WO2014203373A1 - Inverter control apparatus and inverter control method - Google Patents
Inverter control apparatus and inverter control method Download PDFInfo
- Publication number
- WO2014203373A1 WO2014203373A1 PCT/JP2013/066964 JP2013066964W WO2014203373A1 WO 2014203373 A1 WO2014203373 A1 WO 2014203373A1 JP 2013066964 W JP2013066964 W JP 2013066964W WO 2014203373 A1 WO2014203373 A1 WO 2014203373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- temperature
- inverter circuit
- inverter
- inverter control
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
- H02M7/5395—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/327—Means for protecting converters other than automatic disconnection against abnormal temperatures
Definitions
- the present invention relates to an inverter control device and an inverter control method.
- Ripple current is superimposed on the AC current output from the pulse width modulation (PWM) control type inverter circuit to the AC motor (AC motor).
- PWM pulse width modulation
- AC motor AC motor
- ripple current is large, the iron loss and electromagnetic noise in the AC motor increase, and the motor efficiency decreases.
- ripple current is also superimposed on the return current from the AC motor to the substation, the possibility of inductive failure is increased.
- Patent Document 1 discloses a motor drive system that controls the frequency of a carrier wave (carrier frequency) used for pulse width modulation control based on a comparison between a ripple current width and a reference value of the ripple current width.
- the switching frequency is set to a frequency at which the temperature of the inverter circuit does not exceed the upper limit temperature even when the AC motor is used under the worst possible usage conditions.
- the switching frequency is set to a frequency at which the temperature of the inverter circuit does not exceed the upper limit temperature even if the motor is operated for 24 hours at a predetermined rotation speed and torque when the ambient temperature of the inverter circuit is 90 ° C.
- the worst conditions for use are assumed to be all cases and are very strict.
- an AC motor used in a vehicle such as a train or a car is different from an AC motor used in home appliances or the like, and its usage environment is greatly changed by movement. Therefore, the worst use conditions of the AC motor that moves the vehicle must be extremely strict.
- the switching frequency is determined in consideration of the worst use condition, the switching frequency is inevitably lowered, and as a result, the ripple current superimposed on the output current is increased.
- the present invention has been made in view of such a problem, and an object thereof is to provide an inverter control device having a small ripple current superimposed on an output current.
- the inverter control device of the present invention includes an inverter control unit that outputs a switching pulse for PWM control to a switching element included in the inverter circuit, and a temperature measurement unit that measures the temperature of the inverter circuit.
- the inverter control unit changes the frequency of the switching pulse based on the temperature of the inverter circuit measured by the temperature measurement unit.
- the frequency of the switching pulse is changed based on the temperature of the inverter circuit measured by the temperature measuring unit, the frequency of the switching pulse can be increased.
- the inverter control device can reduce the ripple current superimposed on the output current.
- FIG. 1 It is a figure which shows the inverter control apparatus which concerns on embodiment of this invention. It is a figure which shows the structure of the inverter control apparatus which concerns on embodiment of this invention. It is a figure which shows a mode that a gate pulse signal is produced
- the inverter control device 100 is a device that drives an AC motor 200 that moves a train.
- the train means a vehicle that travels on a track such as a train or a train.
- the train includes not only a train with a plurality of cars but also a single train with a car.
- the train includes a tram that travels on a road surface, a monorail that travels on one rail, a tire traveling vehicle that travels on a track with rubber tires, and a linear motor car that travels on a track.
- Trains also include electric trains that run by turning a generator with an engine and driving a motor with the electric power.
- the inverter control apparatus 100 includes power input terminals P and N, AC output terminals U, V, and W, and information input terminals I1, I2, and I3.
- the power input terminal P (positive terminal) is connected to the overhead line 500 via the current collector 400, and the power input terminal N (negative terminal) is connected to the rail 700 via the wheel 600.
- the information input terminals I1 and I2 are connected to the cab 300, and the information input terminal I3 is connected to the AC motor 200.
- the AC output terminals U, V, and W are connected to the AC motor 200.
- the cab command MC, the vehicle body weight VL, and the speed FM are input to the information input terminals I1 to I3, respectively.
- the cab command MC is a command related to on / off of power running acceleration, on / off of brake, power running acceleration and brake strength.
- the vehicle body weight VL is information indicating the current vehicle body weight of the train.
- the speed FM is the current speed of the train, for example, the current rotation speed of the AC motor 200.
- the inverter control device 100 includes a power conversion unit 110 that converts DC power supplied from the overhead line 500 into AC power and outputs the AC power to the AC motor 200, a temperature measurement unit 120 that measures the temperature of the power conversion unit 110, and a temperature measurement.
- the inverter control unit 130 controls the power conversion unit 110 based on the temperature measured by the unit 120.
- the power conversion unit 110 includes a reactor 111 and a capacitor 112 that form an LC filter circuit, an inverter circuit 113 that converts DC power output from the LC filter circuit into AC power, and a power conversion unit 110.
- a current detector 114 that measures the current input to the power converter 110
- a voltage detector 115 that measures the voltage input to the power converter 110
- a voltage detector 116 that measures the voltage input to the inverter circuit 113. Is done.
- the reactor 111 and the capacitor 112 are elements constituting an LC filter circuit.
- the LC filter circuit is connected between the power input terminals P and N and the inverter circuit 113.
- the LC filter circuit smoothes a ripple component included in the voltage of the overhead line 500 and suppresses a noise current generated by a switching operation of the switching elements 113U to 113Z described later from flowing out to the overhead line 500.
- the inverter circuit 113 is a voltage-type three-phase two-level inverter circuit.
- the inverter circuit 113 is located at the subsequent stage of the LC filter circuit, and is connected to the AC motor 200 via AC output terminals U, V, and W.
- the inverter circuit 113 includes six switching elements (switching elements 113U to 113Z).
- the gate terminals of the switching elements 113U to 113Z are connected to the inverter control unit 130, respectively.
- Switching elements 113U to 113Z are switched by a switching pulse (gate pulse signal GP) supplied from inverter control unit 130. By this switching, the inverter circuit 113 converts the direct current supplied from the LC filter circuit into an alternating current and outputs the alternating current to the alternating current motor 200.
- gate pulse signal GP gate pulse signal
- the current detector 114 is an ammeter that measures the current supplied from the overhead line 500 to the power conversion unit 110.
- the current detector 114 is connected between the power input terminal P and the reactor 111.
- the current detector 114 measures the current flowing through the power input terminal P and the reactor 111 and outputs the measurement result to the inverter control unit 130 as the current detection value IS.
- the voltage detector 115 is a voltmeter that measures the voltage of the overhead line 500.
- the voltage detector 115 has one end connected to the power input terminal P via the current detector 114 and the other end connected to the power input terminal N.
- the voltage detector 115 measures the voltage between the power input terminals P and N, and outputs the measurement result to the inverter control unit 130 as the voltage detection value ES.
- the voltage detector 116 is a voltmeter that measures the voltage input to the inverter circuit 113.
- the voltage detector 115 has one end connected to the power input terminal P side of the capacitor 112 and the other end connected to the power input terminal N side of the capacitor 112.
- the voltage detector 116 measures the voltage across the capacitor 112 and outputs the measured value to the inverter control unit 130 as the voltage detection value EFC.
- the temperature measuring unit 120 is a thermometer for measuring the temperature of the inverter circuit 113, for example, a thermistor.
- the temperature measurement unit 120 is installed on the surface of the semiconductor chip constituting the power conversion unit 110 if the power conversion unit 110 is configured from a semiconductor chip.
- the temperature of the inverter circuit 113 is measured, and the measurement value is output to the inverter control unit 130 as the temperature measurement value TH.
- the inverter control unit 130 is a device that generates a gate pulse signal GP for PWM control by comparing a carrier wave that is a triangular wave and a signal wave that is a sine wave. More specifically, as shown in FIG. 3, the inverter control unit 130 compares the carrier wave Vs with the signal waves Vu, Vv, and Vw to generate the gate pulse signal GP (gate pulse signals GPu to GPz), This is a device for outputting generated signals to the switching elements 113U to 113Z.
- the inverter control unit 130 includes a torque pattern calculation unit 131 that generates a torque command, a current command calculation unit 132 that generates a current command, a voltage command calculation unit 133 that generates a voltage command, a signal Modulation rate / voltage phase calculation unit 134 for calculating the modulation rate and voltage phase of the waves Vu, Vv, Vw, carrier frequency calculation unit 135 for calculating the frequency of the carrier wave Vs, and gate pulse generation unit for generating the gate pulse signal GP 136.
- the torque pattern calculation unit 131, the current command calculation unit 132, the voltage command calculation unit 133, and the modulation factor / voltage phase calculation unit 134 generate information for the gate pulse generation unit 136 to generate the signal waves Vu, Vv, and Vw. It is a calculating part.
- Torque pattern calculation unit 131 calculates a torque to be generated by AC motor 200 based on cab command MC and vehicle body weight VL, and outputs the torque to current command calculation unit 132 as a torque command.
- the current command calculation unit 132 calculates a current command based on the torque command and each detection value (voltage detection value ES, voltage detection value EFC, current detection value IS) input from the power conversion unit 110.
- the voltage command calculation unit 133 generates a voltage command based on the current command and each detected value input from the power conversion unit 110.
- the modulation factor / voltage phase calculation unit 134 calculates the modulation factors and voltage phases of the signal waves Vu, Vv, and Vw based on the current command, and outputs them to the gate pulse generation unit 136.
- the calculation method of the modulation factor and voltage phase of the signal waves Vu, Vv, Vw is not limited to the above method, and various known methods can be used.
- the carrier frequency calculation unit 135 is a calculation unit that calculates the frequency of the carrier wave Vs (hereinafter referred to as “carrier frequency”). As shown in FIG. 5, the carrier frequency calculation unit 135 includes a basic carrier frequency acquisition unit 135a that acquires a basic carrier frequency, a carrier frequency gain acquisition unit 135b that acquires a carrier frequency gain, a basic carrier frequency and a carrier frequency gain. And a multiplier 135c for multiplication.
- the basic carrier frequency acquisition unit 135a stores a carrier frequency table shown in FIG.
- the carrier frequency table is a table showing the relationship between the train speed FM and the basic carrier frequency Fb. As shown in FIG. 6, when the speed FM is a high value, the basic carrier frequency Fb changes according to the speed FM. On the other hand, when the train speed FM is a low value, the basic carrier frequency Fc is fixed at a high frequency (reference frequency Fa). This is because the AC waveform collapse has a greater effect on the motor efficiency as the AC motor 200 operates at a lower speed.
- the state of the inverter control device 100 when the basic carrier frequency Fb is a fixed value is referred to as “asynchronous mode”, and the state of the inverter control device 100 when the basic carrier frequency Fb changes according to the speed FM.
- the state is called “synchronous mode”.
- the reference frequency Fa is a value determined in consideration that the inverter circuit 113 does not exceed the upper limit temperature TH2 even if the AC motor 200 is used under the worst possible usage conditions.
- the upper limit temperature TH2 may be a design upper limit temperature of the switching elements 113U to 113Z.
- the current speed FM of the train is input to the basic carrier frequency acquisition unit 135a.
- the basic carrier frequency acquisition unit 135a acquires the basic carrier frequency Fb corresponding to the current train speed FM from the carrier frequency table. Then, the basic carrier frequency acquisition unit 135a outputs the acquired basic carrier frequency Fb to the multiplier 135c.
- the carrier frequency gain acquisition unit 135b stores a carrier frequency gain table shown in FIG.
- the carrier frequency gain table is a table showing the relationship between the temperature measurement value TH of the inverter circuit 113 and the room for increasing the basic carrier frequency Fc. More specifically, it is a table showing the relationship between the temperature measurement value TH of the inverter circuit 113 and the carrier frequency gain G.
- the carrier frequency gain G is a value that is multiplied by the basic carrier frequency Fb. As shown in FIG. 7, the carrier frequency gain G is fixed at the gain G1 until the temperature measurement value TH reaches the temperature TH1. When the temperature exceeds TH1, the carrier frequency gain G gradually decreases. The carrier frequency gain G becomes 1 when the temperature measurement value TH reaches the upper limit temperature TH2.
- the current temperature measurement value TH of the inverter circuit 113 is input to the carrier frequency gain acquisition unit 135b.
- the carrier frequency gain acquisition unit 135b acquires the carrier frequency gain G corresponding to the current temperature measurement value TH of the inverter circuit 113 from the carrier frequency gain table. Then, the carrier frequency gain acquisition unit 135b outputs the acquired carrier frequency gain G to the multiplier 135c.
- the multiplier 135c multiplies the basic carrier frequency Fb and the carrier frequency gain G to calculate the carrier frequency Fc. At this time, the multiplier 135c multiplies the basic carrier frequency Fb and the carrier frequency gain G only in the asynchronous mode. In the synchronous mode, the basic carrier frequency Fb is directly calculated as the carrier frequency Fc. Thereby, as shown in FIG. 8, the multiplier 135c can acquire the carrier frequency Fc whose value changes according to the temperature only during low-speed traveling. The multiplier 135c outputs the calculated carrier frequency Fc to the gate pulse generation unit 136.
- the gate pulse generation unit 136 is a pulse generation unit that generates a gate pulse signal GP.
- the gate pulse generator 136 generates signal waves Vu, Vv, Vw based on the modulation factor and voltage phase input from the modulation factor / voltage phase calculator 134. Further, the gate pulse generation unit 136 generates a carrier wave Vs based on the carrier frequency Fc input from the carrier frequency calculation unit 135.
- the gate pulse generation unit 136 compares the generated signal waves Vu, Vv, Vw and the carrier wave Vs to generate, for example, a gate pulse signal GP (gate pulse signals GPu to GPz) as shown in FIG.
- the gate pulse generation unit 136 outputs the generated gate pulse signals GPu to GPz to the gate terminals of the switching elements 113U to 113Z.
- the frequency of the switching pulse (gate pulse signal GP) output to the switching elements 113U to 113Z is the same as the carrier frequency Fc.
- the carrier frequency Fc that is, the frequency of the switching pulse is changed based on the temperature of the inverter circuit 113 measured by the temperature measurement unit 120, it is determined in consideration of the worst use condition.
- the switching pulse can be raised beyond the reference frequency Fa. As a result, the inverter control device 100 can reduce the ripple current superimposed on the output current.
- the inverter control device 100 includes the power conversion unit 110, but the inverter control device 100 may not include the power conversion unit 110.
- the inverter control unit 130 included in the inverter control device 100 may be configured to control the inverter circuit 113 outside the inverter control device 100.
- the inverter control device 100 is configured as a device that receives DC power and outputs AC power to the AC motor 200.
- the inverter control device 100 receives AC power and receives the AC power.
- 200 may be configured as an apparatus that outputs AC power.
- the power conversion unit 110 may include a converter circuit that converts AC power into DC power before the inverter circuit 113.
- the voltage-type three-phase two-level inverter circuit is used as the inverter circuit 113.
- the inverter circuit 113 is not limited to the voltage-type three-phase two-level inverter circuit.
- a single-phase inverter or a three-level inverter circuit may be used.
- the basic carrier frequency Fb is multiplied by the carrier frequency gain G only in the asynchronous mode.
- the basic carrier frequency Fb may be multiplied by the carrier frequency gain G also in the synchronous mode. It is also possible to set only the asynchronous mode without providing the synchronous mode.
- the carrier frequency Fc is changed based on the temperature of the inverter circuit 113.
- the inverter control unit 130 determines the frequency of the switching pulse (gate pulse signal GP) based on the temperature of the inverter circuit 113. May be changed directly.
- the temperature measurement unit 120 is installed on the surface of the semiconductor chip constituting the power conversion unit 110. However, if a cooler is attached to the power conversion unit 110, the temperature measurement unit 120 is installed. May be attached to the cooler. The inverter circuit 113 may be directly attached.
- the inverter control device 100 is a device that drives the AC motor 200 that moves the train. However, even if the inverter control device 100 is a device that drives the AC motor 200 that moves a vehicle such as a hybrid car or an electric vehicle. Good.
- 100 inverter control device 110 power conversion unit, 111 reactor, 112 capacitor, 113 inverter circuit, 113U to 113Z switching element, 114 current detector, 115 voltage detector, 116 voltage detector, 120 temperature measurement unit, 130 inverter control unit 131, torque pattern calculation unit, 132 current command calculation unit, 133 voltage command calculation unit, 134 modulation factor / voltage phase calculation unit, 135 carrier frequency calculation unit, 135a basic carrier frequency acquisition unit, 135b carrier frequency gain acquisition unit, 135c multiplication , 136, gate pulse generator, 200 AC motor, 300 cab, 400 current collector, 500 overhead wires, 600 wheels, 700 rails, P, N power input terminals, U, V, W AC output terminals, I , I2, I3 information input terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
An inverter control apparatus (100) is provided with: an inverter control unit (130), which outputs a switching pulse to switching elements (113U-113Z) for PWM control, said switching elements being provided in an inverter circuit (113); and a temperature measuring unit (120) that measures a temperature of the inverter circuit (113). On the basis of the inverter circuit (113) temperature measured by means of the temperature measuring unit (120), the inverter control unit (130) changes a frequency of the switching pulse to be outputted to the switching elements (113U-113Z).
Description
本発明は、インバータ制御装置、及びインバータ制御方法に関する。
The present invention relates to an inverter control device and an inverter control method.
パルス幅変調(pulse width modulation:PWM)制御方式のインバータ回路が交流電動機(ACモーター)に出力する交流電流には、リップル電流が重畳する。リップル電流が大きい場合、交流電動機内での鉄損や電磁騒音が大きくなるため、モーター効率が低下する。また、交流電動機から変電所への帰線電流にもリップル電流が重畳するため、誘導障害が発生する可能性も高まる。
Ripple current is superimposed on the AC current output from the pulse width modulation (PWM) control type inverter circuit to the AC motor (AC motor). When the ripple current is large, the iron loss and electromagnetic noise in the AC motor increase, and the motor efficiency decreases. Moreover, since the ripple current is also superimposed on the return current from the AC motor to the substation, the possibility of inductive failure is increased.
リップル電流の大小は、スイッチング素子に供給されるスイッチングパルスの周波数(以下、スイッチング周波数という。)で決まる。スイッチング周波数が高いほど、インバータ回路が出力する交流電流は正弦波に近くなり、リップル電流は減少する。特許文献1には、リップル電流幅とリップル電流幅の基準値との比較に基づいて、パルス幅変調制御に用いる搬送波の周波数(キャリア周波数)を制御するモーター駆動システムが開示されている。
The magnitude of the ripple current is determined by the frequency of the switching pulse supplied to the switching element (hereinafter referred to as switching frequency). The higher the switching frequency, the closer the alternating current output from the inverter circuit is to a sine wave, and the ripple current decreases. Patent Document 1 discloses a motor drive system that controls the frequency of a carrier wave (carrier frequency) used for pulse width modulation control based on a comparison between a ripple current width and a reference value of the ripple current width.
スイッチング周波数を高くするとリップル電流は小さくなる。しかし、スイッチング素子のスイッチング回数が増加するので、インバータ回路の温度が上昇する。スイッチング素子には使用温度の上限があるので、スイッチング周波数を無制限に高くすることはできない。
∙ When the switching frequency is increased, the ripple current decreases. However, since the switching frequency of the switching element increases, the temperature of the inverter circuit rises. Since the switching element has an upper limit of operating temperature, the switching frequency cannot be increased without limit.
一般的に、スイッチング周波数は、想定され得る最悪の使用条件で交流電動機を使用しても、インバータ回路の温度が上限温度を超えない周波数に設定される。例えば、スイッチング周波数は、インバータ回路の周囲温度が90℃のときに予め決定された回転数とトルクでモーターを24時間運転させ続けても、インバータ回路の温度が上限温度を超えない周波数に設定される。
Generally, the switching frequency is set to a frequency at which the temperature of the inverter circuit does not exceed the upper limit temperature even when the AC motor is used under the worst possible usage conditions. For example, the switching frequency is set to a frequency at which the temperature of the inverter circuit does not exceed the upper limit temperature even if the motor is operated for 24 hours at a predetermined rotation speed and torque when the ambient temperature of the inverter circuit is 90 ° C. The
最悪使用条件は、あらゆるケースを想定したものであるので、とても厳しいものである。特に、列車や自動車等の車両で使用される交流電動機は、家電機器等で使用される交流電動機とは違い、移動により使用環境が大きく変わる。そのため、車両を動かす交流電動機の最悪使用条件は、極めて厳しいものとならざるを得ない。最悪使用条件を考慮してスイッチング周波数を決定すると、スイッチング周波数は低くならざるを得ず、結果として、出力電流に重畳するリップル電流は大きくなる。
The worst conditions for use are assumed to be all cases and are very strict. In particular, an AC motor used in a vehicle such as a train or a car is different from an AC motor used in home appliances or the like, and its usage environment is greatly changed by movement. Therefore, the worst use conditions of the AC motor that moves the vehicle must be extremely strict. When the switching frequency is determined in consideration of the worst use condition, the switching frequency is inevitably lowered, and as a result, the ripple current superimposed on the output current is increased.
本発明はこのような問題に鑑みてなされたものであり、出力電流に重畳するリップル電流が小さいインバータ制御装置を提供することを目的とする。
The present invention has been made in view of such a problem, and an object thereof is to provide an inverter control device having a small ripple current superimposed on an output current.
本発明のインバータ制御装置は、インバータ回路が備えるスイッチング素子にPWM制御のためのスイッチングパルスを出力するインバータ制御部と、インバータ回路の温度を測定する温度測定部と、を備えている。インバータ制御部は、温度測定部が測定したインバータ回路の温度に基づいてスイッチングパルスの周波数を変更する。
The inverter control device of the present invention includes an inverter control unit that outputs a switching pulse for PWM control to a switching element included in the inverter circuit, and a temperature measurement unit that measures the temperature of the inverter circuit. The inverter control unit changes the frequency of the switching pulse based on the temperature of the inverter circuit measured by the temperature measurement unit.
本発明によれば、温度測定部で測定したインバータ回路の温度に基づいてスイッチングパルスの周波数を変更しているので、スイッチングパルスの周波数を高くすることができる。この結果、インバータ制御装置は、出力電流に重畳するリップル電流を小さくできる。
According to the present invention, since the frequency of the switching pulse is changed based on the temperature of the inverter circuit measured by the temperature measuring unit, the frequency of the switching pulse can be increased. As a result, the inverter control device can reduce the ripple current superimposed on the output current.
以下、本発明を実施するための形態について図面を参照しながら説明する。なお、図中、同一または同等の部分には同一の符号を付す。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or equivalent parts are denoted by the same reference numerals.
本発明の実施の形態に係るインバータ制御装置100は、列車を動かす交流電動機200を駆動する装置である。ここで、列車とは、電車や気動車等、軌道上を走行する車両のこという。なお、列車には、複数両編成の列車のみならず、1両編成の単行列車も含まれる。また、列車には、路面を走行する路面電車、1本のレール上を走行するモノレール、軌道上をゴムタイヤで走行するタイヤ走行車、軌道上を浮上して走るリニアモーターカーも含まれる。また、列車には、エンジンで発電機を回し、その電力でモーターを駆動して走行する電気式気動車も含まれる。
The inverter control device 100 according to the embodiment of the present invention is a device that drives an AC motor 200 that moves a train. Here, the train means a vehicle that travels on a track such as a train or a train. The train includes not only a train with a plurality of cars but also a single train with a car. In addition, the train includes a tram that travels on a road surface, a monorail that travels on one rail, a tire traveling vehicle that travels on a track with rubber tires, and a linear motor car that travels on a track. Trains also include electric trains that run by turning a generator with an engine and driving a motor with the electric power.
インバータ制御装置100は、図1に示すように、電力入力端子P、Nと、交流出力端子U、V、Wと、情報入力端子I1、I2、I3と、を備えている。電力入力端子P(正極端子)は集電装置400を介して架線500に接続されており、電力入力端子N(負極端子)は車輪600を介してレール700と接続されている。また、情報入力端子I1、I2は、運転台300と接続されており、情報入力端子I3は、交流電動機200と接続されている。また、交流出力端子U、V、Wは、交流電動機200と接続されている。
As shown in FIG. 1, the inverter control apparatus 100 includes power input terminals P and N, AC output terminals U, V, and W, and information input terminals I1, I2, and I3. The power input terminal P (positive terminal) is connected to the overhead line 500 via the current collector 400, and the power input terminal N (negative terminal) is connected to the rail 700 via the wheel 600. The information input terminals I1 and I2 are connected to the cab 300, and the information input terminal I3 is connected to the AC motor 200. The AC output terminals U, V, and W are connected to the AC motor 200.
情報入力端子I1~I3には、それぞれ、運転台指令MCと、車体重量VLと、速度FMとが入力される。運転台指令MCは、力行加速のオンオフ、ブレーキのオンオフ、及び力行加速やブレーキの強さに関する指令である。車体重量VLは、列車の現在の車体重量を示す情報である。速度FMは、列車の現在の速度、例えば、交流電動機200の現在の回転数である。
The cab command MC, the vehicle body weight VL, and the speed FM are input to the information input terminals I1 to I3, respectively. The cab command MC is a command related to on / off of power running acceleration, on / off of brake, power running acceleration and brake strength. The vehicle body weight VL is information indicating the current vehicle body weight of the train. The speed FM is the current speed of the train, for example, the current rotation speed of the AC motor 200.
以下、インバータ制御装置100について詳細に説明する。
Hereinafter, the inverter control device 100 will be described in detail.
インバータ制御装置100は、架線500から供給された直流電力を交流電力に変換して交流電動機200に出力する電力変換部110と、電力変換部110の温度を測定する温度測定部120と、温度測定部120が測定した温度に基づいて電力変換部110を制御するインバータ制御部130とから構成される。
The inverter control device 100 includes a power conversion unit 110 that converts DC power supplied from the overhead line 500 into AC power and outputs the AC power to the AC motor 200, a temperature measurement unit 120 that measures the temperature of the power conversion unit 110, and a temperature measurement. The inverter control unit 130 controls the power conversion unit 110 based on the temperature measured by the unit 120.
電力変換部110は、図2に示すように、LCフィルタ回路を構成するリアクトル111及びコンデンサ112と、LCフィルタ回路から出力された直流電力を交流電力に変換するインバータ回路113と、電力変換部110に入力される電流を計測する電流検出器114と、電力変換部110に入力される電圧を計測する電圧検出器115と、インバータ回路113に入力される電圧を計測する電圧検出器116とから構成される。
As shown in FIG. 2, the power conversion unit 110 includes a reactor 111 and a capacitor 112 that form an LC filter circuit, an inverter circuit 113 that converts DC power output from the LC filter circuit into AC power, and a power conversion unit 110. A current detector 114 that measures the current input to the power converter 110, a voltage detector 115 that measures the voltage input to the power converter 110, and a voltage detector 116 that measures the voltage input to the inverter circuit 113. Is done.
リアクトル111及びコンデンサ112は、LCフィルタ回路を構成する素子である。LCフィルタ回路は、電力入力端子P、Nとインバータ回路113との間に接続されている。LCフィルタ回路は、架線500の電圧に含まれるリプル成分を平滑化するとともに、後述するスイッチング素子113U~113Zのスイッチング動作により発生するノイズ電流が架線500へ流出するのを抑制する。
The reactor 111 and the capacitor 112 are elements constituting an LC filter circuit. The LC filter circuit is connected between the power input terminals P and N and the inverter circuit 113. The LC filter circuit smoothes a ripple component included in the voltage of the overhead line 500 and suppresses a noise current generated by a switching operation of the switching elements 113U to 113Z described later from flowing out to the overhead line 500.
インバータ回路113は、電圧形三相2レベルインバータ回路である。インバータ回路113は、LCフィルタ回路の後段に位置しており、交流電動機200とは交流出力端子U、V、Wを介して接続されている。インバータ回路113は、6つのスイッチング素子(スイッチング素子113U~113Z)を備えている。スイッチング素子113U~113Zのゲート端子はそれぞれインバータ制御部130と接続されている。スイッチング素子113U~113Zは、インバータ制御部130から供給されるスイッチングパルス(ゲートパルス信号GP)によりスイッチングされる。インバータ回路113は、このスイッチングにより、LCフィルタ回路から供給された直流電流を交流電流に変換して交流電動機200に出力する。
The inverter circuit 113 is a voltage-type three-phase two-level inverter circuit. The inverter circuit 113 is located at the subsequent stage of the LC filter circuit, and is connected to the AC motor 200 via AC output terminals U, V, and W. The inverter circuit 113 includes six switching elements (switching elements 113U to 113Z). The gate terminals of the switching elements 113U to 113Z are connected to the inverter control unit 130, respectively. Switching elements 113U to 113Z are switched by a switching pulse (gate pulse signal GP) supplied from inverter control unit 130. By this switching, the inverter circuit 113 converts the direct current supplied from the LC filter circuit into an alternating current and outputs the alternating current to the alternating current motor 200.
電流検出器114は、架線500から電力変換部110に供給される電流を計測する電流計である。電流検出器114は、電力入力端子Pとリアクトル111との間に接続されている。電流検出器114は、電力入力端子Pとリアクトル111に流れる電流を計測し、計測結果を電流検出値ISとしてインバータ制御部130に出力する。
The current detector 114 is an ammeter that measures the current supplied from the overhead line 500 to the power conversion unit 110. The current detector 114 is connected between the power input terminal P and the reactor 111. The current detector 114 measures the current flowing through the power input terminal P and the reactor 111 and outputs the measurement result to the inverter control unit 130 as the current detection value IS.
電圧検出器115は、架線500の電圧を計測する電圧計である。電圧検出器115は、一端が電流検出器114を介して電力入力端子Pに、他端が電力入力端子Nに接続されている。電圧検出器115は、電力入力端子P、N間の電圧を計測し、計測結果を電圧検出値ESとしてインバータ制御部130に出力する。
The voltage detector 115 is a voltmeter that measures the voltage of the overhead line 500. The voltage detector 115 has one end connected to the power input terminal P via the current detector 114 and the other end connected to the power input terminal N. The voltage detector 115 measures the voltage between the power input terminals P and N, and outputs the measurement result to the inverter control unit 130 as the voltage detection value ES.
電圧検出器116は、インバータ回路113に入力される電圧を計測する電圧計である。電圧検出器115は、一端がコンデンサ112の電力入力端子P側に、他端がコンデンサ112の電力入力端子N側に接続されている。電圧検出器116は、コンデンサ112の両端電圧を計測し、計測値を電圧検出値EFCとしてインバータ制御部130に出力する。
The voltage detector 116 is a voltmeter that measures the voltage input to the inverter circuit 113. The voltage detector 115 has one end connected to the power input terminal P side of the capacitor 112 and the other end connected to the power input terminal N side of the capacitor 112. The voltage detector 116 measures the voltage across the capacitor 112 and outputs the measured value to the inverter control unit 130 as the voltage detection value EFC.
温度測定部120は、インバータ回路113の温度を測定するための温度計、例えば、サーミスタである。温度測定部120は、電力変換部110が半導体チップから構成されるのであれば、電力変換部110を構成する半導体チップの表面に設置される。インバータ回路113の温度を計測し、計測値を温度測定値THとしてインバータ制御部130に出力する。
The temperature measuring unit 120 is a thermometer for measuring the temperature of the inverter circuit 113, for example, a thermistor. The temperature measurement unit 120 is installed on the surface of the semiconductor chip constituting the power conversion unit 110 if the power conversion unit 110 is configured from a semiconductor chip. The temperature of the inverter circuit 113 is measured, and the measurement value is output to the inverter control unit 130 as the temperature measurement value TH.
インバータ制御部130は、三角波である搬送波(carrier wave)と正弦波である信号波(signal wave)を比較してPWM制御のためのゲートパルス信号GPを生成する装置である。より具体的には、インバータ制御部130は、図3に示すように、搬送波Vsと信号波Vu、Vv、Vwとを比較してゲートパルス信号GP(ゲートパルス信号GPu~GPz)を生成し、生成した信号をスイッチング素子113U~113Zに出力する装置である。
The inverter control unit 130 is a device that generates a gate pulse signal GP for PWM control by comparing a carrier wave that is a triangular wave and a signal wave that is a sine wave. More specifically, as shown in FIG. 3, the inverter control unit 130 compares the carrier wave Vs with the signal waves Vu, Vv, and Vw to generate the gate pulse signal GP (gate pulse signals GPu to GPz), This is a device for outputting generated signals to the switching elements 113U to 113Z.
インバータ制御部130は、図4に示すように、トルク指令を生成するトルクパターン演算部131と、電流指令を生成する電流指令演算部132と、電圧指令を生成する電圧指令演算部133と、信号波Vu、Vv、Vwの変調率及び電圧位相を演算する変調率・電圧位相演算部134と、搬送波Vsの周波数を演算するキャリア周波数演算部135と、ゲートパルス信号GPを生成するゲートパルス生成部136とから構成される。
As shown in FIG. 4, the inverter control unit 130 includes a torque pattern calculation unit 131 that generates a torque command, a current command calculation unit 132 that generates a current command, a voltage command calculation unit 133 that generates a voltage command, a signal Modulation rate / voltage phase calculation unit 134 for calculating the modulation rate and voltage phase of the waves Vu, Vv, Vw, carrier frequency calculation unit 135 for calculating the frequency of the carrier wave Vs, and gate pulse generation unit for generating the gate pulse signal GP 136.
トルクパターン演算部131、電流指令演算部132、電圧指令演算部133、及び変調率・電圧位相演算部134は、ゲートパルス生成部136が信号波Vu、Vv、Vwを生成するための情報を生成する演算部である。トルクパターン演算部131は、運転台指令MCと車体重量VLとに基づき、交流電動機200が生成すべきトルクを演算し、トルク指令として電流指令演算部132に出力する。電流指令演算部132は、トルク指令と電力変換部110から入力された各検出値(電圧検出値ES、電圧検出値EFC、電流検出値IS)とに基づき電流指令を演算する。電圧指令演算部133は、電流指令と電力変換部110から入力された各検出値とに基づき電圧指令を生成する。変調率・電圧位相演算部134は、電流指令に基づき信号波Vu、Vv、Vwの変調率と電圧位相を算出し、ゲートパルス生成部136に出力する。信号波Vu、Vv、Vwの変調率と電圧位相の算出方法は、上記方法に限定されず、既知の様々な方法が使用可能である。
The torque pattern calculation unit 131, the current command calculation unit 132, the voltage command calculation unit 133, and the modulation factor / voltage phase calculation unit 134 generate information for the gate pulse generation unit 136 to generate the signal waves Vu, Vv, and Vw. It is a calculating part. Torque pattern calculation unit 131 calculates a torque to be generated by AC motor 200 based on cab command MC and vehicle body weight VL, and outputs the torque to current command calculation unit 132 as a torque command. The current command calculation unit 132 calculates a current command based on the torque command and each detection value (voltage detection value ES, voltage detection value EFC, current detection value IS) input from the power conversion unit 110. The voltage command calculation unit 133 generates a voltage command based on the current command and each detected value input from the power conversion unit 110. The modulation factor / voltage phase calculation unit 134 calculates the modulation factors and voltage phases of the signal waves Vu, Vv, and Vw based on the current command, and outputs them to the gate pulse generation unit 136. The calculation method of the modulation factor and voltage phase of the signal waves Vu, Vv, Vw is not limited to the above method, and various known methods can be used.
キャリア周波数演算部135は、搬送波Vsの周波数(以下、「キャリア周波数」という。)を演算する演算部である。キャリア周波数演算部135は、図5に示すように、基本キャリア周波数を取得する基本キャリア周波数取得部135aと、キャリア周波数ゲインを取得するキャリア周波数ゲイン取得部135bと、基本キャリア周波数とキャリア周波数ゲインを乗算する乗算器135cとから構成される。
The carrier frequency calculation unit 135 is a calculation unit that calculates the frequency of the carrier wave Vs (hereinafter referred to as “carrier frequency”). As shown in FIG. 5, the carrier frequency calculation unit 135 includes a basic carrier frequency acquisition unit 135a that acquires a basic carrier frequency, a carrier frequency gain acquisition unit 135b that acquires a carrier frequency gain, a basic carrier frequency and a carrier frequency gain. And a multiplier 135c for multiplication.
基本キャリア周波数取得部135aは、図6に示すキャリア周波数テーブルを記憶している。キャリア周波数テーブルは、列車の速度FMと基本キャリア周波数Fbとの関係を示すテーブルである。図6に示すように、速度FMが高い値のとき、基本キャリア周波数Fbは速度FMに応じて変化する。一方で、列車の速度FMが低い値のとき、基本キャリア周波数Fcは高い周波数(基準周波数Fa)で固定される。これは、交流電動機200が低速で動作するときほど、交流波形の崩れがモーター効率に大きな影響を与えるためである。なお、以下の説明では、基本キャリア周波数Fbが固定値のときのインバータ制御装置100の状態を「非同期モード」といい、基本キャリア周波数Fbが速度FMに応じて変化するときのインバータ制御装置100の状態を「同期モード」という。
The basic carrier frequency acquisition unit 135a stores a carrier frequency table shown in FIG. The carrier frequency table is a table showing the relationship between the train speed FM and the basic carrier frequency Fb. As shown in FIG. 6, when the speed FM is a high value, the basic carrier frequency Fb changes according to the speed FM. On the other hand, when the train speed FM is a low value, the basic carrier frequency Fc is fixed at a high frequency (reference frequency Fa). This is because the AC waveform collapse has a greater effect on the motor efficiency as the AC motor 200 operates at a lower speed. In the following description, the state of the inverter control device 100 when the basic carrier frequency Fb is a fixed value is referred to as “asynchronous mode”, and the state of the inverter control device 100 when the basic carrier frequency Fb changes according to the speed FM. The state is called “synchronous mode”.
なお、基準周波数Faは、想定され得る最悪の使用条件の下で交流電動機200を使用したとしても、インバータ回路113が上限温度TH2を超えないように考慮されて決定された値である。このとき、上限温度TH2は、スイッチング素子113U~113Zの設計上の上限温度であってもよい。
Note that the reference frequency Fa is a value determined in consideration that the inverter circuit 113 does not exceed the upper limit temperature TH2 even if the AC motor 200 is used under the worst possible usage conditions. At this time, the upper limit temperature TH2 may be a design upper limit temperature of the switching elements 113U to 113Z.
基本キャリア周波数取得部135aには、図5に示すように、列車の現在の速度FMが入力される。基本キャリア周波数取得部135aは、キャリア周波数テーブルから、列車の現在の速度FMに該当する基本キャリア周波数Fbを取得する。そして、基本キャリア周波数取得部135aは、取得した基本キャリア周波数Fbを乗算器135cに出力する。
As shown in FIG. 5, the current speed FM of the train is input to the basic carrier frequency acquisition unit 135a. The basic carrier frequency acquisition unit 135a acquires the basic carrier frequency Fb corresponding to the current train speed FM from the carrier frequency table. Then, the basic carrier frequency acquisition unit 135a outputs the acquired basic carrier frequency Fb to the multiplier 135c.
キャリア周波数ゲイン取得部135bは、図7に示すキャリア周波数ゲインテーブルを記憶している。キャリア周波数ゲインテーブルは、インバータ回路113の温度測定値THと基本キャリア周波数Fcの上昇余地との関係を示すテーブルである。より具体的には、インバータ回路113の温度測定値THとキャリア周波数ゲインGとの関係を示すテーブルである。キャリア周波数ゲインGは、基本キャリア周波数Fbに乗じる値である。図7に示すように、温度測定値THが温度TH1までは、キャリア周波数ゲインGはゲインG1で固定される。温度TH1を超えると、キャリア周波数ゲインGは徐々に低下していく。そして、温度測定値THが上限温度TH2に達した時点でキャリア周波数ゲインGは1となる。
The carrier frequency gain acquisition unit 135b stores a carrier frequency gain table shown in FIG. The carrier frequency gain table is a table showing the relationship between the temperature measurement value TH of the inverter circuit 113 and the room for increasing the basic carrier frequency Fc. More specifically, it is a table showing the relationship between the temperature measurement value TH of the inverter circuit 113 and the carrier frequency gain G. The carrier frequency gain G is a value that is multiplied by the basic carrier frequency Fb. As shown in FIG. 7, the carrier frequency gain G is fixed at the gain G1 until the temperature measurement value TH reaches the temperature TH1. When the temperature exceeds TH1, the carrier frequency gain G gradually decreases. The carrier frequency gain G becomes 1 when the temperature measurement value TH reaches the upper limit temperature TH2.
キャリア周波数ゲイン取得部135bには、図5に示すように、インバータ回路113の現在の温度測定値THが入力される。キャリア周波数ゲイン取得部135bは、キャリア周波数ゲインテーブルからインバータ回路113の現在の温度測定値THに該当するキャリア周波数ゲインGを取得する。そして、キャリア周波数ゲイン取得部135bは、取得したキャリア周波数ゲインGを乗算器135cに出力する。
As shown in FIG. 5, the current temperature measurement value TH of the inverter circuit 113 is input to the carrier frequency gain acquisition unit 135b. The carrier frequency gain acquisition unit 135b acquires the carrier frequency gain G corresponding to the current temperature measurement value TH of the inverter circuit 113 from the carrier frequency gain table. Then, the carrier frequency gain acquisition unit 135b outputs the acquired carrier frequency gain G to the multiplier 135c.
図4に戻り、乗算器135cは、基本キャリア周波数Fbとキャリア周波数ゲインGとを乗じて、キャリア周波数Fcを算出する。このとき、乗算器135cは、非同期モードのときのみ基本キャリア周波数Fbとキャリア周波数ゲインGとを乗じる。同期モードのときは、基本キャリア周波数Fbをそのままキャリア周波数Fcとして算出する。これにより、乗算器135cは、図8に示すように、低速走行時のみ、温度に応じて値が変化するキャリア周波数Fcを取得できる。乗算器135cは、算出したキャリア周波数Fcをゲートパルス生成部136に出力する。
Referring back to FIG. 4, the multiplier 135c multiplies the basic carrier frequency Fb and the carrier frequency gain G to calculate the carrier frequency Fc. At this time, the multiplier 135c multiplies the basic carrier frequency Fb and the carrier frequency gain G only in the asynchronous mode. In the synchronous mode, the basic carrier frequency Fb is directly calculated as the carrier frequency Fc. Thereby, as shown in FIG. 8, the multiplier 135c can acquire the carrier frequency Fc whose value changes according to the temperature only during low-speed traveling. The multiplier 135c outputs the calculated carrier frequency Fc to the gate pulse generation unit 136.
ゲートパルス生成部136は、ゲートパルス信号GPを生成するパルス生成部である。ゲートパルス生成部136は、変調率・電圧位相演算部134から入力された変調率と電圧位相とに基づき信号波Vu、Vv、Vwを生成する。また、ゲートパルス生成部136は、キャリア周波数演算部135から入力されたキャリア周波数Fcに基づき搬送波Vsを生成する。ゲートパルス生成部136は生成した信号波Vu、Vv、Vwと搬送波Vsとを比較して、例えば図3に示すようなゲートパルス信号GP(ゲートパルス信号GPu~GPz)を生成する。ゲートパルス生成部136は、生成したゲートパルス信号GPu~GPzをスイッチング素子113U~113Zのゲート端子に出力する。
The gate pulse generation unit 136 is a pulse generation unit that generates a gate pulse signal GP. The gate pulse generator 136 generates signal waves Vu, Vv, Vw based on the modulation factor and voltage phase input from the modulation factor / voltage phase calculator 134. Further, the gate pulse generation unit 136 generates a carrier wave Vs based on the carrier frequency Fc input from the carrier frequency calculation unit 135. The gate pulse generation unit 136 compares the generated signal waves Vu, Vv, Vw and the carrier wave Vs to generate, for example, a gate pulse signal GP (gate pulse signals GPu to GPz) as shown in FIG. The gate pulse generation unit 136 outputs the generated gate pulse signals GPu to GPz to the gate terminals of the switching elements 113U to 113Z.
スイッチング素子113U~113Zに出力されるスイッチングパルス(ゲートパルス信号GP)の周波数は、キャリア周波数Fcと同じである。本実施の形態によれば、温度測定部120で測定したインバータ回路113の温度に基づいてキャリア周波数Fc、すなわち、スイッチングパルスの周波数を変更しているので、最悪使用条件を考慮して決定された基準周波数Faを超えてスイッチングパルスを上昇させることができる。この結果、インバータ制御装置100は、出力電流に重畳するリップル電流を小さくできる。
The frequency of the switching pulse (gate pulse signal GP) output to the switching elements 113U to 113Z is the same as the carrier frequency Fc. According to the present embodiment, since the carrier frequency Fc, that is, the frequency of the switching pulse is changed based on the temperature of the inverter circuit 113 measured by the temperature measurement unit 120, it is determined in consideration of the worst use condition. The switching pulse can be raised beyond the reference frequency Fa. As a result, the inverter control device 100 can reduce the ripple current superimposed on the output current.
列車や自動車等の車両で使用される交流電動機200は、移動する環境下にあることから、温度条件や負荷変動等、最悪使用条件は非常に厳しくなる。そのため、従来の装置では、通常の使用状態ではスイッチングパルスの周波数を上昇させる余地がかなりあるにも関わらず、スイッチングパルスの周波数を低く設定せざるを得なかった。しかし、本実施の形態のインバータ制御装置100は、スイッチングパルスの周波数の制御にインバータ回路113の温度の情報を使用しているので、少なくとも通常の使用状態では、スイッチングパルスの周波数を高くできる。本実施の形態のインバータ制御装置100を、車両を動かす交流電動機200の駆動に使用した場合、リップル電流の低減効果は極めて大きい。
Since AC motors 200 used in vehicles such as trains and automobiles are in a moving environment, the worst use conditions such as temperature conditions and load fluctuations become very severe. For this reason, in the conventional apparatus, although there is considerable room for increasing the frequency of the switching pulse in a normal use state, the frequency of the switching pulse has to be set low. However, since the inverter control apparatus 100 according to the present embodiment uses the temperature information of the inverter circuit 113 to control the frequency of the switching pulse, the frequency of the switching pulse can be increased at least in a normal use state. When inverter control device 100 of the present embodiment is used for driving AC electric motor 200 that moves the vehicle, the effect of reducing ripple current is extremely large.
なお、上述の実施の形態は一例であり、種々の変更及び応用が可能である。
The above-described embodiment is merely an example, and various changes and applications are possible.
例えば、上述の実施の形態では、インバータ制御装置100に電力変換部110が含まれていたが、インバータ制御装置100には電力変換部110が含まれていなくてもよい。インバータ制御装置100が備えるインバータ制御部130が、インバータ制御装置100の外部にあるインバータ回路113を制御する構成であってもよい。
For example, in the above-described embodiment, the inverter control device 100 includes the power conversion unit 110, but the inverter control device 100 may not include the power conversion unit 110. The inverter control unit 130 included in the inverter control device 100 may be configured to control the inverter circuit 113 outside the inverter control device 100.
また、上述の実施の形態では、インバータ制御装置100は直流電力を受給して交流電動機200に交流電力を出力する装置として構成されていたが、インバータ制御装置100は交流電力を受給して交流電動機200に交流電力を出力する装置として構成されていてもよい。この場合、電力変換部110は、インバータ回路113の前段に交流電力を直流電力に変換するコンバータ回路を備えていてもよい。
In the above-described embodiment, the inverter control device 100 is configured as a device that receives DC power and outputs AC power to the AC motor 200. However, the inverter control device 100 receives AC power and receives the AC power. 200 may be configured as an apparatus that outputs AC power. In this case, the power conversion unit 110 may include a converter circuit that converts AC power into DC power before the inverter circuit 113.
また、上述の実施の形態では、インバータ回路113として、電圧形三相2レベルインバータ回路を使用したが、インバータ回路113は電圧形三相2レベルインバータ回路に限られない。例えば、単相インバータであってもよいし、3レベルインバータ回路であってもよい。
In the above-described embodiment, the voltage-type three-phase two-level inverter circuit is used as the inverter circuit 113. However, the inverter circuit 113 is not limited to the voltage-type three-phase two-level inverter circuit. For example, a single-phase inverter or a three-level inverter circuit may be used.
また、上述の実施の形態では、非同期モードのときのみ基本キャリア周波数Fbにキャリア周波数ゲインGを乗じていたが、同期モードのときも基本キャリア周波数Fbにキャリア周波数ゲインGを乗じてもよい。また、同期モードを設けず、非同期モードのみとすることも可能である。
In the above-described embodiment, the basic carrier frequency Fb is multiplied by the carrier frequency gain G only in the asynchronous mode. However, the basic carrier frequency Fb may be multiplied by the carrier frequency gain G also in the synchronous mode. It is also possible to set only the asynchronous mode without providing the synchronous mode.
また、上述の実施の形態では、インバータ回路113の温度に基づいてキャリア周波数Fcを変更していたが、インバータ制御部130はインバータ回路113の温度に基づいてスイッチングパルス(ゲートパルス信号GP)の周波数を、直接、変更してもよい。
In the above-described embodiment, the carrier frequency Fc is changed based on the temperature of the inverter circuit 113. However, the inverter control unit 130 determines the frequency of the switching pulse (gate pulse signal GP) based on the temperature of the inverter circuit 113. May be changed directly.
また、上述の実施の形態では、温度測定部120は電力変換部110を構成する半導体チップの表面に設置されていたが、電力変換部110に冷却器が取り付けられるのであれば、温度測定部120は冷却器に取り付けられていてもよい。インバータ回路113に、直接、取り付けられていてもよい。
In the above-described embodiment, the temperature measurement unit 120 is installed on the surface of the semiconductor chip constituting the power conversion unit 110. However, if a cooler is attached to the power conversion unit 110, the temperature measurement unit 120 is installed. May be attached to the cooler. The inverter circuit 113 may be directly attached.
また、上述の実施の形態では、インバータ制御装置100は列車を動かす交流電動機200を駆動する装置であったが、ハイブリッドカーや電気自動車等の自動車を動かす交流電動機200を駆動する装置であってもよい。
In the above-described embodiment, the inverter control device 100 is a device that drives the AC motor 200 that moves the train. However, even if the inverter control device 100 is a device that drives the AC motor 200 that moves a vehicle such as a hybrid car or an electric vehicle. Good.
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
100 インバータ制御装置、110 電力変換部、111 リアクトル、112 コンデンサ、113 インバータ回路、113U~113Z スイッチング素子、114 電流検出器、115 電圧検出器、116 電圧検出器、120 温度測定部、130 インバータ制御部、131 トルクパターン演算部、132 電流指令演算部、133 電圧指令演算部、134 変調率・電圧位相演算部、135 キャリア周波数演算部、135a 基本キャリア周波数取得部、135b キャリア周波数ゲイン取得部、135c 乗算器、136 ゲートパルス生成部、200 交流電動機、300 運転台、400 集電装置、500 架線、600 車輪、700 レール、P、N 電力入力端子、U、V、W 交流出力端子、I1、I2、I3 情報入力端子。
100 inverter control device, 110 power conversion unit, 111 reactor, 112 capacitor, 113 inverter circuit, 113U to 113Z switching element, 114 current detector, 115 voltage detector, 116 voltage detector, 120 temperature measurement unit, 130 inverter control unit 131, torque pattern calculation unit, 132 current command calculation unit, 133 voltage command calculation unit, 134 modulation factor / voltage phase calculation unit, 135 carrier frequency calculation unit, 135a basic carrier frequency acquisition unit, 135b carrier frequency gain acquisition unit, 135c multiplication , 136, gate pulse generator, 200 AC motor, 300 cab, 400 current collector, 500 overhead wires, 600 wheels, 700 rails, P, N power input terminals, U, V, W AC output terminals, I , I2, I3 information input terminal.
Claims (7)
- インバータ回路が備えるスイッチング素子にPWM制御のためのスイッチングパルスを出力するインバータ制御部と、
前記インバータ回路の温度を測定する温度測定部と、を備え、
前記インバータ制御部は、前記温度測定部が測定した前記インバータ回路の温度に基づいて前記スイッチングパルスの周波数を変更する、
インバータ制御装置。 An inverter control unit that outputs a switching pulse for PWM control to a switching element included in the inverter circuit;
A temperature measuring unit for measuring the temperature of the inverter circuit,
The inverter control unit changes the frequency of the switching pulse based on the temperature of the inverter circuit measured by the temperature measurement unit,
Inverter control device. - 前記インバータ制御部は、
前記温度測定部から取得した前記インバータ回路の温度の情報に基づいて、前記スイッチングパルスの生成に使用する搬送波の周波数を算出するキャリア周波数演算部と、
前記キャリア周波数演算部が算出した周波数を持つ搬送波と基本波となる信号波とを比較して前記スイッチング素子に出力するスイッチングパルスを生成するパルス生成部と、を備える、
請求項1に記載のインバータ制御装置。 The inverter control unit
A carrier frequency calculation unit that calculates a frequency of a carrier wave used for generation of the switching pulse based on information on the temperature of the inverter circuit acquired from the temperature measurement unit;
A pulse generation unit that generates a switching pulse that is output to the switching element by comparing a carrier wave having a frequency calculated by the carrier frequency calculation unit and a signal wave that is a fundamental wave;
The inverter control device according to claim 1. - 前記インバータ回路は、車両を動かす交流電動機を駆動する回路である、
請求項1に記載のインバータ制御装置。 The inverter circuit is a circuit that drives an AC motor that moves the vehicle.
The inverter control device according to claim 1. - 前記インバータ回路は、車両を動かす交流電動機を駆動する回路であり、
前記キャリア周波数演算部は、
想定され得る最悪の使用条件の下で前記交流電動機を使用したとしても前記インバータ回路が予め決められた上限温度を超えない前記搬送波の周波数を基準周波数として取得し、
取得した前記基準周波数と前記温度測定部が測定した前記インバータ回路の温度とに基づき前記搬送波の周波数を算出する、
請求項2に記載のインバータ制御装置。 The inverter circuit is a circuit that drives an AC motor that moves the vehicle,
The carrier frequency calculator is
Even if the AC motor is used under the worst possible usage conditions that can be assumed, the frequency of the carrier wave that does not exceed a predetermined upper limit temperature is obtained as a reference frequency,
Calculating the frequency of the carrier wave based on the acquired reference frequency and the temperature of the inverter circuit measured by the temperature measurement unit;
The inverter control device according to claim 2. - 前記キャリア周波数演算部は、
前記インバータ回路の温度が予め設定された温度より高い場合は、前記基準周波数を前記搬送波の周波数として取得し、
前記インバータ回路の温度が予め設定された温度より低い場合は、前記基準周波数よりも高い周波数を前記搬送波の周波数として算出する、
請求項4に記載のインバータ制御装置。 The carrier frequency calculator is
When the temperature of the inverter circuit is higher than a preset temperature, the reference frequency is acquired as the frequency of the carrier wave,
When the temperature of the inverter circuit is lower than a preset temperature, a frequency higher than the reference frequency is calculated as the frequency of the carrier wave.
The inverter control device according to claim 4. - 前記インバータ回路を備える電力変換部を備える、
請求項1に記載のインバータ制御装置。 A power conversion unit including the inverter circuit;
The inverter control device according to claim 1. - インバータ回路が備えるスイッチング素子にPWM制御のためのスイッチングパルスを出力するインバータ制御ステップと、
前記インバータ回路の温度を測定する温度測定ステップと、を有し、
前記インバータ制御ステップでは、前記温度測定ステップで測定された前記インバータ回路の温度に基づいて前記スイッチングパルスの周波数を変更する、
インバータ制御方法。 An inverter control step for outputting a switching pulse for PWM control to a switching element provided in the inverter circuit;
Measuring a temperature of the inverter circuit; and
In the inverter control step, the frequency of the switching pulse is changed based on the temperature of the inverter circuit measured in the temperature measurement step.
Inverter control method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/066964 WO2014203373A1 (en) | 2013-06-20 | 2013-06-20 | Inverter control apparatus and inverter control method |
JP2015522435A JP5963960B2 (en) | 2013-06-20 | 2013-06-20 | Inverter control device and inverter control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/066964 WO2014203373A1 (en) | 2013-06-20 | 2013-06-20 | Inverter control apparatus and inverter control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014203373A1 true WO2014203373A1 (en) | 2014-12-24 |
Family
ID=52104135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/066964 WO2014203373A1 (en) | 2013-06-20 | 2013-06-20 | Inverter control apparatus and inverter control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5963960B2 (en) |
WO (1) | WO2014203373A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016140204A (en) * | 2015-01-28 | 2016-08-04 | 株式会社東芝 | Electric vehicle control device |
JP2019122180A (en) * | 2018-01-10 | 2019-07-22 | 富士電機株式会社 | Power conditioner and power conditioner system |
CN110299884A (en) * | 2018-03-22 | 2019-10-01 | 丰田自动车株式会社 | Motor system |
CN110299872A (en) * | 2018-03-22 | 2019-10-01 | 丰田自动车株式会社 | Electric system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0265672A (en) * | 1988-08-29 | 1990-03-06 | Toyota Motor Corp | Inverter control method |
JPH03178565A (en) * | 1989-12-04 | 1991-08-02 | Toshiba Corp | Inverter unit |
JPH1169836A (en) * | 1997-08-22 | 1999-03-09 | Mitsubishi Electric Corp | Method and device for pulse width modulation type of inverter device |
JP2011239624A (en) * | 2010-05-13 | 2011-11-24 | Mitsubishi Electric Corp | Inverter device |
-
2013
- 2013-06-20 JP JP2015522435A patent/JP5963960B2/en active Active
- 2013-06-20 WO PCT/JP2013/066964 patent/WO2014203373A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0265672A (en) * | 1988-08-29 | 1990-03-06 | Toyota Motor Corp | Inverter control method |
JPH03178565A (en) * | 1989-12-04 | 1991-08-02 | Toshiba Corp | Inverter unit |
JPH1169836A (en) * | 1997-08-22 | 1999-03-09 | Mitsubishi Electric Corp | Method and device for pulse width modulation type of inverter device |
JP2011239624A (en) * | 2010-05-13 | 2011-11-24 | Mitsubishi Electric Corp | Inverter device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016140204A (en) * | 2015-01-28 | 2016-08-04 | 株式会社東芝 | Electric vehicle control device |
JP2019122180A (en) * | 2018-01-10 | 2019-07-22 | 富士電機株式会社 | Power conditioner and power conditioner system |
CN110299884A (en) * | 2018-03-22 | 2019-10-01 | 丰田自动车株式会社 | Motor system |
CN110299872A (en) * | 2018-03-22 | 2019-10-01 | 丰田自动车株式会社 | Electric system |
CN110299884B (en) * | 2018-03-22 | 2022-11-01 | 丰田自动车株式会社 | Motor system |
CN110299872B (en) * | 2018-03-22 | 2022-11-29 | 丰田自动车株式会社 | Electric machine system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014203373A1 (en) | 2017-02-23 |
JP5963960B2 (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5493532B2 (en) | Load driving device and electric vehicle using the same | |
US11196377B2 (en) | Motor drive system | |
JP2014064448A (en) | Inverter control method of vehicle, which is for reducing noise and is environmentally friendly | |
US9837950B2 (en) | Vehicle control device and railroad vehicle | |
WO2017077596A1 (en) | Vehicular motor control device and vehicular motor control method | |
JP5963960B2 (en) | Inverter control device and inverter control method | |
CN102470763B (en) | Electric vehicle and power conversion device | |
KR101308791B1 (en) | Power conversion device | |
JP2010527306A (en) | Apparatus and method for controlling power shunt, and hybrid vehicle having the same circuit | |
AU2016205951A1 (en) | Power-conversion method and device and vehicle comprising such a device | |
CN105897023A (en) | Railway vehicle drive system | |
CN104796031A (en) | Novel control system and method for auxiliary inverter of rail transit | |
KR20100055281A (en) | The control method for overmodulation operation of npc type 3-level inverter | |
JP6203036B2 (en) | Electric vehicle control device | |
JP2011211777A (en) | Power converter, and auxiliary power supply device for vehicle | |
CN105811814B (en) | A kind of high-speed motor train unit traction converter main circuit | |
Mizobuchi et al. | Energy-Management Method to Reduce the Capacity of Lithium-Ion Batteries in Hybrid-Voltage-Source Three-Level Inverter for DC-Electrified Railway Vehicles | |
CN104953922A (en) | Drive system | |
US11569759B2 (en) | System with active filter for a battery | |
JPH03261307A (en) | Control method of inverter for driving electric car and inverter drive electric car system | |
JP4964215B2 (en) | AC electric vehicle control device | |
CN114257106A (en) | Harmonic distortion reduction system for converters connected to a common bus | |
JP6839687B2 (en) | Boost control device | |
JP2016086488A (en) | Driving device of railway vehicle | |
JP2012120250A (en) | Waveform generation method and waveform generation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13887516 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015522435 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13887516 Country of ref document: EP Kind code of ref document: A1 |