WO2014203334A1 - Driving assistance device - Google Patents

Driving assistance device Download PDF

Info

Publication number
WO2014203334A1
WO2014203334A1 PCT/JP2013/066726 JP2013066726W WO2014203334A1 WO 2014203334 A1 WO2014203334 A1 WO 2014203334A1 JP 2013066726 W JP2013066726 W JP 2013066726W WO 2014203334 A1 WO2014203334 A1 WO 2014203334A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
sensor
control
obstacle
sensors
Prior art date
Application number
PCT/JP2013/066726
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 尾山
有一 久保田
宏亘 石嶋
絵里子 山崎
久志 里中
英彦 三好
慶介 秦
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to PCT/JP2013/066726 priority Critical patent/WO2014203334A1/en
Publication of WO2014203334A1 publication Critical patent/WO2014203334A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals

Definitions

  • the present invention relates to a driving support device that automatically controls a vehicle in response to detecting an approach between a vehicle and an obstacle.
  • Patent Document 1 describes an example of a driving support device that supports parking and delivery.
  • the driving support device appropriately teaches the driver the operation direction of the steering wheel and the direction in which the vehicle travels.
  • the driving support device described in Patent Document 1 has a function of warning the driver in response to detecting the approach between the vehicle and the obstacle.
  • the driver is warned using a speaker or a buzzer.
  • the detection area of the sensor is limited, it is necessary to provide a plurality of sensors on the periphery of the vehicle in order to monitor all around the vehicle. However, if the above determination processing is performed on signals from all sensors, the control load increases.
  • vehicle control that is automatically performed in response to detecting the approach between the vehicle and an obstacle includes steering of steered wheels that are steered in conjunction with the operation of the steering wheel. Examples include steering angle control that adjusts the direction and the steering angle, and vehicle speed control that controls the vehicle speed.
  • An object of the present invention is to provide a driving support device capable of appropriately performing vehicle control in response to detecting an approach between a vehicle and an obstacle while reducing a control load.
  • the driving support device for solving the above-described problem performs vehicle control in response to detecting the approach between the vehicle and the obstacle.
  • This driving support device has been acquired by a course information acquisition unit that acquires information on the traveling direction of the vehicle and information on the turning direction of the steered wheels of the vehicle as information on the course of the vehicle, and acquired by the traveling path information acquisition unit.
  • a plurality of sensors that output signals according to the distance from the vehicle to the obstacle are disabled as sensors to be enabled
  • a sorting unit that sorts the sensor to be used. Then, the driving support device performs the vehicle control based on a signal from a sensor selected as a sensor to be validated.
  • the course of the vehicle can be predicted based on information related to the traveling direction of the vehicle and information related to the turning direction of the steered wheels. If the course of the vehicle can be predicted, a sensor that does not need to be validated can be determined based on the predicted path of the vehicle.
  • the vehicle moves backward while the steered wheel is steered leftward, the vehicle does not approach an obstacle existing on the left front side of the vehicle. Therefore, since the sensor that detects an obstacle on the left front of the vehicle cannot detect the approach between the vehicle and the obstacle, the sensor may be invalidated.
  • the vehicle moves backward with the steered wheels steered to the left, the vehicle approaches an obstacle that exists in the right front of the vehicle, or the vehicle approaches an obstacle that exists in the rear of the vehicle.
  • the proximity of the vehicle and the obstacle can be detected by the sensor that detects the obstacle on the right front side of the vehicle and the sensor that detects the obstacle on the rear side of the vehicle. Therefore, it is preferable that the sensor that detects an obstacle on the right front side of the vehicle and the sensor that detects an obstacle on the rear side of the vehicle are sensors that should be effective.
  • the plurality of sensors that output signals according to the distance from the vehicle to the obstacle are sensors that should be enabled and disabled based on information on the traveling direction of the vehicle and information on the turning direction of the steered wheels.
  • the sensor is selected.
  • vehicle control is implemented based on the signal from the sensor selected as a sensor which should be validated in this way. Therefore, vehicle control can be appropriately performed in response to the vehicle approaching the obstacle.
  • the vehicle control is not performed based on a signal from a sensor selected as a sensor to be invalidated. Therefore, the control load of the driving assistance device can be reduced.
  • the vehicle control can be appropriately performed in response to detecting the approach between the vehicle and the obstacle while reducing the control load.
  • the vehicle control includes, for example, brake control that automatically activates the vehicle brake device in response to detecting the approach between the vehicle and the obstacle.
  • the driving support device that performs such brake control is calculated by a distance calculation unit that calculates a distance from the vehicle to the obstacle based on a signal from a sensor selected as a sensor to be enabled, and the distance calculation unit. It is preferable to include a brake control unit that performs brake control that automatically activates the brake device of the vehicle when the distance is less than the reference distance.
  • the distance from the vehicle to the obstacle is calculated based on the signal from the sensor selected as the sensor to be validated, and it is determined whether or not the distance is less than the reference distance.
  • the brake control is performed. Therefore, it is possible to appropriately perform the brake control in response to the vehicle approaching the obstacle.
  • the above determination is not made based on a signal from a sensor selected as a sensor to be invalidated. Therefore, the control load of the driving assistance device can be reduced. Therefore, the brake control can be appropriately performed in response to detecting the approach between the vehicle and the obstacle while reducing the control load.
  • the selection unit invalidates at least a sensor that detects an obstacle on the left front side of the vehicle when the vehicle moves backward while the steered wheel is steered leftward. It is preferable to select a sensor to be used. When the vehicle moves backward while the steered wheel is steered leftward, the vehicle does not approach an obstacle existing in the left front of the vehicle. According to the above configuration, when the vehicle moves backward while the steered wheels are steered leftward, at least a sensor that detects an obstacle on the left front side of the vehicle is selected as a sensor to be invalidated. Therefore, the control load can be reduced by not performing the determination based on the signal from the sensor.
  • the selection unit detects at least an obstacle on the right front side of the vehicle. It is preferable to select as a sensor to be invalidated.
  • the vehicle moves backward while the steered wheel is steered rightward, the vehicle does not approach an obstacle existing in the right front of the vehicle.
  • at least a sensor that detects an obstacle on the right front side of the vehicle is selected as a sensor to be invalidated. Therefore, the control load can be reduced by not performing the determination based on the signal from the sensor.
  • the course information acquisition unit may acquire a signal from the shift position sensor as information related to the traveling direction of the vehicle. In this case, it is possible to determine whether the vehicle moves forward or backward based on a signal from the shift position sensor.
  • the course information acquisition unit may acquire a signal from the wheel speed sensor as information related to the traveling direction of the vehicle. As described above, by using the signal from the wheel speed sensor, it is possible to acquire information related to the traveling direction of the vehicle when the vehicle is traveling.
  • the turning direction of the steered wheels corresponds to the operation direction of the steering wheel.
  • the operation direction of the steering wheel can be detected based on a signal from the steering sensor. Therefore, the course information acquisition unit may acquire a signal from the steering sensor as information related to the turning direction of the steered wheels of the vehicle. In this case, the turning direction of the steered wheels can be acquired based on the signal from the steering sensor.
  • the driving support device includes a target position acquisition unit that acquires information on a target vehicle position, and a route calculation unit that calculates a route to the target vehicle position, and the driving support device It may be configured to assist driving.
  • the course information acquisition unit may acquire information on the traveling direction of the vehicle and information on the turning direction of the steered wheels of the vehicle based on the calculated route.
  • the route is calculated and driving of the vehicle is supported according to the route, the vehicle travels along the route. Therefore, the course of the vehicle during the execution of the assist control can be predicted based on the above-described route.
  • a plurality of sensors can be sorted into sensors to be validated and sensors to be invalidated.
  • the driving support device may include a vehicle speed control unit that controls the vehicle speed, and may be configured to control the vehicle speed so as to support the driving of the vehicle.
  • the above determination can be made based on a signal from a sensor selected as a sensor to be enabled.
  • the brake control can be performed. In addition to this brake control, it is possible to implement control for reducing the vehicle speed.
  • the driving support device may include a steering control unit that controls the steering of the steered wheels, and may be configured to control the steering of the steered wheels so as to support the driving of the vehicle.
  • a steering control unit that controls the steering of the steered wheels, and may be configured to control the steering of the steered wheels so as to support the driving of the vehicle.
  • the above determination can be made based on a signal from a sensor selected as a sensor to be enabled.
  • the brake control can be performed.
  • (A) is an effect
  • (b) is an effect
  • (A) is an operation diagram showing a situation when the steering direction of the front wheels is changed while the host vehicle is performing parallel parking in the left rear parking space, and (b) is an operation of the steering wheel at that time.
  • (A) is an action figure which shows a mode when the own vehicle starts parallel parking to the parking space of the right rear
  • (b) is an action figure which shows the operation direction of the steering wheel at that time.
  • (A) is an operation diagram showing a situation when the steering direction of the front wheels is changed when the host vehicle is performing parallel parking in the right rear parking space, and (b) is an operation of the steering wheel at that time.
  • (A) is an effect
  • (b) is an effect
  • (A) is an effect
  • (b) is an effect
  • (A) is an effect
  • (b) is an effect
  • (A) is an effect
  • (b) is an effect
  • FIG. 1 illustrates an example of a vehicle including a control device 10 that functions as a driving support device of the present embodiment.
  • the vehicle includes an engine 21 that is a drive source of the vehicle, and an automatic transmission 22 that receives engine torque output from the engine 21. Then, the drive torque output from the automatic transmission 22 is transmitted to the front wheels 23F that are drive wheels.
  • the vehicle is provided with a steering device 24 that steers the front wheels 23F that also function as steered wheels.
  • the steering device 24 includes a motor 241 that assists the driver in operating the steering wheel 25.
  • the steering device 24 can steer the front wheels 23F only by driving the motor 241 regardless of whether or not the steering wheel 25 is operated by the driver.
  • the steering wheel 25 is also rotated in accordance with the steering of the front wheel 23F.
  • the vehicle is provided with a brake device 26 that applies a braking force to the front wheels 23F and the rear wheels 23R when the brake pedal is operated by the driver.
  • the brake device 26 can also apply braking force to the wheels 23F and 23R regardless of whether or not the driver operates the brake pedal.
  • the vehicle is provided with a display panel 27 for displaying information related to driving.
  • the display panel 27 can accept various setting operations from a vehicle occupant. Information regarding the setting operation received by the display panel 27 is input to the control device 10.
  • the control device 10 is electrically connected to various sensors for detecting information related to the vehicle operation by the driver and various sensors for detecting the behavior of the vehicle. That is, the control device 10 is electrically connected to a shift position sensor 101 that detects the operation position of the shift lever 31 operated by the driver, and a steering sensor 102 that detects the steering angle of the steering wheel 25. The control device 10 is electrically connected to a wheel speed sensor 103 that detects wheel speeds (rotational speeds) of the wheels 23F and 23R, and a yaw rate sensor 104 that detects yaw generated in the vehicle. ing.
  • the control device 10 detects an obstacle existing around the vehicle, and when the distance D1 from the vehicle to the obstacle is less than the reference distance KD1, the control device 10 decelerates the vehicle by operating the brake device 26. Carry out collision avoidance brake control to stop the vehicle. In addition, the control device 10 calculates a route R1 to the parking space P1 to assist the vehicle in entering the parking space P1, or calculates a route R1 that causes the vehicle to leave the parking space P1 to release the vehicle. Carry out parking assistance control to assist. In order to implement such collision avoidance brake control and parking assist control, the vehicle is provided with various sensors for detecting obstacles existing around the vehicle.
  • the vehicle is provided with a plurality of clearance sonar sensors 111-118 and a plurality of ultrasonic sensors 121-124.
  • the clearance sonar sensors 111 to 118 detect the presence of obstacles in the set detection areas X1 to X6, and output signals corresponding to the distance D1 from the vehicle to the obstacles. It is designed to output. That is, two clearance sonar sensors 111 and 112 are provided at the front center of the vehicle, and the detection area X1 of the clearance sonar sensors 111 and 112 is set in front of the vehicle. Further, a clearance sonar sensor 113 is provided at the left front portion of the vehicle, and a detection region X2 of the clearance sonar sensor 113 is set to the left front of the vehicle.
  • a clearance sonar sensor 114 is provided at the right front portion of the vehicle, and a detection region X3 of the clearance sonar sensor 114 is set to the right front of the vehicle. Further, two clearance sonar sensors 115 and 116 are provided in the center of the rear part of the vehicle, and the detection area X4 of the clearance sonar sensors 115 and 116 is set to the rear of the vehicle. Further, a clearance sonar sensor 117 is provided at the left rear portion of the vehicle, and a detection area X5 of the clearance sonar sensor 117 is set to the left rear of the vehicle, and a clearance sonar sensor is provided at the right rear portion of the vehicle. A sensor 118 is provided, and a detection region X6 of the clearance sonar sensor 118 is set to the right rear of the vehicle.
  • the ultrasonic sensors 121 to 124 detect the presence of the obstacles and output a signal corresponding to the distance from the vehicle to the obstacles. It is like that. That is, the ultrasonic sensor 121 is provided at the left front portion of the vehicle, and the ultrasonic sensor 122 is provided at the left rear portion of the vehicle. Further, an ultrasonic sensor 123 is provided at the right front portion of the vehicle, and an ultrasonic sensor 124 is provided at the right rear portion of the vehicle.
  • the detection area Y1 of the ultrasonic sensors 121 and 122 is set on the left side of the vehicle, and the detection area Y2 of the ultrasonic sensors 123 and 124 is set on the right side of the vehicle.
  • the detection areas Y1, Y2 of the ultrasonic sensors 121-124 are set below the detection areas X1-X6 of the clearance sonar sensors 111-118. Therefore, the ultrasonic sensors 121 to 124 can detect curbs on the road surface and wheel stops that cannot be detected by the clearance sonar sensors 111 to 118.
  • FIG. 3 is a functional block diagram of the control device 10.
  • the control device 10 includes, as function units, a parking support unit 51, a route information acquisition unit 52, a selection unit 53, a distance calculation unit 54, a brake control unit 55, a vehicle speed control unit 56, and a transmission control unit. 57 and a turning control unit 58.
  • the parking support unit 51 implements parking support control that supports parking and delivery of vehicles.
  • the parking support unit 51 includes a target position acquisition unit 511, a support method determination unit 512, and a route calculation unit 513.
  • the target position acquisition unit 511 acquires information related to the parking space P1 of the vehicle. For example, when assisting parking of the vehicle, the target position acquisition unit 511 performs parking based on signals output from the ultrasonic sensors 121 to 124 and the clearance sonar sensors 111 to 118 when the vehicle is moving slowly. The space P1 is detected, and information regarding the parking space P1 is acquired. Then, the target position acquisition unit 511 outputs information about the acquired parking space P1 to the support method determination unit 512 and the route calculation unit 513.
  • the support method determination unit 512 determines whether to support parallel parking of the vehicle in the parking space P1, whether to support parallel parking of the vehicle in the parking space P1, or whether to support the vehicle exit from the parking space P1. . For example, the support method determination unit 512 determines the support method for the vehicle based on the information regarding the parking space P1 input from the target position acquisition unit 511 and the information based on the setting operation of the display panel 27 by the vehicle occupant. To do. Then, the support method determination unit 512 outputs information regarding the determined support method to the route calculation unit 513.
  • the route calculation unit 513 calculates a route R1 corresponding to the support method based on the information about the parking space P1 input from the target position acquisition unit 511 and the information about the support method input from the support method determination unit 512. That is, the route calculation unit 513 calculates the route R1 from the position of the vehicle to the parking space P1 before the start of the parking support control when supporting parallel parking or parallel parking of the vehicle. Moreover, the route calculation part 513 calculates route R1 for making a vehicle go out from parking space P1, when assisting the vehicle's leaving.
  • the parking support unit 51 outputs a command to the brake control unit 55, the vehicle speed control unit 56, the transmission control unit 57, and the steering control unit 58 based on the route R1 calculated by the route calculation unit 513.
  • the course information acquisition unit 52 acquires information about the traveling direction of the vehicle and information about the turning direction of the front wheels 23F as information about the course of the vehicle.
  • the route information acquisition unit 52 includes information related to the route calculated by the route calculation unit 513, a signal output from the shift position sensor 101, a signal output from the wheel speed sensor, and a signal output from the steering sensor 102. And a signal output from the yaw rate sensor 104 are input.
  • the course information acquisition unit 52 detects the operation position of the shift lever 31 based on a signal output from the shift position sensor 101, and detects whether the vehicle moves forward or backward. Further, the course information acquisition unit 52 calculates the vehicle speed based on a signal output from the wheel speed sensor.
  • the course information acquisition unit 52 can detect that the vehicle is moving forward when the operation position of the shift lever 31 is the forward movement position and the vehicle speed is greater than 0 (zero). On the other hand, the course information acquisition unit 52 can detect that the vehicle is retreating when the operation position of the shift lever 31 is the retreat position and the vehicle speed is greater than 0 (zero).
  • the course information acquisition unit 52 detects the operation direction of the steering wheel 25 based on the signal output from the steering sensor 102 and the information output from the yaw rate sensor 104, and the front wheel 23F is switched based on the operation direction. Detect the rudder direction. For example, the course information acquisition unit 52 can detect that the turning direction of the front wheel 23F is the right direction when the steering wheel 25 is rotated in the clockwise direction from the straight traveling position as viewed from the driver. On the other hand, the course information acquisition unit 52 can detect that the turning direction of the front wheel 23F is the left direction when the steering wheel 25 is rotated counterclockwise from the straight traveling position as viewed from the driver. .
  • the course information acquisition unit 52 outputs information regarding the detected traveling direction of the vehicle and information regarding the turning direction of the front wheels 23F to the selection unit 53.
  • the selection unit 53 invalidates the sensors for the clearance sonars 111 to 118 as valid sensors. Select the sensor to be used. Then, the sorting unit 53 outputs information related to the sorting result to the distance calculating unit 54.
  • the proximity sonar sensors 115 to 118 provided at the rear center, the left rear portion, and the right rear portion of the vehicle are used to detect an approach between an obstacle existing behind the vehicle and the vehicle. can do. Therefore, the clearance sonar sensors 115 to 118 are selected as sensors to be effective. Further, when the steering wheel 25 is operated in the left direction, that is, in the counterclockwise direction when viewed from the driver when the vehicle is moving backward, the front wheel 23F that is a steered wheel is steered in the left direction. In this case, since the front part of the vehicle turns in the right direction, the vehicle leaves the obstacle existing in the left front of the vehicle.
  • the clearance sonar sensors 111 to 113 provided at the front center and the left front portion of the vehicle cannot detect the approach between the vehicle and the obstacle. Therefore, when the vehicle moves backward with the front wheel 23F being steered leftward, the clearance sonar sensors 111 to 113 are selected as sensors to be invalidated.
  • the clearance sonar sensors 111 to 113 are selected as sensors to be invalidated.
  • the front part of the vehicle turns to the right, so that the vehicle may approach an obstacle present on the right front side of the vehicle. is there.
  • the approach between the obstacle and the vehicle can be detected by a clearance sonar sensor 114 provided at the right front portion of the vehicle. Therefore, when the vehicle moves backward in a state where the steering direction of the front wheel 23F is the left direction, the clearance sonar sensor 114 is selected as a sensor to be enabled.
  • the distance calculation unit 54 calculates a distance D1 from the vehicle to the obstacle based on signals output from the clearance sonar sensors 111 to 118, and determines whether or not the distance D1 is less than the reference distance KD1. Process. If the distance calculation unit 54 determines that the distance D1 from the vehicle to the obstacle is less than the reference distance KD1 by the determination process, the distance calculation unit 54 outputs the fact to the brake control unit 55.
  • the distance calculation unit 54 performs a determination process based on a signal output from a clearance sonar sensor selected as a sensor to be validated among the clearance sonar sensors 111 to 118, but should be invalidated.
  • the determination processing based on the signal output from the clearance sonar sensor selected as the sensor is not performed. That is, the distance calculation unit 54 not only calculates the distance from the vehicle to the obstacle based on the signal output from the clearance sonar sensor selected as the sensor to be enabled, but also selects the sensor to be disabled. The distance from the vehicle to the obstacle is calculated based on the signal output from the clearance sonar sensor. However, the distance calculation unit 54 does not perform the determination process using the distance calculated based on the signal output from the clearance sonar sensor.
  • the distance calculation unit 54 when the vehicle moves backward in a state where the steering direction of the front wheel 23F is the left direction, the distance calculation unit 54 is provided in the right front portion, the rear center, the left rear portion, and the right rear portion of the vehicle. A determination process based on signals output from the clearance sonar sensors 114 to 118 is performed. On the other hand, the distance calculation unit 54 calculates the distance based on signals output from the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the vehicle, but the determination using the same distance is performed. Do not process.
  • the brake control unit 55 controls the brake device 26. That is, the brake controller 55 operates the brake device 26 to stop the vehicle when the information that the distance D1 from the vehicle to the obstacle is less than the reference distance KD1 is input from the distance calculator 54.
  • Implement brake control This collision avoidance brake control is an example of vehicle control that is performed in response to detecting the approach between the vehicle and an obstacle.
  • the brake control part 55 operates the brake device 26 based on the information input from the parking assistance part 51, when parking assistance control is implemented. For example, when the parking control is being performed, the brake control unit 55 performs stop control for stopping the vehicle by operating the brake device 26 when the vehicle reaches the parking space P1 or when the vehicle is left. carry out.
  • the vehicle speed control unit 56 controls the engine 21. That is, when the accelerator pedal is operated by the driver, the vehicle speed control unit 56 controls the operation of the engine 21 so that the engine torque corresponding to the operation amount is output. Further, when performing the parking support control, the vehicle speed control unit 56 makes the vehicle speed based on the signal output from the wheel speed sensor 103 based on the information input from the parking support unit 51 the specified vehicle speed. In addition, the vehicle speed control for controlling the operation of the engine 21 is performed.
  • the transmission control unit 57 controls the automatic transmission 22. That is, the transmission control unit 57 detects the operation position of the shift lever 31 based on the signal output from the shift position sensor 101 and detects the vehicle speed based on the signal output from the wheel speed sensor 103. And the transmission control part 57 sets the gear position of the automatic transmission 22 to the gear position according to the operation position of the shift lever 31 and the vehicle speed. In addition, the transmission control unit 57 sets the gear position of the automatic transmission 22 to the forward gear position when the vehicle is requested to advance when the parking assist control is being performed, and requests the vehicle to reverse. When this is done, the shift stage of the automatic transmission 22 is set to the reverse shift stage.
  • the steering control unit 58 controls the steering device 24. That is, when the driver is operating the steering wheel 25, the steering control unit 58 controls the motor 241 of the steering device 24 to assist the driver in operating the steering wheel 25. Further, the steering control unit 58 performs automatic steering control that automatically controls the steering direction of the front wheels 23 ⁇ / b> F by driving the motor 241 based on the information input from the parking support unit 51. For example, the steering control unit 58 drives the motor 241 to steer the front wheel 23F to the right when the front wheel 23F is steered to the right, and the front wheel 23F is steered to the left. When required, the motor 241 is driven to steer the front wheel 23F in the left direction.
  • the target position acquisition unit 511 of the control device 10 When carrying out the parking support control, the target position acquisition unit 511 of the control device 10 performs a measurement process for grasping the parking space P1 of the host vehicle C1. In this measurement process, the target position acquisition unit 511 gives an instruction to the driver to stop forward at the preparation position Pa indicated by a solid line in FIG. 4 by display on the display panel 27 or voice from a vehicle-mounted speaker.
  • the preparation position Pa is a side of the parking space P1 between the other vehicle C2 and the other vehicle C3 and is a position where the host vehicle C1 can pass the side of the parking space P1 by moving forward. Then, when the host vehicle C1 stops at the preparation position Pa, the target position acquisition unit 511 gives an instruction to the driver to slowly advance the host vehicle C1.
  • the target position acquisition unit 511 When the host vehicle C1 starts to slowly move forward from the preparation position Pa, the target position acquisition unit 511, based on the signals output from the clearance sonar sensors 111 to 118 and the signals output from the ultrasonic sensors 121 to 124, Start measuring the parking space P1.
  • the target position acquisition unit 511 performs measurement processing until the vehicle C1 that moves forward passes the side of the parking space P1. And the target position acquisition part 511 will output the information to stop to the brake control part 55, if the own vehicle C1 passes the side of the parking space P1, and grasps the parking space P1, and complete
  • the brake control unit 55 automatically stops the vehicle by the operation of the brake device 26.
  • the route calculation unit 513 calculates a route R1 for parallel parking.
  • the transmission control unit 57 controls the forward or backward movement of the vehicle so that the host vehicle C1 moves along the route R1
  • the steering control unit 58 controls the front wheel 23F.
  • the steering is controlled, and the vehicle speed control unit 56 controls the operation of the engine 21, that is, the vehicle speed.
  • the brake control unit 55 controls the brake device 26, so that the host vehicle C1 is stopped in the parking space P1.
  • the route calculation unit 513 calculates a route R1 for parallel parking.
  • the transmission control unit 57, the steering control unit 58, and the vehicle speed control unit 56 control the behavior of the vehicle so that the host vehicle C1 moves along the route R1.
  • the brake control unit 55 controls the brake device 26, so that the host vehicle C1 is stopped in the parking space P1.
  • the route calculation unit 513 calculates a route R ⁇ b> 1 for leaving the host vehicle C ⁇ b> 1 from the parking space P ⁇ b> 1. .
  • the transmission control unit 57, the steering control unit 58, and the vehicle speed control unit 56 control the behavior of the vehicle so that the host vehicle C1 moves along the route R1.
  • the brake control part 55 controls the brake device 26, and the own vehicle C1 is stopped.
  • This processing routine is a processing routine that is executed after it is selected whether the current parking assistance is parallel parking, parallel parking, or shipping.
  • the control device 10 calculates a route R1 based on whether the support method set by the vehicle occupant is parallel parking, parallel parking, or leaving (step S101). Subsequently, the control device 10 starts automatic control of turning of the front wheels 23F (step S102), and starts automatic control of the traveling direction and the vehicle speed of the vehicle (step S103). And the control apparatus 10 transfers the process to following step S104. That is, the parking assist control performed by the control device 10 of the present embodiment includes automatic control of turning of the front wheels 23F, automatic control of the traveling direction of the vehicle, and automatic control of the vehicle speed.
  • step S104 the control device 10 determines whether or not the vehicle has reached the target vehicle position. If the vehicle has not yet reached the target vehicle position (step S104: NO), the control device 10 repeats the determination in step S104 until the vehicle reaches the target vehicle position. On the other hand, when the vehicle has reached the target vehicle position (step S104: YES), the control device 10 proceeds to the next step S105.
  • step S104 it is determined whether or not the vehicle has reached the parking space P1. If the vehicle has not yet reached the parking space P1 (step S104: NO), the determination in step S104 is repeated until the vehicle reaches the parking space P1. On the other hand, when the vehicle reaches the parking space P1 (step S104: YES), the process proceeds to the next step S105.
  • step S104 it is determined whether or not the vehicle has been delivered. If the vehicle has not yet been issued (step S104: NO), the determination in step S104 is repeated until the vehicle is completed. On the other hand, when the vehicle has been delivered (step S104: YES), the process proceeds to the next step S105.
  • step S105 the control device 10 performs stop control for stopping the vehicle at the target vehicle position. Then, the control apparatus 10 complete
  • the control device 10 determines whether or not the parking assistance control is being performed (step S201).
  • parking assistance control is not implemented (step S201: NO)
  • parking assistance control is performed (step S201: YES)
  • the control device 10 determines whether or not the vehicle is moving forward (step S202).
  • step S202 When the vehicle is moving forward, it can be determined that the vehicle does not approach an obstacle existing behind the vehicle while there is a possibility that the vehicle approaches an obstacle existing ahead of the vehicle. . Therefore, when the vehicle is moving forward (step S202: YES), the control device 10 is a sensor that should invalidate the clearance sonar sensors 115 to 118 provided at the rear center, the left rear portion, and the right rear portion of the vehicle. (Step S203). In this case, the clearance sonar sensors 111 to 114 provided at the front center, the left front portion, and the right front portion of the vehicle are sensors that should be effective. Thereafter, the control device 10 once ends this processing routine.
  • step S204 determines whether or not the turning direction of the front wheel 23F is the left direction.
  • the steering angle of the steering wheel 25 when the front wheel 23F is steered to the left is a positive value
  • the steering angle when the front wheel 23F is steered to the right is a negative value.
  • step S204 when the steering angle of the steering wheel 25 is greater than or equal to the left turning determination angle, it is determined that the turning direction of the front wheel 23F is the left direction, and when the steering angle is less than the left turning determination angle. It can be determined that the steered direction is not the left direction.
  • step S204 When the turning direction of the front wheel 23F is the left direction, there is a possibility that the front part of the vehicle may approach an obstacle existing in the right front of the vehicle even when the vehicle is moving backward. Further, when the determination in step S204 is performed, the vehicle is moving backward, so that the vehicle may approach an obstacle existing behind the vehicle. Therefore, when the steering direction of the front wheel 23F is the left direction (step S204: YES), the control device 10 invalidates the clearance sonar sensors 111 to 113 provided at the front center and the left front portion of the vehicle. A power sensor is assumed (step S205). In this case, the clearance sonar sensors 114 to 118 provided at the right front part, the rear center, the left rear part, and the right rear part of the vehicle are sensors to be effective. Thereafter, the control device 10 once ends this processing routine.
  • step S204 determines whether or not the turning direction of the front wheel 23F is the right direction (step S206).
  • the steering angle of the steering wheel 25 when the front wheel 23F is steered to the left is a positive value
  • the steering angle when the front wheel 23F is steered to the right is a negative value.
  • step S206 when the steering angle of the steering wheel 25 is equal to or smaller than the right turning determination angle, it is determined that the turning direction of the front wheel 23F is the right direction, and when the steering angle is larger than the right turning determination angle. It can be determined that the turning direction is not the right direction.
  • step S206 When the turning direction of the front wheel 23F is the right direction, there is a possibility that the front part of the vehicle approaches an obstacle existing in the left front of the vehicle even when the vehicle is moving backward. Further, when the determination in step S206 is performed, the vehicle is moving backward, so that the vehicle may approach an obstacle existing behind the vehicle. Therefore, when the turning direction of the front wheel 23F is the right direction (step S206: YES), the control device 10 disables the clearance sonar sensors 111, 112, and 114 provided at the front center and the right front portion of the vehicle. A sensor to be set is assumed (step S207). In this case, the clearance sonar sensors 113 and 115 to 118 provided at the left front part, the rear center, the left rear part, and the right rear part of the vehicle are sensors that should be effective. Thereafter, the control device 10 once ends this processing routine.
  • step S206: NO when the turning direction of the front wheel 23F is not the right direction (step S206: NO), it can be determined that the vehicle is moving back almost straight. In this case, the vehicle does not approach an obstacle existing in front of the vehicle. Therefore, when the turning direction is not the right direction (step S206: NO), the control device 10 invalidates the clearance sonar sensors 111 to 114 provided at the front center, the left front portion, and the right front portion of the vehicle.
  • the power sensor is assumed (step S208). In this case, the clearance sonar sensors 115 to 118 provided at the rear center, the left rear part, and the right rear part of the vehicle are sensors to be effective. Thereafter, the control device 10 once ends this processing routine.
  • This processing routine is executed for each control cycle during the execution of the parking assistance control.
  • the control device 10 calculates the number KN of sensors selected as sensors to be valid among the clearance sonar sensors 111 to 118 (step S301). Then, the control device 10 increments the count number N by “1” (step S302).
  • the control device 10 performs a determination process based on a signal output from any one of the clearance sonar sensors to be validated (step S303). And the control apparatus 10 determines whether there exists a possibility of a collision with a vehicle and an obstruction based on the result of a determination process (step S304). For example, when the distance D1 from the vehicle to the obstacle is less than the reference distance KD1, it can be determined that there is a possibility of a collision between the vehicle and the obstacle. If there is a possibility of a collision between the vehicle and the obstacle (step S304: YES), the control device 10 performs a collision avoidance brake control to stop the vehicle (step S305), and the process will be described later. The process proceeds to S307.
  • step S304 when there is no possibility of collision between the vehicle and the obstacle (step S304: NO), the control device 10 proceeds to the next step S306.
  • the distance D1 from the vehicle to the obstacle is equal to or more than the reference distance KD1, and a case where the obstacle cannot be detected by the clearance sonar sensor. .
  • step S306 the control device 10 determines whether or not the count number N updated in step S302 is equal to or greater than the number KN of sensors to be validated calculated in step S301.
  • the control device 10 proceeds to step S302 described above.
  • the control device 10 increments the count number N by “1” (step S302), and performs the determination process (step S303) again.
  • a determination process is performed based on a signal output from a clearance sonar sensor to be enabled, which is different from the clearance sonar sensor to be enabled used in the previous determination processes.
  • step S306 the control device 10 shifts the process to the next step S307.
  • step S307 the control device 10 resets the count number N to “0 (zero)”. Thereafter, the control device 10 once ends this processing routine.
  • the parking space P1 is a space between two other vehicles C2 and C3.
  • the host vehicle C1 moves backward along the route R1.
  • the rear part of the host vehicle C1 reaches the rear side of the rear part of the other vehicle C2 located in front of the parking space P1, as shown in FIG. It is automatically operated in the counterclockwise direction.
  • the front wheel 23F is steered leftward (step S204: YES).
  • the front portion of the host vehicle C1 moves away from the other vehicle C2 existing in the left front of the host vehicle C1 as indicated by an arrow.
  • the front part of the host vehicle C1 may approach the obstacle.
  • the clearance sonar sensors 111 to 113 provided at the front center and the left front portion of the host vehicle C1 are disabled, and the right front portion, the rear center, the left rear portion, and the right rear portion of the host vehicle C1 are invalidated.
  • the provided clearance sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed.
  • step S206 YES
  • the front portion of the host vehicle C1 approaches another vehicle C2 that exists on the left front side of the host vehicle C1.
  • the host vehicle C1 leaves the obstacle.
  • the clearance sonar sensors 111, 112, 114 provided at the front center and the right front part of the host vehicle C1 are invalidated, and provided at the left front part, the rear center, the left rear part, and the right rear part of the host vehicle C1.
  • the clearance sonar sensors 113 and 115 to 118 are valid (step S207). That is, even during parking assistance, if the steering direction of the front wheel 23F is changed, a clearance sonar sensor selected as a sensor to be enabled and a clearance sonar selected as a sensor to be disabled Sensor changes.
  • the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete
  • the host vehicle C1 moves backward along the route R1.
  • the steering wheel 25 is viewed from the driver as shown in FIG. Automatically operated in the clockwise direction.
  • the front wheel 23F is steered rightward (step S206: YES).
  • the front portion of the host vehicle C1 moves away from the other vehicle C2 existing in the right front of the host vehicle C1 as indicated by an arrow.
  • the host vehicle C1 may approach the obstacle.
  • the clearance sonar sensors 111, 112, 114 provided at the front center and the right front of the host vehicle C1 are invalidated, and the left front, rear center, left rear, and right of the host vehicle C1 are disabled.
  • the clearance sonar sensors 113 and 115 to 118 provided at the rear are validated (step S207). Therefore, when the vehicle moves backward with the front wheel 23F being steered to the right, the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed.
  • step S204 YES
  • the front portion of the host vehicle C1 approaches another vehicle C2 that exists in front of the host vehicle C1 as indicated by an arrow. At this time, even if there is an obstacle on the left front side of the host vehicle C1, the host vehicle C1 leaves the obstacle.
  • the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the host vehicle C1 are disabled, and the clearances provided at the right front part, the rear center, the left rear part, and the right rear part of the host vehicle C1.
  • the sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete
  • the parking space P1 in this case is between two other vehicles C2 and C3 parked in parallel.
  • the host vehicle C1 When the route R1 indicated by the solid line in FIG. 15 (a) is calculated, the host vehicle C1 starts to retreat from the position P2 indicated by the broken line in FIG. 15 (a). Then, as shown in FIG. 15B, the steering wheel 25 is automatically operated in the counterclockwise direction when viewed from the driver. Then, as shown in FIG. 15A, the front wheel 23F is steered leftward (step S204: YES). As a result, the host vehicle C1 turns in the clockwise direction in the figure while moving backward as indicated by an arrow. At this time, even if there is an obstacle on the left side of the host vehicle C1, the front portion of the host vehicle C1 is separated from the obstacle. On the other hand, when there is an obstacle on the right side of the host vehicle C1, the front part of the host vehicle may approach the obstacle.
  • the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the host vehicle C1 are disabled, and the clearances provided at the right front part, the rear center, the left rear part, and the right rear part of the host vehicle C1.
  • the sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete
  • the host vehicle C1 When the route R1 indicated by the solid line in FIG. 16A is calculated, the host vehicle C1 starts to retreat from the position P2 indicated by the broken line in FIG. Then, as shown in FIG. 16B, the steering wheel 25 is automatically operated in the clockwise direction when viewed from the driver. Then, as shown to Fig.16 (a), the front wheel 23F is steered rightward (step S206: YES). As a result, the host vehicle C1 turns counterclockwise in the figure while moving backward as indicated by an arrow. At this time, even if there is an obstacle on the right side of the host vehicle C1, the front portion of the host vehicle C1 leaves the obstacle. On the other hand, when there is an obstacle on the left side of the host vehicle C1, the front part of the host vehicle C1 may approach the obstacle.
  • the clearance sonar sensors 111, 112, 114 provided at the front center and the right front part of the host vehicle C1 are invalidated, and provided at the left front part, the rear center, the left rear part, and the right rear part of the host vehicle C1.
  • the clearance sonar sensors 113 and 115 to 118 are valid (step S207). Therefore, when the vehicle moves backward with the front wheel 23F being steered to the right, the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete
  • the host vehicle C1 When the route R1 indicated by the solid line in FIG. 17A is calculated, the host vehicle C1 starts to retreat from the parking space P1. At this time, as shown in FIG. 17B, the steering wheel 25 is automatically operated counterclockwise as viewed from the driver. Then, as shown in FIG. 17A, the front wheel 23F is steered leftward (step S204: YES). As a result, the host vehicle C1 turns in the clockwise direction in the figure while moving backward as indicated by an arrow. At this time, if there is an obstacle on the right side of the host vehicle C1, the front portion of the host vehicle C1 may approach the obstacle. On the other hand, even if there is an obstacle on the left side of the host vehicle C1, the front part of the host vehicle C1 is separated from the obstacle.
  • the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the host vehicle C1 are disabled, and the clearances provided at the right front part, the rear center, the left rear part, and the right rear part of the host vehicle C1.
  • the sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed. Thereafter, when the entire vehicle C1 exits the parking space P1 and the delivery is completed, the vehicle C1 is stopped. And parking assistance control is complete
  • the host vehicle C1 When the route R1 indicated by the solid line in FIG. 18A is calculated, the host vehicle C1 starts to retreat from the parking space P1. At this time, as shown in FIG. 18B, the steering wheel 25 is automatically operated in the clockwise direction as viewed from the driver. Then, as shown to Fig.18 (a), the front wheel 23F is steered rightward (step S206: YES). As a result, the host vehicle C1 turns counterclockwise in the figure while moving backward as indicated by an arrow. At this time, if there is an obstacle on the left side of the host vehicle C1, the front part of the host vehicle C1 may approach the obstacle. On the other hand, even if there is an obstacle on the right side of the own vehicle C1, the front part of the own vehicle is separated from the obstacle.
  • the clearance sonar sensors 111, 112, 114 provided at the front center and the right front part of the host vehicle C1 are invalidated, and provided at the left front part, the rear center, the left rear part, and the right rear part of the host vehicle C1.
  • the clearance sonar sensors 113 and 115 to 118 are valid (step S207). Therefore, when the vehicle moves backward with the front wheel 23F being steered to the right, the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed. Thereafter, when the entire vehicle C1 exits the parking space P1 and the delivery is completed, the vehicle C1 is stopped. And parking assistance control is complete
  • Sensors for clearance sonar 111 to 118 provided in the vehicle are sensors that should be enabled and disabled based on the information related to the traveling direction of the vehicle and the information related to the turning direction of the front wheel 23F that is the turning wheel. Sorted by sensors that should be used. Then, based on the signal output from the clearance sonar sensor selected as the sensor to be invalidated, the determination processing is performed based on the signal output from the clearance sonar sensor selected as the sensor to be enabled. The determination process was not performed. In this case, when the approach between the vehicle and the obstacle is detected by the clearance sonar sensor selected as the sensor to be enabled, the collision avoidance brake control can be appropriately performed.
  • the control load of the control device 10 can be reduced. Therefore, the collision avoidance brake control can be appropriately performed by detecting the approach between the vehicle and the obstacle while reducing the control load of the control device 10 that performs the parking assist control.
  • the clearance sonar sensors 114 to 118 provided at the right front portion, the rear center, the left rear portion, and the right rear portion of the vehicle should be effective. As screened. Then, by performing determination processing based on the signals output from the clearance sonar sensors 114 to 118, it is possible to detect the approach between the vehicle and the obstacle and appropriately perform the collision avoidance brake control.
  • the clearance sonar sensors 113, 115 to 118 provided at the left front portion, rear center, left rear portion, and right rear portion of the vehicle are enabled. Selected as a power sensor. Then, by performing determination processing based on the signals output from these clearance sonar sensors 113 and 115 to 118, it is possible to detect the approach between the vehicle and the obstacle and appropriately perform the collision avoidance brake control. it can.
  • the traveling direction of the vehicle is determined using a shift position sensor 101 that detects the operation position of the shift lever 31 and a wheel speed sensor 103 that detects the vehicle speed. Then, by selecting the sensor that should be enabled and the sensor that should be disabled based on the actual traveling direction of the vehicle in this way, the selection accuracy can be increased.
  • the turning direction of the front wheel 23F is determined using the steering sensor 102 that detects the operation direction of the steering wheel 25 that is drivingly connected to the front wheel 23F, and the yaw rate sensor 104 that detects the yaw of the vehicle. Then, by selecting the sensor that should be enabled and the sensor that should be disabled based on the actual steering direction of the front wheel 23F in this way, the selection accuracy can be increased.
  • the steering of the front wheels 23F, the traveling direction of the vehicle, and the vehicle speed are automatically controlled. Therefore, during the execution of the parking assist control, the control load of the control device 10 that performs the steering direction control, the traveling direction control, and the vehicle speed control tends to be high. Therefore, in the present embodiment, when such parking support control is performed, the determination process based on the signal output from the clearance sonar sensor selected as the sensor to be invalidated is not performed. Therefore, it is possible to suppress an increase in the control load of the control device 10 that performs the parking assist control.
  • the clearance sonar sensor With the clearance sonar sensor, it is possible that the obstacle is erroneously detected even though no obstacle exists in the detection area. If an obstacle is detected in error, the distance D1 from the vehicle to the obstacle is erroneously determined to be less than the reference distance KD1, and the collision avoidance brake control may be erroneously performed. obtain. In order to suppress such unnecessary execution of the collision avoidance brake control, it is preferable to reduce the number of clearance sonar sensors used in the determination process. In this regard, in this embodiment, determination processing based on a signal output from a clearance sonar sensor selected as a sensor to be invalidated is not performed. Thus, by reducing the number of clearance sonar sensors used in the determination process, unnecessary execution of the collision avoidance brake control can be suppressed.
  • the number of sensors to be sorted as sensors to be invalidated by the sorting unit 53 It is possible to appropriately change whether to select the sensor to be invalidated.
  • the clearance sonar sensor 113 provided at the left front portion of the vehicle cannot detect the approach between the vehicle and the obstacle. Therefore, at least the clearance sonar sensor 113 may be selected as a sensor to be invalidated. Therefore, instead of the configuration in which the clearance sonar sensors 111, 112, 113 are selected as sensors to be invalidated as in the above embodiment, the configuration in which only the clearance sonar sensor 113 is selected as a sensor to be invalidated is adopted. You can also In order to reduce the control load of the control device 10, it is preferable to disable as many sensors as possible.
  • the clearance sonar sensors 115 and 116 may be selected as sensors to be invalidated. Further, when the vehicle moves forward, the clearance sonar sensors 111 and 112 may be selected as sensors to be invalidated.
  • the support mode in the parking support control is not limited to the example shown in the above embodiment, and can be changed.
  • the stop control may not be included as long as it includes a process of requesting the driver to operate the brake pedal immediately before the vehicle reaches the target vehicle position.
  • the driver can stop the vehicle at the target vehicle position by operating the brake pedal in response to a request from the control device 10.
  • the automatic control of the vehicle speed may not be included.
  • the vehicle when the driver operates the accelerator pedal in response to a request from the control device 10, the vehicle can be moved along the route R1.
  • the process includes notifying the driver whether the vehicle is to be advanced or retracted, automatic control of the traveling direction of the vehicle may not be included.
  • the vehicle can be moved along the route R ⁇ b> 1 by the driver appropriately operating the shift lever in response to a request from the control device 10.
  • Implementation of collision avoidance brake control is not limited to during parking assistance control.
  • the collision avoidance brake control may be performed when driving support control other than parking support control is being performed.
  • Examples of other driving support control include control for automatically driving the vehicle regardless of steering operation, accelerator operation, and brake operation by the driver.
  • the destination set by the navigation device or the like corresponds to the “target vehicle position”.
  • the clearance sonar sensors 111 to 118 are invalidated as the sensors to be validated based on the information on the traveling direction of the vehicle and the information on the turning direction of the front wheel 23F. It is preferable to sort into power sensors.
  • the engine torque output from the engine 21 is reduced in addition to the collision avoidance brake control for operating the brake device 26.
  • the control for reducing the driving torque transmitted to the wheel may be performed.
  • the driving torque in addition to the braking force the braking distance of the vehicle can be shortened.
  • the steering direction of the front wheel 23F is adjusted, and the obstacle You may make it control the behavior of a vehicle so that it may avoid.
  • the turning of the front wheel 23F is preferably controlled based on the yaw of the vehicle detected by the yaw rate sensor 104.
  • collision avoidance brake control should be performed even when driving support control is not performed, that is, even when the driver is operating the vehicle as usual, when an approach between the vehicle and an obstacle is detected. It may be.
  • the clearance sonar sensors 111 to 118 can be classified into sensors to be validated and sensors to be invalidated based on information on the traveling direction of the vehicle and information on the steering direction of the front wheels 23F. preferable. And it can suppress the increase in the control load of the control apparatus 10 by not performing the determination process based on the signal output from the sensor for clearance sonar selected as the sensor which should be invalidated. Further, by performing a determination process based on a signal output from a clearance sonar sensor selected as a sensor to be enabled, collision avoidance brake control can be appropriately performed when the vehicle approaches an obstacle. .
  • the vehicle and the obstacle can avoid collisions. Therefore, when the travel route of the vehicle is estimated based on the vehicle speed and the steered angle of the steered wheels, and it can be determined that the collision between the vehicle and the obstacle can be avoided based on the estimated route, the distance D1 is less than the reference distance KD1. Even if it is, it is not necessary to implement the collision avoidance brake control.
  • the vehicle when the driver is operating the brake, even if the vehicle is approaching an obstacle, the vehicle may be able to be stopped before the vehicle collides with the obstacle. Therefore, even if the distance D1 is the reference distance, collision avoidance is performed when it is estimated from the deceleration of the vehicle that the vehicle can be stopped before the vehicle collides with the obstacle by the brake operation by the driver. Brake control may not be performed.
  • the vehicle control performed in response to detecting the approach between the vehicle and the obstacle may be a control other than the collision avoidance brake control.
  • control other than the collision avoidance brake control there are steered control for controlling the steered wheel turning direction and steered angle, and vehicle speed control for controlling the vehicle speed.
  • vehicle speed control for controlling the vehicle speed.
  • the steering control and the vehicle speed control are performed.
  • the course of the vehicle may be adjusted so as to avoid the vehicle from obstacles by performing at least steering control.
  • the method for acquiring information related to the turning direction of the steered wheels is not limited to the method of the above embodiment.
  • the front wheel 23F is steered can be predicted based on the calculated route and the current position of the vehicle. Based on such prediction, the clearance sonar sensors 111 to 118 may be classified into sensors to be validated and sensors to be invalidated.
  • the above selection can be performed without using a signal output from the steering sensor 102 or a signal output from the yaw rate sensor 104.
  • the method for acquiring information related to the traveling direction of the vehicle is not limited to the method of the above embodiment.
  • the clearance sonar sensors 111 to 118 may be classified into sensors to be validated and sensors to be invalidated.
  • the above selection can be performed without using a signal output from the shift position sensor 101 or a signal output from the wheel speed sensor 103.
  • Some wheel speed sensors can detect not only the wheel speed, that is, the rotation speed of the wheel, but also the rotation direction of the wheel.
  • the traveling direction of the vehicle can be acquired without using a signal output from the shift position sensor 101 by using a signal output from the wheel speed sensor.
  • the sensor for detecting obstacles around the vehicle may be a sensor other than the clearance sonar sensor or the ultrasonic sensor as long as the distance from the vehicle to the obstacle can be detected.
  • a sensor including an image sensor such as a CCD (Charge-Coupled Device) can be cited.
  • the vehicle equipped with the control device 10 may be a vehicle including a drive source other than the engine such as a motor, or may be a hybrid vehicle including both the engine and the motor as drive sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

A control device (10) for a vehicle is provided with: a route information acquisition unit (52) for acquiring, as information pertaining to a route of the vehicle, information pertaining to a direction of travel of the vehicle and information pertaining to the steering direction of the front wheels of the vehicle; and a sorting unit (53) for sorting a plurality of clearance sonar sensors, that output signals corresponding to the distance from the vehicle to an obstacle, into sensors-to-be-validated and sensors-to-be-invalidated, where such sorting is performed on the basis of the information acquired by the route information acquisition unit (52). The control unit (10) then controls the vehicle on the basis of the signals from the clearance sonar signals which were sorted as sensors-to-be-validated.

Description

運転支援装置Driving assistance device
 本発明は、車両と障害物との接近を検出することに応答して自動で車両制御を行う運転支援装置に関する。 The present invention relates to a driving support device that automatically controls a vehicle in response to detecting an approach between a vehicle and an obstacle.
 特許文献1には、駐車や出庫を支援する運転支援装置の一例が記載されている。この運転支援装置は、駐車スペースが決定されると、ステアリングホイールの操作方向と車両を進行させる方向とを運転者に適宜教示するようになっている。 Patent Document 1 describes an example of a driving support device that supports parking and delivery. When the parking space is determined, the driving support device appropriately teaches the driver the operation direction of the steering wheel and the direction in which the vehicle travels.
 また、特許文献1に記載の運転支援装置は、車両と障害物との接近を検出することに応答して、運転者に警告する機能も有している。すなわち、駐車支援中に、車両の左前部、右前部、左後部及び右後部に設けられているセンサのうち、何れかのセンサからの信号に基づいて車両と障害物との接近を検出したときには、ブレーキ操作を促すためにスピーカやブザーを用いて運転者に警告する。 Further, the driving support device described in Patent Document 1 has a function of warning the driver in response to detecting the approach between the vehicle and the obstacle. In other words, during parking assistance, when an approach between the vehicle and an obstacle is detected based on a signal from any of the sensors provided at the left front, right front, left rear and right rear of the vehicle. In order to prompt the brake operation, the driver is warned using a speaker or a buzzer.
 なお、近年は、センサからの信号に基づいて車両と障害物との接近を検出したときに、自動でブレーキ装置を作動させて車両を減速させたり、停止させたりするブレーキ制御を実施する運転支援装置の開発も進められている。こうした運転支援装置は、センサからの信号に基づいて車両から障害物までの距離を算出し、算出した距離が基準距離未満であるか否かを判定する判定処理を行う。そして、この判定処理によって、算出した距離が基準距離未満であると判定されたときに上記ブレーキ制御を実施する。 In recent years, driving assistance has been implemented in which brake control is performed to automatically decelerate or stop the vehicle by operating the brake device when the approach of the vehicle and the obstacle is detected based on the signal from the sensor. Development of equipment is also underway. Such a driving support device calculates a distance from the vehicle to the obstacle based on a signal from the sensor, and performs a determination process for determining whether the calculated distance is less than a reference distance. Then, the brake control is performed when it is determined by this determination process that the calculated distance is less than the reference distance.
特開2003-246250号公報JP 2003-246250 A
 ところで、センサの検出領域には限りがあるため、車両の周囲をもれなく監視するためには車両周縁に複数のセンサを設ける必要がある。しかし、全てのセンサからの信号に対してそれぞれ上記判定処理を行うと、制御負荷が高くなってしまう。 By the way, since the detection area of the sensor is limited, it is necessary to provide a plurality of sensors on the periphery of the vehicle in order to monitor all around the vehicle. However, if the above determination processing is performed on signals from all sensors, the control load increases.
 なお、車両と障害物との接近を検出することに応答して自動で行われる車両制御としては、上記したブレーキ制御の他に、ステアリングホイールの操作に連動して転舵する転舵輪の転舵方向や転舵角を調整する転舵角制御、及び車速を制御する車速制御などが挙げられる。 In addition to the brake control described above, vehicle control that is automatically performed in response to detecting the approach between the vehicle and an obstacle includes steering of steered wheels that are steered in conjunction with the operation of the steering wheel. Examples include steering angle control that adjusts the direction and the steering angle, and vehicle speed control that controls the vehicle speed.
 本発明の目的は、制御負荷の低減を図りつつ、車両と障害物との接近を検出することに応答して車両制御を適切に実施することのできる運転支援装置を提供することにある。 An object of the present invention is to provide a driving support device capable of appropriately performing vehicle control in response to detecting an approach between a vehicle and an obstacle while reducing a control load.
 上記課題を解決するための運転支援装置は、車両と障害物との接近を検出することに応答して車両制御を実施する。この運転支援装置は、車両の進路に関する情報として車両の進行方向に関する情報と同車両の転舵輪の転舵方向に関する情報とを取得する進路情報取得部と、同進路情報取得部によって取得された、車両の進行方向に関する情報と同車両の転舵輪の転舵方向に関する情報とに基づいて、車両から障害物までの距離に応じた信号を出力する複数のセンサを、有効にすべきセンサと無効にすべきセンサとに選別する選別部と、を備える。そして、運転支援装置は、有効にすべきセンサとして選別されたセンサからの信号に基づいて上記車両制御を実施する。 The driving support device for solving the above-described problem performs vehicle control in response to detecting the approach between the vehicle and the obstacle. This driving support device has been acquired by a course information acquisition unit that acquires information on the traveling direction of the vehicle and information on the turning direction of the steered wheels of the vehicle as information on the course of the vehicle, and acquired by the traveling path information acquisition unit. Based on information on the direction of travel of the vehicle and information on the direction of turning of the steered wheels of the vehicle, a plurality of sensors that output signals according to the distance from the vehicle to the obstacle are disabled as sensors to be enabled And a sorting unit that sorts the sensor to be used. Then, the driving support device performs the vehicle control based on a signal from a sensor selected as a sensor to be validated.
 車両の進路は、車両の進行方向に関する情報と転舵輪の転舵方向に関する情報とに基づいて予測することができる。そして、車両の進路が予測できていれば、予測した車両の進路に基づいて、有効にする必要のないセンサを判別することができる。 The course of the vehicle can be predicted based on information related to the traveling direction of the vehicle and information related to the turning direction of the steered wheels. If the course of the vehicle can be predicted, a sensor that does not need to be validated can be determined based on the predicted path of the vehicle.
 例えば、転舵輪が左方向に転舵された状態で車両が後退する場合、車両の左前方に存在する障害物に、車両が接近することはない。そのため、車両の左前方の障害物を検出するセンサでは車両と障害物との接近を検出できないため、当該センサを無効にすべきセンサとしてもよい。その一方で、転舵輪が左方向に転舵された状態で車両が後退する場合、車両の右前方に存在する障害物に車両が接近したり、車両の後方に存在する障害物に車両が接近したりすることがある。すなわち、車両の右前方の障害物を検出するセンサ、及び車両の後方の障害物を検出するセンサでは車両と障害物との接近を検出できる。そのため、車両の右前方の障害物を検出するセンサ、及び車両の後方の障害物を検出するセンサを、有効にすべきセンサとすることが好ましい。 For example, when the vehicle moves backward while the steered wheel is steered leftward, the vehicle does not approach an obstacle existing on the left front side of the vehicle. Therefore, since the sensor that detects an obstacle on the left front of the vehicle cannot detect the approach between the vehicle and the obstacle, the sensor may be invalidated. On the other hand, when the vehicle moves backward with the steered wheels steered to the left, the vehicle approaches an obstacle that exists in the right front of the vehicle, or the vehicle approaches an obstacle that exists in the rear of the vehicle. Sometimes. That is, the proximity of the vehicle and the obstacle can be detected by the sensor that detects the obstacle on the right front side of the vehicle and the sensor that detects the obstacle on the rear side of the vehicle. Therefore, it is preferable that the sensor that detects an obstacle on the right front side of the vehicle and the sensor that detects an obstacle on the rear side of the vehicle are sensors that should be effective.
 上記構成では、車両から障害物までの距離に応じた信号を出力する複数のセンサは、車両の進行方向に関する情報と転舵輪の転舵方向に関する情報とに基づいて、有効にすべきセンサと無効にすべきセンサとに選別される。そして、このように有効にすべきセンサとして選別されたセンサからの信号に基づいて、車両制御が実施される。そのため、車両が障害物に接近することに応答して車両制御を適切に実施することができる。 In the above configuration, the plurality of sensors that output signals according to the distance from the vehicle to the obstacle are sensors that should be enabled and disabled based on information on the traveling direction of the vehicle and information on the turning direction of the steered wheels. The sensor is selected. And vehicle control is implemented based on the signal from the sensor selected as a sensor which should be validated in this way. Therefore, vehicle control can be appropriately performed in response to the vehicle approaching the obstacle.
 その一方で、上記車両制御は、無効にすべきセンサとして選別されたセンサからの信号に基づいて行われない。そのため、運転支援装置の制御負荷を低減させることができる。 On the other hand, the vehicle control is not performed based on a signal from a sensor selected as a sensor to be invalidated. Therefore, the control load of the driving assistance device can be reduced.
 したがって、制御負荷の低減を図りつつ、車両と障害物との接近を検出することに応答して車両制御を適切に実施することのできるようになる。 Therefore, the vehicle control can be appropriately performed in response to detecting the approach between the vehicle and the obstacle while reducing the control load.
 なお、上記車両制御としては、例えば、車両と障害物との接近を検出することに応答して自動で車両のブレーキ装置を作動させるブレーキ制御が挙げられる。こうしたブレーキ制御を実施する運転支援装置は、有効にすべきセンサとして選別されたセンサからの信号に基づいて車両から障害物までの距離を算出する距離算出部と、同距離算出部によって算出された距離が基準距離未満であるときに、自動で車両のブレーキ装置を作動させるブレーキ制御を実施するブレーキ制御部と、を備えることが好ましい。 The vehicle control includes, for example, brake control that automatically activates the vehicle brake device in response to detecting the approach between the vehicle and the obstacle. The driving support device that performs such brake control is calculated by a distance calculation unit that calculates a distance from the vehicle to the obstacle based on a signal from a sensor selected as a sensor to be enabled, and the distance calculation unit. It is preferable to include a brake control unit that performs brake control that automatically activates the brake device of the vehicle when the distance is less than the reference distance.
 上記構成によれば、有効にすべきセンサとして選別されたセンサからの信号に基づいて、車両から障害物までの距離が算出され、同距離が基準距離未満であるか否かが判定される。そして、車両から障害物までの距離が基準距離未満であるときには、ブレーキ制御が実施される。そのため、車両が障害物に接近することに応答してブレーキ制御を適切に実施することができる。その一方で、上記判定は、無効にすべきセンサとして選別されたセンサからの信号に基づいて行われない。そのため、運転支援装置の制御負荷を低減させることができる。したがって、制御負荷の低減を図りつつ、車両と障害物との接近を検出することに応答してブレーキ制御を適切に実施することのできるようになる。 According to the above configuration, the distance from the vehicle to the obstacle is calculated based on the signal from the sensor selected as the sensor to be validated, and it is determined whether or not the distance is less than the reference distance. When the distance from the vehicle to the obstacle is less than the reference distance, the brake control is performed. Therefore, it is possible to appropriately perform the brake control in response to the vehicle approaching the obstacle. On the other hand, the above determination is not made based on a signal from a sensor selected as a sensor to be invalidated. Therefore, the control load of the driving assistance device can be reduced. Therefore, the brake control can be appropriately performed in response to detecting the approach between the vehicle and the obstacle while reducing the control load.
 上記運転支援装置において、選別部は、転舵輪が左方向に転舵された状態で車両が後退するときには、複数のセンサのうち、少なくとも車両の左前方の障害物を検出するセンサを、無効にすべきセンサとして選別することが好ましい。転舵輪が左方向に転舵された状態で車両が後退する場合、車両の左前方に存在する障害物に車両が接近することはない。上記構成によれば、転舵輪が左方向に転舵された状態で車両が後退する場合、少なくとも車両の左前方の障害物を検出するセンサを無効にすべきセンサとして選別する。そのため、当該センサからの信号に基づいた上記判定を行わないようにすることで、制御負荷を低減させることができるようになる。 In the above-described driving support device, the selection unit invalidates at least a sensor that detects an obstacle on the left front side of the vehicle when the vehicle moves backward while the steered wheel is steered leftward. It is preferable to select a sensor to be used. When the vehicle moves backward while the steered wheel is steered leftward, the vehicle does not approach an obstacle existing in the left front of the vehicle. According to the above configuration, when the vehicle moves backward while the steered wheels are steered leftward, at least a sensor that detects an obstacle on the left front side of the vehicle is selected as a sensor to be invalidated. Therefore, the control load can be reduced by not performing the determination based on the signal from the sensor.
 また、上記運転支援装置において、選別部は、転舵輪が右方向に転舵された状態で車両が後退するときには、複数のセンサのうち、少なくとも車両の右前方の障害物を検出するセンサを、無効にすべきセンサとして選別することが好ましい。転舵輪が右方向に転舵された状態で車両が後退する場合、車両の右前方に存在する障害物に車両が接近することはない。上記構成によれば、転舵輪が右方向に転舵された状態で車両が後退する場合、少なくとも車両の右前方の障害物を検出するセンサを無効にすべきセンサとして選別する。そのため、当該センサからの信号に基づいた上記判定を行わないようにすることで、制御負荷を低減させることができるようになる。 Further, in the above-described driving support device, when the vehicle moves backward with the steered wheels being steered in the right direction, among the plurality of sensors, the selection unit detects at least an obstacle on the right front side of the vehicle. It is preferable to select as a sensor to be invalidated. When the vehicle moves backward while the steered wheel is steered rightward, the vehicle does not approach an obstacle existing in the right front of the vehicle. According to the above configuration, when the vehicle moves backward while the steered wheels are steered rightward, at least a sensor that detects an obstacle on the right front side of the vehicle is selected as a sensor to be invalidated. Therefore, the control load can be reduced by not performing the determination based on the signal from the sensor.
 なお、車両は、シフトレバーの操作位置が前進用の位置であるときには、自動変速機の変速段が前進用の変速段となるために前進する。一方、シフトレバーの操作位置が後退用の位置であるときには、自動変速機の変速段が後退用の変速段となるために後退する。そして、シフトレバーの操作位置は、シフトレバーセンサからの信号に基づき検出することができる。そこで、進路情報取得部は、車両の進行方向に関する情報としてシフトポジションセンサからの信号を取得するようにしてもよい。この場合、シフトポジションセンサからの信号に基づき、車両が前進するか後退するかを判断することができるようになる。 In addition, when the operation position of the shift lever is the forward movement position, the vehicle moves forward because the shift stage of the automatic transmission becomes the forward shift stage. On the other hand, when the operation position of the shift lever is the reverse position, the automatic transmission moves backward because the shift stage of the automatic transmission becomes the reverse shift stage. The operation position of the shift lever can be detected based on a signal from the shift lever sensor. Therefore, the course information acquisition unit may acquire a signal from the shift position sensor as information related to the traveling direction of the vehicle. In this case, it is possible to determine whether the vehicle moves forward or backward based on a signal from the shift position sensor.
 また、進路情報取得部は、車両の進行方向に関する情報として車輪速センサからの信号を取得するようにしてもよい。このように車輪速センサからの信号を用いることにより、車両の走行時に車両の進行方向に関する情報を取得することができるようになる。 Further, the course information acquisition unit may acquire a signal from the wheel speed sensor as information related to the traveling direction of the vehicle. As described above, by using the signal from the wheel speed sensor, it is possible to acquire information related to the traveling direction of the vehicle when the vehicle is traveling.
 また、転舵輪の転舵方向は、ステアリングホイールの操作方向と対応している。そして、ステアリングホイールの操作方向は、ステアリングセンサからの信号に基づき検出することができる。そこで、進路情報取得部は、車両の転舵輪の転舵方向に関する情報としてステアリングセンサからの信号を取得するようにしてもよい。この場合、ステアリングセンサからの信号に基づいて、転舵輪の転舵方向を取得することができるようになる。 Also, the turning direction of the steered wheels corresponds to the operation direction of the steering wheel. The operation direction of the steering wheel can be detected based on a signal from the steering sensor. Therefore, the course information acquisition unit may acquire a signal from the steering sensor as information related to the turning direction of the steered wheels of the vehicle. In this case, the turning direction of the steered wheels can be acquired based on the signal from the steering sensor.
 上記運転支援装置は、目標とする車両位置に関する情報を取得する目標位置取得部と、目標とする車両位置までの経路を算出する経路算出部と、を備え、算出された経路に応じて車両の運転を支援するように構成されてもよい。この運転支援装置では、進路情報取得部は、算出された経路に基づいて車両の進行方向に関する情報及び車両の転舵輪の転舵方向に関する情報を取得するようにしてもよい。この構成では、上記経路を算出し、同経路に応じて車両の運転を支援する場合、車両は同経路に沿って走行することとなる。そのため、支援制御の実施中における車両の進路は、上記経路に基づき予測することができる。すなわち、算出した上記経路に基づいて、複数のセンサを、有効にすべきセンサと無効にすべきセンサとに選別することができるようになる。 The driving support device includes a target position acquisition unit that acquires information on a target vehicle position, and a route calculation unit that calculates a route to the target vehicle position, and the driving support device It may be configured to assist driving. In this driving support device, the course information acquisition unit may acquire information on the traveling direction of the vehicle and information on the turning direction of the steered wheels of the vehicle based on the calculated route. In this configuration, when the route is calculated and driving of the vehicle is supported according to the route, the vehicle travels along the route. Therefore, the course of the vehicle during the execution of the assist control can be predicted based on the above-described route. In other words, based on the calculated path, a plurality of sensors can be sorted into sensors to be validated and sensors to be invalidated.
 なお、上記運転支援装置は、車速を制御する車速制御部を備え、車両の運転を支援すべく車速を制御するように構成されてもよい。この構成では、車速を制御しているときに、有効にすべきセンサとして選別したセンサからの信号に基づいて上記判定を行うことができる。そして、車両から障害物までの距離が基準距離未満であるときには、上記ブレーキ制御が実施させることができる。また、このブレーキ制御とあわせて車速を低減させる制御を実施することも可能となる。 Note that the driving support device may include a vehicle speed control unit that controls the vehicle speed, and may be configured to control the vehicle speed so as to support the driving of the vehicle. In this configuration, when the vehicle speed is controlled, the above determination can be made based on a signal from a sensor selected as a sensor to be enabled. When the distance from the vehicle to the obstacle is less than the reference distance, the brake control can be performed. In addition to this brake control, it is possible to implement control for reducing the vehicle speed.
 また、上記運転支援装置は、転舵輪の転舵を制御する転舵制御部を備え、車両の運転を支援すべく転舵輪の転舵を制御するように構成されてもよい。この構成では、転舵輪の転舵を制御しているときに、有効にすべきセンサとして選別したセンサからの信号に基づいて上記判定を行うことができる。そして、車両から障害物までの距離が基準距離未満であるときには、上記ブレーキ制御が実施させることができる。また、このブレーキ制御とあわせて障害物との接近を回避する転舵制御を実施することも可能となる。 Further, the driving support device may include a steering control unit that controls the steering of the steered wheels, and may be configured to control the steering of the steered wheels so as to support the driving of the vehicle. In this configuration, when the turning of the steered wheels is controlled, the above determination can be made based on a signal from a sensor selected as a sensor to be enabled. When the distance from the vehicle to the obstacle is less than the reference distance, the brake control can be performed. In addition to this brake control, it is also possible to implement a steering control that avoids approaching an obstacle.
運転支援装置の一実施形態である制御装置を備える車両の概略構成を示す模式図。The schematic diagram which shows schematic structure of a vehicle provided with the control apparatus which is one Embodiment of a driving assistance device. 同制御装置を備える車両において、クリアランスソナー用センサ及び超音波センサの検出領域を示す模式図。The schematic diagram which shows the detection area | region of the sensor for clearance sonars, and an ultrasonic sensor in a vehicle provided with the same control apparatus. 同制御装置の機能ブロック図。The functional block diagram of the control apparatus. 駐車スペースを計測する際の自車両の動きを示す作用図。The action figure which shows the motion of the own vehicle at the time of measuring a parking space. 駐車支援制御によって自車両が縦列駐車を行うときの経路を示す作用図。The effect | action figure which shows a path | route when the own vehicle performs parallel parking by parking assistance control. 駐車支援制御によって自車両が並列駐車を行うときの経路を示す作用図。The effect | action figure which shows a path | route when the own vehicle performs parallel parking by parking assistance control. 駐車支援制御によって自車両が駐車スペースから出庫するときの経路を示す作用図。The action figure which shows the path | route when the own vehicle leaves the parking space by parking assistance control. 駐車支援制御を実施するために同制御装置が実行する処理ルーチンを説明するフローチャート。The flowchart explaining the processing routine which the control apparatus performs in order to implement parking assistance control. 各クリアランスソナー用センサを有効にすべきセンサと無効にすべきセンサとに選別するために同制御装置が実行する処理ルーチンを説明するフローチャート。The flowchart explaining the processing routine which the same control apparatus performs in order to select each sensor for clearance sonar into the sensor which should be validated, and the sensor which should be invalidated. 衝突回避ブレーキ制御の開始タイミングを決定するために同制御装置が実行する処理ルーチンを説明するフローチャート。The flowchart explaining the processing routine which the control apparatus performs in order to determine the start timing of collision avoidance brake control. (a)は自車両が左後方の駐車スペースへの縦列駐車を開始したときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an effect | action figure which shows a mode when the own vehicle starts parallel parking to the parking space of the left rear, (b) is an effect | action figure which shows the operation direction of the steering wheel at that time. (a)は自車両が左後方の駐車スペースへの縦列駐車を行っている際に前輪の転舵方向が変更されたときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an operation diagram showing a situation when the steering direction of the front wheels is changed while the host vehicle is performing parallel parking in the left rear parking space, and (b) is an operation of the steering wheel at that time. The action figure which shows a direction. (a)は自車両が右後方の駐車スペースへの縦列駐車を開始したときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an action figure which shows a mode when the own vehicle starts parallel parking to the parking space of the right rear, (b) is an action figure which shows the operation direction of the steering wheel at that time. (a)は自車両が右後方の駐車スペースへの縦列駐車を行っている際に前輪の転舵方向が変更されたときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an operation diagram showing a situation when the steering direction of the front wheels is changed when the host vehicle is performing parallel parking in the right rear parking space, and (b) is an operation of the steering wheel at that time. The action figure which shows a direction. (a)は自車両が右後方の駐車スペースへの並列駐車を行っているときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an effect | action figure which shows a mode when the own vehicle is performing the parallel parking to the parking space of the right rear, (b) is an effect | action figure which shows the operation direction of the steering wheel at that time. (a)は自車両が左後方の駐車スペースへの並列駐車を行っているときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an effect | action figure which shows a mode when the own vehicle is performing the parallel parking to the parking space of the left rear, (b) is an effect | action figure which shows the operation direction of the steering wheel at that time. (a)は自車両が駐車スペースから左後方に出庫するときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an effect | action figure which shows a mode when the own vehicle leaves the left rear from a parking space, (b) is an effect | action figure which shows the operation direction of the steering wheel at that time. (a)は自車両が駐車スペースから右後方に出庫するときの様子を示す作用図、(b)はそのときのステアリングホイールの操作方向を示す作用図。(A) is an effect | action figure which shows a mode when the own vehicle leaves the right rear from a parking space, (b) is an effect | action figure which shows the operation direction of the steering wheel at that time.
 以下、運転支援装置を具体化した一実施形態を図1~図18に従って説明する。 Hereinafter, an embodiment embodying the driving support device will be described with reference to FIGS.
 図1には、本実施形態の運転支援装置として機能する制御装置10を備える車両の一例が図示されている。図1に示すように、車両は、車両の駆動源であるエンジン21と、エンジン21から出力されたエンジントルクが入力される自動変速機22とを備えている。そして、自動変速機22から出力された駆動トルクが駆動輪である前輪23Fに伝達される。 FIG. 1 illustrates an example of a vehicle including a control device 10 that functions as a driving support device of the present embodiment. As shown in FIG. 1, the vehicle includes an engine 21 that is a drive source of the vehicle, and an automatic transmission 22 that receives engine torque output from the engine 21. Then, the drive torque output from the automatic transmission 22 is transmitted to the front wheels 23F that are drive wheels.
 また、車両には、転舵輪としても機能する前輪23Fを転舵させるステアリング装置24が設けられている。このステアリング装置24は、運転者によるステアリングホイール25の操作を補助するモータ241を備えている。ステアリング装置24は、運転者によるステアリングホイール25の操作の有無に関係なく、モータ241の駆動のみによって前輪23Fを転舵させることもできる。なお、このようにモータ241の駆動のみによって前輪23Fが転舵される場合、前輪23Fの転舵に合わせてステアリングホイール25も回転するようになっている。 Further, the vehicle is provided with a steering device 24 that steers the front wheels 23F that also function as steered wheels. The steering device 24 includes a motor 241 that assists the driver in operating the steering wheel 25. The steering device 24 can steer the front wheels 23F only by driving the motor 241 regardless of whether or not the steering wheel 25 is operated by the driver. In addition, when the front wheel 23F is steered only by driving the motor 241 as described above, the steering wheel 25 is also rotated in accordance with the steering of the front wheel 23F.
 また、車両には、運転者によってブレーキペダルが操作されているときに、前輪23F及び後輪23Rに対して制動力を付与するブレーキ装置26が設けられている。このブレーキ装置26は、運転者によるブレーキペダルの操作の有無に関係なく、各車輪23F,23Rに制動力を付与することもできる。 Further, the vehicle is provided with a brake device 26 that applies a braking force to the front wheels 23F and the rear wheels 23R when the brake pedal is operated by the driver. The brake device 26 can also apply braking force to the wheels 23F and 23R regardless of whether or not the driver operates the brake pedal.
 また、車両には、運転に関する情報などを表示するディスプレイパネル27が設けられている。このディスプレイパネル27は、車両の乗員からの各種の設定操作を受け付けることが可能となっている。そして、ディスプレイパネル27が受け付けた設定操作に関する情報は、制御装置10に入力される。 Further, the vehicle is provided with a display panel 27 for displaying information related to driving. The display panel 27 can accept various setting operations from a vehicle occupant. Information regarding the setting operation received by the display panel 27 is input to the control device 10.
 制御装置10には、運転者による車両操作に関する情報を検出するための各種センサ、及び車両の挙動を検出するための各種センサが電気的に接続されている。すなわち、制御装置10には、運転者によって操作されるシフトレバー31の操作位置を検出するシフトポジションセンサ101、及びステアリングホイール25の操舵角を検出するステアリングセンサ102が電気的に接続されている。また、制御装置10には、車輪23F,23Rの車輪速(回転速度)を検出する車輪速センサ103、及び車両に発生しているヨー(Yaw)を検出するヨーレートセンサ104が電気的に接続されている。 The control device 10 is electrically connected to various sensors for detecting information related to the vehicle operation by the driver and various sensors for detecting the behavior of the vehicle. That is, the control device 10 is electrically connected to a shift position sensor 101 that detects the operation position of the shift lever 31 operated by the driver, and a steering sensor 102 that detects the steering angle of the steering wheel 25. The control device 10 is electrically connected to a wheel speed sensor 103 that detects wheel speeds (rotational speeds) of the wheels 23F and 23R, and a yaw rate sensor 104 that detects yaw generated in the vehicle. ing.
 なお、制御装置10は、車両の周辺に存在する障害物を検知し、車両から障害物までの距離D1が基準距離KD1未満であるときには、ブレーキ装置26を作動させることにより、車両を減速させたり、車両を停止させたりする衝突回避ブレーキ制御を実施する。また、制御装置10は、駐車スペースP1への経路R1を算出して同駐車スペースP1への車両の進入を支援したり、駐車スペースP1から車両を出庫させる経路R1を算出して車両の出庫を支援したりする駐車支援制御を実施する。こうした衝突回避ブレーキ制御及び駐車支援制御を実施するために、車両には、車両周辺に存在する障害物を検知するための各種センサが設けられている。 The control device 10 detects an obstacle existing around the vehicle, and when the distance D1 from the vehicle to the obstacle is less than the reference distance KD1, the control device 10 decelerates the vehicle by operating the brake device 26. Carry out collision avoidance brake control to stop the vehicle. In addition, the control device 10 calculates a route R1 to the parking space P1 to assist the vehicle in entering the parking space P1, or calculates a route R1 that causes the vehicle to leave the parking space P1 to release the vehicle. Carry out parking assistance control to assist. In order to implement such collision avoidance brake control and parking assist control, the vehicle is provided with various sensors for detecting obstacles existing around the vehicle.
 例えば、図2に示すように、車両には、複数のクリアランスソナー用センサ111~118と、複数の超音波センサ121~124とが設けられている。クリアランスソナー用センサ111~118は、設定されている検出領域X1~X6内に障害物が存在する場合に、同障害物の存在を検知し、車両から障害物までの距離D1に応じた信号を出力するようになっている。すなわち、車両の前部中央には2つのクリアランスソナー用センサ111,112が設けられており、クリアランスソナー用センサ111,112の検出領域X1は車両前方に設定されている。また、車両の左前部にはクリアランスソナー用センサ113が設けられており、クリアランスソナー用センサ113の検出領域X2は車両の左前方に設定されている。また、車両の右前部にはクリアランスソナー用センサ114が設けられており、クリアランスソナー用センサ114の検出領域X3は車両の右前方に設定されている。また、車両の後部中央には2つのクリアランスソナー用センサ115,116が設けられており、クリアランスソナー用センサ115,116の検出領域X4は車両後方に設定されている。また、車両の左後部にはクリアランスソナー用センサ117が設けられており、クリアランスソナー用センサ117の検出領域X5は車両の左後方に設定されている、また、車両の右後部にはクリアランスソナー用センサ118が設けられており、クリアランスソナー用センサ118の検出領域X6は車両の右後方に設定されている。 For example, as shown in FIG. 2, the vehicle is provided with a plurality of clearance sonar sensors 111-118 and a plurality of ultrasonic sensors 121-124. The clearance sonar sensors 111 to 118 detect the presence of obstacles in the set detection areas X1 to X6, and output signals corresponding to the distance D1 from the vehicle to the obstacles. It is designed to output. That is, two clearance sonar sensors 111 and 112 are provided at the front center of the vehicle, and the detection area X1 of the clearance sonar sensors 111 and 112 is set in front of the vehicle. Further, a clearance sonar sensor 113 is provided at the left front portion of the vehicle, and a detection region X2 of the clearance sonar sensor 113 is set to the left front of the vehicle. Further, a clearance sonar sensor 114 is provided at the right front portion of the vehicle, and a detection region X3 of the clearance sonar sensor 114 is set to the right front of the vehicle. Further, two clearance sonar sensors 115 and 116 are provided in the center of the rear part of the vehicle, and the detection area X4 of the clearance sonar sensors 115 and 116 is set to the rear of the vehicle. Further, a clearance sonar sensor 117 is provided at the left rear portion of the vehicle, and a detection area X5 of the clearance sonar sensor 117 is set to the left rear of the vehicle, and a clearance sonar sensor is provided at the right rear portion of the vehicle. A sensor 118 is provided, and a detection region X6 of the clearance sonar sensor 118 is set to the right rear of the vehicle.
 超音波センサ121~124は、設定されている検出領域Y1,Y2内に障害物が存在する場合に、同障害物の存在を検知し、車両から障害物までの距離に応じた信号を出力するようになっている。すなわち、車両の左前部には超音波センサ121が設けられ、車両の左後部には超音波センサ122が設けられている。また、車両の右前部には超音波センサ123が設けられ、車両の右後部には超音波センサ124が設けられている。そして、超音波センサ121,122の検出領域Y1は車両の左方に設定され、超音波センサ123,124の検出領域Y2は車両の右方に設定されている。 When there are obstacles in the set detection areas Y1 and Y2, the ultrasonic sensors 121 to 124 detect the presence of the obstacles and output a signal corresponding to the distance from the vehicle to the obstacles. It is like that. That is, the ultrasonic sensor 121 is provided at the left front portion of the vehicle, and the ultrasonic sensor 122 is provided at the left rear portion of the vehicle. Further, an ultrasonic sensor 123 is provided at the right front portion of the vehicle, and an ultrasonic sensor 124 is provided at the right rear portion of the vehicle. The detection area Y1 of the ultrasonic sensors 121 and 122 is set on the left side of the vehicle, and the detection area Y2 of the ultrasonic sensors 123 and 124 is set on the right side of the vehicle.
 なお、超音波センサ121~124の検出領域Y1,Y2は、クリアランスソナー用センサ111~118の検出領域X1~X6よりも下方に設定されている。そのため、超音波センサ121~124は、クリアランスソナー用センサ111~118では検出できない路面上の縁石や輪止めを検知することができる。 The detection areas Y1, Y2 of the ultrasonic sensors 121-124 are set below the detection areas X1-X6 of the clearance sonar sensors 111-118. Therefore, the ultrasonic sensors 121 to 124 can detect curbs on the road surface and wheel stops that cannot be detected by the clearance sonar sensors 111 to 118.
 次に、図3を参照して、制御装置10について説明する。図3には、制御装置10の機能ブロック図が図示されている。 Next, the control device 10 will be described with reference to FIG. FIG. 3 is a functional block diagram of the control device 10.
 図3に示すように、制御装置10は、機能部として、駐車支援部51、進路情報取得部52、選別部53、距離算出部54、ブレーキ制御部55、車速制御部56、変速機制御部57及び転舵制御部58を有している。 As illustrated in FIG. 3, the control device 10 includes, as function units, a parking support unit 51, a route information acquisition unit 52, a selection unit 53, a distance calculation unit 54, a brake control unit 55, a vehicle speed control unit 56, and a transmission control unit. 57 and a turning control unit 58.
 駐車支援部51は、車両の駐車や出庫を支援する駐車支援制御を実施する。駐車支援部51は、目標位置取得部511と、支援方法決定部512と、経路算出部513とを含む。目標位置取得部511は、車両の駐車スペースP1に関する情報を取得する。例えば、目標位置取得部511は、車両の駐車を支援する場合、車両がゆっくりと前進しているときに超音波センサ121~124及びクリアランスソナー用センサ111~118から出力される信号に基づいて駐車スペースP1を検知し、同駐車スペースP1に関する情報を取得する。そして、目標位置取得部511は、取得した駐車スペースP1に関する情報を、支援方法決定部512及び経路算出部513に出力する。 The parking support unit 51 implements parking support control that supports parking and delivery of vehicles. The parking support unit 51 includes a target position acquisition unit 511, a support method determination unit 512, and a route calculation unit 513. The target position acquisition unit 511 acquires information related to the parking space P1 of the vehicle. For example, when assisting parking of the vehicle, the target position acquisition unit 511 performs parking based on signals output from the ultrasonic sensors 121 to 124 and the clearance sonar sensors 111 to 118 when the vehicle is moving slowly. The space P1 is detected, and information regarding the parking space P1 is acquired. Then, the target position acquisition unit 511 outputs information about the acquired parking space P1 to the support method determination unit 512 and the route calculation unit 513.
 支援方法決定部512は、車両の駐車スペースP1への縦列駐車を支援するのか、車両の駐車スペースP1への並列駐車を支援するのか、駐車スペースP1からの車両の出庫を支援するのかを決定する。例えば、支援方法決定部512は、目標位置取得部511から入力された駐車スペースP1に関する情報と、車両の乗員によるディスプレイパネル27の設定操作に基づいた情報とに基づいて、車両に対する支援方法を決定する。そして、支援方法決定部512は、決定した支援方法に関する情報を経路算出部513に出力する。 The support method determination unit 512 determines whether to support parallel parking of the vehicle in the parking space P1, whether to support parallel parking of the vehicle in the parking space P1, or whether to support the vehicle exit from the parking space P1. . For example, the support method determination unit 512 determines the support method for the vehicle based on the information regarding the parking space P1 input from the target position acquisition unit 511 and the information based on the setting operation of the display panel 27 by the vehicle occupant. To do. Then, the support method determination unit 512 outputs information regarding the determined support method to the route calculation unit 513.
 経路算出部513は、目標位置取得部511から入力された駐車スペースP1に関する情報と、支援方法決定部512から入力された支援方法に関する情報とに基づき、支援方法に応じた経路R1を算出する。すなわち、経路算出部513は、車両の縦列駐車又は並列駐車を支援する場合、駐車支援制御の開始前における車両の位置から駐車スペースP1までの経路R1を算出する。また、経路算出部513は、車両の出庫を支援する場合、駐車スペースP1から車両を出庫させるための経路R1を算出する。 The route calculation unit 513 calculates a route R1 corresponding to the support method based on the information about the parking space P1 input from the target position acquisition unit 511 and the information about the support method input from the support method determination unit 512. That is, the route calculation unit 513 calculates the route R1 from the position of the vehicle to the parking space P1 before the start of the parking support control when supporting parallel parking or parallel parking of the vehicle. Moreover, the route calculation part 513 calculates route R1 for making a vehicle go out from parking space P1, when assisting the vehicle's leaving.
 そして、駐車支援部51は、経路算出部513で算出した経路R1に基づいて、ブレーキ制御部55、車速制御部56、変速機制御部57及び転舵制御部58に指令を出力する。 The parking support unit 51 outputs a command to the brake control unit 55, the vehicle speed control unit 56, the transmission control unit 57, and the steering control unit 58 based on the route R1 calculated by the route calculation unit 513.
 進路情報取得部52は、車両の進路に関する情報として、車両の進行方向に関する情報と、前輪23Fの転舵方向に関する情報とを取得する。進路情報取得部52には、経路算出部513で算出された経路に関する情報と、シフトポジションセンサ101から出力される信号と、車輪速センサから出力される信号と、ステアリングセンサ102から出力される信号と、ヨーレートセンサ104から出力される信号とが入力される。そして、例えば、進路情報取得部52は、シフトポジションセンサ101から出力される信号に基づいてシフトレバー31の操作位置を検出し、車両が前進するのか後退するのかを検知する。また、進路情報取得部52は、車輪速センサから出力される信号に基づいて車速を算出する。そして、進路情報取得部52は、シフトレバー31の操作位置が前進用の位置であって、且つ車速が0(零)よりも大きいときには、車両が前進していることを検知することができる。一方、進路情報取得部52は、シフトレバー31の操作位置が後退用の位置であって、且つ車速が0(零)よりも大きいときには、車両が後退していることを検知することができる。 The course information acquisition unit 52 acquires information about the traveling direction of the vehicle and information about the turning direction of the front wheels 23F as information about the course of the vehicle. The route information acquisition unit 52 includes information related to the route calculated by the route calculation unit 513, a signal output from the shift position sensor 101, a signal output from the wheel speed sensor, and a signal output from the steering sensor 102. And a signal output from the yaw rate sensor 104 are input. For example, the course information acquisition unit 52 detects the operation position of the shift lever 31 based on a signal output from the shift position sensor 101, and detects whether the vehicle moves forward or backward. Further, the course information acquisition unit 52 calculates the vehicle speed based on a signal output from the wheel speed sensor. The course information acquisition unit 52 can detect that the vehicle is moving forward when the operation position of the shift lever 31 is the forward movement position and the vehicle speed is greater than 0 (zero). On the other hand, the course information acquisition unit 52 can detect that the vehicle is retreating when the operation position of the shift lever 31 is the retreat position and the vehicle speed is greater than 0 (zero).
 また、進路情報取得部52は、ステアリングセンサ102から出力される信号、及びヨーレートセンサ104から出力される情報に基づいてステアリングホイール25の操作方向を検出し、同操作方向に基づいて前輪23Fの転舵方向を検出する。例えば、進路情報取得部52は、運転者から見てステアリングホイール25が直進位置から時計回り方向に回転されている場合、前輪23Fの転舵方向が右方向であることを検知することができる。一方、進路情報取得部52は、運転者から見てステアリングホイール25が直進位置から反時計回り方向に回転されている場合、前輪23Fの転舵方向が左方向であることを検知することができる。 Further, the course information acquisition unit 52 detects the operation direction of the steering wheel 25 based on the signal output from the steering sensor 102 and the information output from the yaw rate sensor 104, and the front wheel 23F is switched based on the operation direction. Detect the rudder direction. For example, the course information acquisition unit 52 can detect that the turning direction of the front wheel 23F is the right direction when the steering wheel 25 is rotated in the clockwise direction from the straight traveling position as viewed from the driver. On the other hand, the course information acquisition unit 52 can detect that the turning direction of the front wheel 23F is the left direction when the steering wheel 25 is rotated counterclockwise from the straight traveling position as viewed from the driver. .
 そして、進路情報取得部52は、検知した車両の進行方向に関する情報と、前輪23Fの転舵方向に関する情報とを選別部53に出力する。 Then, the course information acquisition unit 52 outputs information regarding the detected traveling direction of the vehicle and information regarding the turning direction of the front wheels 23F to the selection unit 53.
 選別部53は、進路情報取得部52から入力された車両の進行方向に関する情報と前輪23Fの転舵方向に関する情報とに基づき、各クリアランスソナー用センサ111~118を有効にすべきセンサと無効にすべきセンサとに選別する。そして、選別部53は、選別結果に関する情報を距離算出部54に出力する。 Based on the information related to the traveling direction of the vehicle and the information related to the turning direction of the front wheels 23F input from the course information acquisition unit 52, the selection unit 53 invalidates the sensors for the clearance sonars 111 to 118 as valid sensors. Select the sensor to be used. Then, the sorting unit 53 outputs information related to the sorting result to the distance calculating unit 54.
 ここで、各クリアランスソナー用センサ111~118を有効にすべきセンサと無効にすべきセンサとに選別する方法の一例について説明する。 Here, an example of a method of selecting each of the clearance sonar sensors 111 to 118 as a sensor to be validated and a sensor to be invalidated will be described.
 車両が後退している場合、車両の後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ115~118を用いることにより、車両の後方に存在する障害物と車両との接近を検出することができる。そのため、クリアランスソナー用センサ115~118は有効にすべきセンサとして選別される。また、車両の後退時においてステアリングホイール25が左方向、すなわち運転者から見て反時計回り方向に操作されている場合、転舵輪である前輪23Fが左方向に転舵される。この場合、車両の前部が右方向に旋回するため、車両は車両の左前方に存在する障害物から離れる。すなわち、車両の前部中央及び左前部に設けられているクリアランスソナー用センサ111~113では、車両と障害物との接近を検出することができない。よって、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、クリアランスソナー用センサ111~113は無効にすべきセンサとして選別される。一方、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、車両の前部が右方向に旋回するため、車両は同車両の右前方に存在する障害物に接近することがある。こうした障害物と車両との接近は、車両の右前部に設けられているクリアランスソナー用センサ114で検出することができる。よって、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、クリアランスソナー用センサ114は有効にすべきセンサとして選別される。 When the vehicle is moving backward, the proximity sonar sensors 115 to 118 provided at the rear center, the left rear portion, and the right rear portion of the vehicle are used to detect an approach between an obstacle existing behind the vehicle and the vehicle. can do. Therefore, the clearance sonar sensors 115 to 118 are selected as sensors to be effective. Further, when the steering wheel 25 is operated in the left direction, that is, in the counterclockwise direction when viewed from the driver when the vehicle is moving backward, the front wheel 23F that is a steered wheel is steered in the left direction. In this case, since the front part of the vehicle turns in the right direction, the vehicle leaves the obstacle existing in the left front of the vehicle. That is, the clearance sonar sensors 111 to 113 provided at the front center and the left front portion of the vehicle cannot detect the approach between the vehicle and the obstacle. Therefore, when the vehicle moves backward with the front wheel 23F being steered leftward, the clearance sonar sensors 111 to 113 are selected as sensors to be invalidated. On the other hand, when the vehicle moves backward while the front wheel 23F is steered in the left direction, the front part of the vehicle turns to the right, so that the vehicle may approach an obstacle present on the right front side of the vehicle. is there. The approach between the obstacle and the vehicle can be detected by a clearance sonar sensor 114 provided at the right front portion of the vehicle. Therefore, when the vehicle moves backward in a state where the steering direction of the front wheel 23F is the left direction, the clearance sonar sensor 114 is selected as a sensor to be enabled.
 距離算出部54は、クリアランスソナー用センサ111~118から出力される信号に基づき、車両から障害物までの距離D1を算出し、この距離D1が基準距離KD1未満であるか否かを判定する判定処理を行う。そして、距離算出部54は、判定処理によって、車両から障害物までの距離D1が基準距離KD1未満であると判定した場合、その旨をブレーキ制御部55に出力する。 The distance calculation unit 54 calculates a distance D1 from the vehicle to the obstacle based on signals output from the clearance sonar sensors 111 to 118, and determines whether or not the distance D1 is less than the reference distance KD1. Process. If the distance calculation unit 54 determines that the distance D1 from the vehicle to the obstacle is less than the reference distance KD1 by the determination process, the distance calculation unit 54 outputs the fact to the brake control unit 55.
 なお、距離算出部54は、各クリアランスソナー用センサ111~118のうち、有効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行う一方、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行わない。すなわち、距離算出部54は、有効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づき、車両から障害物までの距離を算出するだけではなく、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づき、車両から障害物までの距離を算出する。しかし、距離算出部54は、クリアランスソナー用センサから出力された信号に基づき算出した距離を用いた判定処理を行わない。 The distance calculation unit 54 performs a determination process based on a signal output from a clearance sonar sensor selected as a sensor to be validated among the clearance sonar sensors 111 to 118, but should be invalidated. The determination processing based on the signal output from the clearance sonar sensor selected as the sensor is not performed. That is, the distance calculation unit 54 not only calculates the distance from the vehicle to the obstacle based on the signal output from the clearance sonar sensor selected as the sensor to be enabled, but also selects the sensor to be disabled. The distance from the vehicle to the obstacle is calculated based on the signal output from the clearance sonar sensor. However, the distance calculation unit 54 does not perform the determination process using the distance calculated based on the signal output from the clearance sonar sensor.
 そのため、上記のように、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、距離算出部54は、車両の右前部、後方中央、左後部及び右後部に設けられているクリアランスソナー用センサ114~118から出力された信号に基づいた判定処理を行う。その一方で、距離算出部54は、車両の前部中央及び左前部に設けられているクリアランスソナー用センサ111~113から出力された信号に基づき距離の算出は行うものの、同距離を用いた判定処理を行わない。 Therefore, as described above, when the vehicle moves backward in a state where the steering direction of the front wheel 23F is the left direction, the distance calculation unit 54 is provided in the right front portion, the rear center, the left rear portion, and the right rear portion of the vehicle. A determination process based on signals output from the clearance sonar sensors 114 to 118 is performed. On the other hand, the distance calculation unit 54 calculates the distance based on signals output from the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the vehicle, but the determination using the same distance is performed. Do not process.
 ブレーキ制御部55は、ブレーキ装置26の制御を司る。すなわち、ブレーキ制御部55は、車両から障害物までの距離D1が基準距離KD1未満である旨の情報が距離算出部54から入力された場合、ブレーキ装置26を作動させて車両を停止させる衝突回避ブレーキ制御を実施する。この衝突回避ブレーキ制御が、車両と障害物との接近を検出することに応答して実施される車両制御の一例である。また、ブレーキ制御部55は、駐車支援制御を実施している場合には、駐車支援部51から入力された情報に基づいてブレーキ装置26を作動させる。例えば、ブレーキ制御部55は、駐車支援制御を実施している場合、車両が駐車スペースP1に達したり、車両の出庫が完了したりすると、ブレーキ装置26を作動させて車両を停止させる停車制御を実施する。 The brake control unit 55 controls the brake device 26. That is, the brake controller 55 operates the brake device 26 to stop the vehicle when the information that the distance D1 from the vehicle to the obstacle is less than the reference distance KD1 is input from the distance calculator 54. Implement brake control. This collision avoidance brake control is an example of vehicle control that is performed in response to detecting the approach between the vehicle and an obstacle. Moreover, the brake control part 55 operates the brake device 26 based on the information input from the parking assistance part 51, when parking assistance control is implemented. For example, when the parking control is being performed, the brake control unit 55 performs stop control for stopping the vehicle by operating the brake device 26 when the vehicle reaches the parking space P1 or when the vehicle is left. carry out.
 車速制御部56は、エンジン21の制御を司る。すなわち、車速制御部56は、運転者によってアクセルペダルが操作されている場合、その操作量に応じたエンジントルクが出力されるようにエンジン21の運転を制御する。また、車速制御部56は、駐車支援制御を実施している場合、駐車支援部51から入力された情報に基づいて、車輪速センサ103から出力される信号に基づいた車速が規定車速となるようにエンジン21の運転を制御する自動車速制御を実施する。 The vehicle speed control unit 56 controls the engine 21. That is, when the accelerator pedal is operated by the driver, the vehicle speed control unit 56 controls the operation of the engine 21 so that the engine torque corresponding to the operation amount is output. Further, when performing the parking support control, the vehicle speed control unit 56 makes the vehicle speed based on the signal output from the wheel speed sensor 103 based on the information input from the parking support unit 51 the specified vehicle speed. In addition, the vehicle speed control for controlling the operation of the engine 21 is performed.
 変速機制御部57は、自動変速機22の制御を司る。すなわち、変速機制御部57は、シフトポジションセンサ101から出力される信号に基づいてシフトレバー31の操作位置を検出するとともに、車輪速センサ103から出力される信号に基づいた車速を検出する。そして、変速機制御部57は、自動変速機22の変速段をシフトレバー31の操作位置及び車速に応じた変速段に設定する。また、変速機制御部57は、駐車支援制御を実施している場合、車両の前進が要求されているときには自動変速機22の変速段を前進用の変速段に設定させ、車両の後退が要求されているときには自動変速機22の変速段を後退用の変速段に設定させる。 The transmission control unit 57 controls the automatic transmission 22. That is, the transmission control unit 57 detects the operation position of the shift lever 31 based on the signal output from the shift position sensor 101 and detects the vehicle speed based on the signal output from the wheel speed sensor 103. And the transmission control part 57 sets the gear position of the automatic transmission 22 to the gear position according to the operation position of the shift lever 31 and the vehicle speed. In addition, the transmission control unit 57 sets the gear position of the automatic transmission 22 to the forward gear position when the vehicle is requested to advance when the parking assist control is being performed, and requests the vehicle to reverse. When this is done, the shift stage of the automatic transmission 22 is set to the reverse shift stage.
 転舵制御部58は、ステアリング装置24の制御を司る。すなわち、転舵制御部58は、運転者がステアリングホイール25を操作している場合、ステアリング装置24のモータ241を制御し、運転者によるステアリングホイール25の操作を補助する。また、転舵制御部58は、駐車支援部51から入力された情報に基づいて、モータ241を駆動させることにより、前輪23Fの転舵方向を自動に制御する自動転舵制御を実施する。例えば、転舵制御部58は、前輪23Fの右方向への転舵が要求されているときには前輪23Fを右方向に転舵させるべくモータ241を駆動させ、前輪23Fの左方向への転舵が要求されているときには前輪23Fを左方向に転舵させるべくモータ241を駆動させる。 The steering control unit 58 controls the steering device 24. That is, when the driver is operating the steering wheel 25, the steering control unit 58 controls the motor 241 of the steering device 24 to assist the driver in operating the steering wheel 25. Further, the steering control unit 58 performs automatic steering control that automatically controls the steering direction of the front wheels 23 </ b> F by driving the motor 241 based on the information input from the parking support unit 51. For example, the steering control unit 58 drives the motor 241 to steer the front wheel 23F to the right when the front wheel 23F is steered to the right, and the front wheel 23F is steered to the left. When required, the motor 241 is driven to steer the front wheel 23F in the left direction.
 次に、図4~図7を参照して、駐車支援制御について説明する。 Next, parking assistance control will be described with reference to FIGS.
 駐車支援制御を実施するに当たり、制御装置10の目標位置取得部511は、自車両C1の駐車スペースP1を把握するための計測処理を行う。この計測処理において、目標位置取得部511は、ディスプレイパネル27での表示や車載のスピーカからの音声により、図4に実線で示す準備位置Paに前向きで停車させるような指示を運転者に与える。この準備位置Paは、他の車両C2と他の車両C3との間の駐車スペースP1の側方であって且つ前進によって自車両C1が駐車スペースP1の側方を通過できるような位置である。そして、目標位置取得部511は、自車両C1が準備位置Paで停止すると、自車両C1をゆっくりと前進させる旨の指示を運転者に与える。 When carrying out the parking support control, the target position acquisition unit 511 of the control device 10 performs a measurement process for grasping the parking space P1 of the host vehicle C1. In this measurement process, the target position acquisition unit 511 gives an instruction to the driver to stop forward at the preparation position Pa indicated by a solid line in FIG. 4 by display on the display panel 27 or voice from a vehicle-mounted speaker. The preparation position Pa is a side of the parking space P1 between the other vehicle C2 and the other vehicle C3 and is a position where the host vehicle C1 can pass the side of the parking space P1 by moving forward. Then, when the host vehicle C1 stops at the preparation position Pa, the target position acquisition unit 511 gives an instruction to the driver to slowly advance the host vehicle C1.
 自車両C1が準備位置Paからゆっくりと前進し始めると、目標位置取得部511は、クリアランスソナー用センサ111~118から出力される信号と超音波センサ121~124から出力される信号とに基づき、駐車スペースP1を計測し始める。目標位置取得部511は、前進する自車両C1が駐車スペースP1の側方を通過するまで計測処理を行う。そして、目標位置取得部511は、自車両C1が駐車スペースP1の側方を通過し、駐車スペースP1を把握すると、停車させる旨の情報をブレーキ制御部55に出力して計測処理を終了する。そして、ブレーキ制御部55は、ブレーキ装置26の作動によって車両を自動的に停止させる。 When the host vehicle C1 starts to slowly move forward from the preparation position Pa, the target position acquisition unit 511, based on the signals output from the clearance sonar sensors 111 to 118 and the signals output from the ultrasonic sensors 121 to 124, Start measuring the parking space P1. The target position acquisition unit 511 performs measurement processing until the vehicle C1 that moves forward passes the side of the parking space P1. And the target position acquisition part 511 will output the information to stop to the brake control part 55, if the own vehicle C1 passes the side of the parking space P1, and grasps the parking space P1, and complete | finishes a measurement process. The brake control unit 55 automatically stops the vehicle by the operation of the brake device 26.
 図5に示すように、今回の駐車支援に際して縦列駐車が選択されている場合、経路算出部513は、縦列駐車するための経路R1を算出する。そして、経路R1が算出されると、同経路R1に沿って自車両C1が移動するように、変速機制御部57が車両の前進又は後退を制御するとともに、転舵制御部58が前輪23Fの転舵を制御し、車速制御部56がエンジン21の運転、すなわち車速を制御する。そして、自車両C1が経路R1に沿って移動し、自車両C1が駐車スペースP1に達すると、ブレーキ制御部55がブレーキ装置26を制御することで、自車両C1が駐車スペースP1内で停止される。 As shown in FIG. 5, when parallel parking is selected in the current parking assistance, the route calculation unit 513 calculates a route R1 for parallel parking. When the route R1 is calculated, the transmission control unit 57 controls the forward or backward movement of the vehicle so that the host vehicle C1 moves along the route R1, and the steering control unit 58 controls the front wheel 23F. The steering is controlled, and the vehicle speed control unit 56 controls the operation of the engine 21, that is, the vehicle speed. When the host vehicle C1 moves along the route R1 and the host vehicle C1 reaches the parking space P1, the brake control unit 55 controls the brake device 26, so that the host vehicle C1 is stopped in the parking space P1. The
 なお、図6に示すように、今回の駐車支援に際して並列駐車が選択されている場合、経路算出部513は、並列駐車するための経路R1を算出する。そして、経路R1が算出されると、同経路R1に沿って自車両C1が移動するように、変速機制御部57、転舵制御部58及び車速制御部56が車両の挙動を制御する。そして、自車両C1が駐車スペースP1に達すると、ブレーキ制御部55がブレーキ装置26を制御することで、自車両C1が駐車スペースP1内で停止される。 In addition, as shown in FIG. 6, when parallel parking is selected at the time of this parking assistance, the route calculation unit 513 calculates a route R1 for parallel parking. When the route R1 is calculated, the transmission control unit 57, the steering control unit 58, and the vehicle speed control unit 56 control the behavior of the vehicle so that the host vehicle C1 moves along the route R1. When the host vehicle C1 reaches the parking space P1, the brake control unit 55 controls the brake device 26, so that the host vehicle C1 is stopped in the parking space P1.
 また、図7に示すように、今回の駐車支援に際して駐車スペースP1からの出庫が選択されている場合、経路算出部513は、駐車スペースP1から自車両C1を出庫させるための経路R1を算出する。なお、この際には、図5を用いて説明したような計測処理を行う必要はない。そして、経路R1が算出されると、同経路R1に沿って自車両C1が移動するように、変速機制御部57、転舵制御部58及び車速制御部56が車両の挙動を制御する。そして、自車両C1の出庫が完了すると、ブレーキ制御部55がブレーキ装置26を制御することで、自車両C1が停止される。 In addition, as shown in FIG. 7, when leaving from the parking space P <b> 1 is selected during the current parking assistance, the route calculation unit 513 calculates a route R <b> 1 for leaving the host vehicle C <b> 1 from the parking space P <b> 1. . In this case, it is not necessary to perform the measurement process as described with reference to FIG. When the route R1 is calculated, the transmission control unit 57, the steering control unit 58, and the vehicle speed control unit 56 control the behavior of the vehicle so that the host vehicle C1 moves along the route R1. And when the delivery of the own vehicle C1 is completed, the brake control part 55 controls the brake device 26, and the own vehicle C1 is stopped.
 次に、図8に示すフローチャートを参照して、経路R1に沿った車両の駐車支援を行う際に制御装置10が実行する処理ルーチンについて説明する。この処理ルーチンは、今回の駐車支援が縦列駐車であるか、並列駐車であるか、出庫であるのかが選択されてから実行される処理ルーチンである。 Next, with reference to a flowchart shown in FIG. 8, a processing routine executed by the control device 10 when performing parking support for the vehicle along the route R1 will be described. This processing routine is a processing routine that is executed after it is selected whether the current parking assistance is parallel parking, parallel parking, or shipping.
 図8に示すように、制御装置10は、車両の乗員によって設定された支援方法が縦列駐車、並列駐車、出庫のいずれであるのかに基づいて経路R1を算出する(ステップS101)。続いて、制御装置10は、前輪23Fの転舵の自動制御を開始させ(ステップS102)、車両の進行方向及び車速の自動制御を開始させる(ステップS103)。そして、制御装置10は、その処理を次のステップS104に移行する。すなわち、本実施形態の制御装置10が実施する駐車支援制御は、前輪23Fの転舵の自動制御、車両の進行方向の自動制御、車速の自動制御を含む。 As shown in FIG. 8, the control device 10 calculates a route R1 based on whether the support method set by the vehicle occupant is parallel parking, parallel parking, or leaving (step S101). Subsequently, the control device 10 starts automatic control of turning of the front wheels 23F (step S102), and starts automatic control of the traveling direction and the vehicle speed of the vehicle (step S103). And the control apparatus 10 transfers the process to following step S104. That is, the parking assist control performed by the control device 10 of the present embodiment includes automatic control of turning of the front wheels 23F, automatic control of the traveling direction of the vehicle, and automatic control of the vehicle speed.
 ステップS104において、制御装置10は、車両が目標とする車両位置に達したか否かを判定する。そして、車両が目標とする車両位置に未だ達していない場合(ステップS104:NO)、制御装置10は、車両が目標とする車両位置に達するまでステップS104の判定を繰り返す。一方、車両が目標とする車両位置に達した場合(ステップS104:YES)、制御装置10は、その処理を次のステップS105に移行する。 In step S104, the control device 10 determines whether or not the vehicle has reached the target vehicle position. If the vehicle has not yet reached the target vehicle position (step S104: NO), the control device 10 repeats the determination in step S104 until the vehicle reaches the target vehicle position. On the other hand, when the vehicle has reached the target vehicle position (step S104: YES), the control device 10 proceeds to the next step S105.
 なお、今回の駐車支援が縦列駐車又は並列駐車である場合、駐車スペースP1が「目標とする車両位置」に相当する。そのため、ステップS104では、車両が駐車スペースP1に達したか否かが判定される。そして、車両が駐車スペースP1に未だ達していない場合(ステップS104:NO)、車両が駐車スペースP1に達するまでステップS104の判定が繰り返される。一方、車両が駐車スペースP1に達した場合(ステップS104:YES)、処理が次のステップS105に移行される。 If the current parking assistance is parallel parking or parallel parking, the parking space P1 corresponds to the “target vehicle position”. Therefore, in step S104, it is determined whether or not the vehicle has reached the parking space P1. If the vehicle has not yet reached the parking space P1 (step S104: NO), the determination in step S104 is repeated until the vehicle reaches the parking space P1. On the other hand, when the vehicle reaches the parking space P1 (step S104: YES), the process proceeds to the next step S105.
 また、今回の駐車支援が出庫である場合、車両全体が駐車スペースP1の外側に出た時点の車両位置が、「目標とする車両位置」に相当する。そのため、車両が目標とする車両位置に達した場合には車両の出庫が完了したと判定することができる。すなわち、ステップS104では、車両の出庫が完了したか否かが判定される。そして、車両の出庫が未だ完了していない場合(ステップS104:NO)、車両の出庫が完了するまでステップS104の判定が繰り返される。一方、車両の出庫が完了した場合(ステップS104:YES)、処理が次のステップS105に移行される。 In addition, when the parking support this time is a departure, the vehicle position when the entire vehicle comes out of the parking space P1 corresponds to the “target vehicle position”. Therefore, when the vehicle reaches the target vehicle position, it can be determined that the vehicle has been delivered. That is, in step S104, it is determined whether or not the vehicle has been delivered. If the vehicle has not yet been issued (step S104: NO), the determination in step S104 is repeated until the vehicle is completed. On the other hand, when the vehicle has been delivered (step S104: YES), the process proceeds to the next step S105.
 ステップS105において、制御装置10は、目標とする車両位置で車両を停止させる停車制御を実施する。その後、制御装置10は、駐車支援制御を終了し(ステップS106)、その後、本処理ルーチンを終了する。 In step S105, the control device 10 performs stop control for stopping the vehicle at the target vehicle position. Then, the control apparatus 10 complete | finishes parking assistance control (step S106), and complete | finishes this process routine after that.
 次に、図9に示すフローチャートを参照して、クリアランスソナー用センサ111~118を有効にすべきセンサと無効にすべきセンサとに選別するために制御装置10が実行する処理ルーチンについて説明する。本処理ルーチンは、予め設定されている制御サイクル毎に実行される。 Next, a processing routine executed by the control device 10 for selecting the clearance sonar sensors 111 to 118 into sensors to be validated and sensors to be invalidated will be described with reference to a flowchart shown in FIG. This processing routine is executed for each preset control cycle.
 図9に示すように、本処理ルーチンにおいて、制御装置10は、駐車支援制御を実施している否かを判定する(ステップS201)。駐車支援制御を実施していない場合(ステップS201:NO)、制御装置10は、本処理ルーチンを一旦終了する。一方、駐車支援制御を実施している場合(ステップS201:YES)、制御装置10は、車両が前進しているか否かを判定する(ステップS202)。 As shown in FIG. 9, in the present processing routine, the control device 10 determines whether or not the parking assistance control is being performed (step S201). When parking assistance control is not implemented (step S201: NO), the control apparatus 10 once complete | finishes this process routine. On the other hand, when parking assistance control is performed (step S201: YES), the control device 10 determines whether or not the vehicle is moving forward (step S202).
 車両が前進している場合、車両の前方に存在する障害物に車両が接近する可能性はある一方で、車両の後方に存在する障害物に車両が接近することはないと判断することができる。そのため、車両が前進している場合(ステップS202:YES)、制御装置10は、車両の後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ115~118を無効にすべきセンサとする(ステップS203)。この場合、車両の前部中央、左前部及び右前部に設けられているクリアランスソナー用センサ111~114は、有効にすべきセンサとされる。その後、制御装置10は、本処理ルーチンを一旦終了する。 When the vehicle is moving forward, it can be determined that the vehicle does not approach an obstacle existing behind the vehicle while there is a possibility that the vehicle approaches an obstacle existing ahead of the vehicle. . Therefore, when the vehicle is moving forward (step S202: YES), the control device 10 is a sensor that should invalidate the clearance sonar sensors 115 to 118 provided at the rear center, the left rear portion, and the right rear portion of the vehicle. (Step S203). In this case, the clearance sonar sensors 111 to 114 provided at the front center, the left front portion, and the right front portion of the vehicle are sensors that should be effective. Thereafter, the control device 10 once ends this processing routine.
 その一方で、車両が後退している場合(ステップS202:NO)、制御装置10は、前輪23Fの転舵方向が左方向であるか否かを判定する(ステップS204)。例えば、前輪23Fが左方向に転舵しているときのステアリングホイール25の操舵角が正の値であり、前輪23Fが右方向に転舵しているときの操舵角が負の値になるものとする。この場合、ステップS204では、ステアリングホイール25の操舵角が左転舵判定角度以上であるときには前輪23Fの転舵方向が左方向であると判定し、操舵角が左転舵判定角度未満であるときには転舵方向が左方向ではないと判定することができる。 On the other hand, when the vehicle is moving backward (step S202: NO), the control device 10 determines whether or not the turning direction of the front wheel 23F is the left direction (step S204). For example, the steering angle of the steering wheel 25 when the front wheel 23F is steered to the left is a positive value, and the steering angle when the front wheel 23F is steered to the right is a negative value. And In this case, in step S204, when the steering angle of the steering wheel 25 is greater than or equal to the left turning determination angle, it is determined that the turning direction of the front wheel 23F is the left direction, and when the steering angle is less than the left turning determination angle. It can be determined that the steered direction is not the left direction.
 前輪23Fの転舵方向が左方向である場合、車両の後退中であっても、車両の右前方に存在する障害物に車両の前部が接近する可能性がある。また、ステップS204の判定が行われる場合、車両は後退しているため、車両の後方に存在する障害物に車両が接近することもあり得る。そのため、前輪23Fの転舵方向が左方向である場合(ステップS204:YES)、制御装置10は、車両の前部中央及び左前部に設けられているクリアランスソナー用センサ111~113を無効にすべきセンサとする(ステップS205)。この場合、車両の右前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ114~118は、有効にすべきセンサとされる。その後、制御装置10は、本処理ルーチンを一旦終了する。 When the turning direction of the front wheel 23F is the left direction, there is a possibility that the front part of the vehicle may approach an obstacle existing in the right front of the vehicle even when the vehicle is moving backward. Further, when the determination in step S204 is performed, the vehicle is moving backward, so that the vehicle may approach an obstacle existing behind the vehicle. Therefore, when the steering direction of the front wheel 23F is the left direction (step S204: YES), the control device 10 invalidates the clearance sonar sensors 111 to 113 provided at the front center and the left front portion of the vehicle. A power sensor is assumed (step S205). In this case, the clearance sonar sensors 114 to 118 provided at the right front part, the rear center, the left rear part, and the right rear part of the vehicle are sensors to be effective. Thereafter, the control device 10 once ends this processing routine.
 一方、前輪23Fの転舵方向が左方向ではない場合(ステップS204:NO)、制御装置10は、前輪23Fの転舵方向が右方向であるか否かを判定する(ステップS206)。例えば、前輪23Fが左方向に転舵しているときのステアリングホイール25の操舵角が正の値であり、前輪23Fが右方向に転舵しているときの操舵角が負の値になるものとする。この場合、ステップS206では、ステアリングホイール25の操舵角が右転舵判定角度以下であるときには前輪23Fの転舵方向が右方向であると判定し、操舵角が右転舵判定角度よりも大きいときには転舵方向が右方向ではないと判定することができる。 On the other hand, when the turning direction of the front wheel 23F is not the left direction (step S204: NO), the control device 10 determines whether or not the turning direction of the front wheel 23F is the right direction (step S206). For example, the steering angle of the steering wheel 25 when the front wheel 23F is steered to the left is a positive value, and the steering angle when the front wheel 23F is steered to the right is a negative value. And In this case, in step S206, when the steering angle of the steering wheel 25 is equal to or smaller than the right turning determination angle, it is determined that the turning direction of the front wheel 23F is the right direction, and when the steering angle is larger than the right turning determination angle. It can be determined that the turning direction is not the right direction.
 前輪23Fの転舵方向が右方向である場合、車両の後退中であっても、車両の左前方に存在する障害物に車両の前部が接近する可能性がある。また、ステップS206の判定が行われる場合、車両は後退しているため、車両の後方に存在する障害物に車両が接近することもあり得る。そのため、前輪23Fの転舵方向が右方向である場合(ステップS206:YES)、制御装置10は、車両の前部中央及び右前部に設けられているクリアランスソナー用センサ111,112,114を無効にすべきセンサとする(ステップS207)。この場合、車両の左前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ113,115~118は、有効にすべきセンサとされる。その後、制御装置10は、本処理ルーチンを一旦終了する。 When the turning direction of the front wheel 23F is the right direction, there is a possibility that the front part of the vehicle approaches an obstacle existing in the left front of the vehicle even when the vehicle is moving backward. Further, when the determination in step S206 is performed, the vehicle is moving backward, so that the vehicle may approach an obstacle existing behind the vehicle. Therefore, when the turning direction of the front wheel 23F is the right direction (step S206: YES), the control device 10 disables the clearance sonar sensors 111, 112, and 114 provided at the front center and the right front portion of the vehicle. A sensor to be set is assumed (step S207). In this case, the clearance sonar sensors 113 and 115 to 118 provided at the left front part, the rear center, the left rear part, and the right rear part of the vehicle are sensors that should be effective. Thereafter, the control device 10 once ends this processing routine.
 一方、前輪23Fの転舵方向が右方向ではない場合(ステップS206:NO)、車両はほぼ真っ直ぐに後退していると判断することができる。この場合、車両の前方に存在する障害物に車両が接近することはない。そのため、転舵方向が右方向ではない場合(ステップS206:NO)、制御装置10は、車両の前部中央、左前部及び右前部に設けられているクリアランスソナー用センサ111~114を無効にすべきセンサとする(ステップS208)。この場合、車両の後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ115~118は、有効にすべきセンサとされる。その後、制御装置10は、本処理ルーチンを一旦終了する。 On the other hand, when the turning direction of the front wheel 23F is not the right direction (step S206: NO), it can be determined that the vehicle is moving back almost straight. In this case, the vehicle does not approach an obstacle existing in front of the vehicle. Therefore, when the turning direction is not the right direction (step S206: NO), the control device 10 invalidates the clearance sonar sensors 111 to 114 provided at the front center, the left front portion, and the right front portion of the vehicle. The power sensor is assumed (step S208). In this case, the clearance sonar sensors 115 to 118 provided at the rear center, the left rear part, and the right rear part of the vehicle are sensors to be effective. Thereafter, the control device 10 once ends this processing routine.
 次に、図10に示すフローチャートを参照して、車両と障害物との接近に伴う衝突回避ブレーキ制御の開始タイミングを決定するために実行する処理ルーチンについて説明する。なお、この処理ルーチンは、駐車支援制御の実施中に上記制御サイクル毎に実行される。 Next, a processing routine executed to determine the start timing of the collision avoidance brake control that accompanies the approach between the vehicle and the obstacle will be described with reference to the flowchart shown in FIG. This processing routine is executed for each control cycle during the execution of the parking assistance control.
 図10に示すように、本処理ルーチンにおいて、制御装置10は、各クリアランスソナー用センサ111~118のうち有効にすべきセンサとして選別されたセンサの数KNを演算する(ステップS301)。そして、制御装置10は、カウント数Nを「1」だけインクリメントする(ステップS302)。 As shown in FIG. 10, in the present processing routine, the control device 10 calculates the number KN of sensors selected as sensors to be valid among the clearance sonar sensors 111 to 118 (step S301). Then, the control device 10 increments the count number N by “1” (step S302).
 続いて、制御装置10は、有効にすべきセンサの何れか一つのクリアランスソナー用センサから出力された信号に基づいた判定処理を行う(ステップS303)。そして、制御装置10は、判定処理の結果に基づき、車両と障害物との衝突の可能性があるか否かを判定する(ステップS304)。例えば、車両から障害物までの距離D1が基準距離KD1未満であるときに、車両と障害物との衝突の可能性があると判定することができる。そして、車両と障害物との衝突の可能性がある場合(ステップS304:YES)、制御装置10は、車両を停止させるべく衝突回避ブレーキ制御を実施し(ステップS305)、その処理を後述するステップS307に移行する。 Subsequently, the control device 10 performs a determination process based on a signal output from any one of the clearance sonar sensors to be validated (step S303). And the control apparatus 10 determines whether there exists a possibility of a collision with a vehicle and an obstruction based on the result of a determination process (step S304). For example, when the distance D1 from the vehicle to the obstacle is less than the reference distance KD1, it can be determined that there is a possibility of a collision between the vehicle and the obstacle. If there is a possibility of a collision between the vehicle and the obstacle (step S304: YES), the control device 10 performs a collision avoidance brake control to stop the vehicle (step S305), and the process will be described later. The process proceeds to S307.
 一方、車両と障害物との衝突の可能性がない場合(ステップS304:NO)、制御装置10は、その処理を次のステップS306に移行する。なお、車両と障害物との衝突の可能性がない場合としては、車両から障害物までの距離D1が基準距離KD1以上である場合、及びクリアランスソナー用センサによって障害物を検知できない場合が挙げられる。 On the other hand, when there is no possibility of collision between the vehicle and the obstacle (step S304: NO), the control device 10 proceeds to the next step S306. In addition, as a case where there is no possibility of collision between the vehicle and the obstacle, there are a case where the distance D1 from the vehicle to the obstacle is equal to or more than the reference distance KD1, and a case where the obstacle cannot be detected by the clearance sonar sensor. .
 ステップS306において、制御装置10は、ステップS302で更新したカウント数Nが、ステップS301で演算した有効にすべきセンサの数KN以上であるか否かを判定する。カウント数Nが有効にすべきセンサの数KN未満である場合(ステップS306:NO)、制御装置10は、その処理を前述したステップS302に移行する。そして、制御装置10は、カウント数Nを「1」だけインクリメントし(ステップS302)、再び判定処理(ステップS303)を行う。なお、この場合、前回までの判定処理で用いた有効にすべきクリアランスソナー用センサとは別の有効にすべきクリアランスソナー用センサから出力される信号に基づいた判定処理が行われる。 In step S306, the control device 10 determines whether or not the count number N updated in step S302 is equal to or greater than the number KN of sensors to be validated calculated in step S301. When the count number N is less than the number KN of sensors to be enabled (step S306: NO), the control device 10 proceeds to step S302 described above. Then, the control device 10 increments the count number N by “1” (step S302), and performs the determination process (step S303) again. In this case, a determination process is performed based on a signal output from a clearance sonar sensor to be enabled, which is different from the clearance sonar sensor to be enabled used in the previous determination processes.
 一方、カウント数Nが有効にすべきセンサの数KN以上である場合、有効にすべきセンサとして選別された全てのクリアランスソナー用センサを用いた判定処理が完了したと判断することができる。そのため、カウント数Nが有効にすべきセンサの数KN以上である場合(ステップS306:YES)、制御装置10は、その処理を次のステップS307に移行する。 On the other hand, when the count number N is equal to or greater than the number KN of sensors to be enabled, it can be determined that the determination process using all the clearance sonar sensors selected as the sensors to be enabled has been completed. Therefore, when the count number N is equal to or greater than the number KN of sensors to be validated (step S306: YES), the control device 10 shifts the process to the next step S307.
 ステップS307において、制御装置10は、カウント数Nを「0(零)」にリセットする。その後、制御装置10は、本処理ルーチンを一旦終了する。 In step S307, the control device 10 resets the count number N to “0 (zero)”. Thereafter, the control device 10 once ends this processing routine.
 次に、図11及び図12を参照して、自車両C1を左後方の駐車スペースP1に縦列駐車させる際の作用について説明する。なお、駐車スペースP1は、2つの他の車両C2,C3の間のスペースである。 Next, with reference to FIG. 11 and FIG. 12, an operation when the host vehicle C1 is parked in parallel in the left rear parking space P1 will be described. The parking space P1 is a space between two other vehicles C2 and C3.
 図11(a)に実線で示す経路R1が算出されると、自車両C1が同経路R1に沿って後退する。そして、同自車両C1の後部が、駐車スペースP1の前方に位置する他の車両C2の後部よりも後側に至ると、図11(b)に示すように、ステアリングホイール25は、運転者から見て反時計回り方向に自動で操作される。すると、図11(a)に示すように、前輪23Fが左方向に転舵される(ステップS204:YES)。その結果、自車両C1の前部が、矢印で示すように自車両C1の左前方に存在する他の車両C2から離れる。なお、このとき、自車両C1の右前方に障害物があった場合、自車両C1の前部は同障害物に接近することがある。 When the route R1 indicated by the solid line in FIG. 11 (a) is calculated, the host vehicle C1 moves backward along the route R1. When the rear part of the host vehicle C1 reaches the rear side of the rear part of the other vehicle C2 located in front of the parking space P1, as shown in FIG. It is automatically operated in the counterclockwise direction. Then, as shown in FIG. 11A, the front wheel 23F is steered leftward (step S204: YES). As a result, the front portion of the host vehicle C1 moves away from the other vehicle C2 existing in the left front of the host vehicle C1 as indicated by an arrow. At this time, if there is an obstacle in front of the host vehicle C1, the front part of the host vehicle C1 may approach the obstacle.
 そのため、この場合には、自車両C1の前部中央及び左前部に設けられているクリアランスソナー用センサ111~113は無効とされ、自車両C1の右前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ114~118は有効とされる(ステップS205)。したがって、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、クリアランスソナー用センサ114~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111~113から出力される信号に基づいた判定処理は行われない。 Therefore, in this case, the clearance sonar sensors 111 to 113 provided at the front center and the left front portion of the host vehicle C1 are disabled, and the right front portion, the rear center, the left rear portion, and the right rear portion of the host vehicle C1 are invalidated. The provided clearance sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed.
 その後、図12(a)に示すように、自車両C1の後部が駐車スペースP1に進入すると、図12(b)に示すように、ステアリングホイール25は、運転者から見て時計回り方向に自動で操作される。すると、前輪23Fが右方向に転舵される(ステップS206:YES)。その結果、自車両C1の前部が、自車両C1の左前方に存在する他の車両C2に近づく。なお、このとき、自車両C1の右前方に障害物があったとしても、自車両C1は同障害物から離れる。 Thereafter, as shown in FIG. 12 (a), when the rear portion of the host vehicle C1 enters the parking space P1, the steering wheel 25 automatically rotates clockwise as viewed from the driver as shown in FIG. 12 (b). It is operated by. Then, the front wheel 23F is steered rightward (step S206: YES). As a result, the front portion of the host vehicle C1 approaches another vehicle C2 that exists on the left front side of the host vehicle C1. At this time, even if there is an obstacle in the front right of the host vehicle C1, the host vehicle C1 leaves the obstacle.
 そのため、自車両C1の前部中央及び右前部に設けられているクリアランスソナー用センサ111,112,114は無効とされ、自車両C1の左前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ113,115~118は有効とされる(ステップS207)。すなわち、駐車支援の最中であっても、前輪23Fの転舵方向が変更されると、有効にすべきセンサとして選別されるクリアランスソナー用センサ、及び無効にすべきセンサとして選別されるクリアランスソナー用センサが変わる。したがって、前輪23Fの転舵方向が右方向である状態で車両が後退する場合、クリアランスソナー用センサ113,115~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111,112,114から出力される信号に基づいた判定処理は行われない。その後、自車両C1の全体が駐車スペースP1内に入ると、自車両C1が駐車スペースP1内で停止される。そして、駐車支援制御が終了される。 Therefore, the clearance sonar sensors 111, 112, 114 provided at the front center and the right front part of the host vehicle C1 are invalidated, and provided at the left front part, the rear center, the left rear part, and the right rear part of the host vehicle C1. The clearance sonar sensors 113 and 115 to 118 are valid (step S207). That is, even during parking assistance, if the steering direction of the front wheel 23F is changed, a clearance sonar sensor selected as a sensor to be enabled and a clearance sonar selected as a sensor to be disabled Sensor changes. Therefore, when the vehicle moves backward with the front wheel 23F being steered to the right, the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete | finished.
 次に、図13及び図14を参照して、自車両C1を右後方の駐車スペースP1に縦列駐車させる際の作用について説明する。 Next, with reference to FIG. 13 and FIG. 14, an operation when the host vehicle C1 is parked in parallel in the right rear parking space P1 will be described.
 図13(a)に実線で示す経路R1が算出されると、自車両C1は同経路R1に沿って後退する。そして、自車両C1の後部が、駐車スペースP1の前方に位置する他の車両C2の後部よりも後側に至ると、図13(b)に示すように、ステアリングホイール25は、運転者から見て時計回り方向に自動で操作される。すると、図13(a)に示すように、前輪23Fが右方向に転舵される(ステップS206:YES)。その結果、自車両C1の前部が、矢印で示すように自車両C1の右前方に存在する他の車両C2から離れる。なお、このとき、自車両C1の左前方に障害物があった場合、自車両C1は同障害物に接近することがある。 When the route R1 indicated by the solid line in FIG. 13A is calculated, the host vehicle C1 moves backward along the route R1. When the rear portion of the host vehicle C1 reaches the rear side of the rear portion of the other vehicle C2 positioned in front of the parking space P1, the steering wheel 25 is viewed from the driver as shown in FIG. Automatically operated in the clockwise direction. Then, as shown to Fig.13 (a), the front wheel 23F is steered rightward (step S206: YES). As a result, the front portion of the host vehicle C1 moves away from the other vehicle C2 existing in the right front of the host vehicle C1 as indicated by an arrow. At this time, if there is an obstacle on the left front of the host vehicle C1, the host vehicle C1 may approach the obstacle.
 そのため、この場合には、自車両C1の前部中央及び右前部に設けられているクリアランスソナー用センサ111,112,114は無効とされ、自車両C1の左前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ113,115~118は有効とされる(ステップS207)。したがって、前輪23Fの転舵方向が右方向である状態で車両が後退する場合、クリアランスソナー用センサ113,115~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111,112,114から出力される信号に基づいた判定処理は行われない。 Therefore, in this case, the clearance sonar sensors 111, 112, 114 provided at the front center and the right front of the host vehicle C1 are invalidated, and the left front, rear center, left rear, and right of the host vehicle C1 are disabled. The clearance sonar sensors 113 and 115 to 118 provided at the rear are validated (step S207). Therefore, when the vehicle moves backward with the front wheel 23F being steered to the right, the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed.
 その後、図14(a)に示すように、自車両C1の後部が駐車スペースP1に進入すると、図14(b)に示すように、ステアリングホイール25は、運転者から見て反時計回り方向に自動で操作される。すると、前輪23Fが左方向に転舵される(ステップS204:YES)。その結果、自車両C1の前部が、矢印で示すように自車両C1の右前方に存在する他の車両C2に近づく。なお、このとき、自車両C1の左前方に障害物があったとしても、自車両C1はその障害物から離れる。 Thereafter, as shown in FIG. 14 (a), when the rear portion of the host vehicle C1 enters the parking space P1, the steering wheel 25 is rotated counterclockwise as seen from the driver as shown in FIG. 14 (b). It is operated automatically. Then, the front wheel 23F is steered leftward (step S204: YES). As a result, the front portion of the host vehicle C1 approaches another vehicle C2 that exists in front of the host vehicle C1 as indicated by an arrow. At this time, even if there is an obstacle on the left front side of the host vehicle C1, the host vehicle C1 leaves the obstacle.
 そのため、自車両C1の前部中央及び左前部に設けられているクリアランスソナー用センサ111~113は無効とされ、自車両C1の右前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ114~118は有効とされる(ステップS205)。したがって、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、クリアランスソナー用センサ114~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111~113から出力される信号に基づいた判定処理は行われない。その後、自車両C1の全体が駐車スペースP1内に入ると、自車両C1が駐車スペースP1内で停止される。そして、駐車支援制御が終了される。 Therefore, the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the host vehicle C1 are disabled, and the clearances provided at the right front part, the rear center, the left rear part, and the right rear part of the host vehicle C1. The sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete | finished.
 次に、図15を参照して、自車両C1を右後方の駐車スペースP1に並列駐車させる際の作用について説明する。この場合の駐車スペースP1は、並列に駐車されている2つの他の車両C2,C3の間である。 Next, with reference to FIG. 15, the operation when the host vehicle C1 is parked in parallel in the right rear parking space P1 will be described. The parking space P1 in this case is between two other vehicles C2 and C3 parked in parallel.
 図15(a)に実線で示す経路R1が算出されると、自車両C1は、図15(a)に破線で示す位置P2から後退し始める。そして、図15(b)に示すように、ステアリングホイール25が、運転者から見て反時計回り方向に自動で操作される。すると、図15(a)に示すように、前輪23Fが左方向に転舵される(ステップS204:YES)。その結果、自車両C1は、矢印で示すように後退しつつ図中時計回り方向に旋回する。このとき、自車両C1の左側に障害物があったとしても、自車両C1の前部は障害物から離れる。その一方で、自車両C1の右側に障害物がある場合、自車両の前部が同障害物に接近することがある。 When the route R1 indicated by the solid line in FIG. 15 (a) is calculated, the host vehicle C1 starts to retreat from the position P2 indicated by the broken line in FIG. 15 (a). Then, as shown in FIG. 15B, the steering wheel 25 is automatically operated in the counterclockwise direction when viewed from the driver. Then, as shown in FIG. 15A, the front wheel 23F is steered leftward (step S204: YES). As a result, the host vehicle C1 turns in the clockwise direction in the figure while moving backward as indicated by an arrow. At this time, even if there is an obstacle on the left side of the host vehicle C1, the front portion of the host vehicle C1 is separated from the obstacle. On the other hand, when there is an obstacle on the right side of the host vehicle C1, the front part of the host vehicle may approach the obstacle.
 そのため、自車両C1の前部中央及び左前部に設けられているクリアランスソナー用センサ111~113は無効とされ、自車両C1の右前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ114から118は有効とされる(ステップS205)。したがって、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、クリアランスソナー用センサ114~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111~113から出力される信号に基づいた判定処理は行われない。その後、自車両C1の全体が駐車スペースP1内に入ると、自車両C1が駐車スペースP1内で停止される。そして、駐車支援制御が終了される。 Therefore, the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the host vehicle C1 are disabled, and the clearances provided at the right front part, the rear center, the left rear part, and the right rear part of the host vehicle C1. The sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete | finished.
 次に、図16を参照して、自車両C1を左後方の駐車スペースP1に並列駐車させる際の作用について説明する。 Next, with reference to FIG. 16, the operation when the host vehicle C1 is parked in parallel in the left rear parking space P1 will be described.
 図16(a)に実線で示す経路R1が算出されると、自車両C1は、図16(a)に破線で示す位置P2から後退し始める。そして、図16(b)に示すように、ステアリングホイール25が、運転者から見て時計回り方向に自動で操作される。すると、図16(a)に示すように、前輪23Fが右方向に転舵される(ステップS206:YES)。その結果、自車両C1は、矢印で示すように後退しつつ図中反時計回り方向に旋回する。このとき、自車両C1の右側に障害物があったとしても、自車両C1の前部は障害物から離れる。その一方で、自車両C1の左側に障害物がある場合、自車両C1の前部が同障害物に接近することがある。 When the route R1 indicated by the solid line in FIG. 16A is calculated, the host vehicle C1 starts to retreat from the position P2 indicated by the broken line in FIG. Then, as shown in FIG. 16B, the steering wheel 25 is automatically operated in the clockwise direction when viewed from the driver. Then, as shown to Fig.16 (a), the front wheel 23F is steered rightward (step S206: YES). As a result, the host vehicle C1 turns counterclockwise in the figure while moving backward as indicated by an arrow. At this time, even if there is an obstacle on the right side of the host vehicle C1, the front portion of the host vehicle C1 leaves the obstacle. On the other hand, when there is an obstacle on the left side of the host vehicle C1, the front part of the host vehicle C1 may approach the obstacle.
 そのため、自車両C1の前部中央及び右前部に設けられているクリアランスソナー用センサ111,112,114は無効とされ、自車両C1の左前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ113,115~118は有効とされる(ステップS207)。したがって、前輪23Fの転舵方向が右方向である状態で車両が後退する場合、クリアランスソナー用センサ113,115~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111,112,114から出力される信号に基づいた判定処理は行われない。その後、自車両C1の全体が駐車スペースP1内に入ると、自車両C1が駐車スペースP1内で停止される。そして、駐車支援制御が終了される。 Therefore, the clearance sonar sensors 111, 112, 114 provided at the front center and the right front part of the host vehicle C1 are invalidated, and provided at the left front part, the rear center, the left rear part, and the right rear part of the host vehicle C1. The clearance sonar sensors 113 and 115 to 118 are valid (step S207). Therefore, when the vehicle moves backward with the front wheel 23F being steered to the right, the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed. Thereafter, when the entire host vehicle C1 enters the parking space P1, the host vehicle C1 is stopped in the parking space P1. And parking assistance control is complete | finished.
 次に、図17を参照して、自車両C1を駐車スペースP1から左後方に出庫させる際の作用について説明する。 Next, with reference to FIG. 17, an operation when the host vehicle C1 is left rearward from the parking space P1 will be described.
 図17(a)に実線で示す経路R1が算出されると、自車両C1は、駐車スペースP1から後退し始める。このとき、図17(b)に示すように、ステアリングホイール25が、運転者から見て反時計回り方向に自動で操作される。すると、図17(a)に示すように、前輪23Fが左方向に転舵される(ステップS204:YES)。その結果、自車両C1は、矢印で示すように後退しつつ図中時計回り方向に旋回する。このとき、自車両C1の右側に障害物がある場合、自車両C1の前部が同障害物に接近することがある。その一方で、自車両C1の左側に障害物があったとしても、自車両C1の前部は同障害物から離れる。 When the route R1 indicated by the solid line in FIG. 17A is calculated, the host vehicle C1 starts to retreat from the parking space P1. At this time, as shown in FIG. 17B, the steering wheel 25 is automatically operated counterclockwise as viewed from the driver. Then, as shown in FIG. 17A, the front wheel 23F is steered leftward (step S204: YES). As a result, the host vehicle C1 turns in the clockwise direction in the figure while moving backward as indicated by an arrow. At this time, if there is an obstacle on the right side of the host vehicle C1, the front portion of the host vehicle C1 may approach the obstacle. On the other hand, even if there is an obstacle on the left side of the host vehicle C1, the front part of the host vehicle C1 is separated from the obstacle.
 そのため、自車両C1の前部中央及び左前部に設けられているクリアランスソナー用センサ111~113は無効とされ、自車両C1の右前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ114~118は有効とされる(ステップS205)。したがって、前輪23Fの転舵方向が左方向である状態で車両が後退する場合、クリアランスソナー用センサ114~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111~113から出力される信号に基づいた判定処理は行われない。その後、自車両C1の全体が駐車スペースP1から出て出庫が完了すると、自車両C1が停止される。そして、駐車支援制御が終了される。 Therefore, the clearance sonar sensors 111 to 113 provided at the front center and the left front part of the host vehicle C1 are disabled, and the clearances provided at the right front part, the rear center, the left rear part, and the right rear part of the host vehicle C1. The sonar sensors 114 to 118 are validated (step S205). Therefore, when the vehicle moves backward while the front wheel 23F is steered to the left, the determination process based on the signals output from the clearance sonar sensors 114 to 118 is performed, while the clearance sonar sensors 111 to The determination process based on the signal output from 113 is not performed. Thereafter, when the entire vehicle C1 exits the parking space P1 and the delivery is completed, the vehicle C1 is stopped. And parking assistance control is complete | finished.
 次に、図18を参照して、自車両C1を駐車スペースP1から右後方に出庫させる際の作用について説明する。 Next, with reference to FIG. 18, an operation when the host vehicle C1 is left from the parking space P1 to the right rear side will be described.
 図18(a)に実線で示す経路R1が算出されると、自車両C1は、駐車スペースP1から後退し始める。このとき、図18(b)に示すように、ステアリングホイール25が、運転者から見て時計回り方向に自動で操作される。すると、図18(a)に示すように、前輪23Fが右方向に転舵される(ステップS206:YES)。その結果、自車両C1は、矢印で示すように後退しつつ図中反時計回り方向に旋回する。このとき、自車両C1の左側に障害物がある場合、自車両C1の前部が同障害物に接近することがある。その一方で、自車両C1の右側に障害物があったとしても、自車両の前部は同障害物から離れる。 When the route R1 indicated by the solid line in FIG. 18A is calculated, the host vehicle C1 starts to retreat from the parking space P1. At this time, as shown in FIG. 18B, the steering wheel 25 is automatically operated in the clockwise direction as viewed from the driver. Then, as shown to Fig.18 (a), the front wheel 23F is steered rightward (step S206: YES). As a result, the host vehicle C1 turns counterclockwise in the figure while moving backward as indicated by an arrow. At this time, if there is an obstacle on the left side of the host vehicle C1, the front part of the host vehicle C1 may approach the obstacle. On the other hand, even if there is an obstacle on the right side of the own vehicle C1, the front part of the own vehicle is separated from the obstacle.
 そのため、自車両C1の前部中央及び右前部に設けられているクリアランスソナー用センサ111,112,114は無効とされ、自車両C1の左前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ113,115~118は有効とされる(ステップS207)。したがって、前輪23Fの転舵方向が右方向である状態で車両が後退する場合、クリアランスソナー用センサ113,115~118から出力される信号に基づいた判定処理は行われる一方で、クリアランスソナー用センサ111,112,114から出力される信号に基づいた判定処理は行われない。その後、自車両C1の全体が駐車スペースP1から出て出庫が完了すると、自車両C1が停止される。そして、駐車支援制御が終了される。 Therefore, the clearance sonar sensors 111, 112, 114 provided at the front center and the right front part of the host vehicle C1 are invalidated, and provided at the left front part, the rear center, the left rear part, and the right rear part of the host vehicle C1. The clearance sonar sensors 113 and 115 to 118 are valid (step S207). Therefore, when the vehicle moves backward with the front wheel 23F being steered to the right, the determination process based on the signals output from the clearance sonar sensors 113 and 115 to 118 is performed, while the clearance sonar sensor Determination processing based on signals output from 111, 112, and 114 is not performed. Thereafter, when the entire vehicle C1 exits the parking space P1 and the delivery is completed, the vehicle C1 is stopped. And parking assistance control is complete | finished.
 以上、上記構成及び作用によれば、以下に示す効果を得ることができる。 As described above, according to the above configuration and operation, the following effects can be obtained.
 (1)車両に設けられている各クリアランスソナー用センサ111~118を、車両の進行方向に関する情報と転舵輪である前輪23Fの転舵方向に関する情報とに基づいて、有効にすべきセンサと無効にすべきセンサとに選別している。そして、有効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行う一方で、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行わないようにした。この場合、有効にすべきセンサとして選別されたクリアランスソナー用センサによって車両と障害物との接近が検出されると、衝突回避ブレーキ制御を適切に実施することができる。その一方で、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理は行われないため、制御装置10の制御負荷を低減させることができる。したがって、駐車支援制御を実施している制御装置10の制御負荷の低減を図りつつ、車両と障害物との接近を検出して衝突回避ブレーキ制御を適切に実施することができる。 (1) Sensors for clearance sonar 111 to 118 provided in the vehicle are sensors that should be enabled and disabled based on the information related to the traveling direction of the vehicle and the information related to the turning direction of the front wheel 23F that is the turning wheel. Sorted by sensors that should be used. Then, based on the signal output from the clearance sonar sensor selected as the sensor to be invalidated, the determination processing is performed based on the signal output from the clearance sonar sensor selected as the sensor to be enabled. The determination process was not performed. In this case, when the approach between the vehicle and the obstacle is detected by the clearance sonar sensor selected as the sensor to be enabled, the collision avoidance brake control can be appropriately performed. On the other hand, since the determination process based on the signal output from the clearance sonar sensor selected as the sensor to be invalidated is not performed, the control load of the control device 10 can be reduced. Therefore, the collision avoidance brake control can be appropriately performed by detecting the approach between the vehicle and the obstacle while reducing the control load of the control device 10 that performs the parking assist control.
 (2)前輪23Fが左方向に転舵した状態で車両が後退する場合、車両の左側に障害物があったとしても、車両の前部は同障害物から離れることとなる。すなわち、車両の左前部に設けられているクリアランスソナー用センサ113では、車両と障害物との接近を検出することができない。そのため、クリアランスソナー用センサ113は無効にすべきセンサとして選別される。そして、このクリアランスソナー用センサ113から出力された信号に基づいた判定処理を行わないようにすることで、駐車支援制御を実施している制御装置10の制御負荷を低減させることができる。なお、この実施形態では、前輪23Fが左方向に転舵した状態で車両が後退する場合、前部中央に設けられているクリアランスソナー用センサ111,112も無効にすべきセンサとして選別している。そのため、これらクリアランスソナー用センサ111,112から出力された信号に基づいた判定処理を行わないようにすることで、駐車支援制御を実施している制御装置10の制御負荷をさらに低減させることができる。 (2) When the vehicle moves backward while the front wheel 23F is steered leftward, even if there is an obstacle on the left side of the vehicle, the front part of the vehicle will be separated from the obstacle. That is, the clearance sonar sensor 113 provided at the left front portion of the vehicle cannot detect the approach between the vehicle and the obstacle. Therefore, the clearance sonar sensor 113 is selected as a sensor to be invalidated. And the control load of the control apparatus 10 which is performing parking assistance control can be reduced by not performing the determination process based on the signal output from this sensor 113 for clearance sonar. In this embodiment, when the vehicle moves backward with the front wheel 23F steered leftward, the clearance sonar sensors 111 and 112 provided at the front center are also selected as sensors to be invalidated. . Therefore, by not performing the determination process based on the signals output from the clearance sonar sensors 111 and 112, it is possible to further reduce the control load of the control device 10 that performs the parking assist control. .
 また、前輪23Fが左方向に転舵した状態で車両が後退する場合、車両の右前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ114~118が有効にすべきセンサとして選別される。そして、これらのクリアランスソナー用センサ114~118から出力された信号に基づいた判定処理を行うことで、車両と障害物との接近を検出して衝突回避ブレーキ制御を適切に実施することができる。 Further, when the vehicle moves backward with the front wheel 23F steered leftward, the clearance sonar sensors 114 to 118 provided at the right front portion, the rear center, the left rear portion, and the right rear portion of the vehicle should be effective. As screened. Then, by performing determination processing based on the signals output from the clearance sonar sensors 114 to 118, it is possible to detect the approach between the vehicle and the obstacle and appropriately perform the collision avoidance brake control.
 (3)前輪23Fが右方向に転舵した状態で車両が後退する場合、車両の右側に障害物があったとしても、車両の前部は同障害物から離れることとなる。すなわち、車両の右前部に設けられているクリアランスソナー用センサ114では、車両と障害物との接近を検出することができない。そのため、クリアランスソナー用センサ114は無効にすべきセンサとして選別される。そして、このクリアランスソナー用センサ114から出力された信号に基づいた判定処理を行わないようにすることで、駐車支援制御を実施している制御装置10の制御負荷を低減させることができる。なお、この実施形態では、前輪23Fが右方向に転舵した状態で車両が後退する場合、前部中央に設けられているクリアランスソナー用センサ111,112も無効にすべきセンサとして選別している。そのため、これらクリアランスソナー用センサ111,112から出力された信号に基づいた判定処理を行わないようにすることで、駐車支援制御を実施している制御装置10の制御負荷をさらに低減させることができる。 (3) When the vehicle moves backward with the front wheel 23F steered in the right direction, even if there is an obstacle on the right side of the vehicle, the front part of the vehicle will be separated from the obstacle. That is, the clearance sonar sensor 114 provided at the right front portion of the vehicle cannot detect the approach between the vehicle and the obstacle. Therefore, the clearance sonar sensor 114 is selected as a sensor to be invalidated. And the control load of the control apparatus 10 which is performing parking assistance control can be reduced by not performing the determination process based on the signal output from this clearance sonar sensor 114. In this embodiment, when the vehicle moves backward with the front wheel 23F steered in the right direction, the clearance sonar sensors 111 and 112 provided at the center of the front portion are also selected as sensors to be invalidated. . Therefore, by not performing the determination process based on the signals output from the clearance sonar sensors 111 and 112, it is possible to further reduce the control load of the control device 10 that performs the parking assist control. .
 また、前輪23Fが右方向に転舵した状態で車両が後退する場合、車両の左前部、後部中央、左後部及び右後部に設けられているクリアランスソナー用センサ113,115~118が有効にすべきセンサとして選別される。そして、これらのクリアランスソナー用センサ113,115~118から出力された信号に基づいた判定処理を行うことで、車両と障害物との接近を検出して衝突回避ブレーキ制御を適切に実施することができる。 Also, when the vehicle moves backward with the front wheel 23F steered in the right direction, the clearance sonar sensors 113, 115 to 118 provided at the left front portion, rear center, left rear portion, and right rear portion of the vehicle are enabled. Selected as a power sensor. Then, by performing determination processing based on the signals output from these clearance sonar sensors 113 and 115 to 118, it is possible to detect the approach between the vehicle and the obstacle and appropriately perform the collision avoidance brake control. it can.
 (4)車両の進行方向は、シフトレバー31の操作位置を検出するシフトポジションセンサ101と、車速を検出する車輪速センサ103とを用いて判別される。そして、このように車両の実際に進行する方向に基づいて有効にすべきセンサと無効にすべきセンサとの選別を行うことにより、その選別精度を高くすることができる。 (4) The traveling direction of the vehicle is determined using a shift position sensor 101 that detects the operation position of the shift lever 31 and a wheel speed sensor 103 that detects the vehicle speed. Then, by selecting the sensor that should be enabled and the sensor that should be disabled based on the actual traveling direction of the vehicle in this way, the selection accuracy can be increased.
 (5)前輪23Fの転舵方向は、前輪23Fに駆動連結されているステアリングホイール25の操作方向を検出するステアリングセンサ102と、車両のヨーを検出するヨーレートセンサ104とを用いて判別される。そして、このように前輪23Fの実際の転舵方向に基づいて有効にすべきセンサと無効にすべきセンサとの選別を行うことにより、その選別精度を高くすることができる。 (5) The turning direction of the front wheel 23F is determined using the steering sensor 102 that detects the operation direction of the steering wheel 25 that is drivingly connected to the front wheel 23F, and the yaw rate sensor 104 that detects the yaw of the vehicle. Then, by selecting the sensor that should be enabled and the sensor that should be disabled based on the actual steering direction of the front wheel 23F in this way, the selection accuracy can be increased.
 (6)上記の駐車支援制御では、前輪23Fの転舵、車両の進行方向及び車速を自動で制御している。そのため、駐車支援制御の実施中は、転舵方向の制御と進行方向の制御と車速の制御とを行っている制御装置10の制御負荷が高くなりやすい。そこで、本実施形態では、こうした駐車支援制御を実施している場合、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力される信号に基づいた判定処理を行わないようにした。そのため、駐車支援制御を実施している制御装置10の制御負荷の増大を抑えることができる。 (6) In the parking assist control described above, the steering of the front wheels 23F, the traveling direction of the vehicle, and the vehicle speed are automatically controlled. Therefore, during the execution of the parking assist control, the control load of the control device 10 that performs the steering direction control, the traveling direction control, and the vehicle speed control tends to be high. Therefore, in the present embodiment, when such parking support control is performed, the determination process based on the signal output from the clearance sonar sensor selected as the sensor to be invalidated is not performed. Therefore, it is possible to suppress an increase in the control load of the control device 10 that performs the parking assist control.
 (7)クリアランスソナー用センサでは、その検出領域に障害物が存在していないにも拘わらず障害物を誤って検出することがありうる。そして、このように障害物を誤って検出した場合には、車両から障害物までの距離D1が基準距離KD1未満であると誤って判断され、衝突回避ブレーキ制御が誤って実施されることがあり得る。こうした衝突回避ブレーキ制御の不要な実施を抑制するためには、判定処理で使用されるクリアランスソナー用センサの数を少なくすることが好ましい。この点、本実施形態では、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力される信号に基づいた判定処理を行わないようにした。このように判定処理で使用されるクリアランスソナー用センサの数を減らすことにより、衝突回避ブレーキ制御の不要な実施を抑制することができる。 (7) With the clearance sonar sensor, it is possible that the obstacle is erroneously detected even though no obstacle exists in the detection area. If an obstacle is detected in error, the distance D1 from the vehicle to the obstacle is erroneously determined to be less than the reference distance KD1, and the collision avoidance brake control may be erroneously performed. obtain. In order to suppress such unnecessary execution of the collision avoidance brake control, it is preferable to reduce the number of clearance sonar sensors used in the determination process. In this regard, in this embodiment, determination processing based on a signal output from a clearance sonar sensor selected as a sensor to be invalidated is not performed. Thus, by reducing the number of clearance sonar sensors used in the determination process, unnecessary execution of the collision avoidance brake control can be suppressed.
 なお、上記実施形態は以下のように変更してもよい。 Note that the above embodiment may be modified as follows.
 ・車両の進行方向に関する情報と転舵輪の転舵方向に関する情報とに基づいて無効とすべきセンサを選別するのであれば、選別部53が無効とすべきセンサとして選別するセンサの数や、いずれのセンサを無効とすべきセンサとして選別するかは適宜変更することができる。 If the sensor to be invalidated is selected based on the information on the traveling direction of the vehicle and the information on the steered direction of the steered wheels, the number of sensors to be sorted as sensors to be invalidated by the sorting unit 53, It is possible to appropriately change whether to select the sensor to be invalidated.
 例えば、前輪23Fが左方向に転舵した状態で車両が後退する場合、車両の左側に障害物があったとしても、車両の前部は同障害物から離れることとなる。すなわち、車両の左前部に設けられているクリアランスソナー用センサ113では、車両と障害物との接近を検出することができない。そのため、少なくともクリアランスソナー用センサ113を無効にすべきセンサとして選別すればよい。したがって、上記実施形態のように、クリアランスソナー用センサ111,112,113を無効にすべきセンサとして選別する構成に替えて、クリアランスソナー用センサ113のみを無効にすべきセンサとして選別する構成を採用することもできる。なお、制御装置10の制御負荷を低減させる上では、極力多くのセンサを無効にすることが好ましい。そのため、車両の旋回半径や車両の形状、車両に設けられているセンサの数、各センサの検出領域などに応じて車両周囲の障害物との接近を適切に検出することができる範囲で極力多くのセンサを無効にするように、無効とすべきセンサの選別を行うことが好ましい。 For example, when the vehicle moves backward with the front wheel 23F steered to the left, even if there is an obstacle on the left side of the vehicle, the front part of the vehicle will be separated from the obstacle. That is, the clearance sonar sensor 113 provided at the left front portion of the vehicle cannot detect the approach between the vehicle and the obstacle. Therefore, at least the clearance sonar sensor 113 may be selected as a sensor to be invalidated. Therefore, instead of the configuration in which the clearance sonar sensors 111, 112, 113 are selected as sensors to be invalidated as in the above embodiment, the configuration in which only the clearance sonar sensor 113 is selected as a sensor to be invalidated is adopted. You can also In order to reduce the control load of the control device 10, it is preferable to disable as many sensors as possible. Therefore, as many as possible within the range in which the approach to obstacles around the vehicle can be detected appropriately according to the turning radius of the vehicle, the shape of the vehicle, the number of sensors provided in the vehicle, the detection area of each sensor, etc. It is preferable to select a sensor to be invalidated so as to invalidate the sensor.
 また、車両が後退する場合には、クリアランスソナー用センサ115,116を無効にすべきセンサとして選別するようにしてもよい。また、車両が前進する場合には、クリアランスソナー用センサ111,112を無効にすべきセンサとして選別するようにしてもよい。 Further, when the vehicle moves backward, the clearance sonar sensors 115 and 116 may be selected as sensors to be invalidated. Further, when the vehicle moves forward, the clearance sonar sensors 111 and 112 may be selected as sensors to be invalidated.
 ・駐車支援制御における支援態様は上記実施形態で示した例に限らず変更することができる。 · The support mode in the parking support control is not limited to the example shown in the above embodiment, and can be changed.
 例えば、車両が目標とする車両位置に到達する直前に、ブレーキペダルの操作を運転者に要求する処理を含むのであれば、停車制御(ステップS105)を含まなくてもよい。この場合、制御装置10からの要求に応じて運転者がブレーキペダルを操作することにより、車両を目標とする車両位置に停止させることができる。 For example, the stop control (step S105) may not be included as long as it includes a process of requesting the driver to operate the brake pedal immediately before the vehicle reaches the target vehicle position. In this case, the driver can stop the vehicle at the target vehicle position by operating the brake pedal in response to a request from the control device 10.
 また、自動変速機22の変速段が設定された後に車両を発進させるタイミングを運転者に報知する処理を含むのであれば、車速の自動制御を含まなくてもよい。この場合、制御装置10からの要求に応じて運転者がアクセルペダルを操作することにより、車両を経路R1に沿って移動させることができる。 Further, as long as it includes a process of notifying the driver of the timing for starting the vehicle after the shift stage of the automatic transmission 22 is set, the automatic control of the vehicle speed may not be included. In this case, when the driver operates the accelerator pedal in response to a request from the control device 10, the vehicle can be moved along the route R1.
 そして、車両を前進させるのか後退させるのかを運転者に報知する処理を含むのであれば、車両の進行方向の自動制御を含まなくてもよい。この場合、制御装置10からの要求に応じて運転者がシフトレバーを適切に操作することにより、車両を経路R1に沿って移動させることができる。 If the process includes notifying the driver whether the vehicle is to be advanced or retracted, automatic control of the traveling direction of the vehicle may not be included. In this case, the vehicle can be moved along the route R <b> 1 by the driver appropriately operating the shift lever in response to a request from the control device 10.
 さらに、ステアリングホイール25を操作するタイミングや操作量を報知する処理を含むのであれば、前輪23Fの転舵の自動制御を含まなくてもよい。この場合、制御装置10からの要求に応じて運転者がステアリングホイール25を適切に操作することにより、車両を経路R1に沿って移動させることができる。 Furthermore, as long as it includes processing for notifying the timing and amount of operation of the steering wheel 25, automatic control of turning of the front wheels 23F may not be included. In this case, when the driver appropriately operates the steering wheel 25 in response to a request from the control device 10, the vehicle can be moved along the route R1.
 ・衝突回避ブレーキ制御の実施は、駐車支援制御の実施中に限られない。例えば、衝突回避ブレーキ制御を駐車支援制御以外の他の運転支援制御を実施しているときにも行うようにしてもよい。なお、他の運転支援制御としては、運転者によるステアリング操作やアクセル操作、ブレーキ操作によらず車両を自動走行させる制御などが挙げられる。この場合、ナビゲーション装置などによって設定された目的地が「目標とする車両位置」に相当する。こうした他の運転支援制御の実施中であっても、車両の進行方向に関する情報及び前輪23Fの転舵方向に関する情報に基づいてクリアランスソナー用センサ111~118を、有効にすべきセンサと無効にすべきセンサとに選別することが好ましい。そして、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力される信号に基づいた判定処理を行わないようにすることで、制御装置10の制御負荷の増大を抑えることができる。また、有効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行うことにより、車両が障害物に接近したときには衝突回避ブレーキ制御を適切に実施することができる。 ・ Implementation of collision avoidance brake control is not limited to during parking assistance control. For example, the collision avoidance brake control may be performed when driving support control other than parking support control is being performed. Examples of other driving support control include control for automatically driving the vehicle regardless of steering operation, accelerator operation, and brake operation by the driver. In this case, the destination set by the navigation device or the like corresponds to the “target vehicle position”. Even during the execution of such other driving support control, the clearance sonar sensors 111 to 118 are invalidated as the sensors to be validated based on the information on the traveling direction of the vehicle and the information on the turning direction of the front wheel 23F. It is preferable to sort into power sensors. And it can suppress the increase in the control load of the control apparatus 10 by not performing the determination process based on the signal output from the sensor for clearance sonar selected as a sensor which should be invalidated. Further, by performing a determination process based on a signal output from a clearance sonar sensor selected as a sensor to be enabled, collision avoidance brake control can be appropriately performed when the vehicle approaches an obstacle. .
 なお、車両の自動走行時に、クリアランスソナー用センサによって車両と障害物との接近を検出したときには、ブレーキ装置26を作動させる衝突回避ブレーキ制御に加え、エンジン21から出力されるエンジントルクを低減させることにより車輪に伝わる駆動トルクを小さくする制御を実施するようにしてもよい。このように制動力に加え、駆動トルクも制御することにより、車両の制動距離の短縮化を図ることができる。 In addition, when the approach of the vehicle and the obstacle is detected by the clearance sonar sensor during automatic traveling of the vehicle, the engine torque output from the engine 21 is reduced in addition to the collision avoidance brake control for operating the brake device 26. Thus, the control for reducing the driving torque transmitted to the wheel may be performed. Thus, by controlling the driving torque in addition to the braking force, the braking distance of the vehicle can be shortened.
 また、車両の自動走行時に、クリアランスソナー用センサによって車両と障害物との接近を検出したときには、ブレーキ装置26を作動させる衝突回避ブレーキ制御に加え、前輪23Fの転舵方向を調整し、障害物から避けるように車両の挙動を制御するようにしてもよい。この場合、前輪23Fの転舵は、ヨーレートセンサ104によって検出される車両のヨーに基づき制御することが好ましい。このように車両挙動もブレーキ制御に合わせて行うことにより、車両と障害物との衝突回避性能をさらに高くすることができる。 In addition, when the approach of the vehicle and the obstacle is detected by the clearance sonar sensor during automatic traveling of the vehicle, in addition to the collision avoidance brake control for operating the brake device 26, the steering direction of the front wheel 23F is adjusted, and the obstacle You may make it control the behavior of a vehicle so that it may avoid. In this case, the turning of the front wheel 23F is preferably controlled based on the yaw of the vehicle detected by the yaw rate sensor 104. Thus, by performing the vehicle behavior in accordance with the brake control, the collision avoidance performance between the vehicle and the obstacle can be further enhanced.
 ・また、衝突回避ブレーキ制御を、運転支援制御を実施していない場合にも、すなわち運転者が通常通り車両操作を行っている場合でも車両と障害物との接近を検出したときに実施するようにしてもよい。この場合であっても、車両の進行方向に関する情報及び前輪23Fの転舵方向に関する情報に基づいてクリアランスソナー用センサ111~118を有効にすべきセンサと無効にすべきセンサとに選別することが好ましい。そして、無効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行わないようにすることで、制御装置10の制御負荷の増大を抑えることができる。また、有効にすべきセンサとして選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行うことにより、車両が障害物に接近したときには衝突回避ブレーキ制御を適切に実施することができる。 ・ Also, collision avoidance brake control should be performed even when driving support control is not performed, that is, even when the driver is operating the vehicle as usual, when an approach between the vehicle and an obstacle is detected. It may be. Even in this case, the clearance sonar sensors 111 to 118 can be classified into sensors to be validated and sensors to be invalidated based on information on the traveling direction of the vehicle and information on the steering direction of the front wheels 23F. preferable. And it can suppress the increase in the control load of the control apparatus 10 by not performing the determination process based on the signal output from the sensor for clearance sonar selected as the sensor which should be invalidated. Further, by performing a determination process based on a signal output from a clearance sonar sensor selected as a sensor to be enabled, collision avoidance brake control can be appropriately performed when the vehicle approaches an obstacle. .
 ・駐車支援制御を実施しているときには、無効にすべきセンサに選別されたクリアランスソナー用センサから出力された信号に基づいた判定処理を行わないのであれば、同センサから出力された信号に基づいた距離の算出を行わないようにしてもよい。 -When parking support control is being performed, if the judgment process based on the signal output from the sensor for clearance sonar selected as the sensor to be invalidated is not performed, it is based on the signal output from the sensor. The distance may not be calculated.
 ・有効にすべきセンサに選別されたクリアランスソナー用センサから信号に基づいて算出した距離D1を用いた判定処理に加え、同距離D1以外のパラメータを用いる他の判定処理を行い、こうした複数の判定処理の判定結果に基づいて衝突回避ブレーキ制御をじっしするようにしてもよい。 In addition to the determination process using the distance D1 calculated based on the signal from the clearance sonar sensor selected as the sensor to be validated, other determination processes using parameters other than the distance D1 are performed, and such a plurality of determinations are performed. You may make it perform collision avoidance brake control based on the determination result of a process.
 例えば、車両が障害物に接近しており、距離D1が基準距離KD1未満になっても、転舵輪の転舵角などによっては、衝突回避ブレーキ制御を実施しなくても、車両と障害物との衝突を回避できることがある。そこで、車速及び転舵輪の転舵角に基づいて車両の走行経路を推定し、推定した経路に基づき車両と障害物との衝突を回避できると判定できる場合には、距離D1が基準距離KD1未満であったとしても、衝突回避ブレーキ制御を実施しなくてもよい。 For example, even if the vehicle is approaching an obstacle and the distance D1 is less than the reference distance KD1, depending on the turning angle of the steered wheels, the vehicle and the obstacle Can avoid collisions. Therefore, when the travel route of the vehicle is estimated based on the vehicle speed and the steered angle of the steered wheels, and it can be determined that the collision between the vehicle and the obstacle can be avoided based on the estimated route, the distance D1 is less than the reference distance KD1. Even if it is, it is not necessary to implement the collision avoidance brake control.
 また、運転者がブレーキ操作を行っている場合、車両が障害物に接近していても、車両が障害物に衝突する前に同車両を停止させることができることがある。そこで、距離D1が基準距離である場合であっても、運転者によるブレーキ操作によって障害物に衝突する前に車両を停止させることができることが車両の減速度から推定される場合には、衝突回避ブレーキ制御を実施しなくてもよい。 Also, when the driver is operating the brake, even if the vehicle is approaching an obstacle, the vehicle may be able to be stopped before the vehicle collides with the obstacle. Therefore, even if the distance D1 is the reference distance, collision avoidance is performed when it is estimated from the deceleration of the vehicle that the vehicle can be stopped before the vehicle collides with the obstacle by the brake operation by the driver. Brake control may not be performed.
 ・車両と障害物との接近を検出することに応答して実施される車両制御は、衝突回避ブレーキ制御以外の他の制御であってもよい。 The vehicle control performed in response to detecting the approach between the vehicle and the obstacle may be a control other than the collision avoidance brake control.
 例えば、衝突回避ブレーキ制御以外の他の制御としては、転舵輪の転舵方向や転舵角を制御する転舵制御、及び車速を制御する車速制御などが挙げられる。この場合、例えば、車両の走行中に、有効にすべきセンサとして選別されたクリアランスソナー用センサからの信号に基づいた距離D1が基準距離KD1未満になったときには、上記転舵制御及び車速制御のうち少なくとも転舵制御を実施することにより、車両を障害物から避けるように車両の進路を調整するようにしてもよい。 For example, as control other than the collision avoidance brake control, there are steered control for controlling the steered wheel turning direction and steered angle, and vehicle speed control for controlling the vehicle speed. In this case, for example, when the distance D1 based on the signal from the clearance sonar sensor selected as the sensor to be enabled becomes less than the reference distance KD1 while the vehicle is running, the steering control and the vehicle speed control are performed. Of these, the course of the vehicle may be adjusted so as to avoid the vehicle from obstacles by performing at least steering control.
 ・転舵輪の転舵方向に関する情報の取得方法は、上記実施形態の方法に限定されない。例えば、前輪23Fが何れの方向に転舵されるかは、算出された経路と車両の現在位置とに基づき予測することができる。そして、こうした予測に基づき、クリアランスソナー用センサ111~118を有効にすべきセンサと無効にすべきセンサとに選別するようにしてもよい。この場合、ステアリングセンサ102から出力される信号やヨーレートセンサ104から出力される信号を用いることなく、上記の選別を行うことができる。 The method for acquiring information related to the turning direction of the steered wheels is not limited to the method of the above embodiment. For example, in which direction the front wheel 23F is steered can be predicted based on the calculated route and the current position of the vehicle. Based on such prediction, the clearance sonar sensors 111 to 118 may be classified into sensors to be validated and sensors to be invalidated. In this case, the above selection can be performed without using a signal output from the steering sensor 102 or a signal output from the yaw rate sensor 104.
 ・車両の進行方向に関する情報の取得方法は、上記実施形態の方法に限定されない。 The method for acquiring information related to the traveling direction of the vehicle is not limited to the method of the above embodiment.
 例えば、車両が前進するのか後退するのかは、算出された経路と車両の現在位置とに基づき予測することができる。そして、こうした予測に基づき、クリアランスソナー用センサ111~118を有効にすべきセンサと無効にすべきセンサとに選別するようにしてもよい。この場合、シフトポジションセンサ101から出力される信号や車輪速センサ103から出力される信号を用いることなく、上記の選別を行うことができる。 For example, whether the vehicle moves forward or backward can be predicted based on the calculated route and the current position of the vehicle. Based on such prediction, the clearance sonar sensors 111 to 118 may be classified into sensors to be validated and sensors to be invalidated. In this case, the above selection can be performed without using a signal output from the shift position sensor 101 or a signal output from the wheel speed sensor 103.
 また、車輪速センサの中には、車輪速、すなわち車輪の回転速度だけではなく、車輪の回転方向を検出できるセンサもある。こうした車輪速センサを備える車両では、車輪速センサから出力される信号を用いることにより、シフトポジションセンサ101から出力される信号を用いることなく車両の進行方向を取得することができる。 Some wheel speed sensors can detect not only the wheel speed, that is, the rotation speed of the wheel, but also the rotation direction of the wheel. In a vehicle including such a wheel speed sensor, the traveling direction of the vehicle can be acquired without using a signal output from the shift position sensor 101 by using a signal output from the wheel speed sensor.
 ・車両周辺の障害物を検出するセンサは、車両から障害物までの距離を検出することができるのであれば、クリアランスソナー用センサや超音波センサ以外の他のセンサであってもよい。例えば、こうしたセンサとしては、CCD(Charge Coupled Device)などの撮像素子を備えるセンサなどが挙げられる。 The sensor for detecting obstacles around the vehicle may be a sensor other than the clearance sonar sensor or the ultrasonic sensor as long as the distance from the vehicle to the obstacle can be detected. For example, as such a sensor, a sensor including an image sensor such as a CCD (Charge-Coupled Device) can be cited.
 ・制御装置10を搭載する車両は、モータなどのエンジン以外の他の駆動源を備える車両であってもよいし、エンジンとモータとの双方を駆動源として備えるハイブリッド車両であってもよい。 The vehicle equipped with the control device 10 may be a vehicle including a drive source other than the engine such as a motor, or may be a hybrid vehicle including both the engine and the motor as drive sources.
 10…制御装置、23F…前輪、26…ブレーキ装置、51…駐車支援部、511…目標位置取得部、513…経路算出部、52…進路情報取得部、53…選別部、54…距離算出部、55…ブレーキ制御部、56…車速制御部、58…転舵制御部、101…シフトポジションセンサ、102…ステアリングセンサ、103…車輪速センサ、111~118…クリアランスソナー用センサ、121~124…超音波センサ、D1…距離、KD1…基準距離、R1…経路。 DESCRIPTION OF SYMBOLS 10 ... Control apparatus, 23F ... Front wheel, 26 ... Brake device, 51 ... Parking assistance part, 511 ... Target position acquisition part, 513 ... Path | route calculation part, 52 ... Course information acquisition part, 53 ... Sorting part, 54 ... Distance calculation part , 55 ... Brake control unit, 56 ... Vehicle speed control unit, 58 ... Steering control unit, 101 ... Shift position sensor, 102 ... Steering sensor, 103 ... Wheel speed sensor, 111-118 ... Sensor for clearance sonar, 121-124 ... Ultrasonic sensor, D1, distance, KD1, reference distance, R1, path.

Claims (10)

  1.  車両と障害物との接近を検出することに応答して車両制御を実施する運転支援装置であって、
     車両の進路に関する情報として車両の進行方向に関する情報と同車両の転舵輪の転舵方向に関する情報とを取得する進路情報取得部と、
     同進路情報取得部によって取得された、車両の進行方向に関する情報と同車両の転舵輪の転舵方向に関する情報とに基づいて、前記車両から障害物までの距離に応じた信号を出力する複数のセンサを、有効にすべきセンサと無効にすべきセンサとに選別する選別部と、を備え、
     前記有効にすべきセンサとして選別されたセンサからの信号に基づいて前記車両制御を実施する
     運転支援装置。
    A driving support device that performs vehicle control in response to detecting an approach between a vehicle and an obstacle,
    A course information acquisition unit that acquires information about the traveling direction of the vehicle and information about the turning direction of the steered wheels of the vehicle as information about the course of the vehicle;
    A plurality of signals that output signals according to the distance from the vehicle to the obstacle based on the information about the traveling direction of the vehicle and the information about the turning direction of the steered wheels of the vehicle, acquired by the traveling route information acquisition unit. A sorting unit that sorts the sensor into a sensor to be enabled and a sensor to be disabled,
    The driving support device that performs the vehicle control based on a signal from a sensor selected as the sensor to be validated.
  2.  前記有効にすべきセンサとして選別されたセンサからの信号に基づいて前記車両から前記障害物までの距離を算出する距離算出部と、
     同距離算出部によって算出された距離が基準距離未満であるときに、前記車両制御として、自動で車両のブレーキ装置を作動させるブレーキ制御を実施するブレーキ制御部と、を備える
     請求項1に記載の運転支援装置。
    A distance calculating unit that calculates a distance from the vehicle to the obstacle based on a signal from a sensor selected as the sensor to be enabled;
    The brake control part which performs brake control which operates a brake device of a vehicle automatically as said vehicle control when the distance computed by the same distance calculation part is less than a standard distance is provided. Driving assistance device.
  3.  前記選別部は、前記転舵輪が左方向に転舵された状態で前記車両が後退するときには、前記複数のセンサのうち、少なくとも前記車両の左前方の障害物を検出するセンサを、前記無効にすべきセンサとして選別する
     請求項1又は請求項2に記載の運転支援装置。
    The selection unit disables at least a sensor that detects an obstacle on the left front side of the vehicle when the vehicle moves backward with the steered wheel steered leftward. The driving support device according to claim 1, wherein the driving support device is selected as a sensor to be selected.
  4.  前記選別部は、前記転舵輪が右方向に転舵された状態で前記車両が後退するときには、前記複数のセンサのうち、少なくとも前記車両の右前方の障害物を検出するセンサを、前記無効にすべきセンサとして選別する
     請求項1~請求項3のうち何れか一項に記載の運転支援装置。
    The selection unit disables at least a sensor that detects an obstacle on the right front side of the vehicle among the plurality of sensors when the vehicle moves backward while the steered wheel is steered rightward. The driving support device according to any one of claims 1 to 3, wherein the driving support device is selected as a sensor to be selected.
  5.  前記進路情報取得部は、前記車両の進行方向に関する情報としてシフトポジションセンサからの信号を取得する
     請求項1~請求項4のうち何れか一項に記載の運転支援装置。
    The driving assistance apparatus according to any one of claims 1 to 4, wherein the course information acquisition unit acquires a signal from a shift position sensor as information related to a traveling direction of the vehicle.
  6.  前記進路情報取得部は、前記車両の進行方向に関する情報として車輪速センサからの信号を取得する
     請求項1~請求項5のうち何れか一項に記載の運転支援装置。
    The driving assistance apparatus according to any one of claims 1 to 5, wherein the course information acquisition unit acquires a signal from a wheel speed sensor as information related to a traveling direction of the vehicle.
  7.  前記進路情報取得部は、前記車両の転舵輪の転舵方向に関する情報としてステアリングセンサからの信号を取得する
     請求項1~請求項6のうち何れか一項に記載の運転支援装置。
    The driving support device according to any one of claims 1 to 6, wherein the course information acquisition unit acquires a signal from a steering sensor as information related to a turning direction of a steered wheel of the vehicle.
  8.  目標とする車両位置に関する情報を取得する目標位置取得部と、
     目標とする車両位置までの経路を算出する経路算出部と、を備え、
     算出された経路に応じて車両の運転を支援するように構成される運転支援装置であり、
     前記進路情報取得部は、算出された経路に基づいて前記車両の進行方向に関する情報及び同車両の転舵輪の転舵方向に関する情報を取得する
     請求項1~請求項7のうち何れか一項に記載の運転支援装置。
    A target position acquisition unit for acquiring information on a target vehicle position;
    A route calculation unit that calculates a route to a target vehicle position,
    A driving support device configured to support driving of the vehicle according to the calculated route;
    The route information acquisition unit acquires information related to the traveling direction of the vehicle and information related to the turning direction of the steered wheels of the vehicle based on the calculated route. The driving assistance apparatus as described.
  9.  車速を制御する車速制御部を備え、
     車両の運転を支援すべく車速を制御するように構成される
     請求項8に記載の運転支援装置。
    It has a vehicle speed control unit that controls the vehicle speed,
    The driving support device according to claim 8, wherein the driving speed is configured to control a vehicle speed so as to support driving of the vehicle.
  10.  前記転舵輪の転舵を制御する転舵制御部を備え、
     車両の運転を支援すべく前記転舵輪の転舵を制御するように構成される
     請求項8又は請求項9に記載の運転支援装置。
    A steering control unit for controlling the steering of the steered wheels,
    The driving support device according to claim 8 or 9, wherein the driving support device is configured to control turning of the steered wheels to support driving of the vehicle.
PCT/JP2013/066726 2013-06-18 2013-06-18 Driving assistance device WO2014203334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066726 WO2014203334A1 (en) 2013-06-18 2013-06-18 Driving assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066726 WO2014203334A1 (en) 2013-06-18 2013-06-18 Driving assistance device

Publications (1)

Publication Number Publication Date
WO2014203334A1 true WO2014203334A1 (en) 2014-12-24

Family

ID=52104100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066726 WO2014203334A1 (en) 2013-06-18 2013-06-18 Driving assistance device

Country Status (1)

Country Link
WO (1) WO2014203334A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017068441A (en) * 2015-09-29 2017-04-06 富士重工業株式会社 Automatic driving device, and driving support device
JP2017068440A (en) * 2015-09-29 2017-04-06 富士重工業株式会社 Automatic driving device
JP2018140757A (en) * 2017-02-28 2018-09-13 アイシン精機株式会社 Parking support device
WO2018168512A1 (en) * 2017-03-17 2018-09-20 日立オートモティブシステムズ株式会社 Driving assistance device and method
EP3578427A1 (en) * 2018-06-08 2019-12-11 Toyota Jidosha Kabushiki Kaisha Parking support device
CN113212430A (en) * 2020-02-05 2021-08-06 丰田自动车株式会社 Control device, manager, method, non-transitory storage medium, vehicle control device, and vehicle control method
CN113525348A (en) * 2020-03-31 2021-10-22 本田技研工业株式会社 Vehicle movement assistance system
EP3889728A3 (en) * 2014-12-31 2021-12-01 SZ DJI Technology Co., Ltd. Selective processing of sensor data

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339595A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Obstacle monitoring device for vehicle
JP2003285705A (en) * 2002-01-28 2003-10-07 Matsushita Electric Works Ltd Obstacle detection alarming system on vehicle
JP2004351992A (en) * 2003-05-27 2004-12-16 Denso Corp Obstacle detection device of vehicle and vehicle control device
JP2005056336A (en) * 2003-08-07 2005-03-03 Denso Corp Device for supervising area around vehicle
JP2006528106A (en) * 2003-07-21 2006-12-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for determining vehicle position and / or intended position relative to opposite lanes of a multi-lane roadway during a parking process
JP2008207732A (en) * 2007-02-27 2008-09-11 Denso Corp Drive assisting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339595A (en) * 1999-05-26 2000-12-08 Matsushita Electric Works Ltd Obstacle monitoring device for vehicle
JP2003285705A (en) * 2002-01-28 2003-10-07 Matsushita Electric Works Ltd Obstacle detection alarming system on vehicle
JP2004351992A (en) * 2003-05-27 2004-12-16 Denso Corp Obstacle detection device of vehicle and vehicle control device
JP2006528106A (en) * 2003-07-21 2006-12-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for determining vehicle position and / or intended position relative to opposite lanes of a multi-lane roadway during a parking process
JP2005056336A (en) * 2003-08-07 2005-03-03 Denso Corp Device for supervising area around vehicle
JP2008207732A (en) * 2007-02-27 2008-09-11 Denso Corp Drive assisting device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889728A3 (en) * 2014-12-31 2021-12-01 SZ DJI Technology Co., Ltd. Selective processing of sensor data
JP2017068440A (en) * 2015-09-29 2017-04-06 富士重工業株式会社 Automatic driving device
JP2017068441A (en) * 2015-09-29 2017-04-06 富士重工業株式会社 Automatic driving device, and driving support device
JP2018140757A (en) * 2017-02-28 2018-09-13 アイシン精機株式会社 Parking support device
US10926797B2 (en) 2017-02-28 2021-02-23 Aisin Seiki Kabushiki Kaisha Parking assistance apparatus
WO2018168512A1 (en) * 2017-03-17 2018-09-20 日立オートモティブシステムズ株式会社 Driving assistance device and method
JPWO2018168512A1 (en) * 2017-03-17 2019-07-25 日立オートモティブシステムズ株式会社 Driving support device and method
CN110382321A (en) * 2017-03-17 2019-10-25 日立汽车系统株式会社 Drive assistance device and method
CN110382321B (en) * 2017-03-17 2022-12-27 日立安斯泰莫株式会社 Driving support device
US11230284B2 (en) 2017-03-17 2022-01-25 Hitachi Astemo, Ltd. Driving assistance apparatus and driving assistance method
EP3578427A1 (en) * 2018-06-08 2019-12-11 Toyota Jidosha Kabushiki Kaisha Parking support device
CN113212430A (en) * 2020-02-05 2021-08-06 丰田自动车株式会社 Control device, manager, method, non-transitory storage medium, vehicle control device, and vehicle control method
CN113525348A (en) * 2020-03-31 2021-10-22 本田技研工业株式会社 Vehicle movement assistance system
US11938925B2 (en) 2020-03-31 2024-03-26 Honda Motor Co., Ltd. Vehicle movement assist system

Similar Documents

Publication Publication Date Title
WO2014203334A1 (en) Driving assistance device
US9457808B2 (en) Method for supporting a driver of a motor vehicle and device for carrying out the method
JP6474888B2 (en) Method for driving a vehicle at least semi-autonomously, driver assistance system and vehicle
JP5943039B2 (en) Parking assistance device
JP6344402B2 (en) Vehicle driving support device
JP5899664B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP6365390B2 (en) Lane change support device
JP6096157B2 (en) Parking assistance device
WO2014192107A1 (en) Parking assistance device
US20160075374A1 (en) Park exit assist system
JP6421716B2 (en) Vehicle driving support control device
KR101949545B1 (en) Parking assistance system based on rolling direction
KR20120137025A (en) Collision avoidance method for vehicles
WO2016039428A1 (en) Drive assist device and drive assist system
JP2018106233A (en) Collision avoidance support device
JP2019128643A (en) Steering support device
JP2016060242A (en) Parking support device
JP6814706B2 (en) Driving support device and driving support method
WO2018190037A1 (en) Obstacle detection and notification device, method and program
US20190161086A1 (en) Method and mechanism for assisted performance of a reverse-turning maneuver of a vehicle
WO2018198530A1 (en) Parking assistance device
JP2019043209A (en) Steering assist device
WO2014091613A1 (en) Parking assistance device
JP2016085483A (en) Driving assist device
JP5962598B2 (en) Parking assistance device and parking assistance method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP