WO2014203647A1 - Pressure detector - Google Patents

Pressure detector Download PDF

Info

Publication number
WO2014203647A1
WO2014203647A1 PCT/JP2014/062547 JP2014062547W WO2014203647A1 WO 2014203647 A1 WO2014203647 A1 WO 2014203647A1 JP 2014062547 W JP2014062547 W JP 2014062547W WO 2014203647 A1 WO2014203647 A1 WO 2014203647A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
pressure
generating body
axis direction
rib
Prior art date
Application number
PCT/JP2014/062547
Other languages
French (fr)
Japanese (ja)
Inventor
真之 日尾
風間 敦
準二 小野塚
彰夫 保川
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014203647A1 publication Critical patent/WO2014203647A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0044Constructional details of non-semiconductive diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • G01L9/0047Diaphragm with non uniform thickness, e.g. with grooves, bosses or continuously varying thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports

Definitions

  • the present invention relates to a pressure detection device mounted on various devices to be measured to detect pressure.
  • FIG. 8 shows an example of a conventional pressure detection device having a strain generating element that generates strain by receiving pressure from a pressure medium, and a strain detection element that detects strain generated by the strain generating body.
  • the pressure measurement device 200 of FIG. 8 is configured as, for example, a high pressure sensor mounted on a vehicle, and is used to measure the fuel pressure of the engine, the brake hydraulic pressure, various gas pressures, and the like.
  • 11 is a pressure port into which pressure is introduced.
  • the pressure port 11 has a hollow cylindrical pressure introducing portion 12 in which a pressure introducing port 12a is formed at one end in the axial direction, and a cylindrical flange, for example, formed at the other axial end (upper portion) of the pressure introducing portion 12 13 and a diaphragm 14 erected at a central portion of the flange 13.
  • the pressure introducing hole 12ha of the pressure introducing portion 12 is continuously bored to a portion slightly lower than the central portion of the flange 13 and the upper surface of the diaphragm 14.
  • a rectangular flat plate shaped strain generating body 15 which is deformed and distorted by the pressure introduced through the pressure introducing hole 12ha is disposed.
  • a plurality of strain resistance bridges that output electric signals according to the deformation (strain) of the strain generating body 15 are provided at substantially the center of the surface opposite to the pressure receiving surface (the surface on the diaphragm 14 side) of the strain generating body 15.
  • the distortion detection element 16 is joined.
  • the strain detection element 16 is configured as, for example, a semiconductor chip in which a plurality of strain resistance bridges are provided on one chip, and outputs a difference between strain in the x-axis direction and strain in the y-axis direction.
  • a substrate 17 is provided on a portion other than the strain detection element 16 on the surface opposite to the pressure receiving surface of the strain generating body 15.
  • a circuit for amplifying and processing each detection signal output from the strain detection element 16 various electronic components, a capacitor 18 and the like are mounted.
  • a predetermined diameter range from the center of the closing plate 19a closing the other axial direction of the cover 19 is notched, and the notched portion is formed of, for example, a resin and detected by the pressure measuring device 200 A connector 20 for outputting the pressure value to the outside is inserted.
  • One end of the connector 20 is fixed to the cover 19 in the cover 19, and the other end of the connector 20 is exposed to the outside from the cover 19.
  • the terminal 21 comprises, for example, three terminals for power supply, grounding, and signal output, one end of each terminal 21 is connected to the substrate 17 and the other end is connected to an external connector (not shown). Is electrically connected to the ECU or the like of the automobile via the wiring member.
  • FIG. 9 shows another example of the conventional pressure detection device, and the same parts as FIG. 8 are indicated by the same reference numerals.
  • the strain detection element 16 is directly bonded to the diaphragm 24 provided with a rectangular groove without using the strain generating body 15 of FIG. 8, and the other parts are configured in the same manner as FIG. There is.
  • the tip portion 12hbt of the pressure introducing hole of the pressure introducing portion 12 facing the strain sensing element 16 on the diaphragm 24 side is formed identical to the rectangular groove shape of the diaphragm 24 and the diaphragm 24 facing the tip portion 12hbt
  • the strain detection element 16 is disposed directly on the upper surface.
  • the rectangular groove of the diaphragm 24 causes a distortion difference in the x direction ⁇ y direction in the diaphragm 24. Further, since the diaphragm 24 is provided with a rectangular groove, it takes time and effort for forming.
  • Patent Document 1 “a diaphragm provided on the main body and a strain gauge provided on one surface of the insulating substrate, and the diaphragm is deformed with the diaphragm on the side opposite to the pressure receiving side opposite to the pressure receiving side.
  • a pressure sensor comprising a gauge substrate mounted to
  • a load sensor having a thin plate-like sensor plate and a plurality of strain gauges attached to the sensor plate, the sensor plate has both ends in one axial direction of the sensor plate
  • the fixed part is fixed to an arbitrary object, while the central point thereof is a transmission part for transmitting displacement or load to the sensor plate, and the strain gauge is positioned in point symmetry with respect to the central point.
  • Strain gauges arranged at a point symmetrical position are electrically connected in parallel or in series to form a gauge pair, and each gauge pair is electrically connected in series, and these strain gauges are used.
  • a load sensor characterized in that a bridge circuit is configured.
  • the present invention solves the above problem, and an object thereof is to provide a pressure detection device capable of reducing the strain in the y-axis direction to improve the output sensitivity of the strain detection element.
  • the present application includes a plurality of means for solving the above problems, one example is “a pressure detection device mounted on a device to be measured, in which the pressure of the pressure medium is applied through a diaphragm,
  • a pressure detection device having a strain generating element that generates strain according to pressure and a strain detection element joined to a surface opposite to the pressure receiving surface of the strain generating body
  • the strain generating body is formed in a rectangular shape having a plane formed by the x axis and the y axis, and a rib is formed along the y axis on the pressure receiving surface of the strain generating body.
  • the strain in the y-axis direction of the strain generating body is reduced by the rib, and the output sensitivity of the strain detection element can be maximized. Configurations and effects other than those described above will be apparent from the following description of the embodiment.
  • FIG. 2 is a perspective view of a strain generating body which is a main part of FIG. 1; Fig. 2 shows the joined state of the strain-generating body and the diaphragm, which are the main parts of Fig. 1, (a) is a perspective view of the main parts, (b) is a cross-sectional view of the embodiment of surface bonding, (c) is the embodiment of point bonding Cross section. Explanatory drawing which shows a deformation
  • the initial state by the rib height in a pressure detection device is represented, and (a) is an essential part sectional view in the case of rib height on the center side> rib height on both sides in the embodiment of the present invention, (b) is the center Principal part sectional drawing in case of rib height of the side ⁇ rib height of the both ends side.
  • the distortion detection element which is the principal part of FIG. 1, distortion-generating body, and a diaphragm are represented, (a) is a principal part perspective view, (b) is sectional drawing at the time of pressurization.
  • the distortion detection element in the other embodiment example of this invention, an elastic body, and a diaphragm are represented, (a) is a principal part perspective view, (b) is sectional drawing at the time of pressurization.
  • the whole block diagram which shows an example of the conventional pressure measurement apparatus.
  • the other example of the conventional pressure measuring device is shown, (a) is a principal part top view, (b) is DD sectional drawing of (a).
  • FIG. 1 shows the entire configuration of a pressure measuring device 100 in an embodiment in which the present invention is applied to the pressure measuring device of FIG. 8, and the same parts as FIG. 8 are indicated by the same reference numerals.
  • a straining body 25 in which ribs 25 L 1, 25 L 2 a, 25 L 2 b and a projection 30 are formed is provided on an upper surface of the diaphragm 14.
  • the strain detection element 16 is joined to the center of the surface of the strain generating body 25 opposite to the diaphragm 14, and a plurality of electronic components 28 are arranged symmetrically from the central axis around the strain detection element 16 via the substrate 17. It is set up.
  • the strain generating body 25 is deformed by the pressure introduced through the pressure introducing hole 12ha to cause distortion, and the strain detection element 16 outputs a plurality of strains that output electric signals according to the deformation (strain) of the strain generating body 25. It has a resistive bridge.
  • the strain generating body 25 is formed in a rectangular shape having a plane by the x axis and the y axis as shown in FIG. 2 which is shown upside down with respect to FIG. 1, and the x axis direction center of the surface on the diaphragm 14 side.
  • the rib 25L1 is formed along the y-axis, and the ribs 25L2a and 25L2b are formed along the y-axis at both ends in the x-axis direction.
  • a protrusion 30 is provided at the center of the central rib 25L1 in the y-axis direction.
  • the end portion (end point) of the protrusion 30 protruding from the central rib 25 L 1 and the end surface of the ribs 25 L 2 a and 25 L 2 b on both sides facing the diaphragm 14 are the diaphragm 14.
  • the central rib 25L1 (the protrusion 30) is welded, for example, by metal.
  • the end faces of the ribs 25L2a and 25L2b at both ends may also be welded to the diaphragm 14.
  • the ribs 25L1, 25L2a, 25L2b provided along the y-axis direction of the strain-generating body 25 reduce the strain in the y-axis direction of the strain-generating body 25 when deformation occurs due to pressure,
  • the output sensitivity of the distortion detection element 16 determined by the difference in y-axis direction distortion can be maximized.
  • the output sensitivity of the strain detection element 16 can be adjusted by changing the length of the ribs 25L1, 25L2a, 25L2b.
  • the air gap between the ribs 25L1 and 25L2a and the air gap between the ribs 25L1 and 25L2b are easily distorted.
  • the joint between the projection 30 provided at the central portion of the central rib 25L1 and the diaphragm 14 is a point joint, the strain-generating body 25 is easily distorted, and a large amount of displacement can be obtained.
  • the output sensitivity of 16 is enhanced.
  • the projection 30 may not be provided on the central rib 25L1.
  • the end face of the central rib 25L1 is metal welded to the diaphragm 14, for example.
  • FIG. 3 shows the bonding of the diaphragm 14 and the strain generating body 25.
  • the projection 30 is not provided on the rib 25L1, the end face of the rib 25L1 and the diaphragm 14 are surface-bonded as shown in FIG.
  • the projection 30 and the diaphragm 14 are point-joined as shown in FIG. 3 (c).
  • the substrate 17 on the strain generating body 25, the electronic component 28 and the like are not shown.
  • the displacement amount of the strain generating body 25 at the time of pressure application is smaller than in the case of the point bonding of FIG. 3 (c).
  • FIG. 4 shows the deformation of the strain generating body 25 at the time of pressing, and the protrusion 30 at the tip of the rib 25L1 on the center side and the substrate 17 between the strain generating body 25 and the electronic component 28 are not shown. There is.
  • the electronic components 28 By arranging the electronic components 28 symmetrically with respect to the central axis in this manner, the electronic components 28 and the strain generating body 25 can be integrated, and the productivity is improved.
  • FIG. 5 shows the initial state according to the rib height, and only the diaphragm 14, the strain generating body 25 and the strain detection element 16 are illustrated.
  • tension can be generated in advance in the strain detection element 16 in the initial stage before pressurization (preload can be applied), and strain can be detected even by pressurization.
  • the output of the element 16 can be stabilized.
  • the ribs may be provided only on the central side rib 25L1, and the ribs 25L2a and 25L2b on both end sides may not be provided. Even in this case, a large amount of displacement is obtained in the strain generating body 25, and the output sensitivity of the strain detection element 16 is high.
  • FIG. 6 shows the deformation of the strain-generating body 25 under pressure when the ribs 25L2a and 25L2b are respectively provided at both ends of the strain-producing body 25 in the x-axis direction and one rib 25L1 is provided at the center side.
  • the portion 30, the substrate 17, the electronic component 28, and the like are not shown.
  • the number of ribs provided along the y-axis direction of the strain generating body 25 may be four or more.
  • the ribs provided on the center side in the x-axis direction may be two ribs 25L1a and 25L1b separated by a predetermined distance.
  • the protrusion 30, the substrate 17, the electronic component 28 and the like are not shown.
  • a four-point bending state occurs at the time of pressurization, and stress concentration is reduced.

Abstract

To provide a pressure detector capable of reducing strain in the y-axis direction and enhancing the output sensitivity of a strain-detecting element, in a pressure measurement device (100) having a strain-generating body (25) that has pressure introduced from a pressure introduction hole (12ha) via a diaphragm (14) applied thereto and generates strain in accordance with the pressure and a strain-detecting element (16) joined to the surface of the strain-generating body (25) opposite from the pressure-receiving surface of the strain-generating body (25), on the surface of the diaphragm (14) side of the strain-generating body (25), a rib (25L1) formed along the y-axis direction in the center in the x-axis direction and a protrusion (30) in the center thereof are provided and ribs (25L2a, 25L2b) formed along the y-axis direction on both ends in the x-axis direction are provided and on the strain-detecting element (16) side of the strain-generating body (25), a plurality of electronic components (28) are provided, via a substrate (17), so as to be symmetrical around the central axis. The ribs (25L1, 25L2a, 25L2b) reduce the y-axis strain of the strain-generating body (25) and make it possible to maximize the output sensitivity of the strain-detecting element (16).

Description

圧力検出装置Pressure detection device
 本発明は、測定対象の各種機器に装着されて圧力を検出する圧力検出装置に関する。 The present invention relates to a pressure detection device mounted on various devices to be measured to detect pressure.
 図8に、圧力媒体の圧力を受けて歪を生じる起歪体と、起歪体で生じた歪を検出する歪検出素子を有する従来の圧力検出装置の一例を示す。図8の圧力測定装置200は、例えば車両に搭載される高圧センサとして構成され、エンジンの燃料圧、ブレーキ油圧、各種ガス圧等の測定に用いられる。 FIG. 8 shows an example of a conventional pressure detection device having a strain generating element that generates strain by receiving pressure from a pressure medium, and a strain detection element that detects strain generated by the strain generating body. The pressure measurement device 200 of FIG. 8 is configured as, for example, a high pressure sensor mounted on a vehicle, and is used to measure the fuel pressure of the engine, the brake hydraulic pressure, various gas pressures, and the like.
 図8の圧力測定装置200において、11は圧力が導入される圧力ポートである。この圧力ポート11は、軸方向一端に圧力導入口12aが形成された中空筒状の圧力導入部12と、該圧力導入部12の軸方向他端(上部)に形成された例えば円筒状のフランジ13と、該フランジ13の中央部位に立設されたダイアフラム14とを備えている。 In the pressure measuring device 200 of FIG. 8, 11 is a pressure port into which pressure is introduced. The pressure port 11 has a hollow cylindrical pressure introducing portion 12 in which a pressure introducing port 12a is formed at one end in the axial direction, and a cylindrical flange, for example, formed at the other axial end (upper portion) of the pressure introducing portion 12 13 and a diaphragm 14 erected at a central portion of the flange 13.
 前記圧力導入部12の圧力導入孔12haは、フランジ13の中央部とダイアフラム14の上部表面より若干低い高さの部位まで連続して穿設されている。 The pressure introducing hole 12ha of the pressure introducing portion 12 is continuously bored to a portion slightly lower than the central portion of the flange 13 and the upper surface of the diaphragm 14.
 ダイアフラム14の上部表面には圧力導入孔12haを介して導入された圧力によって変形し歪を生じる矩形平面板形状の起歪体15が配設されている。起歪体15の受圧面(ダイアフラム14側の面)とは反対の面のほぼ中央部位には、起歪体15の変形(歪)に応じた電気信号を出力する複数の歪抵抗ブリッジを備えた歪検出素子16が接合されている。 On the upper surface of the diaphragm 14, a rectangular flat plate shaped strain generating body 15 which is deformed and distorted by the pressure introduced through the pressure introducing hole 12ha is disposed. A plurality of strain resistance bridges that output electric signals according to the deformation (strain) of the strain generating body 15 are provided at substantially the center of the surface opposite to the pressure receiving surface (the surface on the diaphragm 14 side) of the strain generating body 15. The distortion detection element 16 is joined.
 歪検出素子16は、例えば1つのチップ上に複数の歪抵抗ブリッジが設けられた半導体チップとして構成され、x軸方向歪とy軸方向歪の差を出力する。 The strain detection element 16 is configured as, for example, a semiconductor chip in which a plurality of strain resistance bridges are provided on one chip, and outputs a difference between strain in the x-axis direction and strain in the y-axis direction.
 起歪体15の受圧面とは反対の面における、歪検出素子16以外の部位には基板17が設けられている。この基板17には、歪検出素子16から出力された各検出信号を増幅し処理する回路や各種電子部品およびコンデンサ18等が搭載されている。 A substrate 17 is provided on a portion other than the strain detection element 16 on the surface opposite to the pressure receiving surface of the strain generating body 15. On the substrate 17, a circuit for amplifying and processing each detection signal output from the strain detection element 16, various electronic components, a capacitor 18 and the like are mounted.
 前記フランジ13の外周部の上面には、ダイアフラム14、起歪体15、歪検出素子16、基板17およびコンデンサ18を覆うカバー19の、開口された軸方向一端の周縁部が固設されている。 On the upper surface of the outer peripheral portion of the flange 13, the peripheral edge of one open end of the cover 19 covering the diaphragm 14, the strain generating body 15, the strain detection element 16, the substrate 17 and the capacitor 18 is fixed. .
 このカバー19の軸方向他端を閉塞する閉塞板19aの、中央よりの所定径範囲は切り欠かれており、その切欠部には例えば樹脂等により形成され、圧力測定装置200で検出された検出圧力値を外部に出力するためのコネクタ20が挿入されている。 A predetermined diameter range from the center of the closing plate 19a closing the other axial direction of the cover 19 is notched, and the notched portion is formed of, for example, a resin and detected by the pressure measuring device 200 A connector 20 for outputting the pressure value to the outside is inserted.
 コネクタ20の一端はカバー19内においてカバー19に固定され、コネクタ20の他端はカバー19から外部へ露出している。 One end of the connector 20 is fixed to the cover 19 in the cover 19, and the other end of the connector 20 is exposed to the outside from the cover 19.
 このコネクタ20の内部には、例えばインサート成型により挿入された棒状のターミナル21を有している。このターミナル21は、例えば電源用、接地用、信号出力用の3本で構成され、各ターミナル21の一端は前記基板17に接続されており、他端が図示省略の外部コネクタに接続されることによって、自動車のECU等へ配線部材を介して電気的に接続される。 Inside the connector 20, for example, a rod-like terminal 21 inserted by insert molding is provided. The terminal 21 comprises, for example, three terminals for power supply, grounding, and signal output, one end of each terminal 21 is connected to the substrate 17 and the other end is connected to an external connector (not shown). Is electrically connected to the ECU or the like of the automobile via the wiring member.
 また図9は、従来の圧力検出装置の他の例を示しており、図8と同一部分は同一符号をもって示している。図9では、図8の起歪体15を用いることなく、矩形溝を設けたダイアフラム24に直接歪検出素子16を接合して構成しており、その他の部分は図8と同様に構成されている。 Further, FIG. 9 shows another example of the conventional pressure detection device, and the same parts as FIG. 8 are indicated by the same reference numerals. In FIG. 9, the strain detection element 16 is directly bonded to the diaphragm 24 provided with a rectangular groove without using the strain generating body 15 of FIG. 8, and the other parts are configured in the same manner as FIG. There is.
 すなわち、圧力導入部12の圧力導入孔の、ダイアフラム24側の歪検出素子16に対向する先端部12hbtを、ダイアフラム24の矩形溝形状と同一に形成し、その先端部12hbtと対向するダイアフラム24の上表面に歪検出素子16を直接配設している。 That is, the tip portion 12hbt of the pressure introducing hole of the pressure introducing portion 12 facing the strain sensing element 16 on the diaphragm 24 side is formed identical to the rectangular groove shape of the diaphragm 24 and the diaphragm 24 facing the tip portion 12hbt The strain detection element 16 is disposed directly on the upper surface.
 この図9の構成では、ダイアフラム24の矩形溝によって、ダイアフラム24にx方向-y方向の歪差が生じる。また、ダイアフラム24に矩形溝を設けているため、成形加工に手間がかかる。 In the configuration of FIG. 9, the rectangular groove of the diaphragm 24 causes a distortion difference in the x direction −y direction in the diaphragm 24. Further, since the diaphragm 24 is provided with a rectangular groove, it takes time and effort for forming.
 また従来の圧力検出装置としては、例えば特許文献1、2に記載のものが提案されている。 Moreover, as a conventional pressure detection apparatus, the thing of patent document 1, 2 is proposed, for example.
 特許文献1には、「本体に設けられたダイアフラムと、絶縁基板の一面にストレインゲージを設けて構成され、前記ダイアフラムにあって圧力を受ける側とは反対の反受圧面側にこのダイアフラムと共に変形するように取り付けられたゲージ基板とを具備して成る圧力センサ。」が記載されている。 In Patent Document 1, “a diaphragm provided on the main body and a strain gauge provided on one surface of the insulating substrate, and the diaphragm is deformed with the diaphragm on the side opposite to the pressure receiving side opposite to the pressure receiving side. A pressure sensor comprising a gauge substrate mounted to
 また特許文献2には、「薄板状のセンサプレートと、このセンサプレートに取り付けられた複数の歪みゲージとを具備する荷重センサにおいて、前記センサプレートは、その一軸方向の両端が、このセンサプレートを任意の対象物に固定させる固定部となされる一方で、その中心点が変位乃至荷重をこのセンサプレートに伝達せしめる伝達部となされ、前記歪みゲージを前記中心点に対して点対称となる位置に配置すると共に、点対称となる位置に配された歪みゲージ同士を電気的に並列又は直列に接続してゲージペアを構成し、さらに各ゲージペア同士を電気的に直列に接続して、これら歪みゲージでブリッジ回路を構成したことを特徴とする荷重センサ。」が記載されている。 Further, in Patent Document 2, “a load sensor having a thin plate-like sensor plate and a plurality of strain gauges attached to the sensor plate, the sensor plate has both ends in one axial direction of the sensor plate The fixed part is fixed to an arbitrary object, while the central point thereof is a transmission part for transmitting displacement or load to the sensor plate, and the strain gauge is positioned in point symmetry with respect to the central point. Strain gauges arranged at a point symmetrical position are electrically connected in parallel or in series to form a gauge pair, and each gauge pair is electrically connected in series, and these strain gauges are used. A load sensor characterized in that a bridge circuit is configured.
特開平8-62075号公報JP-A-8-62075 再公表特許WO2006/006677号公報Re-issued patent WO2006 / 006677
 特許文献1、2を含む従来の圧力検出装置は、y軸方向の歪の影響により、x軸方向歪とy軸方向歪の差で決まる歪検出素子の出力感度は悪いものであった。 In the conventional pressure detection devices including Patent Documents 1 and 2, the output sensitivity of the strain detection element determined by the difference between the x-axis direction strain and the y-axis direction strain is poor due to the influence of the strain in the y-axis direction.
 本発明は上記課題を解決するものであり、その目的は、y軸方向の歪を低減して歪検出素子の出力感度を向上させることができる圧力検出装置を提供することにある。 The present invention solves the above problem, and an object thereof is to provide a pressure detection device capable of reducing the strain in the y-axis direction to improve the output sensitivity of the strain detection element.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「測定対象機器に装着された圧力検出装置であって、圧力媒体の圧力がダイアフラムを介して印加され、その圧力に応じて歪を発生する起歪体と、その起歪体の受圧面と反対の面に接合された歪検出素子とを有する圧力検出装置において、
 前記起歪体はx軸、y軸による平面を有した矩形状に形成され、起歪体の受圧面にはy軸に沿ったリブが形成されている」ことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted. Although the present application includes a plurality of means for solving the above problems, one example is “a pressure detection device mounted on a device to be measured, in which the pressure of the pressure medium is applied through a diaphragm, In a pressure detection device having a strain generating element that generates strain according to pressure and a strain detection element joined to a surface opposite to the pressure receiving surface of the strain generating body,
The strain generating body is formed in a rectangular shape having a plane formed by the x axis and the y axis, and a rib is formed along the y axis on the pressure receiving surface of the strain generating body.
 本発明によれば、リブによって起歪体のy軸方向の歪が低減され、歪検出素子の出力感度を最大化することができる。上記した以外の構成及び効果は以下の実施形態の説明により明らかにされる。 According to the present invention, the strain in the y-axis direction of the strain generating body is reduced by the rib, and the output sensitivity of the strain detection element can be maximized. Configurations and effects other than those described above will be apparent from the following description of the embodiment.
本発明の一実施形態例による圧力測定装置全体の断面構成図。BRIEF DESCRIPTION OF THE DRAWINGS The cross-sectional block diagram of the whole pressure measurement apparatus by one Embodiment of this invention. 図1の要部である起歪体の斜視図。FIG. 2 is a perspective view of a strain generating body which is a main part of FIG. 1; 図1の要部である起歪体とダイアフラムの接合状態を表し、(a)は要部斜視図、(b)は面接合の実施例における断面図、(c)は点接合の実施例における断面図。Fig. 2 shows the joined state of the strain-generating body and the diaphragm, which are the main parts of Fig. 1, (a) is a perspective view of the main parts, (b) is a cross-sectional view of the embodiment of surface bonding, (c) is the embodiment of point bonding Cross section. 本発明の実施形態例における、受圧力により起歪体が変形したようすを示す説明図。Explanatory drawing which shows a deformation | transformation body being deformed by received pressure in embodiment of this invention. 圧力検出装置におけるリブ高さによる初期状態を表し、(a)は本発明の実施形態例における中央側のリブ高さ>両端側のリブ高さの場合の要部断面図、(b)は中央側のリブ高さ<両端側のリブ高さの場合の要部断面図。The initial state by the rib height in a pressure detection device is represented, and (a) is an essential part sectional view in the case of rib height on the center side> rib height on both sides in the embodiment of the present invention, (b) is the center Principal part sectional drawing in case of rib height of the side <rib height of the both ends side. 図1の要部である歪検出素子、起歪体およびダイアフラムのようすを表し、(a)は要部斜視図、(b)は加圧時の断面図。The distortion detection element which is the principal part of FIG. 1, distortion-generating body, and a diaphragm are represented, (a) is a principal part perspective view, (b) is sectional drawing at the time of pressurization. 本発明の他の実施形態例における歪検出素子、起歪体およびダイアフラムのようすを表し、(a)は要部斜視図、(b)は加圧時の断面図。The distortion detection element in the other embodiment example of this invention, an elastic body, and a diaphragm are represented, (a) is a principal part perspective view, (b) is sectional drawing at the time of pressurization. 従来の圧力測定装置の一例を示す全体構成図。The whole block diagram which shows an example of the conventional pressure measurement apparatus. 従来の圧力測定装置の他の例を示し、(a)は要部平面図、(b)は(a)のD-D断面図。The other example of the conventional pressure measuring device is shown, (a) is a principal part top view, (b) is DD sectional drawing of (a).
 以下、図面を参照しながら本発明の実施形態について説明するが、本発明は下記の実施形態例に限定されるものではない。図1は、本発明を図8の圧力測定装置に適用した実施形態における圧力測定装置100全体の構成を示し、図8と同一部分は同一符号をもって示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments. FIG. 1 shows the entire configuration of a pressure measuring device 100 in an embodiment in which the present invention is applied to the pressure measuring device of FIG. 8, and the same parts as FIG. 8 are indicated by the same reference numerals.
 ダイアフラム14の上部表面には、リブ25L1,25L2a,25L2bおよび突起部30が形成された起歪体25が設けられている。起歪体25のダイアフラム14とは反対側の面の中央には歪検出素子16が接合され、歪検出素子16の周辺には基板17を介して複数の電子部品28が中心軸から対称に配設されている。 On an upper surface of the diaphragm 14, a straining body 25 in which ribs 25 L 1, 25 L 2 a, 25 L 2 b and a projection 30 are formed is provided. The strain detection element 16 is joined to the center of the surface of the strain generating body 25 opposite to the diaphragm 14, and a plurality of electronic components 28 are arranged symmetrically from the central axis around the strain detection element 16 via the substrate 17. It is set up.
 起歪体25は、圧力導入孔12haを介して導入された圧力によって変形して歪を生じ、歪検出素子16は起歪体25の変形(歪)に応じた電気信号を出力する複数の歪抵抗ブリッジを備えている。 The strain generating body 25 is deformed by the pressure introduced through the pressure introducing hole 12ha to cause distortion, and the strain detection element 16 outputs a plurality of strains that output electric signals according to the deformation (strain) of the strain generating body 25. It has a resistive bridge.
 起歪体25は、図1に対して天地を逆にして示した図2のように、x軸、y軸による平面を有した矩形状に形成され、ダイアフラム14側の面のx軸方向中央にリブ25L1がy軸に沿って形成され、x軸方向両端にリブ25L2a,25L2bがy軸に沿って形成されている。そして中央側のリブ25L1のy軸方向中央には突起部30が設けられている。 The strain generating body 25 is formed in a rectangular shape having a plane by the x axis and the y axis as shown in FIG. 2 which is shown upside down with respect to FIG. 1, and the x axis direction center of the surface on the diaphragm 14 side. The rib 25L1 is formed along the y-axis, and the ribs 25L2a and 25L2b are formed along the y-axis at both ends in the x-axis direction. A protrusion 30 is provided at the center of the central rib 25L1 in the y-axis direction.
 したがって、起歪体25は、中央側のリブ25L1から突設された突起部30の端部(端点)と、両端側のリブ25L2a,25L2bのダイアフラム14に対向する側の端面とがダイアフラム14に接触し、中央側のリブ25L1(の突起部30)のみが例えば金属溶接される。またこれに限らず、両端側のリブ25L2a,25L2bの端面もダイアフラム14に溶接してもよい。 Therefore, in the strain generating body 25, the end portion (end point) of the protrusion 30 protruding from the central rib 25 L 1 and the end surface of the ribs 25 L 2 a and 25 L 2 b on both sides facing the diaphragm 14 are the diaphragm 14. In contact, only the central rib 25L1 (the protrusion 30) is welded, for example, by metal. Not limited to this, the end faces of the ribs 25L2a and 25L2b at both ends may also be welded to the diaphragm 14.
 起歪体25のy軸方向に沿って設けられたリブ25L1,25L2a,25L2bは、加圧により変形が生じる際、起歪体25のy軸方向の歪を低減させるので、x軸方向歪とy軸方向歪の差で決まる歪検出素子16の出力感度を最大化することができる。 The ribs 25L1, 25L2a, 25L2b provided along the y-axis direction of the strain-generating body 25 reduce the strain in the y-axis direction of the strain-generating body 25 when deformation occurs due to pressure, The output sensitivity of the distortion detection element 16 determined by the difference in y-axis direction distortion can be maximized.
 前記リブ25L1,25L2a,25L2bの長さを変えることにより、歪検出素子16の出力感度を調整することができる。また、リブ25L1および25L2a間の空隙と、リブ25L1および25L2b間の空隙によって、歪易く作用する。 The output sensitivity of the strain detection element 16 can be adjusted by changing the length of the ribs 25L1, 25L2a, 25L2b. In addition, the air gap between the ribs 25L1 and 25L2a and the air gap between the ribs 25L1 and 25L2b are easily distorted.
 また、中央側のリブ25L1の中央部に設けた突起部30とダイアフラム14との接合が点接合となるため、起歪体25が歪易くなり、大きな変位量を得ることができ、歪検出素子16の出力感度を高めている。 Further, since the joint between the projection 30 provided at the central portion of the central rib 25L1 and the diaphragm 14 is a point joint, the strain-generating body 25 is easily distorted, and a large amount of displacement can be obtained. The output sensitivity of 16 is enhanced.
 尚、中央側のリブ25L1に突起部30を設けない構成としてもよい。この場合は中央側のリブ25L1の端面がダイアフラム14に例えば金属溶接される。 The projection 30 may not be provided on the central rib 25L1. In this case, the end face of the central rib 25L1 is metal welded to the diaphragm 14, for example.
 図3は、ダイアフラム14と起歪体25の接合のようすを表しており、リブ25L1に突起部30を設けない場合は図3(b)のようにリブ25L1の端面とダイアフラム14が面接合し、突起部30を設けた場合は図3(c)のように突起部30とダイアフラム14が点接合する。図3では起歪体25上の基板17、電子部品28等は図示省略している。図3(b)の面接合の場合、図3(c)の点接合の場合よりも若干加圧時の起歪体25の変位量は少ないが、y軸方向の歪低減作用はある。 FIG. 3 shows the bonding of the diaphragm 14 and the strain generating body 25. When the projection 30 is not provided on the rib 25L1, the end face of the rib 25L1 and the diaphragm 14 are surface-bonded as shown in FIG. When the projection 30 is provided, the projection 30 and the diaphragm 14 are point-joined as shown in FIG. 3 (c). In FIG. 3, the substrate 17 on the strain generating body 25, the electronic component 28 and the like are not shown. In the case of the surface bonding of FIG. 3 (b), the displacement amount of the strain generating body 25 at the time of pressure application is smaller than in the case of the point bonding of FIG. 3 (c).
 前記起歪体25上において、前記複数の電子部品28を中心軸から対称に配設していることによって、加圧時の起歪体25の応力分布は図4に示すように均一に保たれる。図4は加圧時の起歪体25の変形のようすを表しており、中央側のリブ25L1先端の突起部30、および起歪体25と電子部品28の間の基板17は図示省略している。 By arranging the plurality of electronic components 28 symmetrically on the straining body 25 from the central axis, the stress distribution of the straining body 25 at the time of pressing is kept uniform as shown in FIG. Be FIG. 4 shows the deformation of the strain generating body 25 at the time of pressing, and the protrusion 30 at the tip of the rib 25L1 on the center side and the substrate 17 between the strain generating body 25 and the electronic component 28 are not shown. There is.
 このように電子部品28を中心軸から対称に配設することにより電子部品28と起歪体25を一体化することができ、生産性が向上する。 By arranging the electronic components 28 symmetrically with respect to the central axis in this manner, the electronic components 28 and the strain generating body 25 can be integrated, and the productivity is improved.
 前記中央側のリブ25L1と両端側のリブ25L2a(b)の高さ関係は、図5(a)に示すようにリブ25L1高さ>リブ25L2a(b)高さに設定しておく。図5はリブ高さによる初期状態を表しており、ダイアフラム14、起歪体25および歪検出素子16のみを図示している。 The height relationship between the central rib 25L1 and the ribs 25L2a (b) on both ends is set as follows: rib 25L1 height> rib 25L2a (b) height, as shown in FIG. 5 (a). FIG. 5 shows the initial state according to the rib height, and only the diaphragm 14, the strain generating body 25 and the strain detection element 16 are illustrated.
 図5(a)のように設定しておくことにより、加圧前の初期に予め歪検出素子16に引張を生じさせることができ(プリ荷重をかけることができ)、加圧によっても歪検出素子16の出力を安定させることができる。 By setting as shown in FIG. 5A, tension can be generated in advance in the strain detection element 16 in the initial stage before pressurization (preload can be applied), and strain can be detected even by pressurization. The output of the element 16 can be stabilized.
 これに対して、図5(b)に示すようにリブ25L1高さ<リブ25L2a(b)高さに設定した場合は、加圧することで、歪検出素子16には圧縮→引張になる変極点が生じるため、その変極点において出力が不安定となってしまう。 On the other hand, when the rib 25L1 height <the rib 25L2a (b) height is set as shown in FIG. 5B, an inflection point at which the strain detection element 16 becomes compression → tension by applying pressure. As a result, the output becomes unstable at that inflection point.
 また前記リブは、中央側のリブ25L1のみ設け、両端側のリブ25L2a,25L2bを設けない構成としてもよい。この場合でも起歪体25に大きな変位量が得られ歪検出素子16の出力感度は高い。 Further, the ribs may be provided only on the central side rib 25L1, and the ribs 25L2a and 25L2b on both end sides may not be provided. Even in this case, a large amount of displacement is obtained in the strain generating body 25, and the output sensitivity of the strain detection element 16 is high.
 図6は起歪体25のx軸方向両端にリブ25L2a,25L2bを各々設け、中央側に1個のリブ25L1を設けた場合の加圧時の起歪体25の変形のようすを表し、突起部30、基板17および電子部品28等は図示省略している。 FIG. 6 shows the deformation of the strain-generating body 25 under pressure when the ribs 25L2a and 25L2b are respectively provided at both ends of the strain-producing body 25 in the x-axis direction and one rib 25L1 is provided at the center side. The portion 30, the substrate 17, the electronic component 28, and the like are not shown.
 図6(b)のようにx軸方向中央側のリブ25L1が1個である場合、加圧時に3点曲げ状態となり起歪体25に大きな変位量が得られる。また起歪体25のy軸方向に沿って設けるリブの個数は4個以上設けてもよい。例えば、加圧時の起歪体25の変形のようすを表す図7のように、x軸方向中央側に設けるリブを、所定間隔隔てた2個のリブ25L1a,25L1bとしてもよい。図7では突起部30、基板17および電子部品28等は図示省略している。 As shown in FIG. 6B, in the case where there is one rib 25L1 on the center side in the x-axis direction, a three-point bending state is obtained at the time of pressure application, and a large amount of displacement can be obtained in the strain generating body 25. The number of ribs provided along the y-axis direction of the strain generating body 25 may be four or more. For example, as shown in FIG. 7 showing the deformation of the strain generating body 25 at the time of pressure application, the ribs provided on the center side in the x-axis direction may be two ribs 25L1a and 25L1b separated by a predetermined distance. In FIG. 7, the protrusion 30, the substrate 17, the electronic component 28 and the like are not shown.
 図7(b)の場合、加圧時に4点曲げ状態となり応力集中が低減される。また、起歪体25上に配設する歪検出素子16の位置ずれに対してロバスト性がある。さらに4個よりも多くリブを設ける場合は、x軸方向中央側のリブ(図7(b)では25L1a,25L1b)を分割するような構造になるため、リブの総個数は偶数個(偶数曲げ)とする。このように起歪体25に設けるリブの個数を4個以上の偶数個とすることにより、応力集中がさらに低減される。 In the case of FIG. 7 (b), a four-point bending state occurs at the time of pressurization, and stress concentration is reduced. In addition, there is robustness against positional displacement of the strain detection element 16 disposed on the strain generating body 25. If more than four ribs are provided, the ribs on the center side in the x-axis direction (25L1a and 25L1b in FIG. 7B) are divided, so the total number of ribs is an even number (even bending) And). As described above, by setting the number of ribs provided on the strain generating body 25 to an even number of four or more, stress concentration is further reduced.
 11…圧力ポート
 12…圧力導入部
 12a…圧力導入口
 12ha…圧力導入孔
 12hbt…先端部
 13…フランジ
 14…ダイアフラム
 15、25…起歪体
 16…歪検出素子
 17…基板
 18…コンデンサ
 19…カバー
 19a…閉塞板
 20…コネクタ
 21…ターミナル
 25L1,25L1a,25L1b,25L2a,25L2b…リブ
 28…電子部品
 30…突起部
 100,200…圧力測定装置
11 Pressure port 12 Pressure introduction portion 12a Pressure introduction port 12ha Pressure introduction hole 12h bt Tip portion 13 Flange 14 Diaphragm 15, distortion body 16 Strain detection element 17 Substrate 18 Capacitor 19 cover 19a: Blocking plate 20: Connector 21: Terminal 25L1, 25L1a, 25L1b, 25L2a, 25L2b: Rib 28: Electronic part 30: Protrusion part 100, 200: Pressure measurement device

Claims (7)

  1.  測定対象機器に装着された圧力検出装置であって、圧力媒体の圧力がダイアフラムを介して印加され、その圧力に応じて歪を発生する起歪体と、その起歪体の受圧面と反対の面に接合された歪検出素子とを有する圧力検出装置において、
     前記起歪体はx軸、y軸による平面を有した矩形状に形成され、起歪体の受圧面にはy軸に沿ったリブが形成されていることを特徴とする圧力検出装置。
    A pressure detection device mounted on a device to be measured, wherein a pressure medium of a pressure medium is applied through a diaphragm, and a strain generating body that generates a strain according to the pressure and a pressure receiving surface opposite to the pressure receiving surface of the strain generating body A pressure sensing device having a strain sensing element bonded to the surface,
    The pressure detecting device is characterized in that the strain generating body is formed in a rectangular shape having a plane formed by the x axis and the y axis, and a rib along the y axis is formed on a pressure receiving surface of the strain generating body.
  2.  前記リブは起歪体のx軸方向中央に設けられていることを特徴とする請求項1に記載の圧力検出装置。 The pressure detection device according to claim 1, wherein the rib is provided at the center of the strain generating body in the x-axis direction.
  3.  前記リブは起歪体のx軸方向両端にも設けられていることを特徴とする請求項2に記載の圧力検出装置。 The pressure detection device according to claim 2, wherein the rib is also provided on both ends of the strain generating body in the x-axis direction.
  4.  前記x軸方向中央のリブの高さはx軸方向両端のリブの高さよりも高く形成されていることを特徴とする請求項3に記載の圧力検出装置。 The pressure detection device according to claim 3, wherein the height of the rib in the center in the x-axis direction is formed higher than the height of the ribs in both ends in the x-axis direction.
  5.  前記x軸方向中央のリブのy軸方向中央には、突起部が設けられていることを特徴とする請求項2ないし4のいずれか1項に記載の圧力検出装置。 The pressure detection device according to any one of claims 2 to 4, wherein a protrusion is provided at the center in the y-axis direction of the rib at the center in the x-axis direction.
  6.  前記リブは4個以上の偶数個設けられていることを特徴とする請求項1ないし5のいずれか1項に記載の圧力検出装置。 The pressure detection device according to any one of claims 1 to 5, wherein four or more even-numbered ribs are provided.
  7.  前記起歪体の歪検出素子接合面における歪検出素子の周辺には、複数の電子部品が中心軸から対称に配設されていることを特徴とする請求項1ないし6のいずれか1項に記載の圧力検出装置。 7. The electronic apparatus according to claim 1, wherein a plurality of electronic components are disposed symmetrically with respect to the central axis around the strain detection element on the strain detection element bonding surface of the strain generating body. Pressure detector as described.
PCT/JP2014/062547 2013-06-20 2014-05-12 Pressure detector WO2014203647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013129503A JP6147110B2 (en) 2013-06-20 2013-06-20 Pressure detection device
JP2013-129503 2013-06-20

Publications (1)

Publication Number Publication Date
WO2014203647A1 true WO2014203647A1 (en) 2014-12-24

Family

ID=52104389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062547 WO2014203647A1 (en) 2013-06-20 2014-05-12 Pressure detector

Country Status (2)

Country Link
JP (1) JP6147110B2 (en)
WO (1) WO2014203647A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849530A (en) * 2018-08-21 2020-02-28 阿自倍尔株式会社 Pressure sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147024A (en) * 1981-03-07 1982-09-10 Kyowa Dengiyou:Kk Assembly of diaphragm and strain inducer for signal converter
US6044711A (en) * 1997-01-10 2000-04-04 Psi-Tronix, Inc. Force sensing apparatus
JP2004053344A (en) * 2002-07-18 2004-02-19 Tem-Tech Kenkyusho:Kk Metal diaphragm pressure sensor of load conversion type
WO2006006677A1 (en) * 2004-07-14 2006-01-19 Nagano Keiki Co., Ltd. Load sensor and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147024A (en) * 1981-03-07 1982-09-10 Kyowa Dengiyou:Kk Assembly of diaphragm and strain inducer for signal converter
US6044711A (en) * 1997-01-10 2000-04-04 Psi-Tronix, Inc. Force sensing apparatus
JP2004053344A (en) * 2002-07-18 2004-02-19 Tem-Tech Kenkyusho:Kk Metal diaphragm pressure sensor of load conversion type
WO2006006677A1 (en) * 2004-07-14 2006-01-19 Nagano Keiki Co., Ltd. Load sensor and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849530A (en) * 2018-08-21 2020-02-28 阿自倍尔株式会社 Pressure sensor
CN110849530B (en) * 2018-08-21 2022-01-25 阿自倍尔株式会社 Pressure sensor

Also Published As

Publication number Publication date
JP6147110B2 (en) 2017-06-14
JP2015004566A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
US10473546B2 (en) Hermetic pressure sensor having a bending part
US7823456B2 (en) Pressure sensor
JP6090742B2 (en) Pressure detection device
JP5975970B2 (en) Pressure sensor
JP2008151738A (en) Pressure sensor
WO2014080759A1 (en) Pressure sensor
US20140137654A1 (en) Measuring device for measuring a physical quantity
JP6154488B2 (en) Pressure measuring device
JP6587972B2 (en) Pressure measuring device and method of manufacturing the device
US10976205B2 (en) Dynamic quantity measuring apparatus having a strain sensor disposed in a groove
US6640640B2 (en) Differential pressure sensor
US10845264B2 (en) Pressure sensor and manufacturing method therefor
WO2014203647A1 (en) Pressure detector
JP2009265012A (en) Semiconductor sensor
JP2014232025A (en) Electronic device
US11560302B2 (en) Micromechanical pressure sensor with two cavities and diaphragms and corresponding production method
US9618414B2 (en) Device for determining a pressure and method for manufacturing the same
EP3070451B1 (en) Pressure transducer
JP2009533660A (en) Sensor device
JP2008008829A (en) Pressure sensor
US11614376B2 (en) Device for converting a pressure into an electric signal, and electronic pressure measuring device comprising such a device
CN108267259A (en) Ceramic MEMS pressure sensor
KR20050070728A (en) A portable compressive load calibrator
JPH0550335U (en) Semiconductor pressure gauge
JP2009180592A (en) Pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814430

Country of ref document: EP

Kind code of ref document: A1