WO2014202815A1 - Adsorbent composite material comprising noble metals and a surfactant polymer, synthesis method and use thereof for the desulfurisation of fluids - Google Patents

Adsorbent composite material comprising noble metals and a surfactant polymer, synthesis method and use thereof for the desulfurisation of fluids Download PDF

Info

Publication number
WO2014202815A1
WO2014202815A1 PCT/ES2014/070504 ES2014070504W WO2014202815A1 WO 2014202815 A1 WO2014202815 A1 WO 2014202815A1 ES 2014070504 W ES2014070504 W ES 2014070504W WO 2014202815 A1 WO2014202815 A1 WO 2014202815A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
sulfur
fluid
surfactant polymer
material according
Prior art date
Application number
PCT/ES2014/070504
Other languages
Spanish (es)
French (fr)
Inventor
Ramón PONS PONS
Jordi MORROS CAMPS
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Recursos Energéticos De Biomasa, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Recursos Energéticos De Biomasa, S.L. filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2014202815A1 publication Critical patent/WO2014202815A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/12Recovery of used adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Definitions

  • the present invention is located in the sectors of the oil, energy and environmental industries, since it refers to an adsorbent composite material comprising noble metals in a reduced state and surfactant polymers, its synthesis process and its use for the treatment of sulfur removal in fluids.
  • the HDS is the most powerful method used in refineries to produce low sulfur gasoline and diesel. This technique is based on the catalytic hydrogenation of the various sulfur compounds present in hydrocarbons. Normally, its range of application is the products of primary distillation and oil cracking with levels above 1000 ppm of sulfur in some cases. Even so, HDS technology has some limitations that do not allow its use in many other fields of application such as fuel cells or heavy fuels. These limitations are mainly due to two factors, the presence of polyaromatic compounds (of three or more rings) that alter the normal functioning of desulfurization (Environ. Sci. Technol.
  • HDS high-density polystyrene
  • olefin saturation are also favored during the process, which increases the number of cetans and, in turn, decreases the octane number. This is an ideal feature for diesel engines, if not for the extra increase in capacity and amount of hydrogen needed in the process.
  • Another desulfurization technique is desulfurization by selective adsorption.
  • selective adsorption desulfurization is a technique based on the preferential adsorption of sulfur compounds in porous adsorbent matrices that allow the passage of fuel through the same. While conventional adsorbents (active carbon, silica gel, alumina, etc.) do not achieve very good results, a molecular design of the adsorbent can greatly increase desulfurization yields.
  • zeolites clay nanoparticles modified with transition metals (SCIENCE 301, 79, 2003) or with some metallic oxides of Ti, Zn, Mn, etc., which finely divided manage to quantitatively reduce the sulfur in the laboratory (WO2002018517, WO2001032805).
  • This zeolite-based technique still has some drawbacks that seriously hinder its industrial application. One of them is that to be viable the technique is necessary to regenerate the adsorbent. In this case there is a possibility of regeneration, but in each cycle 5% of the desulfurizing capacity is lost.
  • Another drawback of using zeolites in this technique is that their density does not differ much from the density of liquid fluids. This slows the separation of zeolites from the fluid, which in turn slows down each regeneration cycle.
  • the present invention relates to a composite material, with a high specific surface area and high sulfur selective adsorption capacity, comprising nanoparticles of noble metals in a state of reduced valence that is mostly 0 and molecules of a surfactant polymer, substantially added .
  • the invention also relates to the synthesis process of said composite material, which comprises the following steps: a) preparing an aqueous cationic solution comprising at least one "noble metal"cation;
  • step (c) add the solution of step (a) on the solution of step (b) and allow to react, until reduction of the metal cation, giving rise to the composite material; and d) isolation and stabilization of the composite material of step (c).
  • steps (a), (b) and (c) can be condensed in a single stage (a ' ) in which the metal cation and polymer are dissolved in a single aqueous solution that is allowed to react until reduction of the metal cation
  • the invention also relates to the use of the composite material for the removal of sulfur in fluids, especially in fluid fuels, and more especially in petroleum derivatives or other sources dedicated to the field of energy.
  • the invention relates to a process for removing sulfur in fluids, which comprises the following steps:
  • the present invention is based on the observation that a composite material, which has a high specific surface area, and which comprises nanoparticles of noble metals and a surfactant polymer, allows reversible interaction with sulfur compounds, which gives it the capacity as adsorbent for its use in desulfurization by selective adsorption of fluids (see Examples 4 to 6), allows its separation of desulfurized fluid and its regeneration through desorption of sulfur compounds (see Example 6).
  • the present invention is also based on the observation that it is the synthesis process of the composite material that uses at least one cation of a noble metal and at least one surfactant polymer containing moderately reducing groups (see Examples 1.1, 1.2 and 1.3), which favors the composite material having the characteristics that define it, and which are: a substantially aggregate state, a reduced valence state that is mostly 0 and a high specific surface.
  • a first aspect of the invention is a composite material with selective sulfur adsorption capacity, which comprises a percentage by weight of nanoparticles of noble metals in a state of reduced valence that is mostly 0, and a percentage in minor weight of a surfactant polymer, hereinafter composite material of the invention, having a total specific surface area greater than 1 m 2 / g and an apparent radius of less than 300 nm.
  • the composite material of the invention comprises a percentage by weight of the surfactant polymer over the total weight of the material between 0 and 50% (w / w), and more preferably between 0.1 and 10% (p / p). Said value can be obtained from the thermogravimetric analysis of the dry material.
  • the composite material of the invention comprises noble metal particles of dimensions between 2 and 300 nanometers that are forming aggregates of dimensions between 1 and 10,000 microns together with surfactant polymer molecules.
  • the metal nanoparticles are of noble metals, preferably silver, copper or gold, and more preferably silver.
  • ble metal means a metal that has a more positive standard reduction potential than the standard hydrogen reduction potential.
  • surfactant polymer in the present invention covalently linked monomer chains that in their overall structure have hydrophilic regions and hydrophobic regions. Said regions may be a product of the chemical nature of two different monomers (one hydrophilic and one hydrophobic) or the inclusion of modifications on a hydrophilic or hydrophobic polymer.
  • the surfactant polymers in the present invention contain moderately reducing groups, that is, they have in their chemical structure groups with moderately positive reduction potential, such as, for example, without limiting the hydroxyl or aldehyde group.
  • surfactant polymers are hydrophobically modified polysaccharides and hydrophobically modified ethoxylated polymers, in particular fructose and hydroxyethylcellulose polymers.
  • the surfactant polymer is a hydrophobically modified polysaccharide, and is preferably hydrophobically modified inulin.
  • the composite material of the invention is a powder material or is redispersed in an organic solvent, preferably hydrocarbon type, or in a sulfur-free aliphatic alcohol, or in a mixture of both.
  • the composite material of the invention is redispersed in a proportion between 5 and 95% (w / w), in a hydrocarbon-type organic solvent.
  • the composite material of the invention is redispersed in a hydrocarbon in a proportion between 5 and 50% (w / w), which is preferably n-hexadecane.
  • a second aspect of the invention constitutes a synthesis process of the composite material of the invention, hereinafter a synthesis process of the invention, comprising the following steps:
  • step (a) add the solution of step (a) on the solution of step (b) and let it react, preferably at a temperature between 70 and 110 ° C, until reduction of the metal cation, resulting in the formation of the composite material of the invention;
  • step (c) insulation and stabilization of the composite material formed in step (c).
  • a ' prepare an aqueous solution comprising at least one noble metal cation and at least one surfactant polymer with moderately reducing groups and allow to react, preferably at a temperature between 70 and 110 ° C, up to reduction of the metal cation, resulting in the formation of the composite material of the invention;
  • metal cation means any noble metal that allows obtaining a material of reduced valence state that is mostly 0 and an aggregation state corresponding to a finely divided solid.
  • the metal cation may be, by way of indication and not limitation, copper, silver or gold, and preferably silver.
  • the synthesis process of the invention that is protected, in any of the alternatives described in this patent application, is the first process that uses a surfactant polymer containing moderately reducing groups as a single agent to achieve a triple function: as an agent reducer, as an inducing agent for nanoparticle aggregation and as a protective agent.
  • This polymer allows that the nanoparticles obtained are not individualized, but that they are presented in substantially aggregate form, as indicated by Morros et al. (Soft Matter, 2012, 8, 1 1353) for inulin aggregates. In this way, it is possible to obtain a material that combines a high specific surface (which confers high efficiency and effectiveness), with a secondary aggregation that makes it useful for use as an easily separable adsorbent.
  • reaction crude an aqueous solution comprising the solutions and compounds of steps (a) and (b), or of step (a '), of the synthesis process of the invention, in which it takes place the reaction from its beginning to the end of it.
  • reducing agent means any chemical species that, in contact with the cation of the metal of interest, provides the necessary electrons for its passage to metal, being its standard potential for negative reduction.
  • the metal cation of step (a) or (a ') is chosen from any noble metal that allows obtaining a material of reduced valence state that is mostly 0 and an aggregation state corresponding to a finely divided solid, selected by way of indication and not limiting between, silver cation, copper cation and gold cation and preferably silver cation.
  • the metal cation of step (a) or (a ') is used according to one of the following presentations, soluble salt or solution of the metal in strong oxidizing acid medium and preferably in the form of salt soluble.
  • the metal cation of step (a) or (a ') is a solution of the silver cation.
  • the metal cation of step (a) or (a ') is diluted in a pH regulating solution that is selected by way of illustration and not limited to citric bicarbonate / carbonate solutions. / citrate, acetic acid / acetate and formic / formate, to obtain a pH value between 2.0 and 8.5. More preferably the solution is acetic / acetate.
  • the surfactant polymer containing moderately reducing groups of step (b) or (a ') is a hydrophobically modified polysaccharide, preferably hydrophobically modified inulin.
  • hydrophobically modified inulin in the present invention, a copolymer molecule is understood as consisting of a linear skeleton of fructose with average degrees of polymerization comprised between 10 and 100 units of D-fructosyl linked by ⁇ bonds [2 ⁇ 1 ] and various hydrophobic chains linked by ether, amide or ester bonds.
  • the surfactant polymer containing moderately reducing groups of step (b) or (a ') is dissolved in a pH regulating solution.
  • a pH regulating solution for illustrative and non-limiting purposes, it is selected from bicarbonate / carbonate, citric / citrate, acetic acid / acetate, and formic / formate solutions, to obtain a pH value between 2.0 and 8.5. More preferably the solution is acetic / acetate.
  • the isolation of the composite material obtained in step (d) or (b ' ) is performed by some technique selected, by way of illustration and not limitation, from among the following, filtration, sedimentation or centrifugation of the reaction crude, preferably centrifugation.
  • some technique selected is used, by way of illustration and not limitation, of the following, drying and / or redispersion of the material obtained.
  • the composite material obtained is redispersed in an organic solvent, more preferably hydrocarbons, or in a sulfur-free aliphatic alcohol, or in a mixture of both.
  • stabilization of the composite material according to step (d) or (b ' ) is carried out by redispersion in the organic solvent in a proportion between 5 and 95% (p / p).
  • the redispersion of the composite material is made in a proportion between 5 and 50% (w / w) and the hydrocarbon-type organic solvent is sulfur-free n-hexadecane.
  • a third aspect of the invention is the use of the composite material of the invention as a high performance desulphurizing agent applicable in fluids containing impurities of sulfur compounds, hereinafter employed by the invention, especially in fluid fuels, and more especially in derivatives of the oil or other sources dedicated to the field of energy.
  • fluids containing impurities of sulfur compounds means liquids or gases that in their chemical composition have significant amounts of sulfur, which by their use or simple existence pose some risk to the environment and / or human health and / or the viability of industrial processes.
  • Some examples of them are fluid fuels, industrial effluents, domestic effluents or sulphurous waters.
  • sulfur in any form such as, without limitation, elemental sulfur or a sulfur compound usually present in fluid fuels, such as diesel fuel, cracked gasoline, etc.
  • fluid fuels such as diesel fuel, cracked gasoline, etc.
  • sulfur that may be present in a process of the present invention include, without limitation, hydrogen sulfide (H 2 S), carbon disulfide (CS 2 ) and all the various families of sulfur compounds, which contain sulfur atoms. in its chemical structure, such as mercaptans, sulphides and organic disulfides, thiophenes, benzothiophenes, dibenzothiophenes, alkylthiophenes, alkylbenzothiophenes, and combinations thereof.
  • fluid fuel in the present invention a compound that combined with oxygen releases energy and can be in the form of a liquid, such as gasoline, kerosene, fuel oil, diesel fuel or diesel; in the form of gas, such as hydrogen, natural gas or liquefied petroleum gases; or as a combination of both.
  • industrial effluent is meant in the present invention an effluent containing sulfur compounds released by industries, especially chemical ones, that may endanger the population by inhalation or ingestion of said compound.
  • domestic effluent is meant in the present invention an effluent containing sulfur compounds released by homes, such as and without limitation, some medications, which may endanger the environment, especially wild flora and fauna.
  • Sulphurous waters means in the present invention waterways with sulfur compounds that, due to their proximity to natural sources of sulfur or due to their passage along with any other of the aforementioned effluents, pose a risk to the environment and / or the population
  • the sulfur desulfurization or removal process of the fluid is based on the adsorption of impurities of sulfur compounds in the composite material of the invention.
  • a fourth aspect of the invention constitutes the fluid desulphurization process that employs the composite material of the invention, hereinafter fluid desulphurization process of the invention, and which comprises at least the following steps:
  • sulfurized composite material is meant the composite material of the invention that has been used, at least, in a fluid desulfurization treatment.
  • the temperature of step (i) is comprised between the melting point of the fluid and 100 ° C.
  • the temperature is between 0 and 50 ° C.
  • the pressure of step (i) is between 0.1 bar and 300 bar.
  • the pressure is between 0.1 bar and 100 bar, more preferably it is the atmospheric pressure.
  • the initial concentration of sulfur in the fluid is below 2% (w / w) and a ratio between 1 and 100g of composite material of the invention per gram of sulfur is used. .
  • the separation of the desulfurized fluid, either liquid or gas, from the sulphide composite material resulting from step (i) can be carried out by any method known to one skilled in the art, referring to liquid-solid, gas-solid separation systems . Suitable examples may be, without limitation, centrifugation, filtration, decantation, sedimentation. Preferably the separation system is by centrifugation.
  • Regeneration means the process by which the impurities of sulfur compounds can be removed from the surface of the sulphide composite material, and thus achieve that said material becomes active again as a desulfurizer.
  • the regeneration of the sulphided composite material is carried out by treating said material with an inert gas stream, preferably nitrogen, an organic solvent stream, such as dichloromethane, or by heat application in vacuum conditions.
  • the regeneration with an organic solvent stream is carried out at a temperature between 0 and 100 ° C.
  • Regeneration with an inert gas stream or under vacuum is carried out at a temperature between 100 ° C and 750 ° C, preferably between 100 ° C and 300 ° C, and more preferably at 250 ° C.
  • Said regeneration is carried out, for a period of time sufficient to substantially remove adsorbed sulfur which may be between 1 second and 60 minutes.
  • the regeneration percentage of the composite material of the invention per cycle is greater than 95%, preferably greater than 98% and more preferably greater than 99%.
  • FIGURES Figure 1 a Scanning electron micrograph at 10000X of the composite material of the invention using silver as a metal cation, hereinafter AgNPs, obtained according to the procedure indicated in Example 1.1.
  • FIG. 1 b Scanning electron micrograph at 100000X of the composite material of the invention using silver as a metal cation, hereinafter AgNPs, obtained according to the procedure indicated in Example 1.1.
  • FIG. 1 c Scanning electron micrograph at 10000X of the composite material of the invention using gold as a metal cation, hereinafter AuNPs, obtained according to the procedure indicated in Example 1.2.
  • FIG. 1 d Scanning electron micrograph at 10000X of the composite material of the invention using copper as a metal cation, hereinafter CuNPs, obtained according to the procedure indicated in Example 1.3.
  • FIG. 1 Percentages of sulfur adsorbed as a function of the amount of adsorbent dispersed per gram of commercial fluid fuel, using the AgNPs material according to Example 4.1 and 4.2.
  • the circles and squares represent the values obtained with a dispersion of AgNPs at 8% (w / w) in n-hexadecane and with a dispersion of AgNPs at 40% (w / w) in n-hexadecane, respectively.
  • the determination of the percentage of polymer in the composite material of the invention was determined by thermogravimetric analysis performed in the Microcalorimetry service of the Institute of Advanced Chemistry of Catalonia.
  • the specific surface determination was calculated from the small angle X-ray scattering curves (SAXS).
  • SAXS small angle X-ray scattering curves
  • the equipment used was a HECUS S3-micro coupled to a GENIX-Fox-3D source and a PSD 50 HECUS detector. Samples of the composite material of the invention were analyzed in dodecane dispersion.
  • the salts of the metal cations were obtained from the supplier Sigma-Aldrich and the hydrophobically modified inulin polymer was obtained, courtesy of the manufacturer, Beneo BBC (Belgium).
  • the precipitate formed by substantially aggregated silver nanoparticles was redispersed using sulfur-free n-hexadecane to reach a weight concentration of 8% in hexadecane or dried in an oven at 100 ° C.
  • SAXS small angle X-ray scattering
  • the material contained 1.8% (w / w) of carbon, 0.25% (w / w) of hydrogen and 0.06% (w / w) of nitrogen. These proportions are in accordance with the presence of reducing polymer, and its oxidation products, used in the synthesis of the material.
  • Figure 1 shows the scanning electron micrograph of the solid obtained, where it is observed that its surface is composed of nanoparticles in substantially aggregate form smaller than what is obtained by other procedures, which gives an appearance of roughness (determination to 10,000 increases).
  • Figure 1b with 100,000 increases shows that said roughness is produced by silver nanoparticles.
  • the process of the present invention makes it possible to obtain a material comprising nanoparticles of noble metals in substantially aggregate form with a larger adsorbent surface.
  • the control of obtaining these particles depends on the conditions of pH, temperature and especially the reducing agent used.
  • the resulting solution was allowed to react for a period of 12 hours between 90 ° C and 100 ° C with constant agitation and protected from light. Subsequently, the reaction crude was centrifuged. The sediment obtained was washed with water a total of 3 times by decantation / centrifugation cycles. Finally, the precipitate formed by copper nanoparticles in substantially aggregate form was redispersed using sulfur-free n-decane to reach a weight concentration of 8% in decane or dried in an oven at 100 ° C.
  • Figure 1 d shows the scanning electron micrograph of the solid obtained where it is observed that its surface is composed of nanoparticles in substantially aggregate form with some roughness.
  • the adsorbent was precipitated silver obtained by precipitation of the metal in the presence of ascorbic acid as a reductant.
  • 1 g of commercial fluid hydrocarbon, containing 1% (w / w) sulfur was weighed, and 250 mg of the dry adsorbent material was added. The mixture was homogenized and allowed to react for 24 hours at room temperature. Once the reaction was over, the crude was centrifuged until effective separation of the adsorbent was achieved.
  • Example 2 The same procedure described in Example 2 was followed, but using a dispersion of substantially aggregated silver nanoparticles (AgNPs) in 8% hexadecane (w / w), obtained according to the procedure set out in Example 1.1.
  • adsorbent dispersion (0, 200, 400 and 800 mg) were tested, the fuel weights being respectively: 2.2 g, 2 g, 1.8 g and 1.4 g, to have a final weight of 2.2 g in all cases.
  • the sulfur analyzes before (by deduction) and after (directly) the treatment of the previous samples were carried out after 24 hours of contact and were the following: from 1.00 to 1.00% (w / w), from 0.92 to 0.67% (p / p), from 0.85 to 0.36% (p / p) and from 0.75 to 0.33% (p / p), respectively.
  • Example 4.1 The same procedure described in Example 4.1 was followed, but using a dispersion of substantially aggregated silver nanoparticles (AgNPs) in 40% hexadecane (w / w), obtained according to the procedure set out in Example 1.1.
  • adsorbent dispersion (0, 200, 400 and 800 mg) were tested, the fuel weights being respectively: 2.2 g, 2 g, 1.8 g and 1.4 g, to have a final weight of 2.2 g in all cases.
  • the sulfur analyzes before (by deduction) and after (directly) the treatment of the previous samples were carried out after 24 hours of contact and were the following: from 1.00 to 1.00% (w / w), from 0.95 to 0.67% (p / p), from 0.90 to 0.58% (p / p) and from 0.82 to 0.38% (p / p), respectively.
  • the results of the fluid desulfurization process of the invention with the commercial hydrocarbon using a dispersion of substantially aggregated silver nanoparticles (AgNPs) in 40% hexadecane (w / w) sulfur showed a maximum adsorption capacity of 46 mg S / g Adsorbent, according to results obtained by elementary analysis.
  • the yield as adsorbent and therefore the desulfurization capacity is much higher using the AgNPs material as adsorbent.
  • Example 4 The same procedure as described in Example 4 was followed, but in this case 400 mg of 40% dispersion (w / w) of AgNPs in hexadecane was used on 1 mL of a 0.23% solution of dibenzothiophene (DBT) ( p / p) in dodecane as a model fluid fuel and a time of 20 hours.
  • DBT dibenzothiophene
  • a second desulfurization cycle was performed using the fluid resulting from Example 6.1 after removing the above sulfur adsorbent and 400 mg of a new 40% (w / w) dispersion of AgNPs was added.
  • a reduction of DBT concentration in the supernatant liquid was observed from 0.16% (see Example 6.1) to 0.13% (w / w) (i.e. a reduction from 30% to 45% with respect to the initial concentration, see Table 2).

Abstract

The invention relates to a material with a large specific surface area, consisting of a surfactant polymer and metal nanoparticles. The invention also relates to the synthesis method of said material, and to the use thereof as a desulfurising agent with a high level of efficiency, in fluids containing impurities of sulfurated compounds, especially liquid fuels, and more especially in derivatives of oil and other sources used in the field of energy.

Description

MATERIAL COMPUESTO ADSORBENTE QUE COMPRENDE METALES NOBLES Y UN POLÍMERO TENSIOACTIVO, PROCEDIMIENTO DE SÍNTESIS Y SU UTILIZACIÓN  ADSORBENT COMPOSITE MATERIAL THAT INCLUDES NOBLE METALS AND A TENSIOACTIVE POLYMER, SYNTHESIS PROCEDURE AND ITS USE
PARA LA DESULFURACIÓN DE FLUIDOS DESCRIPCIÓN  FOR THE DESULFURATION OF FLUIDS DESCRIPTION
SECTOR Y OBJETO DE LA INVENCIÓN SECTOR AND OBJECT OF THE INVENTION
La presente invención se sitúa en los sectores de la industria del petróleo, de la energía y del medio ambiente, ya que se refiere a un material compuesto adsorbente que comprende metales nobles en estado reducido y polímeros tensioactivos, a su procedimiento de síntesis y a su utilización para el tratamiento de eliminación de azufre en fluidos. ESTADO DE LA TÉCNICA The present invention is located in the sectors of the oil, energy and environmental industries, since it refers to an adsorbent composite material comprising noble metals in a reduced state and surfactant polymers, its synthesis process and its use for the treatment of sulfur removal in fluids. STATE OF THE TECHNIQUE
En el contexto actual de agotamiento del petróleo, es cada vez más importante intentar utilizar los combustibles derivados de los recursos fósiles lo más efectivamente posible y con la mejor calidad posible. La reducción de azufre en combustibles es una medida necesaria para rebajar el impacto nocivo sobre la calidad del aire producido durante la combustión de hidrocarburos (gasolina, diesel, jet fuel, fuel pesado, gas natural, etc.). La combustión de compuestos sulfurosos presentes como impureza produce óxidos de azufre que son responsables, entre otros fenómenos, de la lluvia ácida y del incremento de partículas en suspensión. Por otra parte, la acidificación de los gases tiene efectos irreversibles sobre las partes metálicas de los motores de combustión interna, especialmente en los agentes catalíticos del sistema del control de emisiones, reduciendo su eficiencia catalítica para la oxidación del monóxido de carbono, hidrocarburos y compuestos orgánicos volátiles, resultando en mayores niveles de contaminación ambiental (Pet. Technol. Q., 2001 , 2, 69-73). Asimismo, constituye un problema general la presencia de compuestos sulfurosos en efluentes de otras industrias y cuyo vertido al medio ambiente puede suponer problemas de contaminación ambiental paralelos a los generados por la combustión de productos que contienen azufre así como problemas de seguridad industrial y salud humana. La evidente preocupación acerca del impacto negativo sobre la salud y el medio ambiente ha suscitado un activo debate público sobre la generación energética y sus derivadas ambientales. Así, se han consensuado iniciativas legislativas para la regulación de la proporción de azufre presente en los combustibles líquidos y los límites de emisión de gases contaminantes. Así, según la directiva europea 2003/17/CE el contenido máximo de azufre en gasolina y gasóleo para uso en vehículos de carretera es de 10 mg/kg (10 ppm). También, la Organización Marítima Internacional (IMO) y la Unión Europea (EU) han establecido límites para disminuir el contenido de azufre en los combustibles pesados empleados en los motores marinos. In the current context of oil depletion, it is increasingly important to try to use fuels derived from fossil resources as effectively as possible and with the best possible quality. The reduction of sulfur in fuels is a necessary measure to reduce the harmful impact on the quality of the air produced during the combustion of hydrocarbons (gasoline, diesel, jet fuel, heavy fuel, natural gas, etc.). The combustion of sulphurous compounds present as an impurity produces sulfur oxides that are responsible, among other phenomena, for acid rain and the increase of suspended particles. On the other hand, the acidification of gases has irreversible effects on the metal parts of internal combustion engines, especially in the catalytic agents of the emission control system, reducing their catalytic efficiency for the oxidation of carbon monoxide, hydrocarbons and compounds. volatile organic, resulting in higher levels of environmental pollution (Pet. Technol. Q., 2001, 2, 69-73). Likewise, the presence of sulphurous compounds in effluents from other industries is a general problem and whose discharge into the environment can lead to environmental pollution problems parallel to those generated by the combustion of sulfur-containing products as well as industrial safety and human health problems. The obvious concern about the negative impact on health and the environment has sparked an active public debate about energy generation and its environmental derivatives. Thus, legislative initiatives have been agreed for the regulation of the proportion of sulfur present in liquid fuels and the emission limits of polluting gases. Thus, according to European directive 2003/17 / CE the maximum sulfur content in gasoline and diesel for use in road vehicles is 10 mg / kg (10 ppm). Also, the International Maritime Organization (IMO) and the European Union (EU) have established limits to reduce the sulfur content in heavy fuels used in marine engines.
En vista de la necesidad creciente de poder reducir el contenido en azufre de los combustibles, la industria está dedicando cada vez más esfuerzos al desarrollo de tecnologías alternativas más eficaces, más sostenibles y menos peligrosas (Catal. Sci. Technol., 201 1 , 1 , 23-42). Las tecnologías actuales de desulfuración de combustibles líquidos incluyen principalmente la hidrodesulfuración (HDS), la desulfuración oxidativa (ODS), el cracking catalítico, la biodesulfuración y la desulfuración por adsorción, entre otras. In view of the growing need to reduce the sulfur content of fuels, the industry is devoting more and more efforts to the development of more effective, more sustainable and less dangerous alternative technologies (Catal. Sci. Technol., 201 1, 1 , 23-42). Current technologies for desulfurization of liquid fuels mainly include hydrodesulfurization (HDS), oxidative desulfurization (ODS), catalytic cracking, biodesulfurization and adsorption desulfurization, among others.
El HDS es el método más potente utilizado en refinerías para producir gasolina y diesel de bajo contenido en azufre. Esta técnica se basa en la hidrogenación catalítica de los distintos compuestos sulfurados presentes en los hidrocarburos. Normalmente, su rango de aplicación son los productos de destilación primaria y del craqueo del petróleo con niveles superiores a las 1000 ppm de azufre en algunos casos. Aun así, la tecnología HDS presenta algunas limitaciones que no permiten su utilización en muchos otros campos de aplicación como las pilas de combustible o los fueles pesados. Estas limitaciones se deben fundamentalmente a dos factores, la presencia de compuestos poliaromáticos (de tres o más anillos) que alteran el funcionamiento normal de la desulfuración (Environ. Sci. Technol. 2008, 42, 1944-1947) y, la presencia de compuestos tiofénicos (tiofeno, benzotiofeno y dibenzotiofenos entre otros) muy resistentes a la hidrogenación y que requieren unas condiciones más severas (elevadas temperaturas y presiones de hidrógeno gas) para ser eliminados (RSC Advances, 2012, 2, 1700-171 1). Estos factores impiden, por ejemplo, la obtención de productos con niveles ultra bajos de azufre (< 10 ppm), un requerimiento básico para la alimentación de las pilas de combustible, así como la utilización de la HDS en la recuperación de fueles pesados para la industria, donde la proporción de asfáltenos es a menudo muy elevada. Otro problema que presenta la HDS es que durante el proceso también se favorecen reacciones secundarias como la saturación de olefinas, lo que aumenta el número de cetanos y a su vez, disminuye el de octanos. Esta es una característica idónea para los motores diesel, si no fuera por el incremento extra de capacidad y cantidad de hidrógeno necesarios en el proceso. The HDS is the most powerful method used in refineries to produce low sulfur gasoline and diesel. This technique is based on the catalytic hydrogenation of the various sulfur compounds present in hydrocarbons. Normally, its range of application is the products of primary distillation and oil cracking with levels above 1000 ppm of sulfur in some cases. Even so, HDS technology has some limitations that do not allow its use in many other fields of application such as fuel cells or heavy fuels. These limitations are mainly due to two factors, the presence of polyaromatic compounds (of three or more rings) that alter the normal functioning of desulfurization (Environ. Sci. Technol. 2008, 42, 1944-1947) and, the presence of compounds thiophenes (thiophene, benzothiophene and dibenzothiophenes among others) very resistant to hydrogenation and requiring more severe conditions (high temperatures and pressures of hydrogen gas) to be eliminated (RSC Advances, 2012, 2, 1700-171 1). These factors prevent, for example, the obtaining of products with ultra low sulfur levels (<10 ppm), a basic requirement for the fuel cell power supply, as well as the use of the HDS in the recovery of heavy fuels for industry, where the proportion of asphaltens is often very high. Another problem presented by the HDS is that secondary reactions such as olefin saturation are also favored during the process, which increases the number of cetans and, in turn, decreases the octane number. This is an ideal feature for diesel engines, if not for the extra increase in capacity and amount of hydrogen needed in the process.
Las otras técnicas, mucho menos utilizadas, están siendo mejoradas y optimizadas con buenos resultados pero aún no son aplicables a escala industrial. Este es el caso de la desulfuración oxidativa (ODS), una técnica basada en la oxidación a compuestos hidrosolubles de los compuestos sulfurados que consigue notables reducciones, de hasta dos órdenes de magnitud, en el contenido de azufre de combustibles residuales (Energy & Fuels 2000, 14, 1232-1239). Otro caso es la técnica de la biodesulfuración, que utiliza organismos vivos en lugar de productos químicos como agentes oxidantes (Current Opinión in Biotechnology 2000, 1 1 :540-546). Sin embargo, en ambos casos, su puesta en marcha a escala industrial aún precisa de grandes esfuerzos. The other techniques, much less used, are being improved and optimized with good results but are not yet applicable on an industrial scale. This is the case of oxidative desulfurization (ODS), a technique based on the oxidation to water-soluble compounds of sulfur compounds that achieves significant reductions, up to two orders of magnitude, in the sulfur content of residual fuels (Energy & Fuels 2000 , 14, 1232-1239). Another case is the biodesulphurization technique, which uses living organisms instead of chemicals as oxidizing agents (Current Opinion in Biotechnology 2000, 1 1: 540-546). However, in both cases, its implementation on an industrial scale still requires great efforts.
Otra técnica de desulfuración es la desulfuración por adsorción selectiva. A priori más sostenible que las dos anteriores dado que no utiliza disolventes orgánicos y tiene menor coste energético, la desulfuración por adsorción selectiva es una técnica basada en la adsorción preferencial de los compuestos sulfurados en matrices porosas adsorbentes que permiten el paso del combustible a través de las mismas. Si bien los adsorbentes convencionales (carbón activo, silica-gel, alúmina, etc.) no consiguen muy buenos resultados, un diseño a nivel molecular del adsorbente puede aumentar considerablemente los rendimientos de desulfuración. Un ejemplo de ello son las zeolitas (nanopartículas de arcilla) modificadas con metales de transición (SCIENCE 301, 79, 2003) o con algunos óxidos metálicos de Ti, Zn, Mn, etc., que finamente divididos consiguen reducir cuantitativamente el azufre en el laboratorio (WO2002018517, WO2001032805). Esta técnica basada en las zeolitas presenta aún algunos inconvenientes que dificultan gravemente su aplicación industrial. Uno de ellos es que para ser viable la técnica es necesario poder regenerar el adsorbente. En este caso existe la posibilidad de regeneración, pero en cada ciclo se pierde un 5% de la capacidad desulfuradora. Otro inconveniente del uso de zeolitas en esta técnica es que su densidad no difiere mucho de la densidad de los fluidos líquidos. Esto ralentiza la separación de las zeolitas del fluido, lo que a su vez ralentiza cada ciclo de regeneración. Another desulfurization technique is desulfurization by selective adsorption. A priori more sustainable than the previous two since it does not use organic solvents and has a lower energy cost, selective adsorption desulfurization is a technique based on the preferential adsorption of sulfur compounds in porous adsorbent matrices that allow the passage of fuel through the same. While conventional adsorbents (active carbon, silica gel, alumina, etc.) do not achieve very good results, a molecular design of the adsorbent can greatly increase desulfurization yields. An example of this are the zeolites (clay nanoparticles) modified with transition metals (SCIENCE 301, 79, 2003) or with some metallic oxides of Ti, Zn, Mn, etc., which finely divided manage to quantitatively reduce the sulfur in the laboratory (WO2002018517, WO2001032805). This zeolite-based technique still has some drawbacks that seriously hinder its industrial application. One of them is that to be viable the technique is necessary to regenerate the adsorbent. In this case there is a possibility of regeneration, but in each cycle 5% of the desulfurizing capacity is lost. Another drawback of using zeolites in this technique is that their density does not differ much from the density of liquid fluids. This slows the separation of zeolites from the fluid, which in turn slows down each regeneration cycle.
También es conocido el uso de metales nobles en estados reducidos, en especial en forma de nanopartículas, como catalizadores para aumentar la capacidad de desulfuración en alguno de los procesos de tratamiento de combustibles pesados ya conocidos (US20100314286). It is also known to use noble metals in reduced states, especially in the form of nanoparticles, as catalysts to increase the desulfurization capacity in any of the known heavy fuel treatment processes (US20100314286).
Por otra parte, las técnicas utilizadas convencionalmente para conseguir la síntesis de nanopartículas de metales en estados reducidos que presenten capacidades adsorbentes, precisan de la combinación diversos agentes para obtener los resultados adecuados (Adv Coll Int Sci, 2009, 145, 83-96). Así por ejemplo, el artículo de revisión Chem. Mater 2013, 25 (9), 1465-1476 señala la utilización de una combinación de ácido ascórbico y bromuro de cetil trimetil amonio o oleil amina. On the other hand, the techniques conventionally used to achieve the synthesis of nanoparticles of metals in reduced states that have adsorbent capacities, require the combination of various agents to obtain the appropriate results (Adv Coll Int Sci, 2009, 145, 83-96). Thus, for example, the review article Chem. Mater 2013, 25 (9), 1465-1476 indicates the use of a combination of ascorbic acid and cetyl trimethyl ammonium bromide or oleyl amine.
Sin embargo, y en el conocimiento de los inventores, no se conoce ningún método de adsorción selectiva de azufre en combustibles fluidos o en cualquier otro tipo de efluentes industriales, que utilice únicamente metales nobles en estado reducido, y que se obtengan según el procedimiento que aquí se protege, para conseguir la reducción eficaz de los niveles de azufre en dichos fluidos, con elevados rendimientos de captura de azufre por gramo de adsorbente y permitiendo, adicionalmente, la regeneración del mismo. However, and in the knowledge of the inventors, there is no known method of selective adsorption of sulfur in fluid fuels or in any other type of industrial effluents, which uses only noble metals in a reduced state, and which are obtained according to the procedure that here it is protected, in order to achieve the effective reduction of sulfur levels in said fluids, with high sulfur capture yields per gram of adsorbent and, in addition, allowing its regeneration.
EXPLICACIÓN DE LA INVENCIÓN Breve descripción de la invención EXPLANATION OF THE INVENTION Brief description of the invention
La presente invención se refiere a un material compuesto, de elevada superficie específica y alta capacidad de adsorción selectiva de azufre, que comprende nanopartículas de metales nobles en un estado de valencia reducida que mayoritariamente es 0 y moléculas de un polímero tensioactivo, de forma sustancialmente agregada. The present invention relates to a composite material, with a high specific surface area and high sulfur selective adsorption capacity, comprising nanoparticles of noble metals in a state of reduced valence that is mostly 0 and molecules of a surfactant polymer, substantially added .
La invención también se refiere al procedimiento de síntesis de dicho material compuesto, que comprende las siguientes etapas: a) preparar una solución catiónica acuosa que comprende, al menos, un catión de "metal noble"; The invention also relates to the synthesis process of said composite material, which comprises the following steps: a) preparing an aqueous cationic solution comprising at least one "noble metal"cation;
b) preparar una solución acuosa que comprende, al menos, un polímero tensioactivo con grupos moderadamente reductores;  b) preparing an aqueous solution comprising at least one surfactant polymer with moderately reducing groups;
c) adicionar la solución de la etapa (a) sobre la solución de la etapa (b) y dejar reaccionar, hasta reducción del catión metálico, dando lugar al material compuesto; y d) aislamiento y estabilización del material compuesto de la etapa (c).  c) add the solution of step (a) on the solution of step (b) and allow to react, until reduction of the metal cation, giving rise to the composite material; and d) isolation and stabilization of the composite material of step (c).
Alternativamente, las etapas anteriores (a), (b) y (c) se pueden condensar en una sola etapa (a') en la que se disuelven el catión metálico y el polímero en una única solución acuosa que se deja reaccionar hasta reducción del catión metálico. Alternatively, the above steps (a), (b) and (c) can be condensed in a single stage (a ' ) in which the metal cation and polymer are dissolved in a single aqueous solution that is allowed to react until reduction of the metal cation
La invención se refiere también al uso del material compuesto para la eliminación de azufre en fluidos, especialmente en combustibles fluidos, y más especialmente en derivados del petróleo u otras fuentes dedicadas al campo de la energía. The invention also relates to the use of the composite material for the removal of sulfur in fluids, especially in fluid fuels, and more especially in petroleum derivatives or other sources dedicated to the field of energy.
Finalmente, la invención se refiere, a un procedimiento de eliminación de azufre en fluidos, que comprende las siguientes etapas: Finally, the invention relates to a process for removing sulfur in fluids, which comprises the following steps:
i) poner en contacto el material compuesto con el combustible fluido a tratar, para producir la desulfuración del fluido;  i) contacting the composite material with the fluid fuel to be treated, to produce the desulfurization of the fluid;
ii) separar el fluido desulfurado del material compuesto resultante; y  ii) separating the desulfurized fluid from the resulting composite material; Y
iii) regenerar al menos una parte del material compuesto resultante eliminando sustancialmente el azufre adsorbido. Descripción detallada de la invención  iii) regenerate at least a portion of the resulting composite material by substantially removing adsorbed sulfur. Detailed description of the invention
La presente invención se basa en la observación de que un material compuesto, que presenta una elevada superficie específica, y que comprende nanopartículas de metales nobles y un polímero tensioactivo, permite la interacción reversible con compuestos sulfurados, lo que le confiere capacidad como adsorbente para su uso en la desulfuración por adsorción selectiva de fluidos (ver Ejemplos 4 a 6), permite su separación del fluido desulfurado y su regeneración a través de la desorción de los compuestos de azufre (ver Ejemplo 6). La presente invención también se basa en la observación de que es el procedimiento de síntesis del material compuesto que utiliza, al menos, un catión de un metal noble y, al menos, un polímero tensioactivo que contiene grupos moderadamente reductores (ver Ejemplos 1.1 , 1.2 y 1.3), el que favorece que el material compuesto presente las características que lo definen, y que son: un estado sustancialmente agregado, un estado de valencia reducida que mayoritariamente es 0 y una alta superficie específica. The present invention is based on the observation that a composite material, which has a high specific surface area, and which comprises nanoparticles of noble metals and a surfactant polymer, allows reversible interaction with sulfur compounds, which gives it the capacity as adsorbent for its use in desulfurization by selective adsorption of fluids (see Examples 4 to 6), allows its separation of desulfurized fluid and its regeneration through desorption of sulfur compounds (see Example 6). The present invention is also based on the observation that it is the synthesis process of the composite material that uses at least one cation of a noble metal and at least one surfactant polymer containing moderately reducing groups (see Examples 1.1, 1.2 and 1.3), which favors the composite material having the characteristics that define it, and which are: a substantially aggregate state, a reduced valence state that is mostly 0 and a high specific surface.
Las ventajas técnicas del material compuesto, del procedimiento de síntesis del mismo, y de su uso para la desulfuración de combustibles fluidos se indican a continuación: The technical advantages of the composite material, its synthesis procedure, and its use for the desulfurization of fluid fuels are indicated below:
a) material compuesto:  a) composite material:
-presenta una elevada superficie específica, una alta capacidad de desulfuración y es fácilmente separable del medio de reacción;  - it has a high specific surface area, a high desulfurization capacity and is easily separable from the reaction medium;
b) procedimiento de síntesis:  b) synthesis procedure:
-resulta sencillo, económico y utiliza disolventes y materiales medioambientalmente aceptables;  -It is simple, economical and uses environmentally acceptable solvents and materials;
c) utilización como agente de desulfuración en fluidos:  c) use as a desulfurization agent in fluids:
-permite su utilización en fluidos que presenten una viscosidad cinemática comprendida entre 0.1 y 1000 cS a 1 atmósfera de presión,  - allows its use in fluids that have a kinematic viscosity between 0.1 and 1000 cS at 1 pressure atmosphere,
-permite su utilización para obtener niveles ultra bajos de azufre, y trabajar con sustratos desde 5 ppm y hasta niveles moderadamente altos (20000 ppm) en el fluido a tratar,  - allows its use to obtain ultra-low levels of sulfur, and work with substrates from 5 ppm to moderately high levels (20,000 ppm) in the fluid to be treated,
-presenta un alto potencial de capacidad regenerativa en relación a otros adsorbentes como zeolitas o adsorbentes basados en nanotubos de carbono,  - it has a high potential for regenerative capacity in relation to other adsorbents such as zeolites or carbon nanotube based adsorbents,
-permite su regeneración de forma casi ilimitada a través de tratamientos sencillos, -presenta una alta estabilidad química durante el proceso de regeneración debido a su elevada pureza superficial e interna, y  -allows its regeneration almost unlimitedly through simple treatments, -presents high chemical stability during the regeneration process due to its high surface and internal purity, and
-presenta un bajo coste e impacto ambiental.  -It presents a low cost and environmental impact.
Es por ello que un primer aspecto de la invención lo constituye un material compuesto con capacidad de adsorción selectiva de azufre, que comprende un porcentaje en peso mayoritario de nanopartículas de metales nobles en un estado de valencia reducida que mayoritariamente es 0, y un porcentaje en peso minoritario de un polímero tensioactivo, en adelante material compuesto de la invención, que presenta una superficie específica total superior a 1 m2/g y un radio aparente inferior a 300 nm. En una realización del primer aspecto de la invención, el material compuesto de la invención comprende un porcentaje en peso del polímero tensioactivo sobre el peso total del material comprendido entre el 0 y el 50% (p/p), y más preferentemente entre el 0.1 y el 10% (p/p). Dicho valor se puede obtener a partir del análisis termogravimétrico del material seco. That is why a first aspect of the invention is a composite material with selective sulfur adsorption capacity, which comprises a percentage by weight of nanoparticles of noble metals in a state of reduced valence that is mostly 0, and a percentage in minor weight of a surfactant polymer, hereinafter composite material of the invention, having a total specific surface area greater than 1 m 2 / g and an apparent radius of less than 300 nm. In an embodiment of the first aspect of the invention, the composite material of the invention comprises a percentage by weight of the surfactant polymer over the total weight of the material between 0 and 50% (w / w), and more preferably between 0.1 and 10% (p / p). Said value can be obtained from the thermogravimetric analysis of the dry material.
En otra realización del primer aspecto de la invención, el material compuesto de la invención comprende partículas de metales nobles de dimensiones comprendidas entre 2 y 300 nanometros que se encuentran formando agregados de dimensiones de entre 1 y 10000 micrómetros juntamente con moléculas de polímero tensioactivo. In another embodiment of the first aspect of the invention, the composite material of the invention comprises noble metal particles of dimensions between 2 and 300 nanometers that are forming aggregates of dimensions between 1 and 10,000 microns together with surfactant polymer molecules.
En otra realización del primer aspecto de la invención, las nanopartículas metálicas son de metales nobles, preferentemente de plata, de cobre o de oro, y más preferentemente de plata. In another embodiment of the first aspect of the invention, the metal nanoparticles are of noble metals, preferably silver, copper or gold, and more preferably silver.
Por el término "metal noble" se entiende un metal que presenta potencial de reducción estándar más positivo que el potencial de reducción estándar del hidrógeno. The term "noble metal" means a metal that has a more positive standard reduction potential than the standard hydrogen reduction potential.
Por el término "polímero tensioactivo" se entiende en la presente invención a cadenas de monómeros unidos covalentemente que en su estructura global presentan regiones hidrófilas y regiones hidrófobas. Dichas regiones pueden ser producto de la naturaleza química de dos monómeros distintos (uno hidrófilo y uno hidrófobo) o de la inclusión de modificaciones sobre un polímero hidrófilo o hidrófobo. Además, los polímeros tensioactivos en la presente invención contienen grupos moderadamente reductores, es decir, que tienen en su estructura química grupos con potencial de reducción moderadamente positivo, como por ejemplo, sin limitarse el grupo hidroxilo o aldehido. Ejemplos de polímeros tensioactivos son los polisacáridos modificados hidrofóbicamente y los polímeros etoxilados modificados hidrofóbicamente, en particular polímeros de fructosa e hidroxietilcelulosa. By the term "surfactant polymer" is meant in the present invention covalently linked monomer chains that in their overall structure have hydrophilic regions and hydrophobic regions. Said regions may be a product of the chemical nature of two different monomers (one hydrophilic and one hydrophobic) or the inclusion of modifications on a hydrophilic or hydrophobic polymer. In addition, the surfactant polymers in the present invention contain moderately reducing groups, that is, they have in their chemical structure groups with moderately positive reduction potential, such as, for example, without limiting the hydroxyl or aldehyde group. Examples of surfactant polymers are hydrophobically modified polysaccharides and hydrophobically modified ethoxylated polymers, in particular fructose and hydroxyethylcellulose polymers.
En otra realización del primer aspecto de la invención, el polímero tensioactivo es un polisacárido modificado hidrofóbicamente, y preferentemente es inulina modificada hidrofóbicamente. En otra realización del primer aspecto de la invención, el material compuesto de la invención es un material en polvo o está redispersado en un disolvente orgánico, preferentemente tipo hidrocarburo, o en un alcohol alifático libres de azufre, o en una mezcla de ambos. In another embodiment of the first aspect of the invention, the surfactant polymer is a hydrophobically modified polysaccharide, and is preferably hydrophobically modified inulin. In another embodiment of the first aspect of the invention, the composite material of the invention is a powder material or is redispersed in an organic solvent, preferably hydrocarbon type, or in a sulfur-free aliphatic alcohol, or in a mixture of both.
En una realización preferida del primer aspecto de la invención, el material compuesto de la invención está redispersado en una proporción comprendida entre el 5 y el 95% (p/p), en un disolvente orgánico tipo hidrocarburo. En una realización más preferida del primer aspecto de la invención, el material compuesto de la invención está redispersado en un hidrocarburo en una proporción comprendida entre el 5 y el 50% (p/p), que es preferentemente n-hexadecano. In a preferred embodiment of the first aspect of the invention, the composite material of the invention is redispersed in a proportion between 5 and 95% (w / w), in a hydrocarbon-type organic solvent. In a more preferred embodiment of the first aspect of the invention, the composite material of the invention is redispersed in a hydrocarbon in a proportion between 5 and 50% (w / w), which is preferably n-hexadecane.
Constituye un segundo aspecto de la invención un procedimiento de síntesis del material compuesto de la invención, en adelante procedimiento de síntesis de la invención, que comprende las siguientes etapas: A second aspect of the invention constitutes a synthesis process of the composite material of the invention, hereinafter a synthesis process of the invention, comprising the following steps:
a. preparar una solución catiónica acuosa que comprende, al menos, un catión de metal noble;  to. preparing an aqueous cationic solution comprising at least one noble metal cation;
b. preparar una solución acuosa que comprende, al menos, un polímero tensioactivo con grupos moderadamente reductores;  b. preparing an aqueous solution comprising at least one surfactant polymer with moderately reducing groups;
c. adicionar la solución de la etapa (a) sobre la solución de la etapa (b) y dejar reaccionar, preferentemente a una temperatura comprendida entre 70 y 110°C, hasta reducción del catión metálico, dando lugar a la formación del material compuesto de la invención;  C. add the solution of step (a) on the solution of step (b) and let it react, preferably at a temperature between 70 and 110 ° C, until reduction of the metal cation, resulting in the formation of the composite material of the invention;
d. aislamiento y estabilización del material compuesto formado en la etapa (c).  d. insulation and stabilization of the composite material formed in step (c).
Alternativamente, las etapas anteriores (a), (b) y (c) se pueden condensar en una sola etapa (a') en la que se disuelven el catión metálico y el polímero en una única solución acuosa que se deja reaccionar hasta reducción del catión metálico. Así, esta solicitud de patente también se refiere a un procedimiento de síntesis del material compuesto de la invención, que comprende las siguientes etapas: Alternatively, the above steps (a), (b) and (c) can be condensed in a single stage (a ') in which the metal cation and polymer are dissolved in a single aqueous solution that is allowed to react until reduction of the metal cation Thus, this patent application also refers to a synthesis process of the composite material of the invention, comprising the following steps:
a', preparar una solución acuosa que comprende al menos un catión de metal noble y al menos un polímero tensioactivo con grupos moderadamente reductores y dejar reaccionar, preferentemente a una temperatura comprendida entre 70 y 110°C, hasta reducción del catión metálico, dando lugar a la formación del material compuesto de la invención; y a ' , prepare an aqueous solution comprising at least one noble metal cation and at least one surfactant polymer with moderately reducing groups and allow to react, preferably at a temperature between 70 and 110 ° C, up to reduction of the metal cation, resulting in the formation of the composite material of the invention; Y
b'. aislamiento y estabilización del material compuesto formado en la etapa (a'). A lo largo de la presente invención, por "catión metálico" se entiende cualquier metal noble que permita obtener un material de estado de valencia reducida que mayoritariamente es 0 y un estado de agregación correspondiente a un sólido finamente dividido. El catión metálico puede ser, a título indicativo y no limitativo, cobre, plata u oro, y preferentemente plata. b ' . insulation and stabilization of the composite material formed in step (a ' ). Throughout the present invention, "metallic cation" means any noble metal that allows obtaining a material of reduced valence state that is mostly 0 and an aggregation state corresponding to a finely divided solid. The metal cation may be, by way of indication and not limitation, copper, silver or gold, and preferably silver.
El procedimiento de síntesis de la invención que se protege, en cualquiera de las alternativas que se describen en esta solicitud de patente, es el primer procedimiento que utiliza un polímero tensioactivo que contiene grupos moderadamente reductores como agente único para conseguir una triple función: como agente reductor, como agente inductor de la agregación de nanopartículas y como agente protector. La utilización de este polímero permite que las nanopartículas obtenidas no estén individualizadas, si no que se presenten en forma sustancialmente agregada, tal y como indican Morros et al. (Soft Matter, 2012, 8, 1 1353) para los agregados de inulina. De esta forma, es posible obtener un material que combina una elevada superficie específica (que confiere una alta eficiencia y eficacia), con una agregación secundaria que lo hace útil para su uso como adsorbente fácilmente separable. The synthesis process of the invention that is protected, in any of the alternatives described in this patent application, is the first process that uses a surfactant polymer containing moderately reducing groups as a single agent to achieve a triple function: as an agent reducer, as an inducing agent for nanoparticle aggregation and as a protective agent. The use of this polymer allows that the nanoparticles obtained are not individualized, but that they are presented in substantially aggregate form, as indicated by Morros et al. (Soft Matter, 2012, 8, 1 1353) for inulin aggregates. In this way, it is possible to obtain a material that combines a high specific surface (which confers high efficiency and effectiveness), with a secondary aggregation that makes it useful for use as an easily separable adsorbent.
Por "crudo de reacción" se entiende una solución acuosa que comprende las soluciones y compuestos de las etapas (a) y (b), o de la etapa (a'), del procedimiento de síntesis de la invención, en la que tiene lugar la reacción desde su inicio hasta el final de la misma. By "reaction crude" is meant an aqueous solution comprising the solutions and compounds of steps (a) and (b), or of step (a '), of the synthesis process of the invention, in which it takes place the reaction from its beginning to the end of it.
Por "agente reductor" se entiende cualquier especie química que en contacto con el catión del metal de interés le aporta los electrones necesarios para su paso a metal, siendo su potencial estándar de reducción negativo. The term "reducing agent" means any chemical species that, in contact with the cation of the metal of interest, provides the necessary electrons for its passage to metal, being its standard potential for negative reduction.
Por "agente protector" (en inglés "capping agent") se entiende cualquier especie química suficientemente afín a superficies metálicas cuya presencia en solución produce una capa adsorbida que impide el crecimiento del cristal formado por átomos metálicos. Normalmente se trata de tensioactivos que forman una barrera entre la partícula y los cationes en solución. En una realización del segundo aspecto de la invención, el catión metálico de la etapa (a) o (a') se elige de entre cualquier metal noble que permita obtener un material de estado de valencia reducida que mayoritariamente es 0 y un estado de agregación correspondiente a un sólido finamente dividido, seleccionado a título indicativo y no limitativo de entre, catión de plata, catión de cobre y catión de oro y preferentemente catión de plata. By "protective agent" (in English "capping agent") means any chemical species sufficiently related to metal surfaces whose presence in solution produces an adsorbed layer that prevents the growth of the crystal formed by metal atoms. Usually these are surfactants that form a barrier between the particle and the solution cations. In an embodiment of the second aspect of the invention, the metal cation of step (a) or (a ') is chosen from any noble metal that allows obtaining a material of reduced valence state that is mostly 0 and an aggregation state corresponding to a finely divided solid, selected by way of indication and not limiting between, silver cation, copper cation and gold cation and preferably silver cation.
En otra realización del segundo aspecto de la invención, el catión metálico de la etapa (a) o (a') se utiliza según una de las siguientes presentaciones, sal soluble o disolución del metal en medio ácido oxidante fuerte y preferentemente en forma de sal soluble. In another embodiment of the second aspect of the invention, the metal cation of step (a) or (a ') is used according to one of the following presentations, soluble salt or solution of the metal in strong oxidizing acid medium and preferably in the form of salt soluble.
En una realización preferida del segundo aspecto de la invención, el catión metálico de la etapa (a) o (a') es una solución del catión de plata. In a preferred embodiment of the second aspect of the invention, the metal cation of step (a) or (a ') is a solution of the silver cation.
Para el experto en la materia resultará obvio que se pueda utilizar como solución catiónica, cualquier solución que, en presencia o no de especies químicas, como por ejemplo agentes reguladores de pH, no precipiten el catión metálico, no formen un complejo que lo estabilice en su estado de oxidación haciendo inviable la reducción y no compitan con el catión metálico por el agente reductor. It will be obvious to the person skilled in the art that any solution that, in the presence or absence of chemical species, such as pH regulating agents, does not precipitate the metal cation, can not be used as a cationic solution, does not form a complex that stabilizes it in its oxidation state making the reduction unfeasible and does not compete with the metal cation for the reducing agent.
En otra realización del segundo aspecto de la invención, el catión metálico de la etapa (a) o (a'), se diluye en una solución reguladora del pH que se selecciona a título ilustrativo y no limitativo de entre soluciones bicarbonato/carbonato, cítrico/citrato, acético/acetato y fórmico/formiato, para obtener un valor de pH entre 2,0 y 8,5. Más preferentemente la solución es acético/acetato. In another embodiment of the second aspect of the invention, the metal cation of step (a) or (a ') is diluted in a pH regulating solution that is selected by way of illustration and not limited to citric bicarbonate / carbonate solutions. / citrate, acetic acid / acetate and formic / formate, to obtain a pH value between 2.0 and 8.5. More preferably the solution is acetic / acetate.
En otra realización preferida del segundo aspecto de la invención, el polímero tensioactivo que contiene grupos moderadamente reductores de la etapa (b) o (a'), es un polisacárido modificado hidrofóbicamente, preferentemente inulina modificada hidrofóbicamente. In another preferred embodiment of the second aspect of the invention, the surfactant polymer containing moderately reducing groups of step (b) or (a ') is a hydrophobically modified polysaccharide, preferably hydrophobically modified inulin.
Para el experto en la técnica, resultará evidente que es posible utilizar otros polímeros tensioactivos que contengan grupos moderadamente reductores, como por ejemplo, sin limitarse, la hidroxietilcelulosa modificada hidrofóbicamente o los polímeros etoxilados. Por el término "inulina modificada hidrofóbicamente" en la presente invención, se entiende a una molécula copolímero que consiste en un esqueleto lineal de fructosa con grados de polimerización medios comprendidos entre 10 y 100 unidades de D-fructosil unidas por enlaces β[2→1] y diversas cadenas hidrófobas unidas por enlaces éter, amida o éster. For those skilled in the art, it will be apparent that it is possible to use other surfactant polymers containing moderately reducing groups, such as, without limitation, hydrophobically modified hydroxyethylcellulose or ethoxylated polymers. By the term "hydrophobically modified inulin" in the present invention, a copolymer molecule is understood as consisting of a linear skeleton of fructose with average degrees of polymerization comprised between 10 and 100 units of D-fructosyl linked by β bonds [2 → 1 ] and various hydrophobic chains linked by ether, amide or ester bonds.
En otra realización del segundo aspecto de la invención, el polímero tensioactivo que contiene grupos moderadamente reductores de la etapa (b) o (a') se disuelve en una solución reguladora del pH. A título ilustrativo y no limitativo se selecciona de entre soluciones bicarbonato/carbonato, cítrico/citrato, acético/acetato, y fórmico/formiato, para obtener un valor de pH comprendido entre 2,0 y 8,5. Más preferentemente la solución es acético/acetato. En otra realización del segundo aspecto de la invención, el aislamiento del material compuesto obtenido en la etapa (d) o (b') se realiza mediante alguna técnica seleccionada, a título ilustrativo y no limitativo, de entre las siguientes, filtración, sedimentación o centrifugación del crudo de reacción, preferente centrifugación. En otra realización del segundo aspecto de la invención, en la estabilización del material compuesto aislado según la etapa (d) o (b'), se emplea alguna técnica seleccionada, a título ilustrativo y no limitativo, de entre las siguientes, secado y/o redispersión del material obtenido. Preferentemente el material compuesto obtenido se redispersa en un disolvente orgánico, más preferentemente hidrocarburos, o en un alcohol alifático libres de azufre, o en una mezcla de ambos. In another embodiment of the second aspect of the invention, the surfactant polymer containing moderately reducing groups of step (b) or (a ') is dissolved in a pH regulating solution. For illustrative and non-limiting purposes, it is selected from bicarbonate / carbonate, citric / citrate, acetic acid / acetate, and formic / formate solutions, to obtain a pH value between 2.0 and 8.5. More preferably the solution is acetic / acetate. In another embodiment of the second aspect of the invention, the isolation of the composite material obtained in step (d) or (b ' ) is performed by some technique selected, by way of illustration and not limitation, from among the following, filtration, sedimentation or centrifugation of the reaction crude, preferably centrifugation. In another embodiment of the second aspect of the invention, in the stabilization of the isolated composite material according to step (d) or (b ' ), some technique selected is used, by way of illustration and not limitation, of the following, drying and / or redispersion of the material obtained. Preferably, the composite material obtained is redispersed in an organic solvent, more preferably hydrocarbons, or in a sulfur-free aliphatic alcohol, or in a mixture of both.
Para conseguir esta redispersión, es conveniente eliminar el agua con lavados sucesivos con un disolvente de polaridad intermedia, preferentemente alcohol isopropílico, antes de incorporar el material obtenido en el disolvente orgánico. To achieve this redispersion, it is convenient to remove the water with successive washes with an intermediate polarity solvent, preferably isopropyl alcohol, before incorporating the material obtained in the organic solvent.
En otra realización del segundo aspecto de la invención, la estabilización del material compuesto según la etapa (d) o (b') se lleva a cabo mediante su redispersión en el disolvente orgánico en una proporción comprendida entre el 5 y el 95% (p/p). En una realización preferida del segundo aspecto de la invención, la redispersión del material compuesto se hace en una proporción comprendida entre el 5 y el 50% (p/p) y el disolvente orgánico tipo hidrocarburo es n-hexadecano libre de azufre. Un tercer aspecto de la invención lo constituye el empleo del material compuesto de la invención como agente desulfurador de alto rendimiento aplicable en fluidos que contengan impurezas de compuestos sulfurados, en adelante empleo de la invención, especialmente en combustibles fluidos, y más especialmente en derivados del petróleo u otras fuentes dedicadas al campo de la energía. In another embodiment of the second aspect of the invention, stabilization of the composite material according to step (d) or (b ' ) is carried out by redispersion in the organic solvent in a proportion between 5 and 95% (p / p). In a preferred embodiment of the second aspect of the invention, the redispersion of the composite material is made in a proportion between 5 and 50% (w / w) and the hydrocarbon-type organic solvent is sulfur-free n-hexadecane. A third aspect of the invention is the use of the composite material of the invention as a high performance desulphurizing agent applicable in fluids containing impurities of sulfur compounds, hereinafter employed by the invention, especially in fluid fuels, and more especially in derivatives of the oil or other sources dedicated to the field of energy.
En la presente invención por "fluidos que contienen impurezas de compuestos sulfurados" se entiende líquidos o gases que en su composición química presentan cantidades significativas de azufre, que por su utilización o simple existencia suponen algún riesgo para el medio ambiente y/o la salud humana y/o la viabilidad de los procesos industriales. Algunos ejemplos de ellos, sin limitarse, son los combustibles fluidos, los efluentes industriales, los efluentes domésticos o las aguas sulfurosas. In the present invention, "fluids containing impurities of sulfur compounds" means liquids or gases that in their chemical composition have significant amounts of sulfur, which by their use or simple existence pose some risk to the environment and / or human health and / or the viability of industrial processes. Some examples of them, without limitation, are fluid fuels, industrial effluents, domestic effluents or sulphurous waters.
Por "azufre" se entiende en la presente invención a azufre en cualquier forma como puede ser, sin limitarse, azufre elemental o un compuesto sulfurado presente habitualmente en los combustibles fluidos, como por ejemplo fuel diesel, gasolina craqueada, etc. Ejemplos de azufre que puede estar presente en un proceso de la presente invención incluyen, sin limitarse, a sulfuro de hidrógeno (H2S), disulfuro de carbono (CS2) y a todas las distintas familias de compuestos sulfurados, que contienen átomos de azufre en su estructura química, como por ejemplo los mercaptanos, los sulfuras y disulfuros orgánicos, los tiofenos, los benzotiofenos, los dibenzotiofenos, los alquiltiofenos, los alquilbenzotiofenos, y combinaciones de los mismos. By "sulfur" is meant in the present invention sulfur in any form such as, without limitation, elemental sulfur or a sulfur compound usually present in fluid fuels, such as diesel fuel, cracked gasoline, etc. Examples of sulfur that may be present in a process of the present invention include, without limitation, hydrogen sulfide (H 2 S), carbon disulfide (CS 2 ) and all the various families of sulfur compounds, which contain sulfur atoms. in its chemical structure, such as mercaptans, sulphides and organic disulfides, thiophenes, benzothiophenes, dibenzothiophenes, alkylthiophenes, alkylbenzothiophenes, and combinations thereof.
Por "combustible fluido" se entiende en la presente invención un compuesto que combinado con oxígeno libera energía y que puede encontrarse en forma de líquido, como la gasolina, el queroseno, fueloil, fuel diesel o el gasóleo; en forma de gas, como el hidrógeno, el gas natural o los gases licuados del petróleo; o como combinación de ambas. Por "efluente industrial" se entiende en la presente invención un efluente que contiene compuestos de azufre liberados por industrias, especialmente las químicas, que puedan poner en riesgo la población por inhalación o ingestión de dicho compuesto. Por "efluente doméstico" se entiende en la presente invención un efluente que contiene compuestos de azufre liberados por viviendas, como por ejemplo y sin limitarse, algunos medicamentos, que puedan poner en riesgo el medio ambiente, especialmente la flora y fauna salvajes. Por "aguas sulfurosas" se entiende en la presente invención vías de agua con compuestos de azufre que por su proximidad a fuentes naturales de azufre o por su paso junto a cualquier otro de los efluentes ya mencionados, suponen un riesgo para el medio ambiente y/o la población. El proceso de desulfuración o eliminación de azufre del fluido se basa en la adsorción de impurezas de compuestos de azufre en el material compuesto de la invención. By "fluid fuel" is meant in the present invention a compound that combined with oxygen releases energy and can be in the form of a liquid, such as gasoline, kerosene, fuel oil, diesel fuel or diesel; in the form of gas, such as hydrogen, natural gas or liquefied petroleum gases; or as a combination of both. By "industrial effluent" is meant in the present invention an effluent containing sulfur compounds released by industries, especially chemical ones, that may endanger the population by inhalation or ingestion of said compound. By "domestic effluent" is meant in the present invention an effluent containing sulfur compounds released by homes, such as and without limitation, some medications, which may endanger the environment, especially wild flora and fauna. "Sulphurous waters" means in the present invention waterways with sulfur compounds that, due to their proximity to natural sources of sulfur or due to their passage along with any other of the aforementioned effluents, pose a risk to the environment and / or the population The sulfur desulfurization or removal process of the fluid is based on the adsorption of impurities of sulfur compounds in the composite material of the invention.
Así, constituye un cuarto aspecto de la invención el procedimiento de desulfuración de fluidos que emplea el material compuesto de la invención, en adelante procedimiento de desulfuración de fluidos de la invención, y que comprende al menos las siguientes etapas: Thus, a fourth aspect of the invention constitutes the fluid desulphurization process that employs the composite material of the invention, hereinafter fluid desulphurization process of the invention, and which comprises at least the following steps:
i) poner en contacto el material compuesto de la invención, con el fluido a tratar, para producir la desulfuración del fluido;  i) contacting the composite material of the invention, with the fluid to be treated, to produce the desulfurization of the fluid;
ii) separar el fluido desulfurado del material compuesto sulfurado resultante; y iii) regenerar al menos una parte del material compuesto sulfurado eliminando sustancialmente el azufre adsorbido, en unas condiciones adecuadas de presión, temperatura y utilizando un agente de recuperación.  ii) separating the desulfurized fluid from the resulting sulfurized composite material; and iii) regenerating at least a part of the sulfurized composite material by substantially removing adsorbed sulfur, under suitable conditions of pressure, temperature and using a recovery agent.
Por "material compuesto sulfurado" se entiende el material compuesto de la invención que ha sido utilizado, al menos, en un tratamiento de desulfuración de fluidos. By "sulfurized composite material" is meant the composite material of the invention that has been used, at least, in a fluid desulfurization treatment.
En una realización del cuarto aspecto de la invención, la temperatura de la etapa (i) está comprendida entre el punto de fusión del fluido y 100°C. Preferentemente la temperatura está comprendida entre 0 y 50°C. En otra realización del cuarto aspecto de la invención, la presión de la etapa (i) está comprendida entre 0.1 bar y 300 bar. Preferentemente, la presión está entre 0.1 bar y 100 bar, más preferentemente es la presión atmosférica. En otra realización del cuarto aspecto de la invención, la concentración inicial de azufre en el fluido se encuentra por debajo del 2% (p/p) y se utiliza una relación comprendida entre 1 y 100g de material compuesto de la invención por gramo de azufre. In an embodiment of the fourth aspect of the invention, the temperature of step (i) is comprised between the melting point of the fluid and 100 ° C. Preferably the temperature is between 0 and 50 ° C. In another embodiment of the fourth aspect of the invention, the pressure of step (i) is between 0.1 bar and 300 bar. Preferably, the pressure is between 0.1 bar and 100 bar, more preferably it is the atmospheric pressure. In another embodiment of the fourth aspect of the invention, the initial concentration of sulfur in the fluid is below 2% (w / w) and a ratio between 1 and 100g of composite material of the invention per gram of sulfur is used. .
La separación del fluido desulfurado, ya sea líquido o gas, del material compuesto sulfurado resultante de la etapa (i) puede llevarse a cabo por cualquier método conocido por un experto en la materia, referente a sistemas de separación líquido-sólido, gas- sólido. Ejemplos adecuados pueden ser, sin limitarse, centrifugación, filtración, decantación, sedimentación. Preferentemente el sistema de separación es mediante centrifugación. The separation of the desulfurized fluid, either liquid or gas, from the sulphide composite material resulting from step (i) can be carried out by any method known to one skilled in the art, referring to liquid-solid, gas-solid separation systems . Suitable examples may be, without limitation, centrifugation, filtration, decantation, sedimentation. Preferably the separation system is by centrifugation.
Por "regeneración" se entiende el proceso por el que se consigue eliminar las impurezas de compuestos sulfurados de la superficie del material compuesto sulfurado, y conseguir así que dicho material vuelva a ser activo como desulfurador. En una realización preferida del cuarto aspecto de la invención, la regeneración del material compuesto sulfurado se realiza por tratamiento de dicho material con una corriente de gas inerte, preferentemente nitrógeno, una corriente de disolvente orgánico, como por ejemplo diclorometano, o mediante aplicación de calor en condiciones de vacío. La regeneración con una corriente de disolvente orgánico se realiza a una temperatura comprendida entre 0 y 100°C. La regeneración con una corriente de gas inerte o en vacío se realiza a una temperatura comprendida entre 100°C y 750°C, preferentemente entre 100°C y 300°C, y más preferentemente a 250°C. Dicha regeneración se lleva a cabo, durante un período de tiempo suficiente para eliminar sustancialmente el azufre adsorbido que puede estar comprendido entre 1 segundo y 60 minutos. "Regeneration" means the process by which the impurities of sulfur compounds can be removed from the surface of the sulphide composite material, and thus achieve that said material becomes active again as a desulfurizer. In a preferred embodiment of the fourth aspect of the invention, the regeneration of the sulphided composite material is carried out by treating said material with an inert gas stream, preferably nitrogen, an organic solvent stream, such as dichloromethane, or by heat application in vacuum conditions. The regeneration with an organic solvent stream is carried out at a temperature between 0 and 100 ° C. Regeneration with an inert gas stream or under vacuum is carried out at a temperature between 100 ° C and 750 ° C, preferably between 100 ° C and 300 ° C, and more preferably at 250 ° C. Said regeneration is carried out, for a period of time sufficient to substantially remove adsorbed sulfur which may be between 1 second and 60 minutes.
En otra realización del cuarto aspecto de la invención, el porcentaje de regeneración del material compuesto de la invención por ciclo (adsorción/desorción) es superior al 95%, preferentemente superior al 98% y más preferentemente superior al 99%. A lo largo de la descripción y las reivindicaciones la palabra comprende y sus variantes no pretenden excluir otras características técnicas, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. In another embodiment of the fourth aspect of the invention, the regeneration percentage of the composite material of the invention per cycle (adsorption / desorption) is greater than 95%, preferably greater than 98% and more preferably greater than 99%. Throughout the description and the claims the word comprises and its variants are not intended to exclude other technical characteristics, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS Figura 1 a. Micrografía electrónica de barrido a 10000X del material compuesto de la invención utilizando plata como catión metálico, en adelante AgNPs, obtenida según el procedimiento que se indica en el Ejemplo 1.1. BRIEF DESCRIPTION OF THE FIGURES Figure 1 a. Scanning electron micrograph at 10000X of the composite material of the invention using silver as a metal cation, hereinafter AgNPs, obtained according to the procedure indicated in Example 1.1.
Figura 1 b. Micrografía electrónica de barrido a 100000X del material compuesto de la invención utilizando plata como catión metálico, en adelante AgNPs, obtenida según el procedimiento que se indica en el Ejemplo 1.1. Figure 1 b. Scanning electron micrograph at 100000X of the composite material of the invention using silver as a metal cation, hereinafter AgNPs, obtained according to the procedure indicated in Example 1.1.
Figura 1 c. Micrografía electrónica de barrido a 10000X del material compuesto de la invención utilizando oro como catión metálico, en adelante AuNPs, obtenida según el procedimiento que se indica en el Ejemplo 1.2. Figure 1 c. Scanning electron micrograph at 10000X of the composite material of the invention using gold as a metal cation, hereinafter AuNPs, obtained according to the procedure indicated in Example 1.2.
Figura 1 d. Micrografía electrónica de barrido a 10000X del material compuesto de la invención utilizando cobre como catión metálico, en adelante CuNPs, obtenida según el procedimiento que se indica en el Ejemplo 1.3. Figure 1 d. Scanning electron micrograph at 10000X of the composite material of the invention using copper as a metal cation, hereinafter CuNPs, obtained according to the procedure indicated in Example 1.3.
Figura 2. Porcentajes de azufre adsorbido en función de la cantidad de adsorbente dispersado por gramo de combustible fluido comercial, utilizando el material AgNPs según el Ejemplo 4.1 y 4.2. Los círculos y los cuadrados representan los valores obtenidos con una dispersión de AgNPs al 8% (p/p) en n-hexadecano y con una dispersión de AgNPs al 40% (p/p) en n-hexadecano, respectivamente. Figure 2. Percentages of sulfur adsorbed as a function of the amount of adsorbent dispersed per gram of commercial fluid fuel, using the AgNPs material according to Example 4.1 and 4.2. The circles and squares represent the values obtained with a dispersion of AgNPs at 8% (w / w) in n-hexadecane and with a dispersion of AgNPs at 40% (w / w) in n-hexadecane, respectively.
Figura 3. Cinética de adsorción a 25° C en fluido modelo. Porcentaje de azufre adsorbido en función de la cantidad de adsorbente dispersada en un fluido modelo (solución al 1 % (p/p) de tiofeno en n-hexadecano), utilizando el material AgNPs según el Ejemplo 5. MODO DE REALIZACIÓN DE LA INVENCIÓN Figure 3. Adsorption kinetics at 25 ° C in model fluid. Percentage of sulfur adsorbed as a function of the amount of adsorbent dispersed in a model fluid (1% solution (w / w) of thiophene in n-hexadecane), using the AgNPs material according to Example 5. EMBODIMENT OF THE INVENTION
A continuación se describen varios ejemplos que ilustran detalles del material compuesto de la invención, del procedimiento de síntesis de la invención, de su utilización para la eliminación de azufre en varios fluidos y del procedimiento de desulfuración de fluidos de la invención, que no limitan sin embargo la presente invención. Several examples are described below that illustrate details of the composite material of the invention, of the synthesis process of the invention, of its use for the removal of sulfur in various fluids and of the process of desulfurization of fluids of the invention, which do not limit without However the present invention.
Técnicas analíticas La determinación de la cantidad de azufre presente en los fluidos modelo se realizó sobre alícuotas mediante cromatografía líquida de alta resolución (HPLC) mediante el uso de un equipo Hitachi, equipado con detector de UV y una columna Lichro-sphere CN 5 μηι. La fase móvil utilizada fue 50% H20, 50% acetonitrilo (v/v). La determinación de la cantidad de azufre presente en los fluidos comerciales y la cantidad y composición de la materia orgánica del material compuesto de la invención, se realizó directamente mediante el análisis elemental orgánico por el servicio de microanálisis del Instituto de Química Avanzada de Cataluña y también mediante la técnica de fluorescencia de rayos X utilizando un equipo MinipaU (Panalytical) equipado con un ánodo de Rodio. Analytical techniques The determination of the amount of sulfur present in the model fluids was performed on aliquots by means of high performance liquid chromatography (HPLC) using a Hitachi device, equipped with a UV detector and a Lichro-sphere CN 5 μηι column. The mobile phase used was 50% H 2 0, 50% acetonitrile (v / v). The determination of the amount of sulfur present in commercial fluids and the amount and composition of the organic matter of the composite material of the invention, was carried out directly by means of the organic elemental analysis by the microanalysis service of the Institute of Advanced Chemistry of Catalonia and also by the X-ray fluorescence technique using a MinipaU (Panalytical) device equipped with a Rhodium anode.
La determinación de porcentaje de polímero en el material compuesto de la invención se determinó mediante análisis termogravimétrico realizado en el servicio de Microcalorimetría del Instituto de Química Avanzada de Cataluña. The determination of the percentage of polymer in the composite material of the invention was determined by thermogravimetric analysis performed in the Microcalorimetry service of the Institute of Advanced Chemistry of Catalonia.
La determinación de superficie específica se calculó a partir de las curvas de dispersión de rayos X a ángulo pequeño (SAXS). El equipo utilizado fue un HECUS S3-micro acoplado a una fuente GENIX-Fox-3D y a un detector PSD 50 HECUS. Las muestras del material compuesto de la invención fueron analizadas en dispersión con dodecano. The specific surface determination was calculated from the small angle X-ray scattering curves (SAXS). The equipment used was a HECUS S3-micro coupled to a GENIX-Fox-3D source and a PSD 50 HECUS detector. Samples of the composite material of the invention were analyzed in dodecane dispersion.
La micrografías electrónicas de barrido del material compuesto de la invención utilizando plata, oro o cobre como catión metálico se realizaron en un equipo HITACHI TM1000 a 15Kv y 10000x. Para AgNPs también se realizaron observaciones de alta resolución con un equipo JEOL en los servicios científico-técnicos de la Universidad de Barcelona. La espectroscopia de infrarrojos por transformada de Fourier se realizó mediante un equipo 360-FTIR Nicolet Avatar. Scanning electron micrographs of the composite material of the invention using silver, gold or copper as a metal cation were performed in a HITACHI TM1000 at 15Kv and 10000x. For AgNPs, high resolution observations were also made with a JEOL team in the scientific and technical services of the University of Barcelona. Fourier transform infrared spectroscopy was performed using a 360-FTIR Nicolet Avatar.
Las sales de los cationes metálicos se obtuvieron del proveedor Sigma-Aldrich y el polímero de inulina modificada hidrofóbicamente se obtuvo, por gentileza del fabricante, Beneo BBC (Bélgica). The salts of the metal cations were obtained from the supplier Sigma-Aldrich and the hydrophobically modified inulin polymer was obtained, courtesy of the manufacturer, Beneo BBC (Belgium).
A. OBTENCIÓN DEL MATERIAL COMPUESTO DE LA INVENCIÓN Se describe a continuación la preparación del material compuesto de la invención, utilizando nanopartículas de plata, de oro y de cobre, según las dos alternativas del procedimiento de síntesis de la invención, con capacidad adsorbente y a las que en lo sucesivo se denominará AgNPs, AuNPs y CuNPs respectivamente. EJEMPLO 1. Preparación del material compuesto de la invención A. OBTAINING THE COMPOUND MATERIAL OF THE INVENTION The preparation of the composite material of the invention is described below, using nanoparticles of silver, gold and copper, according to the two alternatives of the synthesis process of the invention, with adsorbent capacity and which hereafter referred to as AgNPs, AuNPs and CuNPs respectively. EXAMPLE 1. Preparation of the composite material of the invention
EJEMPLO 1.1. Preparación del material AgNPs según el procedimiento de síntesis de la invención  EXAMPLE 1.1. Preparation of the AgNPs material according to the synthesis method of the invention
20 g de un solución de nitrato de plata al 12.5% (p/p) en una solución tampón (Acético/Acetato) 1.0 M a pH 5.5 se combinaron con 20 g de una solución de inulina modificada hidrofóbicamente (Inutec® SP1) al 10% (p/p) en una solución tampón (Acético/Acetato) 1.0 M a pH 5.5. A continuación, la solución resultante se dejó reaccionar durante un período de 12 horas a 85° C con agitación constante y protegida de la luz. Posteriormente, el crudo de reacción se centrifugó. El sedimento obtenido se lavó con agua un total de 3 veces mediante ciclos de decantación/centrifugación. Finalmente, el precipitado formado por nanopartículas de plata en forma sustancialmente agregada se redispersó empleando n-hexadecano libre de azufre para llegar a una concentración de peso del 8 % en hexadecano o bien se secó en una estufa a 100°C. El análisis de la dispersión de rayos X a ángulo pequeño (SAXS) reveló una superficie específica total de 75 m2/g y un radio aparente de 40 nm. Mediante termogravimetría se determinó que el material, una vez secado, sufría una pérdida de peso correspondiente a un 3.25% al ser calentado a 520°C en atmósfera de nitrógeno. Mediante análisis elemental orgánico se determinó que el material contenía 1.8% (p/p) de carbono, 0.25% (p/p) de hidrógeno y 0.06% (p/p) de nitrógeno. Estas proporciones están de acuerdo con la presencia de polímero reductor, y sus productos de su oxidación, utilizado en la síntesis del material. 20 g of a 12.5% silver nitrate (w / w) solution in a 1.0 M buffer solution (Acetic / Acetate) at pH 5.5 were combined with 20 g of a hydrophobically modified inulin solution (Inutec® SP1) at 10 % (w / w) in a buffer solution (Acetic / Acetate) 1.0 M at pH 5.5. Then, the resulting solution was allowed to react for a period of 12 hours at 85 ° C with constant stirring and protected from light. Subsequently, the reaction crude was centrifuged. The sediment obtained was washed with water a total of 3 times by decantation / centrifugation cycles. Finally, the precipitate formed by substantially aggregated silver nanoparticles was redispersed using sulfur-free n-hexadecane to reach a weight concentration of 8% in hexadecane or dried in an oven at 100 ° C. Analysis of the small angle X-ray scattering (SAXS) revealed a total specific surface area of 75 m 2 / g and an apparent radius of 40 nm. By thermogravimetry it was determined that the material, once dried, suffered a weight loss corresponding to 3.25% when heated to 520 ° C under a nitrogen atmosphere. By means of organic elemental analysis it was determined that the material contained 1.8% (w / w) of carbon, 0.25% (w / w) of hydrogen and 0.06% (w / w) of nitrogen. These proportions are in accordance with the presence of reducing polymer, and its oxidation products, used in the synthesis of the material.
La Figura 1 a muestra la micrografía electrónica de barrido del sólido obtenido, donde se observa que su superficie está compuesta de nanopartículas en forma sustancialmente agregada de tamaño inferior a lo que se obtiene mediante otros procedimientos, lo que da una apariencia de rugosidad (determinación a 10000 aumentos). La figura 1 b, con 100000 aumentos muestra que dicha rugosidad está producida por nanopartículas de plata. Figure 1 shows the scanning electron micrograph of the solid obtained, where it is observed that its surface is composed of nanoparticles in substantially aggregate form smaller than what is obtained by other procedures, which gives an appearance of roughness (determination to 10,000 increases). Figure 1b, with 100,000 increases shows that said roughness is produced by silver nanoparticles.
El análisis mediante FT-IR en pastilla de bromuro potásico, mostró señales características de cadenas hidrocarbomadas a números de onda de 2921 cm"1 y 2852 cm"1 , del carbonilo del éster carbamato a número de onda 1696 cm"1 , de alcohol, una banda ancha centrada en 3400 cm"1 y otra más estrecha a 1030 cm"1 y, finalmente, señales correspondientes a aniones carboxilato a números de onda de 1570 cm"1 y 1404 cm"1. De todas estas señales, las últimas no se hallan presentes en la inulina modificada hidrofóbicamente y señalan la oxidación parcial de la misma en el material compuesto. The analysis by FT-IR in potassium bromide pellet showed characteristic signals of hydrocarbon chains at wave numbers of 2921 cm "1 and 2852 cm " 1 , of the carbonyl of the carbamate ester at wave number 1696 cm "1 , of alcohol, a broad band centered at 3400 cm "1 and another narrower at 1030 cm " 1 and, finally, signals corresponding to carboxylate anions at wave numbers of 1570 cm "1 and 1404 cm " 1. Of all these signals, the latter do not they are present in hydrophobically modified inulin and signal the partial oxidation thereof in the composite material.
El procedimiento de la presente invención permite obtener un material que comprende nanopartículas de metales nobles en forma sustancialmente agregada con una mayor superficie adsorbente. El control de la obtención de estas partículas depende de las condiciones de pH, temperatura y especialmente del agente reductor utilizado. The process of the present invention makes it possible to obtain a material comprising nanoparticles of noble metals in substantially aggregate form with a larger adsorbent surface. The control of obtaining these particles depends on the conditions of pH, temperature and especially the reducing agent used.
EJEMPLO 1.2. Preparación del material AuNPs según el procedimiento de síntesis de la invención EXAMPLE 1.2. Preparation of the AuNPs material according to the synthesis method of the invention
Se pesaron 0.208 g de de cloruro de oro (III) trihidrato, 0.270 g de inulina modificada hidrofóbicamente (Inutec® SP1), 0.5 g de acetato sódico y 5 g de agua desionizada. A continuación, la solución resultante se dejó reaccionar durante un período de 12 horas entre 90°C y 100°C con agitación constante y protegida de la luz. Posteriormente, el crudo de reacción se centrifugó. El sedimento obtenido se lavó con agua un total de 3 veces mediante ciclos de decantación/centrifugación. Finalmente, el precipitado formado por nanopartículas de oro en forma sustancialmente agregada se redispersó empleando n-decano libre de azufre o bien se secó en una estufa a 100°C. La Figura 1 c muestra la micrografía electrónica de barrido del sólido obtenido donde se observa que su superficie está compuesta de nanopartículas en forma sustancialmente agregada con cierta rugosidad. EJEMPLO 1.3. Preparación del material CuNPs según el procedimiento de síntesis de la invención 0.208 g of gold chloride (III) trihydrate, 0.270 g of hydrophobically modified inulin (Inutec® SP1), 0.5 g of sodium acetate and 5 g of deionized water were weighed. Then, the resulting solution was allowed to react for a period of 12 hours between 90 ° C and 100 ° C with constant agitation and protected from light. Subsequently, the reaction crude was centrifuged. The sediment obtained was washed with water a total of 3 times by decantation / centrifugation cycles. Finally, the precipitate formed by gold nanoparticles in substantially aggregated form was redispersed using sulfur-free n-decane or dried in an oven at 100 ° C. Figure 1 c shows the scanning electron micrograph of the solid obtained where it is observed that its surface is composed of nanoparticles in substantially aggregate form with some roughness. EXAMPLE 1.3. Preparation of the CuNPs material according to the synthesis method of the invention
A 75 g de una dispersión de carbonato de cobre (II) básico al 6.67% (p/p) en agua se añadieron 3.35 gr de ácido fórmico (hasta llegar a la solubilización total del carbonato, y un pH de 3.4). Esta solución se combinó con 77.5 g de una solución acuosa de inulina modificada hidrofóbicamente (Inutec® SP1) al 22% (p/p). To 75 g of a dispersion of 6.67% basic copper (II) carbonate (w / w) in water, 3.35 g of formic acid was added (until total carbonate solubilization was reached, and a pH of 3.4). This solution was combined with 77.5 g of a 22% (w / w) aqueous hydrophobically modified inulin solution (Inutec® SP1).
A continuación, la solución resultante se dejó reaccionar durante un período de 12 horas entre 90° C y 100°C con agitación constante y protegida de la luz. Posteriormente, el crudo de reacción se centrifugó. El sedimento obtenido se lavó con agua un total de 3 veces mediante ciclos de decantación/centrifugación. Finalmente, el precipitado formado por nanopartículas de cobreen forma sustancialmente agregada se redispersó empleando n-decano libre de azufre para llegar a una concentración de peso del 8 % en decano o bien se secó en una estufa a 100°C. Then, the resulting solution was allowed to react for a period of 12 hours between 90 ° C and 100 ° C with constant agitation and protected from light. Subsequently, the reaction crude was centrifuged. The sediment obtained was washed with water a total of 3 times by decantation / centrifugation cycles. Finally, the precipitate formed by copper nanoparticles in substantially aggregate form was redispersed using sulfur-free n-decane to reach a weight concentration of 8% in decane or dried in an oven at 100 ° C.
La Figura 1 d muestra la micrografía electrónica de barrido del sólido obtenido donde se observa que su superficie está compuesta de nanopartículas en forma sustancialmente agregada con cierta rugosidad. B.- DESULFURACIÓN DE FLUIDOS Figure 1 d shows the scanning electron micrograph of the solid obtained where it is observed that its surface is composed of nanoparticles in substantially aggregate form with some roughness. B.- FLUID DESULFURATION
A continuación, se describen varios ejemplos de procesos de reducción de azufre en un combustible fluido comercial, con un contenido de azufre de 1 % (p/p), utilizando distintos sistemas adsorbentes. Next, several examples of sulfur reduction processes in a commercial fluid fuel, with a sulfur content of 1% (w / w), using different adsorbent systems are described.
EJEMPLO 2. Utilizando plata precipitada en presencia de ácido ascórbico EXAMPLE 2. Using precipitated silver in the presence of ascorbic acid
En este caso el adsorbente fue plata precipitada obtenida por precipitación del metal en presencia de ácido ascórbico como reductor. En un vial de 3 mi se pesó 1 g de hidrocarburo fluido comercial, con un contenido de 1 % (p/p) de azufre, y se añadieron 250 mg del material adsorbente en seco. La mezcla se homogeneizó y se dejó reaccionar durante 24 horas a temperatura ambiente. Una vez terminada la reacción, el crudo se centrifugó hasta conseguir la separación efectiva del adsorbente. In this case the adsorbent was precipitated silver obtained by precipitation of the metal in the presence of ascorbic acid as a reductant. In a 3 ml vial, 1 g of commercial fluid hydrocarbon, containing 1% (w / w) sulfur, was weighed, and 250 mg of the dry adsorbent material was added. The mixture was homogenized and allowed to react for 24 hours at room temperature. Once the reaction was over, the crude was centrifuged until effective separation of the adsorbent was achieved.
El contenido de azufre del líquido sobrenadante, correspondiente al hidrocarburo fluido, se analizó mediante análisis orgánico elemental. El resultado obtenido fue de un contenido de azufre de 0.92% (p/p). Los resultados finales se expresan también en función de la capacidad desulfuradora o de adsorción de azufre como los mg de azufre adsorbido por g de adsorbente. Así, la capacidad de adsorción de este adsorbente fue de 3 mg S/g Adsorbente y que se incrementó hasta 4 mg S/g Adsorbente cuando la desulfuración se realizó en presencia de un 10% (v/v) de agua. EJEMPLO 3. Utilizando plata micrométrica comercial The sulfur content of the supernatant liquid, corresponding to the fluid hydrocarbon, was analyzed by elemental organic analysis. The result obtained was a sulfur content of 0.92% (w / w). The final results are also expressed as a function of the sulfur desulfurizing or adsorption capacity as the mg of sulfur adsorbed per g of adsorbent. Thus, the adsorption capacity of this adsorbent was 3 mg S / g Adsorbent and it was increased to 4 mg S / g Adsorbent when desulfurization was performed in the presence of 10% (v / v) water. EXAMPLE 3. Using commercial micrometric silver
Siguiendo el mismo procedimiento descrito en el Ejemplo 2, pero utilizando 250 mg de escamas de plata micrométrica (10 μηι) comercial Sigma-Aldrich como material adsorbente. Los resultados obtenidos mostraron una capacidad de adsorción para este adsorbente de 5 mg S/g Adsorbente. Following the same procedure described in Example 2, but using 250 mg of Sigma-Aldrich commercial micrometric silver scales (10 μηι) as adsorbent material. The results obtained showed an adsorption capacity for this adsorbent of 5 mg S / g Adsorbent.
Cuando el proceso se realizó a 80°C la capacidad adsorbente fue de 2 mg S/g. When the process was performed at 80 ° C the adsorbent capacity was 2 mg S / g.
EJEMPLO 4.Utilizando el material AgNPs disperso a distintas concentraciones EXAMPLE 4.Using dispersed AgNPs material at different concentrations
4.1. AgNPs al 8% (p/p) en n-hexadecano 4.1. 8% AgNPs (w / w) in n-hexadecane
Se siguió el mismo procedimiento descrito en el Ejemplo 2, pero utilizando una dispersión de nanopartículas de plata en forma sustancialmente agregada (AgNPs) en hexadecano al 8% (p/p), obtenida según el procedimiento que se recoge en el Ejemplo 1.1. En este caso se probaron diferentes cantidades de dispersión adsorbente (0, 200, 400 y 800 mg), siendo los pesos de fuel respectivamente: 2.2 g, 2 g, 1.8 g y 1.4 g, para tener un peso final de 2.2 g en todos los casos. Los análisis de azufre antes (por deducción) y después (directamente) del tratamiento de las muestras anteriores se realizaron al cabo de 24 horas de contacto y fueron los siguientes: de 1.00 a 1.00% (p/p), de 0.92 a 0.67% (p/p), de 0.85 a 0.36% (p/p) y de 0.75 a 0.33% (p/p), respectivamente. The same procedure described in Example 2 was followed, but using a dispersion of substantially aggregated silver nanoparticles (AgNPs) in 8% hexadecane (w / w), obtained according to the procedure set out in Example 1.1. In this case different amounts of adsorbent dispersion (0, 200, 400 and 800 mg) were tested, the fuel weights being respectively: 2.2 g, 2 g, 1.8 g and 1.4 g, to have a final weight of 2.2 g in all cases. The sulfur analyzes before (by deduction) and after (directly) the treatment of the previous samples were carried out after 24 hours of contact and were the following: from 1.00 to 1.00% (w / w), from 0.92 to 0.67% (p / p), from 0.85 to 0.36% (p / p) and from 0.75 to 0.33% (p / p), respectively.
Los resultados del procedimiento de desulfuración con el hidrocarburo comercial utilizando una dispersión de nanopartículas de plata en forma sustancialmente agregada (AgNPs) en hexadecano al 8% (p/p), mostraron una capacidad de adsorción máxima de 347 mg S/g Adsorbente, según resultados obtenidos por análisis elemental. El contenido de S en la muestra se redujo desde un 0.85% hasta un 0.36% (p/p), correspondiente al tercer caso. Los resultados del porcentaje de azufre adsorbido respecto al inicial en función de la cantidad de AgNPs se presentan en la Figura 2. Esta figura presenta una curva asintótica donde se observa un porcentaje de saturación del adsorbente alrededor del 45% de azufre adsorbido. The results of the desulfurization process with the commercial hydrocarbon using a dispersion of substantially added silver nanoparticles (AgNPs) in 8% hexadecane (w / w), showed a maximum adsorption capacity of 347 mg S / g Adsorbent, according results obtained by elementary analysis. The content of S in the sample was reduced from 0.85% to 0.36% (w / w), corresponding to the third case. The results of the percentage of sulfur adsorbed with respect to the initial as a function of the amount of AgNPs are presented in Figure 2. This figure shows an asymptotic curve where a percentage of saturation of the adsorbent is observed around 45% of adsorbed sulfur.
4.2. AgNPs al 40% (p/p) en n-hexadecano 4.2. 40% AgNPs (w / w) in n-hexadecane
Se siguió el mismo procedimiento descrito en el Ejemplo 4.1 , pero utilizando una dispersión de nanopartículas de plata en forma sustancialmente agregada (AgNPs) en hexadecano al 40% (p/p), obtenida según el procedimiento que se recoge en el Ejemplo 1.1. En este caso se probaron diferentes cantidades de dispersión adsorbente (0, 200, 400 y 800 mg), siendo los pesos de fuel respectivamente: 2.2 g, 2 g, 1.8 g y 1.4 g, para tener un peso final de 2.2 g en todos los casos. Los análisis de azufre antes (por deducción) y después (directamente) del tratamiento de las muestras anteriores se realizaron al cabo de 24 horas de contacto y fueron los siguientes: de 1.00 a 1.00% (p/p), de 0.95 a 0.67% (p/p), de 0.90 a 0.58 % (p/p) y de 0.82 a 0.38% (p/p), respectivamente. Los resultados del procedimiento de desulfuración de fluidos de la invención con el hidrocarburo comercial utilizando una dispersión de nanopartículas de plata en forma sustancialmente agregada (AgNPs) en hexadecano al 40% (p/p) de azufre mostraron una capacidad de adsorción máxima de 46 mg S/g Adsorbente, según resultados obtenidos por análisis elemental. El contenido de S en la muestra se redujo desde un 0.82% hasta un 0.38% (p/p), correspondiente al cuarto caso de la serie. Los resultados del porcentaje de azufre adsorbido respecto al inicial en función de la cantidad de AgNPs se presentan en la Figura 2. Esta figura presenta una curva asintótica donde se observa un porcentaje de saturación del adsorbente alrededor del 40% (p/p) de azufre adsorbido. The same procedure described in Example 4.1 was followed, but using a dispersion of substantially aggregated silver nanoparticles (AgNPs) in 40% hexadecane (w / w), obtained according to the procedure set out in Example 1.1. In this case different amounts of adsorbent dispersion (0, 200, 400 and 800 mg) were tested, the fuel weights being respectively: 2.2 g, 2 g, 1.8 g and 1.4 g, to have a final weight of 2.2 g in all cases. The sulfur analyzes before (by deduction) and after (directly) the treatment of the previous samples were carried out after 24 hours of contact and were the following: from 1.00 to 1.00% (w / w), from 0.95 to 0.67% (p / p), from 0.90 to 0.58% (p / p) and from 0.82 to 0.38% (p / p), respectively. The results of the fluid desulfurization process of the invention with the commercial hydrocarbon using a dispersion of substantially aggregated silver nanoparticles (AgNPs) in 40% hexadecane (w / w) sulfur showed a maximum adsorption capacity of 46 mg S / g Adsorbent, according to results obtained by elementary analysis. The content of S in the sample was reduced from 0.82% to 0.38% (w / w), corresponding to the fourth case of the series. The percentage results of sulfur adsorbed with respect to the initial as a function of the amount of AgNPs are presented in Figure 2. This figure shows an asymptotic curve where a saturation percentage of the adsorbent is observed around 40% (w / w) of adsorbed sulfur.
Como puede desprenderse de los ejemplos anteriores, el rendimiento como adsorbente y por tanto la capacidad de desulfuración es muy superior utilizando como adsorbente el material de AgNPs. As can be seen from the previous examples, the yield as adsorbent and therefore the desulfurization capacity is much higher using the AgNPs material as adsorbent.
Tabla 1. Capacidad máxima adsorbente de partículas de plata de los Ejemplos 2, 3 y 4. Table 1. Maximum adsorbent capacity of silver particles of Examples 2, 3 and 4.
Figure imgf000023_0001
Figure imgf000023_0001
EJEMPLO 5. Utilizando AgNPs en polvo en una solución al 1 % (p/p) de tiofeno en hexadecano EXAMPLE 5. Using powdered AgNPs in a 1% (w / w) solution of thiophene in hexadecane
A una solución al 1 % (p/p) de tiofeno en hexadecano (2 mL) como combustible fluido modelo, se añadieron 250 mg de AgNPs en polvo. La mezcla se homogeneizó y se dejó reaccionar durante 48 horas a temperatura ambiente. Una vez terminada la reacción, el crudo se centrifugó hasta conseguir la separación efectiva del adsorbente. El análisis de la cantidad de compuesto sulfurado presente en el líquido sobrenadante se realizó a distintos tiempos de reacción hasta un total de 48 horas. En este caso, se utilizó la cromatografía líquida de alta eficacia (HPLC) acoplada a un detector de UV-Vis para determinar la concentración de alícuotas en cada tiempo. Como puede observarse en la Figura 3, donde se muestra la cinética de este proceso, la desulfuración ocurrió en dos etapas, una primera rápida y otra más lenta. En la primera etapa, de 3h, se redujo la cantidad de compuesto sulfurado disuelto en un 40% (p/p), y en la segunda etapa se llegó a una reducción del 75% respecto de la concentración inicial. EJEMPLO 6: Utilizando AgNPs al 40% (p/p) en hexadecano en una solución de dibenzotiofeno al 0.23% (p/p) en dodecano como combustible fluido To a 1% (w / w) solution of thiophene in hexadecane (2 mL) as a model fluid fuel, 250 mg of powdered AgNPs were added. The mixture was homogenized and allowed to react for 48 hours at room temperature. Once the reaction was over, the crude was centrifuged until effective separation of the adsorbent was achieved. The analysis of the amount of sulfur compound present in the supernatant liquid was carried out at different reaction times up to a total of 48 hours. In this case, high efficiency liquid chromatography (HPLC) coupled to a UV-Vis detector was used to determine the concentration of aliquots at each time. As can be seen in Figure 3, where the kinetics of this process are shown, desulfurization occurred in two stages, a rapid first and a slower one. In the first stage, of 3h, the amount of dissolved sulfur compound was reduced by 40% (w / w), and in the second stage a reduction of 75% with respect to the initial concentration was reached. EXAMPLE 6: Using 40% AgnPs (w / w) in hexadecane in a 0.23% dibenzothiophene solution (w / w) in dodecane as a fluid fuel
Se siguió el mismo procedimiento que el descrito en el Ejemplo 4, pero en este caso se utilizaron 400 mg de dispersión al 40 % (p/p) de AgNPs en hexadecano sobre 1 mL de una solución de dibenzotiofeno (DBT) al 0.23% (p/p) en dodecano como combustible fluido modelo y un tiempo de 20 horas. The same procedure as described in Example 4 was followed, but in this case 400 mg of 40% dispersion (w / w) of AgNPs in hexadecane was used on 1 mL of a 0.23% solution of dibenzothiophene (DBT) ( p / p) in dodecane as a model fluid fuel and a time of 20 hours.
6.1. Combustible fluido modelo y dispersión de AgNPs original 6.1. Model fluid fuel and original AgNPs dispersion
Se utilizaron muestras recién preparadas del material AgNPs y la solución de DBT al 0.23% (p/p). Se observó una reducción de DBT hasta el 0.16% (p/p) (una reducción del 30% respecto de la concentración inicial), independientemente del tiempo de reacción (ver Tabla 2). Freshly prepared samples of the AgNPs material and the 0.23% DBT solution (w / w) were used. A reduction of DBT was observed up to 0.16% (w / w) (a 30% reduction from the initial concentration), regardless of the reaction time (see Table 2).
6.2. Combustible fluido modelo previamente desulfurado y dispersión de AgNPs original 6.2. Fluid fuel model previously desulfurized and dispersion of original AgNPs
Se realizó un segundo ciclo de desulfuración utilizando el fluido resultante del Ejemplo 6.1 tras eliminar el adsorbente sulfurado anterior y se añadieron 400 mg de una nueva dispersión al 40% (p/p) de AgNPs. Se observó una reducción de concentración de DBT en el líquido sobrenadante desde el 0.16% (ver Ejemplo 6.1) hasta un 0.13% (p/p) (es decir, una reducción desde el 30% hasta un 45% respecto la concentración inicial, ver Tabla 2). A second desulfurization cycle was performed using the fluid resulting from Example 6.1 after removing the above sulfur adsorbent and 400 mg of a new 40% (w / w) dispersion of AgNPs was added. A reduction of DBT concentration in the supernatant liquid was observed from 0.16% (see Example 6.1) to 0.13% (w / w) (i.e. a reduction from 30% to 45% with respect to the initial concentration, see Table 2).
6.3. Combustible fluido modelo y dispersión de AgNPs regenerada 6.3. Model fluid fuel and regenerated AgNPs dispersion
Se utilizaron 400 mg de una dispersión al 40% (p/p) de AgNPs regeneradas sobre 1 mL de una solución de dibenzotiofeno al 0.23% (p/p) en hexadecano. La regeneración de AgNPs fue llevada a cabo mediante 3 lavados sucesivos con 5 mi de diclorometano. 400 mg of a 40% dispersion (w / w) of regenerated AgNPs on 1 mL of a 0.23% solution of dibenzothiophene (w / w) in hexadecane was used. The regeneration of AgNPs was carried out by 3 successive washes with 5 ml of dichloromethane.
Se observó que la concentración de DBT disuelta en el fluido modelo se redujo en un 30% con respecto de la concentración inicial (Tabla 2). Este ejemplo pone de manifiesto que el AgNPs, una vez regenerado como se indica en el procedimiento general, sigue teniendo una capacidad desulfuradora sustancialmente inalterada. Tabla 2. Capacidad de regeneración del poder adsorbente del material AgNPs determinado por HPLC en un fluido modelo basado en dodecano y dibenzotiofeno como fuente de azufre. It was observed that the concentration of dissolved DBT in the model fluid was reduced by 30% with respect to the initial concentration (Table 2). This example shows that the AgNPs, once regenerated as indicated in the general procedure, still have a substantially unchanged desulfurizing capacity. Table 2. Capacity of regeneration of the adsorbent power of AgNPs material determined by HPLC in a model fluid based on dodecane and dibenzothiophene as a source of sulfur.
Area del pico de DBT  DBT peak area
Tiempo AgNPs nuevas + fuel AgNPs nuevas + fuel modelo AgNPs regeneradas + fuel (min) modelo 0.23% (p/p) DBT desulfurado 1 vez modelo 0.23% (p/p) DBT Time AgNPs new + fuel AgNPs new + fuel model AgNPs regenerated + fuel (min) model 0.23% (p / p) DBT desulfurized 1 time model 0.23% (p / p) DBT
0 7,36 5,22 7,36 0 7.36 5.22 7.36
1 5,38  1 5.38
5 4,04 5,01  5 4.04 5.01
75 5,53  75 5.53
180 5,79  180 5.79
1200 5,22 4,12  1200 5.22 4.12

Claims

REIVINDICACIONES
1. Material compuesto con capacidad de adsorción selectiva de azufre, caracterizado por que comprende un porcentaje en peso mayoritario de nanopartículas de metales nobles en un estado de valencia reducida que mayoritariamente es 0, y un porcentaje en peso minoritario de un polímero tensioactivo, y por que presenta una superficie específica total superior a 1 m2/g y un radio de partícula aparente inferior a 300 nm. 1. Composite material with selective sulfur adsorption capacity, characterized in that it comprises a percentage by weight of nanoparticles of noble metals in a state of reduced valence that is mostly 0, and a percentage by weight of a surfactant polymer, and by which has a total specific surface area greater than 1 m 2 / g and an apparent particle radius of less than 300 nm.
2. Material compuesto según la reivindicación 1 , caracterizado por que el porcentaje en peso del polímero tensioactivo está comprendido entre el 0.1 y el 10%. 2. Composite material according to claim 1, characterized in that the weight percentage of the surfactant polymer is between 0.1 and 10%.
3. Material compuesto según una cualquiera de las reivindicaciones 1 y 2, caracterizado por que las nanopartículas de metales nobles tienen dimensiones comprendidas entre 2 y 300 nanometros y se encuentran formando agregados de dimensiones de entre 1 y 10000 micrómetros con moléculas de polímero tensioactivo. 3. Composite material according to any one of claims 1 and 2, characterized in that the noble metal nanoparticles have dimensions between 2 and 300 nanometers and are forming aggregates of dimensions between 1 and 10,000 microns with surfactant polymer molecules.
4. Material compuesto según una cualquiera de las reivindicaciones 1 a 3, caracterizado por que las nanopartículas metálicas son de oro, de plata o de cobre. 4. Composite material according to any one of claims 1 to 3, characterized in that the metal nanoparticles are gold, silver or copper.
5. Material compuesto según la reivindicación 4, caracterizado por que las nanopartículas metálicas son de plata. 5. Composite material according to claim 4, characterized in that the metal nanoparticles are silver.
6. Material compuesto según una cualquiera de las reivindicaciones 1 a 5, caracterizado por que el polímero tensioactivo es un polisacárido modificado hidrofóbicamente. 6. Composite material according to any one of claims 1 to 5, characterized in that the surfactant polymer is a hydrophobically modified polysaccharide.
7. Material compuesto según la reivindicación 6, caracterizado por que el polímero tensioactivo es inulina modificada hidrofóbicamente. 7. Composite material according to claim 6, characterized in that the surfactant polymer is hydrophobically modified inulin.
8. Material compuesto según una cualquiera de las reivindicaciones 1 a 7, caracterizado por que es un material en polvo o que está redispersado en un disolvente orgánico o en un alcohol alifático libres de azufre, o en una mezcla de ambos. 8. Composite material according to any one of claims 1 to 7, characterized in that it is a powder material or that is redispersed in an organic solvent or in a sulfur-free aliphatic alcohol, or in a mixture of both.
9. Material compuesto según la reivindicación 8, caracterizado por que está redispersado en un hidrocarburo en una proporción comprendida entre el 5 y el 50% (p/p). 9. Composite material according to claim 8, characterized in that it is redispersed in a hydrocarbon in a proportion between 5 and 50% (w / w).
10. Procedimiento de síntesis del material compuesto según una cualquiera de las reivindicaciones 1 a 9, caracterizado por que comprende las siguientes etapas: 10. Synthesis process of the composite material according to any one of claims 1 to 9, characterized in that it comprises the following steps:
a) preparar una solución catiónica acuosa que comprende, al menos, un catión de metal noble;  a) preparing an aqueous cationic solution comprising at least one noble metal cation;
b) preparar una solución acuosa que comprende, al menos, un polímero tensioactivo con grupos moderadamente reductores;  b) preparing an aqueous solution comprising at least one surfactant polymer with moderately reducing groups;
c) adicionar la solución de la etapa (a) a la solución de la etapa (b) y dejar reaccionar hasta reducción del catión metálico dando lugar a la formación del material compuesto; y  c) add the solution of step (a) to the solution of step (b) and allow to react until reduction of the metal cation resulting in the formation of the composite material; Y
d) aislamiento y estabilización del material compuesto formado en la etapa (c).  d) isolation and stabilization of the composite material formed in step (c).
1 1. Procedimiento de síntesis del material compuesto según una cualquiera de las reivindicaciones 1 a 9, caracterizado por que comprende las siguientes etapas: 1 1. Synthesis process of the composite material according to any one of claims 1 to 9, characterized in that it comprises the following steps:
a'. preparar una solución acuosa que comprende al menos un catión de metal noble y al menos un polímero tensioactivo con grupos moderadamente reductores y dejar reaccionar hasta reducción del catión metálico, dando lugar a la formación del material compuesto de la invención; y a ' . preparing an aqueous solution comprising at least one noble metal cation and at least one surfactant polymer with moderately reducing groups and reacting until reduction of the metal cation, resulting in the formation of the composite material of the invention; Y
b'. aislamiento y estabilización del material compuesto formado en la etapa (a'). b ' . insulation and stabilization of the composite material formed in step (a ' ).
12. Procedimiento según una cualquiera de las reivindicaciones 10 u 1 1 , caracterizado por que el catión de metal noble de la etapa (a) o (a') se elige de entre un catión de plata, un catión de cobre o un catión de oro. 12. Method according to any one of claims 10 or 1, characterized in that the noble metal cation of step (a) or (a ') is chosen from a silver cation, a copper cation or a cation of gold.
13. Procedimiento según la reivindicación 12, caracterizado por que el catión de metal noble de la etapa (a) o (a') es un catión de plata. 13. Method according to claim 12, characterized in that the noble metal cation of step (a) or (a ') is a silver cation.
14. Procedimiento según una cualquiera de las reivindicaciones 10 a 13, caracterizado por que el polímero tensioactivo que contiene grupos moderadamente reductores de la etapa (b) o (a') es un polisacárido modificado hidrofóbicamente. 14. Method according to any one of claims 10 to 13, characterized in that the surfactant polymer containing moderately reducing groups of step (b) or (a ') is a hydrophobically modified polysaccharide.
15. Procedimiento según la reivindicación 14, caracterizado por que el polímero tensioactivo que contiene grupos moderadamente reductores de la etapa (b) o (a'), es un polímero de inulina modificada hidrofóbicamente. 15. Process according to claim 14, characterized in that the surfactant polymer containing moderately reducing groups of step (b) or (a ') is a hydrophobically modified inulin polymer.
16. Procedimiento según una cualquiera de las reivindicaciones 10 a 15, caracterizado por que el material compuesto, aislado según la etapa (d) o (b'), se redispersa en una proporción de entre el 5% y el 50% (p/p) en un disolvente orgánico tipo hidrocarburo, o en un alcohol alifático libres de azufre, o en una mezcla de ambos. 16. Method according to any one of claims 10 to 15, characterized in that the composite material, isolated according to step (d) or (b ' ), is redispersed in a proportion between 5% and 50% (p / p) in a hydrocarbon-type organic solvent, or in a sulfur-free aliphatic alcohol, or in a mixture of both.
17. Uso del material compuesto según una cualquiera de las reivindicaciones 1 a 9 como agente desulfurador en fluidos que contengan impurezas de compuestos sulfurados. 17. Use of the composite material according to any one of claims 1 to 9 as a desulfurizing agent in fluids containing impurities of sulfur compounds.
18. Uso del material compuesto según la reivindicación 17 donde el fluido es un combustible fluido. 18. Use of the composite material according to claim 17 wherein the fluid is a fluid fuel.
19. Uso del material compuesto según la reivindicación 18 donde el combustible fluido es un derivado del petróleo. 19. Use of the composite material according to claim 18 wherein the fluid fuel is a petroleum derivative.
20. Procedimiento de eliminación de impurezas de compuestos sulfurados en fluidos caracterizado por que comprende las siguientes etapas: 20. Procedure for removing impurities of sulfur compounds in fluids characterized in that it comprises the following steps:
i) poner en contacto el material compuesto según una cualquiera de las reivindicaciones 1 a 9 con el fluido a tratar, para producir la desulfuración del fluido;  i) contacting the composite material according to any one of claims 1 to 9 with the fluid to be treated, to produce the desulfurization of the fluid;
ii) separar el fluido desulfurado del material compuesto sulfurado resultante; y iii) regenerar al menos una parte del material compuesto sulfurado eliminando sustancialmente el azufre adsorbido, utilizando un agente de recuperación.  ii) separating the desulfurized fluid from the resulting sulfurized composite material; and iii) regenerating at least a part of the sulfur composite material by substantially removing adsorbed sulfur, using a recovery agent.
21. Procedimiento según la reivindicación 20, caracterizado por que en la etapa (i) la temperatura está comprendida entre el punto de fusión del fluido y 100°C y por que la presión está comprendida entre 0.1 bar y 300 bar. 21. Method according to claim 20, characterized in that in step (i) the temperature is between the melting point of the fluid and 100 ° C and that the pressure is between 0.1 bar and 300 bar.
22. Procedimiento según la reivindicación 21 , caracterizado por que la temperatura está comprendida entre 0 y 50°C y la presión está comprendida entre 0.1 bar y 100 bar. 22. Method according to claim 21, characterized in that the temperature is between 0 and 50 ° C and the pressure is between 0.1 bar and 100 bar.
23. Procedimiento según una cualquiera de las reivindicaciones 20 a 22, caracterizado por que la concentración inicial de azufre en el fluido se encuentra por debajo del 2% (p/p) y se utiliza una relación comprendida entre 1 y 100 g de material adsorbente por gramo de azufre. 23. Method according to any one of claims 20 to 22, characterized in that the initial concentration of sulfur in the fluid is below 2% (w / w) and a ratio between 1 and 100 g of adsorbent material is used. per gram of sulfur.
24. Procedimiento según una cualquiera de las reivindicaciones 20 y 23, caracterizado por que en la etapa (ii) se utiliza una técnica seleccionada de entre centrifugación, filtración, decantación, evaporación y sedimentación. 24. Method according to any one of claims 20 and 23, characterized in that in step (ii) a technique selected from centrifugation, filtration, decantation, evaporation and sedimentation is used.
25. Procedimiento según una cualquier de las reivindicaciones de 20 a 24, caracterizado por que en la etapa (iii), se utiliza un tratamiento de regeneración del material mediante paso de una corriente de disolvente orgánico, mediante paso de una corriente de gas inerte, o mediante condiciones de vacío. 25. Method according to any one of claims 20 to 24, characterized in that in step (iii), a material regeneration treatment is used by passing an organic solvent stream, by passing an inert gas stream, or by vacuum conditions.
26. Procedimiento según la reivindicación 25, caracterizada por que en la etapa (iii) se utiliza un tratamiento de regeneración del material mediante paso de una corriente de disolvente orgánico a una temperatura comprendida entre 0 y 100°C, durante un período de tiempo comprendido entre 1 segundo y 60 minutos. 26. Method according to claim 25, characterized in that in step (iii) a material regeneration treatment is used by passing an organic solvent stream at a temperature between 0 and 100 ° C, for a period of time comprised between 1 second and 60 minutes.
27. Procedimiento según la reivindicación 25, caracterizada por que en la etapa (iii) se utiliza un tratamiento de regeneración con una corriente de gas inerte o en vacío a una temperatura comprendida entre 100 y 750°C durante un período de tiempo comprendido entre 1 segundo y 60 minutos. 27. A method according to claim 25, characterized in that in step (iii) a regeneration treatment is used with an inert gas stream or under vacuum at a temperature between 100 and 750 ° C for a period of time between 1 Second and 60 minutes.
28. -Procedimiento según la reivindicación 27, caracterizado por que la temperatura está comprendida entre 100 y 300°C. 28. Procedure according to claim 27, characterized in that the temperature is between 100 and 300 ° C.
PCT/ES2014/070504 2013-06-21 2014-06-20 Adsorbent composite material comprising noble metals and a surfactant polymer, synthesis method and use thereof for the desulfurisation of fluids WO2014202815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201330939 2013-06-21
ES201330939A ES2527359B1 (en) 2013-06-21 2013-06-21 ADSORBENT COMPOSITE MATERIAL THAT INCLUDES NOBLE METALS AND A TENSIOACTIVE POLYMER, SYNTHESIS PROCEDURE AND ITS USE FOR THE DESULFURATION OF FLUIDS

Publications (1)

Publication Number Publication Date
WO2014202815A1 true WO2014202815A1 (en) 2014-12-24

Family

ID=52103995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070504 WO2014202815A1 (en) 2013-06-21 2014-06-20 Adsorbent composite material comprising noble metals and a surfactant polymer, synthesis method and use thereof for the desulfurisation of fluids

Country Status (2)

Country Link
ES (1) ES2527359B1 (en)
WO (1) WO2014202815A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124714B2 (en) 2020-02-19 2021-09-21 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US11860069B2 (en) 2021-02-25 2024-01-02 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11970664B2 (en) 2023-05-08 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070282075A1 (en) * 2004-01-27 2007-12-06 Matthias Koch Use Of Statistical Copolymers
CN103041764A (en) * 2012-12-24 2013-04-17 南京工业大学 Adsorbent for desulfurization of fuel oil, preparation method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070282075A1 (en) * 2004-01-27 2007-12-06 Matthias Koch Use Of Statistical Copolymers
CN103041764A (en) * 2012-12-24 2013-04-17 南京工业大学 Adsorbent for desulfurization of fuel oil, preparation method and application thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DU ET AL.: "Amphiphilic multiblock copolymer stabilized Au nanoparticles.", COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS., vol. 317, no. 1-3, 18 October 2007 (2007-10-18), pages 194 - 205, XP022482559, DOI: doi:10.1016/j.colsurfa.2007.10.016 *
MORROS J ET AL.: "Surface activity and aggregation of pristine and hydrophobically modified inulin.", SOFT MATTER, vol. 8, no. 44, 30 November 2012 (2012-11-30), pages 11353 - 11362 *
NING YANG ET AL.: "Direct synthesis of polymerizable surfactant- stabilized nanoparticles: the macromolecular monomers for fabricating nanoparticle-polymer composites.", NANOTECHNOLOGY, vol. 21, no. 28, 16 July 2010 (2010-07-16), pages 1, XP020175094 *
RAVEENDRAN P ET AL.: "Completely green synthesis and stabilization of metal nanoparticles.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 125, no. 46, 8 November 2002 (2002-11-08), pages 13940 - 13941, XP009062977, DOI: doi:10.1021/ja029267j *
WHITE R J ET AL.: "A Sweet Killer: Mesoporous Polysaccharide Confined Silver Nanoparticles for Antibacterial Applications.", JOURNAL OF MOLECULAR SCIENCE, vol. 12, no. 9, 9 September 2011 (2011-09-09), pages 5782 - 5796 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891581B2 (en) 2017-09-29 2024-02-06 Marathon Petroleum Company Lp Tower bottoms coke catching device
US11667858B2 (en) 2020-02-19 2023-06-06 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11905479B2 (en) 2020-02-19 2024-02-20 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11384301B2 (en) 2020-02-19 2022-07-12 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11124714B2 (en) 2020-02-19 2021-09-21 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stability enhancement and associated methods
US11920096B2 (en) 2020-02-19 2024-03-05 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US11352578B2 (en) 2020-02-19 2022-06-07 Marathon Petroleum Company Lp Low sulfur fuel oil blends for stabtility enhancement and associated methods
US11352577B2 (en) 2020-02-19 2022-06-07 Marathon Petroleum Company Lp Low sulfur fuel oil blends for paraffinic resid stability and associated methods
US11905468B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11885739B2 (en) 2021-02-25 2024-01-30 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11898109B2 (en) 2021-02-25 2024-02-13 Marathon Petroleum Company Lp Assemblies and methods for enhancing control of hydrotreating and fluid catalytic cracking (FCC) processes using spectroscopic analyzers
US11860069B2 (en) 2021-02-25 2024-01-02 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11906423B2 (en) 2021-02-25 2024-02-20 Marathon Petroleum Company Lp Methods, assemblies, and controllers for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11921035B2 (en) 2021-02-25 2024-03-05 Marathon Petroleum Company Lp Methods and assemblies for determining and using standardized spectral responses for calibration of spectroscopic analyzers
US11802257B2 (en) 2022-01-31 2023-10-31 Marathon Petroleum Company Lp Systems and methods for reducing rendered fats pour point
US11970664B2 (en) 2023-05-08 2024-04-30 Marathon Petroleum Company Lp Methods and systems for enhancing processing of hydrocarbons in a fluid catalytic cracking unit using a renewable additive

Also Published As

Publication number Publication date
ES2527359A1 (en) 2015-01-22
ES2527359B1 (en) 2015-11-02

Similar Documents

Publication Publication Date Title
WO2014202815A1 (en) Adsorbent composite material comprising noble metals and a surfactant polymer, synthesis method and use thereof for the desulfurisation of fluids
US10357738B2 (en) Vertically mounted sulfur adsorbent system
Sun et al. Aqueous Hg (II) immobilization by chitosan stabilized magnetic iron sulfide nanoparticles
Wang et al. Spherical-shaped CuS modified carbon nitride nanosheet for efficient capture of elemental mercury from flue gas at low temperature
ES2282138T3 (en) SORBENT COMPOSITION, PROCEDURE TO PRODUCE AND USE IN DESULFURATION.
Stirling The sulfur problem: cleaning up industrial feedstocks
TW442328B (en) An adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use
CN103084147B (en) Iron oxide magnetic nano particle, preparation method and application method thereof in desulfurization
Sun et al. A PTA@ MIL-101 (Cr)-diatomite composite as catalyst for efficient oxidative desulfurization
EP2763784B1 (en) Gas stream treatment process for mercury removal
EP3294439A2 (en) Process, method, and system for removing mercury from fluids
CN104117355A (en) A bismuth tungstate photocatalyst surface-modified by nanometer silver and a preparing method thereof
Wang et al. Effect of hierarchical porous MOF-199 regulated by PVP on their ambient desulfurization performance
US9777225B1 (en) Method for sulfur removal with a uranyl-containing carbonaceous adsorbent
Elmobarak et al. Enhanced oil recovery using hyperbranched polyglycerol polymer-coated silica nanoparticles
CN103041764B (en) Adsorbent for desulfurization of fuel oil, preparation method and application thereof
Özkan et al. Adsorptive Desulfurization of Crude Oil with Clinoptilolite Zeolite
Kong et al. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation
CN102527322A (en) Method for preparing gasoline deeply desulfurized adsorbent and application of adsorbent
Zhong et al. Preparation of Zr-Based Phosphotungstic Acid Catalyst, ZrPTA X-BTC, and Its Application in Ultradeep and Fast Oxidative Desulfurization of Fuels
CN105080487A (en) Active carbon desulphurization adsorbent loaded with cobalt phthalocyanine sulfonate and copper and preparation method thereof
US8888994B2 (en) Method for deep desulphurization of hydrocarbon fuels
CN100480358C (en) Fuel oil photooxidation desulfated process
CN105080488B (en) Load phthalocyanine cobalt sulfonate active carbon desulfurization adsorbent and preparation method thereof
US11731080B2 (en) Method of sweetening hydrocarbon gas from hydrogen sulfide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813056

Country of ref document: EP

Kind code of ref document: A1