WO2014200258A1 - 적외선 영상을 이용한 지표온도감률 추정 방법 - Google Patents

적외선 영상을 이용한 지표온도감률 추정 방법 Download PDF

Info

Publication number
WO2014200258A1
WO2014200258A1 PCT/KR2014/005113 KR2014005113W WO2014200258A1 WO 2014200258 A1 WO2014200258 A1 WO 2014200258A1 KR 2014005113 W KR2014005113 W KR 2014005113W WO 2014200258 A1 WO2014200258 A1 WO 2014200258A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimating
temperature
surface temperature
reduction rate
image
Prior art date
Application number
PCT/KR2014/005113
Other languages
English (en)
French (fr)
Inventor
정형섭
박숭환
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2014200258A1 publication Critical patent/WO2014200258A1/ko
Priority to US14/966,369 priority Critical patent/US10337925B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/007Radiation pyrometry, e.g. infrared or optical thermometry for earth observation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Definitions

  • the present invention relates to a method for estimating the surface temperature reduction rate using an infrared image, and more particularly, to a method for estimating the surface temperature rate reduction using an infrared image capable of estimating the surface temperature reduction rate without an automatic meteorological observation equipment.
  • the present invention is derived from the research conducted as part of the space core technology development project of the Ministry of Education, Science and Technology and the Korea Research Foundation [Task Management Number: 1345178484, Task Name: Development of ion effect extraction and correction method using satellite radar].
  • altitudes are generally severe in temperature, which can result in instantaneous heavy rains, heavy snowfalls and dense fog, and there are people who do not have basic knowledge about alpine areas at night.
  • Automated meteorological observation equipment capable of collecting temperature data is rarely distributed in mountainous areas due to its high concentration in large populations, and it is highly likely that the equipment will fail due to wind, heavy rain, and snowfall, which are more prominent in highlands. In addition, it is not easy and has been used for the short-term side of a year or two.
  • FIG. 1 is a flowchart illustrating a process of generating simulation (ie, simulation) data for calculating surface temperature in Korean Patent No. 1207925 (hereinafter, referred to as 'Prior Art 1').
  • the method for calculating the surface temperature of the prior art 1 includes at least one of an atmospheric profile, satellite ceiling angle, emission rate, emission rate difference, and surface temperature reduction rate for at least one surface temperature calculation point observed by meteorological phase.
  • a weather data obtaining step of obtaining weather data Determining the number of ground surface temperature calculation points in the weather data to determine whether the satellite ceiling angle is within a predetermined angle to determine the number of ground surface temperature calculation points within the predetermined angle; An initial value of a first emission rate at which the determined ground surface temperature calculation point is detected at a first wavelength and an initial value of a second emission rate at a second wavelength different from the first wavelength are set, and the first emission rate and the second Calculating an emission rate difference for obtaining an initial value of the emission rate difference corresponding to the emission rate difference; Determining whether the second emission rate is less than a predetermined value by subtracting the first emission rate value from the emission rate difference, and determining whether the second emission rate is less than a predetermined value; A range setting step of day / night / whole ranges for setting day / night / whole ranges according to the surface temperature reduction rate of the weather data when the determination result is less than a predetermined value; An increased emission rate difference determining step of determining whether the increased emission rate difference is within a
  • the surface temperature calculation method according to the prior art 1 estimates the temperature by measuring the sensor, the estimated temperature is different from the temperature measured through the measurement by the atmospheric effect and the emissivity. Radiation energy emitted from the earth is attenuated by scattering, absorption and refraction of the atmosphere and collected by the infrared sensor. The radiation rate is not known because the exact emissivity is not known because it depends on the color, roughness and moisture content of the earth. It is very difficult to estimate the exact temperature.
  • FIG. 2 is a flowchart illustrating a process of creating a surface temperature calculation formula using a weighted combination according to time / night time change in Published Patent No. 2009-0088131 (hereinafter, referred to as “Prior Art 2”).
  • the method for estimating the national temperature considering the elevation deviation of the related art generates a ArcView Shape for a target region, and the plurality of observation points are displayed on the numerical map, and the observed points are measured.
  • the first air temperature is generated by dividing the numerical map into square grids of a predetermined size to form a plurality of grids, and calculating a first temperature distribution value of the grids by calculating the first temperature estimate of each grid by the distance squared inverse weighting method of the observation points.
  • Generating a distribution map Generating an elevation map of a target area using a numerical elevation model; A virtual elevation map generation step of generating a virtual elevation map by calculating a virtual elevation of each grid of the digital map by a distance squared inverse weighting method of the observation points; A correction value generating step of calculating an elevation deviation for each grid by comparing the actual elevation map with a virtual elevation map, and generating a correction value by multiplying the temperature reduction rate corresponding to the elevation deviation by the elevation deviation; And a final temperature distribution diagram creation step having an algorithm for generating a final temperature distribution diagram displaying a second temperature estimate value approximating an actual temperature value by applying the correction value generated in the correction value generation step to a first temperature distribution map. do.
  • the method of estimating the local temperature considering the elevation deviation according to the prior art 2 and the estimation system have a problem that the accuracy is lowered by correcting the estimated value of the local temperature by applying the temperature reduction corresponding to the elevation deviation.
  • An object of the present invention is to solve the problems of the prior art as described above, by estimating the surface temperature reduction rate by using the relationship between the emissivity and the atmospheric effect between the surface in the image, the surface temperature reduction rate is also produced, the temperature caused by climate change It is to provide a method for estimating the surface temperature reduction rate using infrared images, which can be used in various fields such as accurate estimation of changes, observation of road hazards in alpine areas, and analysis of alpine ecosystems.
  • the present invention comprises the steps of selecting a target area for estimating the surface temperature reduction rate; Calculating an air permeability of the target area; Estimating a reference temperature at a reference position arbitrarily set in the target region; Producing a temperature difference image by calculating a temperature difference from the atmospheric transmittance and the estimated reference temperature; And estimating the ground temperature reduction rate by using a temperature difference distribution for each elevation from a digital elevation map (DEM) of the same region as the temperature difference image.
  • DEM digital elevation map
  • the surface temperature reduction rate estimating step in the present invention may estimate the surface temperature reduction rate through linear regression analysis.
  • the step of estimating the surface temperature reduction rate in the present invention the step of resampling the terrain altitude data to have a spatial resolution of the temperature difference image; Preparing temperature difference data according to altitude from the topographic elevation data and the temperature difference; And calculating a linear regression curve based on the temperature difference data.
  • the atmospheric transmittance calculation step in the present invention can be carried out to minimize the atmospheric effect of the infrared image.
  • the target region may be selected after estimating a radiant temperature from radiant energy emitted from the surface using an infrared sensor.
  • the reference temperature estimating step of the present invention may be estimated by observing the surface temperature approximately from the infrared image, or may be observed by field observation.
  • the surface temperature decrease is also produced, the temperature estimation due to climate change, the road hazard observation in the alpine region, the alpine ecosystem analysis
  • the temperature estimation due to climate change the road hazard observation in the alpine region
  • the alpine ecosystem analysis There is an effect that can be utilized in various fields such as.
  • FIG. 1 is a flowchart illustrating a process of generating simulation (ie, simulation) data for calculating surface temperature according to the related art 1.
  • FIG. 2 is a flowchart illustrating a process of creating a surface temperature calculation formula using weighted combinations according to time / night time changes according to the related art 2.
  • FIG. 3 is a block diagram of a method for estimating surface temperature reduction rate using an infrared image according to the present invention.
  • 4 and 5 are images showing examples of the normal vegetation index image and the extracted target region through the method for estimating the ground temperature reduction rate using the infrared image according to the present invention.
  • 6 and 7 are graphs showing an error sensitivity analysis result of the temperature difference estimated by the method for estimating the surface temperature reduction rate using an infrared image according to the present invention.
  • 8 to 10 is an image showing a year-by-year temperature difference image produced from an infrared image by the method for estimating the surface temperature reduction rate using the infrared image according to the present invention.
  • 11 to 13 are graphs showing examples of the temperature difference distribution and the surface temperature reduction rate for each altitude through the surface temperature reduction rate estimation method using the infrared image according to the present invention.
  • FIG. 14 is a graph showing an example of the change of the surface temperature reduction rate according to the atmospheric temperature through the surface temperature reduction rate estimation method using the infrared image according to the present invention.
  • the present invention comprises the steps of selecting a target area for estimating the surface temperature reduction rate; Calculating an air permeability of the target area; Estimating a reference temperature at a reference position arbitrarily set in the target region; Producing a temperature difference image by calculating a temperature difference from the atmospheric transmittance and the estimated reference temperature; And estimating the ground temperature reduction rate by using a temperature difference distribution for each elevation from a digital elevation map (DEM) of the same region as the temperature difference image.
  • DEM digital elevation map
  • the surface temperature reduction rate estimating step in the present invention may estimate the surface temperature reduction rate through linear regression analysis.
  • the step of estimating the surface temperature reduction rate in the present invention the step of resampling the terrain altitude data to have a spatial resolution of the temperature difference image; Preparing temperature difference data according to altitude from the topographic elevation data and the temperature difference; And calculating a linear regression curve based on the temperature difference data.
  • the atmospheric transmittance calculation step in the present invention can be carried out to minimize the atmospheric effect of the infrared image.
  • the target region may be selected after estimating a radiant temperature from radiant energy emitted from the surface using an infrared sensor.
  • the reference temperature estimating step of the present invention may be estimated by observing the surface temperature approximately from the infrared image, or may be observed by field observation.
  • ... unit means a unit for processing at least one function or operation, which may be implemented in hardware or software or a combination of hardware and software.
  • FIG. 3 is a block diagram showing a method for estimating the ground temperature reduction rate using an infrared image according to the present invention
  • FIGS. 4 and 5 show the normal vegetation index image and the extraction using the method for estimating the ground temperature rate reduction using the infrared image according to the present invention
  • 6 and 7 show the results of the error sensitivity analysis of the temperature difference estimated by the method for estimating the surface temperature reduction rate using the infrared image according to the present invention
  • FIG. 11 the temperature difference image produced during the year by the infrared image through the method for estimating the surface temperature reduction using the infrared image according to the present invention is shown as an image
  • 11 to 13 show the estimation of the surface temperature reduction using the infrared image according to the present invention.
  • An example of the temperature difference distribution and the surface temperature reduction rate by altitude through the method is shown in a graph.
  • the surface temperature reduction rate estimation method using the infrared image of the present invention is the target area selection step (S100), atmospheric transmittance calculation step (S120), reference temperature estimation step (S130), temperature difference image production step (S140) and Surface temperature reduction rate estimation step (S150) is included.
  • the target region for estimating the surface temperature reduction rate is selected, and the target region is preferably a tree region having a high radiation rate.
  • the temperature estimated using the infrared sensor during the target region selection step (S100) is a radiant temperature estimated from radiant energy emitted from the surface, which is different from the temperature measured directly.
  • emissivity is defined as the ratio of the total radiant energy emitted by the black body and the total energy emitted by the surface of the real world at the same temperature.
  • the radiation rate is different from the radiant energy because the emissivity is different depending on the color, surface roughness and moisture content. Therefore, in order to measure the surface temperature from the radiant energy, information on the emissivity is essential.
  • the estimation of the temperature using the radiant energy is mainly made in the sea consisting of a single object, which is called sea surface temperature (SST).
  • SST sea surface temperature
  • water is closer to a black body than other objects and has an emissivity of about 0.98. The higher the emissivity, the less severe the change in temperature, so the temperature of the atmosphere is different from the very fast change of solar energy and temperature.
  • LST latitude surface temperature
  • vegetation zones have higher values of emissivity compared to other objects, which are about 0.98, and therefore have a modest change in temperature depending on solar energy and temperature. .
  • NDVI normalized difference vegetation index
  • Atmospheric correction can be largely divided into atmospheric correction technique and image-based correction technique.
  • Atmospheric correction technique by atmospheric model is a method of obtaining and correcting transmittance, atmospheric upward radiation, and atmospheric downward radiation through atmospheric models such as MODTRAN and 6S.
  • Image-based correction technique assumes that there is an object close to black body in the image. It is a method of estimating atmospheric effects.
  • the normal vegetation index is more than 0.5, it can be assumed that the target indicator is composed almost of vegetation, and if the infrared image of 10.5 to 12.5 is used, the emissivity can be assumed to be 0.99. Therefore, in the target region selection step (S100), a region having a normal vegetation index of 0.5 or more is selected from the normal vegetation index image obtained from Equation 1 and selected as the target region.
  • 4 and 5 show a normal vegetation index image and the extracted target region according to an embodiment of the present invention.
  • FIG. 4 is a normal vegetation index image produced from Equation 1
  • FIG. 5 shows a region where the normal vegetation index is 0.5 or more in each image coordinate.
  • Atmospheric transmittance calculation step (S120) is a step of calculating the atmospheric transmittance of the target area to minimize the atmospheric effect of the infrared image from the temperature and relative humidity of the day the infrared image is captured.
  • Atmospheric transmittance in the atmospheric transmittance calculation step (S120) can be easily calculated using the atmospheric model, but the calculation of the transmittance using the atmospheric model requires the physical quantity of the atmosphere, in most cases the atmospheric transmittance because it is difficult to know the atmospheric physical quantity The calculation is not easy to find using the atmospheric model. Therefore, in most cases, the air permeability is calculated from water vapor and can be calculated from Equation 2 below.
  • h is the amount of water and the unit is g / cm 2
  • g is 9.8 m / s 2 as the gravitational acceleration
  • P 0 represents the water pressure
  • the air permeability calculated in the air permeability calculation step (S120) is used as an input value to produce a temperature difference image, it is important to calculate as accurately as possible.
  • the reference temperature estimating step (S130) is a step of estimating the reference temperature at a reference position arbitrarily set in the target region.
  • the reference temperature may be estimated by observing the surface temperature from the infrared image, or may be observed by field observation.
  • the accurate reference temperature is not required for estimating the surface temperature reduction rate according to the altitude using the infrared image according to the present invention, it is easier to estimate it from the infrared image than the measured value.
  • the method of estimating the surface temperature from the infrared image is applied differently according to the characteristics of the infrared sensor. For example, in the case of the Landsat TM infrared image, the surface temperature estimation method that is generally used includes a mono-window algorithm and a single-channel algorithm.
  • the mono-window algorithm is simpler to estimate the surface temperature than the single-channel algorithm, but its accuracy is known to be relatively low, ⁇ 2.41K.
  • the estimation of the reference surface temperature using the single-channel algorithm is known to have a precision of ⁇ 0.56K and to perform more accurate measurement than the mono-window algorithm. In this step, the reference temperature estimation does not require precise surface temperature, so both methods can be used.
  • Such single-channel algorithms and mono-window algorithms are well known in the art.
  • the temperature difference is the reference indicator temperature ( )
  • target indicator temperature By subtracting the surface temperature of
  • the accuracy of the temperature difference image is determined by the reference temperature estimation accuracy and the atmospheric transmittance precision as input data.
  • 6 and 7 illustrate an error sensitivity analysis result of the temperature difference estimated by Equation 4 according to an embodiment of the present invention.
  • 6 and 7 represent the error of the precision of the amount of water and the estimated error of the reference temperature, respectively, and the vertical axis represents the error of the temperature difference according to the precision.
  • the error sensitivity analysis when the error range of moisture content is ⁇ 0.302 g / cm2 and the radiance difference is 0.2, 0.5, 1.0, it is about ⁇ 0.06K, ⁇ 0.15K, ⁇ 0.30K, respectively.
  • 8 to 10 is an image showing a time-phase temperature difference image of the year produced from Landsat infrared image of the mid-latitude region according to an embodiment of the present invention. 8 to 10 it can be seen that the temperature difference increases because the closer to the winter in time, the temperature difference image is more accurate as the temperature difference between the surface rather than estimating the direct surface temperature, unlike calculating the surface temperature The temperature difference can be estimated.
  • Surface temperature reduction rate estimating step (S150) corresponds to the temperature difference image and the digital elevation model to estimate the temperature reduction rate, that is, the topographic elevation data (DEM; Digital Elevation) of the same region as the temperature difference image produced by the temperature difference image production step (S140) It is a step of estimating the surface temperature reduction rate by linear regression analysis using the temperature difference distribution by altitude from the map). To this end, the terrain elevation data is resampled to have the spatial resolution of the temperature difference image, and then the terrain elevation data is Temperature difference After producing temperature difference data according to altitude, a linear regression curve is obtained as shown in Equation 5 below.
  • the surface temperature decrease rate according to the altitude is one of the parameters of the linear regression curve.
  • Available from 11 to 13 is a graph showing the temperature difference distribution and the surface temperature reduction rate by altitude according to an embodiment of the present invention.
  • 11 to 13 show scatter maps with the topographic elevation data on the X axis and the temperature difference data on the Y axis, where a linear change according to altitude can be confirmed.
  • Figure 11 shows that the surface temperature reduction rate in August is -0.31 °C / 100m
  • Figure 12 means that the surface temperature reduction rate in September is -0.54 °C / 100m
  • Figure 13 is -0.82 surface temperature reduction rate in October It means that it is °C / 100m.
  • the surface temperature reduction rate according to the atmospheric temperature can be obtained from the linear regression curve shown in Equation 6 below.
  • FIG. 14 is a graph showing a change in the surface temperature reduction rate according to the atmospheric temperature in an embodiment of the present invention.
  • the horizontal axis in Fig. 14 is the atmospheric temperature at the time when the image is captured, and the vertical axis is the surface temperature reduction rate estimated from the present invention.
  • c is 0.04, and the coefficient of determination is 0.84, which means that the change in the surface temperature reduction rate according to the atmospheric temperature can be estimated accurately.
  • the present invention relates to a method for estimating the surface temperature reduction rate using an infrared image, and more particularly, to a method for estimating the surface temperature rate reduction using an infrared image capable of estimating the surface temperature reduction rate without an automatic meteorological observation equipment.
  • the surface temperature decrease is also produced, the temperature estimation due to climate change, the road hazard observation in the alpine region, the alpine ecosystem analysis
  • the temperature estimation due to climate change the road hazard observation in the alpine region
  • the alpine ecosystem analysis There is an effect that can be utilized in various fields such as.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Atmospheric Sciences (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Human Computer Interaction (AREA)
  • Radiation Pyrometers (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Image Processing (AREA)

Abstract

본 발명은 적외선 영상을 이용한 지표온도감률 추정 방법에 관한 것으로, 본 발명은, 지표온도감률을 추정하기 위한 대상지역을 선정하는 단계; 상기 대상지역의 대기투과율을 계산하는 단계; 상기 대상지역에서 임의로 설정된 기준위치에서의 기준온도를 추정하는 단계; 상기 대기투과율과 상기 추정된 기준온도로부터 온도차를 계산하여 온도차 영상을 제작하는 단계; 및 상기 온도차 영상과 동일 지역의 지형고도자료(DEM; Digital Elevation Map)로부터 고도별 온도차분포를 이용하여 지표온도감률을 추정하는 단계를 포함한다. 본 발명에 의하면, 영상 내 지표간의 복사율과 대기효과의 관계를 이용하여 지표온도감률을 추정함으로써, 지표 온도감율도 제작, 기후변화에 의한 온도변화 정밀추정, 고산지대의 도로위험성 관측, 고산지대 생태계 분석 등과 같은 다양한 분야에 활용될 수 있는 효과가 있다.

Description

적외선 영상을 이용한 지표온도감률 추정 방법
본 발명은 적외선 영상을 이용한 지표온도감률 추정 방법에 관한 것으로, 더욱 상세하게는 자동기상관측장비 없이 지표온도감률을 추정 가능한 적외선 영상을 이용한 지표온도감률 추정 방법에 관한 것이다.
본 발명은 교육과학기술부 및 한국연구재단의 우주핵심기술개발사업의 일환으로 수행한 연구로부터 도출된 것이다[과제관리번호: 1345178484, 과제명: 위성레이더를 이용한 이온효과 추출 및 보정기법 개발].
일반적으로 고산지대는 고도가 낮은 지역과는 달리 온도변화가 심하여 순간적인 호우, 폭설 및 짙은 안개 등의 악천후가 순식간에 발생할 수 있으며, 고산지대에 대한 기초지식이 없는 사람이 야간에 이러한 고산지대에 있을 경우 갑작스러운 악천후로 인하여 사고를 당할 가능성이 높으며, 순간적으로 얼어붙은 도로는 교통사고의 원인이 될 수 있기 때문에 연중 시기별 고산지대에 대한 고도상승에 따른 온도변화에 대한 이해가 요구된다.
온도자료를 수집할 수 있는 자동기상관측장비는 인구가 많은 지역에 집중분포하여 산악지대에는 드문 형편이며, 고산지대에서 더 두드러지게 나타나는 바람과 호우 및 폭설에 의해 장비가 고장날 가능성이 높으며, 전력공급 또한 쉽지 않아 1~2년 정도의 단기관측에 사용되어 왔다.
따라서, 적외선영상으로부터 산악지대의 온도를 추정하는 방법이 개발되어 왔다. 이는 적외선센서로부터 수집된 지표의 복사에너지를 온도로 변환하는 방법으로, 넓은 면적의 관측이 가능하며, 주기적인 모니터링이 가능하며, 데이터 획득비용을 절감시킬 수 있으며, 지표온도감률을 추정할 수 있는 장점이 있다.
이러한 지표 온도 산출 및 추정과 관련된 기술이 특허등록 제1207925호 및 공개특허 제2009-0088131호에 제안된 바 있다.
이하에서 종래기술로서 특허등록 제1207925호 및 공개특허 제2009-0088131호에 개시된 지표면 온도 산출 방법 및 표고편차를 고려한 국지기온의 추정방법 및 그 추정시스템을 간략히 설명한다.
도 1은 특허등록 제1207925호(이하 '종래기술 1'이라 함)에서 지표면 온도를 산출하기 위한 모의(즉, 시뮬레이션) 자료를 생성하는 과정을 보여주는 순서도이다. 도 1에서 보는 바와 같이 종래기술 1의 지표면 온도 산출 방법은 기상 위상에 의해 관측된 적어도 하나의 지표면 온도 산출 지점에 대한 대기 프로파일, 위성 천정각, 방출율, 방출율차 및 지표면 온도 감율 중 적어도 하나 이상을 포함하는 기상 데이터를 획득하는 기상 데이터 획득 단계; 상기 기상 데이터 중 위성 천정각이 소정 각도 내에 있는 지를 판단하여 상기 소정 각도 내의 지표면 온도 산출 지점 개수를 결정하는 지표면 온도 산출 지점 개수 결정 단계; 상기 결정된 지표면 온도 산출 지점을 제 1 파장으로 검출한 제 1 방출율의 초기값과, 상기 제 1 파장과 상이한 제 2 파장으로 검출하는 제 2 방출율의 초기값을 설정하고, 상기 제 1 방출율과 제 2 방출율 차이에 해당하는 방출율차의 초기값을 구하는 방출율차 산출 단계; 상기 방출율차로부터 상기 제 1 방출율값을 감산하여 상기 제 2 방출율을 구하고, 상기 제 2 방출율이 소정값 미만인지를 판단하는 소정값 미만 여부 판단 단계; 판단 결과, 소정값 미만이면 상기 기상 데이터 중 지표면 온도 감율에 따른 주간/야간/전체별 범위를 설정하는 주/야간/전체별 범위 설정 단계; 상기 방출율차에 제 1 소정의 증가값을 더하여 증가된 방출율차가 제 1 소정 범위내에 있는 지를 판단하는 증가된 방출율차 판단 단계; 상기 제 1 방출율에 제 2 소정의 증가값을 더하여 증가된 방출율이 제 2 소정 범위내에 있는지를 판단하는 증가된 방출율 판단 단계; 및 지표면 온도를 복사 전달 모델로 모의(시뮬레이션)하여 상기 주간/야간/전체별로 모의 자료를 생성하는 모의 자료 생성 단계를 포함한다.
그러나 종래기술 1에 의한 지표면 온도 산출 방법은 센서를 통해 온도를 측정하여 추정하므로 추정된 온도는 대기효과와 복사율(emissivity)에 의해 실측을 통해 측정한 온도와는 차이가 있다. 지표로부터 방출된 복사에너지는 대기의 산란, 흡수 및 굴절에 의해 감쇠가 되어 적외선 센서에 수집되며, 복사율은 지표의 색상, 거칠기, 수분함유량 등에 의해 달라지기 때문에 정확한 복사율을 알 수 없으므로, 적외선영상으로부터 정확한 온도를 추정하는 것은 매우 어렵다.
도 2는 공개특허 제2009-0088131호(이하 '종래기술 2'라 함)에서 주/야간의 시간 변화에 따른 가중 조합을 이용한 지표면 온도 산출식을 만드는 과정을 보여주는 순서도이다. 도 2에서 보는 바와 같이 종래기술의 표고편차를 고려한 국지기온의 추정방법은, 대상지역에 대한 수치지도(ArcView Shape)를 생성하고, 상기 수치지도에는 복수의 관측점이 표시되며, 상기 관측점에는 실측된 기온 및 표고 자료가 저장된 수치지도 생성단계; 상기 수치지도를 소정크기의 정방형 격자로 분할하여 복수의 격자를 형성하고, 상기 각 격자의 제1기온추정값을 상기 관측점들의 거리자승역산가중법에 의해 산출함으로써 1차 기온분포도를 생성하는 1차 기온분포도 생성단계; 대상지역의 실측표고지도를 수치고도모형으로 생성하는 실측표고지도 생성단계; 상기 수치지도의 각 격자에 대한 가상표고를 상기 관측점들의 거리자승역산가중법에 의해 산출하여 가상표고지도를 생성하는 가상표고지도 생성단계; 상기 실측표고지도과 가상표고지도를 비교함으로써 각 격자에 대한 표고편차를 산출하고, 상기 표고편차에 해당하는 기온감율을 상기 표고편차에 곱함으로써 보정값을 생성하는 보정값 생성단계; 및 상기 보정값 생성단계에서 생성된 보정값을 1차 기온분포도에 적용함으로써 실측의 기온값에 근사하는 제2기온 추정값이 표시되는 최종 기온분포도를 작성하는 알고리즘을 가진 최종 기온분포도 작성단계;를 포함한다.
그러나 종래기술 2에 의한 표고편차를 고려한 국지기온의 추정방법 및 그 추정시스템은 표고편차에 대응하는 온도감율을 적용하여 국지온도의 추정값을 보정함으로써 정밀도가 저하되는 문제점이 있었다.
본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 영상 내 지표간의 복사율과 대기효과의 관계를 이용하여 지표온도감률을 추정함으로써, 지표 온도감율도 제작, 기후변화에 의한 온도변화 정밀추정, 고산지대의 도로위험성 관측, 고산지대 생태계 분석 등과 같은 다양한 분야에 활용될 수 있게 한 적외선 영상을 이용한 지표온도감률 추정 방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 지표온도감률을 추정하기 위한 대상지역을 선정하는 단계; 상기 대상지역의 대기투과율을 계산하는 단계; 상기 대상지역에서 임의로 설정된 기준위치에서의 기준온도를 추정하는 단계; 상기 대기투과율과 상기 추정된 기준온도로부터 온도차를 계산하여 온도차 영상을 제작하는 단계; 및 상기 온도차 영상과 동일 지역의 지형고도자료(DEM; Digital Elevation Map)로부터 고도별 온도차분포를 이용하여 지표온도감률을 추정하는 단계를 포함하는 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 달성된다.
또한, 본 발명에서의 상기 지표온도감률 추정 단계는, 선형 회귀분석을 통하여 지표온도감률을 추정할 수 있다.
또한, 본 발명에서의 상기 지표온도감률 추정 단계는, 지형고도자료를 온도차영상의 공간해상도를 지니도록 리샘플링하는 단계; 상기 지형고도자료와 온도차로부터 고도에 따른 온도차 데이터를 제작하는 단계; 및 상기 온도차 데이터를 통해 선형 회귀곡선을 계산하는 단계를 포함할 수 있다.
또한, 본 발명에서의 상기 대기투과율 계산 단계는, 적외선영상의 대기효과를 최소화하기 위해 실시할 수 있다.
또한, 본 발명에서의 상기 대상지역 선정 단계는, 적외선센서를 사용하여 지표에서 방출하는 복사에너지로부터 방사온도(radiant temperature)를 추정한 후 대상지역을 선정할 수 있다.
또한, 본 발명에서의 상기 기준온도 추정단계는, 적외선 영상으로부터 근사적으로 지표온도를 관측하여 추정하거나, 현장관측에 의하여 관측할 수 있다.
본 발명에 의하면, 영상 내 지표간의 복사율과 대기효과의 관계를 이용하여 지표온도감률을 추정함으로써, 지표 온도감율도 제작, 기후변화에 의한 온도변화 정밀추정, 고산지대의 도로위험성 관측, 고산지대 생태계 분석 등과 같은 다양한 분야에 활용될 수 있는 효과가 있다.
도 1은 종래기술 1에 의한 지표면 온도를 산출하기 위한 모의(즉, 시뮬레이션) 자료를 생성하는 과정을 보여주는 순서도이다.
도 2는 종래기술 2에 의한 주/야간의 시간 변화에 따른 가중 조합을 이용한 지표면 온도 산출식을 만드는 과정을 보여주는 순서도이다.
도 3은 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법의 블록도이다.
도 4 및 도 5는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 정규식생지수영상과 추출된 대상지역의 예를 나타낸 이미지이다.
도 6 및 도 7은 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 추정된 온도차의 오차민감도 분석결과를 나타낸 그래프이다.
도 8 내지 도 10은 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 적외선영상으로부터 제작한 연중 시기별 온도차영상을 나타낸 이미지이다.
도 11 내지 도 13은 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 고도별 온도차분포와 지표온도감률의 예를 나타낸 그래프이다.
도 14는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 대기온도에 따른 지표온도감률의 변화의 예를 나타낸 그래프이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은, 지표온도감률을 추정하기 위한 대상지역을 선정하는 단계; 상기 대상지역의 대기투과율을 계산하는 단계; 상기 대상지역에서 임의로 설정된 기준위치에서의 기준온도를 추정하는 단계; 상기 대기투과율과 상기 추정된 기준온도로부터 온도차를 계산하여 온도차 영상을 제작하는 단계; 및 상기 온도차 영상과 동일 지역의 지형고도자료(DEM; Digital Elevation Map)로부터 고도별 온도차분포를 이용하여 지표온도감률을 추정하는 단계를 포함하는 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 달성된다.
또한, 본 발명에서의 상기 지표온도감률 추정 단계는, 선형 회귀분석을 통하여 지표온도감률을 추정할 수 있다.
또한, 본 발명에서의 상기 지표온도감률 추정 단계는, 지형고도자료를 온도차영상의 공간해상도를 지니도록 리샘플링하는 단계; 상기 지형고도자료와 온도차로부터 고도에 따른 온도차 데이터를 제작하는 단계; 및 상기 온도차 데이터를 통해 선형 회귀곡선을 계산하는 단계를 포함할 수 있다.
또한, 본 발명에서의 상기 대기투과율 계산 단계는, 적외선영상의 대기효과를 최소화하기 위해 실시할 수 있다.
또한, 본 발명에서의 상기 대상지역 선정 단계는, 적외선센서를 사용하여 지표에서 방출하는 복사에너지로부터 방사온도(radiant temperature)를 추정한 후 대상지역을 선정할 수 있다.
또한, 본 발명에서의 상기 기준온도 추정단계는, 적외선 영상으로부터 근사적으로 지표온도를 관측하여 추정하거나, 현장관측에 의하여 관측할 수 있다.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부"라는 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수도 있다.
이하 도면을 참고하여 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법에 대한 실시 예의 구성을 상세하게 설명하기로 한다.
도 3에는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법이 블록도로 도시되어 있고, 도 4 및 도 5에는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 정규식생지수영상과 추출된 대상지역의 예가 이미지로 나타나 있고, 도 6 및 도 7에는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 추정된 온도차의 오차민감도 분석결과가 그래프로 나타나 있고, 도 8 내지 도 10에는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 적외선영상으로부터 제작한 연중 시기별 온도차영상이 이미지로 나타나 있고, 도 11 내지 도 13에는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 고도별 온도차분포와 지표온도감률의 예가 그래프로 나타나 있으며, 도 14에는 본 발명에 의한 적외선 영상을 이용한 지표온도감률 추정 방법을 통해 대기온도에 따른 지표온도감률의 변화의 예가 그래프로 나타나 있다.
이들 도면에 의하면, 본 발명의 적외선 영상을 이용한 지표온도감률 추정 방법은 대상지역 선정 단계(S100), 대기투과율 계산 단계(S120), 기준온도 추정 단계(S130), 온도차영상 제작 단계(S140) 및 지표온도감률 추정 단계(S150)를 포함한다.
대상지역 선정 단계(S100)는 지표온도감률을 추정하기 위한 대상지역을 선정하는 단계로, 상기 대상지역은 복사율이 높은 수목지역이 바람직하다.
즉, 상기 대상지역 선정 단계(S100)의 수행시 적외선센서를 사용하여 추정된 온도는 지표에서 방출하는 복사에너지로부터 추정한 방사온도(radiant temperature)로, 직접 측정한 온도와는 차이가 있다. 이러한 차이가 나타나는 원인 중 하나는 지표의 복사율(emissivity)에 의한 것이다. 이때, 복사율이란 동일온도에서 흑체가 방출하는 총 복사에너지와 실세계의 지표가 방출하는 총 에너지의 비로 정의된다.
동일한 온도를 지니는 지표라도 색상, 표면거칠기, 수분함유량 등에 따라 복사율이 다르기 때문에 복사에너지로부터 추정한 방사온도는 다르게 된다. 그러므로, 복사에너지로부터 지표의 온도를 측정하기 위해서는 복사율에 대한 정보가 필수적으로 요구된다.
따라서, 복사에너지를 이용한 온도의 추정은 주로 단일물체로 이루어진 바다에서 이루어졌고, 이를 SST(sea surface temperature)라고 한다. 특히 물은 다른 물체에 비해 흑체에 가까운 물질로 복사율이 약 0.98에 이른다. 복사율이 높은 물체일수록 온도의 변화가 심하지 않은 특성을 지니기 때문에 대기의 온도가 태양에너지의 양과 기온에 따라 매우 빠르게 변화하는 것과 다른 특성을 지닌다.
바다와 달리 육지는 다양한 물체로 이루어져 있어 온도추정이 어렵다. 그래서 바다에서 추정한 온도와 육지에서 추정한 온도를 나누어 부르는데 육지에서 추정된 온도는 LST(land surface temperature)라 부른다. 그러나 식생지대(수목지대)의 경우, 복사율이 다른 물체에 비하여 높은 값을 지니는데 이 값은 약 0.98 정도를 지니게 되며, 따라서 태양에너지의 양과 기온에 따라 온도의 변화가 심하지 않은 특성을 지니는 지역이다.
지표온도감률 추정은 지표의 온도가 태양에너지의 양과 기온에 따라서 변화가 심하지 않은 지역을 선정하여 추정하는 것이 정밀도를 향상시킬 수 있기 때문에 적외선영상에서부터 우선 식생지대를 추출하는 것이 중요하다. 영상으로부터 식생지대의 추출은 적색영상과 근적외선영상의 비를 이용한 정규식생지수(NDVI; normalized difference vegetation index)영상을 이용한다. 정규식생지수영상, NDVI(x,y)은 하기 수학식 1을 통하여 얻어진다.
수학식 1
Figure PCTKR2014005113-appb-M000001
여기서,
Figure PCTKR2014005113-appb-I000001
Figure PCTKR2014005113-appb-I000002
는 각각 근적외선 영상과 적색 영상의 반사도를 나타내며, x와 y는 각각 픽셀방향과 라인방향의 영상좌표를 나타낸다. 특히, 근적외선 영상과 적색 영상의 반사도의 계산시 대기보정을 포함하는 것이 더욱 좋다. 대기보정은 크게 대기모델에 의한 대기보정기법과 영상기반보정기법으로 구분할 수 있다. 대기모델에 의한 대기보정기법은 MODTRAN, 6S 등과 같은 대기보델을 통하여 투과율, 대기상향복사량, 대기하향 복사량을 구하여 보정하는 방법이고, 영상기반 보정기법은 영상 내에 흑체에 가까운 물체가 있다고 가정하여 이로부터 대기효과를 추정하는 방법이다.
예컨대, 정규식생지수가 0.5를 넘는 경우, 대상지표가 거의 식생으로만 구성되어 있다고 가정할 수 있으며, 10.5~12.5의 적외선영상이 사용되었다면, 복사율을 0.99로 가정할 수 있다. 그러므로 상기 대상지역 선정 단계(S100)에서는 수학식 1로부터 구해진 정규식생지수영상으로부터 정규식생지수가 0.5이상인 지역을 추출하여 대상지역으로 선정한다. 도 4 및 도 5는 본 발명의 실시예로 정규식생지수 영상과 추출된 대상지역을 보인다. 도 4는 상기 수학식 1로부터 제작한 정규식생지수 영상이며, 도 5는 각각의 영상좌표에서 정규식생지수가 0.5이상인 지역을 도시한 것이다.
대기투과율 계산 단계(S120)는 적외선 영상의 대기효과를 최소화하기 위한 대상지역의 대기투과율을 적외선 영상을 촬상한 날의 기온과 상대습도로부터 계산하는 단계이다. 상기 대기투과율 계산 단계(S120)에서의 대기투과율은 대기모델을 이용하여 쉽게 계산할 수 있지만, 대기모델을 이용한 투과율의 계산은 대기의 물리량을 요구하며, 대부분의 경우 대기 물리량을 알기 어렵기 때문에 대기투과율 계산은 대기모델을 이용하여 구하기 쉽지 않다. 그러므로 대부분의 경우 대기투과율은 수분량(water vapor)으로부터 계산하며, 하기 수학식 2로부터 계산될 수 있다.
수학식 2
Figure PCTKR2014005113-appb-M000002
여기서 τ는 대기투과율을 의미하며, h는 수분량을 의미한다. 이러한 수분량은 하기 수학식 3과 같이 표현된다.
[규칙 제26조에 의한 보정 31.10.2014] 
수학식 3
Figure WO-DOC-MATHS-3
여기서 h는 수분량을 의미하며 단위는 g/cm2이고,
Figure PCTKR2014005113-appb-I000003
는 물의 밀도로서 1g/cm3이고, g는 중력가속도로서 9.8m/s2이며, P0는 수분압을 나타낸다.
여기서, 상기 대기투과율 계산 단계(S120)에서 계산된 대기투과율은 온도차영상을 제작하는데 입력값으로 사용되기 때문에 최대한 정확하게 계산하는 것이 중요하다.
기준온도 추정 단계(S130)는 대상지역에서 임의로 설정된 기준위치에서의 기준온도를 추정하는 단계이다.
여기서, 기준온도는 적외선영상으로부터 근사적으로 지표온도를 관측하여 추정할 수도 있고, 현장관측에 의하여 관측할 수도 있다. 그러나 본 발명에 의한 적외선영상을 이용하여 고도에 따른 지표온도감률을 추정을 위하여 정밀한 기준온도가 요구되지 않기 때문에 실측값보다는 적외선영상으로부터 추정하는 것이 보다 쉽다. 적외선영상으로부터 지표온도 추정방법은 적외선 센서의 특성에 따라 다르게 적용된다. 예를 들어, Landsat TM 적외선영상의 경우, 일반적으로 사용되는 지표온도추정방법은 크게 모노-윈도우(Mono-window) 알고리즘과 싱글-채널(Single-channel) 알고리즘이 있다. 모노-윈도우 알고리즘은 싱글-채널 알고리즘에 비해 간단하게 지표온도를 추정할 수 있지만 정밀도는 ±2.41K로 상대적으로 낮다고 알려져 있다. 반면 싱글-채널 알고리즘을 이용한 기준지표온도의 추정은 ±0.56K의 정밀도를 지니고, 모노-윈도우 알고리즘보다 더 정밀한 측정을 수행할 수 있다고 알려져 있다. 본 단계인 기준온도추정에서는 정밀한 지표온도가 요구되지 않기 때문에 두 방법 모두 사용가능하다. 이러한 싱글-채널 알고리즘과 모노-윈도우 알고리즘은 본 발명이 속한 분야에서는 매우 잘 알려진 기술이다.
온도차영상 제작 단계(S140)는, 임의의 점으로부터 온도차를 계산하여 온도차영상을 제작 즉, 상기 대기투과율 계산 단계(S120)로부터 계산된 대기투과율과 기준온도 추정 단계(S130)로부터 추정된 기준온도로부터 온도차를 계산하여 온도차영상을 제작하는 단계이다. 온도차는 기준지표온도(
Figure PCTKR2014005113-appb-I000004
)와 대상지표온도(
Figure PCTKR2014005113-appb-I000005
)의 지표온도를 차분하는 것으로 하기 수학식 4와 같이 표현할 수 있다.
수학식 4
Figure PCTKR2014005113-appb-M000004
여기서
Figure PCTKR2014005113-appb-I000006
는 기준지표와 대상지표의 온도차를 의미하며,
Figure PCTKR2014005113-appb-I000007
Figure PCTKR2014005113-appb-I000008
는 적외선영상에 사용된 파장에 따른 상수이며,
Figure PCTKR2014005113-appb-I000009
는 기준지표에서의 복사휘도와 대상지표에서의 복사휘도의 차이를 의미하며,
Figure PCTKR2014005113-appb-I000010
는 물체의 복사율로 식생지역만을 대상으로 하기 때문에 0.99로 가정할 수 있으며,
Figure PCTKR2014005113-appb-I000011
는 상기 대기투과율 계산단계(S2)로부터 계산된 투과율을 의미하며,
Figure PCTKR2014005113-appb-I000012
는 상기 지표온도 추정단계(S3)으로부터 추정된 지표온도를 의미한다. 파장에 따라 상수
Figure PCTKR2014005113-appb-I000013
Figure PCTKR2014005113-appb-I000014
Figure PCTKR2014005113-appb-I000015
Figure PCTKR2014005113-appb-I000016
로 정의된다.
Figure PCTKR2014005113-appb-I000017
는 대상영상의 유효파장대역이고,
Figure PCTKR2014005113-appb-I000018
는 6.626068×10-34 J·s,
Figure PCTKR2014005113-appb-I000019
는 1.38066×10-23 J/deg,
Figure PCTKR2014005113-appb-I000020
는 2.997925×108m/s이다. 예를 들면, Landsat5 TM의 경우
Figure PCTKR2014005113-appb-I000021
은 607.76과
Figure PCTKR2014005113-appb-I000022
는 1260.56이고, Landsat7 ETM+의 경우
Figure PCTKR2014005113-appb-I000023
은 666.09,
Figure PCTKR2014005113-appb-I000024
는 1282.71로 정의된다.
이러한 온도차영상의 정밀도는 입력자료인 기준온도 추정 정밀도와 대기투과율 정밀도에 의하여 결정된다. 도 6 및 도 7은 본 발명의 일 실시예로 상기 수학식 4에 의해 추정된 온도차의 오차민감도 분석결과를 나타낸다. 도 6 및 도 7의 가로축은 각각 수분량의 정밀도와 기준온도의 추정오차이며 세로축은 각각의 정밀도에 따른 온도차의 오차를 의미한다. 이와 같은 오차민감도 분석결과로 수분량의 오차범위가 ±0.302 g/cm2이고 복사휘도차이가 0.2, 0.5, 1.0일 때 각각 약 ±0.06K, ±0.15K, ±0.30K임을 보인다. 또한, 지표온도의 오차가 ±2.41K이고 복사휘도차이가 0.2, 0.5, 1.0일 때 각각 약 ±0.037K, ±0.089K, ±0.168K를 보였으며, 지표온도의 오차가 ±0.56K일 때에는 약 ±0.008K, ±0.020K, ±0.038K의 오차가 있음을 보인다. 이는 본 발명이 지표온도 추정보다 높은 정밀도로 상대온도를 추정할 수 있음을 의미한다.
도 8 내지 도 10은 본 발명의 실시예로 중위도지역의 Landsat 적외선영상으로부터 제작한 연중 시기별 온도차영상을 나타낸 이미지이다. 도 8에서 도 10으로 갈수록 시기상 겨울에 가까워지므로 온도차이가 커짐을 확인할 수 있으며, 이러한 온도차영상은 지표면의 온도를 산출하는 것과 달리 직접적인 지표온도를 추정하는 것이 아닌 지표간의 온도를 차분하는 것으로서 보다 정밀한 온도차를 추정할 수 있다.
지표온도감률 추정 단계(S150)는 온도차영상과 수치표고모델을 대응하여 온도감률을 추정, 즉, 온도차영상 제작 단계(S140)에 의해 제작된 온도차 영상과 동일 지역의 지형고도자료(DEM; Digital Elevation Map)로부터 고도별 온도차분포를 이용하면서 선형 회귀분석을 통하여 지표온도감률을 추정하는 단계이다. 이를 위하여 지형고도자료를 온도차영상의 공간해상도를 지니도록 리샘플링한 후, 지형고도자료
Figure PCTKR2014005113-appb-I000025
과 온도차
Figure PCTKR2014005113-appb-I000026
로부터 고도에 따른 온도차 데이터를 제작한 후, 하기 수학식 5와 같은 선형회귀곡선을 구한다.
수학식 5
Figure PCTKR2014005113-appb-M000005
여기서,
Figure PCTKR2014005113-appb-I000027
는 온도차를 나타내고,
Figure PCTKR2014005113-appb-I000028
는 지형고도를 나타내며,
Figure PCTKR2014005113-appb-I000029
Figure PCTKR2014005113-appb-I000030
는 선형회귀곡선의 파라미터이다.
상기 선형회귀곡선이 계산되면 고도에 따른 지표온도감률은 선형회귀곡선의 파라미터 중
Figure PCTKR2014005113-appb-I000031
로부터 구할 수 있다. 도 11 내지 도 13은 본 발명의 실시예로 고도별 온도차분포와 지표온도감률을 나타낸 그래프이다. 도 11 내지 도 13은 지형고도자료를 X축과 온도차자료를 Y축에 놓고 산포도(scattergram)를 도시한 것으로, 고도에 따른 선형변화를 확인할 수 있다. 도 11은 8월의 지표온도감률이 -0.31℃/100m임을 의미하며, 도 12는 9월의 지표온도감률이 -0.54℃/100m임을 의미하며, 도 13은 10월의 지표온도감률이 -0.82℃/100m 임을 의미한다.
또한 하기 수학식 6과 같은 선형회귀곡선으로부터 대기온도에 따른 지표온도감률을 구할 수 있다.
수학식 6
Figure PCTKR2014005113-appb-M000006
여기서,
Figure PCTKR2014005113-appb-I000032
는 온도감율을 나타내고,
Figure PCTKR2014005113-appb-I000033
는 대기온도를 나타내며,
Figure PCTKR2014005113-appb-I000034
Figure PCTKR2014005113-appb-I000035
는 선형회귀곡선의 변수이다.
상기 선형회귀곡선이 계산되면 대기온도에 따른 지표온도감률의 변화를 선형회귀곡선의 파라미터 중
Figure PCTKR2014005113-appb-I000036
로부터 구할 수 있다. 이러한 지표온도감률 변화는 계절에 따른 지표온도감률을 계산할 수 있도록 한다. 도 14는 본 발명의 실시예로 대기온도에 따른 지표온도감률의 변화를 나타낸 그래프이다. 도 14의 가로축은 영상이 촬상된 시기의 대기온도이며, 세로축은 본 발명으로부터 추정한 지표온도감률이다. 상기 수학식 6과 같은 선형 회귀분석 결과로 c는 0.04임을 보이며, 결정계수는 0.84로 이는 대기온도에 따른 지표온도감률의 변화를 정밀하게 추정할 수 있음을 의미한다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
본 발명은 적외선 영상을 이용한 지표온도감률 추정 방법에 관한 것으로, 더욱 상세하게는 자동기상관측장비 없이 지표온도감률을 추정 가능한 적외선 영상을 이용한 지표온도감률 추정 방법에 관한 것이다.
본 발명에 의하면, 영상 내 지표간의 복사율과 대기효과의 관계를 이용하여 지표온도감률을 추정함으로써, 지표 온도감율도 제작, 기후변화에 의한 온도변화 정밀추정, 고산지대의 도로위험성 관측, 고산지대 생태계 분석 등과 같은 다양한 분야에 활용될 수 있는 효과가 있다.

Claims (6)

  1. 지표온도감률을 추정하기 위한 대상지역을 선정하는 단계;
    상기 대상지역의 대기투과율을 계산하는 단계;
    상기 대상지역에서 임의로 설정된 기준위치에서의 기준온도를 추정하는 단계;
    상기 대기투과율과 상기 추정된 기준온도로부터 온도차를 계산하여 온도차 영상을 제작하는 단계; 및
    상기 온도차 영상과 동일 지역의 지형고도자료(DEM; Digital Elevation Map)로부터 고도별 온도차분포를 이용하여 지표온도감률을 추정하는 단계를 포함하는 적외선 영상을 이용한 지표온도감률 추정 방법.
  2. 제1항에 있어서,
    상기 지표온도감률 추정 단계는, 선형 회귀분석을 통하여 지표온도감률을 추정하는 적외선 영상을 이용한 지표온도감률 추정 방법.
  3. 제2항에 있어서, 상기 지표온도감률 추정 단계는,
    지형고도자료를 온도차영상의 공간해상도를 지니도록 리샘플링하는 단계;
    상기 지형고도자료와 온도차로부터 고도에 따른 온도차 데이터를 제작하는 단계; 및
    상기 온도차 데이터를 통해 선형 회귀곡선을 계산하는 단계를 포함하는 적외선 영상을 이용한 지표온도감률 추정 방법.
  4. 제1항에 있어서,
    상기 대기투과율 계산 단계는, 적외선영상의 대기효과를 최소화하기 위해 실시하는 적외선 영상을 이용한 지표온도감률 추정 방법.
  5. 제1항에 있어서,
    상기 대상지역 선정 단계는, 적외선센서를 사용하여 지표에서 방출하는 복사에너지로부터 방사온도(radiant temperature)를 추정한 후 대상지역을 선정하는 적외선 영상을 이용한 지표온도감률 추정 방법.
  6. 제1항에 있어서,
    상기 기준온도 추정단계는, 적외선 영상으로부터 근사적으로 지표온도를 관측하여 추정하거나, 현장관측에 의하여 관측하는 적외선 영상을 이용한 지표온도감률 추정 방법.
PCT/KR2014/005113 2013-06-11 2014-06-11 적외선 영상을 이용한 지표온도감률 추정 방법 WO2014200258A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/966,369 US10337925B2 (en) 2013-06-11 2015-12-11 Method for estimating land surface temperature lapse rate using infrared image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130066727A KR101404430B1 (ko) 2013-06-11 2013-06-11 적외선 영상을 이용한 지표온도감률 추정 방법
KR10-2013-0066727 2013-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/966,369 Continuation US10337925B2 (en) 2013-06-11 2015-12-11 Method for estimating land surface temperature lapse rate using infrared image

Publications (1)

Publication Number Publication Date
WO2014200258A1 true WO2014200258A1 (ko) 2014-12-18

Family

ID=51132038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/005113 WO2014200258A1 (ko) 2013-06-11 2014-06-11 적외선 영상을 이용한 지표온도감률 추정 방법

Country Status (3)

Country Link
US (1) US10337925B2 (ko)
KR (1) KR101404430B1 (ko)
WO (1) WO2014200258A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160097679A1 (en) * 2013-06-11 2016-04-07 University Of Seoul Industry Cooperation Foundation Method for estimating land surface termperature lapse rate using infrared image
US10006995B2 (en) 2014-08-04 2018-06-26 University Of Seoul Industry Cooperation Foundation Method and apparatus for stacking multi-temporal MAI interferograms

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10520369B2 (en) * 2014-02-18 2019-12-31 Alcatel-Lucent Usa Inc. Temperature estimation
CN104155007B (zh) * 2014-09-01 2017-01-18 中国科学院地理科学与资源研究所 一种多角度全自动地表精细发射率谱采集系统装置
KR20180096102A (ko) 2017-02-20 2018-08-29 엘아이지넥스원 주식회사 적외선 센서를 이용한 표적 정보 획득 장치 및 방법
KR101894406B1 (ko) 2017-09-19 2018-09-04 강릉원주대학교산학협력단 수평 대기투과도 계산을 위한 선형 대기투과도 모델 산출방법
CN109959970B (zh) * 2017-12-26 2020-10-09 中国科学院地理科学与资源研究所 一种天空半球热红外大气下行辐射地面测量方法
KR102018789B1 (ko) * 2017-12-27 2019-11-04 서울시립대학교 산학협력단 지형정규화 모델 평가 방법, 및 이를 이용한 식생지수 맵의 지형효과 보정방법 및 그 장치
CN109214122B (zh) * 2018-10-18 2019-06-04 中国科学院地理科学与资源研究所 一种获取像元尺度地表宽波段半球发射率的方法
CN112835115B (zh) * 2021-01-07 2022-04-19 中铁工程设计咨询集团有限公司 一种活动断裂解译方法及装置
CN112857583B (zh) * 2021-01-14 2021-10-29 中国科学院地理科学与资源研究所 一种基于卫星遥感数据的植被温度和裸地温度估算方法
CN112884793B (zh) * 2021-01-27 2022-12-23 河南理工大学 一种多时相多等级的城市温度遥感数据分析方法
CN113779863B (zh) * 2021-08-02 2022-08-09 中国农业科学院农业资源与农业区划研究所 一种基于数据挖掘的地表温度降尺度方法
CN113776671B (zh) * 2021-08-11 2022-12-23 吉林大学 昼夜遥感影像短波红外火山温度-发射率联合反演方法
CN113643409B (zh) * 2021-08-24 2022-03-18 中国农业大学 植被生产速率的表征方法、装置以及存储介质
CN113834572B (zh) * 2021-08-26 2023-05-12 电子科技大学 一种无人机非制冷型热像仪测温结果漂移去除方法
US20230075640A1 (en) * 2021-09-07 2023-03-09 Nextnav, Llc Determination of Altitude Uncertainty Including Temperature Lapse Rate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003296702A (ja) * 2002-04-05 2003-10-17 Japan Science & Technology Corp 地球観測衛星データのノイズ除去処理方法、ノイズ除去処理プログラム、ノイズ除去処理プログラムを記録した記録媒体
JP2007232652A (ja) * 2006-03-02 2007-09-13 Fujitsu Ltd 路面状態判定装置および路面状態判定方法
KR101207925B1 (ko) * 2010-02-22 2012-12-04 공주대학교 산학협력단 지표면 온도 산출 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3230764A (en) * 1963-06-14 1966-01-25 Jr Daniel E Bloxsom Method of determining heat transfer rates and temperature conditions
US4481517A (en) * 1981-05-07 1984-11-06 The United States Of America As Represented By The Secretary Of Commerce Echometry device and method
US4611929A (en) * 1983-03-21 1986-09-16 The United States Of America As Represented By The Secretary Of The Navy Satellite method for measuring sea surface temperature
US4965573A (en) * 1988-10-03 1990-10-23 Delco Electronics Corporation Forward looking windshear detection system
CA2079664C (en) * 1992-08-03 2001-01-30 Lloyd C. Fons Methods for locating oil or gas deposits employing earth surface temperatures
US5324113A (en) * 1992-12-10 1994-06-28 E-Systems, Inc. Process for multispectral/multilook atmospheric estimation
US6563452B1 (en) * 1998-07-06 2003-05-13 Honeywell International Inc. Apparatus and method for determining wind profiles and for predicting clear air turbulence
US6456226B1 (en) * 1998-07-06 2002-09-24 Honeywell International Inc. Nowcast of conviction-induced turbulence using information from airborne radar
US20070230537A1 (en) * 2006-03-31 2007-10-04 Tangborn Wendell V Weather instrument and method
US7472590B2 (en) * 2007-04-30 2009-01-06 Hunter Solheim Autonomous continuous atmospheric present weather, nowcasting, and forecasting system
KR20090088131A (ko) 2008-02-14 2009-08-19 경희대학교 산학협력단 표고편차를 고려한 국지기온의 추정방법 및 그 추정시스템
MX2011013334A (es) * 2009-06-11 2012-04-11 Pa Llc Indices de vegetacion para medir densidad de microcultivo y crecimiento en multicapas.
KR101293741B1 (ko) * 2010-03-05 2013-08-16 대한민국 토양수분의 탐지시스템 및 이를 이용한 토양수분 탐지방법
US20150309155A1 (en) * 2010-03-30 2015-10-29 Nokia Corporation Method and Apparatus for Determining the Position Using Radio Signals and Atmospheric Pressure
KR101351793B1 (ko) * 2011-10-24 2014-01-17 대한민국 해상풍 탐지시스템 및 이를 이용한 해상풍 탐지방법
KR101404430B1 (ko) * 2013-06-11 2014-06-10 서울시립대학교 산학협력단 적외선 영상을 이용한 지표온도감률 추정 방법
KR101378774B1 (ko) * 2013-11-07 2014-03-27 중앙항업(주) 열적외선영상을 이용한 시계열 지표온도 모니터링 방법
US9383381B2 (en) * 2014-03-13 2016-07-05 The Boeing Company Airspeed calculation system for an aircraft
KR101580585B1 (ko) * 2014-12-02 2015-12-28 서울시립대학교 산학협력단 전정색영상과 적외선영상의 융합 방법 및 장치
US9471064B1 (en) * 2015-12-08 2016-10-18 International Business Machines Corporation System and method to operate a drone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003296702A (ja) * 2002-04-05 2003-10-17 Japan Science & Technology Corp 地球観測衛星データのノイズ除去処理方法、ノイズ除去処理プログラム、ノイズ除去処理プログラムを記録した記録媒体
JP2007232652A (ja) * 2006-03-02 2007-09-13 Fujitsu Ltd 路面状態判定装置および路面状態判定方法
KR101207925B1 (ko) * 2010-02-22 2012-12-04 공주대학교 산학협력단 지표면 온도 산출 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160097679A1 (en) * 2013-06-11 2016-04-07 University Of Seoul Industry Cooperation Foundation Method for estimating land surface termperature lapse rate using infrared image
US10337925B2 (en) * 2013-06-11 2019-07-02 University of Seoul Cooperation Foundation Method for estimating land surface temperature lapse rate using infrared image
US10006995B2 (en) 2014-08-04 2018-06-26 University Of Seoul Industry Cooperation Foundation Method and apparatus for stacking multi-temporal MAI interferograms

Also Published As

Publication number Publication date
KR101404430B1 (ko) 2014-06-10
US20160097679A1 (en) 2016-04-07
US10337925B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2014200258A1 (ko) 적외선 영상을 이용한 지표온도감률 추정 방법
Kuc et al. Sentinel-2 imagery for mapping and monitoring imperviousness in urban areas
Li et al. A new bare-soil index for rapid mapping developing areas using landsat 8 data
KR101914061B1 (ko) 인공위성에 의한 열섬특성 분석방법
Bernhardt et al. High resolution modelling of snow transport in complex terrain using downscaled MM5 wind fields
CN108896021B (zh) 基于航空摄影测量点云提取人工林林分结构参数的方法
Miziński et al. Fully-automated estimation of snow depth in near real time with the use of unmanned aerial vehicles without utilizing ground control points
Kent et al. Urban morphology parameters from global digital elevation models: Implications for aerodynamic roughness and for wind-speed estimation
Pimentel et al. Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
CN101587190A (zh) 白天海雾的卫星遥感监测方法
CN110988909A (zh) 基于tls进行高寒脆弱区沙地植被的植被盖度测定方法
Chen et al. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data
Liu et al. Modeling the view angle dependence of gap fractions in forest canopies: Implications for mapping fractional snow cover using optical remote sensing
Jiang et al. UAV-based oblique photogrammetry for 3D reconstruction of transmission line: Practices and applications
CN112629666B (zh) 一种适用于热红外无人机地表温度日变换模型构建方法
Duguay et al. Mapping surface albedo in the east slope of the Colorado Front Range, USA, with Landsat Thematic Mapper
KR101378774B1 (ko) 열적외선영상을 이용한 시계열 지표온도 모니터링 방법
Levin et al. Estimation of surface roughness (z0) over a stabilizing coastal dune field based on vegetation and topography
Simpson et al. Improved cloud top height retrieval under arbitrary viewing and illumination conditions using AVHRR data
Liu et al. The geomorphometry of rainfall-induced landslides in taiwan obtained by airborne lidar and digital photography
Gosteva et al. Search of Changes in the Temperature of Urban Environment with Use of Satellite Data on the Example of the Krasnoyarsk
TWI597405B (zh) System and method for monitoring slope with tree displacement
Awadallah et al. Estimating forest canopy height using photon-counting laser altimetry
Lau et al. Remote mine site rehabilitation monitoring using airborne hyperspectral imaging and landscape function analysis (LFA)
Kawashima et al. Effects of regional temperature, wind speed and soil wetness on spatial structure of surface air temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810731

Country of ref document: EP

Kind code of ref document: A1