WO2014203809A1 - Inductor, magnetic body, converter, and power conversion device - Google Patents

Inductor, magnetic body, converter, and power conversion device Download PDF

Info

Publication number
WO2014203809A1
WO2014203809A1 PCT/JP2014/065696 JP2014065696W WO2014203809A1 WO 2014203809 A1 WO2014203809 A1 WO 2014203809A1 JP 2014065696 W JP2014065696 W JP 2014065696W WO 2014203809 A1 WO2014203809 A1 WO 2014203809A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
metal particles
soft magnetic
less
reactor
Prior art date
Application number
PCT/JP2014/065696
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 淳
和嗣 草別
和宏 稲葉
茂樹 枡田
貴稔 瀧川
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Publication of WO2014203809A1 publication Critical patent/WO2014203809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Definitions

  • the present invention relates to a magnetic body used for a magnetic core constituting an electromagnetic component, a reactor using the magnetic body, a converter using the reactor, and a power conversion device using the converter.
  • Reactor is one of the circuit components that perform voltage step-up and step-down operations.
  • the reactor is used in a converter mounted on a vehicle such as a hybrid vehicle.
  • the reactor includes a combination of a coil and a magnetic core having a portion inserted into the coil.
  • the magnetic core is usually configured by combining a plurality of core pieces because it is necessary to provide a portion to be inserted into the coil.
  • Patent Document 1 discloses a reactor including a coil formed by winding a winding and a magnetic core inserted through the coil, and the magnetic core is configured by combining a plurality of core pieces. Further, Patent Document 1 discloses that the relative permeability of each core piece is made different in order to reduce the leakage magnetic flux, and the core piece is a compact formed by press-molding soft magnetic powder. Examples thereof include a molded body, a molded cured body containing soft magnetic powder and a resin, and a laminated body in which electromagnetic steel sheets are laminated.
  • Patent Document 2 discloses a soft magnetic composite material having a soft magnetic metal powder such as Fe or Fe—Si alloy and a resin encapsulating the powder in a dispersed state, and examples of the resin include polyamide. . Further, it is disclosed that the filling rate of the soft magnetic powder is 30 volume% or more and 70 volume% or less, and the average particle diameter of the soft magnetic powder is preferably 10 ⁇ m to 100 ⁇ m.
  • Patent Document 3 discloses a low-magnetostrictive green compact using an Fe—Si alloy.
  • the above reactor operates by receiving AC power. For this reason, an alternating magnetic field accompanying the energization of alternating current acts on the magnetic core (magnetic body) constituting the reactor. A minute expansion and contraction phenomenon called magnetostriction occurs in the magnetic material under this alternating magnetic field. Therefore, when a magnetic material that generates magnetostriction is used for the magnetic core of the reactor, the reactor vibrates with the magnetostriction, and noise is generated due to collision of the constituent members of the reactor. Under such circumstances, it is desired to develop a low noise reactor using a magnetic material that hardly generates magnetostriction.
  • Patent Document 1 and the soft magnetic composite material disclosed in Patent Document 2 can set the mixing ratio in a wide range, and the molding pressure is lower than that of the compacted body, and the production is relatively easy. It is easy and the relative permeability can be changed relatively easily.
  • Patent Document 1 and Patent Document 2 have no description about reducing the magnetostriction of the molded cured body or the soft magnetic composite material.
  • Patent Document 3 discloses a low magnetostrictive body using a green compact, but does not describe any low magnetostrictive body such as a molded hardened body having a resin content higher than that of the green compact. Therefore, it is extremely difficult to find a material that has a low magnetostriction out of an almost infinite structure in a material that is not a green compact.
  • a low noise reactor including a low magnetostrictive magnetic material is provided.
  • the present invention also provides a low magnetostrictive magnetic body, which is a magnetic body in which soft magnetic metal particles are dispersed in a resin and can produce a low noise reactor. Furthermore, the converter using a low noise reactor and the power converter device using the converter are provided.
  • a reactor according to one embodiment of the present invention is a reactor including a combination of a coil and a magnetic core having a portion inserted into the coil, wherein at least a part of the magnetic core is Fe—Si.
  • a reactor is a magnetic body in which a plurality of soft magnetic metal particles of an alloy are dispersed in a resin.
  • the content of the soft magnetic metal particles in the magnetic material is 50% by volume or more and 85% by volume or less, and the soft magnetic metal particles have an average particle diameter d50 (mass basis) of 20 ⁇ m.
  • the Si content in the soft magnetic metal particles is 100 ⁇ m or less and 4.5% by mass or more and less than 8.0% by mass.
  • FIG. 3 is a schematic exploded perspective view of a reactor different from FIG. 2.
  • 1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. It is a schematic circuit which shows an example of a power converter device provided with a converter.
  • FIG. 5 is a schematic explanatory diagram of a method for measuring a magnetostriction amount ⁇ p ⁇ p of a magnetic material of a test example.
  • 4 is a graph showing the influence of the Si content in soft magnetic metal particles on the magnetostriction amount ⁇ p ⁇ p.
  • 3 is a graph showing the influence of the average particle diameter of soft magnetic metal particles on the amount of magnetostriction ⁇ p ⁇ p.
  • the reactor according to the embodiment is a reactor including a combination of a coil and a magnetic core having a portion inserted into the coil, wherein at least a part of the magnetic core is an Fe-Si alloy.
  • the reactor is a magnetic body in which a plurality of soft magnetic metal particles are dispersed in a resin.
  • the content of soft magnetic metal particles in the magnetic material is 50 volume% or more and 85 volume% or less
  • the average particle diameter d50 (mass basis) of the soft magnetic metal particles is 20 ⁇ m or more, 100 ⁇ m or less
  • soft magnetism Si content in a metal particle is 4.5 mass% or more and less than 8.0 mass%.
  • the reactor of the above embodiment is a reactor with low noise generated during use, that is, a reactor excellent in quietness. This is because at least a part of the magnetic core of the reactor is made of a magnetic material according to an embodiment described later, and the magnetostriction amount ⁇ p-p of the magnetic material is small. Normally, the magnetic core of the reactor is formed by combining a plurality of core pieces, and therefore noise is likely to occur if the magnetostriction amount ⁇ p-p of each core piece is large. On the other hand, if the core piece of the magnetic core is configured using the magnetic material of the embodiment having a small magnetostriction amount ⁇ p ⁇ p, noise generated when the reactor is used can be reduced.
  • the magnetostriction amount ⁇ p ⁇ p of the magnetic material of the embodiment is small because of the content of the soft magnetic metal particles in the whole, the average particle diameter d50 of the soft magnetic metal particles, and the Si content of the soft magnetic metal particles. This is because the three parameters are within a predetermined range. This point will be described later.
  • the content of soft magnetic metal particles in the magnetic material is 55% by volume or more and 65% by volume or less
  • the average particle diameter d50 of the soft magnetic metal particles is 55 ⁇ m or more
  • 90 ⁇ m or less soft magnetism
  • the form which is Si content in a metal particle is 6.0 mass% or more and less than 7.0 mass% can be mentioned.
  • the magnetostriction amount ⁇ p-p of the magnetic material can be further reduced.
  • the converter of ⁇ 4> embodiment is provided with the reactor of the said embodiment.
  • the above converter is excellent in quietness. This is because the reactor according to the embodiment having excellent silence is provided. By applying the converter of this embodiment to a hybrid vehicle, for example, the quietness of the hybrid vehicle can be improved.
  • the power converter device of ⁇ 5> embodiment is provided with the converter of the said embodiment.
  • the power converter is excellent in quietness. This is because the converter according to the embodiment having excellent silence is provided.
  • the power conversion device of this embodiment to a hybrid vehicle, for example, the quietness of the hybrid vehicle can be improved.
  • the magnetic body of this embodiment is a magnetic body in which a plurality of soft magnetic metal particles of an Fe—Si alloy are dispersed in a resin.
  • the most characteristic feature is that the three parameters of the content of the soft magnetic metal particles in the magnetic material, the average particle diameter d50 of the soft magnetic metal particles, and the Si content in the soft magnetic metal particles are limited to the following predetermined ranges. It is that you are.
  • the magnetostriction amount ⁇ p ⁇ p of the magnetic body of the present embodiment can be suppressed to a very low value. Even if any one of the three parameters falls outside the following predetermined range, the magnetostriction amount ⁇ p ⁇ p of the magnetic material tends to become a high value.
  • an Fe—Si alloy is used as the material of the soft magnetic metal particles.
  • the Si content in the Fe—Si alloy is 4.5 mass% or more and less than 8.0 mass%.
  • a preferable Si content is 6.0% by mass or more and less than 8.0% by mass, and a more preferable Si content is 6.0% by mass or more and 7.0% by mass or less, and a more preferable Si content. Is 6.0 mass% or more and less than 7.0 mass%.
  • the average particle diameter d50 (mass basis) of the soft magnetic metal particles is 20 ⁇ m or more and 100 ⁇ m or less.
  • a preferable average particle diameter is 55 ⁇ m or more and 90 ⁇ m or less.
  • the average particle diameter d50 of the soft magnetic metal particles in the magnetic material is obtained by performing image processing based on an image obtained by an optical method (for example, observation with an optical microscope) and specifying the particle size distribution. good.
  • An insulating coating may be formed on the surface of the soft magnetic metal particles.
  • the insulating coating By forming the insulating coating, it is easy to ensure insulation between the soft magnetic metal particles in the magnetic material. As a result, when a magnetic material is used for, for example, a magnetic core of a reactor, eddy current loss generated in the magnetic core can be effectively suppressed.
  • the insulating film include an insulating film made of a phosphoric acid compound, a silicon compound (including silicone), a zirconium compound, an aluminum compound, a boron compound, or the like.
  • the phosphoric acid compound metal phosphates such as iron phosphate, manganese phosphate, zinc phosphate, and calcium phosphate can be used.
  • the average thickness of the insulating coating is preferably 10 nm or more and 500 nm or less. By setting the average thickness of the insulating coating to 10 nm or more, sufficient insulation between the soft magnetic metal particles can be ensured. On the other hand, by setting the average thickness of the insulating coating to 500 nm or less, it is possible to avoid a decrease in the content of soft magnetic metal particles in the magnetic material.
  • thermosetting resin a thermosetting resin, a light (ultraviolet) curable resin, an electron beam curable resin, a moisture curable resin, a thermoplastic resin, or the like may be used.
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, and silicone resin.
  • oligomer of the photocurable resin examples include urethane acrylate, epoxy acrylate, ester acrylate, acrylate, epoxy, and vinyl ether resins.
  • oligomer of the electron beam curable resin examples include unsaturated polyester, unsaturated acrylic, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, and polyene / polythiol.
  • Examples of the moisture curable resin include a moisture curable epoxy resin and a moisture curable polyurethane resin.
  • thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyethylene terephthalate, acrylonitrile butadiene copolymer resin, polybutylene terephthalate, polyvinylidene chloride, polycarbonate, polyamide, polyacetal, polyimide, methacrylic resin, fluorine resin, polyphenylene sulfide, etc. Is mentioned.
  • the content of the soft magnetic metal particles in the magnetic material is 50% by volume or more and 85% by volume or less.
  • the content of the soft magnetic metal particle is preferably 50% by volume or more and 75% by volume or less, and the content of the soft magnetic metal particle is more preferably 55% by volume or more and 65% by volume or less.
  • the portion other than the soft magnetic metal particles in the magnetic material may be considered to be basically composed of a resin, but may contain a material other than a resin such as a filler as long as it is in a very small amount.
  • ⁇ Method of manufacturing magnetic material For example, injection molding can be used.
  • a thermoplastic resin such as a polyamide resin is heated, and the softened thermoplastic resin and soft magnetic metal powder (aggregate of soft magnetic metal particles) are mixed.
  • the magnetic body can be obtained by injecting the mixture into a mold.
  • the magnetic body can be obtained by compression molding in which the mixture is compressed in a mold or extrusion molding in which the mixture is extruded from a die.
  • FIGS. 1 is a schematic perspective view of a reactor 1
  • FIG. 2 is a schematic exploded perspective view of a combination 10 provided in the reactor 1
  • FIG. 3 is a schematic exploded perspective view of a combination 10 ′ having a magnetic core 3 different from that in FIG. is there.
  • the reactor 1 will be described with reference to FIGS. It should be noted that the shapes of reactors 1 and 1 ′ and their constituent members described with reference to FIGS. 1 to 3 are merely examples, and are not limited to such shapes.
  • a reactor 1 shown in FIG. 1 is a combined body 10 of a coil 2 and a magnetic core 3.
  • the reactor 1 may be configured to include a case for housing the combined body 10, and in that case, a sealing resin for sealing the combined body 10 disposed in the case may be provided.
  • the coil 2 of the reactor 1 includes a pair of coil elements 2A and 2B, and the magnetic core 3 includes a pair of inner core portions 31 and 31 and a pair of outer core portions 32 and 32 (see particularly FIG. 2).
  • the coil 2 provided in the combined body 10 includes a pair of coil elements 2A and 2B and a coil element connecting portion 2r that connects the two coil elements 2A and 2B.
  • a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor such as a flat wire or a round wire made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used.
  • Both end portions 2a and 2b of the coil 2 are extended from the turn forming portion and connected to a terminal member (not shown).
  • An external device such as a power source for supplying power is connected to the coil 2 through this terminal member.
  • the magnetic core 3 provided in the combined body 10 is exposed from the pair of inner core portions 31, 31 inserted into the coil elements 2A, 2B, and the coil elements 2A, 2B, and the inner core portions 31, And a pair of outer core portions 32 and 32 sandwiching 31 from both sides.
  • the inner core portions 31 and 31 are substantially rectangular parallelepiped, and the outer core portions 32 and 32 are columnar bodies whose upper and lower surfaces are substantially domed (of course, not limited to this shape). Absent).
  • the inner core portion 31 may further be composed of a plurality of core pieces. In that case, a gap material may be interposed between the core pieces. By interposing the gap material, the inductance of the magnetic core 3 can be adjusted.
  • a bobbin member 51 (bobbin 5) can be disposed on the outer periphery of the inner core portion 31.
  • a frame-shaped bobbin 52 (bobbin 5) can be disposed between the outer core portion 32 and the inner core portion 31.
  • the magnetic body of the present embodiment may be applied to either the inner core portion 31 or the outer core portion 32.
  • both the core portions 31 and 32 may be the magnetic body of the present embodiment.
  • the relative permeability of the inner core portion 31 different from the relative permeability of the outer core portion 32, the relative permeability of the entire magnetic core 3 can be adjusted, and the magnetic core 3 can hardly be magnetically saturated. Since the ratio of the resin in the magnetic body of this embodiment is relatively high, the relative permeability of the magnetic body of this embodiment tends to be low. Therefore, the inner core portion 31 is configured with the magnetic body of the present embodiment, and the outer core portion 32 is configured with the compacted body having a relatively high relative permeability, or vice versa. The relative magnetic permeability of the entire magnetic core 3 is adjusted.
  • a compacting body is a magnetic body obtained by compression-molding soft magnetic metal particles.
  • a reactor 1 ′ including an assembly 10 ′ having a magnetic core division shape and a bobbin shape different from the combination 10 described with reference to FIG. 2 will be described with reference to FIG. 3.
  • the coil 2 provided in the reactor 1 ′ of FIG. 3 has the same configuration as the coil 2 of FIG.
  • the external appearance of the reactor 1 ' is substantially the same as the reactor 1 shown in FIG.
  • the magnetic core 3 of the reactor 1 ′ shown in FIG. 3 is configured by combining two divided core pieces 35, 35 each having a substantially U shape when viewed from above.
  • Each divided core piece 35 includes a base portion 35A and a pair of projecting portions 35B and 35B extending from the base portion 35A toward the coil 2.
  • the base portion 35A is a portion corresponding to the outer core portion 32 of FIG.
  • the upper end surface of the base portion 35A is flush with the upper end surfaces of the overhang portions 35B and 35B, but the lower end surface of the base portion 35A is lower than the lower end surfaces of the overhang portions 35B and 35B. Therefore, when the split core pieces 35 and 35 are assembled to the coil 2, the lower end surface of the base portion 35 ⁇ / b> A of the split core piece 35 is flush with the lower end surface of the coil 2.
  • the overhang portions 35B and 35B are portions having approximately half the length of the coil elements 2A and 2B, respectively. Therefore, when the two divided core pieces 35 and 35 are inserted into the coil elements 2A and 2B from both ends of the coil elements 2A and 2B, respectively, the overhanging portion 35B of one divided core piece 35 and the other divided piece are separated. A portion corresponding to the inner core portion 31 in FIG. 2 is formed by the overhang portion 35 ⁇ / b> B of the core piece 35.
  • the bobbin 5 shown in FIG. 3 includes a pair of bobbin members 55 and 56. Both bobbin members 55 and 56 include a frame-shaped portion 560 and a pair of cylindrical portions 561 and 561.
  • the frame-shaped part 560 plays a role similar to that of the frame-shaped bobbin 52 of FIG. 2, and the cylindrical part 561 plays a role similar to that of the bobbin member 51 of FIG.
  • the reactor 1 having the above-described configuration is used in applications where the energization conditions are, for example, maximum current (direct current): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle It can be suitably used as a component part of a vehicle-mounted power conversion device such as a hybrid vehicle. In this application, it is expected that an inductance satisfying 10 ⁇ H or more and 2 mH or less of the inductance when the DC current is 0 A and 10% or more of the inductance when the maximum current is applied is 10% or more can be suitably used.
  • the reactor 1 is used as a component part of a power conversion device mounted on a vehicle such as a hybrid vehicle or an electric vehicle will be described with reference to FIGS.
  • a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power conversion device 1100 connected to the main battery 1210, and power supplied from the main battery 1210.
  • Motor (load) 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration.
  • vehicle 1200 includes an engine in addition to motor 1220.
  • an inlet is shown as a charge location of the vehicle 1200, it is good also as a form provided with a plug.
  • the power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current.
  • the converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running, and supplies the inverter 1120 with power.
  • converter 1110 steps down DC voltage (input voltage) output from motor 1220 via inverter 1120 to DC voltage suitable for main battery 1210 during regeneration, and causes main battery 1210 to be charged.
  • the inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running, and supplies the motor 1220 with electric power. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
  • the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L, and converts input voltage by ON / OFF repetition (switching operation). (In this case, step-up / down pressure) is performed.
  • a power device such as FET or IGBT is used.
  • the reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that prevents the change of the current to flow through the circuit.
  • the reactor L the reactor described in the above embodiment is used. By using these reactors excellent in quietness, the quietness of the power conversion device 1100 (including the converter 1110) can be improved.
  • the vehicle 1200 is connected to the converter 1110, the power supply converter 1150 connected to the main battery 1210, and the sub-battery 1230 and the main battery 1210 that are power sources of the auxiliary devices 1240.
  • Auxiliary power supply converter 1160 for converting the high voltage 1210 to a low voltage is provided.
  • the converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion.
  • the reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as the reactor of the above-described embodiment, and a reactor whose size and shape are appropriately changed can be used.
  • the reactor of the above-described embodiment can be used for a converter that performs conversion of input power and that only performs step-up or converter that performs only step-down.
  • Example 1 A plurality of magnetic bodies (samples 1 to 10) having different at least one of the content of the soft magnetic metal particles, the average particle diameter of the soft magnetic metal particles, and the Si content in the soft magnetic metal particles are actually produced, The magnetostriction amount ⁇ p ⁇ p of these magnetic materials was measured.
  • a plurality of pellets having different soft magnetic metal particle content, soft magnetic metal particle average particle diameter d50, and soft magnetic metal particle Si content were prepared.
  • the pellets are obtained by dispersing soft magnetic metal particles of Fe—Si alloy in polyamide resin (polyamide 9T manufactured by Kuraray Co., Ltd.).
  • the soft magnetic metal particle content, Si content, and average particle diameter are shown in Table 1 described later.
  • the content of soft magnetic metal particles in the magnetic material and the Si content in soft magnetic metal particles were measured by ICP emission analysis (Inductively Coupled Plasma Atomic Emission Spectrometry).
  • the average particle diameter d50 of the soft magnetic metal particles was obtained by performing image processing based on an image obtained by an optical technique.
  • the prepared pellets were injection-molded to produce strip-shaped samples 1 to 10 magnetic bodies.
  • the length, width, and thickness of the magnetic material may be 60 mm to 90 mm, 10 mm to 13 mm, and 2 mm to 5 mm, respectively.
  • a magnetic material having such dimensions is suitable for measuring the magnetostriction amount ⁇ p-p. It is.
  • the conditions for injection molding were as follows. ⁇ Temperature of magnetic pellet: 320 ° C -Mold temperature: 150 ° C ⁇ Injection pressure: 100 MPa
  • the measurement sample 6 was sandwiched between a pair of U-shaped yokes 71 and 72, and an exciting coil (not shown) was disposed so as to surround the outer periphery of the measurement sample 6. That is, the direction of the alternating magnetic field generated by the exciting coil is made to coincide with the length direction of the magnetic material. Then, while the alternating magnetic field is generated by the exciting coil, the displacement of each of the reflection plates 61 and 62 of the measurement sample 6 is measured by a laser Doppler meter (V100-S manufactured by Denki Giken Co., Ltd.) 81 and 82. 62, the magnetostriction amount ⁇ p-p of the measurement sample 6 was obtained. Table 1 shows the measurement results of each sample.
  • the content of the soft magnetic metal particles is 50% by volume or more and 85% by volume or less, and the Si content of the soft magnetic metal particles is 4.5% by mass or more and less than 8.0% by mass,
  • the magnetostriction amount ⁇ p ⁇ p of samples 1 to 6 in which the average particle diameter of the soft magnetic metal particles was 20 ⁇ m or more and 100 ⁇ m or less was 0.9 ppm or less.
  • the soft magnetic metal particles have a content of 55% by volume or more and 65% by volume or less, the Si content of the soft magnetic metal particles is 6.0% by mass or more and less than 7.0% by mass, and the soft magnetic metal particles
  • the magnetostriction amount ⁇ p ⁇ p of the magnetic materials of Samples 1 to 4 having an average particle diameter of 55 ⁇ m or more and 90 ⁇ m or less was 0.5 ppm or less.
  • the content of the soft magnetic metal particles is 60% by volume or more and 65% by volume or less
  • the Si content of the soft magnetic metal particles is 6.0% by mass or more and less than 7.0% by mass
  • the soft magnetic metal particles Samples 1 and 2 having an average particle size of 80 ⁇ m or more and 90 ⁇ m or less had a magnetostriction amount ⁇ p ⁇ p of 0.35 ppm or less.
  • the magnetostriction amount ⁇ pp of the magnetic material can be reduced by adjusting the three parameters related to the magnetic material within a predetermined range.
  • the absolute value of the magnetostriction amount ⁇ p ⁇ p of the magnetic material having a Si content of 6.5 mass% represents the magnetic flux density of the alternating magnetic field. Even when increased from 0.3T to 0.8T, there was almost no change.
  • the absolute value of the magnetostriction amount ⁇ p ⁇ p of the magnetic material having the Si content of 7.0% by mass or 8.0% by mass tends to increase as the magnetic flux density of the alternating magnetic field increases. It was.
  • Test Example 3 In Test Example 3, in particular, the influence of the average particle diameter d50 of the soft magnetic metal particles on the magnetostriction amount ⁇ pp was examined. Specifically, a powder of soft magnetic metal particles having an average particle diameter d50 of 60 ⁇ m and an Si content of 6.5% by mass was prepared. The powder was divided into two, and a magnetic material was produced using one of the powders. The other powder was classified so as to be a powder composed of soft magnetic metal particles of 44 ⁇ m or less, and a magnetic material was produced using the classified powder. The maximum particle size of the soft magnetic metal particles in the unclassified powder is about 212 ⁇ m.
  • the maximum particle size of the classified powder was 44 ⁇ m, and the average particle size d50 was 20 ⁇ m.
  • the content of soft magnetic metal particles in both magnetic materials was 67% by volume.
  • These magnetic bodies were arranged in an alternating magnetic field, and the magnetostriction amount ⁇ p ⁇ p of the magnetic body was measured with a laser Doppler meter (the configuration of the measuring apparatus is the same as that in FIG. 6).
  • the frequency of the alternating magnetic field was fixed at 500 Hz, and the magnetic flux density of the alternating magnetic field was changed between 0.3T and 0.8T. The result is shown in FIG.
  • the background noise (background noise) was 55 dB.
  • 76 dB of noise was generated in the reactor including the magnetic body of Sample 7.
  • the noise of the reactor including the magnetic body of Sample 2 was 70 dB.
  • the magnetic body in which the content of the soft magnetic metal particles, the average particle diameter of the soft magnetic metal particles, and the Si content in the soft magnetic metal particles are adjusted to a predetermined amount greatly contributes to the improvement of the silence of the reactor. I found out.
  • the reactor according to the supplementary note is a reactor with low noise generated during use, that is, a reactor excellent in quietness. This is because the magnetostriction amount ⁇ p-p of the magnetic material constituting at least a part of the magnetic core of the reactor is small. Normally, the magnetic core of the reactor is formed by combining a plurality of core pieces, and therefore noise is likely to occur if the magnetostriction amount ⁇ p-p of each core piece is large. On the other hand, if the core piece of the magnetic core is formed by using a magnetic material having a small magnetostriction amount ⁇ p ⁇ p, noise generated when the reactor is used can be reduced.
  • the magnetostriction amount ⁇ p ⁇ p of the film becomes 2.0 ppm or less. Therefore, if this magnetic material is used, the silence of the reactor can be improved.
  • the Si content in the reactor according to Supplementary Note 1 and the magnetic material according to Supplementary Note 2 is more preferably more than 3.0 mass%, further preferably 3.5 mass% or more, and 4.0 mass% or more. More preferably. Further, the magnetostriction amount ⁇ p ⁇ p of the magnetic substance is more preferably 1.7 ppm or less, further preferably 1.6 ppm or less, and further preferably 1.55 ppm or less.
  • the magnetic body of the present invention can be used in a reactor that is a component part of a power converter such as a bidirectional DC-DC converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.
  • a power converter such as a bidirectional DC-DC converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.
  • the magnetic body of the present invention can also be used for transformers and choke coils.

Abstract

This inductor is provided with an assembly combining a coil and a a magnetic core having a portion inserted within the coil, wherein at least a portion of the magnetic core is a magnetic body resulting from a plurality of Fe-Si alloy soft magnetic metal particles dispersed in a resin, the content of the soft magnetic metal particles in the magnetic body is 50-85 vol% inclusive, the average particle size (d50) of the soft magnetic metal particles is 20-100 μm inclusive, the Si content of the soft magnetic metal particles is at least 4.5 mass% and less than 8.0 mass%, and the amount of magneto-striction (λp-p) of the magnetic bodies in an alternating magnetic field having a frequency of 500 Hz and a flux density of 0.6 T is no greater than 0.9 ppm.

Description

リアクトル、磁性体、コンバータ、および電力変換装置Reactor, magnetic body, converter, and power converter
 本発明は、電磁部品を構成する磁性コアなどに利用される磁性体、磁性体を用いたリアクトル、リアクトルを用いたコンバータ、コンバータを用いた電力変換装置に関するものである。 The present invention relates to a magnetic body used for a magnetic core constituting an electromagnetic component, a reactor using the magnetic body, a converter using the reactor, and a power conversion device using the converter.
 電圧の昇圧動作や降圧動作を行う回路の部品の一つに、リアクトルがある。リアクトルは、ハイブリッド自動車などの車両に搭載されるコンバータに利用される。そのリアクトルは、コイルと、コイルの内部に挿通される部分を有する磁性コアと、を組み合わせた組合体を備える。磁性コアは通常、コイルの内部に挿通させる部分を備える必要性から、複数のコア片を組み合わせて構成される。 Reactor is one of the circuit components that perform voltage step-up and step-down operations. The reactor is used in a converter mounted on a vehicle such as a hybrid vehicle. The reactor includes a combination of a coil and a magnetic core having a portion inserted into the coil. The magnetic core is usually configured by combining a plurality of core pieces because it is necessary to provide a portion to be inserted into the coil.
 特許文献1には、巻線を巻回してなるコイル、およびこのコイルに挿通される磁性コアを備えるリアクトルが開示されており、その磁性コアは、複数のコア片を組み合わせて構成されている。また、特許文献1には、漏れ磁束を低減するために、各コア片の比透磁率を異ならせることが開示されており、コア片としては、軟磁性粉末を加圧成形してなる圧粉成形体、軟磁性粉末と樹脂とを含む成形硬化体、電磁鋼板を積層した積層体などを挙げている。 Patent Document 1 discloses a reactor including a coil formed by winding a winding and a magnetic core inserted through the coil, and the magnetic core is configured by combining a plurality of core pieces. Further, Patent Document 1 discloses that the relative permeability of each core piece is made different in order to reduce the leakage magnetic flux, and the core piece is a compact formed by press-molding soft magnetic powder. Examples thereof include a molded body, a molded cured body containing soft magnetic powder and a resin, and a laminated body in which electromagnetic steel sheets are laminated.
 特許文献2には、FeやFe-Si合金などの軟磁性金属粉末とこの粉末を分散した状態で内包する樹脂とを有する軟磁性複合材料が開示され、樹脂としてはポリアミドなどが挙げられている。また、軟磁性粉末の充填率は30体積%以上70体積%以下であり、軟磁性粉末の平均粒径は10μm~100μmが好ましいことが開示されている。 Patent Document 2 discloses a soft magnetic composite material having a soft magnetic metal powder such as Fe or Fe—Si alloy and a resin encapsulating the powder in a dispersed state, and examples of the resin include polyamide. . Further, it is disclosed that the filling rate of the soft magnetic powder is 30 volume% or more and 70 volume% or less, and the average particle diameter of the soft magnetic powder is preferably 10 μm to 100 μm.
 特許文献3にはFe-Si合金を用いた低磁歪の圧粉成形体が開示されている。 Patent Document 3 discloses a low-magnetostrictive green compact using an Fe—Si alloy.
特開2009-33055号公報JP 2009-33055 A 特開2008-147403号公報JP 2008-147403 A 特開2006-332328号公報JP 2006-332328 A
 上記リアクトルは、交流の通電を受けて動作する。そのため、交流の通電に伴う交番磁界が、リアクトルを構成する磁性コア(磁性体)に作用する。この交番磁界下の磁性体には磁歪と呼ばれる微小な伸縮現象が生じる。そのため、磁歪が生じる磁性体をリアクトルの磁性コアに利用した場合、磁歪に伴ってリアクトルが振動し、リアクトルの構成部材同士が衝突するなどして騒音が発生する。このような事情から磁歪の生じ難い磁性体を用いた低騒音のリアクトルの開発が望まれている。 The above reactor operates by receiving AC power. For this reason, an alternating magnetic field accompanying the energization of alternating current acts on the magnetic core (magnetic body) constituting the reactor. A minute expansion and contraction phenomenon called magnetostriction occurs in the magnetic material under this alternating magnetic field. Therefore, when a magnetic material that generates magnetostriction is used for the magnetic core of the reactor, the reactor vibrates with the magnetostriction, and noise is generated due to collision of the constituent members of the reactor. Under such circumstances, it is desired to develop a low noise reactor using a magnetic material that hardly generates magnetostriction.
 特許文献1に開示されている成形硬化体や特許文献2に開示されている軟磁性複合材料は、混合比率を広範囲に設定でき、圧粉成形体と比べて成形圧力が低く、作製が比較的容易で、比透磁率なども比較的容易に変化させることができる。しかし、特許文献1や特許文献2には成形硬化体や軟磁性複合材料の磁歪を小さくすることについては全く記載が無い。 The molding hardened body disclosed in Patent Document 1 and the soft magnetic composite material disclosed in Patent Document 2 can set the mixing ratio in a wide range, and the molding pressure is lower than that of the compacted body, and the production is relatively easy. It is easy and the relative permeability can be changed relatively easily. However, Patent Document 1 and Patent Document 2 have no description about reducing the magnetostriction of the molded cured body or the soft magnetic composite material.
 特許文献3では圧粉成形体を用いた低磁歪体が開示されているが、圧粉成形体に比べて樹脂含有量が多い成形硬化体等での低磁歪体については全く記載されていない。したがって、圧粉成形体ではない材料において、無限に近い構成の中から、低磁歪となる材料を探し出すことは極めて困難である。 Patent Document 3 discloses a low magnetostrictive body using a green compact, but does not describe any low magnetostrictive body such as a molded hardened body having a resin content higher than that of the green compact. Therefore, it is extremely difficult to find a material that has a low magnetostriction out of an almost infinite structure in a material that is not a green compact.
 そこで、上記事情に鑑み、低磁歪の磁性体を備える低騒音のリアクトルを提供する。また、軟磁性金属粒子が樹脂中に分散された磁性体であって、低騒音のリアクトルを作製することができる低磁歪の磁性体を提供する。さらに、低騒音のリアクトルを用いたコンバータ、およびそのコンバータを利用した電力変換装置を提供する。 Therefore, in view of the above circumstances, a low noise reactor including a low magnetostrictive magnetic material is provided. The present invention also provides a low magnetostrictive magnetic body, which is a magnetic body in which soft magnetic metal particles are dispersed in a resin and can produce a low noise reactor. Furthermore, the converter using a low noise reactor and the power converter device using the converter are provided.
 本発明の一態様に係るリアクトルは、コイルと、コイルの内部に挿通される部分を有する磁性コアと、を組み合わせた組合体を備えるリアクトルであって、磁性コアの少なくとも一部が、Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体であるリアクトルである。この本発明の一態様に係るリアクトルでは、磁性体に占める軟磁性金属粒子の含有量が、50体積%以上、85体積%以下、軟磁性金属粒子の平均粒径d50(質量基準)が、20μm以上、100μm以下、軟磁性金属粒子におけるSi含有量が、4.5質量%以上、8.0質量%未満である。さらに、本発明の一態様に係るリアクトルでは、磁束密度=0.6T、周波数=500Hzの交番磁界下における磁性体の磁歪量λp-pが0.9ppm以下である。 A reactor according to one embodiment of the present invention is a reactor including a combination of a coil and a magnetic core having a portion inserted into the coil, wherein at least a part of the magnetic core is Fe—Si. A reactor is a magnetic body in which a plurality of soft magnetic metal particles of an alloy are dispersed in a resin. In the reactor according to one aspect of the present invention, the content of the soft magnetic metal particles in the magnetic material is 50% by volume or more and 85% by volume or less, and the soft magnetic metal particles have an average particle diameter d50 (mass basis) of 20 μm. The Si content in the soft magnetic metal particles is 100 μm or less and 4.5% by mass or more and less than 8.0% by mass. Furthermore, in the reactor according to one embodiment of the present invention, the magnetostriction amount λp−p of the magnetic body under an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz is 0.9 ppm or less.
 上記によれば、静粛性に優れるリアクトルを提供することが可能となる。 According to the above, it is possible to provide a reactor having excellent silence.
実施形態に記載されるリアクトルの概略斜視図である。It is a schematic perspective view of the reactor described in embodiment. 実施形態に記載されるリアクトルの概略分解斜視図である。It is a general | schematic disassembled perspective view of the reactor described in embodiment. 図2とは異なるリアクトルの概略分解斜視図である。FIG. 3 is a schematic exploded perspective view of a reactor different from FIG. 2. ハイブリッド自動車の電源系統を模式的に示す概略構成図である。1 is a schematic configuration diagram schematically showing a power supply system of a hybrid vehicle. コンバータを備える電力変換装置の一例を示す概略回路である。It is a schematic circuit which shows an example of a power converter device provided with a converter. 試験例の磁性体の磁歪量λp-pの測定方法の概略説明図である。FIG. 5 is a schematic explanatory diagram of a method for measuring a magnetostriction amount λp−p of a magnetic material of a test example. 磁歪量λp-pに及ぼす軟磁性金属粒子中のSi含有量の影響を示すグラフである。4 is a graph showing the influence of the Si content in soft magnetic metal particles on the magnetostriction amount λp−p. 磁歪量λp-pに及ぼす軟磁性金属粒子の平均粒径の影響を示すグラフである。3 is a graph showing the influence of the average particle diameter of soft magnetic metal particles on the amount of magnetostriction λp−p.
[本発明の実施形態の説明]
 最初に本発明に係る実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment according to the present invention will be listed and described.
<1>実施形態のリアクトルは、コイルと、コイルの内部に挿通される部分を有する磁性コアと、を組み合わせた組合体を備えるリアクトルであって、磁性コアの少なくとも一部が、Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体であるリアクトルである。このリアクトルでは、磁性体に占める軟磁性金属粒子の含有量が、50体積%以上、85体積%以下、軟磁性金属粒子の平均粒径d50(質量基準)が、20μm以上、100μm以下、軟磁性金属粒子におけるSi含有量が、4.5質量%以上、8.0質量%未満である。さらに、このリアクトルでは、磁束密度=0.6T、周波数=500Hzの交番磁界下における磁性体の磁歪量λp-pが0.9ppm以下である。 <1> The reactor according to the embodiment is a reactor including a combination of a coil and a magnetic core having a portion inserted into the coil, wherein at least a part of the magnetic core is an Fe-Si alloy. The reactor is a magnetic body in which a plurality of soft magnetic metal particles are dispersed in a resin. In this reactor, the content of soft magnetic metal particles in the magnetic material is 50 volume% or more and 85 volume% or less, the average particle diameter d50 (mass basis) of the soft magnetic metal particles is 20 μm or more, 100 μm or less, and soft magnetism. Si content in a metal particle is 4.5 mass% or more and less than 8.0 mass%. Furthermore, in this reactor, the magnetostriction amount λp−p of the magnetic material under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz is 0.9 ppm or less.
 上記実施形態のリアクトルは、使用時に発生する騒音が小さいリアクトル、即ち静粛性に優れるリアクトルである。それは、リアクトルの磁性コアの少なくとも一部が、後述する実施形態の磁性体で構成されており、その磁性体の磁歪量λp-pが小さいからである。通常、リアクトルの磁性コアは複数のコア片を組み合わせてなるため、各コア片の磁歪量λp-pが大きいと、騒音が発生し易い。これに対して、磁歪量λp-pの小さい実施形態の磁性体を用いて磁性コアのコア片を構成すれば、リアクトルの使用時に発生する騒音を低減することができる。 The reactor of the above embodiment is a reactor with low noise generated during use, that is, a reactor excellent in quietness. This is because at least a part of the magnetic core of the reactor is made of a magnetic material according to an embodiment described later, and the magnetostriction amount λp-p of the magnetic material is small. Normally, the magnetic core of the reactor is formed by combining a plurality of core pieces, and therefore noise is likely to occur if the magnetostriction amount λp-p of each core piece is large. On the other hand, if the core piece of the magnetic core is configured using the magnetic material of the embodiment having a small magnetostriction amount λp−p, noise generated when the reactor is used can be reduced.
 ここで、実施形態の磁性体の磁歪量λp-pが小さいのは、全体に占める軟磁性金属粒子の含有量、軟磁性金属粒子の平均粒径d50、および軟磁性金属粒子のSi含有量の三つのパラメーターが所定範囲内にあるからである。この点に関しては後述する。 Here, the magnetostriction amount λp−p of the magnetic material of the embodiment is small because of the content of the soft magnetic metal particles in the whole, the average particle diameter d50 of the soft magnetic metal particles, and the Si content of the soft magnetic metal particles. This is because the three parameters are within a predetermined range. This point will be described later.
<2>実施形態のリアクトルとして、磁性体における軟磁性金属粒子の含有量が、55体積%以上、65体積%以下、軟磁性金属粒子の平均粒径d50が、55μm以上、90μm以下、軟磁性金属粒子におけるSi含有量が、6.0質量%以上、7.0質量%未満である形態を挙げることができる。さらに、このリアクトルでは、磁束密度=0.6T、周波数=500Hzの交番磁界下における磁性体の磁歪量λp-pが0.5ppm以下である。 <2> As the reactor of the embodiment, the content of soft magnetic metal particles in the magnetic material is 55% by volume or more and 65% by volume or less, the average particle diameter d50 of the soft magnetic metal particles is 55 μm or more, 90 μm or less, soft magnetism The form which is Si content in a metal particle is 6.0 mass% or more and less than 7.0 mass% can be mentioned. Further, in this reactor, the magnetostriction amount λp−p of the magnetic material under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz is 0.5 ppm or less.
 上記構成に示すように、磁性体に係る三つのパラメーターをさらに限定することで、磁性体の磁歪量λp-pをさらに低い値にすることができる。 As shown in the above configuration, by further limiting the three parameters related to the magnetic material, the magnetostriction amount λp-p of the magnetic material can be further reduced.
<3>実施形態の磁性体は、Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体であって、全体に占める軟磁性金属粒子の含有量が、50体積%以上、85体積%以下であり、軟磁性金属粒子の平均粒径d50(質量基準)が、20μm以上、100μm以下、軟磁性金属粒子におけるSi含有量が、4.5質量%以上、8.0質量%未満である。さらに、磁束密度=0.6T、周波数=500Hzの交番磁界下におけるこの磁性体の磁歪量λp-pは0.9ppm以下である。 <3> The magnetic body of the embodiment is a magnetic body in which a plurality of soft magnetic metal particles of an Fe—Si alloy are dispersed in a resin, and the content of the soft magnetic metal particles in the whole is 50% by volume or more. 85% by volume or less, the average particle diameter d50 (mass basis) of the soft magnetic metal particles is 20 μm or more and 100 μm or less, and the Si content in the soft magnetic metal particles is 4.5% by weight or more and 8.0% by weight. %. Furthermore, the magnetostriction amount λp−p of this magnetic body under an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz is 0.9 ppm or less.
 上記構成に示すように、全体に占める軟磁性金属粒子の含有量、軟磁性金属粒子の平均粒径、および軟磁性金属粒子のSi含有量の三つのパラメーターが所定範囲内にある場合、磁性体の磁歪量λp-pが非常に低い値になる。具体的には、磁束密度=0.6T、周波数=500Hzの交番磁界における本実施形態の磁性体の磁歪量λp-pは、0.9ppm以下となる。 As shown in the above configuration, when the three parameters of the content of the soft magnetic metal particles in the whole, the average particle diameter of the soft magnetic metal particles, and the Si content of the soft magnetic metal particles are within a predetermined range, The magnetostriction amount λp-p is very low. Specifically, the magnetostriction amount λp−p of the magnetic body of the present embodiment in an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz is 0.9 ppm or less.
<4>実施形態のコンバータは、上記実施形態のリアクトルを備える。 The converter of <4> embodiment is provided with the reactor of the said embodiment.
 上記コンバータは、静粛性に優れる。それは、静粛性に優れる実施形態のリアクトルを備えるからである。この実施形態のコンバータを、例えばハイブリッド自動車に適用することで、ハイブリッド自動車の静粛性を高めることができる。 The above converter is excellent in quietness. This is because the reactor according to the embodiment having excellent silence is provided. By applying the converter of this embodiment to a hybrid vehicle, for example, the quietness of the hybrid vehicle can be improved.
<5>実施形態の電力変換装置は、上記実施形態のコンバータを備える。 The power converter device of <5> embodiment is provided with the converter of the said embodiment.
 上記電力変換装置は、静粛性に優れる。それは、静粛性に優れる実施形態のコンバータを備えるからである。この実施形態の電力変換装置を、例えばハイブリッド自動車に適用することで、ハイブリッド自動車の静粛性を高めることができる。 The power converter is excellent in quietness. This is because the converter according to the embodiment having excellent silence is provided. By applying the power conversion device of this embodiment to a hybrid vehicle, for example, the quietness of the hybrid vehicle can be improved.
[本発明の実施形態の詳細]
 以下、実施形態に係る磁性体を説明し、次いでその磁性体を用いたリアクトルを説明する。なお、本発明はこれらの例示に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
[Details of the embodiment of the present invention]
Hereinafter, a magnetic body according to the embodiment will be described, and then a reactor using the magnetic body will be described. In addition, this invention is not necessarily limited to these illustrations, is shown by the claim, and intends that all the changes within the claim, the meaning equivalent, and the range are included.
<磁性体>
 本実施形態の磁性体は、Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体である。その最も特徴とするところは、磁性体における軟磁性金属粒子の含有量、軟磁性金属粒子の平均粒径d50、および軟磁性金属粒子におけるSi含有量の三つのパラメーターが下記所定範囲に限定されていることである。その結果として、本実施形態の磁性体の磁歪量λp-pは、非常に低い値に抑えられる。三つのパラメーターのいずれか一つであっても下記所定範囲を外れると、磁性体の磁歪量λp-pは、高い値になる傾向にある。
<Magnetic material>
The magnetic body of this embodiment is a magnetic body in which a plurality of soft magnetic metal particles of an Fe—Si alloy are dispersed in a resin. The most characteristic feature is that the three parameters of the content of the soft magnetic metal particles in the magnetic material, the average particle diameter d50 of the soft magnetic metal particles, and the Si content in the soft magnetic metal particles are limited to the following predetermined ranges. It is that you are. As a result, the magnetostriction amount λp−p of the magnetic body of the present embodiment can be suppressed to a very low value. Even if any one of the three parameters falls outside the following predetermined range, the magnetostriction amount λp−p of the magnetic material tends to become a high value.
 ≪軟磁性金属粒子≫
 本実施形態における磁性体では、軟磁性金属粒子の材質として、Fe-Si合金を利用する。そのFe-Si合金におけるSi含有量は、4.5質量%以上、8.0質量%未満とする。好ましいSi含有量は、6.0質量%以上、8.0質量%未満であり、より好ましいSi含有量は、6.0質量%以上、7.0質量%以下であり、さらに好ましいSi含有量は、6.0質量%以上、7.0質量%未満である。
≪Soft magnetic metal particles≫
In the magnetic body in this embodiment, an Fe—Si alloy is used as the material of the soft magnetic metal particles. The Si content in the Fe—Si alloy is 4.5 mass% or more and less than 8.0 mass%. A preferable Si content is 6.0% by mass or more and less than 8.0% by mass, and a more preferable Si content is 6.0% by mass or more and 7.0% by mass or less, and a more preferable Si content. Is 6.0 mass% or more and less than 7.0 mass%.
 軟磁性金属粒子の平均粒径d50(質量基準)は、20μm以上、100μm以下とする。好ましい平均粒径は、55μm以上、90μm以下である。なお、磁性体における軟磁性金属粒子の平均粒径d50は、光学的手法(例えば、光学顕微鏡による観察)による画像をもとに、画像処理を行ない、粒径の分布を特定することで求めると良い。 The average particle diameter d50 (mass basis) of the soft magnetic metal particles is 20 μm or more and 100 μm or less. A preferable average particle diameter is 55 μm or more and 90 μm or less. The average particle diameter d50 of the soft magnetic metal particles in the magnetic material is obtained by performing image processing based on an image obtained by an optical method (for example, observation with an optical microscope) and specifying the particle size distribution. good.
 軟磁性金属粒子の表面には、絶縁被膜が形成されていてもよい。絶縁被膜を形成することで、磁性体における軟磁性金属粒子同士の絶縁を確保し易い。その結果、磁性体を例えばリアクトルの磁性コアに利用した際、磁性コアに生じる渦電流損を効果的に抑制することができる。絶縁被膜としては、リン酸化合物、珪素化合物(シリコーンを含む)、ジルコニウム化合物、アルミニウム化合物、あるいは硼素化合物などでできた絶縁被膜を挙げることができる。リン酸化合物としては、リン酸鉄やリン酸マンガン、リン酸亜鉛、リン酸カルシウムなどのリン酸金属塩を利用することができる。 An insulating coating may be formed on the surface of the soft magnetic metal particles. By forming the insulating coating, it is easy to ensure insulation between the soft magnetic metal particles in the magnetic material. As a result, when a magnetic material is used for, for example, a magnetic core of a reactor, eddy current loss generated in the magnetic core can be effectively suppressed. Examples of the insulating film include an insulating film made of a phosphoric acid compound, a silicon compound (including silicone), a zirconium compound, an aluminum compound, a boron compound, or the like. As the phosphoric acid compound, metal phosphates such as iron phosphate, manganese phosphate, zinc phosphate, and calcium phosphate can be used.
 絶縁被膜の平均厚さは、10nm以上、500nm以下とすることが好ましい。絶縁被膜の平均厚さを10nm以上とすることで、軟磁性金属粒子間の絶縁を十分に確保することができる。一方、絶縁被膜の平均厚さを500nm以下とすることで、磁性体における軟磁性金属粒子の含有量が低下することを回避することができる。 The average thickness of the insulating coating is preferably 10 nm or more and 500 nm or less. By setting the average thickness of the insulating coating to 10 nm or more, sufficient insulation between the soft magnetic metal particles can be ensured. On the other hand, by setting the average thickness of the insulating coating to 500 nm or less, it is possible to avoid a decrease in the content of soft magnetic metal particles in the magnetic material.
 ≪樹脂≫
 軟磁性金属粒子が分散される樹脂としては、熱硬化性樹脂、光(紫外線)硬化性樹脂、電子線硬化性樹脂、湿気硬化性樹脂、熱可塑性樹脂などが利用できる可能性がある。
≪Resin≫
As the resin in which the soft magnetic metal particles are dispersed, a thermosetting resin, a light (ultraviolet) curable resin, an electron beam curable resin, a moisture curable resin, a thermoplastic resin, or the like may be used.
 熱硬化性樹脂としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン、ジアリルフタレート樹脂、シリコーン樹脂などが挙げられる。 Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, and silicone resin.
 光硬化性樹脂のオリゴマーとしては、ウレタンアクリレート系、エポキシアクリレート系、エステルアクリレート系、アクリレート系、エポキシ系、ビニルエーテル系の樹脂が挙げられる。 Examples of the oligomer of the photocurable resin include urethane acrylate, epoxy acrylate, ester acrylate, acrylate, epoxy, and vinyl ether resins.
 電子線硬化性樹脂のオリゴマーとしては、不飽和ポリエステル、不飽和アクリル、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエン/ポリチオールなどが挙げられる。 Examples of the oligomer of the electron beam curable resin include unsaturated polyester, unsaturated acrylic, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, and polyene / polythiol.
 湿気硬化性樹脂としては、湿気硬化型エポキシ樹脂や湿気硬化型ポリウレタン樹脂などが挙げられる。 Examples of the moisture curable resin include a moisture curable epoxy resin and a moisture curable polyurethane resin.
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリエチレンテレフタレート、アクリロニトリルブタジエン共重合樹脂、ポリブチレンテレフタレート、ポリ塩化ビニリデン、ポリカーボネート、ポリアミド、ポリアセタール、ポリイミド、メタクリル樹脂、フッ素樹脂、ポリフェニレンサルファイドなどが挙げられる。 Examples of thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyethylene terephthalate, acrylonitrile butadiene copolymer resin, polybutylene terephthalate, polyvinylidene chloride, polycarbonate, polyamide, polyacetal, polyimide, methacrylic resin, fluorine resin, polyphenylene sulfide, etc. Is mentioned.
 ≪軟磁性金属粒子の割合≫
 磁性体における軟磁性金属粒子の含有量は、50体積%以上、85体積%以下とする。好ましい軟磁性金属粒子の含有量は、50体積%以上、75体積%以下であり、より好ましい軟磁性金属粒子の含有量は、55体積%以上、65体積%以下である。磁性体における軟磁性金属粒子以外の部分は、基本的に樹脂で構成されていると考えて良いが、微量であれば、フィラーなどの樹脂以外の物を含んでいても良い。
≪Proportion of soft magnetic metal particles≫
The content of the soft magnetic metal particles in the magnetic material is 50% by volume or more and 85% by volume or less. The content of the soft magnetic metal particle is preferably 50% by volume or more and 75% by volume or less, and the content of the soft magnetic metal particle is more preferably 55% by volume or more and 65% by volume or less. The portion other than the soft magnetic metal particles in the magnetic material may be considered to be basically composed of a resin, but may contain a material other than a resin such as a filler as long as it is in a very small amount.
 ≪磁性体に係る三つのパラメーターの組合せ≫
 磁性体に係る三つのパラメーターは、上述した所定範囲内で適宜選択することができる。例えば、下記磁性体の磁歪量λp-pは、磁束密度=0.6T、周波数=500Hzの交番磁界下で0.9ppm以下となる。
・軟磁性金属粒子の含有量=50体積%以上、85体積%以下
・軟磁性金属粒子のSi含有量=4.5質量%以上、8.0質量%未満
・軟磁性金属粒子の平均粒径d50=20μm以上、100μm以下
≪Combination of three parameters related to magnetic material≫
The three parameters relating to the magnetic material can be appropriately selected within the predetermined range described above. For example, the magnetostriction amount λp−p of the following magnetic material is 0.9 ppm or less under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz.
-Soft magnetic metal particle content = 50 vol% or more, 85 vol% or less-Si content of soft magnetic metal particles = 4.5 mass% or more, less than 8.0 mass%-Average particle diameter of soft magnetic metal particles d50 = 20 μm or more, 100 μm or less
 また、下記磁性体の磁歪量λp-pは、磁束密度=0.6T、周波数=500Hzの交番磁界下で0.9ppm以下となる。
・軟磁性金属粒子の含有量=50体積%以上、75体積%以下
・軟磁性金属粒子のSi含有量=6.0質量%以上、8.0質量%未満
・軟磁性金属粒子の平均粒径d50=20μm以上、100μm以下
The magnetostriction amount λp−p of the following magnetic material is 0.9 ppm or less under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz.
-Soft magnetic metal particle content = 50 vol% or more and 75 vol% or less-Si content of soft magnetic metal particles = 6.0 mass% or more and less than 8.0 mass%-Average particle diameter of soft magnetic metal particles d50 = 20 μm or more, 100 μm or less
 また、下記磁性体の磁歪量λp-pは、磁束密度=0.6T、周波数=500Hzの交番磁界下で0.5ppm以下となる。
・軟磁性金属粒子の含有量=55体積%以上、65体積%以下
・軟磁性金属粒子のSi含有量=6.0質量%以上、7.0質量%未満
・軟磁性金属粒子の平均粒径d50=55μm以上、90μm以下
The magnetostriction amount λp−p of the following magnetic material is 0.5 ppm or less under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz.
-Soft magnetic metal particle content = 55 vol% or more and 65 vol% or less-Soft magnetic metal particle Si content = 6.0 mass% or more, less than 7.0 mass%-Average particle diameter of soft magnetic metal particles d50 = 55 μm or more, 90 μm or less
 さらに、下記磁性体の磁歪量λp-pは、磁束密度=0.6T、周波数=500Hzの交番磁界下で0.35ppm以下となる。
・軟磁性金属粒子の含有量=60体積%以上、65体積%以下
・軟磁性金属粒子のSi含有量=6.0質量%以上、7.0質量%未満
・軟磁性金属粒子の平均粒径d50=80μm以上、90μm以下
Further, the magnetostriction amount λp−p of the following magnetic material is 0.35 ppm or less under an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz.
-Soft magnetic metal particle content = 60 vol% or more and 65 vol% or less-Soft magnetic metal particle Si content = 6.0 mass% or more, less than 7.0 mass%-Average particle diameter of soft magnetic metal particles d50 = 80 μm or more, 90 μm or less
 ≪磁性体の製造方法≫
 上記磁性体を作製するには、例えば射出成形を利用することができる。例えば、ポリアミド樹脂などの熱可塑性樹脂を加熱し、軟化した熱可塑性樹脂と軟磁性金属粉末(軟磁性金属粒子の集合体)とを混合する。その混合物を金型内に射出することで上記磁性体を得ることができる。その他、上記磁性体は、混合物を金型内で圧縮する圧縮成形や、混合物をダイから押し出す押出成形によって得ることができる可能性がある。
≪Method of manufacturing magnetic material≫
In order to produce the magnetic body, for example, injection molding can be used. For example, a thermoplastic resin such as a polyamide resin is heated, and the softened thermoplastic resin and soft magnetic metal powder (aggregate of soft magnetic metal particles) are mixed. The magnetic body can be obtained by injecting the mixture into a mold. In addition, there is a possibility that the magnetic body can be obtained by compression molding in which the mixture is compressed in a mold or extrusion molding in which the mixture is extruded from a die.
<本実施形態の磁性体の適用例>
 次に、本実施形態の磁性体をリアクトルの磁性コアに適用した例を図1~3に基づいて説明する。図1はリアクトル1の概略斜視図、図2はリアクトル1に備わる組合体10の概略分解斜視図、図3は磁性コア3の構成が図2とは異なる組合体10’の概略分解斜視図である。まず、図1,2を参照してリアクトル1を説明する。なお、図1~3を用いて説明するリアクトル1,1’とその構成部材の形状はあくまで一例に過ぎず、このような形状に限定されるわけではない。
<Application example of magnetic body of this embodiment>
Next, an example in which the magnetic body of this embodiment is applied to a magnetic core of a reactor will be described with reference to FIGS. 1 is a schematic perspective view of a reactor 1, FIG. 2 is a schematic exploded perspective view of a combination 10 provided in the reactor 1, and FIG. 3 is a schematic exploded perspective view of a combination 10 ′ having a magnetic core 3 different from that in FIG. is there. First, the reactor 1 will be described with reference to FIGS. It should be noted that the shapes of reactors 1 and 1 ′ and their constituent members described with reference to FIGS. 1 to 3 are merely examples, and are not limited to such shapes.
 ≪リアクトルの全体構成≫
 図1に示すリアクトル1は、コイル2と磁性コア3との組合体10である。リアクトル1は、組合体10を収納するケースを備える構成であっても良く、その場合にはケース内に配置される組合体10を封止する封止樹脂を設けても良い。このリアクトル1のコイル2は一対のコイル素子2A,2Bを有し、磁性コア3は一対の内側コア部31,31と一対の外側コア部32,32とを備える(特に図2を参照)。
≪Reactor overall structure≫
A reactor 1 shown in FIG. 1 is a combined body 10 of a coil 2 and a magnetic core 3. The reactor 1 may be configured to include a case for housing the combined body 10, and in that case, a sealing resin for sealing the combined body 10 disposed in the case may be provided. The coil 2 of the reactor 1 includes a pair of coil elements 2A and 2B, and the magnetic core 3 includes a pair of inner core portions 31 and 31 and a pair of outer core portions 32 and 32 (see particularly FIG. 2).
 ≪コイル≫
 組合体10(リアクトル1)に備わるコイル2は、図2に示すように、一対のコイル素子2A,2Bと、両コイル素子2A,2Bを連結するコイル素子連結部2rと、を備える。コイル2は、銅やアルミニウム、その合金といった導電性材料からなる平角線や丸線などの導体の外周に、絶縁性材料からなる絶縁被膜を備える被覆線を好適に利用できる。
≪Coil≫
As shown in FIG. 2, the coil 2 provided in the combined body 10 (reactor 1) includes a pair of coil elements 2A and 2B and a coil element connecting portion 2r that connects the two coil elements 2A and 2B. As the coil 2, a coated wire having an insulating coating made of an insulating material on the outer periphery of a conductor such as a flat wire or a round wire made of a conductive material such as copper, aluminum, or an alloy thereof can be suitably used.
 コイル2の両端部2a,2bは、ターン形成部分から引き延ばされて、図示しない端子部材に接続される。この端子部材を介して、コイル2に電力供給を行なう電源などの外部装置(図示せず)が接続される。 Both end portions 2a and 2b of the coil 2 are extended from the turn forming portion and connected to a terminal member (not shown). An external device (not shown) such as a power source for supplying power is connected to the coil 2 through this terminal member.
 ≪磁性コア≫
 組合体10(リアクトル1)に備わる磁性コア3は、各コイル素子2A,2Bの内部に挿入される一対の内側コア部31,31と、コイル素子2A,2Bから露出し、内側コア部31,31をその両側から挟み込む一対の外側コア部32,32とを備える。本例では、内側コア部31,31は略直方体となっており、外側コア部32,32は上面と下面が略ドーム形状の柱状体となっている(もちろん、この形状に限定されるわけではない)。内側コア部31はさらに複数のコア片から構成されていても良く、その場合、各コア片の間にギャップ材を介在させても良い。ギャップ材を介在させることで磁性コア3のインダクタンスを調整することができる。
≪Magnetic core≫
The magnetic core 3 provided in the combined body 10 (reactor 1) is exposed from the pair of inner core portions 31, 31 inserted into the coil elements 2A, 2B, and the coil elements 2A, 2B, and the inner core portions 31, And a pair of outer core portions 32 and 32 sandwiching 31 from both sides. In this example, the inner core portions 31 and 31 are substantially rectangular parallelepiped, and the outer core portions 32 and 32 are columnar bodies whose upper and lower surfaces are substantially domed (of course, not limited to this shape). Absent). The inner core portion 31 may further be composed of a plurality of core pieces. In that case, a gap material may be interposed between the core pieces. By interposing the gap material, the inductance of the magnetic core 3 can be adjusted.
 内側コア部31の外周には、ボビン部材51(ボビン5)を配置することができる。また、外側コア部32と内側コア部31との間には、枠状ボビン52(ボビン5)を配置することができる。これらボビン部材51および枠状ボビン52を用いることで、磁性コア3とコイル2との間の絶縁性を確保しやすくなる。 A bobbin member 51 (bobbin 5) can be disposed on the outer periphery of the inner core portion 31. A frame-shaped bobbin 52 (bobbin 5) can be disposed between the outer core portion 32 and the inner core portion 31. By using the bobbin member 51 and the frame-shaped bobbin 52, it becomes easy to ensure the insulation between the magnetic core 3 and the coil 2.
 ここで、本実施形態の磁性体は、上記内側コア部31と外側コア部32のどちらに適用しても構わない。もちろん、両方のコア部31,32を本実施形態の磁性体としても良い。但し、内側コア部31の比透磁率と外側コア部32の比透磁率とを異ならせることで、磁性コア3全体の比透磁率を調整し、磁性コア3を磁気飽和し難くできる。本実施形態の磁性体における樹脂の割合は比較的高いため、本実施形態の磁性体の比透磁率は低い傾向にある。そこで、本実施形態の磁性体で内側コア部31を構成し、比透磁率が比較的高い傾向にある圧粉成形体で外側コア部32を構成する、あるいはその逆の構成とするなどして、磁性コア3全体の比透磁率を調整する。なお、圧粉成形体とは、軟磁性金属粒子を圧縮成形することで得られた磁性体である。 Here, the magnetic body of the present embodiment may be applied to either the inner core portion 31 or the outer core portion 32. Of course, both the core portions 31 and 32 may be the magnetic body of the present embodiment. However, by making the relative permeability of the inner core portion 31 different from the relative permeability of the outer core portion 32, the relative permeability of the entire magnetic core 3 can be adjusted, and the magnetic core 3 can hardly be magnetically saturated. Since the ratio of the resin in the magnetic body of this embodiment is relatively high, the relative permeability of the magnetic body of this embodiment tends to be low. Therefore, the inner core portion 31 is configured with the magnetic body of the present embodiment, and the outer core portion 32 is configured with the compacted body having a relatively high relative permeability, or vice versa. The relative magnetic permeability of the entire magnetic core 3 is adjusted. In addition, a compacting body is a magnetic body obtained by compression-molding soft magnetic metal particles.
 ≪別構成のリアクトル≫
 図2を用いて説明した組合体10とは磁性コアの分割形状とボビンの形状が異なる組合体10’を備えるリアクトル1’を図3に基づいて説明する。なお、図3のリアクトル1’に備わるコイル2は、図2のコイル2と全く同じ構成を備えるため、その説明は省略する。また、リアクトル1’の外観は、図1に示すリアクトル1とほぼ同じである。
≪Reactor of another configuration≫
A reactor 1 ′ including an assembly 10 ′ having a magnetic core division shape and a bobbin shape different from the combination 10 described with reference to FIG. 2 will be described with reference to FIG. 3. Note that the coil 2 provided in the reactor 1 ′ of FIG. 3 has the same configuration as the coil 2 of FIG. Moreover, the external appearance of the reactor 1 'is substantially the same as the reactor 1 shown in FIG.
 ≪磁性コア≫
 図3に示すリアクトル1’の磁性コア3は、上方から見たときに概略U字状の二つの分割コア片35,35を組み合わせて構成される。各分割コア片35は、基部35Aと、基部35Aからコイル2に向かって延びる一対の張出部35B,35Bと、を備える。
≪Magnetic core≫
The magnetic core 3 of the reactor 1 ′ shown in FIG. 3 is configured by combining two divided core pieces 35, 35 each having a substantially U shape when viewed from above. Each divided core piece 35 includes a base portion 35A and a pair of projecting portions 35B and 35B extending from the base portion 35A toward the coil 2.
 上記基部35Aは、図2の外側コア部32に相当する部分である。この基部35Aの上端面は張出部35B,35Bの上端面と面一になっているが、基部35Aの下端面は張出部35B,35Bの下端面よりも低くなっている。そのため、分割コア片35,35をコイル2に組み付けたとき、分割コア片35の基部35Aの下端面がコイル2の下端面と面一になる。 The base portion 35A is a portion corresponding to the outer core portion 32 of FIG. The upper end surface of the base portion 35A is flush with the upper end surfaces of the overhang portions 35B and 35B, but the lower end surface of the base portion 35A is lower than the lower end surfaces of the overhang portions 35B and 35B. Therefore, when the split core pieces 35 and 35 are assembled to the coil 2, the lower end surface of the base portion 35 </ b> A of the split core piece 35 is flush with the lower end surface of the coil 2.
 一方、張出部35B,35Bはそれぞれ、コイル素子2A,2Bの約半分の長さを有する部分である。そのため、二つの分割コア片35,35をそれぞれ、コイル素子2A,2Bの両端側からコイル素子2A,2Bの内部に挿入したとき、一方の分割コア片35の張出部35Bと、他方の分割コア片35の張出部35Bとで、図2の内側コア部31に相当する部分が形成される。 On the other hand, the overhang portions 35B and 35B are portions having approximately half the length of the coil elements 2A and 2B, respectively. Therefore, when the two divided core pieces 35 and 35 are inserted into the coil elements 2A and 2B from both ends of the coil elements 2A and 2B, respectively, the overhanging portion 35B of one divided core piece 35 and the other divided piece are separated. A portion corresponding to the inner core portion 31 in FIG. 2 is formed by the overhang portion 35 </ b> B of the core piece 35.
 ≪ボビン≫
 図3のボビン5は、一対のボビン部材55,56で構成されている。両ボビン部材55,56は共に、枠状部560と一対の筒状部561,561とを備える。枠状部560は、図2の枠状ボビン52と同様の役割を果たし、筒状部561は、図2のボビン部材51と同様の役割を果たす。
≪Bobbins≫
The bobbin 5 shown in FIG. 3 includes a pair of bobbin members 55 and 56. Both bobbin members 55 and 56 include a frame-shaped portion 560 and a pair of cylindrical portions 561 and 561. The frame-shaped part 560 plays a role similar to that of the frame-shaped bobbin 52 of FIG. 2, and the cylindrical part 561 plays a role similar to that of the bobbin member 51 of FIG.
 ≪リアクトルの効果≫
 以上説明したリアクトル1は、動作時の騒音が小さいリアクトル1となる(後述する試験例2を参照)。それは、磁歪量λp-pが小さい本実施形態の磁性体で内側コア31を構成しているからである。
≪Reactor effect≫
The reactor 1 demonstrated above turns into the reactor 1 with the noise at the time of operation | movement (refer the test example 2 mentioned later). This is because the inner core 31 is composed of the magnetic body of this embodiment having a small magnetostriction amount λp−p.
 ≪リアクトルの用途≫
 上記構成を備えるリアクトル1は、通電条件が、例えば、最大電流(直流):100A~1000A程度、平均電圧:100V~1000V程度、使用周波数:5kHz~100kHz程度である用途、代表的には電気自動車やハイブリッド自動車などの車載用電力変換装置の構成部品に好適に利用することができる。この用途では、直流通電が0Aのときのインダクタンスが、10μH以上2mH以下、最大電流通電時のインダクタンスが、0Aのときのインダクタンスの10%以上を満たすものが好適に利用できると期待される。
≪Use of reactor≫
The reactor 1 having the above-described configuration is used in applications where the energization conditions are, for example, maximum current (direct current): about 100 A to 1000 A, average voltage: about 100 V to 1000 V, and operating frequency: about 5 kHz to 100 kHz, typically an electric vehicle It can be suitably used as a component part of a vehicle-mounted power conversion device such as a hybrid vehicle. In this application, it is expected that an inductance satisfying 10 μH or more and 2 mH or less of the inductance when the DC current is 0 A and 10% or more of the inductance when the maximum current is applied is 10% or more can be suitably used.
 上記リアクトル1を、ハイブリッド自動車や電気自動車といった車両に載置される電力変換装置の構成部品に利用した例を、図4と図5に基づいて説明する。 An example in which the reactor 1 is used as a component part of a power conversion device mounted on a vehicle such as a hybrid vehicle or an electric vehicle will be described with reference to FIGS.
 ハイブリッド自動車や電気自動車などの車両1200は、図4に示すようにメインバッテリ1210と、メインバッテリ1210に接続される電力変換装置1100と、メインバッテリ1210からの供給電力により駆動して走行に利用されるモータ(負荷)1220とを備える。モータ1220は、代表的には、3相交流モータであり、走行時、車輪1250を駆動し、回生時、発電機として機能する。ハイブリッド自動車の場合、車両1200は、モータ1220に加えてエンジンを備える。なお、図4では、車両1200の充電箇所としてインレットを示すが、プラグを備える形態としても良い。 As shown in FIG. 4, a vehicle 1200 such as a hybrid vehicle or an electric vehicle is used for traveling by being driven by a main battery 1210, a power conversion device 1100 connected to the main battery 1210, and power supplied from the main battery 1210. Motor (load) 1220. The motor 1220 is typically a three-phase AC motor, which drives the wheel 1250 when traveling and functions as a generator during regeneration. In the case of a hybrid vehicle, vehicle 1200 includes an engine in addition to motor 1220. In addition, in FIG. 4, although an inlet is shown as a charge location of the vehicle 1200, it is good also as a form provided with a plug.
 電力変換装置1100は、メインバッテリ1210に接続されるコンバータ1110と、コンバータ1110に接続されて、直流と交流との相互変換を行うインバータ1120とを有する。この例に示すコンバータ1110は、車両1200の走行時、200V~300V程度のメインバッテリ1210の直流電圧(入力電圧)を400V~700V程度にまで昇圧して、インバータ1120に給電する。また、コンバータ1110は、回生時、モータ1220からインバータ1120を介して出力される直流電圧(入力電圧)をメインバッテリ1210に適合した直流電圧に降圧して、メインバッテリ1210に充電させている。インバータ1120は、車両1200の走行時、コンバータ1110で昇圧された直流を所定の交流に変換してモータ1220に給電し、回生時、モータ1220からの交流出力を直流に変換してコンバータ1110に出力している。 The power conversion device 1100 includes a converter 1110 connected to the main battery 1210 and an inverter 1120 connected to the converter 1110 and performing mutual conversion between direct current and alternating current. The converter 1110 shown in this example boosts the DC voltage (input voltage) of the main battery 1210 of about 200V to 300V to about 400V to 700V when the vehicle 1200 is running, and supplies the inverter 1120 with power. In addition, converter 1110 steps down DC voltage (input voltage) output from motor 1220 via inverter 1120 to DC voltage suitable for main battery 1210 during regeneration, and causes main battery 1210 to be charged. The inverter 1120 converts the direct current boosted by the converter 1110 into a predetermined alternating current when the vehicle 1200 is running, and supplies the motor 1220 with electric power. During regeneration, the alternating current output from the motor 1220 is converted into direct current and output to the converter 1110. is doing.
 コンバータ1110は、図5に示すように複数のスイッチング素子1111と、スイッチング素子1111の動作を制御する駆動回路1112と、リアクトルLとを備え、ON/OFFの繰り返し(スイッチング動作)により入力電圧の変換(ここでは昇降圧)を行う。スイッチング素子1111には、FET,IGBTなどのパワーデバイスが利用される。リアクトルLは、回路に流れようとする電流の変化を妨げようとするコイルの性質を利用し、スイッチング動作によって電流が増減しようとしたとき、その変化を滑らかにする機能を有する。このリアクトルLとして、上記実施形態に記載のリアクトルを用いる。静粛性に優れるこれらリアクトルを用いることで、電力変換装置1100(コンバータ1110を含む)の静粛性を向上させることができる。 As shown in FIG. 5, the converter 1110 includes a plurality of switching elements 1111, a drive circuit 1112 that controls the operation of the switching elements 1111, and a reactor L, and converts input voltage by ON / OFF repetition (switching operation). (In this case, step-up / down pressure) is performed. For the switching element 1111, a power device such as FET or IGBT is used. The reactor L has the function of smoothing the change when the current is going to increase or decrease by the switching operation by utilizing the property of the coil that prevents the change of the current to flow through the circuit. As the reactor L, the reactor described in the above embodiment is used. By using these reactors excellent in quietness, the quietness of the power conversion device 1100 (including the converter 1110) can be improved.
 ここで、上記車両1200は、コンバータ1110の他、メインバッテリ1210に接続された給電装置用コンバータ1150や、補機類1240の電力源となるサブバッテリ1230とメインバッテリ1210とに接続され、メインバッテリ1210の高圧を低圧に変換する補機電源用コンバータ1160を備える。コンバータ1110は、代表的には、DC-DC変換を行うが、給電装置用コンバータ1150や補機電源用コンバータ1160は、AC-DC変換を行う。給電装置用コンバータ1150のなかには、DC-DC変換を行うものもある。給電装置用コンバータ1150や補機電源用コンバータ1160のリアクトルに、上記実施形態のリアクトルなどと同様の構成を備え、適宜、大きさや形状などを変更したリアクトルを利用することができる。また、入力電力の変換を行うコンバータであって、昇圧のみを行うコンバータや降圧のみを行うコンバータに、上記実施形態のリアクトルなどを利用することもできる。 Here, the vehicle 1200 is connected to the converter 1110, the power supply converter 1150 connected to the main battery 1210, and the sub-battery 1230 and the main battery 1210 that are power sources of the auxiliary devices 1240. Auxiliary power supply converter 1160 for converting the high voltage 1210 to a low voltage is provided. The converter 1110 typically performs DC-DC conversion, while the power supply device converter 1150 and the auxiliary power supply converter 1160 perform AC-DC conversion. Some power supply device converters 1150 perform DC-DC conversion. The reactors of the power supply device converter 1150 and the auxiliary power supply converter 1160 have the same configuration as the reactor of the above-described embodiment, and a reactor whose size and shape are appropriately changed can be used. In addition, the reactor of the above-described embodiment can be used for a converter that performs conversion of input power and that only performs step-up or converter that performs only step-down.
<試験例1>
 全体に占める軟磁性金属粒子の含有量、軟磁性金属粒子の平均粒径、および軟磁性金属粒子におけるSi含有量の少なくとも一つが異なる複数の磁性体(試料1~10)を実際に作製し、それら磁性体の磁歪量λp-pを測定した。
<Test Example 1>
A plurality of magnetic bodies (samples 1 to 10) having different at least one of the content of the soft magnetic metal particles, the average particle diameter of the soft magnetic metal particles, and the Si content in the soft magnetic metal particles are actually produced, The magnetostriction amount λp−p of these magnetic materials was measured.
 ≪磁性体の作製≫
 軟磁性金属粒子の含有量、軟磁性金属粒子の平均粒径d50、および軟磁性金属粒子におけるSi含有量のいずれかが異なる複数のペレットを用意した。ペレットは、ポリアミド樹脂(株式会社クラレ製のポリアミド 9T)に、Fe-Si合金の軟磁性金属粒子を分散させたものである。軟磁性金属粒子の含有量、Si含有量、および平均粒径については、後述する表1に示す。なお、磁性体における軟磁性金属粒子の含有量、および軟磁性金属粒子におけるSi含有量は、ICP発光分析(Inductively Coupled Plasma Atomic Emission Spectrometry)で測定した。また、軟磁性金属粒子の平均粒径d50は、光学的手法による画像をもとに、画像処理を行なうことで求めた。
≪Production of magnetic material≫
A plurality of pellets having different soft magnetic metal particle content, soft magnetic metal particle average particle diameter d50, and soft magnetic metal particle Si content were prepared. The pellets are obtained by dispersing soft magnetic metal particles of Fe—Si alloy in polyamide resin (polyamide 9T manufactured by Kuraray Co., Ltd.). The soft magnetic metal particle content, Si content, and average particle diameter are shown in Table 1 described later. The content of soft magnetic metal particles in the magnetic material and the Si content in soft magnetic metal particles were measured by ICP emission analysis (Inductively Coupled Plasma Atomic Emission Spectrometry). The average particle diameter d50 of the soft magnetic metal particles was obtained by performing image processing based on an image obtained by an optical technique.
 用意したペレットを用いて射出成形を行ない、短冊状の試料1~10の磁性体を作製した。磁性体の長さ、幅、および厚さはそれぞれ、60mm~90mm、10mm~13mm、および2mm~5mmとすれば良く、このような寸法の磁性体であれば磁歪量λp-pの測定に好適である。射出成形の条件は以下の通りであった。
・磁性体ペレットの温度…320℃
・金型の温度…150℃
・射出圧力…100MPa
The prepared pellets were injection-molded to produce strip-shaped samples 1 to 10 magnetic bodies. The length, width, and thickness of the magnetic material may be 60 mm to 90 mm, 10 mm to 13 mm, and 2 mm to 5 mm, respectively. A magnetic material having such dimensions is suitable for measuring the magnetostriction amount λp-p. It is. The conditions for injection molding were as follows.
・ Temperature of magnetic pellet: 320 ° C
-Mold temperature: 150 ° C
・ Injection pressure: 100 MPa
 ≪磁歪量の測定≫
 レーザ・ドップラー計を用いて、磁束密度=0.6T、周波数=500Hzの交番磁界下における試料1~10の磁歪量λp-p(ppm)を測定した。具体的には、まず図6の説明図に示すように、試料1~10の磁性体で構成された測定サンプル6の側面にアルミ製の一対の反射板61,62を取り付けた試験部材を作製した。図6における紙面左右方向が磁性体(測定サンプル6)の長さ方向、奥行き方向が磁性体の幅方向、上下方向が磁性体の厚さ方向である。次に、その測定サンプル6を、一対のU字型のヨーク71,72で挟み込むと共に、測定サンプル6の外周を取り囲むように励磁コイル(図示せず)を配置した。つまり、励磁コイルによって生じる交番磁界の方向が磁性体の長さ方向に一致するようにした。そして、励磁コイルによって交番磁界を発生させつつ、測定サンプル6の各反射板61,62の変位をレーザ・ドップラー計(株式会社電子技研製V100-S)81,82で測定し、両反射板61,62の変位の測定結果に基づいて測定サンプル6の磁歪量λp-pを求めた。各試料の測定結果を表1に示す。
≪Measurement of magnetostriction≫
Using a laser Doppler meter, the magnetostriction amount λp-p (ppm) of samples 1 to 10 under an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz was measured. Specifically, first, as shown in the explanatory diagram of FIG. 6, a test member in which a pair of aluminum reflectors 61 and 62 are attached to the side surface of the measurement sample 6 composed of the magnetic materials of the samples 1 to 10 is manufactured. did. In FIG. 6, the left-right direction of the drawing is the length direction of the magnetic body (measurement sample 6), the depth direction is the width direction of the magnetic body, and the up-down direction is the thickness direction of the magnetic body. Next, the measurement sample 6 was sandwiched between a pair of U-shaped yokes 71 and 72, and an exciting coil (not shown) was disposed so as to surround the outer periphery of the measurement sample 6. That is, the direction of the alternating magnetic field generated by the exciting coil is made to coincide with the length direction of the magnetic material. Then, while the alternating magnetic field is generated by the exciting coil, the displacement of each of the reflection plates 61 and 62 of the measurement sample 6 is measured by a laser Doppler meter (V100-S manufactured by Denki Giken Co., Ltd.) 81 and 82. 62, the magnetostriction amount λp-p of the measurement sample 6 was obtained. Table 1 shows the measurement results of each sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、軟磁性金属粒子の含有量が50体積%以上、85体積%以下で、軟磁性金属粒子のSi含有量が4.5質量%以上、8.0質量%未満で、かつ軟磁性金属粒子の平均粒径が20μm以上、100μm以下である試料1~6の磁歪量λp-pは、0.9ppm以下であった。また、軟磁性金属粒子の含有量が55体積%以上、65体積%以下で、軟磁性金属粒子のSi含有量が6.0質量%以上、7.0質量%未満で、かつ軟磁性金属粒子の平均粒径が55μm以上、90μm以下である試料1~4の磁性体の磁歪量λp-pは、0.5ppm以下であった。特に、軟磁性金属粒子の含有量が60体積%以上、65体積%以下で、軟磁性金属粒子のSi含有量が6.0質量%以上、7.0質量%未満で、かつ軟磁性金属粒子の平均粒径が80μm以上、90μm以下である試料1,2の磁歪量λp-pは0.35ppm以下であった。 As shown in Table 1, the content of the soft magnetic metal particles is 50% by volume or more and 85% by volume or less, and the Si content of the soft magnetic metal particles is 4.5% by mass or more and less than 8.0% by mass, The magnetostriction amount λp−p of samples 1 to 6 in which the average particle diameter of the soft magnetic metal particles was 20 μm or more and 100 μm or less was 0.9 ppm or less. Further, the soft magnetic metal particles have a content of 55% by volume or more and 65% by volume or less, the Si content of the soft magnetic metal particles is 6.0% by mass or more and less than 7.0% by mass, and the soft magnetic metal particles The magnetostriction amount λp−p of the magnetic materials of Samples 1 to 4 having an average particle diameter of 55 μm or more and 90 μm or less was 0.5 ppm or less. In particular, the content of the soft magnetic metal particles is 60% by volume or more and 65% by volume or less, the Si content of the soft magnetic metal particles is 6.0% by mass or more and less than 7.0% by mass, and the soft magnetic metal particles Samples 1 and 2 having an average particle size of 80 μm or more and 90 μm or less had a magnetostriction amount λp−p of 0.35 ppm or less.
 特に、軟磁性金属粒子のSi含有量に着目して試料6~10を比較すると、磁束密度=0.6T、周波数=500Hzの交番磁界下における試料6の磁歪量λp-pは、試料7~10の磁歪量λp-pよりも有意に小さいことが明らかになった。従って、ここで設定した軟磁性金属粒子の平均粒径と含有量においては、Si含有量を4.5質量%以上、8.0質量%未満とすることで、磁歪量λp-pが非常に小さくなることが見出された。 In particular, when samples 6 to 10 are compared by paying attention to the Si content of the soft magnetic metal particles, the magnetostriction amount λp−p of sample 6 under an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz is It was revealed that the magnetostriction amount λp−p of 10 was significantly smaller. Therefore, in the average particle size and content of the soft magnetic metal particles set here, the magnetostriction amount λp−p is very high by setting the Si content to 4.5 mass% or more and less than 8.0 mass%. It was found to be smaller.
 以上のことから、磁性体に係る三つのパラメーターを所定範囲内に調整することで、磁性体の磁歪量λp-pを低減できることが判った。 From the above, it was found that the magnetostriction amount λpp of the magnetic material can be reduced by adjusting the three parameters related to the magnetic material within a predetermined range.
<試験例2>
 試験例2では、特に、磁歪量λp-pに及ぼすSi含有量の影響を調べた。具体的には、Si含有量が6.5質量%、7.0質量%、あるいは8.0質量%の軟磁性金属粒子を用いて三種類の磁性体を作製した。各磁性体における軟磁性金属粒子の含有量はいずれも67体積%、軟磁性金属粒子の平均粒径はいずれも60μmであった。それら磁性体を交番磁界中に配置して、磁性体の磁歪量λp-pをレーザ・ドップラー計で測定した(測定装置の構成は図6と同様である)。交番磁界の周波数は500Hzで固定し、交番磁界の磁束密度は0.3T~0.8Tの間で変化させた。その結果を図7に示す。
<Test Example 2>
In Test Example 2, the influence of the Si content particularly on the magnetostriction amount λp−p was examined. Specifically, three types of magnetic materials were produced using soft magnetic metal particles having a Si content of 6.5 mass%, 7.0 mass%, or 8.0 mass%. The content of the soft magnetic metal particles in each magnetic material was 67% by volume, and the average particle size of the soft magnetic metal particles was 60 μm. These magnetic bodies were arranged in an alternating magnetic field, and the magnetostriction amount λp−p of the magnetic body was measured with a laser Doppler meter (the configuration of the measuring apparatus is the same as that in FIG. 6). The frequency of the alternating magnetic field was fixed at 500 Hz, and the magnetic flux density of the alternating magnetic field was changed between 0.3T and 0.8T. The result is shown in FIG.
 図7の結果から、Si含有量が6.5質量%(6.0質量%以上、7.0質量%未満)の磁性体の磁歪量λp-pの絶対値が、交番磁界の磁束密度を0.3Tから0.8Tに増加させても、殆ど変化しなかった。これに対して、Si含有量が7.0質量%、あるいは8.0質量%の磁性体の磁歪量λp-pの絶対値は、交番磁界の磁束密度の増加に伴い、増加する傾向にあった。 From the results shown in FIG. 7, the absolute value of the magnetostriction amount λp−p of the magnetic material having a Si content of 6.5 mass% (6.0 mass% or more and less than 7.0 mass%) represents the magnetic flux density of the alternating magnetic field. Even when increased from 0.3T to 0.8T, there was almost no change. On the other hand, the absolute value of the magnetostriction amount λp−p of the magnetic material having the Si content of 7.0% by mass or 8.0% by mass tends to increase as the magnetic flux density of the alternating magnetic field increases. It was.
<試験例3>
 試験例3では、特に、磁歪量λp-pに及ぼす軟磁性金属粒子の平均粒径d50の影響を調べた。具体的には、平均粒径d50が60μmでSi含有量が6.5質量%の軟磁性金属粒子の粉末を用意した。その粉末を二つに分け、一方の粉末を利用して磁性体を作製した。他方の粉末は、44μm以下の軟磁性金属粒子からなる粉末となるように分級し、その分級粉末を利用して磁性体を作製した。分級しなかった粉末の軟磁性金属粒子の最大粒径は約212μmである。一方、分級粉末の最大粒径は44μmであり、平均粒径d50は20μmであった。両磁性体における軟磁性金属粒子の含有量はいずれも67体積%であった。それら磁性体を交番磁界中に配置して、磁性体の磁歪量λp-pをレーザ・ドップラー計で測定した(測定装置の構成は図6と同様である)。交番磁界の周波数は500Hzで固定し、交番磁界の磁束密度は0.3T~0.8Tの間で変化させた。その結果を図8に示す。
<Test Example 3>
In Test Example 3, in particular, the influence of the average particle diameter d50 of the soft magnetic metal particles on the magnetostriction amount λpp was examined. Specifically, a powder of soft magnetic metal particles having an average particle diameter d50 of 60 μm and an Si content of 6.5% by mass was prepared. The powder was divided into two, and a magnetic material was produced using one of the powders. The other powder was classified so as to be a powder composed of soft magnetic metal particles of 44 μm or less, and a magnetic material was produced using the classified powder. The maximum particle size of the soft magnetic metal particles in the unclassified powder is about 212 μm. On the other hand, the maximum particle size of the classified powder was 44 μm, and the average particle size d50 was 20 μm. The content of soft magnetic metal particles in both magnetic materials was 67% by volume. These magnetic bodies were arranged in an alternating magnetic field, and the magnetostriction amount λp−p of the magnetic body was measured with a laser Doppler meter (the configuration of the measuring apparatus is the same as that in FIG. 6). The frequency of the alternating magnetic field was fixed at 500 Hz, and the magnetic flux density of the alternating magnetic field was changed between 0.3T and 0.8T. The result is shown in FIG.
 図8の結果から、軟磁性金属粒子の平均粒径d50が60μmである磁性体(分級なし)では、交番磁界の磁束密度の増加に伴う磁歪量λp-pの増加割合が小さい傾向にあることが判った。これに対して、軟磁性金属粒子の平均粒径d50が20μmである磁性体(分級あり)では、磁歪量λp-pが0.9ppm以下であるものの、磁束密度の増加に伴って磁歪量λp-pが徐々に増加する傾向にあった。以上のことから、軟磁性金属粒子の平均粒径d50を本発明の実施形態に規定する範囲内で大きめに設定することによって、磁歪量λp-pが低減する傾向が見出された。 From the result of FIG. 8, in the magnetic material (no classification) whose average particle diameter d50 of the soft magnetic metal particles is 60 μm, the increase rate of the magnetostriction amount λp−p with the increase of the magnetic flux density of the alternating magnetic field tends to be small. I understood. On the other hand, in the magnetic material (with classification) whose soft magnetic metal particles have an average particle diameter d50 of 20 μm, although the magnetostriction amount λp-p is 0.9 ppm or less, the magnetostriction amount λp increases with increasing magnetic flux density. -P tended to increase gradually. From the above, it has been found that the magnetostriction amount λp−p tends to decrease by setting the average particle diameter d50 of the soft magnetic metal particles to be larger within the range defined in the embodiment of the present invention.
<試験例4>
 試験例1の試料2,7の磁性体を図1,2に示す内側コア部31に利用したリアクトル1を作製した。そして、作製したリアクトルを、磁束密度=0.1T、周波数=3kHz(3000Hz)の交番磁界中に載置し、リアクトルの騒音を測定した。暗騒音(バックグラウンドの騒音)は55dBであった。その結果、試料7の磁性体を備えるリアクトルでは76dBの騒音が生じた。これに対して、試料2の磁性体を備えるリアクトルの騒音は70dBであった。このように、軟磁性金属粒子の含有量、軟磁性金属粒子の平均粒径、および軟磁性金属粒子におけるSi含有量を所定量に調節した磁性体は、リアクトルの静粛性の向上に大きく貢献することが判った。
<Test Example 4>
A reactor 1 using the magnetic bodies of Samples 2 and 7 of Test Example 1 as the inner core portion 31 shown in FIGS. And the produced reactor was mounted in the alternating magnetic field of magnetic flux density = 0.1T, and frequency = 3kHz (3000Hz), and the noise of the reactor was measured. The background noise (background noise) was 55 dB. As a result, 76 dB of noise was generated in the reactor including the magnetic body of Sample 7. On the other hand, the noise of the reactor including the magnetic body of Sample 2 was 70 dB. As described above, the magnetic body in which the content of the soft magnetic metal particles, the average particle diameter of the soft magnetic metal particles, and the Si content in the soft magnetic metal particles are adjusted to a predetermined amount greatly contributes to the improvement of the silence of the reactor. I found out.
<付記>
 以上説明した本発明に係る実施形態に関連して、更に以下の付記を開示する。
<Appendix>
The following additional notes are further disclosed in connection with the embodiment according to the present invention described above.
 ≪付記1≫
 コイルと、前記コイルの内部に挿通される部分を有する磁性コアと、を組み合わせた組合体を備えるリアクトルであって、
 前記磁性コアの少なくとも一部が、Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体であり、
 前記磁性体に占める前記軟磁性金属粒子の含有量が、50体積%以上、85体積%以下、
 前記軟磁性金属粒子の平均粒径d50が、20μm以上、100μm以下、
 前記軟磁性金属粒子におけるSi含有量が、3.0質量%以上、8.0質量%以下であり、
 磁束密度=0.6T、周波数=500Hzの交番磁界下における前記磁性体の磁歪量λp-pが2.0ppm以下であるリアクトル。
≪Appendix 1≫
A reactor comprising a combination of a coil and a magnetic core having a portion inserted into the coil,
At least a part of the magnetic core is a magnetic body in which a plurality of soft magnetic metal particles of an Fe-Si alloy are dispersed in a resin,
The content of the soft magnetic metal particles in the magnetic body is 50% by volume or more and 85% by volume or less,
The soft magnetic metal particles have an average particle diameter d50 of 20 μm or more and 100 μm or less,
The Si content in the soft magnetic metal particles is 3.0% by mass or more and 8.0% by mass or less,
A reactor in which an amount of magnetostriction λp-p of the magnetic material is 2.0 ppm or less under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz.
 付記に係るリアクトルは、使用時に発生する騒音が小さいリアクトル、即ち静粛性に優れるリアクトルである。それは、リアクトルの磁性コアの少なくとも一部を構成する磁性体の磁歪量λp-pが小さいからである。通常、リアクトルの磁性コアは複数のコア片を組み合わせてなるため、各コア片の磁歪量λp-pが大きいと、騒音が発生し易い。これに対して、磁歪量λp-pの小さい磁性体を用いて磁性コアのコア片を構成すれば、リアクトルの使用時に発生する騒音を低減することができる。 The reactor according to the supplementary note is a reactor with low noise generated during use, that is, a reactor excellent in quietness. This is because the magnetostriction amount λp-p of the magnetic material constituting at least a part of the magnetic core of the reactor is small. Normally, the magnetic core of the reactor is formed by combining a plurality of core pieces, and therefore noise is likely to occur if the magnetostriction amount λp-p of each core piece is large. On the other hand, if the core piece of the magnetic core is formed by using a magnetic material having a small magnetostriction amount λp−p, noise generated when the reactor is used can be reduced.
 ≪付記2≫
 Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体であって、
 全体に占める前記軟磁性金属粒子の含有量が、50体積%以上、85体積%以下であり、
 前記軟磁性金属粒子の平均粒径d50が、20μm以上、100μm以下で、
 前記軟磁性金属粒子におけるSi含有量が、3.0質量%以上、8.0質量%以下であり、
 磁束密度=0.6T、周波数=500Hzの交番磁界下における磁歪量λp-pが2.0ppm以下である磁性体。
≪Appendix 2≫
A magnetic material in which a plurality of soft magnetic metal particles of an Fe-Si alloy are dispersed in a resin,
The content of the soft magnetic metal particles in the whole is 50% by volume or more and 85% by volume or less,
The soft magnetic metal particles have an average particle diameter d50 of 20 μm or more and 100 μm or less,
The Si content in the soft magnetic metal particles is 3.0% by mass or more and 8.0% by mass or less,
A magnetic material having a magnetostriction amount λp-p of 2.0 ppm or less under an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz.
 上記構成に示すように、全体に占める軟磁性金属粒子の含有量、軟磁性金属粒子の平均粒径、および軟磁性金属粒子のSi含有量の三つのパラメーターが所定範囲内にある場合、磁性体の磁歪量λp-pは2.0ppm以下となる。そのため、この磁性体を用いれば、リアクトルの静粛性を向上させることができる。 As shown in the above configuration, when the three parameters of the content of the soft magnetic metal particles in the whole, the average particle diameter of the soft magnetic metal particles, and the Si content of the soft magnetic metal particles are within a predetermined range, The magnetostriction amount λp−p of the film becomes 2.0 ppm or less. Therefore, if this magnetic material is used, the silence of the reactor can be improved.
 付記1に係るリアクトル、および付記2に係る磁性体におけるSi含有量は3.0質量%超であることがより好ましく、3.5質量%以上であることがさらに好ましく、4.0質量%以上であることがさらに好ましい。また、磁性体の磁歪量λp-pは1.7ppm以下であることがより好ましく、1.6ppm以下であることがさらに好ましく、1.55ppm以下であることがさらに好ましい。 The Si content in the reactor according to Supplementary Note 1 and the magnetic material according to Supplementary Note 2 is more preferably more than 3.0 mass%, further preferably 3.5 mass% or more, and 4.0 mass% or more. More preferably. Further, the magnetostriction amount λp−p of the magnetic substance is more preferably 1.7 ppm or less, further preferably 1.6 ppm or less, and further preferably 1.55 ppm or less.
 本発明の磁性体は、ハイブリッド自動車や電気自動車、燃料電池自動車といった車両に搭載される双方向DC-DCコンバータといった電力変換装置の構成部品であるリアクトルに利用することができる。その他、本発明の磁性体は、トランスやチョークコイルに利用することもできる。 The magnetic body of the present invention can be used in a reactor that is a component part of a power converter such as a bidirectional DC-DC converter mounted on a vehicle such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle. In addition, the magnetic body of the present invention can also be used for transformers and choke coils.
1,1’ リアクトル
 10,10’ 組合体
 2 コイル
  2A,2B コイル素子 2r コイル素子連結部
  2a,2b 端部
 3 磁性コア
  31 内側コア部 32 外側コア部
  35 分割コア片 35A 基部 35B 張出部
 5 ボビン
  51 ボビン部材 52 枠状ボビン
  55,56 ボビン部材 560 枠状体 561 筒状体
 6 測定サンプル 61,62 反射板
 71,72 ヨーク
 81,82 レーザ・ドップラー計
1100 電力変換装置
 1110 コンバータ  1111 スイッチング素子 1112 駆動回路
 L リアクトル
 1120 インバータ
1150 給電装置用コンバータ 1160 補機電源用コンバータ
1200 車両
1210 メインバッテリ
1220 モータ
1230 サブバッテリ
1240 補機類
1250 車輪
1, 1 'reactor 10, 10' combination 2 coil 2A, 2B coil element 2r coil element connecting part 2a, 2b end 3 magnetic core 31 inner core part 32 outer core part 35 split core piece 35A base part 35B overhang part 5 Bobbin 51 Bobbin member 52 Frame-shaped bobbin 55, 56 Bobbin member 560 Frame-shaped body 561 Cylindrical body 6 Measurement sample 61, 62 Reflecting plate 71, 72 Yoke 81, 82 Laser Doppler meter 1100 Power converter 1110 Converter 1111 Switching element 1112 Drive circuit L Reactor 1120 Inverter 1150 Power supply converter 1160 Auxiliary power supply converter 1200 Vehicle 1210 Main battery 1220 Motor 1230 Sub battery 1240 Auxiliary equipment 1250 Wheels

Claims (5)

  1.  コイルと、前記コイルの内部に挿通される部分を有する磁性コアと、を組み合わせた組合体を備えるリアクトルであって、
     前記磁性コアの少なくとも一部が、Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体であり、
     前記磁性体に占める前記軟磁性金属粒子の含有量が、50体積%以上、85体積%以下、
     前記軟磁性金属粒子の平均粒径d50が、20μm以上、100μm以下、
     前記軟磁性金属粒子におけるSi含有量が、4.5質量%以上、8.0質量%未満であり、
     磁束密度=0.6T、周波数=500Hzの交番磁界下における前記磁性体の磁歪量λp-pが0.9ppm以下であるリアクトル。
    A reactor comprising a combination of a coil and a magnetic core having a portion inserted into the coil,
    At least a part of the magnetic core is a magnetic body in which a plurality of soft magnetic metal particles of an Fe-Si alloy are dispersed in a resin,
    The content of the soft magnetic metal particles in the magnetic body is 50% by volume or more and 85% by volume or less,
    The soft magnetic metal particles have an average particle diameter d50 of 20 μm or more and 100 μm or less,
    The Si content in the soft magnetic metal particles is 4.5 mass% or more and less than 8.0 mass%,
    A reactor in which an amount of magnetostriction λp−p of the magnetic material is 0.9 ppm or less under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz.
  2.  前記磁性体における前記軟磁性金属粒子の含有量が、55体積%以上、65体積%以下、
     前記軟磁性金属粒子の平均粒径d50が、55μm以上、90μm以下、
     前記軟磁性金属粒子におけるSi含有量が、6.0質量%以上、7.0質量%未満であり、
     磁束密度=0.6T、周波数=500Hzの交番磁界下における前記磁性体の磁歪量λp-pが0.5ppm以下である請求項1に記載のリアクトル。
    The content of the soft magnetic metal particles in the magnetic body is 55% by volume or more and 65% by volume or less,
    The soft magnetic metal particles have an average particle diameter d50 of 55 μm or more and 90 μm or less,
    The Si content in the soft magnetic metal particles is 6.0% by mass or more and less than 7.0% by mass,
    2. The reactor according to claim 1, wherein a magnetostriction amount λp-p of the magnetic material under an alternating magnetic field of magnetic flux density = 0.6T and frequency = 500 Hz is 0.5 ppm or less.
  3.  Fe-Si合金の複数の軟磁性金属粒子が樹脂中に分散された磁性体であって、
     全体に占める前記軟磁性金属粒子の含有量が、50体積%以上、85体積%以下であり、
     前記軟磁性金属粒子の平均粒径d50が、20μm以上、100μm以下で、
     前記軟磁性金属粒子におけるSi含有量が、4.5質量%以上、8.0質量%未満であり、
     磁束密度=0.6T、周波数=500Hzの交番磁界下における磁歪量λp-pが0.9ppm以下である磁性体。
    A magnetic material in which a plurality of soft magnetic metal particles of an Fe-Si alloy are dispersed in a resin,
    The content of the soft magnetic metal particles in the whole is 50% by volume or more and 85% by volume or less,
    The soft magnetic metal particles have an average particle diameter d50 of 20 μm or more and 100 μm or less,
    The Si content in the soft magnetic metal particles is 4.5 mass% or more and less than 8.0 mass%,
    A magnetic material having a magnetostriction amount λp−p of 0.9 ppm or less under an alternating magnetic field of magnetic flux density = 0.6 T and frequency = 500 Hz.
  4.  請求項1に記載のリアクトルを備えるコンバータ。 A converter comprising the reactor according to claim 1.
  5.  請求項4に記載のコンバータを備える電力変換装置。
     
    A power converter device comprising the converter according to claim 4.
PCT/JP2014/065696 2013-06-17 2014-06-13 Inductor, magnetic body, converter, and power conversion device WO2014203809A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013126801 2013-06-17
JP2013-126801 2013-06-17
JP2014-097216 2014-05-08
JP2014097216A JP6358557B2 (en) 2013-06-17 2014-05-08 Reactor, magnetic body, converter, and power converter

Publications (1)

Publication Number Publication Date
WO2014203809A1 true WO2014203809A1 (en) 2014-12-24

Family

ID=52104544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065696 WO2014203809A1 (en) 2013-06-17 2014-06-13 Inductor, magnetic body, converter, and power conversion device

Country Status (2)

Country Link
JP (1) JP6358557B2 (en)
WO (1) WO2014203809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030084A1 (en) * 2015-08-20 2017-02-23 株式会社オートネットワーク技術研究所 Composite material molding and reactor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510049A (en) * 2001-11-14 2005-04-14 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Induction component and manufacturing method thereof
JP2006261331A (en) * 2005-03-16 2006-09-28 Nec Tokin Corp Inductance component and its manufacturing method
JP2006332328A (en) * 2005-05-26 2006-12-07 Toyota Central Res & Dev Lab Inc Low magnetostrictive element and powder magnetic core using the same
JP2007027687A (en) * 2005-06-15 2007-02-01 Daido Steel Co Ltd Low loss compound magnetic sheet
JP2008098292A (en) * 2006-10-10 2008-04-24 Hitachi Metals Ltd Green compact, dust core, and reactor
JP4514031B2 (en) * 2003-06-12 2010-07-28 株式会社デンソー Coil component and coil component manufacturing method
WO2011118507A1 (en) * 2010-03-20 2011-09-29 大同特殊鋼株式会社 Reactor and method of manufacture for same
JP2013008762A (en) * 2011-06-23 2013-01-10 Panasonic Corp Composite magnetic material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510049A (en) * 2001-11-14 2005-04-14 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニ コマンディートゲゼルシャフト Induction component and manufacturing method thereof
JP4514031B2 (en) * 2003-06-12 2010-07-28 株式会社デンソー Coil component and coil component manufacturing method
JP2006261331A (en) * 2005-03-16 2006-09-28 Nec Tokin Corp Inductance component and its manufacturing method
JP2006332328A (en) * 2005-05-26 2006-12-07 Toyota Central Res & Dev Lab Inc Low magnetostrictive element and powder magnetic core using the same
JP2007027687A (en) * 2005-06-15 2007-02-01 Daido Steel Co Ltd Low loss compound magnetic sheet
JP2008098292A (en) * 2006-10-10 2008-04-24 Hitachi Metals Ltd Green compact, dust core, and reactor
WO2011118507A1 (en) * 2010-03-20 2011-09-29 大同特殊鋼株式会社 Reactor and method of manufacture for same
JP2013008762A (en) * 2011-06-23 2013-01-10 Panasonic Corp Composite magnetic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030084A1 (en) * 2015-08-20 2017-02-23 株式会社オートネットワーク技術研究所 Composite material molding and reactor
JP2017041572A (en) * 2015-08-20 2017-02-23 株式会社オートネットワーク技術研究所 Composite material molded body and reactor

Also Published As

Publication number Publication date
JP6358557B2 (en) 2018-07-18
JP2015026819A (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP6065609B2 (en) Reactor, converter, and power converter
JP5991460B2 (en) Composite material, reactor core, and reactor
JP6176516B2 (en) Reactor, converter, and power converter
JP5983942B2 (en) Reactor, converter, and power converter
JP5995181B2 (en) Composite material, reactor core, and reactor
WO2011013394A1 (en) Reactor
JP6544537B2 (en) Composite materials, magnetic parts, and reactors
WO2012008328A1 (en) Reactor
WO2011158631A1 (en) Reactor
WO2013011780A1 (en) Inductor, converter, and power conversion device
JP2013143454A (en) Reactor, core component, manufacturing method of reactor, converter, and electric power conversion apparatus
JP2013149943A (en) Reactor, converter, and electric power conversion apparatus
WO2013137019A1 (en) Reactor, converter, and power conversion device
JP7367564B2 (en) Reactors, converters, and power conversion equipment
JP2013162069A (en) Reactor, converter, and power converter
WO2013168538A1 (en) Reactor, converter, electric power conversion device, and manufacturing method for resin core piece
JP6358557B2 (en) Reactor, magnetic body, converter, and power converter
JP2017017326A (en) Composite material, reactor-use core, and reactor
JP6226047B2 (en) Composite material, reactor core, and reactor
WO2021193783A1 (en) Reactor, converter, and power conversion device
WO2022038982A1 (en) Reactor, converter, and power conversion device
WO2014112480A1 (en) Core member, inductor, converter, and power-conversion device
JP2023049328A (en) Reactor, converter, and power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14812986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14812986

Country of ref document: EP

Kind code of ref document: A1