WO2014203351A1 - Image processing device and image processing method - Google Patents

Image processing device and image processing method Download PDF

Info

Publication number
WO2014203351A1
WO2014203351A1 PCT/JP2013/066856 JP2013066856W WO2014203351A1 WO 2014203351 A1 WO2014203351 A1 WO 2014203351A1 JP 2013066856 W JP2013066856 W JP 2013066856W WO 2014203351 A1 WO2014203351 A1 WO 2014203351A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
reference image
unit
acquisition unit
bits
Prior art date
Application number
PCT/JP2013/066856
Other languages
French (fr)
Japanese (ja)
Inventor
小林 晃
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2013/066856 priority Critical patent/WO2014203351A1/en
Publication of WO2014203351A1 publication Critical patent/WO2014203351A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/43Hardware specially adapted for motion estimation or compensation
    • H04N19/433Hardware specially adapted for motion estimation or compensation characterised by techniques for memory access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field

Definitions

  • Embodiments described herein relate generally to an image processing apparatus, an image processing method, and a computer-readable storage medium for an image processing program.
  • Ultra high-definition image data has also been realized.
  • UHDTV Ultra High Definition TV
  • the transmission side encodes image data and transmits the encoded image data.
  • the received encoded image data is decoded.
  • an I picture image data encoded by intra frame prediction
  • a B picture image data encoded by bidirectional prediction
  • a P picture forward prediction
  • the number of digital bits of the image data pixel referred to as 2K1K described above is normally 8 bits.
  • the number of digital bits may be 10 bits or more.
  • HEVC High Efficiency Video Coding
  • Main 10 profile is also defined. In this profile, 10 bits are adopted as the number of digital bits of the pixel.
  • a high-speed clock is used in a high-resolution image data encoding device and decoding device.
  • this type of decoding device is designed, there is a tendency that the access frequency to the memory increases, the power consumption thereby increases, and the configuration scale of the LSI (Large Scale Integrated) circuit increases.
  • the bandwidth being processed changes greatly.
  • the bandwidth is increased by about 25% compared to the bandwidth when processing 8-bit pixels in the decoding apparatus.
  • An object is to provide a computer-readable storage medium for an image processing apparatus, an image processing method, and an image processing program.
  • the motion compensated image data generation unit decodes the first encoded picture by intra prediction using the reference image data in the frame, and references the second encoded picture to a past frame. Decoding is performed by forward prediction using image data, and the second encoded picture is decoded by bidirectional prediction using both past and future reference image data.
  • the image data accumulation control unit stores the decoded image data in the frame memory 45.
  • the reference image data acquisition unit reads the reference image data for the decoding from the frame memory and inputs the reference image data to the motion compensation image data generation unit.
  • the reference image data acquisition unit supplies pixel data having a smaller number of bits to the motion compensation image data generation unit than when other encoded pictures are decoded. input.
  • FIG. 1 is a configuration example of an image data encoding device, and is a diagram shown as a premise for explaining the present invention.
  • FIG. 2 is a configuration example of the image data decoding apparatus, and is a diagram shown as a premise for explaining the present invention.
  • FIG. 3 is a diagram illustrating a block configuration of the image processing apparatus according to the embodiment.
  • FIG. 4A is a diagram illustrating an example of a format of image data stored in the frame memory according to the embodiment.
  • FIG. 4B is a diagram illustrating another example of a format of image data stored in the frame memory according to the embodiment.
  • FIG. 1 is a configuration example of an image data encoding device, and is a diagram shown as a premise for explaining the present invention.
  • Input image data from the input terminal 11 is input to the subtractor 12 and to the motion detector 23.
  • the subtracter 12 outputs difference image data that is a difference between the input image data and the predicted image data.
  • the transform and quantization unit 13 transforms the difference image data in the spatial domain into, for example, frequency domain image data (digital cosine transform (DCT)), and converts the transformed data into an inverse quantization and inverse transform unit 14 and an entropy code. To the conversion unit 26.
  • DCT digital cosine transform
  • the inverse quantization and inverse transform unit 14 restores the encoded difference image data and inputs it to the adder 15.
  • the adder 15 combines the difference image data and the predicted image data from the selection unit 17 to obtain restored image data corresponding to the input image data.
  • the restored image data is input to the intra prediction unit 16 and the deblocking filter 21.
  • the intra prediction unit 16 generates predicted pixel data using a plurality of pixel data in one frame. Therefore, the predicted image data is almost the same as the input image data.
  • the restored image data output from the adder 15 is input to the deblocking filter 21 and is a filter for reducing distortion between blocks that are quantization units.
  • the output of the deblocking filter 22 is input to the frame memory 22.
  • the image data will be described as a collection of a plurality of pixel data.
  • the restored image data stored in the frame memory 22 is input to the motion compensation prediction unit 24 and also input to the motion detection unit 23.
  • the motion detection unit 23 compares the restored image data with the input image data, and detects a motion prediction vector representing the motion of the image.
  • the motion compensation prediction unit 24 corrects the restored image data from the frame memory 22 based on the motion prediction vector, and converts it into motion image predicted image data.
  • the predicted image data is input to the subtracter 12.
  • the subtracter 12 outputs difference image data that is a difference between the input image data and the predicted image data.
  • the difference image data is encoded by the transform and quantization unit 13 and further subjected to entry-pe encoding by the entry-pe encoding unit 26.
  • the entropy encoding unit 26 outputs a bit stream including encoded data and a motion prediction vector.
  • the bit stream also includes information indicating the picture type (I picture or P or B picture) along with the encoded image data.
  • An I picture is data encoded by being closed within a picture and does not refer to other pictures (intra-coded picture).
  • the P picture is a picture (predictive-coded picture) that is encoded using only forward prediction for prediction, that is, predicting forward and predicting the current frame from past frames.
  • the B picture is a picture (Bidirectionally predictive-coded picture) that can use forward prediction, backward prediction, and bidirectional prediction.
  • a future frame in time is encoded first, and then prediction (reverse prediction backwardbackprediction) is performed, or bidirectional prediction using both past and future ( Interpolation (prediction) can improve the prediction efficiency.
  • FIG. 2 is a configuration example of an image data decoding device, and is a diagram shown as a premise for explaining the present invention.
  • the input terminal 30 receives a bit stream output from the entropy encoding unit 26 in FIG.
  • the data that has been entry-py decoded by the entropy decoding unit 31 is input to the inverse quantization and inverse transform unit 32.
  • the inverse quantization and inverse transform unit 32 performs inverse quantization and inverse transform on the encoded image data, and the restored differential image data is input to the adder 33.
  • the adder 33 adds the restored image data and the difference image data from the selection unit 34.
  • the adder 33 adds the difference image data and the restored image data, and outputs decoded image data.
  • the decoded image data that is the output of the adder 33 is input to the deblocking filter 40 and subjected to deblocking filtering to become output image data.
  • the decoded image data that is the output of the adder 33 is input to the intra prediction unit 41.
  • the intra prediction unit 41 decodes the I picture using the intra-frame image.
  • the output of the deblocking filter 40 is input to the frame memory 45.
  • the output of the frame memory 45 generates motion prediction image data by using the motion prediction vector that has been sent.
  • the selection unit 34 selects the motion image from the motion compensation prediction unit 46 and supplies it to the adder 33.
  • FIG. 3 is a diagram illustrating a block configuration of the image processing apparatus according to the embodiment. 3 corresponds to the motion compensation prediction unit 46, the selection unit 34, the adder 33, the intra prediction unit 41, and the periphery of the frame memory 45 when corresponding to the block of FIG.
  • a block surrounded by a broken line is an image data processing unit 500.
  • the image data processing unit 500 includes a motion compensation image data generation unit 101, a reference image data acquisition unit 120, and a current restoration image data accumulation control unit 140.
  • the motion compensated image data generation unit 101 restores an I picture, a B picture, and a P picture. For example, the following rules are used. For example, when the B picture F2 shown on the left side of FIG. 3 is restored, the I picture F1 and the P picture F4 are referred to and restored. When the B picture F3 is restored, the I picture F1 and the P picture F4 are referenced and restored. Here, the I picture F1 and the P picture F4 as the reference image data are read from the frame memory 45 by the reference image data acquisition unit 120.
  • the I picture F1 is referenced and restored.
  • the reference image data acquisition unit 120 includes a reference image data buffer 121, a reference image data area selection control unit 122, a reference image vector generation unit 130, a bandwidth measurement unit 123, and a current restoration image data accumulation control unit 140. .
  • the current restored image data accumulation control unit 140 performs an operation of writing the restored image data generated by the motion compensated image data generation unit 101 into the frame memory 45. At this time, the current restoration image data accumulation control unit 140 designates the write address of the frame memory 45 via the bus 141 and transfers the write pixel data.
  • the current restoration image data accumulation control unit 140 sets the pixel data to the upper 8-bit area data (simply referred to as upper bit image data) and the lower 2-bit area data (simply lower And may be referred to as “side bit image data”).
  • the data format at this time is, for example, a format shown in FIGS. 4A and 4B described later. Note that the 10-bit data may be referred to as all-bit image data.
  • a read address is designated by the reference image data area selection control unit 122.
  • the reference image data is read from the frame memory 45 and temporarily stored in the reference image data buffer 121.
  • the reference image data acquisition unit 120 acquires data for acquiring reference image data necessary for the motion compensated image data generation unit 101.
  • the reference image data buffer 121 stores reference image data read from the frame memory 45 and functions as a buffer memory that can be accessed at high speed.
  • the reference image data area selection control unit 122 transfers the reference image data read by accessing the frame memory 45 to the reference image data buffer 121.
  • the reference image data area selection control unit 122 determines a read address for accessing the frame memory 45 using the reference image vector corresponding to the motion prediction vector from the reference image vector generation unit 130.
  • the reference image vector generation unit 130 generates the reference image vector by using the motion prediction vector sent from the encoding device in association with the B picture and the P picture.
  • the change frequency of the motion prediction vector is high.
  • the change frequency of the motion prediction vector is high.
  • the reference image data area selection control unit 122 temporarily stores the reference image data (pixel data is, for example, 10 bits or 8 bits) read from the frame memory 45 in the reference image data buffer 121.
  • the image data stored in the reference image data buffer 121 is transmitted to the motion compensated image data generation unit 101.
  • the reference image data acquisition unit 120 and the motion compensated image data generation unit 101 are switched between the 8-bit pixel data processing mode and the 10-bit pixel data processing mode.
  • FIG. 4A is an example in which one pixel is handled with 10 bits.
  • C1-2) is an example of a format that is one set.
  • FIG. 4B is an example in which one pixel is handled with 12 bits.
  • C2-2) is an example of a format that is one set.
  • the reference image data acquisition unit 120 and the motion-compensated image data generation unit 101 perform the 8-bit pixel data processing mode, the 10-bit pixel data processing mode, and the like according to the switching control signal of the bandwidth measurement unit 123. Switch to one of the following.
  • the switching control signal of the bandwidth measurement unit 123 controls the reference image data area selection unit control unit 122, for example, when a B picture restoration process is executed.
  • the entire reference image data acquisition unit 120 reads 8-bit pixel data from the frame memory 45 and supplies it to the motion compensated image data generation unit 101.
  • the processing load on the reference image data acquisition unit 120 and the motion compensation image data generation unit 101 is reduced as compared with the case of processing 10-bit pixel data.
  • the lower-order 2-bit pixel data is input as a fixed value to the motion compensated image data generating unit 101, and the operation of the motion compensated image data generating unit 101 is detailed. There is no need to switch.
  • the reference image data acquisition unit 120 and the motion compensation image data generation unit 101 are switched to the 8-bit image data processing mode. For example, when the number of bits to be processed per unit time exceeds the first threshold value (when the bandwidth becomes large), 8-bit pixel data is read from the frame memory 45 and supplied to the motion compensation image data generation unit 101. To do. Further, when the number of bits to be processed per unit time becomes smaller than the second threshold (when the bandwidth becomes small), 10-bit pixel data is read from the frame memory 45 and the motion compensation image data generation unit 101 is read. To supply.
  • the number of bits to be processed per unit time can be estimated, for example, by monitoring a motion prediction vector. For example, when the value of the motion prediction vector is small and the number of motion prediction vectors for reproducing one picture is large, it can be determined that the bandwidth becomes large.
  • This idea is to predict that the bandwidth of the previous frame will be large, so the next frame will also have a large bandwidth.
  • the shift is made when the number of bits to be processed per unit time is smaller than a preset second threshold value (when the bandwidth is reduced).
  • the above description refers to the bandwidth when the immediately preceding frame restoration process is performed, but depending on the result of statistics of a plurality of frames, the 10-bit pixel data processing mode or the 8-bit pixel data processing You may enter mode.
  • the bandwidth related to image data processing increases or decreases depending on whether the motion prediction vector includes a decimal point.
  • the motion prediction vector including a decimal point means that it is necessary to generate a complementary pixel between the original pixel and the original pixel, not the motion prediction in the original pixel array unit. In such a case, it is necessary to use many peripheral pixels in order to increase the accuracy of the interpolation pixel. As a result, the bandwidth related to image data processing increases.
  • the bandwidth measuring unit 123 of the present apparatus counts motion prediction vectors including a decimal point among a plurality of motion prediction vectors used to restore one frame. Then, the bandwidth measuring unit 123 detects a percentage or several of the plurality of motion prediction vectors including a decimal point, and according to the detection result, the 10-bit pixel data processing mode Alternatively, the transition to the 8-bit pixel data processing mode may be controlled.
  • the reference image data acquisition unit 120 is configured to read 8-bit pixel data from the frame memory 45 and supply the 8-bit pixel data to the motion compensated image data generation unit 101 according to a device in which the image data processing device 500 is incorporated. May be. This is particularly effective when the device to be incorporated is a mobile device that requires power saving.
  • the transition to the 10-bit pixel data processing mode and the 8-bit pixel data processing mode may be controlled dynamically by selectively combining the above (1) to (4).
  • the image data processing apparatus 500 is shown as a block configuration, but the operation of this block may be configured by a program (software). Further, it may be configured by a plurality of data processors or DSPs (digital signal processors), and the function of the block may be realized by instructions (instructions) stored in a computer-readable recording medium.
  • a program software
  • DSPs digital signal processors
  • the motion compensated image data generation unit 101 decodes the first encoded picture (I picture) by intra prediction using the reference image data in the frame, and outputs the second encoded picture (P Picture) is decoded by forward prediction using reference image data of a past frame, and the second encoded picture (B picture) is decoded by bidirectional prediction using both past and future reference image data.
  • the image data accumulation control unit 140 stores the decoded image data in the frame memory 45.
  • the reference image data acquisition unit 120 reads reference image data for the decoding from the frame memory 45 and inputs it to the motion compensation image data generation unit.
  • the reference image data acquisition unit 120 receives the pixel data having a smaller number of bits when the second encoded picture is decoded than when the other encoded picture is decoded. To enter.
  • the image data accumulation control unit 140 stores the restored image data in the frame memory 45 in the format of FIG. 4A or 4B.
  • the present invention is not limited to this method.
  • only the B picture may be divided, that is, divided into the upper first bit number (8) and the lower second bit number (2).
  • the pixel data stored in the frame memory 45 is described as being stored in the upper 8 bits and the lower 2 bits.
  • the present invention is not limited to this, all the pixel data is stored in the frame memory 45 in units of 10 bits, and when the reference image data is taken into the reference image data buffer 121, only the upper 8 bits or 10 bits are selected. And may be operated so as to be captured.
  • the term “part” may be replaced with “device”, “vessel”, “block”, and “module”, and is of course included in this embodiment.
  • the constituent elements of the claims even when the constituent elements are expressed in a divided manner, when they are expressed in combination, or when they are expressed in combination, they are included in this embodiment. Even if the claims are expressed as a method, the apparatus of this embodiment is applied.
  • a first encoded picture is decoded by intra prediction using reference image data in a frame, and a second encoded picture is decoded by forward prediction using reference image data of a past frame;
  • a motion compensated image data generation unit 101 that decodes the third encoded picture by bidirectional prediction using both past and future reference image data;
  • An image data accumulation control unit 140 for storing the decoded image data in the frame memory 45;
  • a reference image data acquisition unit 120 that reads reference image data for the decoding from the frame memory 45 and inputs the reference image data to the motion compensation image data generation unit,
  • the reference image data acquisition unit 120 reads out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded, and the motion compensated image
  • An image processing apparatus that inputs data to a data generation unit.
  • the image data accumulation control unit 140 stores the pixel data in the frame memory 45 by dividing the pixel data into an upper first bit number and a lower second bit number (1).
  • Image processing apparatus
  • the reference image data acquisition unit 120 has a bandwidth measurement unit 123, and this bandwidth measurement unit measured that the number of bits of pixel data to be processed per unit time exceeded the first threshold value.
  • the image processing apparatus according to (1) wherein the reference image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
  • the reference image data acquisition unit 120 includes a bandwidth measurement unit 123. This bandwidth measurement unit determines the number of bits of pixel data to be processed per unit time when a preceding frame is restored.
  • the image processing apparatus according to (1) wherein when it is measured that a predetermined threshold value is exceeded, the reference image data acquisition unit and the motion compensation image data generation unit are switched to an upper bit image data processing mode.
  • the reference image data acquisition unit 120 includes a bandwidth measurement unit 123, and the bandwidth measurement unit includes motion prediction including a decimal point among a plurality of motion prediction vectors used to restore one frame.
  • the image processing apparatus according to (1) wherein when there are a plurality of vectors, the reference image data acquisition unit and the motion compensated image data generation unit are switched to an upper bit image data processing mode.
  • the motion compensated image data generating unit 101 decodes the first encoded picture by intra prediction using the reference image data in the frame, and the second encoded picture is the reference image data of the past frame.
  • the third encoded picture is decoded by bidirectional prediction using both past and future reference image data, and the image data accumulation control unit 140 converts the decoded image data into a frame.
  • the reference image data acquisition unit 120 reads the reference image data for the decoding from the frame memory 45, and inputs the reference image data to the motion compensation image data generation unit.
  • the motion compensated image data is read by reading out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded. An image processing method to be input to the generation unit.
  • the image data accumulation control unit 140 stores the pixel data in the frame memory 45 by dividing the pixel data into the upper first bit number and the lower second bit number. Image processing method.
  • the bandwidth measurement unit of the reference image data acquisition unit 120 measures that the number of bits of pixel data to be processed per unit time exceeds a first threshold
  • the reference image data acquisition unit and the reference image data acquisition unit The image processing method according to (6), wherein the motion compensated image data generation unit is switched to a higher-order bit image data processing mode.
  • the bandwidth measurement unit 123 of the reference image data acquisition unit 120 includes a plurality of motion prediction vectors including a decimal point among a plurality of motion prediction vectors used to restore one frame.
  • the bandwidth measurement unit 123 of the reference image data acquisition unit 120 measures that the number of bits of pixel data to be processed per unit time exceeds a predetermined threshold when the preceding frame is restored. In such a case, the image processing method according to (6), wherein the reference image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
  • An information recording medium readable by a computer, and instructions stored in the information recording medium are The motion compensated image data generating unit 101 decodes the first encoded picture by intra prediction using the reference image data in the frame, and converts the second encoded picture into the reference image data of the past frame.
  • the reference image data acquisition unit 120 reads out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded.
  • a computer-readable information recording medium having instructions to be input to the motion compensation image data generation unit.
  • the reference image data acquisition unit 120 includes a bandwidth measurement unit 123.
  • the reference image data acquisition unit 120 indicates that the number of bits of pixel data to be processed per unit time exceeds the first threshold.
  • the reference image data acquisition unit 120 includes a bandwidth measurement unit 123, and when the preceding frame is subjected to restoration processing, the bit of pixel data to be processed in a unit time.
  • the reference image data acquisition unit 120 includes a bandwidth measurement unit 123.
  • the reference image data acquisition unit 120 includes a decimal point among a plurality of motion prediction vectors used to restore one frame with respect to the bandwidth measurement unit.
  • the first encoded picture is decoded by intra prediction using the reference image data in the frame
  • the second encoded picture is decoded by forward prediction using the reference image data of the past frame
  • the second A processor that realizes a motion compensated image data generation unit 101 that decodes an encoded picture by bidirectional prediction using both past and future reference image data
  • a processor for realizing the image data accumulation control unit 140 for storing the decoded image data in the frame memory 45
  • a processor that realizes a reference image data acquisition unit 120 that reads reference image data for decoding from the frame memory 45
  • the reference image data acquisition unit 120 reads out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded.
  • An apparatus and / or method having a processor for inputting to the motion compensation image data generation unit.
  • the reference image data acquisition unit 120 includes a processor that implements the bandwidth measurement unit 123, and the number of bits of pixel data to be processed per unit time has a first threshold value with respect to the bandwidth measurement unit.
  • the reference image data acquisition unit 120 includes a processor that implements the bandwidth measurement unit 123. When the preceding frame is restored, the reference image data acquisition unit 120 should process the unit of time. An instruction to switch the reference image data acquisition unit and the motion compensation image data generation unit to the upper bit image data processing mode when it is measured that the number of bits of the pixel data exceeds a predetermined threshold value (16 ) Described apparatus and / or method.
  • the reference image data acquisition unit 120 includes a processor that implements a bandwidth measurement unit 123. Among the plurality of motion prediction vectors used to restore one frame for the bandwidth measurement unit.
  • the concepts described in the above (1) to (20) can be applied to devices such as a television receiver, a portable terminal, a personal computer, and a player.
  • the above concept can also be used when power saving is performed for power saving in a portable terminal or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

According to an embodiment, in the event of an increase in bandwidth during pixel data processing, the number of processing bits of the pixel data is dynamically changed in order to prevent a data processing failure. A motion-compensation image data generation unit decodes an I-picture by means of intra prediction utilizing reference image data within a frame, a P-picture by means of forward prediction utilizing reference image data within a past frame, and a B-picture by means of bi-directional prediction utilizing both past and future reference image data. An image data storage control unit (140) stores the decoded image data into a frame memory (45). A reference image data acquisition unit (120) reads from the frame memory (45) reference image data for the aforementioned decoding and inputs the reference image data to the motion-compensation image data generation unit. Here, when the B-picture is to be decoded, the reference image data acquisition unit inputs a smaller number of bits of pixel data to the motion-compensation image data generation unit in comparison to when the other pictures are to be decoded.

Description

画像処理装置、画像処理方法Image processing apparatus and image processing method
 この発明の実施形態は、画像処理装置、画像処理方法、画像処理プログラムのためのコンピュータ読み取り可能な記憶媒体に関する。 Embodiments described herein relate generally to an image processing apparatus, an image processing method, and a computer-readable storage medium for an image processing program.
 近年の画像処理技術においては、画像の高画質化が進み、水平方向が1920画素で垂直方向が1080画素の所謂2K1Kと称される画像データの表示に対応した装置が主流になっている。 In recent image processing technologies, image quality has been improved, and apparatuses corresponding to so-called 2K1K image data display having 1920 pixels in the horizontal direction and 1080 pixels in the vertical direction have become mainstream.
 これに対して最近では水平方向が3840画素、垂直方向が2160画素の4K2Kと称される画像データや、水平方向が7680画素、垂直方向が4320画素の8K4Kと称される画像データのような、超高精細な画像データも実現されている。そして超高精細な画像データを表示可能なUHDTV(Ultra High Definition TV)の開発も行なわれている。 On the other hand, recently, image data called 4K2K with 3840 pixels in the horizontal direction and 2160 pixels in the vertical direction, and image data called 8K4K with 7680 pixels in the horizontal direction and 4320 pixels in the vertical direction, Ultra high-definition image data has also been realized. Also, UHDTV (Ultra High Definition TV) capable of displaying ultra-high definition image data has been developed.
 一般的に、画像データを伝送するためには伝送路の帯域幅を効率的に利用するために、伝送容量を少なくする必要がある。そのために、送信側では、画像データを符号化して符号化画像データを伝送している。そして受信側では、受信した符号化画像データを復号化処理している。復号化装置においては、圧縮されたビットストリームを復号する際、Iピクチャ(イントラフレーム予測により符号化した画像データ)、Bピクチャ(双方向予測により符号化した画像データ)、Pピクチャ(順方向予測により符号化した画像データ)を用いた復号化処理が実行される。 Generally, in order to transmit image data, it is necessary to reduce the transmission capacity in order to efficiently use the bandwidth of the transmission path. For this purpose, the transmission side encodes image data and transmits the encoded image data. On the receiving side, the received encoded image data is decoded. In a decoding apparatus, when a compressed bit stream is decoded, an I picture (image data encoded by intra frame prediction), a B picture (image data encoded by bidirectional prediction), and a P picture (forward prediction) The decoding process using the image data encoded by (1) is executed.
 上記した2K1Kと称される画像データの画素のデジタルビット数は、通常は、8ビットが採用されている。 The number of digital bits of the image data pixel referred to as 2K1K described above is normally 8 bits.
特開2007-306152号公報JP 2007-306152 A 特開2010-052837号公報JP 2010-052837 A 特開2007-533212号公報JP 2007-533212 A
 しかしながら、上記した4K2K、或いは8K4Kなどの高精細な画像データの画素の場合、デジタルビット数として、10ビット或いはそれ以上のビット数を採用することがある。例えば4K2Kの符号化としてHEVC(High Efficiency Video Coding)という規格があるが、さらに、Main10プロファイルが規定されている。このプロファイルでは、画素のデジタルビット数として、10ビットが採用されている。 However, in the case of pixels of high-definition image data such as 4K2K or 8K4K described above, the number of digital bits may be 10 bits or more. For example, there is a standard called HEVC (High Efficiency Video Coding) as 4K2K encoding, but a Main 10 profile is also defined. In this profile, 10 bits are adopted as the number of digital bits of the pixel.
 この結果、高解像度の画像データの符号化装置、復号化装置は、高速周波数のクロックが用いられる。この種の復号化装置を設計した場合は、メモリへのアクセス周波数の増加、それによる消費電力の増加、LSI(ラージスケール集積)回路の構成規模の増加などの傾向がある。 As a result, a high-speed clock is used in a high-resolution image data encoding device and decoding device. When this type of decoding device is designed, there is a tendency that the access frequency to the memory increases, the power consumption thereby increases, and the configuration scale of the LSI (Large Scale Integrated) circuit increases.
 復号化処理においては、予測の方法や予測ベクトルに応じて、単位時間あたりに処理すべきビット数が多くなると、処理中のバンド幅が大きく変化する。復号化装置において8ビット画素を処理する場合のバンド幅に対して、10ビット画素を処理する際には、約25%もバンド幅が大きくなる。 In the decoding process, when the number of bits to be processed per unit time increases according to the prediction method and prediction vector, the bandwidth being processed changes greatly. When processing 10-bit pixels, the bandwidth is increased by about 25% compared to the bandwidth when processing 8-bit pixels in the decoding apparatus.
 しかしながら、最大バンド幅を常に満足し得るデータ処理を実現する復号化装置を製造することは、LSI回路規模の増大、消費電力の増大があり、また将来的に画素ビット数が増大した場合は、バンド幅を保証できなくなる。また小型のモバイル機器において、LSI回路規模の増大、消費電力の増大は好ましくない。 However, manufacturing a decoding device that realizes data processing that can always satisfy the maximum bandwidth has an increase in LSI circuit scale and power consumption, and when the number of pixel bits increases in the future, Bandwidth cannot be guaranteed. In a small mobile device, an increase in LSI circuit scale and power consumption are undesirable.
 そこでこの実施形態では、画素データを処理しているときに、バンド幅が増大した場合、動的に画素データの処理ビット数を変化させることができ、データ処理の破綻を防止することができる、画像処理装置、画像処理方法、画像処理プログラムのためのコンピュータ読み取り可能な記憶媒体を提供することを目的とする。 Therefore, in this embodiment, when the pixel data is processed, if the bandwidth increases, the number of processing bits of the pixel data can be dynamically changed, and the failure of data processing can be prevented. An object is to provide a computer-readable storage medium for an image processing apparatus, an image processing method, and an image processing program.
 実施形態によれば、動き補償画像データ成生部は、第1の符号化ピクチャを、フレーム内の参照画像データを用いたイントラ予測により復号し、第2の符号化ピクチャを過去のフレームの参照画像データを用いた順方向予測により復号し、第2の符号化ピクチャを、過去と未来の両方の参照画像データ用いた両方向予測により復号する。画像データ蓄積制御部は、前記復号された画像データをフレームメモリ45に格納する。参照画像データ取得部は、前記フレームメモリから前記復号のために参照画像データを読み出し、前記動き補償画像データ生成部に入力する。ここで参照画像データ取得部は、前記第3の符号化ピクチャが復号される場合、他の符号化ピクチャが復号されるときよりも、少ないビット数の画素データを前記動き補償画像データ生成部に入力する。 According to the embodiment, the motion compensated image data generation unit decodes the first encoded picture by intra prediction using the reference image data in the frame, and references the second encoded picture to a past frame. Decoding is performed by forward prediction using image data, and the second encoded picture is decoded by bidirectional prediction using both past and future reference image data. The image data accumulation control unit stores the decoded image data in the frame memory 45. The reference image data acquisition unit reads the reference image data for the decoding from the frame memory and inputs the reference image data to the motion compensation image data generation unit. Here, when the third encoded picture is decoded, the reference image data acquisition unit supplies pixel data having a smaller number of bits to the motion compensation image data generation unit than when other encoded pictures are decoded. input.
図1は画像データ符号化装置の構成例であり、この発明を説明するための前提として示した図である。FIG. 1 is a configuration example of an image data encoding device, and is a diagram shown as a premise for explaining the present invention. 図2は画像データ復号化装置の構成例であり、この発明を説明するための前提として示した図である。FIG. 2 is a configuration example of the image data decoding apparatus, and is a diagram shown as a premise for explaining the present invention. 図3は実施形態に係る画像処理装置のブロック構成を示す図である。FIG. 3 is a diagram illustrating a block configuration of the image processing apparatus according to the embodiment. 図4Aは実施形態に係るフレームメモリに格納されている画像データのフォーマットの例を示す図である。FIG. 4A is a diagram illustrating an example of a format of image data stored in the frame memory according to the embodiment. 図4Bは実施形態に係るフレームメモリに格納されている画像データのフォーマットの他の例を示す図である。FIG. 4B is a diagram illustrating another example of a format of image data stored in the frame memory according to the embodiment.
 以下、実施の形態について図面を参照して説明する。図1は、画像データ符号化装置の構成例であり、この発明を説明するための前提として示した図である。入力端子11からの入力画像データは、減算器12に入力するとともに動き検出部23に入力する。 Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a configuration example of an image data encoding device, and is a diagram shown as a premise for explaining the present invention. Input image data from the input terminal 11 is input to the subtractor 12 and to the motion detector 23.
 減算器12は、入力画像データと予測画像データとの差分である差分画像データを出力する。変換及び量子化部13は、空間領域の差分画像データを例えば周波数領域の画像データに変換(デジタルコサイン変換(DCT))し、変換したデータを、逆量子化及び逆変換部14と、エントロピー符号化部26とに出力する。 The subtracter 12 outputs difference image data that is a difference between the input image data and the predicted image data. The transform and quantization unit 13 transforms the difference image data in the spatial domain into, for example, frequency domain image data (digital cosine transform (DCT)), and converts the transformed data into an inverse quantization and inverse transform unit 14 and an entropy code. To the conversion unit 26.
 逆量子化及び逆変換部14は、符号化されている差分画像データを復元し、加算器15に入力する。加算器15は、差分画像データと、選択部17からの予測画像データを合成し、入力画像データに相当する復元画像データを得る。復元画像データは、イントラ予測部16、デブロッキングフィルタ21に入力する。 The inverse quantization and inverse transform unit 14 restores the encoded difference image data and inputs it to the adder 15. The adder 15 combines the difference image data and the predicted image data from the selection unit 17 to obtain restored image data corresponding to the input image data. The restored image data is input to the intra prediction unit 16 and the deblocking filter 21.
 イントラ予測部16は、1つのフレーム内の複数の画素データを用いて、予測画素データを生成する。したがって予測画像データは、入力画像データとほとんど変わりはない。加算器15から出力される復元画像データは、デブロッキングフィルタ21に入力されて、量子化単位であるブロックとブロックとの間ひずみを軽減するためのフィルタである。 The intra prediction unit 16 generates predicted pixel data using a plurality of pixel data in one frame. Therefore, the predicted image data is almost the same as the input image data. The restored image data output from the adder 15 is input to the deblocking filter 21 and is a filter for reducing distortion between blocks that are quantization units.
 デブロッキングフィルタ22の出力は、フレームメモリ22に入力する。 The output of the deblocking filter 22 is input to the frame memory 22.
 なお実施形態の説明において、画像データは、複数の画素データが集合して構成されているものとして説明する。 In the description of the embodiment, the image data will be described as a collection of a plurality of pixel data.
 フレームメモリ22に格納されている復元画像データは、動き補償予測部24に入力する、また動き検出部23に入力する。動き検出部23は、復元画像データと入力画像データを比較して画像の動きをあらわす動き予測ベクトルを検出する。 The restored image data stored in the frame memory 22 is input to the motion compensation prediction unit 24 and also input to the motion detection unit 23. The motion detection unit 23 compares the restored image data with the input image data, and detects a motion prediction vector representing the motion of the image.
 動き補償予測部24は、フレームメモリ22からの復元画像データを、動き予測ベクトルに基づいて修正し、動き予測した予測画像データに変換する。 The motion compensation prediction unit 24 corrects the restored image data from the frame memory 22 based on the motion prediction vector, and converts it into motion image predicted image data.
 予測画像データは、減算器12に入力する。減算器12は、入力画像データと予測画像データとの差分となる差分画像データを出力する。 The predicted image data is input to the subtracter 12. The subtracter 12 outputs difference image data that is a difference between the input image data and the predicted image data.
 差分画像データは、変換及び量子化部13にて符号化されて、エントリピー符号化部26でさらにエントリピー符号化される。エントロピー符号化部26は、符号化データと動き予測ベクトルを含むビットストリームを出力する。またビットストリームには、符号化画像データとともに、ピクチャタイプ(Iピクチャ又はP又はBピクチャ)を示す情報も含まれている。 The difference image data is encoded by the transform and quantization unit 13 and further subjected to entry-pe encoding by the entry-pe encoding unit 26. The entropy encoding unit 26 outputs a bit stream including encoded data and a motion prediction vector. The bit stream also includes information indicating the picture type (I picture or P or B picture) along with the encoded image data.
 Iピクチャは、ピクチャ内で閉じて符号化されたデータであり、他のピクチャを参照しない(intra-coded picture)。 An I picture is data encoded by being closed within a picture and does not refer to other pictures (intra-coded picture).
 Pピクチャは、予測には順方向予測のみを用いて符号化を行うピクチャ(predictive-coded picture)である、つまり、順方向予測し、過去のフレームから現在のフレームを予測する。 The P picture is a picture (predictive-coded picture) that is encoded using only forward prediction for prediction, that is, predicting forward and predicting the current frame from past frames.
 Bピクチャは、順方向予測、逆方向予測、両方向予測を用いることができるピクチャ(Bidirectionally predictive-coded picture)である。ここでは、順方向予測に加えて、時間的に未来のフレームを先に符号化しておき、そこからの予測(逆方向予測 backward prediction)を行ったり、過去と未来の両方を使った両方向予測(interpolation prediction)で予測効率を高めることができる。 The B picture is a picture (Bidirectionally predictive-coded picture) that can use forward prediction, backward prediction, and bidirectional prediction. Here, in addition to forward prediction, a future frame in time is encoded first, and then prediction (reverse prediction backwardbackprediction) is performed, or bidirectional prediction using both past and future ( Interpolation (prediction) can improve the prediction efficiency.
 図2は、画像データ復号化装置の構成例であり、この発明を説明するための前提として示した図である。 FIG. 2 is a configuration example of an image data decoding device, and is a diagram shown as a premise for explaining the present invention.
 入力端子30には、図1のエントロピー符号化部26から出力されるビットストリームが入力する。エントロピー復号化部31でエントリピー復号化されたデータは、逆量子化及び逆変換部32に入力する。 The input terminal 30 receives a bit stream output from the entropy encoding unit 26 in FIG. The data that has been entry-py decoded by the entropy decoding unit 31 is input to the inverse quantization and inverse transform unit 32.
 逆量子化及び逆変換部32は、符号化されている画像データを逆量子化及び逆変換するもので復元された差分画像データは、加算器33に入力される。加算器33は選択部34からの復元画像データと差分画像データを加算する。 The inverse quantization and inverse transform unit 32 performs inverse quantization and inverse transform on the encoded image data, and the restored differential image data is input to the adder 33. The adder 33 adds the restored image data and the difference image data from the selection unit 34.
 加算器33は、差分画像データと復元画像データとを加算して、復号画像データを出力する。加算器33の出力である復号画像データは、デブロッキングフィルタ40に入力されてデブロッキングフィルタリングされ、出力画像データとなる。 The adder 33 adds the difference image data and the restored image data, and outputs decoded image data. The decoded image data that is the output of the adder 33 is input to the deblocking filter 40 and subjected to deblocking filtering to become output image data.
 また加算器33の出力である復号画像データは、イントラ予測部41に入力される。イントラ予測部41は、フレーム内画像を用いてIピクチャを復号する。 The decoded image data that is the output of the adder 33 is input to the intra prediction unit 41. The intra prediction unit 41 decodes the I picture using the intra-frame image.
 デブロッキングフィルタ40の出力は、フレームメモリ45に入力される。フレームメモリ45の出力は、送られて来た動き予測ベクトルを利用して、動き予測画像データを生成する。選択部34は、ピクチャタイプがP,Bのときは動き補償予測部46からの動き画像を選択して加算器33に供給する。 The output of the deblocking filter 40 is input to the frame memory 45. The output of the frame memory 45 generates motion prediction image data by using the motion prediction vector that has been sent. When the picture type is P or B, the selection unit 34 selects the motion image from the motion compensation prediction unit 46 and supplies it to the adder 33.
 図3は、実施形態に係る画像処理装置のブロック構成を示す図である。図3は、図2のブロックに対応させた場合、動き補償予測部46、選択部34、加算器33、イントラ予測部41の部分と、フレームメモリ45の周辺に相当する。 FIG. 3 is a diagram illustrating a block configuration of the image processing apparatus according to the embodiment. 3 corresponds to the motion compensation prediction unit 46, the selection unit 34, the adder 33, the intra prediction unit 41, and the periphery of the frame memory 45 when corresponding to the block of FIG.
 破線で囲むブロックを画像データ処理部500とする。画像データ処理部500は、動き補償画像データ生成部101、参照画像データ取得部120、カレント復元画像データ蓄積制御部140を含む。 A block surrounded by a broken line is an image data processing unit 500. The image data processing unit 500 includes a motion compensation image data generation unit 101, a reference image data acquisition unit 120, and a current restoration image data accumulation control unit 140.
 動き補償画像データ成生部101は、Iピクチャ、Bピクチャ、Pピクチャを復元するもので、復元する場合は、例えば以下のようなルールが用いられる。例えば図3の左側に示すBピクチャF2が復元されるときは、IピクチャF1とPピクチャF4が参照されて復元される。またBピクチャF3が復元されるときは、IピクチャF1とPピクチャF4が参照されて復元される。ここで、参照画像データとしてのIピクチャF1とPピクチャF4は、参照画像データ取得部120により、フレームメモリ45から読み出される。 The motion compensated image data generation unit 101 restores an I picture, a B picture, and a P picture. For example, the following rules are used. For example, when the B picture F2 shown on the left side of FIG. 3 is restored, the I picture F1 and the P picture F4 are referred to and restored. When the B picture F3 is restored, the I picture F1 and the P picture F4 are referenced and restored. Here, the I picture F1 and the P picture F4 as the reference image data are read from the frame memory 45 by the reference image data acquisition unit 120.
 さらにまたPピクチャF3が復元されるときは、IピクチャF1が参照されて復元される。 Furthermore, when the P picture F3 is restored, the I picture F1 is referenced and restored.
 参照画像データ取得部120は、参照画像データバッファ121と、参照画像データエリア選択制御部122と、参照画像ベクトル生成部130と、バンド幅測定部123と、カレント復元画像データ蓄積制御部140を含む。 The reference image data acquisition unit 120 includes a reference image data buffer 121, a reference image data area selection control unit 122, a reference image vector generation unit 130, a bandwidth measurement unit 123, and a current restoration image data accumulation control unit 140. .
 カレント復元画像データ蓄積制御部140は、動き補償画像データ成生部101が生成した復元画像データをフレームメモリ45に書き込む作業を行う。このとき、カレント復元画像データ蓄積制御部140は、バス141を介してフレームメモリ45の書き込みアドレスを指定するとともに、書込み画素データを転送する。 The current restored image data accumulation control unit 140 performs an operation of writing the restored image data generated by the motion compensated image data generation unit 101 into the frame memory 45. At this time, the current restoration image data accumulation control unit 140 designates the write address of the frame memory 45 via the bus 141 and transfers the write pixel data.
 この場合、カレント復元画像データ蓄積制御部140は、画素データを上位側の8ビット領域のデータ(単に上位側ビット画像データと称しても良い)と、下位側の2ビット領域のデータ(単に下位側ビット画像データと称しても良い)とに分けて、フレームメモリ45に蓄積している。このときのデータフォーマットは、後で説明する例えば、図4(A)、図4(B)に示すフォーマットである。なお10ビットのデータは、全ビット画像データと称しても良い。 In this case, the current restoration image data accumulation control unit 140 sets the pixel data to the upper 8-bit area data (simply referred to as upper bit image data) and the lower 2-bit area data (simply lower And may be referred to as “side bit image data”). The data format at this time is, for example, a format shown in FIGS. 4A and 4B described later. Note that the 10-bit data may be referred to as all-bit image data.
 フレームメモリ45は、参照画像データエリア選択制御部122により読み出しアドレスが指定される。これにより、フレームメモリ45から、参照画像データが読み出され、参照画像データバッファ121に一旦蓄積される。 In the frame memory 45, a read address is designated by the reference image data area selection control unit 122. As a result, the reference image data is read from the frame memory 45 and temporarily stored in the reference image data buffer 121.
 参照画像データ取得部120は、動き補償画像データ成生部101で必要な参照画像データを取得するためのデータ取得を行う。 The reference image data acquisition unit 120 acquires data for acquiring reference image data necessary for the motion compensated image data generation unit 101.
 参照画像データバッファ121は、フレームメモリ45から読み出された参照画像データを蓄積し、高速アクセスされることが可能なバッファメモリとして機能する。 The reference image data buffer 121 stores reference image data read from the frame memory 45 and functions as a buffer memory that can be accessed at high speed.
 参照画像データエリア選択制御部122は、フレームメモリ45をアクセスして読み出した参照画像データを、参照画像データバッファ121に転送する。 The reference image data area selection control unit 122 transfers the reference image data read by accessing the frame memory 45 to the reference image data buffer 121.
 参照画像データエリア選択制御部122は、参照画像ベクトル生成部130からの動き予測ベクトルに対応する参照画像ベクトルを用いて、フレームメモリ45をアクセスするための読み出しアドレスを決定する。 The reference image data area selection control unit 122 determines a read address for accessing the frame memory 45 using the reference image vector corresponding to the motion prediction vector from the reference image vector generation unit 130.
 参照画像ベクトル生成部130は、Bピクチャ、Pピクチャに付随して符号化装置から送られてきた動き予測ベクトルを用いて、前記参照画像ベクトルを生成している。 The reference image vector generation unit 130 generates the reference image vector by using the motion prediction vector sent from the encoding device in association with the B picture and the P picture.
 画像動きが頻繁な領域では、動き予測ベクトルの変化周波数が高い。また画像動きが頻繁で、かつ画像の周波数が高い(輝度変化周波数が高い或いは細かい画像が多い場合)場合は、動き予測ベクトルの変化周波数が高い。 In the region where the image motion is frequent, the change frequency of the motion prediction vector is high. When the image motion is frequent and the image frequency is high (when the luminance change frequency is high or there are many fine images), the change frequency of the motion prediction vector is high.
 参照画像データエリア選択制御部122は、フレームメモリ45から読み出した参照画像データ(画素データは例えば10ビット又は8ビット)を、参照画像データバッファ121に一旦蓄積する。参照画像データバッファ121に蓄積された画像データは、動き補償画像データ成生部101に伝送される。 The reference image data area selection control unit 122 temporarily stores the reference image data (pixel data is, for example, 10 bits or 8 bits) read from the frame memory 45 in the reference image data buffer 121. The image data stored in the reference image data buffer 121 is transmitted to the motion compensated image data generation unit 101.
 上記の装置においては、バンド幅測定部123の制御信号により、画素データの上位側の8ビット領域のデータがフレームメモリ45から読み出されて処理されるのか、上位側の8ビット領域のデータと下位側の2ビット領域のデータとをあわせた10ビットの画素データがフレームメモリ45から読み出されて処理されるのかが決定される。 In the above apparatus, whether the upper 8-bit area data of the pixel data is read from the frame memory 45 and processed by the control signal of the bandwidth measuring unit 123, or the upper 8-bit area data and It is determined whether 10-bit pixel data including the data of the lower 2-bit area is read from the frame memory 45 and processed.
 これにより、参照画像データ取得部120及び動き補償画像データ成生部101は、8ビット画素データ処理モードと、10ビット画素データ処理モードとの何れかに切り替わる。 Thereby, the reference image data acquisition unit 120 and the motion compensated image data generation unit 101 are switched between the 8-bit pixel data processing mode and the 10-bit pixel data processing mode.
 ここで、図4A、図4Bを参照して、前記フレームメモリ45に格納されている画像データのフォーマットの例を示す。 Here, an example of the format of the image data stored in the frame memory 45 will be shown with reference to FIGS. 4A and 4B.
 図4Aの例は、1画素が10ビットで扱われる場合の例である。輝度の画素データの上位8ビットが格納される第1の輝度データ領域(Y1-1)と、色差の画素データCb,Crの上位8ビットが格納される第1の色データ領域(C1-1)と、輝度の画素データの下位2ビットが格納される第2の輝度データ領域(Y1-2)と、色差の画素データCb,Crの下位2ビットが格納される第2の色データ領域(C1-2)とが1セットとなるフォーマットの例である。 The example of FIG. 4A is an example in which one pixel is handled with 10 bits. A first luminance data area (Y1-1) in which upper 8 bits of luminance pixel data are stored, and a first color data area (C1-1) in which upper 8 bits of color difference pixel data Cb and Cr are stored ), A second luminance data area (Y1-2) in which the lower 2 bits of the luminance pixel data are stored, and a second color data area (Y1-2) in which the lower 2 bits of the color difference pixel data Cb and Cr are stored. C1-2) is an example of a format that is one set.
 図4Bの例は、1画素が12ビットで扱われる場合の例である。輝度の画素データの上位8ビットが格納される第1の輝度データ領域(Y2-1)と、色差の画素データCb,Crの上位8ビットが格納される第1の色データ領域(C2-1)と、輝度の画素データの下位4ビットが格納される第2の輝度データ領域(Y2-2)と、色差の画素データCb,Crの下位4ビットが格納される第2の色データ領域(C2-2)とが1セットとなるフォーマットの例である。 The example of FIG. 4B is an example in which one pixel is handled with 12 bits. A first luminance data area (Y2-1) in which upper 8 bits of luminance pixel data are stored, and a first color data area (C2-1) in which upper 8 bits of color difference pixel data Cb and Cr are stored ), A second luminance data area (Y2-2) in which the lower 4 bits of the luminance pixel data are stored, and a second color data area (Y2-2) in which the lower 4 bits of the color difference pixel data Cb and Cr are stored. C2-2) is an example of a format that is one set.
 なお図4(A),図4(B)に示すビット数や、分割方法は、限定されるものではなく、バイトアライメントし易い分割方法が好ましい。 Note that the number of bits and the division method shown in FIGS. 4A and 4B are not limited, and a division method that facilitates byte alignment is preferable.
 図3に戻って説明する。先に述べたように、バンド幅測定部123の切り替え制御信号により、参照画像データ取得部120及び動き補償画像データ成生部101は、8ビット画素データ処理モードと、10ビット画素データ処理モードとの何れかに切り替わる。 Referring back to FIG. As described above, the reference image data acquisition unit 120 and the motion-compensated image data generation unit 101 perform the 8-bit pixel data processing mode, the 10-bit pixel data processing mode, and the like according to the switching control signal of the bandwidth measurement unit 123. Switch to one of the following.
 具体的な例としては以下の複数の実施形態及び又はこれらの組み合わせが採用される。 As specific examples, the following embodiments and / or combinations thereof are employed.
 (1)バンド幅測定部123の切り替え制御信号は、例えばBピクチャの復元処理が実行されるときに、参照画像データエリア選択部制御部122を制御する。これにより、参照画像データ取得部120の全体が、フレームメモリ45から8ビット画素データを読み取り、動き補償画像データ成生部101に供給する。 (1) The switching control signal of the bandwidth measurement unit 123 controls the reference image data area selection unit control unit 122, for example, when a B picture restoration process is executed. As a result, the entire reference image data acquisition unit 120 reads 8-bit pixel data from the frame memory 45 and supplies it to the motion compensated image data generation unit 101.
 したがって、10ビット画素データを処理する場合に比べて、参照画像データ取得部120及び動き補償画像データ成生部101の処理負担が軽減する。 Therefore, the processing load on the reference image data acquisition unit 120 and the motion compensation image data generation unit 101 is reduced as compared with the case of processing 10-bit pixel data.
 なお8ビット画素データを採用する場合には、下位2ビットの画素データは、固定の値として、動き補償画像データ成生部101に入力すれば、動き補償画像データ成生部101の動作を細かく切り替える必要はない。 When 8-bit pixel data is employed, the lower-order 2-bit pixel data is input as a fixed value to the motion compensated image data generating unit 101, and the operation of the motion compensated image data generating unit 101 is detailed. There is no need to switch.
 また、液晶パネルにおいて、上位8ビットによる諧調の画像を表示した場合、下位2ビットの分が復元の誤差となる。しかし、液晶パネルにおいて、画素データの下位のビットに基づく諧調を見分けるのは、画面の付近に近寄るかしなければ判別しづらい。また液晶パネルとして、10ビット対応と称されているものは、液晶モジュール内の回路で8ビットのデザリング手法により、擬似的に10ビットに見せているものもあり、本来の10ビット諧調表現できていないものもある。 In addition, when a gradation image with upper 8 bits is displayed on the liquid crystal panel, the lower 2 bits are an error in restoration. However, in the liquid crystal panel, it is difficult to distinguish the gradation based on the lower bits of the pixel data unless approaching the vicinity of the screen. In addition, some LCD panels, which are called 10-bit compatible, are shown as 10 bits in a pseudo manner by an 8-bit dithering method in the circuit in the liquid crystal module, and the original 10-bit gradation can be expressed. Some are not.
 したがって、実施形態では、比較的復元誤差が識別しにくいBピクチャに関して、8ビット画素データを使用することが好ましい。 Therefore, in the embodiment, it is preferable to use 8-bit pixel data for a B picture that is relatively difficult to identify a restoration error.
 (2)参照画像データ取得部120及び動き補償画像データ成生部101を8ビット画像データ処理モードに切り替える。例えば単位時間に処理すべきビット数が第1の閾値を越えた場合(バンド幅が大きくなった場合)に、フレームメモリ45から8ビット画素データを読み取り、動き補償画像データ成生部101に供給する。また、単位時間に処理すべきビット数が第2の閾値より少なくなった場合(バンド幅が小さくなった場合)に、フレームメモリ45から10ビット画素データを読み取り、動き補償画像データ成生部101に供給する。 (2) The reference image data acquisition unit 120 and the motion compensation image data generation unit 101 are switched to the 8-bit image data processing mode. For example, when the number of bits to be processed per unit time exceeds the first threshold value (when the bandwidth becomes large), 8-bit pixel data is read from the frame memory 45 and supplied to the motion compensation image data generation unit 101. To do. Further, when the number of bits to be processed per unit time becomes smaller than the second threshold (when the bandwidth becomes small), 10-bit pixel data is read from the frame memory 45 and the motion compensation image data generation unit 101 is read. To supply.
 単位時間に処理すべきビット数は、例えば、動き予測ベクトルを監視することにより推定可能である。例えば、動き予測ベクトルの値が小さくて、1つのピクチャを再現するための動き予測ベクトル数が多い場合、バンド幅が大きくなることを判定できる。 The number of bits to be processed per unit time can be estimated, for example, by monitoring a motion prediction vector. For example, when the value of the motion prediction vector is small and the number of motion prediction vectors for reproducing one picture is large, it can be determined that the bandwidth becomes large.
 (3)前のフレーム(先行するフレーム)を復元処理するときに、バンド幅が、予め設定している所定の帯域を越えている或いは極めて近い帯域となった場合に、つまり単位時間に処理すべき画素データのビット数が所定の閾値を越えたことを測定した場合に、次のフレームを復元処理するときには、8ビット画素データ処理モードに移行してもよい。 (3) When restoring the previous frame (previous frame), if the bandwidth exceeds or is very close to the preset bandwidth, that is, it is processed in unit time. When it is measured that the number of bits of power pixel data has exceeded a predetermined threshold, when restoring the next frame, the mode may be shifted to the 8-bit pixel data processing mode.
 この考え方は、前のフレームのバンド幅が大きくなったので、次のフレームもバンド幅が大きいであろうと予測するという考え方である。10ビット画素データ処理モードに移行するためには、単位時間に処理すべきビット数が予め設定している第2の閾値より少なくなった場合(バンド幅が小さくなった場合)に、移行する。 This idea is to predict that the bandwidth of the previous frame will be large, so the next frame will also have a large bandwidth. In order to shift to the 10-bit pixel data processing mode, the shift is made when the number of bits to be processed per unit time is smaller than a preset second threshold value (when the bandwidth is reduced).
 上記の説明は直前のフレームの復元処理が行われたときのバンド幅を参考にしたが、複数のフレームの統計を取った結果に応じて、10ビット画素データ処理モード、或いは8ビット画素データ処理モードに移行してもよい。 The above description refers to the bandwidth when the immediately preceding frame restoration process is performed, but depending on the result of statistics of a plurality of frames, the 10-bit pixel data processing mode or the 8-bit pixel data processing You may enter mode.
 (4)さらにまた、動き予測ベクトルが小数点を含んでいるか否かにより、バンド幅が大きくなるか小さくなるかを判断してもよい。動き予測ベクトルが小数点を含むことは、元の画素配列単位での動き予測ではなく、元の画素と元の画素の間の補完画素を生成する必要があることを意味する。このような場合は、補間画素の精度を高くするために、周辺の多くの画素を用いる必要がある。この結果、画像データ処理に関するバンド幅が大きくなる。 (4) Furthermore, it may be determined whether the bandwidth increases or decreases depending on whether the motion prediction vector includes a decimal point. The motion prediction vector including a decimal point means that it is necessary to generate a complementary pixel between the original pixel and the original pixel, not the motion prediction in the original pixel array unit. In such a case, it is necessary to use many peripheral pixels in order to increase the accuracy of the interpolation pixel. As a result, the bandwidth related to image data processing increases.
 上記の考えに基づいて、本装置のバンド幅測定部123は、1フレームを復元するのに利用される複数の動き予測ベクトルのうち、小数点を含む動き予測ベクトルを計数する。そしてバンド幅測定部123は、小数点を含む動き予測ベクトルが、前記複数の動き予測ベクトルのうち何パーセントか、或いは、何個かを検出し、この検出結果に応じて、10ビット画素データ処理モード、或いは8ビット画素データ処理モードへの移行を制御してもよい。 Based on the above idea, the bandwidth measuring unit 123 of the present apparatus counts motion prediction vectors including a decimal point among a plurality of motion prediction vectors used to restore one frame. Then, the bandwidth measuring unit 123 detects a percentage or several of the plurality of motion prediction vectors including a decimal point, and according to the detection result, the 10-bit pixel data processing mode Alternatively, the transition to the 8-bit pixel data processing mode may be controlled.
 (5)上記画像データ処理装置500が組み込まれる機器に応じて、参照画像データ取得部120は、フレームメモリ45から8ビット画素データを読み取り、動き補償画像データ成生部101に供給するように構成されてもよい。特に組み込まれる機器が、省電力を必要とするモバイル機器の場合は、有効である。 (5) The reference image data acquisition unit 120 is configured to read 8-bit pixel data from the frame memory 45 and supply the 8-bit pixel data to the motion compensated image data generation unit 101 according to a device in which the image data processing device 500 is incorporated. May be. This is particularly effective when the device to be incorporated is a mobile device that requires power saving.
 (6)上記の(1)-(4)を選択的に組み合わせて動的に10ビット画素データ処理モードと8ビット画素データ処理モードへの移行を制御してもよい。 (6) The transition to the 10-bit pixel data processing mode and the 8-bit pixel data processing mode may be controlled dynamically by selectively combining the above (1) to (4).
 図3において画像データ処理装置500はブロック構成として示しているが、このブロックの動作はプログラム(ソフトウエア)により構成されてもよい。また複数のデータ処理プロセッサ或いはDSP(デジタル信号プロセッサ)により構成されてもよく、また、ブロックの機能がコンピュータ読み取り可能な記録媒体に格納された命令(インストラクション)により実現されてもよい。 In FIG. 3, the image data processing apparatus 500 is shown as a block configuration, but the operation of this block may be configured by a program (software). Further, it may be configured by a plurality of data processors or DSPs (digital signal processors), and the function of the block may be realized by instructions (instructions) stored in a computer-readable recording medium.
 上記したように、動き補償画像データ成生部101は、第1の符号化ピクチャ(Iピクチャ)を、フレーム内の参照画像データを用いたイントラ予測により復号し、第2の符号化ピクチャ(Pピクチャ)を過去のフレームの参照画像データを用いた順方向予測により復号し、第2の符号化ピクチャ(Bピクチャ)を、過去と未来の両方の参照画像データ用いた両方向予測により復号する。画像データ蓄積制御部140は、前記復号された画像データをフレームメモリ45に格納する。参照画像データ取得部120は、前記フレームメモリ45から前記復号のために参照画像データを読み出し、前記動き補償画像データ生成部に入力する。ここで参照画像データ取得部120は、前記第2の符号化ピクチャが復号される場合、他の符号化ピクチャが復号されるときよりも、少ないビット数の画素データを前記動き補償画像データ生成部に入力する。 As described above, the motion compensated image data generation unit 101 decodes the first encoded picture (I picture) by intra prediction using the reference image data in the frame, and outputs the second encoded picture (P Picture) is decoded by forward prediction using reference image data of a past frame, and the second encoded picture (B picture) is decoded by bidirectional prediction using both past and future reference image data. The image data accumulation control unit 140 stores the decoded image data in the frame memory 45. The reference image data acquisition unit 120 reads reference image data for the decoding from the frame memory 45 and inputs it to the motion compensation image data generation unit. Here, when the second encoded picture is decoded, the reference image data acquisition unit 120 receives the pixel data having a smaller number of bits when the second encoded picture is decoded than when the other encoded picture is decoded. To enter.
 上記の実施形態においては、画像データ蓄積制御部140は、フレームメモリ45に復元画像データを図4(A)或いは図4(B)のフォーマットで格納すると説明した。 In the above embodiment, it has been described that the image data accumulation control unit 140 stores the restored image data in the frame memory 45 in the format of FIG. 4A or 4B.
 しかしこの方法に限らず、例えばBピクチャに関してのみ、分割して、つまり上位側の第1のビット数(8)と下位側の第2のビット数(2)に分けて格納してもよい。 However, the present invention is not limited to this method. For example, only the B picture may be divided, that is, divided into the upper first bit number (8) and the lower second bit number (2).
 また上記の実施形態では、フレームメモリ45に格納される画素データが、上位側の8ビットと下位側の2ビットで格納されると説明した。しかしこれに限らず、フレームメモリ45には画素データは全て10ビット単位で格納し、参照画像データバッファ121に参照画像データが取り込まれるときに、上位8ビットのみ、或いは10ビットの何れかが選択して取り込まれるように動作してもよい。 In the above embodiment, the pixel data stored in the frame memory 45 is described as being stored in the upper 8 bits and the lower 2 bits. However, the present invention is not limited to this, all the pixel data is stored in the frame memory 45 in units of 10 bits, and when the reference image data is taken into the reference image data buffer 121, only the upper 8 bits or 10 bits are selected. And may be operated so as to be captured.
 上記した説明において、用語の「部」は、「装置」、「器」、「ブロック」及び「モジュール」に置き換えてもこの実施形態に含まれることは勿論である。さらにまた、請求項の各構成要素において、構成要素を分割して表現した場合、或いは複数を合わせて表現した場合、或いはこれらを組み合わせて表現した場合であってもこの実施形態に含まれる。また請求項を方法として表現した場合であってもこの実施形態の装置を適用したものである。 In the above description, the term “part” may be replaced with “device”, “vessel”, “block”, and “module”, and is of course included in this embodiment. Furthermore, in the constituent elements of the claims, even when the constituent elements are expressed in a divided manner, when they are expressed in combination, or when they are expressed in combination, they are included in this embodiment. Even if the claims are expressed as a method, the apparatus of this embodiment is applied.
 いくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments have been described, these embodiments are presented as examples, and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 上記した実施形態における基本的な構成要素を以下に付記する。 The basic components in the above embodiment will be added below.
(1)第1の符号化ピクチャを、フレーム内の参照画像データを用いたイントラ予測により復号し、第2の符号化ピクチャを過去のフレームの参照画像データを用いた順方向予測により復号し、第3の符号化ピクチャを、過去と未来の両方の参照画像データ用いた両方向予測により復号する、動き補償画像データ成生部101と、
 前記復号された画像データをフレームメモリ45に格納する画像データ蓄積制御部140と、
 前記フレームメモリ45から前記復号のために参照画像データを読み出し、前記動き補償画像データ生成部に入力する参照画像データ取得部120と、を備え、
 前記参照画像データ取得部120は、前記第3の符号化ピクチャが復号される場合、他の符号化ピクチャが復号される場合のビット数よりも少ないビット数の画素データを読み出して前記動き補償画像データ生成部に入力する、画像処理装置。
(1) A first encoded picture is decoded by intra prediction using reference image data in a frame, and a second encoded picture is decoded by forward prediction using reference image data of a past frame; A motion compensated image data generation unit 101 that decodes the third encoded picture by bidirectional prediction using both past and future reference image data;
An image data accumulation control unit 140 for storing the decoded image data in the frame memory 45;
A reference image data acquisition unit 120 that reads reference image data for the decoding from the frame memory 45 and inputs the reference image data to the motion compensation image data generation unit,
When the third encoded picture is decoded, the reference image data acquisition unit 120 reads out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded, and the motion compensated image An image processing apparatus that inputs data to a data generation unit.
(2)前記画像データ蓄積制御部140は、前記フレームメモリ45に対して、画素データを、上位側の第1のビット数と下位側の第2のビット数に分けて格納する(1)記載の画像処理装置。 (2) The image data accumulation control unit 140 stores the pixel data in the frame memory 45 by dividing the pixel data into an upper first bit number and a lower second bit number (1). Image processing apparatus.
(3)前記参照画像データ取得部120はバンド幅測定部123を有し、このバンド幅測定部は、単位時間に処理すべき画素データのビット数が第1の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、(1)記載の画像処理装置。 (3) The reference image data acquisition unit 120 has a bandwidth measurement unit 123, and this bandwidth measurement unit measured that the number of bits of pixel data to be processed per unit time exceeded the first threshold value. In this case, the image processing apparatus according to (1), wherein the reference image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
(4)前記参照画像データ取得部120はバンド幅測定部123を有し、このバンド幅測定部は、先行するフレームが復元処理される場合に、単位時間に処理すべき画素データのビット数が所定の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、(1)記載の画像処理装置。 (4) The reference image data acquisition unit 120 includes a bandwidth measurement unit 123. This bandwidth measurement unit determines the number of bits of pixel data to be processed per unit time when a preceding frame is restored. The image processing apparatus according to (1), wherein when it is measured that a predetermined threshold value is exceeded, the reference image data acquisition unit and the motion compensation image data generation unit are switched to an upper bit image data processing mode.
(5)前記参照画像データ取得部120はバンド幅測定部123を有し、このバンド幅測定部は、1フレームを復元するのに利用される複数の動き予測ベクトルのうち、小数点を含む動き予測ベクトルが複数存在した場合に、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、(1)記載の画像処理装置。 (5) The reference image data acquisition unit 120 includes a bandwidth measurement unit 123, and the bandwidth measurement unit includes motion prediction including a decimal point among a plurality of motion prediction vectors used to restore one frame. The image processing apparatus according to (1), wherein when there are a plurality of vectors, the reference image data acquisition unit and the motion compensated image data generation unit are switched to an upper bit image data processing mode.
(6)動き補償画像データ成生部101が、第1の符号化ピクチャを、フレーム内の参照画像データを用いたイントラ予測により復号し、第2の符号化ピクチャを過去のフレームの参照画像データを用いた順方向予測により復号し、第3の符号化ピクチャを、過去と未来の両方の参照画像データ用いた両方向予測により復号し、画像データ蓄積制御部140が前記復号された画像データをフレームメモリ45に格納し、参照画像データ取得部120が前記フレームメモリ45から前記復号のために参照画像データを読み出し、前記動き補償画像データ生成部に入力する画像処理方法において、
 前記参照画像データ取得部120が前記第3の符号化ピクチャが復号される場合、他の符号化ピクチャが復号される場合のビット数よりも少ないビット数の画素データを読み出して前記動き補償画像データ生成部に入力する、画像処理方法。
(6) The motion compensated image data generating unit 101 decodes the first encoded picture by intra prediction using the reference image data in the frame, and the second encoded picture is the reference image data of the past frame. The third encoded picture is decoded by bidirectional prediction using both past and future reference image data, and the image data accumulation control unit 140 converts the decoded image data into a frame. In the image processing method of storing in the memory 45, the reference image data acquisition unit 120 reads the reference image data for the decoding from the frame memory 45, and inputs the reference image data to the motion compensation image data generation unit.
When the reference image data acquisition unit 120 decodes the third encoded picture, the motion compensated image data is read by reading out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded. An image processing method to be input to the generation unit.
(7)前記画像データ蓄積制御部140が前記フレームメモリ45に対して、画素データを、上位側の第1のビット数と下位側の第2のビット数に分けて格納する(6)記載の画像処理方法。 (7) The image data accumulation control unit 140 stores the pixel data in the frame memory 45 by dividing the pixel data into the upper first bit number and the lower second bit number. Image processing method.
(8)前記参照画像データ取得部120のバンド幅測定部が、単位時間に処理すべき画素データのビット数が第1の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、(6)記載の画像処理方法。 (8) When the bandwidth measurement unit of the reference image data acquisition unit 120 measures that the number of bits of pixel data to be processed per unit time exceeds a first threshold, the reference image data acquisition unit and the reference image data acquisition unit The image processing method according to (6), wherein the motion compensated image data generation unit is switched to a higher-order bit image data processing mode.
(9)前記参照画像データ取得部120のバンド幅測定部123が、1フレームを復元するのに利用される複数の動き予測ベクトルのうち、小数点を含む動き予測ベクトルが複数存在した場合に、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、(6)記載の画像処理方法。 (9) The bandwidth measurement unit 123 of the reference image data acquisition unit 120 includes a plurality of motion prediction vectors including a decimal point among a plurality of motion prediction vectors used to restore one frame. The image processing method according to (6), wherein the reference image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
(10)前記参照画像データ取得部120のバンド幅測定部123が、先行するフレームが復元処理される場合に、単位時間に処理すべき画素データのビット数が所定の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、(6)記載の画像処理方法。 (10) The bandwidth measurement unit 123 of the reference image data acquisition unit 120 measures that the number of bits of pixel data to be processed per unit time exceeds a predetermined threshold when the preceding frame is restored. In such a case, the image processing method according to (6), wherein the reference image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
(11)コンピュータ読み取り可能な情報記録媒体であって、この情報記録媒体に格納されている命令が、
 動き補償画像データ成生部101に対して、第1の符号化ピクチャを、フレーム内の参照画像データを用いたイントラ予測により復号させ、第2の符号化ピクチャを過去のフレームの参照画像データを用いた順方向予測により復号させ、第2の符号化ピクチャを、過去と未来の両方の参照画像データ用いた両方向予測により復号させる命令と、
 画像データ蓄積制御部140に対して、前記復号された画像データをフレームメモリ45に格納させる命令と、
 参照画像データ取得部120に対して、前記フレームメモリ45から前記復号のために参照画像データを読み出させる命令を有し、
 ここで前記参照画像データ取得部120に対して、前記第3の符号化ピクチャが復号される場合、他の符号化ピクチャが復号される場合のビット数よりも少ないビット数の画素データを読み出して前記動き補償画像データ生成部に入力させる命令を有する、コンピュータ読み取り可能な情報記録媒体。
(11) An information recording medium readable by a computer, and instructions stored in the information recording medium are
The motion compensated image data generating unit 101 decodes the first encoded picture by intra prediction using the reference image data in the frame, and converts the second encoded picture into the reference image data of the past frame. An instruction to decode by the forward prediction used, and to decode the second encoded picture by bidirectional prediction using both past and future reference image data;
A command for the image data storage control unit 140 to store the decoded image data in the frame memory 45;
A command for causing the reference image data acquisition unit 120 to read reference image data for the decoding from the frame memory 45;
Here, when the third encoded picture is decoded, the reference image data acquisition unit 120 reads out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded. A computer-readable information recording medium having instructions to be input to the motion compensation image data generation unit.
(12)前記画像データ蓄積制御部140に対して、前記フレームメモリ45に対して、画素データを、上位側の第1のビット数と下位側の第2のビット数に分けて格納させる命令を有する(11)記載のコンピュータ読み取り可能な情報記録媒体。 (12) A command for the image data accumulation control unit 140 to store the pixel data in the frame memory 45 by dividing the pixel data into the upper first bit number and the lower second bit number. The computer-readable information recording medium according to (11).
(13)前記参照画像データ取得部120はバンド幅測定部123を有し、このバンド幅測定部に対して、単位時間に処理すべき画素データのビット数が第1の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替えさせる命令を有する、(11)記載のコンピュータ読み取り可能な情報記録媒体。 (13) The reference image data acquisition unit 120 includes a bandwidth measurement unit 123. The reference image data acquisition unit 120 indicates that the number of bits of pixel data to be processed per unit time exceeds the first threshold. The computer-readable information recording medium according to (11), further comprising an instruction to switch the reference image data acquisition unit and the motion compensation image data generation unit to a higher-order bit image data processing mode when measured.
(14)前記参照画像データ取得部120はバンド幅測定部123を有し、このバンド幅測定部に対して、先行するフレームが復元処理される場合に、単位時間に処理すべき画素データのビット数が所定の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替えさせる命令を有する、(11)記載のコンピュータ読み取り可能な情報記録媒体。 (14) The reference image data acquisition unit 120 includes a bandwidth measurement unit 123, and when the preceding frame is subjected to restoration processing, the bit of pixel data to be processed in a unit time. (11) The computer according to (11), further comprising: an instruction to switch the reference image data acquisition unit and the motion compensation image data generation unit to an upper bit image data processing mode when it is measured that the number exceeds a predetermined threshold. A readable information recording medium.
(15)前記参照画像データ取得部120はバンド幅測定部123を有し、このバンド幅測定部に対して、1フレームを復元するのに利用される複数の動き予測ベクトルのうち、小数点を含む動き予測ベクトルが複数存在した場合に、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替えさせる命令を有する、(11)記載のコンピュータ読み取り可能な情報記録媒体。 (15) The reference image data acquisition unit 120 includes a bandwidth measurement unit 123. The reference image data acquisition unit 120 includes a decimal point among a plurality of motion prediction vectors used to restore one frame with respect to the bandwidth measurement unit. The computer-readable information according to (11), further comprising an instruction to switch the reference image data acquisition unit and the motion compensation image data generation unit to an upper bit image data processing mode when a plurality of motion prediction vectors exist. recoding media.
(16)複数のデータプロセッサにより構成され、前記複数のデータプロセッサが、
 第1の符号化ピクチャを、フレーム内の参照画像データを用いたイントラ予測により復号させ、第2の符号化ピクチャを過去のフレームの参照画像データを用いた順方向予測により復号させ、第2の符号化ピクチャを、過去と未来の両方の参照画像データ用いた両方向予測により復号させる動き補償画像データ成生部101を実現するプロセッサと、
 前記復号された画像データをフレームメモリ45に格納させる画像データ蓄積制御部140を実現するプロセッサと、
 前記フレームメモリ45から前記復号のために参照画像データを読み出させる参照画像データ取得部120を実現するプロセッサを有し、
 ここで前記参照画像データ取得部120に対して、前記第3の符号化ピクチャが復号される場合、他の符号化ピクチャが復号される場合のビット数よりも少ないビット数の画素データを読み出して前記動き補償画像データ生成部に入力させるプロセッサを有する装置及び又は方法。
(16) It is composed of a plurality of data processors, and the plurality of data processors are
The first encoded picture is decoded by intra prediction using the reference image data in the frame, the second encoded picture is decoded by forward prediction using the reference image data of the past frame, and the second A processor that realizes a motion compensated image data generation unit 101 that decodes an encoded picture by bidirectional prediction using both past and future reference image data;
A processor for realizing the image data accumulation control unit 140 for storing the decoded image data in the frame memory 45;
A processor that realizes a reference image data acquisition unit 120 that reads reference image data for decoding from the frame memory 45;
Here, when the third encoded picture is decoded, the reference image data acquisition unit 120 reads out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded. An apparatus and / or method having a processor for inputting to the motion compensation image data generation unit.
(17)前記画像データ蓄積制御部140を実現するプロセッサが、前記フレームメモリ45に画素データを格納する場合、上位側の第1のビット数と下位側の第2のビット数に分けて格納させる(16)記載の装置及び又は方法。 (17) When the processor realizing the image data accumulation control unit 140 stores the pixel data in the frame memory 45, the pixel data is stored separately in the upper first bit number and the lower second bit number. (16) The apparatus and / or method according to the above.
(18)前記参照画像データ取得部120はバンド幅測定部123を実現するプロセッサを有し、このバンド幅測定部に対して、単位時間に処理すべき画素データのビット数が第1の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替えさせる、(16)記載の装置及び又は方法。 (18) The reference image data acquisition unit 120 includes a processor that implements the bandwidth measurement unit 123, and the number of bits of pixel data to be processed per unit time has a first threshold value with respect to the bandwidth measurement unit. The apparatus and / or method according to (16), wherein, when exceeding is measured, the reference image data acquisition unit and the motion compensation image data generation unit are switched to an upper bit image data processing mode.
(19)前記参照画像データ取得部120はバンド幅測定部123を実現するプロセッサを有し、このバンド幅測定部に対して、先行するフレームが復元処理される場合に、単位時間に処理すべき画素データのビット数が所定の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替えさせる命令を有する、(16)記載の装置及び又は方法。 (19) The reference image data acquisition unit 120 includes a processor that implements the bandwidth measurement unit 123. When the preceding frame is restored, the reference image data acquisition unit 120 should process the unit of time. An instruction to switch the reference image data acquisition unit and the motion compensation image data generation unit to the upper bit image data processing mode when it is measured that the number of bits of the pixel data exceeds a predetermined threshold value (16 ) Described apparatus and / or method.
(20)前記参照画像データ取得部120はバンド幅測定部123を実現するプロセッサを有し、このバンド幅測定部に対して、1フレームを復元するのに利用される複数の動き予測ベクトルのうち、小数点を含む動き予測ベクトルが複数存在した場合に、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替えさせる命令を有する、(16)記載の装置及び又は方法。 (20) The reference image data acquisition unit 120 includes a processor that implements a bandwidth measurement unit 123. Among the plurality of motion prediction vectors used to restore one frame for the bandwidth measurement unit. The apparatus according to (16), further comprising: an instruction to switch the reference image data acquisition unit and the motion compensation image data generation unit to an upper bit image data processing mode when a plurality of motion prediction vectors including a decimal point exist. And / or method.
 さらに上記(1)乃至(20)で述べた概念は、テレビジョン受信機、携帯端末、パーソナルコンピュータ、プレーヤなどの装置に適用できることは勿論である。携帯端末などにおいて、節電のために省電力化を行う場合にも上記の概念は利用可能である。 Furthermore, it is needless to say that the concepts described in the above (1) to (20) can be applied to devices such as a television receiver, a portable terminal, a personal computer, and a player. The above concept can also be used when power saving is performed for power saving in a portable terminal or the like.
 12・・・加算器、13・・・変換及び量子化部、14・・・逆量子化及び逆変換部、15・・・加算器、16・・・イントラ予測部、17・・・選択部、21・・・デブロッキングフィルタ、22・・・フレームメモリ、23・・・動き検出部、24・・・動き補償予測部、31・・・エントロピー復号化部、32・・・逆量子化及び逆変換部、33・・・加算器、40・・・デブロッキングフィルタ、41・・・イントラ予測部、45・・・フレームメモリ、46・・・動き補償予測部、500・・・画像データ処理部、101・・・補償画像データ生成部、120・・・参照画像データ取得部、140・・・カレント復元画像データ蓄積制御部、121・・・参照画像データバッファ、122・・・参照画像データエリア選択制御部、130・・・参照画像ベクトル生成部、123・・・バンド幅測定部、140・・・カレント復元画像データ蓄積制御部。 DESCRIPTION OF SYMBOLS 12 ... Adder, 13 ... Transformation and quantization part, 14 ... Inverse quantization and inverse transformation part, 15 ... Adder, 16 ... Intra prediction part, 17 ... Selection part , 21 ... Deblocking filter, 22 ... Frame memory, 23 ... Motion detection unit, 24 ... Motion compensation prediction unit, 31 ... Entropy decoding unit, 32 ... Inverse quantization and Inverse transform unit, 33 ... adder, 40 ... deblocking filter, 41 ... intra prediction unit, 45 ... frame memory, 46 ... motion compensation prediction unit, 500 ... image data processing , 101... Compensation image data generation unit, 120... Reference image data acquisition unit, 140... Current restoration image data accumulation control unit, 121... Reference image data buffer, 122. Area selection control unit 130 ... reference image vector generation unit, 123 ... bandwidth measuring section, 140 ... current restored image data storage control unit.

Claims (10)

  1.  第1の符号化ピクチャを、フレーム内の参照画像データを用いたイントラ予測により復号し、第2の符号化ピクチャを過去のフレームの参照画像データを用いた順方向予測により復号し、第3の符号化ピクチャを、過去と未来の両方の参照画像データ用いた両方向予測により復号する、動き補償画像データ成生部と、
     前記復号された画像データをフレームメモリに格納する画像データ蓄積制御部と、
     前記フレームメモリから前記復号のために参照画像データを読み出し、前記動き補償画像データ生成部に入力する参照画像データ取得部と、を備え、
     前記参照画像データ取得部は、
     前記第3の符号化ピクチャが復号される場合、他の符号化ピクチャが復号される場合のビット数よりも少ないビット数の画素データを読み出して前記動き補償画像データ生成部に入力する、画像処理装置。
    The first encoded picture is decoded by intra prediction using the reference image data in the frame, the second encoded picture is decoded by forward prediction using the reference image data of the past frame, and the third A motion compensated image data generation unit that decodes an encoded picture by bidirectional prediction using both past and future reference image data;
    An image data accumulation control unit for storing the decoded image data in a frame memory;
    A reference image data acquisition unit that reads reference image data for the decoding from the frame memory and inputs the reference image data to the motion compensation image data generation unit,
    The reference image data acquisition unit
    Image processing in which when the third encoded picture is decoded, pixel data having a smaller number of bits than the number of bits when another encoded picture is decoded is read and input to the motion compensation image data generation unit apparatus.
  2.  前記画像データ蓄積制御部は、前記フレームメモリに対して、
     画素データを、上位側の第1のビット数と下位側の第2のビット数に分けて格納する請求項1記載の画像処理装置。
    The image data accumulation control unit, for the frame memory,
    The image processing apparatus according to claim 1, wherein the pixel data is stored by being divided into an upper first bit number and a lower second bit number.
  3.  前記参照画像データ取得部はバンド幅測定部有し、このバンド幅測定部は、単位時間に処理すべき画素データのビット数が第1の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、請求項1記載の画像処理装置。 The reference image data acquisition unit has a bandwidth measurement unit, and when the bandwidth measurement unit measures that the number of bits of pixel data to be processed per unit time exceeds a first threshold, the reference image data The image processing apparatus according to claim 1, wherein the acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
  4.  前記参照画像データ取得部はバンド幅測定部有し、このバンド幅測定部は、先行するフレームが復元処理される場合に、単位時間に処理すべき画素データのビット数が所定の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、請求項1記載の画像処理装置。 The reference image data acquisition unit has a bandwidth measurement unit, and the bandwidth measurement unit has a number of bits of pixel data to be processed per unit time exceeding a predetermined threshold when a preceding frame is restored. The image processing apparatus according to claim 1, wherein when the measurement is measured, the reference image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
  5.  前記参照画像データ取得部はバンド幅測定部を有し、このバンド幅測定部は、1フレームを復元するのに利用される複数の動き予測ベクトルのうち、小数点を含む動き予測ベクトルが複数存在した場合に、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、請求項1記載の画像処理装置。 The reference image data acquisition unit includes a bandwidth measurement unit, and the bandwidth measurement unit includes a plurality of motion prediction vectors including a decimal point among a plurality of motion prediction vectors used to restore one frame. The image processing apparatus according to claim 1, wherein the reference image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
  6.  動き補償画像データ成生部が、第1の符号化ピクチャを、フレーム内の参照画像データを用いたイントラ予測により復号し、第2の符号化ピクチャを過去のフレームの参照画像データを用いた順方向予測により復号し、第3の符号化ピクチャを、過去と未来の両方の参照画像データ用いた両方向予測により復号し、
     画像データ蓄積制御部が前記復号された画像データをフレームメモリに格納し、
     参照画像データ取得部が前記フレームメモリから前記復号のために参照画像データを読み出し、前記動き補償画像データ生成部に入力する画像処理方法において、
     前記参照画像データ取得部が前記第3の符号化ピクチャが復号される場合、他の符号化ピクチャが復号される場合のビット数よりも少ないビット数の画素データを読み出して前記動き補償画像データ生成部に入力する、
     画像処理方法。
    The motion compensated image data generation unit decodes the first encoded picture by intra prediction using the reference image data in the frame, and the second encoded picture in the order using the reference image data of the past frame. Decoding by direction prediction, decoding the third encoded picture by bidirectional prediction using both past and future reference image data,
    An image data accumulation control unit stores the decoded image data in a frame memory,
    In an image processing method in which a reference image data acquisition unit reads reference image data for the decoding from the frame memory and inputs the reference image data to the motion compensation image data generation unit,
    When the reference image data acquisition unit decodes the third encoded picture, the motion compensation image data generation is performed by reading out pixel data having a bit number smaller than the number of bits when another encoded picture is decoded. Enter in the department,
    Image processing method.
  7.  前記画像データ蓄積制御部が前記フレームメモリに対して、画素データを、上位側の第1のビット数と下位側の第2のビット数に分けて格納する請求項6記載の画像処理方法。 The image processing method according to claim 6, wherein the image data accumulation control unit stores the pixel data in the frame memory by dividing the pixel data into a first bit number on the upper side and a second bit number on the lower side.
  8.  前記参照画像データ取得部のバンド幅測定部が、単位時間に処理すべき画素データのビット数が第1の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、請求項6記載の画像処理方法。 When the bandwidth measurement unit of the reference image data acquisition unit measures that the number of bits of pixel data to be processed per unit time has exceeded a first threshold, the reference image data acquisition unit and the motion compensation image data The image processing method according to claim 6, wherein the generation unit is switched to a higher-order bit image data processing mode.
  9.  前記参照画像データ取得部のバンド幅測定部が、1フレームを復元するのに利用される複数の動き予測ベクトルのうち、小数点を含む動き予測ベクトルが複数存在した場合に、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、請求項6記載の画像処理方法。 When there are a plurality of motion prediction vectors including a decimal point among a plurality of motion prediction vectors used by the bandwidth measurement unit of the reference image data acquisition unit to restore one frame, the reference image data acquisition unit The image processing method according to claim 6, wherein the motion compensation image data generation unit is switched to an upper bit image data processing mode.
  10.  前記参照画像データ取得部のバンド幅測定部が、先行するフレームが復元処理される場合に、単位時間に処理すべき画素データのビット数が所定の閾値を越えたことを測定した場合、前記参照画像データ取得部及び前記動き補償画像データ成生部を上位側ビット画像データ処理モードに切り替える、請求項6記載の画像処理方法。 When the bandwidth measurement unit of the reference image data acquisition unit measures that the number of bits of pixel data to be processed per unit time exceeds a predetermined threshold when the preceding frame is restored, the reference The image processing method according to claim 6, wherein the image data acquisition unit and the motion compensation image data generation unit are switched to a higher-order bit image data processing mode.
PCT/JP2013/066856 2013-06-19 2013-06-19 Image processing device and image processing method WO2014203351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066856 WO2014203351A1 (en) 2013-06-19 2013-06-19 Image processing device and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066856 WO2014203351A1 (en) 2013-06-19 2013-06-19 Image processing device and image processing method

Publications (1)

Publication Number Publication Date
WO2014203351A1 true WO2014203351A1 (en) 2014-12-24

Family

ID=52104115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066856 WO2014203351A1 (en) 2013-06-19 2013-06-19 Image processing device and image processing method

Country Status (1)

Country Link
WO (1) WO2014203351A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122624A (en) * 1997-10-16 1999-04-30 Matsushita Electric Ind Co Ltd Method and system for reducing video decoder processing amount
JP2000175200A (en) * 1998-12-04 2000-06-23 Victor Co Of Japan Ltd Highly efficient encodng device/decoding device
JP2001045491A (en) * 1999-08-03 2001-02-16 Hitachi Ltd Decoding.display device for coded image
JP2007306152A (en) * 2006-05-09 2007-11-22 Toshiba Corp Image decoding device and image decoding method
JP2008022475A (en) * 2006-07-14 2008-01-31 Sony Corp Reproduction device, reproduction method, and program
JP2009171180A (en) * 2008-01-16 2009-07-30 Panasonic Corp Image decoding apparatus and image decoding method
JP2010087984A (en) * 2008-10-01 2010-04-15 Ntt Docomo Inc Video encoder, video decoder, video coding method, video decoding method, video coding program, video decoding program, and video coding/decoding system
WO2012001833A1 (en) * 2010-07-02 2012-01-05 株式会社 東芝 Moving image encoding apparatus, moving image decoding apparatus and method
JP2012054750A (en) * 2010-09-01 2012-03-15 Mitsubishi Electric Corp Motion vector detecting device and motion vector detecting method
JP2012227608A (en) * 2011-04-15 2012-11-15 Toshiba Corp Image encoder and image decoder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122624A (en) * 1997-10-16 1999-04-30 Matsushita Electric Ind Co Ltd Method and system for reducing video decoder processing amount
JP2000175200A (en) * 1998-12-04 2000-06-23 Victor Co Of Japan Ltd Highly efficient encodng device/decoding device
JP2001045491A (en) * 1999-08-03 2001-02-16 Hitachi Ltd Decoding.display device for coded image
JP2007306152A (en) * 2006-05-09 2007-11-22 Toshiba Corp Image decoding device and image decoding method
JP2008022475A (en) * 2006-07-14 2008-01-31 Sony Corp Reproduction device, reproduction method, and program
JP2009171180A (en) * 2008-01-16 2009-07-30 Panasonic Corp Image decoding apparatus and image decoding method
JP2010087984A (en) * 2008-10-01 2010-04-15 Ntt Docomo Inc Video encoder, video decoder, video coding method, video decoding method, video coding program, video decoding program, and video coding/decoding system
WO2012001833A1 (en) * 2010-07-02 2012-01-05 株式会社 東芝 Moving image encoding apparatus, moving image decoding apparatus and method
JP2012054750A (en) * 2010-09-01 2012-03-15 Mitsubishi Electric Corp Motion vector detecting device and motion vector detecting method
JP2012227608A (en) * 2011-04-15 2012-11-15 Toshiba Corp Image encoder and image decoder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VADIM SEREGIN ET AL.: "Bandwidth reduction for range extension", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG 11 13TH MEETING, 24 April 2013 (2013-04-24), INCHEON, KR *
VADIM SEREGIN ET AL.: "Non-SCE3: Bandwidth reduction for combined inter mode", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT- VC) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29 /WG 11 13TH MEETING, 19 April 2013 (2013-04-19), INCHEON, KR *

Similar Documents

Publication Publication Date Title
US8630347B2 (en) Video decoding apparatus and video decoding method
US9930361B2 (en) Apparatus for dynamically adjusting video decoding complexity, and associated method
US9509992B2 (en) Video image compression/decompression device
EP1879388A1 (en) Video information recording device, video information recording method, video information recording program, and recording medium containing the video information recording program
US11051026B2 (en) Method and system of frame re-ordering for video coding
US9386310B2 (en) Image reproducing method, image reproducing device, image reproducing program, imaging system, and reproducing system
JP5396711B2 (en) Moving picture decoding apparatus, moving picture decoding method, and program
JP2012085001A5 (en)
WO2007148619A1 (en) Dynamic image decoding device, decoded image recording device, and their method and program
WO2013031071A1 (en) Moving image decoding apparatus, moving image decoding method, and integrated circuit
US8311123B2 (en) TV signal processing circuit
US9363523B2 (en) Method and apparatus for multi-core video decoder
US8537890B2 (en) Video decoder with adaptive outputs
WO2011108146A1 (en) Image coding device, image coding/decoding system, image coding method, and image display method
WO2014203351A1 (en) Image processing device and image processing method
JP2009218965A (en) Image processor, imaging device mounted with the same and image reproduction device
US20120183071A1 (en) Video decoder with adaptive outputs
US10063873B2 (en) Method for adaptively performing video decoding, and associated adaptive complexity video decoder and adaptive audio/video playback system
US20120027078A1 (en) Information processing apparatus and information processing method
US10484714B2 (en) Codec for multi-camera compression
JP4894793B2 (en) Decoding method, decoder and decoding apparatus
JP5061355B2 (en) Image encoding method, apparatus and program, and image processing apparatus
KR100933331B1 (en) Video decoding device
JP4676474B2 (en) Image coding method
JP2007208311A (en) Moving image encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP