 結晶子の集合体の大きさは、走査型電子顕微鏡写真(SEM写真)に基づいて測定した。SEM写真は、観察する試料表面を酸によりエッチング処理してから撮影した。図9に、実施例2におけるガラスセラミック材料のSEM写真を示す。図10に、実施例5におけるガラスセラミック材料のSEM写真を示す。図11に、実施例6におけるガラスセラミック材料のSEM写真を示す。図12に、実施例12におけるガラスセラミック材料のSEM写真を示す。図13及び図14に、比較例2におけるガラスセラミック材料のSEM写真を示す。図15に、比較例4におけるガラスセラミック材料のSEM写真を示す。図13以外の写真は5,000倍の写真であり、図13は1,000倍の写真である。写真に付した丸印は、結晶子の集合体とみなした1つのまとまりを示す。 The size of the aggregate of crystallites was measured based on a scanning electron micrograph (SEM photograph). The SEM photograph was taken after etching the sample surface to be observed with acid. In FIG. 9, the SEM photograph of the glass-ceramic material in Example 2 is shown. In FIG. 10, the SEM photograph of the glass-ceramic material in Example 5 is shown. In FIG. 11, the SEM photograph of the glass-ceramic material in Example 6 is shown. In FIG. 12, the SEM photograph of the glass-ceramic material in Example 12 is shown. In FIG.13 and FIG.14, the SEM photograph of the glass-ceramic material in the comparative example 2 is shown. In FIG. 15, the SEM photograph of the glass-ceramic material in the comparative example 4 is shown. The photographs other than FIG. 13 are 5,000 times as many photographs, and FIG. 13 is a 1,000 times as many photographs. The circles attached to the photographs indicate a single group regarded as an aggregate of crystallites.
[耐酸性及び曲げ強度について]
 ガラスセラミック材料中のSiOの含有率を43質量%以上にすると、ISOに基づく耐酸性試験において溶解量を100μg/cm以下にすることができた。特に、SiOの含有率を50質量%以上とした場合には、溶解量を20μg/cm以下に低下させることができた。一方、比較例4において、ガラスセラミック材料中のSiOの含有率を43質量%未満とした場合には、溶解量が100μg/cm以上となり、例えば歯科用材料に使用可能な耐酸性は得られなかった。特許文献1に基づく耐酸性試験においても同様の結果が得られた。これより、本発明のガラスセラミック材料は、比較例4における特許文献1及び非特許文献1に記載のガラスセラミック材料よりも優れた耐酸性を有していることが分かった。
[Acid resistance and bending strength]
When the content of SiO 2 in the glass ceramic material was 43% by mass or more, the dissolution amount could be 100 μg / cm 2 or less in the acid resistance test based on ISO. In particular, when the content of SiO 2 was 50% by mass or more, the dissolution amount could be reduced to 20 μg / cm 2 or less. On the other hand, in Comparative Example 4, when the content of SiO 2 in the glass ceramic material is less than 43% by mass, the dissolution amount is 100 μg / cm 2 or more, and for example, acid resistance that can be used for dental materials is obtained. I couldn't. Similar results were obtained in the acid resistance test based on Patent Document 1. From this, it was found that the glass ceramic material of the present invention has better acid resistance than the glass ceramic materials described in Patent Document 1 and Non-Patent Document 1 in Comparative Example 4.
 ガラスセラミック材料中にLiOが存在しないと、十分な強度が得られないことが分かった。すなわち、比較例1及び比較例2では、溶解量が100μg/cm以下の耐酸性が得られているが、強度が215MPa以下と低く、例えば歯科用材料に好適な強度は得られなかった。一方、比較例3におけるLiOの含有率が4.5質量%の場合には、マイカ結晶の析出が少なく、リチウムアルミノシリケートの析出が多くなりすぎた。このため、比較例3においても十分な強度が得られなかった。これより、LiOの含有率を0.4質量%~4質量%とすることにより、高耐酸性を維持しながらも、220MPa以上の強度を得ることができた。 It has been found that sufficient strength cannot be obtained unless Li 2 O is present in the glass ceramic material. That is, in Comparative Example 1 and Comparative Example 2, acid resistance with a dissolution amount of 100 μg / cm 2 or less was obtained, but the strength was as low as 215 MPa or less, and for example, strength suitable for dental materials was not obtained. On the other hand, when the content of Li 2 O in Comparative Example 3 was 4.5% by mass, the precipitation of mica crystals was small and the precipitation of lithium aluminosilicate was excessive. For this reason, in Comparative Example 3, sufficient strength was not obtained. Accordingly, by setting the content of Li 2 O to 0.4 mass% to 4 mass%, it was possible to obtain a strength of 220 MPa or more while maintaining high acid resistance.
 ガラスセラミック材料中のSiOとLiOの成分比を見ると、比較例3においては、(SiOの含有率/LiOの含有率)は14であったが、実施例においては、15以上であった。特に、(SiOの含有率/LiOの含有率)を高くなると、曲げ強度も高くなる傾向が見られた。また、(SiOの含有率/LiOの含有率)を50以下にすると、曲げ強度を300MPa以上にすることができた。 Looking at the component ratio of SiO 2 and Li 2 O in the glass-ceramic material, in Comparative Example 3, (SiO 2 content / Li 2 O content) was 14, but in the examples, It was 15 or more. In particular, when the (content ratio of SiO 2 / content ratio of Li 2 O) was increased, the bending strength tended to increase. When (SiO 2 content / Li 2 O content) was 50 or less, the bending strength could be 300 MPa or more.
 これより、本発明によれば、SiOの含有率を43質量%~63質量%とし、かつLiOの含有率を0.4質量%~4質量%とすることにより、耐酸性100μg/cm以下かつ曲げ強度220MPa以上のガラスセラミック材料が得ることができた。また、(SiOの含有率/LiOの含有率)を15以上とすると、このような耐酸性及び曲げ強度に優れたガラスセラミック材料が得られることが分かった。 Thus, according to the present invention, by setting the content ratio of SiO 2 to 43 mass% to 63 mass% and the content ratio of Li 2 O to 0.4 mass% to 4 mass%, an acid resistance of 100 μg / A glass ceramic material having a cm 2 or less and a bending strength of 220 MPa or more could be obtained. It was also found that when (SiO 2 content / Li 2 O content) was 15 or more, such a glass ceramic material excellent in acid resistance and bending strength was obtained.
[X線回折パターンについて]
 実施例6、10及び11においては、図1、3及び4に示すように、2θが約26°の位置に、リチウムアルミノシリケート結晶のピークが検出された。リチウムアルミノシリケート結晶のピークが高くなると、図3及び図4に示すように、2θが約20°にあるマイカ結晶のピークが2つに分裂した。また、リチウムアルミノシリケート結晶のピークが低いか検出されない場合には、図1~図3に示すように、2θが20°~28°にあるブロードなピークが高くなっている。一方、比較例3においては、図5に示すように、マイカ結晶のピークは、リチウムアルミノシリケート結晶のピークに比べて非常に小さくなっている。また、2θが20°~28°のブロードのピークはほとんど検出できない。比較例4においては、図6に示すように、リチウムを添加していないのでリチウムアルミノシリケート結晶のピークが検出されていないが、2θが20°~28°にあるブロードなピークは実施例に比べて低くなっている。特に22°~28°にかけて特に低くなっている。2θが約31°の位置にピークが確認されるが、実施例のX線回折パターンではこの位置にピークは検出されていない。比較例4における2θが約40°及び53°にあるピークは、実施例のX線回折パターンのピークよりも相対的に高くなっている。また、2θが34°~38°にあるブロードなピークは、実施例では2つに分裂して見えるが、比較例4では分裂しているようには見えない。
[X-ray diffraction pattern]
In Examples 6, 10 and 11, as shown in FIGS. 1, 3 and 4, a peak of lithium aluminosilicate crystal was detected at a position where 2θ was about 26 °. When the peak of the lithium aluminosilicate crystal increased, the peak of the mica crystal having 2θ of about 20 ° was split into two as shown in FIGS. Further, when the peak of the lithium aluminosilicate crystal is low or not detected, as shown in FIGS. 1 to 3, a broad peak having 2θ of 20 ° to 28 ° is high. On the other hand, in Comparative Example 3, as shown in FIG. 5, the peak of the mica crystal is much smaller than the peak of the lithium aluminosilicate crystal. In addition, a broad peak with 2θ of 20 ° to 28 ° is hardly detectable. In Comparative Example 4, as shown in FIG. 6, since no lithium was added, no peak of lithium aluminosilicate crystal was detected, but a broad peak with 2θ of 20 ° to 28 ° was compared to the example. It is low. In particular, it is particularly low from 22 ° to 28 °. Although a peak is confirmed at a position where 2θ is about 31 °, no peak is detected at this position in the X-ray diffraction pattern of the example. The peaks at 2θ of about 40 ° and 53 ° in Comparative Example 4 are relatively higher than the peaks of the X-ray diffraction patterns of the examples. In addition, a broad peak with 2θ between 34 ° and 38 ° appears to be split into two in the example, but does not appear to be split in Comparative Example 4.
[光透過率について]
 各実施例では、35%以上、高いものでは40%以上の光透過率を得ることができた。また、リチウムアルミノシリケートの析出が多くなると光透過率が低くなる傾向がみられた。一方、比較例3では、光透過率は約32%であった。これは、リチウムアルミノシリケートの析出が多いためと考えられる。これより、本発明によれば、例えば歯科用材料に適した、高い光透過率を有するガラスセラミック材料が得られることが分かる。また、光透過率を高めたい場合には、リチウムの添加を抑えればよいと考えられる。
[About light transmittance]
In each Example, a light transmittance of 35% or more, and 40% or more was obtained at a high value. Moreover, when the precipitation of lithium aluminosilicate increased, the light transmittance tended to decrease. On the other hand, in Comparative Example 3, the light transmittance was about 32%. This is thought to be due to the large amount of lithium aluminosilicate precipitation. Thus, according to the present invention, it is understood that a glass ceramic material having a high light transmittance suitable for a dental material can be obtained. In addition, when it is desired to increase the light transmittance, it is considered that the addition of lithium should be suppressed.
[硬度について]
 各実施例では、320Hv~480Hvの硬度を得ることができた。これより、本発明によれば、例えば歯科用材料に適した硬度を有するガラスセラミック材料が得られることが分かる。
[About hardness]
In each example, a hardness of 320 Hv to 480 Hv could be obtained. From this, it can be seen that according to the present invention, for example, a glass ceramic material having a hardness suitable for a dental material can be obtained.
[結晶子の集合体について]
 実施例2のSEM写真においては、結晶子が3次元構造を形成した塊状の集合体が見える。実施例5,6及び12のSEM写真においては、平板状又は薄片状の結晶子が1点を中心にして花弁状に集合した集合体が見える。実施例12の集合体の大きさが大きいのは、SiOの含有率が高いためであると考えられる。また、実施例12においては、集合体が大きいため、曲げ強度が他の実施例よりも低くなっていると考えられる。一方、比較例1のSEM写真においては、例えば実施例2のSEM写真と比較して集合体の充填密度が低いように見える。また、比較例3のSEM写真においては、実施例のSEM写真と比較して、集合体の大きさが数倍も大きいことが分かる。
[Aggregation of crystallites]
In the SEM photograph of Example 2, a massive aggregate in which crystallites form a three-dimensional structure can be seen. In the SEM photographs of Examples 5, 6 and 12, an aggregate in which plate-like or flaky crystallites gather in a petal shape centered on one point can be seen. The large size of the aggregate of Example 12 is considered to be due to the high content of SiO 2 . Moreover, in Example 12, since the aggregate | assembly is large, it is thought that bending strength is lower than another Example. On the other hand, in the SEM photograph of Comparative Example 1, it seems that the packing density of the aggregate is lower than that of the SEM photograph of Example 2, for example. Moreover, in the SEM photograph of the comparative example 3, it turns out that the magnitude | size of an aggregate is several times larger compared with the SEM photograph of an Example.
 各実施例では、結晶子の集合体の大きさを10μm以下、多くの実施例では5μm以下にすることができた。一方、比較例1~3においては、結晶子の集合体の大きさは8μm以上であった。また、実施例及び比較例において、結晶子の集合体の大きさと曲げ強度との相関関係に着目すると、結晶子の集合体の大きさが小さくなると、曲げ強度が高くなる傾向が観察される。これより、本発明においては、ガラスセラミック材料の組成、特にSiOの含有率とLiOの含有率の比、が好適であるために、結晶子の集合体の大きさを小さくすることができ、これにより曲げ強度を高めることができたと考えられる。 In each example, the size of the crystallite aggregate could be 10 μm or less, and in many examples, 5 μm or less. On the other hand, in Comparative Examples 1 to 3, the size of the crystallite aggregate was 8 μm or more. Further, in the examples and comparative examples, focusing on the correlation between the size of the crystallite aggregate and the bending strength, a tendency that the bending strength tends to increase as the size of the crystallite aggregate decreases is observed. Thus, in the present invention, since the composition of the glass ceramic material, particularly the ratio of the content ratio of SiO 2 and the content ratio of Li 2 O, is suitable, the size of the crystallite aggregate can be reduced. This is considered to have improved the bending strength.
[比較例5について]
 比較例5-1では、十分に焼結されたガラスセラミック材料が得られなかった。これより、特許文献4に記載の配合及び製造方法では、工業製品として使用可能なガラスセラミック材料が得られないと考えられる。また、比較例5-2では、焼結するように結晶成長条件を変更したが、それでも得られたガラスセラミック材料は図8に示すようにフォルステライト結晶(2MgO・SiO)であり、マイカ結晶及びリチウムアルミノシリケート結晶の存在は認められなかった。フォルステライトは、マイカより強度が低く、光透過率も低い。比較例5-2で得られたガラスセラミック材料の曲げ強度は72MPaと低く、例えば歯科用材料に使用可能な曲げ強度は得られなかった。さらに、比較例5-2で得られたガラスセラミック材料の光透過率は、実施例と比較して低いものとなった。したがって、特許文献4に記載の配合及び製造方法では、マイカ結晶やリチウムアルミノシリケート結晶を含有するガラスセラミック材料、特に本発明のガラスセラミック材料、を得ることは困難であると考えられる。
[Comparative Example 5]
In Comparative Example 5-1, a fully sintered glass ceramic material could not be obtained. From this, it is thought that the glass ceramic material which can be used as an industrial product cannot be obtained with the composition and manufacturing method described in Patent Document 4. Further, in Comparative Example 5-2, the crystal growth conditions were changed so as to sinter, but the glass ceramic material thus obtained was forsterite crystal (2MgO.SiO 2 ) as shown in FIG. And the presence of lithium aluminosilicate crystals was not observed. Forsterite is lower in intensity and light transmittance than mica. The bending strength of the glass ceramic material obtained in Comparative Example 5-2 was as low as 72 MPa. For example, bending strength usable for dental materials was not obtained. Furthermore, the light transmittance of the glass ceramic material obtained in Comparative Example 5-2 was lower than that of the Example. Therefore, it is considered difficult to obtain a glass ceramic material containing mica crystals or lithium aluminosilicate crystals, particularly the glass ceramic material of the present invention, by the blending and manufacturing method described in Patent Document 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 本発明のガラスセラミック材料及びその製造方法、並びに歯科用補綴物は、上記実施形態に基づいて説明されているが、上記実施形態に限定されることなく、本発明の範囲内において、かつ本発明の基本的技術思想に基づいて、種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)に対し種々の変形、変更及び改良を含むことができることはいうまでもない。また、本発明の請求の範囲の枠内において、種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ・置換ないし選択が可能である。 The glass-ceramic material, the manufacturing method thereof, and the dental prosthesis of the present invention have been described based on the above embodiment, but are not limited to the above embodiment, and are within the scope of the present invention. Various modifications, changes and improvements to various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) based on the basic technical idea of It goes without saying that it can be included. Various combinations and replacements of various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) within the scope of the claims of the present invention. Or you can choose.
 本発明のさらなる課題、目的及び展開形態は、請求の範囲を含む本発明の全開示事項からも明らかにされる。 Further problems, objects, and development forms of the present invention will be made clear from the entire disclosure of the present invention including the claims.
 本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。 数 値 Regarding numerical ranges described in this document, any numerical value or small range included in the range should be construed as being specifically described even if not otherwise specified.
 ガラスセラミック材料は、補綴材等の歯科用材料に好適に適用することができる。また、ガラスセラミック材料は、電子部品等にも好適に適用することができる。 Glass ceramic material can be suitably applied to dental materials such as prosthetic materials. Further, the glass ceramic material can be suitably applied to electronic parts and the like.

Claims (18)

  1.  微細析出したマイカ結晶を結晶相として含有し、
     ISO6872に準拠して測定された溶解量が100μg/cm以下であり、
     ISO6872に準拠して測定された曲げ強度が220MPa以上であることを特徴とするガラスセラミック材料。
    Contains finely precipitated mica crystals as a crystalline phase,
    The amount of dissolution measured in accordance with ISO6872 is 100 μg / cm 2 or less,
    A glass ceramic material having a bending strength measured in accordance with ISO6872 of 220 MPa or more.
  2.  43質量%以上63質量%以下のSiOを含有することを特徴とする請求項1に記載のガラスセラミック材料。 The glass ceramic material according to claim 1, comprising 43% by mass or more and 63% by mass or less of SiO 2 .
  3.  0.4質量%以上4質量%以下のLiOを含有することを特徴とする請求項1又は2に記載のガラスセラミック材料。 The glass ceramic material according to claim 1 or 2, which contains 0.4% by mass or more and 4% by mass or less of Li 2 O.
  4.  SiO及びLiOを含有し、
    (SiOの含有率/LiOの含有率)が15以上120以下であることを特徴とする請求項1~3のいずれか一項に記載のガラスセラミック材料。
    Containing SiO 2 and Li 2 O;
    The glass-ceramic material according to any one of claims 1 to 3, wherein (the content ratio of SiO 2 / the content ratio of Li 2 O) is 15 or more and 120 or less.
  5.  8質量%以上19質量%以下のAl
     0.5質量%以上4質量%以下のKO、
     10質量%以上27質量%以下のMgO、
     2質量%以上6.5質量%以下のCaO、及び
     3質量%以上11質量%以下のF
    を含有することを特徴とする請求項1~4のいずれか一項に記載のガラスセラミック材料。
    8% by mass or more and 19% by mass or less of Al 2 O 3 ,
    0.5% to 4% by weight of K 2 O,
    10% by mass or more and 27% by mass or less of MgO,
    2% by mass or more and 6.5% by mass or less of CaO, and 3% by mass or more and 11% by mass or less of F 2 ,
    The glass-ceramic material according to any one of claims 1 to 4, characterized by comprising:
  6.  43質量%以上63質量%以下のSiO
     0.4質量%以上4質量%以下のLiO、
     8質量%以上19質量%以下のAl
     0.5質量%以上4質量%以下のKO、
     10質量%以上27質量%以下のMgO、
     2質量%以上6.5質量%以下のCaO、及び
     3質量%以上11質量%以下のF
    を含有することを特徴とするガラスセラミック材料。
    43% by mass or more and 63% by mass or less of SiO 2 ,
    0.4 to 4% by mass of Li 2 O,
    8% by mass or more and 19% by mass or less of Al 2 O 3 ,
    0.5% to 4% by weight of K 2 O,
    10% by mass or more and 27% by mass or less of MgO,
    2% by mass or more and 6.5% by mass or less of CaO, and 3% by mass or more and 11% by mass or less of F 2 ,
    A glass-ceramic material comprising:
  7.  CuKα線によるガラスセラミック材料のX線回折パターンは、
     2θが19°~21°に存在し、マイカ結晶に帰属されるシャープな第1ピークと、
     2θが27°~29°に存在し、マイカ結晶に帰属されるシャープな第2ピークと、
     少なくとも前記第1ピーク高角側から前記第2ピークの低角側にかけて両ピークを連結し、マイカ結晶又はアモルファスに帰属されるブロードな第3ピークと、
    を有することを特徴とする請求項1~6のいずれか一項に記載のガラスセラミック材料。
    X-ray diffraction pattern of glass ceramic material by CuKα ray is
    A sharp first peak that has 2θ between 19 ° and 21 ° and is attributed to a mica crystal;
    2θ exists at 27 ° to 29 °, a sharp second peak attributed to the mica crystal,
    Connecting at least both peaks from the high-angle side of the first peak to the low-angle side of the second peak, and a broad third peak attributed to mica crystal or amorphous,
    The glass-ceramic material according to any one of claims 1 to 6, characterized by comprising:
  8.  前記第3ピークの強度は、前記第1ピーク及び前記第2ピークよりも低く、高角側に向けて減衰傾向にあることを特徴とする請求項7に記載のガラスセラミック材料。 The glass ceramic material according to claim 7, wherein the intensity of the third peak is lower than that of the first peak and the second peak and tends to attenuate toward the high angle side.
  9.  前記X線回折パターンにおいて、2θ=25°~27°においてリチウムアルミノシリケート結晶に帰属されるピークが顕出していないことを特徴とする請求項7又は8に記載のガラスセラミック材料。 The glass ceramic material according to claim 7 or 8, wherein in the X-ray diffraction pattern, a peak attributed to a lithium aluminosilicate crystal does not appear at 2θ = 25 ° to 27 °.
  10.  微細析出したリチウムアルミノシリケート結晶を結晶相としてさらに含有し、
     前記X線回折パターンは、
     2θ=25°~27°に存在し、リチウムアルミノシリケート結晶に帰属される第4ピークをさらに有することを特徴とする請求項7又は8に記載のガラスセラミック材料。
    Further containing finely precipitated lithium aluminosilicate crystals as a crystal phase,
    The X-ray diffraction pattern is
    9. The glass-ceramic material according to claim 7, further comprising a fourth peak that exists at 2θ = 25 ° to 27 ° and is attributed to a lithium aluminosilicate crystal.
  11.  前記第2ピークの強度を1とした場合、前記第4ピークの強度は8以下であることを特徴とする請求項10に記載のガラスセラミック材料。 The glass-ceramic material according to claim 10, wherein the intensity of the fourth peak is 8 or less when the intensity of the second peak is 1.
  12.  前記X線回折パターンは、
     2θが19°~21°に前記第1ピークに隣接して存在し、マイカ結晶に帰属されるシャープな第5ピークをさらに有することを特徴とする請求項10又は11に記載のガラスセラミック材料。
    The X-ray diffraction pattern is
    The glass ceramic material according to claim 10 or 11, further comprising a sharp fifth peak that is adjacent to the first peak at 2θ between 19 ° and 21 ° and is attributed to a mica crystal.
  13.  厚さ1.5mmの試料について色温度2850Kの光の透過率が33%以上であることを特徴とする請求項1~12のいずれか一項に記載のガラスセラミック材料。 The glass ceramic material according to any one of claims 1 to 12, wherein a sample having a thickness of 1.5 mm has a light transmittance of 33% or more at a color temperature of 2850K.
  14.  硬度が300Hv~600Hvであることを特徴とする請求項1~13のいずれか一項に記載のガラスセラミック材料。 The glass-ceramic material according to any one of claims 1 to 13, wherein the hardness is 300Hv to 600Hv.
  15.  熔融固化したガラスセラミック材料の熔融固化体に対し、550℃~700℃の熱処理を施した後、750℃~1000℃の熱処理をさらに施して作製されたことを特徴とする請求項1~14のいずれか一項に記載のガラスセラミック材料。 The melt-solidified glass-ceramic material is prepared by performing a heat treatment at 550 ° C to 700 ° C and further performing a heat treatment at 750 ° C to 1000 ° C. The glass-ceramic material as described in any one.
  16.  SiO、Al、KCO、MgO、CaCO、MgF、及びLiCOを混合して混合物を作製する工程と、
     前記混合物を1100℃~1600℃で熔解して熔解物を作製する工程と、
     前記熔解物を成型して成型物を作製する工程と、
     前記成型物を550℃~700℃で熱処理する工程と、
     前記熱処理後、前記成型物を750℃~1000℃でさらに熱処理する工程と、を含み、
     前記混合物は、SiO、Al、KCO、MgO、CaCO、MgF、及びLiCOの合計質量を基本として、
    42質量%以上~60質量%以下のSiO
    7質量%以上~19質量%以下のAl
    0.5質量%以上~6質量%以下のKCO
    4質量%以上~19質量%以下のMgO、
    3質量%以上~12質量%以下のCaCO
    7質量%以上~20質量%以下のMgF、及び
    1質量%以上~10質量%以下のLiCOを含有する、
    ことを特徴とするガラスセラミック材料の製造方法。
    Mixing SiO 2 , Al 2 O 3 , K 2 CO 3 , MgO, CaCO 3 , MgF 2 , and Li 2 CO 3 to produce a mixture;
    Melting the mixture at 1100 ° C. to 1600 ° C. to produce a melt;
    Molding the melt to produce a molded product;
    Heat treating the molded product at 550 ° C. to 700 ° C .;
    After the heat treatment, further heat-treating the molding at 750 ° C. to 1000 ° C.,
    The mixture, SiO 2, Al 2 O 3 , K 2 CO 3, MgO, a total mass of CaCO 3, MgF 2, and Li 2 CO 3 as a base,
    42 mass% to 60 mass% of SiO 2 ,
    7% by mass to 19% by mass of Al 2 O 3 ,
    0.5 mass% to 6 mass% of K 2 CO 3 ,
    4% to 19% by weight of MgO,
    3% by mass to 12% by mass of CaCO 3 ,
    7% by mass to 20% by mass of MgF 2 and 1% by mass to 10% by mass of Li 2 CO 3
    A method for producing a glass-ceramic material.
  17.  請求項1~15のいずれか一項に記載のガラスセラミック材料を備えることを特徴とする歯科用補綴物。 A dental prosthesis comprising the glass ceramic material according to any one of claims 1 to 15.
  18.  請求項16に記載の製造方法によって製造されたガラスセラミック材料を備えることを特徴とする歯科用補綴物。 A dental prosthesis comprising the glass ceramic material produced by the production method according to claim 16.
PCT/JP2014/065933 2013-06-18 2014-06-16 Glass ceramic material, method for producing same, and dental prosthesis WO2014203863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013127098A JP6009995B2 (en) 2013-06-18 2013-06-18 Glass-ceramic material, method for producing the same, and dental prosthesis
JP2013-127098 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014203863A1 true WO2014203863A1 (en) 2014-12-24

Family

ID=52104595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065933 WO2014203863A1 (en) 2013-06-18 2014-06-16 Glass ceramic material, method for producing same, and dental prosthesis

Country Status (2)

Country Link
JP (1) JP6009995B2 (en)
WO (1) WO2014203863A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270244A (en) * 1985-09-21 1987-03-31 Olympus Optical Co Ltd Dental crown material
JPH0193439A (en) * 1987-10-02 1989-04-12 Korukooto Kk Production of crystallized glass for dental material and embedding material
JPH05306141A (en) * 1991-03-07 1993-11-19 Hoya Corp Glass ceramics and artificial crown using the same
JPH07126038A (en) * 1993-10-28 1995-05-16 Olympus Optical Co Ltd Method for controlling transparency of glass ceramics
JPH08175846A (en) * 1994-12-26 1996-07-09 Sumitomo Osaka Cement Co Ltd Crystallized glass material containing mica type crystal as main crystalline phase and its production
JP2000500730A (en) * 1996-03-15 2000-01-25 フラウンホーファー、ゲゼルシャフト、ツール、フェルデルング、デァ、アンゲヴァンテン、フォルシュング、エー、ファウ High rigid transparent mica-glass ceramic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270244A (en) * 1985-09-21 1987-03-31 Olympus Optical Co Ltd Dental crown material
JPH0193439A (en) * 1987-10-02 1989-04-12 Korukooto Kk Production of crystallized glass for dental material and embedding material
JPH05306141A (en) * 1991-03-07 1993-11-19 Hoya Corp Glass ceramics and artificial crown using the same
JPH07126038A (en) * 1993-10-28 1995-05-16 Olympus Optical Co Ltd Method for controlling transparency of glass ceramics
JPH08175846A (en) * 1994-12-26 1996-07-09 Sumitomo Osaka Cement Co Ltd Crystallized glass material containing mica type crystal as main crystalline phase and its production
JP2000500730A (en) * 1996-03-15 2000-01-25 フラウンホーファー、ゲゼルシャフト、ツール、フェルデルング、デァ、アンゲヴァンテン、フォルシュング、エー、ファウ High rigid transparent mica-glass ceramic

Also Published As

Publication number Publication date
JP6009995B2 (en) 2016-10-19
JP2015000837A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
US11840476B2 (en) Zirconia-toughened glass ceramics
Hill et al. The influence of strontium substitution in fluorapatite glasses and glass-ceramics
WO2015067643A1 (en) Lithium disilicate-apatite glass-ceramic comprising transition metal oxide
JP2009067639A5 (en)
US9701575B2 (en) Powder, methods for manufacturing and compacting a powder, and bodies produced therefrom
EP3013762B1 (en) Leucite glass ceramics
WO2015155038A1 (en) Glass ceramic comprising a quartz-mix crystal phase
EP3093276A2 (en) Glass fiber composition and glass fiber and composite material thereof
Boudchicha et al. Synthesis of glass ceramics from kaolin and dolomite mixture
Salimkhani et al. In situ synthesis of leucite‐based feldspathic dental porcelain with minor kalsilite and Fe2O3 impurities
Satyanarayana et al. Influence of ZrO2 and P2O5 addition on phase formation, optical transmittance and microhardness in lithium disilicate based glass-ceramics
JP6009995B2 (en) Glass-ceramic material, method for producing the same, and dental prosthesis
CN107235636B (en) Glass, preparation method and application thereof
JP2016113314A (en) Glass ceramic material and method for producing the same, and product for dentistry
Zhang et al. Effect of TiO2 on crystallization and mechanical properties of MgO–Al2O3–SiO2 glasses containing P2O5
Zhang et al. Effect of alumina on the strength, fracture toughness, and crystal structure of fluorcanasite glass‐ceramics
Zhang et al. Synthesis of leucite from potash feldspar
KR101893144B1 (en) Friction material comprising potassium titanate and method for preparing the same by melting method
JP6301176B2 (en) Glass ceramic composition and glass ceramic sintered body
Gaddam et al. Lithium disilicate based glass-ceramics for dental applications
Jamaludin et al. The effect of CaCO3 addition on the crystallization behavior of ZnO crystal glaze fired at different gloss firing and crystallization temperatures
Almuhamadi et al. Diopside glass-ceramics for dental and biomedical applications
김다미 Microstructure engineering, mechanical properties, and coloration of lithium disilicate glass-ceramics
Salman et al. Crystallization and thermo-mechanical properties of Li2O-ZnO-CaO-SiO2 glass-ceramics with In2O3 and Fe2O3 additives
Barbieri et al. Colouring inorganic oxides in MgO CaO Al2O3 SiO2 glass-ceramic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813562

Country of ref document: EP

Kind code of ref document: A1