WO2014197707A2 - Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures - Google Patents

Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures Download PDF

Info

Publication number
WO2014197707A2
WO2014197707A2 PCT/US2014/041117 US2014041117W WO2014197707A2 WO 2014197707 A2 WO2014197707 A2 WO 2014197707A2 US 2014041117 W US2014041117 W US 2014041117W WO 2014197707 A2 WO2014197707 A2 WO 2014197707A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid metal
metal structure
electrolyte
container
applying
Prior art date
Application number
PCT/US2014/041117
Other languages
French (fr)
Other versions
WO2014197707A3 (en
Inventor
Michael David DICKEY
Collin EAKER
Mohammad Rashed KHAN
Original Assignee
North Carolina State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Carolina State University filed Critical North Carolina State University
Priority to US14/896,602 priority Critical patent/US20160122888A1/en
Publication of WO2014197707A2 publication Critical patent/WO2014197707A2/en
Publication of WO2014197707A3 publication Critical patent/WO2014197707A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/005Contacting devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/007Current directing devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling

Definitions

  • Mercury is liquid at room temperature and atmospheric pressure. Because of the liquid nature of mercury, it is possible to change the configuration or shape of a liquid metal structure formed of mercury through application of mechanical force. However, mercury is highly toxic and therefore unsuitable for applications where the likelihood of exposure to humans is high.
  • Gallium alloys like mercury are liquid at room temperature and atmospheric pressure.
  • Gallium metal is also liquid near room temperature and atmospheric pressure.
  • gallium is considered to have low-toxicity. Because of its liquid phase at room temperature and atmospheric pressure and its relative low-toxicity, gallium may be useful for forming reconfigurable electrical, optical, thermal, or mechanical structures, such as filters in optical applications, antennas or wires in electronics applications, heat sinks in thermal applications, or microstructures in mechanical applications.
  • one problem with using gallium as the medium for forming a reconfigurable structure is that an oxide skin forms on gallium. This skin causes the metal to stick to most surfaces and results in residue that remains even after a portion of the liquid gallium is moved, for example, from a fluid channel to a reservoir.
  • a container is provided.
  • An electrolyte is provided in the container.
  • a liquid metal structure is provided in the container and at least partially in contact with the electrolyte.
  • a voltage is applied between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application.
  • a controller for voltage controlled spreading of liquid metal structures may be implemented in hardware, software, firmware, or any combination thereof.
  • the terms "function” or “module” as used herein refer to hardware, which may also include software and/or firmware components, for implementing the feature being described.
  • the subject matter described herein may be implemented using a computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps.
  • Exemplary computer readable media suitable for implementing the subject matter described herein include non- transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits.
  • a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms.
  • Figure 1A is a schematic diagram illustrating the application of a reductive potential to a liquid metal structure in a microfluidic channel according to an embodiment of the subject matter described herein;
  • Figures 1 B-1 D illustrate withdrawal of a liquid metal structure from a microfluidic channel into a reservoir upon application of a reductive potential to the liquid metal structure according to an embodiment of the subject matter described herein;
  • Figures 2A-2C illustrate the selective withdrawal of a liquid metal structure from two segments of a multi-segment fluid channel and not from a third segment upon application of a reductive potential to the liquid metal structures in the first and second segments but not the third segment according to an embodiment of the subject matter described herein;
  • Figures 3A-3D illustrate the application of an oxidative potential to a liquid metal structure immersed in a pool of electrolyte to shape the liquid structure on a surface of a container according to an embodiment of the subject matter described herein;
  • Figures 4A-4C illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from a pipette and form a wire in a container according to an embodiment of the subject matter described herein;
  • Figures 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from one chamber through a capillary into another chamber of a multi-chamber container according to an embodiment of the subject matter described herein;
  • Figures 6A and 6B illustrate the application of an oxidative potential to a liquid metal structure in a container where the liquid metal structure reconfigures itself in a direction that is opposite the direction of gravitational force according to an embodiment of the subject matter described herein;
  • Figures 7A-7C illustrate the application of an acid to a liquid metal structure to remove the oxide and cause a capillarity induced contraction of the liquid metal structure on a substrate according to an embodiment of the subject matter described herein;
  • Figures 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed in an electrolyte to cause spreading of the liquid metal structure within the electrolyte according to an embodiment of the subject matter described herein;
  • Figures 9A-9D illustrate a self-healing wire encapsulated in a self- healing material and the cutting of the self-healing wire according to an embodiment of the subject matter described herein;
  • Figures 10A-10D illustrate the reconnection and self-healing of a self- healing wire according to an embodiment of the subject matter described herein;
  • Figure 1 1 is a block diagram of a system for voltage controlled reconfiguration of liquid metal structures according to an embodiment of the subject matter described herein;
  • Figure 12 is a flow chart illustrating an exemplary process for voltage controlled reconfiguration of liquid metal according to an embodiment of the subject matter described herein.
  • Figure 13 is a schematic diagram illustrating an exemplary utility of oxidative spreading according to an embodiment of the subject matter described herein, (a) A schematic diagram depicting the electrochemical setup of injecting liquid metal into a capillary channel ( ⁇ 0.9mm ID), b) Four sequential top-down, optical micrographs of metal filling a glass capillary ( ⁇ 0.9 mm ID) in response to an oxidative potential, c) Side view of a small droplet of EGaln pumped at a flow rate in am electrolyte, d) Formation of an oxide coated liquid metal fiber coming out of the tube.
  • a schematic diagram depicting the electrochemical setup of injecting liquid metal into a capillary channel ( ⁇ 0.9mm ID) b) Four sequential top-down, optical micrographs of metal filling a glass capillary ( ⁇ 0.9 mm ID) in response to an oxidative potential
  • FIGs 1A-1 D illustrate the application of a reductive potential to a liquid metal structure to move the liquid metal structure from a microfluidic channel to a reservoir.
  • the term "reductive potential” will be used to refer to the application of a potential to a liquid metal structure that causes a reduction reaction on the surface of the liquid metal structure.
  • negative charges are pushed by the application of the potential from the electrolyte (lighter color) through the circuit to the gallium oxide skin of the liquid metal structure (darker color), which reduces the oxidized gallium in the skin.
  • Known gallium alloys are believed to form oxide skins.
  • the subject matter described herein is applicable to any gallium alloy that forms an oxide skin. The following reduction reaction is believed to occur on the gallium oxide skin:
  • an oxidative potential may be applied to a liquid metal structure to form a liquid metal structure having a desired shape or to move liquid metal from a reservoir into a microfluidic channel.
  • the liquid metal structure will move from the reservoir into the channel and will remain in the channel even after the oxidative potential is removed due to the oxide skin that forms around the metal.
  • the following reaction is believed to occur when an oxidative potential is applied to the gallium metal:
  • Ga ⁇ Ga 3+ +3e _ The gallium combines with oxygen or oxygen containing ions in the electrolyte to form the oxide skin. To maintain charge neutrality, an accompanying reduction reaction occurs at the counter electrode contacting the electrolyte.
  • the liquid metal structure holds its shape.
  • Figure 1 C shows the liquid metal partially withdrawn. If application of the potential ceases, the oxide skin will reform, and the liquid metal structure will halt its movement into the reservoir and hold its shape.
  • Such a property may be useful to define liquid metal structures of desired shape and to stop applying the potential once the desired shape is achieved.
  • oxidative potential will be used to refer to the application of a potential to a liquid metal structure that causes oxidation of the liquid metal structure.
  • oxidative and reductive are defined with respect to the reactions they cause in the liquid metal structure.
  • the liquid metal structure moves in the direction of the arrow when the reductive potential is applied to the liquid metal structure.
  • the liquid metal structure is made of eutectic gallium indium (EGaln).
  • EGaln eutectic gallium indium
  • other gallium based alloys may be used without departing from the scope to the subject matter described herein.
  • the electrolyte can be any solution that includes ions capable of conducting current, such as aqueous solutions of NaCI, NaF, NaOH, HCI, polyelectrolyt.es, over a wide range of pH, such as 0-14.
  • the electrolyte may be with or without dissolved oxygen, and the electrolyte concentration may vary, for example, between a concentration of 0 and 1 M, depending on desired conductivity.
  • the container that holds the liquid metal structure and the electrolyte may be made of any suitable material that is capable of containing gallium and the electrolyte without significant oxidation or reduction of the container.
  • Exemplary container materials suitable for use with the subject matter described herein include glass, Teflon, polystyrene, and tungsten.
  • Figures 1 B, 1 C, and 1 D illustrate stages of withdrawal of the liquid metal structure from the microfluidic channel into the reservoir on the left hand side of the channel in response to the application of the reductive potential.
  • a reductive potential is applied between two segments of a multi-segment microfluidic channel but not a third segment.
  • the liquid metal structure withdraws from the first and second segments (Segments 1 and 2) but the liquid metal in the third segment (Segment 3) remains stable.
  • the embodiments illustrated in Figures 2A-2D demonstrate that applying potentials to liquid metal structures can be used to break wires and form complex patterns.
  • a gallium sphere is immersed in an electrolyte, which in Figures 3A-3D is aqueous electrolyte.
  • An oxidative potential is applied to the gallium sphere, where the positive electrode contacts the gallium sphere and the negative electrode contacts the electrolyte. Absent an oxidative potential, the metal does not spread due to surface tension and the presence of the oxide skin (see Figure 3A).
  • the spreading of the gallium metal occurs when the capacitive energy formed by a capacitor in which the gallium metal is one conductor, the oxide skin is the insulator, and the electrolyte as the other conductor exceeds the surface tension of the gallium structure.
  • the oxide skin forms around the liquid gallium as it is drawn from its original position.
  • a shaped liquid metal structure has been deposited on the surface of the container in which the liquid metal structure and the electrolyte reside. Such shaping can be used to form antennas, or wires, or other structures of desired configurations for an electronics application.
  • a pipette containing a liquid metal is placed within a container containing a basic electrolyte, which removes the oxide skin that forms around the liquid gallium. Absent the application of any electric potential, the liquid metal in the pipette or tube is mechanically pumped into the receiving container. A droplet of liquid metal forms at the outlet of the pipette (see Figure 4A). When the droplet is large enough, it falls to the bottom of the receiving container because of gravitational forces.
  • a liquid gallium alloy structure with an oxide skin is mechanically stable (i.e., it retains its shape after the cessation of application of the oxidative or reductive potential) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH ⁇ 3).
  • Figures 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure in a multi-chamber container where a capillary filled with an electrolyte forms a conductive path between the chambers.
  • the electrolyte fills the chamber on the left hand side of the container and extends through a horizontal passageway to the right hand side of the chamber and to a vertical passageway to rest in contact the lower surface of the liquid metal sphere in the right hand chamber.
  • FIGS. 6A and 6B illustrate the same response that occurs in Figures
  • Figures 7A-7C illustrate the application of one molar hydrochloric acid to a liquid metal structure on a slide.
  • the oxide skin of the liquid metal structure is reduced, and the surface tension of the liquid metal causes it to form a sphere.
  • a liquid gallium alloy structure with an oxide skin is mechanically stable (Figure 8A) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH ⁇ 3).
  • Figures 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed within an electrolyte solution. As illustrated in Figure 8B, the result of application of the oxidative potential is the spreading of the liquid metal structure along a surface of a container that holds the liquid metal structure and the electrolyte.
  • FIGs 9A-9D illustrate a self-healing wire formed with a liquid metal structure according to an embodiment of the subject matter described herein.
  • a liquid metal wire is encapsulated in a self- healing polymer, such as Reverlink available from Arkema, Inc.
  • the liquid metal wire is connected to a voltage source to light an LED.
  • the self-healing polymer and the liquid metal within the polymer are cut.
  • the self-healing wire is reconnected by mechanically aligning the two halves in physical contact with each other.
  • the two ends of the liquid metal wire reforms such that current flows to the LED and the LED is illuminated.
  • the polymer that surrounded the liquid metal structure is healed.
  • FIG 11 is a block diagram illustrating a system for voltage controlled reconfiguration of a liquid metal according to an embodiment of the subject matter described herein.
  • the system includes a container, an electrolyte, a liquid metal structure, and a controlled voltage source.
  • the liquid metal structure may be a gallium material, including any known alloy of gallium that is liquid at the temperature and pressure of interest.
  • the electrolyte may be any suitable aqueous or other protic solution or solution capable of conducting ions, including those described above.
  • the container may be a microfluidic channel or any other structure suitable for containing or holding an electrolyte and a liquid metal.
  • the container may be formed of any material suitable for containing the electrolyte and the liquid metal, including the exemplary container materials described above.
  • the controlled voltage source may be any suitable source for applying voltages to the liquid metal structure and the electrolyte.
  • the voltage source may be a controlled AC or DC voltage source capable of applying voltages over any suitable operational range, e.g., 1 -12 volts.
  • the controlled voltage source may be configured to apply oxidative or reductive potential to the liquid metal structure so that the liquid metal structure will move to a desired configuration, such as a desired conductor shape or antenna shape.
  • FIG 12 is a flow chart illustrating exemplary overall steps for voltage controlled reconfiguration of a liquid metal structure.
  • a container is provided.
  • the container may be any container suitable for containing a liquid metal and an electrolyte.
  • an electrolyte is provided in the container.
  • the container may be filled with an aqueous electrolyte solution suitable for conducting ions.
  • a liquid metal structure is provided in the container at least partially in contact with the electrolyte.
  • a gallium alloy or other liquid metal that forms a surface oxide may be provided in the container.
  • a voltage is applied to the liquid metal structure to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application.
  • a reductive potential may be applied to the liquid metal structure and an electrolyte to withdraw the liquid metal structure from a microfluidic channel into a reservoir.
  • an oxidative potential may be applied to a liquid metal structure in a reservoir to move the liquid metal structure from the reservoir into a microfluidic channel to change its shape to a desired shape for an electrical, optical, thermal, or mechanical application.
  • the liquid metal structure may be shaped to have a desired electrical property, such as a desired conductance, resistance, resonant frequency, inductance, directionality or other desired property.
  • the structure may be shaped to have a desired optical, mechanical, or thermal property.
  • the reconfigured electrical structure may be used for any suitable application, including electrodes, microfluidic structures, optical components, microfluidic cooling, etc.
  • an oxidative potential may be used to cause droplets of a liquid metal to form fibers, as illustrated in Figures 13A - 13D.
  • metal pumped out the end of the capillary forms beads that fall periodically due to the forces of gravity (Figure 13C).
  • Applying an oxidative potential to the metal relative to a counter electrode in solution causes the metal to form a stable fiber despite its large surface tension (Figure 3D), ii.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

The subject matter described herein relates to voltage controlled reconfiguration of liquid metal structures. According to one exemplary method, a container is provided. An electrolyte is provided in the container. A liquid metal structure is provided in the container and at least partially in contact with the electrolyte. A voltage is applied between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, optical, mechanical, or thermal application.

Description

DESCRIPTION
METHODS, SYSTEMS, AND COMPUTER READABLE MEDIA FOR VOLTAGE CONTROLLED RECONFIGURATION OF LIQUID METAL
STRUCTURES
PRIORITY CLAIM
This application claims the benefit of U.S. Provisional Patent Application Serial No. 61/831 ,597, filed June 5, 2013; the disclosure of which is incorporated herein by reference in its entirety.
GOVERNMENT INTEREST
This invention was made with government support under Grant No. ECCS-0925797 awarded by the National Science Foundation. The government has certain rights in the invention.
TECHNICAL FIELD
The subject matter described herein relates to controlled reconfiguration of liquid metal structures. BACKGROUND
Mercury is liquid at room temperature and atmospheric pressure. Because of the liquid nature of mercury, it is possible to change the configuration or shape of a liquid metal structure formed of mercury through application of mechanical force. However, mercury is highly toxic and therefore unsuitable for applications where the likelihood of exposure to humans is high.
Gallium alloys, like mercury, are liquid at room temperature and atmospheric pressure. Gallium metal is also liquid near room temperature and atmospheric pressure. Unlike mercury, gallium is considered to have low-toxicity. Because of its liquid phase at room temperature and atmospheric pressure and its relative low-toxicity, gallium may be useful for forming reconfigurable electrical, optical, thermal, or mechanical structures, such as filters in optical applications, antennas or wires in electronics applications, heat sinks in thermal applications, or microstructures in mechanical applications. However, one problem with using gallium as the medium for forming a reconfigurable structure is that an oxide skin forms on gallium. This skin causes the metal to stick to most surfaces and results in residue that remains even after a portion of the liquid gallium is moved, for example, from a fluid channel to a reservoir.
Accordingly, there exists a need for improved methods for voltage controlled reconfiguration of liquid metal structures.
SUMMARY
The subject matter described herein relates to voltage controlled reconfiguration of liquid metal structures. According to one exemplary method, a container is provided. An electrolyte is provided in the container. A liquid metal structure is provided in the container and at least partially in contact with the electrolyte. A voltage is applied between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application.
A controller for voltage controlled spreading of liquid metal structures may be implemented in hardware, software, firmware, or any combination thereof. As such, the terms "function" or "module" as used herein refer to hardware, which may also include software and/or firmware components, for implementing the feature being described. In one exemplary implementation, the subject matter described herein may be implemented using a computer readable medium having stored thereon computer executable instructions that when executed by the processor of a computer control the computer to perform steps. Exemplary computer readable media suitable for implementing the subject matter described herein include non- transitory computer-readable media, such as disk memory devices, chip memory devices, programmable logic devices, and application specific integrated circuits. In addition, a computer readable medium that implements the subject matter described herein may be located on a single device or computing platform or may be distributed across multiple devices or computing platforms. BRIEF DESCRIPTION OF THE DRAWINGS
The subject matter described herein will now be explained with reference to the accompanying drawings of which:
Figure 1A is a schematic diagram illustrating the application of a reductive potential to a liquid metal structure in a microfluidic channel according to an embodiment of the subject matter described herein;
Figures 1 B-1 D illustrate withdrawal of a liquid metal structure from a microfluidic channel into a reservoir upon application of a reductive potential to the liquid metal structure according to an embodiment of the subject matter described herein;
Figures 2A-2C illustrate the selective withdrawal of a liquid metal structure from two segments of a multi-segment fluid channel and not from a third segment upon application of a reductive potential to the liquid metal structures in the first and second segments but not the third segment according to an embodiment of the subject matter described herein;
Figures 3A-3D illustrate the application of an oxidative potential to a liquid metal structure immersed in a pool of electrolyte to shape the liquid structure on a surface of a container according to an embodiment of the subject matter described herein;
Figures 4A-4C illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from a pipette and form a wire in a container according to an embodiment of the subject matter described herein;
Figures 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure to cause the liquid metal structure to move from one chamber through a capillary into another chamber of a multi-chamber container according to an embodiment of the subject matter described herein;
Figures 6A and 6B illustrate the application of an oxidative potential to a liquid metal structure in a container where the liquid metal structure reconfigures itself in a direction that is opposite the direction of gravitational force according to an embodiment of the subject matter described herein; Figures 7A-7C illustrate the application of an acid to a liquid metal structure to remove the oxide and cause a capillarity induced contraction of the liquid metal structure on a substrate according to an embodiment of the subject matter described herein;
Figures 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed in an electrolyte to cause spreading of the liquid metal structure within the electrolyte according to an embodiment of the subject matter described herein;
Figures 9A-9D illustrate a self-healing wire encapsulated in a self- healing material and the cutting of the self-healing wire according to an embodiment of the subject matter described herein;
Figures 10A-10D illustrate the reconnection and self-healing of a self- healing wire according to an embodiment of the subject matter described herein;
Figure 1 1 is a block diagram of a system for voltage controlled reconfiguration of liquid metal structures according to an embodiment of the subject matter described herein; and
Figure 12 is a flow chart illustrating an exemplary process for voltage controlled reconfiguration of liquid metal according to an embodiment of the subject matter described herein.
Figure 13 is a schematic diagram illustrating an exemplary utility of oxidative spreading according to an embodiment of the subject matter described herein, (a) A schematic diagram depicting the electrochemical setup of injecting liquid metal into a capillary channel (~0.9mm ID), b) Four sequential top-down, optical micrographs of metal filling a glass capillary (~0.9 mm ID) in response to an oxidative potential, c) Side view of a small droplet of EGaln pumped at a flow rate in am electrolyte, d) Formation of an oxide coated liquid metal fiber coming out of the tube. DETAILED DESCRIPTION
The subject matter described herein includes methods, systems, and computer readable media for voltage controlled reconfiguration liquid metal structures. Figures 1A-1 D illustrate the application of a reductive potential to a liquid metal structure to move the liquid metal structure from a microfluidic channel to a reservoir. As used herein, the term "reductive potential" will be used to refer to the application of a potential to a liquid metal structure that causes a reduction reaction on the surface of the liquid metal structure. In Figure 1A, negative charges are pushed by the application of the potential from the electrolyte (lighter color) through the circuit to the gallium oxide skin of the liquid metal structure (darker color), which reduces the oxidized gallium in the skin. Known gallium alloys are believed to form oxide skins. Hence, the subject matter described herein is applicable to any gallium alloy that forms an oxide skin. The following reduction reaction is believed to occur on the gallium oxide skin:
Ga3++3e-→ Ga
The result of the reduction of the oxide skin is that the high surface tension of the gallium metal causes the metal to spontaneously withdraw into the reservoir (oval shaped ball on left hand side of Figures 1A-1 D) without leaving metal in the channel.
As will be described in more detail below, an oxidative potential may be applied to a liquid metal structure to form a liquid metal structure having a desired shape or to move liquid metal from a reservoir into a microfluidic channel. For example, if, after the liquid metal is in the reservoir as illustrated in Figure 1 D, the potential in Figure 1A is reversed so that the positive electrode contacts the liquid metal in the reservoir and the negative counter electrode contacts the electrolyte, the liquid metal structure will move from the reservoir into the channel and will remain in the channel even after the oxidative potential is removed due to the oxide skin that forms around the metal. The following reaction is believed to occur when an oxidative potential is applied to the gallium metal:
Ga → Ga3++3e_ The gallium combines with oxygen or oxygen containing ions in the electrolyte to form the oxide skin. To maintain charge neutrality, an accompanying reduction reaction occurs at the counter electrode contacting the electrolyte.
In addition, after application of the reductive or oxidative potential is ceased, the liquid metal structure holds its shape. For example, Figure 1 C shows the liquid metal partially withdrawn. If application of the potential ceases, the oxide skin will reform, and the liquid metal structure will halt its movement into the reservoir and hold its shape. Such a property may be useful to define liquid metal structures of desired shape and to stop applying the potential once the desired shape is achieved.
As used herein, the term "oxidative potential" will be used to refer to the application of a potential to a liquid metal structure that causes oxidation of the liquid metal structure. Thus, the terms "oxidative" and "reductive" are defined with respect to the reactions they cause in the liquid metal structure.
In Figure 1A, the liquid metal structure moves in the direction of the arrow when the reductive potential is applied to the liquid metal structure. In this example, the liquid metal structure is made of eutectic gallium indium (EGaln). However, other gallium based alloys may be used without departing from the scope to the subject matter described herein. The electrolyte can be any solution that includes ions capable of conducting current, such as aqueous solutions of NaCI, NaF, NaOH, HCI, polyelectrolyt.es, over a wide range of pH, such as 0-14. The electrolyte may be with or without dissolved oxygen, and the electrolyte concentration may vary, for example, between a concentration of 0 and 1 M, depending on desired conductivity. In some experiments, reduction-induced withdrawal and oxidative spreading of a liquid metal structure occurred at voltages ranging from 1V to 5V DC. AC voltages and larger ranges of DC voltages can also be used to reconfigure liquid metal structures without departing from the scope of the subject matter described herein. Larger voltages may result in generation of gas bubbles, such as hydrogen gas bubbles, which should be avoided due to the disruptive effect of bubbles on the electrical pathway in the electrolyte. Also, reductive voltage ranges that are applied to a liquid metal structure in accordance with embodiments of the subject matter described herein may be the same in magnitude but opposite in polarity with respect to the oxidative voltage ranges.
The container that holds the liquid metal structure and the electrolyte may be made of any suitable material that is capable of containing gallium and the electrolyte without significant oxidation or reduction of the container. Exemplary container materials suitable for use with the subject matter described herein include glass, Teflon, polystyrene, and tungsten.
Figures 1 B, 1 C, and 1 D illustrate stages of withdrawal of the liquid metal structure from the microfluidic channel into the reservoir on the left hand side of the channel in response to the application of the reductive potential.
In Figures 2A-2D, a reductive potential is applied between two segments of a multi-segment microfluidic channel but not a third segment. As a result, the liquid metal structure withdraws from the first and second segments (Segments 1 and 2) but the liquid metal in the third segment (Segment 3) remains stable. The embodiments illustrated in Figures 2A-2D demonstrate that applying potentials to liquid metal structures can be used to break wires and form complex patterns.
In Figures 3A-3D, a gallium sphere is immersed in an electrolyte, which in Figures 3A-3D is aqueous electrolyte. An oxidative potential is applied to the gallium sphere, where the positive electrode contacts the gallium sphere and the negative electrode contacts the electrolyte. Absent an oxidative potential, the metal does not spread due to surface tension and the presence of the oxide skin (see Figure 3A). When the positive electrode is applied to the gallium metal structure and the negative electrode is immersed in the electrolyte, negative charge flows from the gallium metal structure, through the positive electrode, through the electrical circuit formed by the power supply outside of the electrolyte, and into the electrolyte through the negative electrode, causing the reduction of hydrogen ions to hydrogen atoms at the negative electrode. The bubbles in the electrolyte around the negative electrode in Figures 3B and 3C are believed to be caused by the reduction of hydrogen ions (protons) in the electrolyte and the resulting formation of hydrogen gas. An oxidation reaction occurs on the surface of the gallium metal structure in contact with the electrolyte to form an oxide skin. It is believed that the spreading of the gallium metal occurs when the capacitive energy formed by a capacitor in which the gallium metal is one conductor, the oxide skin is the insulator, and the electrolyte as the other conductor exceeds the surface tension of the gallium structure. When the negative electrode is moved away from the original liquid metal structure, the oxide skin forms around the liquid gallium as it is drawn from its original position. As illustrated in Figure 3D, when the electrodes are removed, a shaped liquid metal structure has been deposited on the surface of the container in which the liquid metal structure and the electrolyte reside. Such shaping can be used to form antennas, or wires, or other structures of desired configurations for an electronics application.
In Figures 4A-4D, a pipette containing a liquid metal is placed within a container containing a basic electrolyte, which removes the oxide skin that forms around the liquid gallium. Absent the application of any electric potential, the liquid metal in the pipette or tube is mechanically pumped into the receiving container. A droplet of liquid metal forms at the outlet of the pipette (see Figure 4A). When the droplet is large enough, it falls to the bottom of the receiving container because of gravitational forces. However, when an oxidative potential is applied to the liquid metal structure by placing the positive electrode in contact with the liquid metal structure in the pipette and the negative electrode in contact with the electrolyte, the protons in the electrolyte are reduced, and the gallium metal exiting the tubing is oxidized. The gallium begins to flow into the receiving container, and a gallium oxide skin forms around the liquid metal as it flows into the second container, creating a flowing wire from the pipette to the receiving container, as illustrated in Figure 4B. In Figure 4C, when the electrodes are removed, the formation of the wire ceases and the surface tension of the liquid metal in the receiving container causes it to form a sphere because the basic electrolyte removes the oxide skin if there is no oxidative potential. A liquid gallium alloy structure with an oxide skin is mechanically stable (i.e., it retains its shape after the cessation of application of the oxidative or reductive potential) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH<3).
Figures 5A and 5B illustrate the application of an oxidative potential to a liquid metal structure in a multi-chamber container where a capillary filled with an electrolyte forms a conductive path between the chambers. In Figures 5A and 5B, the electrolyte fills the chamber on the left hand side of the container and extends through a horizontal passageway to the right hand side of the chamber and to a vertical passageway to rest in contact the lower surface of the liquid metal sphere in the right hand chamber. As illustrated in Figure 5B, when an oxidizing potential is applied to the liquid metal structure by placing a positive electrode in contact with the liquid metal structure and the negative electrode in contact with the electrolyte, the liquid metal oxidizes and flows through the vertical passageway into the lower part of the right hand chamber.
Figures 6A and 6B illustrate the same response that occurs in Figures
5A and 5B except that in Figure 6A and 6B, the liquid metal structure starts in the lower portion of the right hand chamber. In Figure 6B, an oxidative potential is applied to the liquid metal structure by placing the positive electrode in contact with the liquid metal structure and the negative electrode in contact with the electrolyte. It can be seen in Figure 6B that the oxidative potential applied to the liquid metal structure causes the liquid metal to flow upwards through the vertical passageway between the lower and upper sub- chambers on the right hand side of the container. Thus, Figures 6A and 6B illustrate that the movement of the liquid metal is caused by forces other than gravity because the metal flows upwards against the force of gravity.
Figures 7A-7C illustrate the application of one molar hydrochloric acid to a liquid metal structure on a slide. As illustrated in Figure 8B and 8C, when the acid is applied to the liquid metal structure, the oxide skin of the liquid metal structure is reduced, and the surface tension of the liquid metal causes it to form a sphere. A liquid gallium alloy structure with an oxide skin is mechanically stable (Figure 8A) unless there is a reductive potential applied or when the electrolyte used is basic (pH>10) or acidic (pH<3). Figures 8A and 8B illustrate the application of an oxidative potential to a liquid metal structure immersed within an electrolyte solution. As illustrated in Figure 8B, the result of application of the oxidative potential is the spreading of the liquid metal structure along a surface of a container that holds the liquid metal structure and the electrolyte.
Figures 9A-9D illustrate a self-healing wire formed with a liquid metal structure according to an embodiment of the subject matter described herein. Referring to Figure 9A, a liquid metal wire is encapsulated in a self- healing polymer, such as Reverlink available from Arkema, Inc. In Figure 9B, the liquid metal wire is connected to a voltage source to light an LED. In Figures 9C and 9D, the self-healing polymer and the liquid metal within the polymer are cut.
In Figure 10A, the self-healing wire is reconnected by mechanically aligning the two halves in physical contact with each other. In Figure 10B, the two ends of the liquid metal wire reforms such that current flows to the LED and the LED is illuminated. In Figures 10C and 10D, the polymer that surrounded the liquid metal structure is healed.
Figure 11 is a block diagram illustrating a system for voltage controlled reconfiguration of a liquid metal according to an embodiment of the subject matter described herein. Referring to Figure 11 , the system includes a container, an electrolyte, a liquid metal structure, and a controlled voltage source. The liquid metal structure may be a gallium material, including any known alloy of gallium that is liquid at the temperature and pressure of interest. The electrolyte may be any suitable aqueous or other protic solution or solution capable of conducting ions, including those described above. The container may be a microfluidic channel or any other structure suitable for containing or holding an electrolyte and a liquid metal. The container may be formed of any material suitable for containing the electrolyte and the liquid metal, including the exemplary container materials described above. The controlled voltage source may be any suitable source for applying voltages to the liquid metal structure and the electrolyte. The voltage source may be a controlled AC or DC voltage source capable of applying voltages over any suitable operational range, e.g., 1 -12 volts. The controlled voltage source may be configured to apply oxidative or reductive potential to the liquid metal structure so that the liquid metal structure will move to a desired configuration, such as a desired conductor shape or antenna shape.
Figure 12 is a flow chart illustrating exemplary overall steps for voltage controlled reconfiguration of a liquid metal structure. Referring to Figure 14, in step 1200 a container is provided. For example, the container may be any container suitable for containing a liquid metal and an electrolyte. In step 1202, an electrolyte is provided in the container. For example, the container may be filled with an aqueous electrolyte solution suitable for conducting ions. In step 1204, a liquid metal structure is provided in the container at least partially in contact with the electrolyte. For example, a gallium alloy or other liquid metal that forms a surface oxide may be provided in the container. In step 1206, a voltage is applied to the liquid metal structure to change the shape of the liquid metal structure such that the structure achieves a desired shape for an electrical, mechanical, optical, or thermal application. For example, a reductive potential may be applied to the liquid metal structure and an electrolyte to withdraw the liquid metal structure from a microfluidic channel into a reservoir. In an alternate implementation, an oxidative potential may be applied to a liquid metal structure in a reservoir to move the liquid metal structure from the reservoir into a microfluidic channel to change its shape to a desired shape for an electrical, optical, thermal, or mechanical application. In one example, the liquid metal structure may be shaped to have a desired electrical property, such as a desired conductance, resistance, resonant frequency, inductance, directionality or other desired property. In another example, the structure may be shaped to have a desired optical, mechanical, or thermal property. The reconfigured electrical structure may be used for any suitable application, including electrodes, microfluidic structures, optical components, microfluidic cooling, etc.
According to another aspect of the subject matter described herein, an oxidative potential may be used to cause droplets of a liquid metal to form fibers, as illustrated in Figures 13A - 13D. In the absence of applied potential, metal pumped out the end of the capillary forms beads that fall periodically due to the forces of gravity (Figure 13C). Applying an oxidative potential to the metal relative to a counter electrode in solution causes the metal to form a stable fiber despite its large surface tension (Figure 3D), ii.
It will be understood that various details of the presently disclosed subject matter may be changed without departing from the scope of the presently disclosed subject matter. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.

Claims

What is claimed is:
1 . A method for voltage controlled reconfiguration of a liquid metal structure, the method comprising:
providing a container;
providing an electrolyte in the container;
providing a liquid metal structure in the container and at least partially in contact with the electrolyte; and
applying a voltage between the liquid metal structure and the electrolyte to change the shape of the liquid metal structure such that the structure achieves a desired shape.
2. The method of claim 1 wherein the container defines an elongate fluid channel and a reservoir connected to the fluid channel.
3. The method of claim 2 wherein applying a voltage between the liquid metal structure and the electrolyte includes applying a reductive potential to the liquid metal structure to electrochemically reduce an oxide skin of the liquid metal structure and cause at least a portion of the liquid metal structure to withdraw from the fluid channel.
4. The method of claim 2 wherein applying a voltage between the liquid metal structure and the electrolyte includes applying an oxidative potential to the liquid metal structure to form an oxide skin around the liquid metal structure and cause the at least a portion of the liquid metal structure to move from the reservoir into the fluid channel.
5. The method of claim 1 wherein the container defines a plurality of segments, each of which includes a portion of the liquid metal structure and each of which is coupled to the electrolyte, wherein applying the voltage includes applying a reductive potential to the liquid metal structure in one of the segments to selectively withdraw the liquid metal structure portions from the two segments.
6. The method of claim 1 wherein the container defines a pool for holding the electrolyte and wherein applying a voltage between the liquid metal structure and the electrolyte includes applying a first electrode to the liquid metal structure, applying a second electrode to the electrolyte in proximity to the liquid metal structure, applying an oxidative potential to the liquid metal structure through the first electrode, and moving the second electrode while maintaining contact with the electrolyte to oxidize at least a portion of the liquid metal structure and form a desired shape of the liquid metal structure within the container.
7. The method of claim 1 wherein the container comprises a first container for holding the electrolyte and a second container for holding the liquid metal structure and wherein applying a voltage between the liquid metal structure and the electrolyte includes applying an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container into the first container and form a wire in the first container.
8. The method of claim 1 wherein the container includes a first chamber for holding the electrolyte and a second chamber for holding the liquid metal structure, the first and second chambers being electrically coupled to each other via the electrolyte, and wherein applying the voltage between the liquid metal structure and the electrolyte includes applying a first electrode to the electrolyte, applying a second electrode to the liquid metal structure, and applying an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container.
9. The method of claim 1 wherein the liquid metal structure is immersed within the electrolyte and wherein applying a voltage between the liquid metal structure and the electrolyte includes applying an oxidative potential to the liquid metal structure to spread the liquid metal structure along a surface of the container.
10. The method of claim 1 wherein the structure includes one of a wire, an interconnect, and an antenna.
1 1 . The method of claim 1 wherein the structure includes a mechanical, optical, or thermal structure.
12. The method of claim 1 wherein the liquid metal structure comprises liquid gallium or a liquid gallium alloy.
13. The method of claim 1 comprising ceasing application of the voltage between the liquid metal structure and the electrolyte when the liquid metal structure has formed a desired shape.
14. The method of claim 1 wherein the liquid metal structure comprises a fiber.
15. A method for manufacturing a self-healing electrical structure, the method comprising:
providing a liquid metal structure comprising a liquid metal material having a liquid metal core and an oxide skin formed around the liquid metal core; and
encapsulating the liquid metal structure in a self-healing polymer surrounding the oxide skin of the liquid metal structure.
16. A system for voltage control reconfiguration of a liquid metal structure in a fluid channel, the method comprising:
a container;
an electrolyte located and at least partially in contact with the electrolyte in the container;
a liquid metal structure located in the container; and a controlled voltage source configured to apply an electrical stimulus to the liquid metal structure to change the shape of the liquid metal structure such that the structure achieves a desired shape.
17. The system of claim 16 wherein the container defines an elongate fluid channel and a reservoir connected to the fluid channel.
18. The system of claim 17 wherein the controlled voltage source is configured to apply a reductive potential to the liquid metal structure to electrochemically reduce an oxide skin of the liquid metal structure and cause at least a portion of the liquid metal structure to withdraw from the fluid channel.
19. The system of claim 17 wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to form an oxide skin around the liquid metal structure and cause the at least a portion of the liquid metal structure to move from the reservoir into the fluid channel. The system of claim 16 wherein the container defines a plurality of segments, each of which includes a portion of the liquid metal structure and each of which is coupled to the electrolyte, wherein the controlled voltage source is configured to apply a reductive potential to the liquid metal structure in one of the segments to selectively withdraw the liquid metal structure portions from the two segments. The system of claim 16 wherein the container defines a pool for holding the electrolyte and wherein the controlled voltage source includes a first electrode for contacting the liquid metal structure, a second electrode for contacting the electrolyte in proximity to the liquid metal structure, and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure through the first electrode, and the second electrode is configured to move while maintaining contact with the electrolyte to oxidize at least a portion of the liquid metal structure and form a desired shape of the liquid metal structure within the container.
The system of claim 16 wherein the container comprises a first container for holding the electrolyte and a second container for holding the liquid metal structure and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container into the first container and form a wire in the first container.
The system of claim 16 wherein the container includes a first chamber for holding the electrolyte and a second chamber for holding the liquid metal structure, the first and second chambers being electrically coupled to each other via the electrolyte, and wherein the controlled voltage source includes a first electrode for contacting the electrolyte, a second electrode for contacting the liquid metal structure, and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to move the liquid metal structure from the second container.
The system of claim 16 wherein the liquid metal structure is immersed within the electrolyte and wherein the controlled voltage source is configured to apply an oxidative potential to the liquid metal structure to spread the liquid metal structure along a surface of the container. 25. The system of claim 16 wherein the liquid metal structure comprises a fiber.
26. The system of claim 16 wherein the structure includes one of a wire, an interconnect, and an antenna.
27. The system of claim 16 wherein the structure includes a mechanical, optical, or thermal structure, and the property comprises a desired mechanical, optical, or thermal property.
28. The system of claim 16 wherein the liquid metal structure comprises liquid gallium or a gallium alloy.
29. The system of claim 16 wherein the controlled voltage source is configured to cease application of the voltage when a desired shape of the liquid metal structure is achieved.
30. A self-healing electrical structure:
a liquid metal conductive structure comprising a liquid metal material having a liquid metal core and an oxide skin formed around the liquid metal core; and
a self-healing polymer surrounding the oxide skin of the liquid metal structure.
PCT/US2014/041117 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures WO2014197707A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/896,602 US20160122888A1 (en) 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361831597P 2013-06-05 2013-06-05
US61/831,597 2013-06-05

Publications (2)

Publication Number Publication Date
WO2014197707A2 true WO2014197707A2 (en) 2014-12-11
WO2014197707A3 WO2014197707A3 (en) 2015-01-08

Family

ID=52008750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/041117 WO2014197707A2 (en) 2013-06-05 2014-06-05 Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures

Country Status (2)

Country Link
US (1) US20160122888A1 (en)
WO (1) WO2014197707A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437922B2 (en) 2010-09-23 2016-09-06 North Carolina State University Method for manufacturing fluidic structures
EP3206253A1 (en) * 2016-02-15 2017-08-16 The Boeing Company Structurally reconfigurable antenna
CN110676590A (en) * 2019-11-08 2020-01-10 哈尔滨工业大学 Frequency-reconfigurable electrically-driven liquid metal dipole antenna

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549932B (en) * 2018-03-22 2021-09-14 清华大学 Brain-like nerve simulation device based on liquid metal
US10834829B1 (en) 2019-08-26 2020-11-10 International Business Machines Corporation Variable inductor through electrochemically controlled capillarity
CN115548643A (en) * 2021-06-30 2022-12-30 中国移动通信有限公司研究院 Communication sensing antenna and antenna sensor system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1001539A3 (en) * 1988-03-17 1989-11-21 Bekaert Sa Nv Metal fibers obtained by bundled PULLING.
US5516408A (en) * 1993-04-19 1996-05-14 Magma Copper Company Process for making copper wire
US5676005A (en) * 1995-05-12 1997-10-14 H. C. Starck, Inc. Wire-drawing lubricant and method of use
TW541744B (en) * 2001-02-23 2003-07-11 Evionyx Inc Fibrous electrode for a metal air electrochemical cell
CA2512469A1 (en) * 2003-01-10 2004-07-29 Advanced Power Devices Inc. ELECTRICALLY CONDUCTIVE FIBERS OF Ti4O7 AND Ti5O9
US8529738B2 (en) * 2005-02-08 2013-09-10 The Trustees Of Columbia University In The City Of New York In situ plating and etching of materials covered with a surface film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437922B2 (en) 2010-09-23 2016-09-06 North Carolina State University Method for manufacturing fluidic structures
EP3206253A1 (en) * 2016-02-15 2017-08-16 The Boeing Company Structurally reconfigurable antenna
CN107086360A (en) * 2016-02-15 2017-08-22 波音公司 Reconfigurable antennas in structure
US9899732B2 (en) 2016-02-15 2018-02-20 The Boeing Company Structural reconfigurable antenna
EP3694049A1 (en) * 2016-02-15 2020-08-12 The Boeing Company Structurally reconfigurable antenna
RU2738912C2 (en) * 2016-02-15 2020-12-18 Зе Боинг Компани Antenna configured for structural change of configuration
CN107086360B (en) * 2016-02-15 2020-12-22 波音公司 Selectively reconfigurable antenna system and configuration method thereof
AU2016265982B2 (en) * 2016-02-15 2021-07-29 The Boeing Company Structural reconfigurable antenna
CN110676590A (en) * 2019-11-08 2020-01-10 哈尔滨工业大学 Frequency-reconfigurable electrically-driven liquid metal dipole antenna
CN110676590B (en) * 2019-11-08 2021-01-29 哈尔滨工业大学 Frequency-reconfigurable electrically-driven liquid metal dipole antenna

Also Published As

Publication number Publication date
US20160122888A1 (en) 2016-05-05
WO2014197707A3 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
US20160122888A1 (en) Methods, systems, and computer readable media for voltage controlled reconfiguration of liquid metal structures
Cheng et al. Self-assembly of metallic nanowires from aqueous solution
US10451494B2 (en) Methods of rapid 3D nano/microfabrication of multifunctional shell-stabilized liquid metal pipe networks and insulating/metal liquids electro-mechanical switch and capacitive strain sensor
Li et al. Printable liquid metal microparticle ink for ultrastretchable electronics
Zhang et al. Forming process of anodic TiO2 nanotubes under a preformed compact surface layer
Lazarus et al. Ultrafine pitch stencil printing of liquid metal alloys
So et al. Inherently aligned microfluidic electrodes composed of liquid metal
Tang et al. Steering liquid metal flow in microchannels using low voltages
Cole et al. Liquid metals as soft electromechanical actuators
Giannakou et al. Water-transferred, inkjet-printed supercapacitors toward conformal and epidermal energy storage
JP6268769B2 (en) Method for forming conductive thin wire and wire and substrate used therefor
JP2007143300A (en) Actuator
WO2003052269A1 (en) Microfluidic pumps and mixers driven by induced-charge electro-osmosis
US11624118B2 (en) Systems and methods for controlling electrochemical processes
Zhang et al. Electrochemical dealloying using pulsed voltage waveforms and its application for supercapacitor electrodes
JP2004111296A (en) Microswitch and its manufacturing method
KR20080064573A (en) Catalytic surface activation method for electroless deposition
Sun et al. Stretchable conductors fabricated by stencil lithography and centrifugal force-assisted patterning of liquid metal
US11251417B2 (en) Methods and apparatus for controlling electrodeposition using surface charge properties
TW201040326A (en) Etching system and method for forming multiple porous semiconductor regions with different optical and structural properties on a single semiconductor wafer
NL2009517C2 (en) Device and method for activating a capillary-stop valve of a device.
CN106085845A (en) Cell electroporation chip apparatus based on U-shaped groove microelectrode array and processing method thereof
CN109950686B (en) Electric control structure for reconstructing liquid metal and reconstruction method thereof
Song et al. Room‐Temperature Liquid Metals as Functional Liquids
Daniels Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806963

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14806963

Country of ref document: EP

Kind code of ref document: A2