WO2014203715A1 - Secondary-cell discharge circuit, balance correction circuit, and power storage device - Google Patents

Secondary-cell discharge circuit, balance correction circuit, and power storage device Download PDF

Info

Publication number
WO2014203715A1
WO2014203715A1 PCT/JP2014/064621 JP2014064621W WO2014203715A1 WO 2014203715 A1 WO2014203715 A1 WO 2014203715A1 JP 2014064621 W JP2014064621 W JP 2014064621W WO 2014203715 A1 WO2014203715 A1 WO 2014203715A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
secondary battery
circuit
series
unidirectional
Prior art date
Application number
PCT/JP2014/064621
Other languages
French (fr)
Japanese (ja)
Inventor
真鶴 宮崎
利廣 清水
健志 ▲浜▼田
Original Assignee
Fdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk株式会社 filed Critical Fdk株式会社
Publication of WO2014203715A1 publication Critical patent/WO2014203715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage

Definitions

  • the present invention relates to a discharge circuit for a secondary battery, a balance correction circuit, and a power storage device, and more particularly to a technique for preventing overdischarge of the secondary battery.
  • Secondary batteries such as lithium ion batteries and lithium polymer batteries, when the discharge progresses and the battery voltage becomes an overdischarge state below the discharge end voltage, the internal constituent material changes, and the performance deteriorates or cannot be recharged. Further, if the secondary battery that has been over-discharged is used as it is, there is a risk of fire or explosion. Therefore, a mechanism for reliably preventing overdischarge is indispensable for such secondary batteries.
  • Patent Document 1 discloses a charge / discharge for controlling a secondary battery module having a plurality of lithium ion secondary batteries and an assembled battery in which the secondary battery modules are connected in parallel.
  • the control means when the voltage of the lithium ion secondary battery module being discharged becomes lower than a predetermined discharge stop voltage, the charge / discharge control means discharges the lithium ion secondary battery module being discharged. Is stopped and discharge from another lithium ion secondary battery module is started.
  • Some products that use secondary batteries are intentional as shown in FIG. 8, such as a balance correction circuit that corrects the cell balance of a rechargeable flash unit (electronic flash unit) or an assembled battery composed of a plurality of secondary batteries.
  • Some have a circuit (discharge circuit 80) that performs a proper discharge.
  • the discharge circuit 80 for example, when the connection between the secondary battery B and the discharge element R cannot be released due to a short circuit failure of the switch element S or a failure of the control circuit C, the discharge from the secondary battery B is performed. There is a possibility that the current supply to the element R continues and the secondary battery B is overdischarged. Therefore, a mechanism for reliably preventing overdischarge of the secondary battery B is indispensable for such a discharge circuit 80.
  • the present invention has been made in view of such a background, and an object thereof is to provide a secondary battery discharge circuit, a balance correction circuit, and a power storage device that can reliably prevent overdischarge of the secondary battery.
  • one of the present invention is a discharge circuit for a secondary battery, a discharge element connected between terminals of the secondary battery, and the secondary battery in series with the discharge element. Connected between the terminals of the secondary battery, a switch element for controlling a current flowing through the discharge element, and connected between the terminals of the secondary battery in series with the discharge element and the switch element, and more than a discharge end voltage of the secondary battery And one or more unidirectional elements having a forward voltage threshold.
  • Another one of the present invention is the discharge circuit, wherein the unidirectional element includes one or more diodes connected in series.
  • Another one of the present invention is the above discharge circuit including one or more light emitting diodes connected in series.
  • the light emitting diode may function as a discharge element.
  • the discharge circuit wherein the unidirectional element includes one or more diodes and one or more light emitting diodes connected in series. To do.
  • Another one of the present invention is a balance correction circuit, the discharge element connected between the respective terminals of the secondary battery of the assembled battery consisting of a plurality of secondary batteries connected in series, A switch element connected in series with each of the discharge elements and controlling a current flowing through each of the discharge elements; and a forward voltage greater than or equal to the discharge end voltage of the secondary battery connected in series with each of the discharge elements and the switch elements.
  • a plurality of discharge circuits configured to include one or more unidirectional elements having a threshold value, a voltage sensor for measuring a voltage of each of the plurality of secondary batteries, and each of the plurality of secondary batteries
  • a control circuit for turning on and off each of the switch elements in accordance with a measurement value of the voltage sensor in order to equalize the voltage.
  • Another one of the present invention is a power storage device, which includes the secondary battery and the discharge circuit.
  • Another one of the present invention is a power storage device, which includes the assembled battery and the balance correction circuit.
  • FIG. 6 is a diagram showing another example of the discharge circuit 1 of the secondary battery (when the unidirectional element D is configured by a plurality of unidirectional elements D (1) to D (n) connected in series). It is a figure which shows another example (when the light emitting diode led is used as the unidirectional element D) of the discharge circuit 1 of a secondary battery.
  • FIG. 6 is a diagram showing another example of the discharge circuit 1 of the secondary battery (when the unidirectional element D is configured by a plurality of light emitting diodes led (1) to led (n) connected in series).
  • discharge circuit 1 of the secondary battery one or more diodes d (1) to d (n) connected in series and one or more light emitting diodes led (1) to led It is a figure which shows (when it is comprised combining (n)).
  • 2 is an example of a discharge circuit 80;
  • FIG. 1 shows a discharge circuit 1 of a secondary battery B shown as an embodiment.
  • the discharge circuit 1 includes a discharge element R connected between the positive and negative terminals of the secondary battery B, and a discharge element R connected in series between the positive and negative terminals of the secondary battery B.
  • a switch element S for controlling the flowing current, a discharge element R, a unidirectional element D connected between the positive and negative terminals of the secondary battery B in series with the switch element S, and a control circuit C for turning on and off the switch element S are provided.
  • the terminals T + and T ⁇ connected to the positive and negative terminals of the secondary battery B have loads that operate using the energy of the secondary battery B (eg, heating elements, motors, electronic circuits of rechargeable flash furnaces (electronic flash furnaces)) ,
  • a current supply source for supplying a charging current to the secondary battery B for example, a charger, a regeneration circuit) ) Etc. are connected.
  • the secondary battery B is a secondary battery having a predetermined discharge end voltage, and is, for example, a lithium ion battery or a lithium ion polymer battery.
  • the end-of-discharge voltage means that the secondary battery B is overdischarged (the battery voltage of the secondary battery B cannot maintain the secondary battery B in a normal state (the performance deterioration of the secondary battery B or The lowest voltage that is guaranteed not to reach a value (which causes a failure to recharge) or the like (a voltage that can lead to overdischarge when the battery voltage of the secondary battery B is less than the discharge end voltage) ).
  • the switch element S is an element that controls a current flowing through the discharge element R.
  • a bipolar transistor pnp type, npn type
  • a field effect transistor Field-EffectnTransistor
  • p channel type, n channel type p channel type, n channel type
  • a relay Such as a mechanical switch.
  • the switch element S is turned on / off by the control circuit C.
  • the switch element S is a pnp type transistor will be described as an example.
  • the discharge element R is an element that promotes discharge of the secondary battery B by converting electric energy stored in the secondary battery B into heat energy or the like, and is, for example, a resistance element.
  • the unidirectional element D is a semiconductor element having a forward voltage threshold equal to or higher than the discharge end voltage of the secondary battery B, and is, for example, a diode (including a case where a transistor functions as a diode by diode connection).
  • the forward voltage threshold value refers to the lowest voltage (minimum voltage required for moving the carrier) that allows the unidirectional element D to be energized in the forward direction.
  • the current flowing through the unidirectional element D is minute or zero.
  • FIG. 2 shows the relationship between the forward voltage and forward current of the diode (VI characteristics) and the relationship between these and the forward threshold voltage.
  • the control circuit C is a circuit (an analog circuit, a digital circuit, an integrated circuit (IC chip), etc.) that controls the switching element S to control the discharge of the secondary battery B.
  • the control circuit C controls the base voltage of the switch element S to turn on and off the switch element S.
  • the control circuit C controls the gate voltage of the switch element S to turn on and off the switch element S.
  • the discharge circuit 1 having the above configuration, for example, even when the coupling between the secondary battery B and the discharge element R cannot be released due to a short circuit failure of the switch element S or a failure of the control circuit C, the discharge proceeds. Accordingly, the battery voltage of the secondary battery B gradually decreases, and the discharge of the secondary battery B automatically stops when the battery voltage of the secondary battery B becomes equal to the forward voltage threshold value of the unidirectional element D. Therefore, it is possible to reliably prevent the secondary battery B from being overdischarged.
  • the discharge circuit 1 can be configured by adding a unidirectional element D to a general discharge circuit including a switch element S, a control circuit C, and a discharge element R. A mechanism for reliably preventing overdischarge can be realized simply and at low cost.
  • the unidirectional element D may be configured using a plurality of the same or different unidirectional elements D (1) to D (n) connected in series.
  • the discharge of the secondary battery B stops when the battery voltage of the secondary battery B becomes equal to the sum of the forward voltage thresholds of the unidirectional elements D (1) to D (n). Therefore, the discharge stop voltage of the secondary battery B can be freely set by changing the number and type of the unidirectional elements D (1) to D (n).
  • the secondary battery B can be handled flexibly.
  • the discharge of the secondary battery B can be prevented from being stopped at an unnecessarily high voltage (The forward voltage threshold value of the unidirectional element D can be brought close to the discharge end voltage), and the performance of the secondary battery B can be sufficiently obtained.
  • the unidirectional element D may be configured using a light emitting diode led. Further, as shown in FIG. 5, the unidirectional element D may be configured using a plurality of light emitting diodes led (1) to led (n) connected in series. Thus, when a light emitting diode is used as the unidirectional element D, the state of discharge can be easily confirmed visually. In this case, the unidirectional element D may function as a pilot lamp. In addition, since light emitting diodes have a higher forward voltage threshold than other types of diodes such as general-purpose rectifying diodes, various types of discharge end voltages differ by configuring the unidirectional element D using light emitting diodes. The secondary battery B can be flexibly handled.
  • the light-emitting diode used as the unidirectional element D can function as a discharge element that replaces the discharge element R or assists the discharge element R. It is.
  • the number of components of the discharge circuit 1 can be reduced and the manufacturing process can be simplified.
  • the light emitting diode functions as a discharge element that assists the discharge element R as in the latter case, the consumption of energy during discharge can be distributed between the discharge element R and the unidirectional element D. The reliability of R and the unidirectional element D can be improved.
  • the unidirectional element D connects one or more diodes d (1) to d (n) and one or more light emitting diodes led (1) to led (n) in series. You may comprise by. By doing so, the degree of freedom in setting the discharge stop voltage is increased, and it is possible to flexibly cope with various secondary batteries B having different discharge end voltages.
  • the connection order is not limited to that shown in FIG.
  • FIG. 7 shows a balance correction circuit 70 that corrects the cell balance of an assembled battery composed of a plurality of secondary batteries B1 to Bn, as an application example of the discharge circuit 1.
  • the balance correction circuit 70 includes a plurality of discharge circuits 1 (discharge circuit 1 shown in FIG. 1) provided for each of the secondary batteries B1 to Bn. More specifically, the balance correction circuit 70 is connected between the respective terminals of the secondary batteries B1 to Bn of the assembled battery composed of the plurality of secondary batteries B1 to Bn connected in series.
  • Each of the secondary batteries B1 to Bn includes one or more unidirectional elements D1 to Dn each having a forward voltage threshold value equal to or higher than a discharge end voltage.
  • the secondary batteries B1 to Bn are provided with voltage sensors M1 to Mn for measuring the respective battery voltages.
  • the control circuit C turns on and off the switches S1 to Sn in accordance with the battery voltages of the secondary batteries B1 to Bn input from the voltage sensors M1 to Mn, thereby causing a mediating element (not shown) between the secondary batteries B1 to Bn. Energy is transferred via an inductor, a transformer, etc., thereby equalizing the battery voltages of the secondary batteries B1 to Bn. Examples of circuits that perform such operations are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2001-185229 and 11-176483.
  • the secondary batteries B1 to Bn are each discharged twice.
  • the battery voltages of the secondary batteries B1 to Bn become equal to the forward voltage threshold values of the unidirectional elements D1 to Dn respectively provided, the batteries are automatically stopped. Therefore, any secondary battery B1 to Bn does not overdischarge.
  • the configuration of the discharge circuit 1 used in the balance correction circuit 70 is not necessarily limited to the discharge circuit 1 shown in FIG. 1.
  • all or part of the discharge circuit 1 included in the balance correction circuit 70 is shown in FIGS. Any one of the circuits shown in FIG.
  • the discharge circuit 1 shown in FIGS. 4 to 6 is used, the state of discharge of each of the secondary batteries B1 to Bn constituting the assembled battery can be easily confirmed visually.
  • the balance correction circuit 70 is, for example, a power storage device (an electric vehicle, a hybrid vehicle, an electric motorcycle, a railway vehicle, a lift, a power storage device for system linkage, a personal computer, a notebook computer, a mobile phone, a smartphone using an assembled battery. , PDA devices, etc.).
  • the balance correction circuit 70 may be provided separately from the assembled battery, or may be integrated with the assembled battery to constitute a power storage device (battery pack) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

[Problem] To provide a secondary-cell discharge circuit or the like which is capable of definitively preventing the overdischarge of a secondary cell. [Solution] This discharge circuit (1) for a secondary cell (B) is equipped with: a discharge element (R) connected between the terminals of the secondary cell (B); a switching element (S) for controlling the current flowing through the discharge element (R) and connected in series to the discharge element (R) between the terminals of the secondary cell (B); and one or more unidirectional elements (D) having a forward-direction-voltage threshold at or above the discharge cut-off voltage of the secondary cell (B), and connected in series to the discharge element (R) and the switching element (S) between the terminals of the secondary cell (B). The unidirectional element (D) is configured, for example, by using a diode (d) or a light-emitting diode (led). It is possible, for example, to use the discharge circuit (1) in a balance correction circuit (70) for correcting the cell balance of a battery comprising a plurality of secondary cells (B1-Bn).

Description

二次電池の放電回路、バランス補正回路、及び蓄電装置Secondary battery discharge circuit, balance correction circuit, and power storage device
 この発明は、二次電池の放電回路、バランス補正回路、及び蓄電装置に関し、とくに二次電池の過放電を防ぐ技術に関する。 The present invention relates to a discharge circuit for a secondary battery, a balance correction circuit, and a power storage device, and more particularly to a technique for preventing overdischarge of the secondary battery.
 リチウムイオン電池やリチウムポリマー電池等の二次電池は、放電が進んで電池電圧が放電終止電圧以下の過放電状態になると内部の構成物質が変質し、性能劣化もしくは再充電不能となる。また過放電に至った二次電池をそのまま使用し続けると発火や爆発等の事態に至る虞もある。このため、こうした二次電池には過放電を確実に防ぐための仕組みが不可欠である。 Secondary batteries such as lithium ion batteries and lithium polymer batteries, when the discharge progresses and the battery voltage becomes an overdischarge state below the discharge end voltage, the internal constituent material changes, and the performance deteriorates or cannot be recharged. Further, if the secondary battery that has been over-discharged is used as it is, there is a risk of fire or explosion. Therefore, a mechanism for reliably preventing overdischarge is indispensable for such secondary batteries.
 過放電を防ぐ仕組みに関し、例えば、特許文献1には、複数のリチウムイオン二次電池を有する二次電池モジュールと、二次電池モジュールが並列に接続されて構成された組電池を制御する充放電制御手段とからなる二次電池システムにおいて、放電中のリチウムイオン二次電池モジュールの電圧が予め定められた放電停止電圧より低くなると、充放電制御手段が放電中のリチウムイオン二次電池モジュールの放電を停止して別のリチウムイオン二次電池モジュールからの放電を開始することが記載されている。 Regarding a mechanism for preventing overdischarge, for example, Patent Document 1 discloses a charge / discharge for controlling a secondary battery module having a plurality of lithium ion secondary batteries and an assembled battery in which the secondary battery modules are connected in parallel. In the secondary battery system comprising the control means, when the voltage of the lithium ion secondary battery module being discharged becomes lower than a predetermined discharge stop voltage, the charge / discharge control means discharges the lithium ion secondary battery module being discharged. Is stopped and discharge from another lithium ion secondary battery module is started.
特開2012-156025号公報JP 2012-156025 A
 二次電池を利用する製品の中には、充電式懐炉(電子懐炉)や複数の二次電池からなる集合電池のセルバランスを補正するバランス補正回路のように、図8に示すような意図的な放電を行う回路(放電回路80)を備えるものがある。 Some products that use secondary batteries are intentional as shown in FIG. 8, such as a balance correction circuit that corrects the cell balance of a rechargeable flash unit (electronic flash unit) or an assembled battery composed of a plurality of secondary batteries. Some have a circuit (discharge circuit 80) that performs a proper discharge.
 ここでこの放電回路80において、例えば、スイッチ素子Sの短絡故障や制御回路Cの障害により二次電池Bと放電素子Rとの結合を解除することができなくなった場合、二次電池Bから放電素子Rへの電流供給が継続したままの状態となり、二次電池Bが過放電に至る可能性がある。そのため、このような放電回路80には二次電池Bの過放電を確実に防ぐための仕組みが不可欠となる。 Here, in the discharge circuit 80, for example, when the connection between the secondary battery B and the discharge element R cannot be released due to a short circuit failure of the switch element S or a failure of the control circuit C, the discharge from the secondary battery B is performed. There is a possibility that the current supply to the element R continues and the secondary battery B is overdischarged. Therefore, a mechanism for reliably preventing overdischarge of the secondary battery B is indispensable for such a discharge circuit 80.
 本発明はこのような背景に鑑みてなされたもので、二次電池の過放電を確実に防ぐことが可能な、二次電池の放電回路、バランス補正回路、及び蓄電装置を提供することを目的とする。 The present invention has been made in view of such a background, and an object thereof is to provide a secondary battery discharge circuit, a balance correction circuit, and a power storage device that can reliably prevent overdischarge of the secondary battery. And
 上記目的を達成するための本発明のうちの一つは、二次電池の放電回路であって、二次電池の端子間に接続される放電素子と、前記放電素子と直列に前記二次電池の端子間に接続され、前記放電素子を流れる電流を制御するスイッチ素子と、前記放電素子及び前記スイッチ素子と直列に前記二次電池の端子間に接続され、前記二次電池の放電終止電圧以上の順方向電圧閾値を有する一つ以上の一方向性素子とを備える。 In order to achieve the above object, one of the present invention is a discharge circuit for a secondary battery, a discharge element connected between terminals of the secondary battery, and the secondary battery in series with the discharge element. Connected between the terminals of the secondary battery, a switch element for controlling a current flowing through the discharge element, and connected between the terminals of the secondary battery in series with the discharge element and the switch element, and more than a discharge end voltage of the secondary battery And one or more unidirectional elements having a forward voltage threshold.
 本発明のうちの他の一つは、上記放電回路であって、前記一方向性素子は、直列接続された一つ以上のダイオードを含んで構成されることとする。 Another one of the present invention is the discharge circuit, wherein the unidirectional element includes one or more diodes connected in series.
 本発明のうちの他の一つは、上記放電回路であって、直列接続された一つ以上の発光ダイオードを含んで構成されることとする。この場合において、発光ダイオードを放電素子として機能させてもよい。 Another one of the present invention is the above discharge circuit including one or more light emitting diodes connected in series. In this case, the light emitting diode may function as a discharge element.
 本発明のうちの他の一つは、上記放電回路であって、前記一方向性素子は、直列接続された、一つ以上のダイオード及び一つ以上の発光ダイオードを含んで構成されることとする。 Another aspect of the present invention is the discharge circuit, wherein the unidirectional element includes one or more diodes and one or more light emitting diodes connected in series. To do.
 本発明のうちの他の一つは、バランス補正回路であって、直列接続された複数の二次電池からなる集合電池の前記二次電池の夫々の端子間に接続される、放電素子、前記放電素子の夫々と直列に接続され夫々前記放電素子を流れる電流を制御するスイッチ素子、及び夫々前記放電素子及び前記スイッチ素子と直列に接続され、前記二次電池の放電終止電圧以上の順方向電圧閾値を有する一つ以上の一方向性素子を備えて構成される、複数の放電回路と、前記複数の二次電池の夫々の電圧を計測する電圧センサと、前記複数の二次電池の夫々の電圧を均等化させるべく、前記電圧センサの計測値に応じて前記スイッチ素子の夫々をオンオフする制御回路とを備える。 Another one of the present invention is a balance correction circuit, the discharge element connected between the respective terminals of the secondary battery of the assembled battery consisting of a plurality of secondary batteries connected in series, A switch element connected in series with each of the discharge elements and controlling a current flowing through each of the discharge elements; and a forward voltage greater than or equal to the discharge end voltage of the secondary battery connected in series with each of the discharge elements and the switch elements. A plurality of discharge circuits configured to include one or more unidirectional elements having a threshold value, a voltage sensor for measuring a voltage of each of the plurality of secondary batteries, and each of the plurality of secondary batteries A control circuit for turning on and off each of the switch elements in accordance with a measurement value of the voltage sensor in order to equalize the voltage.
 本発明のうちの他の一つは、蓄電装置であって、上記二次電池と上記放電回路とを備えることとする。 Another one of the present invention is a power storage device, which includes the secondary battery and the discharge circuit.
 本発明のうちの他の一つは、蓄電装置であって、上記集合電池と上記バランス補正回路とを備えることとする。 Another one of the present invention is a power storage device, which includes the assembled battery and the balance correction circuit.
 その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。 The other problems disclosed in the present application and the solutions thereof will be clarified by the description of the mode for carrying out the invention and the drawings.
 本発明によれば、二次電池の過放電を確実に防ぐことができる。 According to the present invention, it is possible to reliably prevent overdischarge of the secondary battery.
二次電池の放電回路1の一例である。It is an example of the discharge circuit 1 of a secondary battery. ダイオードの順方向閾値電圧を説明する図である。It is a figure explaining the forward direction threshold voltage of a diode. 二次電池の放電回路1の他の一例(一方向性素子Dを直列接続された複数の一方向性素子D(1)~D(n)で構成した場合)を示す図である。FIG. 6 is a diagram showing another example of the discharge circuit 1 of the secondary battery (when the unidirectional element D is configured by a plurality of unidirectional elements D (1) to D (n) connected in series). 二次電池の放電回路1の他の一例(一方向性素子Dとして発光ダイオードledを用いた場合)を示す図である。It is a figure which shows another example (when the light emitting diode led is used as the unidirectional element D) of the discharge circuit 1 of a secondary battery. 二次電池の放電回路1の他の一例(一方向性素子Dを直列接続された複数の発光ダイオードled(1)~led(n)で構成した場合)を示す図である。FIG. 6 is a diagram showing another example of the discharge circuit 1 of the secondary battery (when the unidirectional element D is configured by a plurality of light emitting diodes led (1) to led (n) connected in series). 二次電池の放電回路1の他の一例(一方向性素子Dを、直列接続された一つ以上のダイオードd(1)~d(n)と一つ以上の発光ダイオードled(1)~led(n)とを組み合わせて構成した場合)を示す図である。Another example of the discharge circuit 1 of the secondary battery (one or more diodes d (1) to d (n) connected in series and one or more light emitting diodes led (1) to led It is a figure which shows (when it is comprised combining (n)). 放電回路1の適用例として示すバランス補正回路70である。This is a balance correction circuit 70 shown as an application example of the discharge circuit 1. 放電回路80の一例である。2 is an example of a discharge circuit 80;
 関連出願の相互参照
 この出願は、2013年6月18日に出願された日本特許出願、特願2013-127813に基づく優先権を主張し、その内容を援用する。
Cross-reference of related applications This application claims priority based on Japanese Patent Application No. 2013-127813 filed on Jun. 18, 2013, the contents of which are incorporated herein by reference.
 以下、本発明の実施形態について説明する。尚、以下の説明において、同一又は類似の部分に同一の符号を付して重複する説明を省略することがある。 Hereinafter, embodiments of the present invention will be described. In the following description, the same or similar parts may be denoted by the same reference numerals and redundant description may be omitted.
 図1は一実施形態として示す二次電池Bの放電回路1である。同図に示すように、放電回路1は、二次電池Bの正負端子間に接続される放電素子R、二次電池Bの正負端子間に放電素子Rと直列に接続され、放電素子Rを流れる電流を制御するスイッチ素子S、放電素子R及びスイッチ素子Sと直列に二次電池Bの正負端子間に接続される一方向性素子D、及びスイッチ素子Sをオンオフする制御回路Cを備える。 FIG. 1 shows a discharge circuit 1 of a secondary battery B shown as an embodiment. As shown in the figure, the discharge circuit 1 includes a discharge element R connected between the positive and negative terminals of the secondary battery B, and a discharge element R connected in series between the positive and negative terminals of the secondary battery B. A switch element S for controlling the flowing current, a discharge element R, a unidirectional element D connected between the positive and negative terminals of the secondary battery B in series with the switch element S, and a control circuit C for turning on and off the switch element S are provided.
 二次電池Bの正負端子の夫々に繋がる端子T+、T-には、二次電池Bのエネルギーを利用して動作する負荷(例えば、充電式懐炉(電子懐炉)の発熱素子、モータ、電子回路、二次電池Bが一般家庭や工場等における負荷に電力を供給する補助電源として用いられる場合の上記負荷)、二次電池Bに充電電流を供給する電流供給源(例えば、充電器、回生回路)等が接続される。 The terminals T + and T− connected to the positive and negative terminals of the secondary battery B have loads that operate using the energy of the secondary battery B (eg, heating elements, motors, electronic circuits of rechargeable flash furnaces (electronic flash furnaces)) , The load when the secondary battery B is used as an auxiliary power source for supplying power to a load in a general home or factory, etc.), a current supply source for supplying a charging current to the secondary battery B (for example, a charger, a regeneration circuit) ) Etc. are connected.
 二次電池Bは、放電終止電圧が定められた二次電池であって、例えば、リチウムイオン電池やリチウムイオンポリマー電池である。尚、以下の説明において、放電終止電圧とは、二次電池Bが過放電(二次電池Bの電池電圧が二次電池Bを正常な状態に維持できなくなる(二次電池Bの性能劣化や再充電不能等を生じさせる)値まで低下した状態)に至ることのないことが保証される最低電圧(二次電池Bの電池電圧が放電終止電圧未満になると過放電に至る可能性のある電圧)をいう。 The secondary battery B is a secondary battery having a predetermined discharge end voltage, and is, for example, a lithium ion battery or a lithium ion polymer battery. In the following description, the end-of-discharge voltage means that the secondary battery B is overdischarged (the battery voltage of the secondary battery B cannot maintain the secondary battery B in a normal state (the performance deterioration of the secondary battery B or The lowest voltage that is guaranteed not to reach a value (which causes a failure to recharge) or the like (a voltage that can lead to overdischarge when the battery voltage of the secondary battery B is less than the discharge end voltage) ).
 スイッチ素子Sは、放電素子Rを流れる電流を制御する素子であり、例えば、バイポーラトランジスタ(pnp型、npn型)、電界効果トランジスタ(Field-Effect Transistor)(pチャネル型、nチャネル型)、リレー等の機械式スイッチである。スイッチ素子Sは制御回路Cによってオンオフされる。尚、本実施形態ではスイッチ素子Sがpnp型のトランジスタである場合を例として説明する。 The switch element S is an element that controls a current flowing through the discharge element R. For example, a bipolar transistor (pnp type, npn type), a field effect transistor (Field-EffectnTransistor) (p channel type, n channel type), a relay Such as a mechanical switch. The switch element S is turned on / off by the control circuit C. In the present embodiment, a case where the switch element S is a pnp type transistor will be described as an example.
 放電素子Rは、二次電池Bに蓄えられている電気エネルギーを熱エネルギー等に変換することにより二次電池Bの放電を促す素子であり、例えば、抵抗素子である。 The discharge element R is an element that promotes discharge of the secondary battery B by converting electric energy stored in the secondary battery B into heat energy or the like, and is, for example, a resistance element.
 一方向性素子Dは、二次電池Bの放電終止電圧以上の順方向電圧閾値を有する半導体素子であり、例えば、ダイオード(ダイオード接続によってトランジスタをダイオードとして機能させる場合も含む)である。尚、以下の説明において、順方向電圧閾値とは、一方向性素子Dを順方向に通電させることが可能な最低電圧(キャリアを移動させるために最低限必要な電圧)をいう。一方向性素子Dに印加される電圧が順方向電圧閾値未満になった場合、一方向性素子Dを流れる電流は微小もしくはゼロとなる。参考として図2にダイオードの順方向電圧と順方向電流の関係(V-I特性)並びにこれらと順方向閾値電圧との関係を示す。 The unidirectional element D is a semiconductor element having a forward voltage threshold equal to or higher than the discharge end voltage of the secondary battery B, and is, for example, a diode (including a case where a transistor functions as a diode by diode connection). In the following description, the forward voltage threshold value refers to the lowest voltage (minimum voltage required for moving the carrier) that allows the unidirectional element D to be energized in the forward direction. When the voltage applied to the unidirectional element D becomes less than the forward voltage threshold, the current flowing through the unidirectional element D is minute or zero. For reference, FIG. 2 shows the relationship between the forward voltage and forward current of the diode (VI characteristics) and the relationship between these and the forward threshold voltage.
 制御回路Cは、スイッチ素子Sを制御して二次電池Bの放電制御を行う回路(アナログ回路、デジタル回路、集積回路(ICチップ)等)である。例えば、スイッチ素子Sがバイポーラトランジスタを用いて構成されている場合、制御回路Cは、スイッチ素子Sのベース電圧を制御してスイッチ素子Sをオンオフする。また例えば、スイッチ素子Sが電界効果トランジスタを用いて構成されている場合、制御回路Cはスイッチ素子Sのゲート電圧を制御してスイッチ素子Sをオンオフする。 The control circuit C is a circuit (an analog circuit, a digital circuit, an integrated circuit (IC chip), etc.) that controls the switching element S to control the discharge of the secondary battery B. For example, when the switch element S is configured using a bipolar transistor, the control circuit C controls the base voltage of the switch element S to turn on and off the switch element S. For example, when the switch element S is configured using a field effect transistor, the control circuit C controls the gate voltage of the switch element S to turn on and off the switch element S.
 以上の構成からなる放電回路1において、例えば、スイッチ素子Sの短絡故障や制御回路Cの障害によって二次電池Bと放電素子Rとの結合を解除することができなくなった場合でも、放電が進むにつれて二次電池Bの電池電圧が徐々に低下し、二次電池Bの放電は二次電池Bの電池電圧が一方向性素子Dの順方向電圧閾値に等しくなったところで自動的に停止する。そのため、二次電池Bが過放電に至るのを確実に防ぐことができる。尚、この放電回路1は、スイッチ素子S、制御回路C、及び放電素子Rを備えた一般的な放電回路に一方向性素子Dを追加することで構成することができ、二次電池Bの過放電を確実に防ぐ仕組みを簡素かつ低コストで実現することができる。昨今、環境問題や電力需要問題を背景として大電力の貯蔵が可能な蓄電装置が注目されており、そのような用途で用いられる蓄電装置にはとくに高い信頼性や安全性が求められるが、この放電回路1を二次電池Bを用いて構成される蓄電装置(電池パック)に付加することで、簡素かつ低コストで蓄電装置の信頼性及び安全性を高めることができる。 In the discharge circuit 1 having the above configuration, for example, even when the coupling between the secondary battery B and the discharge element R cannot be released due to a short circuit failure of the switch element S or a failure of the control circuit C, the discharge proceeds. Accordingly, the battery voltage of the secondary battery B gradually decreases, and the discharge of the secondary battery B automatically stops when the battery voltage of the secondary battery B becomes equal to the forward voltage threshold value of the unidirectional element D. Therefore, it is possible to reliably prevent the secondary battery B from being overdischarged. The discharge circuit 1 can be configured by adding a unidirectional element D to a general discharge circuit including a switch element S, a control circuit C, and a discharge element R. A mechanism for reliably preventing overdischarge can be realized simply and at low cost. In recent years, power storage devices capable of storing large amounts of electricity have attracted attention against the background of environmental problems and power demand problems, and power storage devices used in such applications are particularly required to have high reliability and safety. By adding the discharge circuit 1 to a power storage device (battery pack) configured using the secondary battery B, the reliability and safety of the power storage device can be improved simply and at low cost.
 図3に示すように、一方向性素子Dは、直列接続された同種又は異種の複数の一方向性素子D(1)~D(n)を用いて構成してもよい。この場合、二次電池Bの放電は、二次電池Bの電池電圧が一方向性素子D(1)~D(n)の夫々の順方向電圧閾値の総和に等しくなったときに停止する。そのため、一方向性素子D(1)~D(n)の数や種類を変えることで二次電池Bの放電停止電圧を自由に設定することができ、放電終止電圧の異なる様々なタイプの二次電池Bに柔軟に対応することができる。また一方向性素子D(1)~D(n)の数や種類を適切に選択すれば、不必要に高い電圧で二次電池Bの放電が停止してしまわないようにすることができ(一方向性素子Dの順方向電圧閾値を放電終止電圧に近づけることができ)、二次電池Bの性能を十分に引き出すことができる。 As shown in FIG. 3, the unidirectional element D may be configured using a plurality of the same or different unidirectional elements D (1) to D (n) connected in series. In this case, the discharge of the secondary battery B stops when the battery voltage of the secondary battery B becomes equal to the sum of the forward voltage thresholds of the unidirectional elements D (1) to D (n). Therefore, the discharge stop voltage of the secondary battery B can be freely set by changing the number and type of the unidirectional elements D (1) to D (n). The secondary battery B can be handled flexibly. In addition, if the number and type of unidirectional elements D (1) to D (n) are appropriately selected, the discharge of the secondary battery B can be prevented from being stopped at an unnecessarily high voltage ( The forward voltage threshold value of the unidirectional element D can be brought close to the discharge end voltage), and the performance of the secondary battery B can be sufficiently obtained.
 図4に示すように、一方向性素子Dは発光ダイオードledを用いて構成してもよい。また図5に示すように、一方向性素子Dは直列接続された複数の発光ダイオードled(1)~led(n)を用いて構成してもよい。このように一方向性素子Dとして発光ダイオードを用いた場合には、放電の様子を目視によって容易に確認することができる。またこの場合、一方向性素子Dをパイロットランプとして機能させてもよい。また発光ダイオードは汎用整流用ダイオード等の他の種類のダイオードに比べて順方向電圧閾値が高いため、一方向性素子Dを発光ダイオードを用いて構成することで放電終止電圧の異なる様々なタイプの二次電池Bに柔軟に対応することができる。 As shown in FIG. 4, the unidirectional element D may be configured using a light emitting diode led. Further, as shown in FIG. 5, the unidirectional element D may be configured using a plurality of light emitting diodes led (1) to led (n) connected in series. Thus, when a light emitting diode is used as the unidirectional element D, the state of discharge can be easily confirmed visually. In this case, the unidirectional element D may function as a pilot lamp. In addition, since light emitting diodes have a higher forward voltage threshold than other types of diodes such as general-purpose rectifying diodes, various types of discharge end voltages differ by configuring the unidirectional element D using light emitting diodes. The secondary battery B can be flexibly handled.
 また発光ダイオードは他の種類のダイオードよりも消費電力が比較的大きいため、一方向性素子Dとして用いる発光ダイオードを、放電素子Rを代替もしくは放電素子Rを補助する放電素子として機能させることも可能である。前者のように発光ダイオードを放電素子Rに代替させた場合は放電回路1の部品点数の削減や製造工程の簡素化を図ることができる。また後者のように発光ダイオードを放電素子Rを補助する放電素子として機能させた場合は放電素子Rと一方向性素子Dとの間で放電時におけるエネルギーの消費を分散させることができ、放電素子R及び一方向性素子Dの信頼性を向上することができる。 In addition, since the light-emitting diode consumes relatively larger power than other types of diodes, the light-emitting diode used as the unidirectional element D can function as a discharge element that replaces the discharge element R or assists the discharge element R. It is. When the light emitting diode is replaced with the discharge element R as in the former case, the number of components of the discharge circuit 1 can be reduced and the manufacturing process can be simplified. Further, when the light emitting diode functions as a discharge element that assists the discharge element R as in the latter case, the consumption of energy during discharge can be distributed between the discharge element R and the unidirectional element D. The reliability of R and the unidirectional element D can be improved.
 また図6に示すように、一方向性素子Dは、一つ以上のダイオードd(1)~d(n)と一つ以上の発光ダイオードled(1)~led(n)とを直列接続することにより構成してもよい。そのようにすれば放電停止電圧の設定自由度が増えて放電終止電圧の異なる多様な二次電池Bに柔軟に対応することができる。尚、接続順は同図に示すものに限られない。 Also, as shown in FIG. 6, the unidirectional element D connects one or more diodes d (1) to d (n) and one or more light emitting diodes led (1) to led (n) in series. You may comprise by. By doing so, the degree of freedom in setting the discharge stop voltage is increased, and it is possible to flexibly cope with various secondary batteries B having different discharge end voltages. The connection order is not limited to that shown in FIG.
 図7は、放電回路1の適用例として示す、複数の二次電池B1~Bnからなる集合電池のセルバランスを補正するバランス補正回路70である。このバランス補正回路70は、二次電池B1~Bnの夫々について設けられた複数の放電回路1(図1に示した放電回路1)を備えている。より具体的には、バランス補正回路70は、直列接続された複数の二次電池B1~Bnからなる集合電池の二次電池B1~Bnの夫々の端子間に接続される、放電素子R1~Rn、放電素子R1~Rnの夫々に直列に接続され夫々放電素子R1~Rnを流れる電流を制御するスイッチ素子S1~Sn、及び夫々放電素子R1~Rn及びスイッチ素子S1~Snと直列に接続され、夫々二次電池B1~Bnの夫々の放電終止電圧以上の順方向電圧閾値を有する一つ以上の一方向性素子D1~Dnを備える。二次電池B1~Bnには、夫々の電池電圧を計測する電圧センサM1~Mnが設けられている。 FIG. 7 shows a balance correction circuit 70 that corrects the cell balance of an assembled battery composed of a plurality of secondary batteries B1 to Bn, as an application example of the discharge circuit 1. The balance correction circuit 70 includes a plurality of discharge circuits 1 (discharge circuit 1 shown in FIG. 1) provided for each of the secondary batteries B1 to Bn. More specifically, the balance correction circuit 70 is connected between the respective terminals of the secondary batteries B1 to Bn of the assembled battery composed of the plurality of secondary batteries B1 to Bn connected in series. The switch elements S1 to Sn that are connected in series to the discharge elements R1 to Rn and control the current flowing through the discharge elements R1 to Rn, respectively, and the discharge elements R1 to Rn and the switch elements S1 to Sn are connected in series, Each of the secondary batteries B1 to Bn includes one or more unidirectional elements D1 to Dn each having a forward voltage threshold value equal to or higher than a discharge end voltage. The secondary batteries B1 to Bn are provided with voltage sensors M1 to Mn for measuring the respective battery voltages.
 制御回路Cは、電圧センサM1~Mnから入力される各二次電池B1~Bnの電池電圧に応じてスイッチS1~Snをオンオフすることにより各二次電池B1~Bn間で図示しない媒介素子(インダクタやトランス等)を介してエネルギーの授受を生じさせ、それにより各二次電池B1~Bnの電池電圧を均等化する。尚、このような動作を行う回路として、例えば、特開2001-185229号公報、特開平11-176483号公報等に開示されているものがある。 The control circuit C turns on and off the switches S1 to Sn in accordance with the battery voltages of the secondary batteries B1 to Bn input from the voltage sensors M1 to Mn, thereby causing a mediating element (not shown) between the secondary batteries B1 to Bn. Energy is transferred via an inductor, a transformer, etc., thereby equalizing the battery voltages of the secondary batteries B1 to Bn. Examples of circuits that perform such operations are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 2001-185229 and 11-176483.
 以上の構成からなるバランス補正回路70にあっては、例えば、スイッチ素子S1~Snに短絡故障が生じたり制御回路Cに障害が発生した場合でも、二次電池B1~Bnの夫々の放電は二次電池B1~Bnの夫々の電池電圧が夫々に設けられている一方向性素子D1~Dnの順方向電圧閾値に等しくなったところで自動的に停止する。そのため、いずれの二次電池B1~Bnについても過放電に至ることはない。 In the balance correction circuit 70 having the above configuration, for example, even when the switch elements S1 to Sn are short-circuited or the control circuit C is faulty, the secondary batteries B1 to Bn are each discharged twice. When the battery voltages of the secondary batteries B1 to Bn become equal to the forward voltage threshold values of the unidirectional elements D1 to Dn respectively provided, the batteries are automatically stopped. Therefore, any secondary battery B1 to Bn does not overdischarge.
 バランス補正回路70に用いる放電回路1の構成は必ずしも図1に示した放電回路1に限定されるわけではなく、例えば、バランス補正回路70が備える放電回路1の全部又は一部を図3~図6に示した回路のうちのいずれかで置換してもよい。図4~図6に示した放電回路1を用いた場合は集合電池を構成している二次電池B1~Bnの夫々の放電の様子を目視により容易に確認することができる。 The configuration of the discharge circuit 1 used in the balance correction circuit 70 is not necessarily limited to the discharge circuit 1 shown in FIG. 1. For example, all or part of the discharge circuit 1 included in the balance correction circuit 70 is shown in FIGS. Any one of the circuits shown in FIG. When the discharge circuit 1 shown in FIGS. 4 to 6 is used, the state of discharge of each of the secondary batteries B1 to Bn constituting the assembled battery can be easily confirmed visually.
 尚、バランス補正回路70は、例えば、集合電池を利用する蓄電装置(電気自動車、ハイブリッド自動車、電気二輪車、鉄道車両、昇降機、系統連携用蓄電装置、パーソナルコンピュータ、ノートブック型コンピュータ、携帯電話機、スマートフォン、PDA機器等)に広く適用することができる。バランス補正回路70は、集合電池と別体に設けられるものであってもよいし、集合電池と一体化されて蓄電装置(電池パック)等を構成するものであってもよい。 The balance correction circuit 70 is, for example, a power storage device (an electric vehicle, a hybrid vehicle, an electric motorcycle, a railway vehicle, a lift, a power storage device for system linkage, a personal computer, a notebook computer, a mobile phone, a smartphone using an assembled battery. , PDA devices, etc.). The balance correction circuit 70 may be provided separately from the assembled battery, or may be integrated with the assembled battery to constitute a power storage device (battery pack) or the like.
 以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。 The above description is intended to facilitate understanding of the present invention and is not intended to limit the present invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof.
 1 放電回路、 B 二次電池、 R 放電素子、 D 一方向性素子、d ダイオード、led 発光ダイオード、 C 制御回路、60 バランス補正回路
 
1 discharge circuit, B secondary battery, R discharge element, D unidirectional element, d diode, led light emitting diode, C control circuit, 60 balance correction circuit

Claims (8)

  1.  二次電池の端子間に接続される放電素子と、
     前記放電素子と直列に前記二次電池の端子間に接続され、前記放電素子を流れる電流を制御するスイッチ素子と、
     前記放電素子及び前記スイッチ素子と直列に前記二次電池の端子間に接続され、前記二次電池の放電終止電圧以上の順方向電圧閾値を有する一方向性素子と
     を備えることを特徴とする二次電池の放電回路。
    A discharge element connected between terminals of the secondary battery;
    A switch element connected between the terminals of the secondary battery in series with the discharge element and controlling a current flowing through the discharge element;
    A unidirectional element connected in series with the discharge element and the switch element between the terminals of the secondary battery and having a forward voltage threshold equal to or higher than a discharge end voltage of the secondary battery. Secondary battery discharge circuit.
  2.  請求項1に記載の放電回路であって、前記一方向性素子は、直列接続された一つ以上のダイオードを含んで構成されることを特徴とする二次電池の放電回路。 2. The discharge circuit according to claim 1, wherein the unidirectional element includes one or more diodes connected in series.
  3.  請求項1に記載の放電回路であって、前記一方向性素子は、直列接続された一つ以上の発光ダイオードを含んで構成されることを特徴とする二次電池の放電回路。 2. The discharge circuit according to claim 1, wherein the unidirectional element includes one or more light emitting diodes connected in series.
  4.  請求項1に記載の放電回路であって、前記一方向性素子は、直列接続された、一つ以上のダイオード及び一つ以上の発光ダイオードを含んで構成されることを特徴とする二次電池の放電回路。 2. The secondary battery according to claim 1, wherein the unidirectional element includes one or more diodes and one or more light emitting diodes connected in series. Discharge circuit.
  5.  請求項3又は4に記載の放電回路であって、前記発光ダイオードを前記放電素子として機能させることを特徴とする二次電池の放電回路。 5. The discharge circuit according to claim 3 or 4, wherein the light emitting diode functions as the discharge element.
  6.  直列接続された複数の二次電池からなる集合電池の前記二次電池の夫々の端子間に接続される、放電素子、前記放電素子の夫々と直列に接続され夫々前記放電素子を流れる電流を制御するスイッチ素子、及び夫々前記放電素子及び前記スイッチ素子と直列に接続され、前記二次電池の放電終止電圧以上の順方向電圧閾値を有する一つ以上の一方向性素子を備えて構成される、複数の放電回路と、
     前記複数の二次電池の夫々の電圧を計測する電圧センサと、
     前記複数の二次電池の夫々の電圧を均等化させるべく、前記電圧センサの計測値に応じて前記スイッチ素子の夫々をオンオフする制御回路と
     を備えることを特徴とするバランス補正回路。
    A discharge element connected between respective terminals of the secondary battery of the assembled battery composed of a plurality of secondary batteries connected in series, connected in series with each of the discharge elements, and controls a current flowing through the discharge element. A switching element that is connected to each other in series with the discharge element and the switch element, and includes one or more unidirectional elements having a forward voltage threshold equal to or higher than a discharge end voltage of the secondary battery. A plurality of discharge circuits;
    A voltage sensor for measuring a voltage of each of the plurality of secondary batteries;
    A balance correction circuit comprising: a control circuit that turns on and off each of the switch elements in accordance with a measurement value of the voltage sensor in order to equalize the voltages of the plurality of secondary batteries.
  7.  請求項1乃至5のいずれか一項に記載の前記二次電池と前記放電回路とを備える蓄電装置。 A power storage device comprising the secondary battery according to any one of claims 1 to 5 and the discharge circuit.
  8.  請求項6に記載の前記集合電池と前記バランス補正回路とを備える蓄電装置。 A power storage device comprising the assembled battery according to claim 6 and the balance correction circuit.
PCT/JP2014/064621 2013-06-18 2014-06-02 Secondary-cell discharge circuit, balance correction circuit, and power storage device WO2014203715A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013127813A JP2015002662A (en) 2013-06-18 2013-06-18 Discharge circuit for secondary battery, balance correction circuit and power storage device
JP2013-127813 2013-06-18

Publications (1)

Publication Number Publication Date
WO2014203715A1 true WO2014203715A1 (en) 2014-12-24

Family

ID=52104457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064621 WO2014203715A1 (en) 2013-06-18 2014-06-02 Secondary-cell discharge circuit, balance correction circuit, and power storage device

Country Status (2)

Country Link
JP (1) JP2015002662A (en)
WO (1) WO2014203715A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626160U (en) * 1992-09-01 1994-04-08 三菱油化株式会社 Storage battery discharger
JP2000184609A (en) * 1998-12-17 2000-06-30 Japan Storage Battery Co Ltd Capacity leveling circuit of group battery
WO2008149475A1 (en) * 2007-06-08 2008-12-11 Panasonic Corporation Power system and assembled battery controlling method
JP2011018537A (en) * 2009-07-08 2011-01-27 Panasonic Corp Battery pack and battery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626160U (en) * 1992-09-01 1994-04-08 三菱油化株式会社 Storage battery discharger
JP2000184609A (en) * 1998-12-17 2000-06-30 Japan Storage Battery Co Ltd Capacity leveling circuit of group battery
WO2008149475A1 (en) * 2007-06-08 2008-12-11 Panasonic Corporation Power system and assembled battery controlling method
JP2011018537A (en) * 2009-07-08 2011-01-27 Panasonic Corp Battery pack and battery system

Also Published As

Publication number Publication date
JP2015002662A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
US11205804B2 (en) BMS wake-up device, and BMS and battery pack including same
US9444118B2 (en) Battery pack
US8502502B2 (en) Electricity storing device and electronic device
US20060284597A1 (en) Power supply apparatus
TW201218576A (en) Dc power supply device
US9434272B2 (en) Battery management system
US10017138B2 (en) Power supply management system and power supply management method
US20100109606A1 (en) Charging control circuit
US20120139479A1 (en) Charge control system of battery pack
KR101182430B1 (en) Battery pack
KR102035033B1 (en) Power Relay Assembly for Electric Vehicle and the Operation Method Thereof
KR102443667B1 (en) balancing apparatus, and battery management system and battery pack including the same
JP5966727B2 (en) Power system
KR20070090498A (en) Battery pack
CN102624371B (en) Output circuit, temperature switch IC and set of cells
WO2011148907A1 (en) Power supply device
JP6734468B2 (en) Battery reverse voltage protection system and method
TWI801484B (en) Lithium-ion based battery system and power control system
JP2018139462A (en) Power unit
WO2014203715A1 (en) Secondary-cell discharge circuit, balance correction circuit, and power storage device
KR20150019653A (en) Apparatus for protecting battery over charge
TW202023142A (en) Series connected battery switching module and mode switching method and energy storage system
JP2013239279A (en) Battery power supply system
KR102637753B1 (en) Smart power relay assembly with low voltage relay and fail safety system using the smart power relay assembly with low voltage relay and fail safety method uising the fail safety system
WO2015005273A1 (en) Balance correction device and electricity storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14812951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14812951

Country of ref document: EP

Kind code of ref document: A1