WO2014196314A1 - Scroll compressor and air conditioner using same - Google Patents

Scroll compressor and air conditioner using same Download PDF

Info

Publication number
WO2014196314A1
WO2014196314A1 PCT/JP2014/062650 JP2014062650W WO2014196314A1 WO 2014196314 A1 WO2014196314 A1 WO 2014196314A1 JP 2014062650 W JP2014062650 W JP 2014062650W WO 2014196314 A1 WO2014196314 A1 WO 2014196314A1
Authority
WO
WIPO (PCT)
Prior art keywords
back pressure
scroll
pressure valve
chamber
fixed scroll
Prior art date
Application number
PCT/JP2014/062650
Other languages
French (fr)
Japanese (ja)
Inventor
近野 雅嗣
柳瀬 裕一
土屋 豪
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to JP2015521353A priority Critical patent/JP6143862B2/en
Publication of WO2014196314A1 publication Critical patent/WO2014196314A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a scroll compressor and an air conditioner using the scroll compressor, and is particularly suitable as a scroll compressor used in an air conditioner that emphasizes low speed and low load operation.
  • Examples of scroll compressors used in refrigeration cycle apparatuses for refrigeration and air conditioning include those described in Japanese Patent Application Laid-Open No. 2005-163655 (Patent Document 1).
  • the thing of this patent document 1 has a fixed scroll (non-orbiting scroll) which has a base plate (end plate) and a wrap (vortex body) standing upright on it, an end plate (end plate) and a wrap (vortex body) upright on it. ), And a revolving scroll that engages with the fixed scroll and forms a suction chamber or a compression chamber with the fixed scroll, and applies a pressing force to the fixed scroll to the revolving scroll.
  • Back pressure chamber back pressure chamber fluid inflow means for allowing fluid to flow into the back pressure chamber in order to maintain the pressure (back pressure) of the back pressure chamber, at least one of the fluid flowing into the back pressure chamber.
  • a scroll compressor provided with back pressure chamber fluid outflow means and the like for allowing a part to flow out into the suction chamber or the compression chamber.
  • the back pressure chamber fluid outflow means controls a differential pressure across the back pressure chamber fluid outflow path that connects the back pressure chamber and the suction chamber or the compression chamber.
  • a (back pressure control valve), a throttle channel portion, and an intermittent channel portion that communicates intermittently by the orbiting motion of the orbiting scroll member are arranged in series.
  • the object of the present invention is to allow oil flowing into the suction chamber or the compression chamber from the back pressure chamber via the back pressure valve not only between the wrap tooth tip side of the fixed scroll but also between the fixed scroll tooth bottom and the wrap tooth tip of the orbiting scroll.
  • the object is to obtain a scroll compressor capable of sufficiently supplying gaps and an air conditioner using the scroll compressor.
  • the present invention provides a fixed scroll in which a spiral wrap is erected on a base plate, and a spiral wrap is erected on an end plate and meshed with the fixed scroll to perform a turning motion.
  • a revolving scroll that forms a suction chamber or a compression chamber; a back pressure chamber that applies a pressing force to the revolving scroll toward the fixed scroll; a back pressure valve for adjusting the back pressure of the back pressure chamber;
  • a scroll compressor comprising a back pressure valve inflow passage that communicates the inlet side of the pressure valve and the back pressure chamber, and a back pressure valve outflow passage that communicates the outlet side of the back pressure valve and the suction chamber or the compression chamber. At least a part of a flow path outlet portion of the pressure valve outflow passage to the suction chamber or the compression chamber is formed on the tooth bottom side with respect to the position of the wrap tooth tip of the fixed scroll.
  • Another feature of the present invention is an air conditioner configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger with a refrigerant pipe, and the compressor includes the scroll
  • This scroll compressor is to be operated at a low speed of at least 10 to 30 Hz.
  • the oil flowing from the back pressure chamber into the suction chamber or the compression chamber via the back pressure valve is not limited to the fixed scroll lap tooth tip side but also between the fixed scroll tooth bottom and the orbiting scroll lap tooth tip.
  • FIG. 4 is a diagram illustrating the first embodiment of the scroll compressor according to the present invention and corresponding to FIG. 3.
  • FIG. 4 is a diagram illustrating a scroll compressor according to a second embodiment of the present invention and corresponding to FIG. 3.
  • FIG. 6 is a diagram showing a third embodiment of the scroll compressor according to the present invention and corresponding to FIG. 3.
  • the refrigeration cycle block diagram explaining an example of the air conditioner using the scroll compressor of this invention.
  • FIGS. 1 is a longitudinal sectional view illustrating the basic structure of a scroll compressor
  • FIG. 2 is a plan view illustrating the meshing state of the fixed scroll and the orbiting scroll in FIG. 1
  • FIG. 3 is a view around the back pressure valve shown in FIG. It is an expanded sectional view.
  • the scroll compressor 1 is configured by housing a compression mechanism section 2 and a motor section 16 in a case (sealed container) 9.
  • the orbiting scroll 8 is meshed with the fixed scroll 7 fixed to the frame 17 to form a compression chamber 13, and the rotation of the motor section 16 causes the above-described operation via the crankshaft (rotating shaft) 10.
  • the volume of the compression chamber 13 is reduced and the compression operation is performed.
  • the working fluid is sucked into the suction chamber 20 (see FIG. 2) from the suction port 14, and the sucked working fluid is discharged from the discharge port 15 into the case 9 through the compression stroke in the compression chamber 13. It is discharged into the space 54.
  • the working fluid discharged into the discharge space 54 flows into the motor chamber 52 through a passage (not shown) formed in the outer periphery of the fixed scroll and the outer periphery of the frame 17, and then from the discharge pipe 6 to the case 9. It is configured to be discharged outside.
  • the fixed scroll 7 is a disc-shaped base plate 7a, a wrap 7b provided upright in a spiral shape on the base plate 7a, and is positioned on the outer peripheral side of the base plate 7a, and is continuous with the front end surface of the wrap 7b. And a cylindrical support portion 7d that surrounds the wrap 7b.
  • the surface of the base plate 7a on which the wrap 7b is erected is called a tooth bottom 7c because it is between the wraps 7b.
  • the surface where the support portion 7d of the fixed scroll 7 is in contact with the end plate 8a of the orbiting scroll 8 is the end plate surface 7e of the fixed scroll 7.
  • the fixed scroll 7 has the support portion 7d fixed to the frame 17 with bolts or the like, and the frame 17 integrally coupled with the fixed scroll 7 is fixed to the case (sealed container) 9 by fixing means such as welding. Has been.
  • the orbiting scroll 8 is disposed so as to face the fixed scroll 7, and the fixed scroll wrap 7 b and the orbiting scroll wrap 8 b are engaged with each other so that the orbiting scroll 8 is provided within the frame 17.
  • the orbiting scroll 8 includes a disc-shaped end plate 8a, a spiral wrap 8b erected from a tooth bottom 8c which is the surface of the end plate 8a, and a boss portion (orbiting boss portion) provided at the center of the rear surface of the end plate 8a. ) 8d. Further, the surface of the outer peripheral portion of the end plate 8 a that contacts the fixed scroll 7 is the end plate surface 8 e of the orbiting scroll 8.
  • the tip (wrap tooth tip) of the wrap 8b of the orbiting scroll 8 is in a state of facing the tooth bottom 7c of the fixed scroll 7 with a minute gap.
  • the tip end portion (wrap tooth tip) of the wrap 7b of the fixed scroll 7 is also in a state of facing the tooth bottom 8c of the orbiting scroll 8 with a minute gap.
  • An oil sump 53 for storing lubricating oil (refrigerating machine oil) is provided at the bottom of the case 9 having a sealed container structure that accommodates the compression mechanism section 2 and the motor section 16.
  • the motor section 16 is composed of a rotor 16a and a stator 16b, and a crankshaft (rotary shaft) 10 is integrally fixed to the rotor 16a.
  • the crankshaft 10 is rotatably supported by the frame 17 via the main bearing 5 and is coaxial with the central axis of the fixed scroll 7.
  • An eccentric crank portion 10a is provided at the tip of the crankshaft 10, and this crank portion 10a is inserted into the orbiting bearing 11 provided in the boss portion 8d of the orbiting scroll 8, and the orbiting scroll 8 is It is configured to be able to turn with the rotation of the shaft 10.
  • the center axis of the orbiting scroll 8 is decentered by a predetermined distance with respect to the center axis of the fixed scroll 7.
  • the wrap 8b of the orbiting scroll 8 is overlapped with the wrap 7b of the fixed scroll 7 while being shifted by a predetermined angle (generally 180 degrees) in the circumferential direction.
  • Reference numeral 12 denotes an Oldham ring for relatively rotating the orbiting scroll 8 with respect to the fixed scroll 7 while restraining it from rotating.
  • FIG. 2 is a plan view for explaining the meshing state of the fixed scroll 7 and the orbiting scroll 8.
  • the wrap 8b of the orbiting scroll 8 is shown in a sectional view, and the outer periphery of the end plate 8a of the orbiting scroll is shown by an phantom line of a two-dot chain line. Show.
  • a plurality of crescent-shaped compression chambers 13 are formed between the fixed scroll wrap 7b and the orbiting scroll wrap 8b.
  • Reference numeral 20 denotes a suction chamber, which is a space in the middle of sucking fluid. The suction chamber 20 becomes the compression chamber 13 when the phase of the orbiting motion of the orbiting scroll 8 advances and the closing of the fluid is completed.
  • the suction port 14 is provided in the fixed scroll 7 as shown in FIGS. 1 and 2.
  • the suction port 14 is formed on the outer peripheral side of the base plate 7 a of the fixed scroll 7 so as to communicate with the suction chamber 20.
  • the discharge port 15 is formed near the spiral center of the base plate 7a of the fixed scroll 7 so as to communicate with the compression chamber 13 on the innermost peripheral side.
  • the orbiting scroll 8 orbits around the central axis of the fixed scroll 7 with an orbiting radius of a predetermined distance. It is restrained by the Oldham ring 12 so that the turning scroll 8 does not rotate during this turning movement.
  • the revolving motion of the orbiting scroll 8 causes the compression chamber 13 formed between the laps 7b and 8b to continuously move to the center, and the volume is continuously reduced accordingly.
  • the working fluid sucked from the suction port 14 (for example, refrigerant gas circulating in the refrigeration cycle, hereinafter also simply referred to as fluid) is sequentially compressed in each compression chamber 13, and the compressed working fluid is It is discharged from the discharge port 15 into the discharge space 54 and supplied from the discharge pipe 6 to, for example, a refrigeration cycle outside the compressor as described above.
  • a positive-displacement or centrifugal oil pump 21 is provided at the lower end of the crankshaft 10, and the oil pump 21 is rotated along with the rotation of the crankshaft 10, and is stored in an oil sump 53 at the bottom of the case 9.
  • Lubricating oil is drawn in from a lubricating oil suction port 25 provided in the oil supply pump case 22 and discharged from a discharge port 28 of the oil supply pump 21.
  • the discharged lubricating oil is sent to the upper end of the crank portion 10a through a through hole (oil supply hole) 3 formed in the crankshaft 10 in the axial direction.
  • the space formed by 32) is collectively referred to as a first space 33.
  • the first space 33 is a space having a pressure close to the discharge pressure.
  • the seal member 32 is inserted together with a wave spring (not shown) into an annular groove 31 provided on a surface of the frame 17 facing the collar portion 34, and the first pressure which is a discharge pressure.
  • the space 33 is partitioned from the back pressure chamber (second space) 18 which is an intermediate pressure between the suction pressure and the discharge pressure.
  • the oil leakage means includes, for example, one or a plurality of slits 60 provided in the collar portion 34 of the turning boss portion and the seal member 32, and the slit 60 is disposed so as to straddle the seal member 32. .
  • the back pressure chamber 18 and the suction chamber 20 (or the compression chamber 13) are connected (communicated) by a back pressure chamber fluid outflow passage provided in the support portion 7d of the fixed scroll 7.
  • the back pressure chamber A back pressure valve (back pressure control valve) 61 for controlling the differential pressure across the front and rear is provided in the middle of the fluid outflow path.
  • the amount of oil required for each bearing portion and the amount of oil required for the compression chamber 13 are independently controlled. Therefore, the amount of oil supplied to the compression chamber 13 can be optimized, and a highly efficient scroll compressor can be obtained.
  • the oil pump 21, the first space 33, and the oil leakage means are not provided, and the oil in the oil pool 53, which is a discharge pressure, is used by using a restriction in a minute gap of the bearing portion.
  • the pressure may be reduced and introduced into the back pressure chamber 18.
  • the amount of oil supplied to the bearing portion and the compression chamber cannot be controlled independently.
  • parts such as the oil pump 21 and the seal member 32 are not required, a scroll compressor having a simple structure and a low cost can be obtained.
  • the scroll compressor shown in FIG. 1 includes the back pressure chamber fluid outflow passage having the back pressure valve 61 for adjusting the back pressure of the back pressure chamber 18. .
  • the configuration around the back pressure valve 61 shown in FIG. 1 will be described with reference to an enlarged view shown in FIG.
  • the back pressure chamber fluid outflow path includes a back pressure valve inflow path (a space communicating with the back pressure chamber 18) 61a communicating the back pressure chamber 18 and the back pressure valve 61, the back pressure valve 61 and the suction chamber 20 (or It is constituted by a back pressure valve outflow passage (a space communicating with the suction chamber 20 (or the compression chamber 13)) 61b communicating with the compression chamber 13) and a space 61c for accommodating the back pressure valve 61. Further, the back pressure valve outflow passage 61b opens on the back pressure valve 61 side to the hole-shaped upstream outflow passage 61ba and the suction chamber 20 (or the compression chamber 13), and is formed on the end plate surface 7e of the fixed scroll 7. It is comprised by the downstream side outflow path 61bb of the groove shape.
  • the back pressure valve 61 is accommodated in the space 61c, and communicates with the back pressure valve inflow path (space communicating with the back pressure chamber 18) 61a and the back pressure valve outflow path (suction chamber 20 (or compression chamber 13)).
  • a valve 61d is arranged so as to partition the space 61b. The valve 61d is pressed against an opening communicating with the back pressure valve inflow passage 61a by a spring 61f fixed to the stopper 61e.
  • the valve 61d is configured such that the pressure in the back pressure valve inflow passage 61a, that is, the pressure in the space 61c through which the back pressure is introduced through the back pressure valve outflow passage 61b (the pressure in the suction chamber 20 (or the compression chamber 13)). ) And the total pressure corresponding to the pressing force of the spring 61f, the back pressure valve inflow path 61a and the back pressure valve outflow path 61b are communicated with each other. That is, the back pressure valve 61 allows the fluid in the back pressure chamber 18 to escape to the suction chamber 20 or the compression chamber 13 when the pressure in the back pressure chamber 18 becomes higher than a certain value. The back pressure of the pressure chamber 18 is adjusted to an appropriate value.
  • the oil released to the suction chamber 20 or the compression chamber 13 through the back pressure valve outflow passage 61b has a function of sealing and lubricating the compression chamber 13, so that the amount of this oil is set to an appropriate value. As a result, the compressor can be improved in performance and reliability.
  • the back pressure value of the back pressure chamber 18 can be properly maintained by the back pressure valve 61, and By adjusting the oil leakage means, the amount of oil that flows into the back pressure chamber 18 from the first space 33 and reaches the suction chamber 20 or the compression chamber 13 via the back pressure valve 61 is set appropriately. It is also possible to do.
  • the oil flowing out to the back pressure valve outflow passage 61b via the back pressure valve 61 flows from the downstream outflow passage 61bb formed in the end plate surface 7e of the fixed scroll 7 from the downstream outflow passage 61bb. Since it is configured to flow into the suction chamber 20 (or the compression chamber 13), the outlet portion 61g of the downstream outflow passage 61bb is positioned close to the tooth bottom 8c of the orbiting scroll 8 or its end plate surface 8e. Therefore, although the oil is supplied between the lap tooth tip of the fixed scroll 7 and the tooth bottom 8c of the orbiting scroll 8, the gap between the tooth bottom 7c of the fixed scroll 7 and the lap tooth tip of the orbiting scroll 8 is provided.
  • oil flows from the back pressure chamber 18 into the suction chamber 20 or the compression chamber 13 via the back pressure valve 61, that is, flows into the suction chamber 20 or the compression chamber 13 from the back pressure valve outflow passage 61b.
  • the oil can be sufficiently supplied not only to the lap tooth tip side of the fixed scroll 7 but also to the gap between the tooth bottom 7 c of the fixed scroll 7 and the wrap tooth tip of the orbiting scroll 8.
  • FIGS. 4 and 5 are views corresponding to FIG. 3, and FIG. 5 is a perspective view of the fixed scroll shown in FIG. 4 as viewed from below.
  • FIGS. 4 and 5 the same reference numerals as those in FIGS. 1 to 3 are the same or corresponding parts, and the description of the same parts is omitted.
  • the basic structure of the scroll compressor is the same as that shown in FIGS. 1 to 3 except for the back pressure valve outflow passage 61b shown in FIGS.
  • the back pressure chamber fluid outflow passage having the back pressure valve 61 for adjusting the back pressure of 18 is provided.
  • the back pressure chamber fluid outflow path includes the back pressure valve inflow path 61a communicating the back pressure chamber 18 and the inlet side of the back pressure valve 61, the outlet side of the back pressure valve 61, and the suction chamber 20 (or the compression chamber). 13), the back pressure valve outflow passage 61b communicating with the back pressure valve 61, and the space 61c in which the back pressure valve 61 is accommodated.
  • the back pressure valve outflow passage 61b opens on the upstream pressure outflow passage 61ba having a hole shape on the back pressure valve 61 side and the suction chamber 20 (or the compression chamber 13), and is formed on the end plate surface 7e of the fixed scroll 7. It is comprised by the downstream side outflow path 61bb of the groove shape.
  • the configuration of the back pressure valve inflow passage 61a, the back pressure valve 61, and the space 61c that accommodates the back pressure valve 61 is the same as that shown in FIG.
  • the shape of the upstream side outflow passage 61ba constituting the back pressure valve outflow passage 61b is also a hole shape (the cross section is a hole shape such as a circle, an ellipse, or a rectangle) as shown in FIG. .
  • the configuration of the downstream side outflow passage 61bb in the back pressure valve outflow passage 61b is greatly different from the configuration shown in FIG. That is, as shown in FIG. 4, the flow passage inlet 61h side of the downstream outflow passage 61bb has a flow passage sectional area similar to that of the downstream outflow passage 61bb shown in FIG. Alternatively, the flow passage cross-sectional area on the flow passage outlet 61g side of the downstream outflow passage 61bb opened to the compression chamber 13) is configured to be larger than that on the flow passage inlet 61h side. As shown in FIGS. 4 and 5, such a configuration can be realized by forming a bottom 61i on the outlet side of the downstream outflow passage 61bb into a tapered shape.
  • At least one part of the said flow-path exit part 61g to the said suction chamber 20 (or compression chamber 13) of the said back pressure valve outflow path 61b is made rather than the position of the lap tooth tip of the said fixed scroll 7. It can be formed on the tooth bottom 7c side.
  • the position of the flow passage outlet 61g on the tooth bottom 7c side of the fixed scroll 7 is near the intermediate position in the height direction of the fixed scroll wrap 7b (or the orbiting scroll wrap 8b). It is configured.
  • the position of the flow path outlet 61g on the tooth bottom 7c side is not limited to the example shown in FIG. 4, and is closer to the tooth bottom 7c side than the intermediate position in the height direction of the wrap 7b (8b). If so, more oil can be supplied to the tooth bottom side. Further, if the position on the tooth bottom 7c side of the flow path outlet portion 61g is located closer to the tooth bottom 8c side of the orbiting scroll 8 than the intermediate position in the height direction of the wrap 7b (8b), the downstream outflow path 61bb. The groove processing becomes easier.
  • the oil flowing into the back pressure valve outflow passage 61b from the back pressure valve 61 is sucked into the suction chamber 20 (or the compression chamber 13) from the flow passage outlet 61g of the downstream outflow passage 61bb. Since the oil flows into the direction of the fixed scroll tooth bottom 7c as well as the direction of the orbiting scroll tooth bottom 8c, the oil flows between the lap tooth tips and the tooth bottom gaps of the scrolls 7, 8. Can supply.
  • the oil flowing from the back pressure chamber into the suction chamber or the compression chamber via the back pressure valve is fixed not only in the gap between the fixed scroll wrap tooth tip and the orbiting scroll tooth bottom 8c. Since the gap between the scroll tooth bottom 7c and the orbiting scroll wrap tooth tip can be sufficiently supplied and the oil can be distributed almost uniformly to the suction chamber 20 (or the compression chamber 13), the oil suction chamber 20 and the compression chamber are made of oil. Thus, a highly efficient scroll compressor with a small leakage loss can be obtained.
  • FIG. 6 is a diagram corresponding to FIG. 3, and the portions denoted by the same reference numerals as those in FIGS. 3 and 4 indicate the same or corresponding portions.
  • the basic structure of the scroll compressor is the same as that shown in FIGS. 1 to 3 except for the back pressure valve outflow passage 61b shown in FIGS.
  • the upstream side outflow passage 61ba constituting the back pressure valve outflow passage 61b is the same as that in the first embodiment.
  • the structure of the downstream outflow path 61bb which comprises the said back pressure valve outflow path 61b differs from the said Example 1.
  • FIG. That is, as shown in FIG. 6, the flow passage inlet 61h side of the downstream outflow passage 61bb has a flow passage sectional area similar to that of the downstream outflow passage 61bb shown in FIG. 4, and the suction chamber 20 (or the compression chamber 13). This is also the same in that the flow passage cross-sectional area on the flow passage outlet portion 61g side of the downstream outflow passage 61bb that is open to the flow passage) is larger than that on the flow passage inlet portion 61h side.
  • the bottom 61i on the outlet side of the downstream outflow passage 61bb is not linearly tapered as shown in FIG. 4, but the bottom 61i is formed in an arc shape.
  • the shape of the bottom 61i is not limited to a circular arc, but may be a curve other than an arc such as a parabola, or a combination of a curve and a straight line.
  • the edge portions on the flow channel inlet portion 61h side and the flow channel outlet portion 61g side of the tapered bottom portion 61i shown in FIG. 4 may be rounded or formed in an arc.
  • the flow path outlet 61g side in the back pressure valve outflow path 61b is formed in a shape that combines a curve or a curve and a straight line so that the flow area increases toward the flow path outlet. What is necessary is just to form so that the cross-sectional area of a flow-path exit may become larger than a cross-sectional area.
  • the back pressure valve outflow passage 61b is configured in this way, the same effect as in the first embodiment described above can be obtained, and separation of the oil flow along the wall surface of the bottom portion 61i of the downstream outflow passage 61bb can be suppressed. Since the oil flowing into the suction chamber 20 or the compression chamber 13 can be diffused more smoothly and efficiently, the hermetic sealing of the suction chamber 20 and the compression chamber 13 with oil is further improved, and a highly efficient scroll compressor with less leakage loss is obtained. be able to.
  • FIG. 7 is also a view corresponding to FIG. 3, and the portions denoted by the same reference numerals as those in FIGS. 3, 4, and 6 indicate the same or corresponding portions.
  • the basic structure of the scroll compressor is the same as that shown in FIGS. 1 to 3 except for the back pressure valve outflow passage 61b shown in FIGS.
  • the upstream outflow passage 61ba constituting the back pressure valve outflow passage 61b is the same as in the first and second embodiments.
  • the downstream side outflow passage 61bb constituting the back pressure valve outflow passage 61b is different from the first and second embodiments. That is, in the third embodiment, the downstream outflow passage 61bb shown in the first and second embodiments is formed in the groove 61k on the flow path inlet 61h side and the hole 61j formed obliquely on the flow outlet 61g side. It is characterized in that it consists of Further, in the example shown in FIG. 7, the position of the hole 61j on the outlet side (outlet part 61g side) is closer to the fixed scroll tooth bottom 7c than the position on the inlet side (groove part 61k side). It is composed.
  • the oil flows into the suction chamber 20 (or the compression chamber 13) in the same manner as the downstream outflow passage 61bb described in the first embodiment, that is, the bottom 61i having a tapered groove shape.
  • the hole 61j of the downstream outflow passage 61bb can be manufactured by a simple hole processing, so that the processing becomes easy and the time required for the processing can be shortened.
  • the hole 61j is upward (shape facing the fixed scroll tooth bottom 7c side), and the shape is such that oil is easily supplied to the fixed scroll tooth bottom 7c side, so the outlet of the hole 61j
  • the side opening position may be slightly closer to the orbiting scroll tooth bottom 8c side than the center position in the height direction of the wraps 7b and 8b.
  • the outlet of the hole 61j is considered in consideration of the fact that it easily flows to the orbiting scroll tooth bottom 8c side due to gravity acting on the oil. You may comprise a side opening position so that it may become the height direction center position vicinity of the wraps 7b and 8b.
  • the shape of the hole portion 61j is not limited to a circular hole, and may be a hole having another shape such as an elliptical shape.
  • the hole portion 61j has a cross-sectional area on the outlet side larger than that on the inlet side. If the shape is a tapered hole, the oil can be more easily diffused.
  • the hole 61j is formed upward.
  • the structure in which the hole 61j is formed obliquely upward from the end plate surface of the fixed scroll 7 to the suction chamber 20 or the like is as follows. There is an advantage that the hole 61j can be easily processed from the end face side.
  • the hole 61j does not necessarily have to face upward, and may have a horizontal hole shape, for example. In this case, the outlet side opening position of the hole 61j may be set near the center position in the height direction of the wraps 7b and 8b.
  • FIG. 8 is a refrigeration cycle configuration diagram illustrating an example of the fourth embodiment.
  • 1 is a scroll compressor
  • 43 is a four-way valve
  • 40 is an outdoor heat exchanger (condenser during cooling operation, evaporator during heating operation)
  • 41 is an electronic expansion valve.
  • An expansion valve 42 is an indoor heat exchanger (an evaporator during cooling operation and a condenser during heating operation), and these devices are sequentially connected by refrigerant piping to form a refrigeration cycle of the air conditioner. Has been.
  • the scroll compressor 1 any one of the scroll compressors described in the first to third embodiments is used, and the scroll compressor 1 uses an inverter and has a wide operating range of, for example, 10 to 110 Hz. It is configured to be driven by. In particular, in order to improve the year-round energy consumption efficiency (APF) of the air conditioner, the air conditioner emphasizes operation in a low speed, low load operation region at 10 to 30 Hz.
  • APF year-round energy consumption efficiency
  • the suction chamber 20 or the compression chamber 13 is transferred from the back pressure chamber 18 via the back pressure valve 61 as shown in FIGS. Since the flow of the working fluid in the suction chamber 20 or the compression chamber 13 is relatively gentle, the oil that has flowed into the portion close to the outlet of the downstream outflow passage 61bb (the portion on the orbiting scroll tooth bottom 8c side in FIG. 3).
  • the supply amount is particularly large, and the supply amount to a portion far from the outlet on the downstream side outflow passage 61bb (the portion on the fixed scroll tooth bottom 7c side in FIG. 3) is particularly small. For this reason, when the scroll compressor 1 is operated at a low speed such as 10 to 30 Hz, the sealing performance of the compression chamber 13 is particularly lowered, and the efficiency of the scroll compressor is particularly lowered.
  • the low-speed and low-load operation region at 10 to 30 Hz.
  • the air conditioner's operating efficiency which emphasizes the operation of the air conditioner, can be greatly improved, so the energy consumption efficiency of the air conditioner can be greatly improved throughout the year, and the air consumption is low and the operating range is wide. A harmony machine can be obtained.
  • the scroll compressor of the present invention at least a part of the flow path outlet 61g to the suction chamber 20 or the compression chamber 13 of the back pressure valve outflow passage 61b is connected to the fixed scroll 7. Since it is formed on the tooth bottom 7c side from the position of the wrap tooth tip, not only the gap between the fixed scroll wrap tooth tip and the orbiting scroll tooth base 8c, but also the gap between the fixed scroll tooth base 7c and the orbiting scroll wrap tooth tip The oil can be supplied sufficiently. Thereby, the airtightness of the suction chamber 20 and the compression chamber 13 by oil can be improved, and a highly efficient scroll compressor with small leakage loss can be obtained.
  • an effect of significantly improving the year-round energy consumption efficiency of the air conditioner can be obtained.
  • the refrigerant scroll compressor used in the refrigeration cycle apparatus for refrigeration and air conditioning has been described.

Abstract

 Oil flowing from a rear pressure chamber to an intake chamber or a compression chamber via a rear pressure valve is sufficiently supplied not only to a lap tooth tip of a fixed scroll, but also to gaps between fixed scroll tooth bottoms and lap tooth tips of an orbiting scroll. A scroll compressor is provided with a fixed scroll (7), an orbiting scroll (8) that forms an intake chamber (20) or a compression chamber by meshing with the fixed scroll and undergoing an orbiting motion, a rear pressure chamber (18) for applying pressure to the orbiting scroll toward the fixed scroll, a rear pressure valve (61) for adjusting the rear pressure of the rear pressure chamber, a rear pressure valve inflow channel (61a) for connecting an inlet side of the rear pressure valve and the rear pressure chamber, and a rear pressure valve outflow channel (61b) for connecting an outlet side of the rear pressure valve and either the intake chamber or the compression chamber. At least part of a flow channel outlet part (61g) leading to the intake chamber or compression chamber of the rear pressure valve outflow channel is formed nearer the tooth bottoms (7c) than the positions of the lap teeth tips of the fixed scroll.

Description

スクロール圧縮機及びこれを用いた空気調和機Scroll compressor and air conditioner using the same
 本発明は、スクロール圧縮機及びこれを用いた空気調和機に関し、特に低速、低負荷運転を重視した空気調和機に用いられるスクロール圧縮機として好適なものである。 The present invention relates to a scroll compressor and an air conditioner using the scroll compressor, and is particularly suitable as a scroll compressor used in an air conditioner that emphasizes low speed and low load operation.
 冷凍用や空調用などの冷凍サイクル装置に使用されるスクロール圧縮機としては、特開2005-163655号公報(特許文献1)に記載されたものなどがある。この特許文献1のものには、台板(端板)とそれに立設するラップ(渦巻体)とを有する固定スクロール(非旋回スクロール)、鏡板(端板)とそれに立設するラップ(渦巻体)とを有すると共に、前記固定スクロールと噛み合って旋回運動をすることにより前記固定スクロールとの間に吸込室または圧縮室を形成する旋回スクロール、前記旋回スクロールに前記固定スクロールへの押付力を付与するための背圧室、該背圧室の圧力(背圧)を維持するために該背圧室に流体を流入させるための背圧室流体流入手段、前記背圧室に流入した流体の少なくとも一部を前記吸込室または圧縮室に流出させるための背圧室流体流出手段などを備えたスクロール圧縮機が記載されている。 Examples of scroll compressors used in refrigeration cycle apparatuses for refrigeration and air conditioning include those described in Japanese Patent Application Laid-Open No. 2005-163655 (Patent Document 1). The thing of this patent document 1 has a fixed scroll (non-orbiting scroll) which has a base plate (end plate) and a wrap (vortex body) standing upright on it, an end plate (end plate) and a wrap (vortex body) upright on it. ), And a revolving scroll that engages with the fixed scroll and forms a suction chamber or a compression chamber with the fixed scroll, and applies a pressing force to the fixed scroll to the revolving scroll. Back pressure chamber, back pressure chamber fluid inflow means for allowing fluid to flow into the back pressure chamber in order to maintain the pressure (back pressure) of the back pressure chamber, at least one of the fluid flowing into the back pressure chamber There is described a scroll compressor provided with back pressure chamber fluid outflow means and the like for allowing a part to flow out into the suction chamber or the compression chamber.
 また、この特許文献1には、前記背圧室流体流出手段が、前記背圧室と、前記吸込室または圧縮室とを繋ぐ背圧室流体流出路に、前後の差圧を制御する背圧弁(背圧制御弁)と、絞り流路部と、前記旋回スクロール部材の旋回運動により間欠的に連通する間欠流路部とを直列に配した構造が記載されている。 Further, in Patent Document 1, the back pressure chamber fluid outflow means controls a differential pressure across the back pressure chamber fluid outflow path that connects the back pressure chamber and the suction chamber or the compression chamber. A structure is described in which a (back pressure control valve), a throttle channel portion, and an intermittent channel portion that communicates intermittently by the orbiting motion of the orbiting scroll member are arranged in series.
特開2005-163655号公報JP 2005-163655 A
 上記特許文献1のものには、前記絞り流路部が、前記固定スクロールの端板面に形成されているため、この絞り流路部を介して、前記背圧室から前記吸込室または圧縮室に流入する油(潤滑油、冷凍機油)は、固定スクロールのラップ歯先と旋回スクロール歯底とのすき間など、固定スクロールのラップ歯先側にしか供給されない。このため、背圧室内の冷凍機油を、前記背圧室流体流出手段を介して、固定スクロールの歯底と旋回スクロールのラップ歯先とのすき間には十分に供給できないという課題があった。 In the thing of the said patent document 1, since the said throttle flow path part is formed in the end-plate surface of the said fixed scroll, from this back pressure chamber via the said throttle flow path part, the said suction chamber or the compression chamber Oil (lubricating oil, refrigerating machine oil) that flows into the fixed scroll is supplied only to the wrap tooth tip side of the fixed scroll, such as a gap between the wrap tooth tip of the fixed scroll and the orbiting scroll tooth bottom. Therefore, there is a problem that the refrigerating machine oil in the back pressure chamber cannot be sufficiently supplied to the gap between the bottom of the fixed scroll and the lap tooth tip of the orbiting scroll through the back pressure chamber fluid outflow means.
 本発明の目的は、背圧室から背圧弁を介して吸込室または圧縮室に流入する油を、固定スクロールのラップ歯先側だけでなく、固定スクロール歯底と旋回スクロールのラップ歯先とのすき間へも十分に供給することができるスクロール圧縮機及びこれを用いた空気調和機を得ることにある。 The object of the present invention is to allow oil flowing into the suction chamber or the compression chamber from the back pressure chamber via the back pressure valve not only between the wrap tooth tip side of the fixed scroll but also between the fixed scroll tooth bottom and the wrap tooth tip of the orbiting scroll. The object is to obtain a scroll compressor capable of sufficiently supplying gaps and an air conditioner using the scroll compressor.
 上記課題を解決するために、本発明は、台板に渦巻状のラップを立設した固定スクロールと、鏡板に渦巻状のラップを立設し前記固定スクロールと噛み合わされて旋回運動をすることにより吸込室または圧縮室を形成する旋回スクロールと、前記旋回スクロールに前記固定スクロール側への押付力を付与する背圧室と、この背圧室の背圧を調整するための背圧弁と、この背圧弁の入口側と前記背圧室を連通する背圧弁流入路と、前記背圧弁の出口側と前記吸込室または圧縮室を連通する背圧弁流出路を備えたスクロール圧縮機であって、前記背圧弁流出路の前記吸込室または圧縮室への流路出口部の少なくとも一部は、前記固定スクロールのラップ歯先の位置よりも歯底側に形成されていることを特徴とする。 In order to solve the above-described problems, the present invention provides a fixed scroll in which a spiral wrap is erected on a base plate, and a spiral wrap is erected on an end plate and meshed with the fixed scroll to perform a turning motion. A revolving scroll that forms a suction chamber or a compression chamber; a back pressure chamber that applies a pressing force to the revolving scroll toward the fixed scroll; a back pressure valve for adjusting the back pressure of the back pressure chamber; A scroll compressor comprising a back pressure valve inflow passage that communicates the inlet side of the pressure valve and the back pressure chamber, and a back pressure valve outflow passage that communicates the outlet side of the back pressure valve and the suction chamber or the compression chamber. At least a part of a flow path outlet portion of the pressure valve outflow passage to the suction chamber or the compression chamber is formed on the tooth bottom side with respect to the position of the wrap tooth tip of the fixed scroll.
 本発明の他の特徴は、圧縮機、四方弁、室外熱交換器、膨張弁、室内熱交換器を順次冷媒配管で接続して構成された空気調和機であって、前記圧縮機は上記スクロール圧縮機を用い、このスクロール圧縮機は少なくとも10~30Hzでの低速運転が為されることにある。 Another feature of the present invention is an air conditioner configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger with a refrigerant pipe, and the compressor includes the scroll This scroll compressor is to be operated at a low speed of at least 10 to 30 Hz.
 本発明によれば、背圧室から背圧弁を介して吸込室または圧縮室に流入する油を、固定スクロールのラップ歯先側だけでなく、固定スクロール歯底と旋回スクロールのラップ歯先とのすき間へも十分に供給することができるスクロール圧縮機及びこれを用いた空気調和機を得ることができる効果がある。 According to the present invention, the oil flowing from the back pressure chamber into the suction chamber or the compression chamber via the back pressure valve is not limited to the fixed scroll lap tooth tip side but also between the fixed scroll tooth bottom and the orbiting scroll lap tooth tip. There is an effect that a scroll compressor that can be sufficiently supplied to the gap and an air conditioner using the scroll compressor can be obtained.
スクロール圧縮機の基本的な構造を説明する縦断面図。The longitudinal cross-sectional view explaining the basic structure of a scroll compressor. 図1における固定スクロールと旋回スクロールとの噛み合い状態を説明する平面図。The top view explaining the meshing state of the fixed scroll and turning scroll in FIG. 図1に示す背圧弁周辺の拡大断面図。The expanded sectional view of the back pressure valve periphery shown in FIG. 本発明のスクロール圧縮機の実施例1を示す図で、図3に相当する図。FIG. 4 is a diagram illustrating the first embodiment of the scroll compressor according to the present invention and corresponding to FIG. 3. 図4に示す固定スクロールを下方から見た斜視図。The perspective view which looked at the fixed scroll shown in FIG. 4 from the downward direction. 本発明のスクロール圧縮機の実施例2を示す図で、図3に相当する図。FIG. 4 is a diagram illustrating a scroll compressor according to a second embodiment of the present invention and corresponding to FIG. 3. 本発明のスクロール圧縮機の実施例3を示す図で、図3に相当する図。FIG. 6 is a diagram showing a third embodiment of the scroll compressor according to the present invention and corresponding to FIG. 3. 本発明のスクロール圧縮機を用いた空気調和機の一例を説明する冷凍サイクル構成図。The refrigeration cycle block diagram explaining an example of the air conditioner using the scroll compressor of this invention.
 以下、本発明の具体的実施例を、図面を用いて説明する。なお、各図において、同一符号を付した部分は同一或いは相当する部分を示している。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. Note that, in each drawing, the portions denoted by the same reference numerals indicate the same or corresponding portions.
 本実施例が適用されるスクロール圧縮機の基本的な構造を図1~図3を用いて説明する。図1はスクロール圧縮機の基本的な構造を説明する縦断面図、図2は図1における固定スクロールと旋回スクロールとの噛み合い状態を説明する平面図、図3は図1に示す背圧弁周辺の拡大断面図である。 The basic structure of the scroll compressor to which this embodiment is applied will be described with reference to FIGS. 1 is a longitudinal sectional view illustrating the basic structure of a scroll compressor, FIG. 2 is a plan view illustrating the meshing state of the fixed scroll and the orbiting scroll in FIG. 1, and FIG. 3 is a view around the back pressure valve shown in FIG. It is an expanded sectional view.
 まず、図1により、スクロール圧縮機の全体構成を説明する。スクロール圧縮機1はケース(密閉容器)9内に、圧縮機構部2及びモータ部16などを収容して構成されている。 First, the overall configuration of the scroll compressor will be described with reference to FIG. The scroll compressor 1 is configured by housing a compression mechanism section 2 and a motor section 16 in a case (sealed container) 9.
 圧縮機構部2では、フレーム17に固定された固定スクロール7に旋回スクロール8が噛み合わされて圧縮室13が形成され、前記モータ部16の回転により、クランクシャフト(回転軸)10を介して、前記旋回スクロール8を旋回運動させることにより、前記圧縮室13の容積を減少させて圧縮動作を行う。この圧縮動作に伴って、作動流体が吸込ポート14から吸込室20(図2参照)へ吸込まれ、吸込まれた作動流体は圧縮室13での圧縮行程を経て吐出ポート15からケース9内の吐出空間54に吐出される。この吐出空間54に吐出された作動流体は、前記固定スクロールの外周と前記フレーム17の外周に形成された通路(図示せず)を通って、モータ室52に流れ、その後吐出パイプ6からケース9外に吐出されるように構成されている。 In the compression mechanism section 2, the orbiting scroll 8 is meshed with the fixed scroll 7 fixed to the frame 17 to form a compression chamber 13, and the rotation of the motor section 16 causes the above-described operation via the crankshaft (rotating shaft) 10. By orbiting the orbiting scroll 8, the volume of the compression chamber 13 is reduced and the compression operation is performed. With this compression operation, the working fluid is sucked into the suction chamber 20 (see FIG. 2) from the suction port 14, and the sucked working fluid is discharged from the discharge port 15 into the case 9 through the compression stroke in the compression chamber 13. It is discharged into the space 54. The working fluid discharged into the discharge space 54 flows into the motor chamber 52 through a passage (not shown) formed in the outer periphery of the fixed scroll and the outer periphery of the frame 17, and then from the discharge pipe 6 to the case 9. It is configured to be discharged outside.
 前記固定スクロール7は、円板状の台板7aと、この台板7aに渦巻状に立設されたラップ7bと、前記台板7aの外周側に位置し、前記ラップ7bの先端面と連続する鏡板面7eを有してラップ7bを囲む筒状の支持部7dとを有する。前記ラップ7bが立設された台板7aの表面は、ラップ7bの間にあるため歯底7cと呼ばれる。 The fixed scroll 7 is a disc-shaped base plate 7a, a wrap 7b provided upright in a spiral shape on the base plate 7a, and is positioned on the outer peripheral side of the base plate 7a, and is continuous with the front end surface of the wrap 7b. And a cylindrical support portion 7d that surrounds the wrap 7b. The surface of the base plate 7a on which the wrap 7b is erected is called a tooth bottom 7c because it is between the wraps 7b.
 前記固定スクロール7の支持部7dが、旋回スクロール8の鏡板8aと接する面は、固定スクロール7の鏡板面7eとなっている。固定スクロール7は、前記支持部7dをボルト等により前記フレーム17に固定しており、固定スクロール7と一体に結合された前記フレーム17は溶接等の固定手段により前記ケース(密閉容器)9に固定されている。 The surface where the support portion 7d of the fixed scroll 7 is in contact with the end plate 8a of the orbiting scroll 8 is the end plate surface 7e of the fixed scroll 7. The fixed scroll 7 has the support portion 7d fixed to the frame 17 with bolts or the like, and the frame 17 integrally coupled with the fixed scroll 7 is fixed to the case (sealed container) 9 by fixing means such as welding. Has been.
 前記旋回スクロール8は、固定スクロール7に対向して配置され、固定スクロールのラップ7bと旋回スクロールのラップ8bとが噛み合わされて、フレーム17内に旋回可能に設けられている。旋回スクロール8は、円板状の鏡板8a、この鏡板8aの表面である歯底8cから立設された渦巻状のラップ8b、及び前記鏡板8aの背面中央に設けられたボス部(旋回ボス部)8dを有する。また、鏡板8aの外周部の、固定スクロール7と接する表面が、旋回スクロール8の鏡板面8eとなっている。 The orbiting scroll 8 is disposed so as to face the fixed scroll 7, and the fixed scroll wrap 7 b and the orbiting scroll wrap 8 b are engaged with each other so that the orbiting scroll 8 is provided within the frame 17. The orbiting scroll 8 includes a disc-shaped end plate 8a, a spiral wrap 8b erected from a tooth bottom 8c which is the surface of the end plate 8a, and a boss portion (orbiting boss portion) provided at the center of the rear surface of the end plate 8a. ) 8d. Further, the surface of the outer peripheral portion of the end plate 8 a that contacts the fixed scroll 7 is the end plate surface 8 e of the orbiting scroll 8.
 前記旋回スクロール8のラップ8bの先端部(ラップ歯先)は前記固定スクロール7の歯底7cと微小すき間をもって相対する状態となっている。同様に、固定スクロール7のラップ7bの先端部(ラップ歯先)も前記旋回スクロール8の歯底8cと微小すき間をもって相対する状態となっている。 The tip (wrap tooth tip) of the wrap 8b of the orbiting scroll 8 is in a state of facing the tooth bottom 7c of the fixed scroll 7 with a minute gap. Similarly, the tip end portion (wrap tooth tip) of the wrap 7b of the fixed scroll 7 is also in a state of facing the tooth bottom 8c of the orbiting scroll 8 with a minute gap.
 前記圧縮機構部2及びモータ部16等を収容している密閉容器構造の前記ケース9の底部には、潤滑油(冷凍機油)を溜める油溜り53が設けられている。前記モータ部16は回転子16aと固定子16bにより構成され、前記回転子16aにはクランクシャフト(回転軸)10が一体に固定されている。このクランクシャフト10は前記フレーム17に主軸受5を介して回転自在に支持され、固定スクロール7の中心軸線と同軸となっている。 An oil sump 53 for storing lubricating oil (refrigerating machine oil) is provided at the bottom of the case 9 having a sealed container structure that accommodates the compression mechanism section 2 and the motor section 16. The motor section 16 is composed of a rotor 16a and a stator 16b, and a crankshaft (rotary shaft) 10 is integrally fixed to the rotor 16a. The crankshaft 10 is rotatably supported by the frame 17 via the main bearing 5 and is coaxial with the central axis of the fixed scroll 7.
 前記クランクシャフト10の先端には偏心したクランク部10aが設けられており、このクランク部10aは、前記旋回スクロール8のボス部8dに設けられた旋回軸受11に挿入され、前記旋回スクロール8はクランクシャフト10の回転に伴い旋回可能に構成されている。前記旋回スクロール8の中心軸線は、前記固定スクロール7の中心軸線に対して所定距離だけ偏心した状態となる。また、旋回スクロール8のラップ8bは、固定スクロール7のラップ7bに対し、周方向に所定角度(一般には180度)だけずらして重ね合わせられている。12は、前記旋回スクロール8を前記固定スクロール7に対して、自転しないように拘束しながら相対的に旋回運動させるためのオルダムリングである。 An eccentric crank portion 10a is provided at the tip of the crankshaft 10, and this crank portion 10a is inserted into the orbiting bearing 11 provided in the boss portion 8d of the orbiting scroll 8, and the orbiting scroll 8 is It is configured to be able to turn with the rotation of the shaft 10. The center axis of the orbiting scroll 8 is decentered by a predetermined distance with respect to the center axis of the fixed scroll 7. The wrap 8b of the orbiting scroll 8 is overlapped with the wrap 7b of the fixed scroll 7 while being shifted by a predetermined angle (generally 180 degrees) in the circumferential direction. Reference numeral 12 denotes an Oldham ring for relatively rotating the orbiting scroll 8 with respect to the fixed scroll 7 while restraining it from rotating.
 図2は前記固定スクロール7と旋回スクロール8との噛み合い状態を説明する平面図であり、旋回スクロール8のラップ8bを断面図で示し、旋回スクロールの鏡板8aの外周を二点鎖線の想像線で示している。この図2に示すように、固定スクロールラップ7bと旋回スクロールラップ8b間には三日月状の複数の圧縮室13(旋回内線側圧縮室13a、旋回外線側圧縮室13b)が形成され、旋回スクロール8を旋回運動させると、各圧縮室13は中央部に移動するに従い連続的に容積が縮小されていく。20は吸込室で、流体を吸入している途中の空間である。この吸込室20は、旋回スクロール8の旋回運動の位相が進んで、流体の閉じ込みを完了した時点から圧縮室13となる。 FIG. 2 is a plan view for explaining the meshing state of the fixed scroll 7 and the orbiting scroll 8. The wrap 8b of the orbiting scroll 8 is shown in a sectional view, and the outer periphery of the end plate 8a of the orbiting scroll is shown by an phantom line of a two-dot chain line. Show. As shown in FIG. 2, a plurality of crescent-shaped compression chambers 13 (orbiting inner line side compression chambers 13a and orbiting outer line side compression chambers 13b) are formed between the fixed scroll wrap 7b and the orbiting scroll wrap 8b. When the is swung, the volume of each compression chamber 13 is continuously reduced as it moves to the center. Reference numeral 20 denotes a suction chamber, which is a space in the middle of sucking fluid. The suction chamber 20 becomes the compression chamber 13 when the phase of the orbiting motion of the orbiting scroll 8 advances and the closing of the fluid is completed.
 前記吸込ポート14は、図1及び図2に示すように、固定スクロール7に設けられている。この吸込ポート14は、前記吸込室20と連通するように、固定スクロール7の台板7aの外周側に穿設されている。 
 前記吐出ポート15は、最内周側の圧縮室13と連通するように、前記固定スクロール7の台板7aの渦巻中心付近に穿設されている。
The suction port 14 is provided in the fixed scroll 7 as shown in FIGS. 1 and 2. The suction port 14 is formed on the outer peripheral side of the base plate 7 a of the fixed scroll 7 so as to communicate with the suction chamber 20.
The discharge port 15 is formed near the spiral center of the base plate 7a of the fixed scroll 7 so as to communicate with the compression chamber 13 on the innermost peripheral side.
 前記モータ部16により前記クランクシャフト10を回転させると、前記旋回スクロール8は前記固定スクロール7の中心軸線を中心に、所定距離の旋回半径をもって旋回運動する。この旋回運動時に旋回スクロール8が自転しないように、オルダムリング12によって拘束される。 When the crankshaft 10 is rotated by the motor unit 16, the orbiting scroll 8 orbits around the central axis of the fixed scroll 7 with an orbiting radius of a predetermined distance. It is restrained by the Oldham ring 12 so that the turning scroll 8 does not rotate during this turning movement.
 旋回スクロール8の旋回運動によって、前記各ラップ7b,8bの間に形成される圧縮室13は中央に連続的に移動し、それに従い容積は連続的に縮小する。これにより、前記吸込ポート14から吸込まれた作動流体(例えば、冷凍サイクルを循環する冷媒ガスで、以下、単に流体ともいう)を前記各圧縮室13内で順次圧縮し、圧縮された作動流体は前記吐出ポート15から前記吐出空間54に吐出され、上述したように、前記吐出パイプ6から圧縮機外の、例えば冷凍サイクルに供給される。 The revolving motion of the orbiting scroll 8 causes the compression chamber 13 formed between the laps 7b and 8b to continuously move to the center, and the volume is continuously reduced accordingly. Thus, the working fluid sucked from the suction port 14 (for example, refrigerant gas circulating in the refrigeration cycle, hereinafter also simply referred to as fluid) is sequentially compressed in each compression chamber 13, and the compressed working fluid is It is discharged from the discharge port 15 into the discharge space 54 and supplied from the discharge pipe 6 to, for example, a refrigeration cycle outside the compressor as described above.
 前記クランクシャフト10の下端には容積型または遠心式の給油ポンプ21が設けられており、前記クランクシャフト10の回転と共に給油ポンプ21も回転させて、前記ケース9底部の油溜り53に溜められた潤滑油を、給油ポンプケース22に設けた潤滑油吸込口25から吸入して、給油ポンプ21の吐出口28から吐出する。吐出された潤滑油は前記クランクシャフト10内に軸方向に形成されている貫通穴(給油穴)3を通って前記クランク部10aの上端へ送られる。 A positive-displacement or centrifugal oil pump 21 is provided at the lower end of the crankshaft 10, and the oil pump 21 is rotated along with the rotation of the crankshaft 10, and is stored in an oil sump 53 at the bottom of the case 9. Lubricating oil is drawn in from a lubricating oil suction port 25 provided in the oil supply pump case 22 and discharged from a discharge port 28 of the oil supply pump 21. The discharged lubricating oil is sent to the upper end of the crank portion 10a through a through hole (oil supply hole) 3 formed in the crankshaft 10 in the axial direction.
 この時、前記貫通穴3を流れる潤滑油の一部は、前記クランクシャフト10に設けた横穴24を介して副軸受23に送られ、該副軸受23を潤滑後、ケース9底部の前記油溜り53に戻る。前記クランクシャフト10の前記貫通穴3を流れるその他の大部分の潤滑油は、前記クランク部10aの上端に達し、このクランク部10aに設けた油溝57を通って前記旋回軸受11を潤滑する。この潤滑油は、その後、更に旋回軸受11の下部に設けた前記主軸受5を潤滑した後、排油穴26a及び排油パイプ26bを通ってケース9底部へ戻される。 At this time, a part of the lubricating oil flowing through the through hole 3 is sent to the auxiliary bearing 23 through the lateral hole 24 provided in the crankshaft 10, and after lubricating the auxiliary bearing 23, the oil reservoir at the bottom of the case 9 is Return to 53. Most of the other lubricating oil flowing through the through hole 3 of the crankshaft 10 reaches the upper end of the crank portion 10a, and lubricates the slewing bearing 11 through an oil groove 57 provided in the crank portion 10a. Thereafter, the lubricating oil further lubricates the main bearing 5 provided at the lower portion of the slewing bearing 11, and then returns to the bottom of the case 9 through the oil drain hole 26a and the oil drain pipe 26b.
 ここで、油溝57と旋回軸受11で形成される空間、及び前記主軸受5を収める空間(フレーム17、クランクシャフト10、フレームシール56、旋回ボス部8dに設けられたつば部34、シール部材32で形成された空間)をあわせて第1の空間33と呼ぶことにする。この第1の空間33は吐出圧力に近い圧力を有する空間である。 Here, a space formed by the oil groove 57 and the slewing bearing 11, and a space for housing the main bearing 5 (the frame 17, the crankshaft 10, the frame seal 56, the collar portion 34 provided on the slewing boss portion 8d, the seal member). The space formed by 32) is collectively referred to as a first space 33. The first space 33 is a space having a pressure close to the discharge pressure.
 前記主軸受5及び前記旋回軸受11の潤滑のために前記第1の空間33に流入した潤滑油の大部分は、前記排油穴26a及び前記排油パイプ26bを通ってケース9底部の油溜り53に戻るが、一部の潤滑油は、前記オルダムリング12の潤滑、前記固定スクロール7と旋回スクロール8との摺動部の潤滑、及び各ラップの先端すき間などのシール(密閉)に必要な最低限の量が、前記シール部材32の上端面と旋回ボス部の前記つば部34の端面との間に設けられた油漏出手段を介して第2の空間である背圧室18に入る。 Most of the lubricating oil flowing into the first space 33 for lubrication of the main bearing 5 and the slewing bearing 11 passes through the oil drain hole 26a and the oil drain pipe 26b and is stored in the bottom of the case 9. Returning to 53, a part of the lubricating oil is necessary for the lubrication of the Oldham ring 12, the lubrication of the sliding portion between the fixed scroll 7 and the orbiting scroll 8, and the seal (sealing) such as the clearance between the tips of each lap. A minimum amount enters the back pressure chamber 18 which is the second space through an oil leakage means provided between the upper end surface of the seal member 32 and the end surface of the collar portion 34 of the turning boss portion.
 前記シール部材32は、前記フレーム17の前記つば部34と対向する面に設けられた円環溝31に波状バネ(図示せず)と共に挿入されており、吐出圧力となっている前記第1の空間33と、吸込圧力と吐出圧力の中間の圧力となっている前記背圧室(第2の空間)18とを仕切っている。前記油漏出手段は、例えば、旋回ボス部の前記つば部34に設けられた一つまたは複数のスリット60と前記シール部材32とで構成され、前記スリット60がシール部材32を跨ぐように配置する。これにより、第1の空間33と背圧室18の圧力差により、第1の空間33から背圧室18へ、微小すき間であるスリット60を通って油が流入する。 The seal member 32 is inserted together with a wave spring (not shown) into an annular groove 31 provided on a surface of the frame 17 facing the collar portion 34, and the first pressure which is a discharge pressure. The space 33 is partitioned from the back pressure chamber (second space) 18 which is an intermediate pressure between the suction pressure and the discharge pressure. The oil leakage means includes, for example, one or a plurality of slits 60 provided in the collar portion 34 of the turning boss portion and the seal member 32, and the slit 60 is disposed so as to straddle the seal member 32. . As a result, due to the pressure difference between the first space 33 and the back pressure chamber 18, oil flows from the first space 33 into the back pressure chamber 18 through the slit 60, which is a minute gap.
 前記背圧室18と前記吸込室20(または圧縮室13)とは、前記固定スクロール7の支持部7dに設けられた背圧室流体流出路で接続(連通)されており、この背圧室流体流出路の途中には前後の差圧を制御する背圧弁(背圧制御弁)61が設けられている。これにより、前記背圧室18に入った潤滑油は、背圧が高くなると、前記背圧弁61を通って、吸込室20(または圧縮室13)へ流入し、ラップ摺動面やラップ先端すき間などを潤滑すると共に、圧縮室間などのシールに利用された後、前記吐出ポート15から吐出空間54に吐出される。この吐出された油の一部は、例えば冷媒ガスと共に前記吐出パイプ6から冷凍サイクルへ吐出され、残りはケース9内で冷媒ガスと分離されてケース底の前記油溜り53に貯留される。 The back pressure chamber 18 and the suction chamber 20 (or the compression chamber 13) are connected (communicated) by a back pressure chamber fluid outflow passage provided in the support portion 7d of the fixed scroll 7. The back pressure chamber A back pressure valve (back pressure control valve) 61 for controlling the differential pressure across the front and rear is provided in the middle of the fluid outflow path. As a result, when the back pressure increases, the lubricating oil that has entered the back pressure chamber 18 flows into the suction chamber 20 (or the compression chamber 13) through the back pressure valve 61, and the lap sliding surface and the lap tip clearance. Are used for sealing between the compression chambers and the like, and then discharged from the discharge port 15 into the discharge space 54. A part of the discharged oil is discharged together with the refrigerant gas from the discharge pipe 6 to the refrigeration cycle, for example, and the rest is separated from the refrigerant gas in the case 9 and stored in the oil reservoir 53 at the bottom of the case.
 上述したように、前記第1の空間33、前記背圧室18及び前記油漏出手段を設けることにより、各軸受部に必要な給油量と、圧縮室13に必要な給油量を独立に制御することができるので、圧縮室13への給油量の適正化が可能となり高効率なスクロール圧縮機を得ることができる。 As described above, by providing the first space 33, the back pressure chamber 18, and the oil leakage means, the amount of oil required for each bearing portion and the amount of oil required for the compression chamber 13 are independently controlled. Therefore, the amount of oil supplied to the compression chamber 13 can be optimized, and a highly efficient scroll compressor can be obtained.
 なお、別の構成として、前記給油ポンプ21、前記第1の空間33及び前記油漏出手段を設けず、吐出圧力である油溜り53の油を、軸受部の微小すき間での絞りを利用して減圧し、前記背圧室18へ導入する構造としても良い。この場合、軸受部を通過した油は全て前記背圧室18に流入するため、軸受部と圧縮室への給油量を独立に制御することはできない。しかし、前記給油ポンプ21や前記シール部材32などの部品が不要となるので、構造が単純で低コストのスクロール圧縮機とすることができる。 As another configuration, the oil pump 21, the first space 33, and the oil leakage means are not provided, and the oil in the oil pool 53, which is a discharge pressure, is used by using a restriction in a minute gap of the bearing portion. The pressure may be reduced and introduced into the back pressure chamber 18. In this case, since all the oil that has passed through the bearing portion flows into the back pressure chamber 18, the amount of oil supplied to the bearing portion and the compression chamber cannot be controlled independently. However, since parts such as the oil pump 21 and the seal member 32 are not required, a scroll compressor having a simple structure and a low cost can be obtained.
 次に、前記背圧室18の機能について説明する。スクロール圧縮機1では、その圧縮作用により、固定スクロール7と旋回スクロール8を互いに引離そうとする軸方向の力(引き離し力)が発生する。この軸方向の力により、前記両スクロールが引き離される、いわゆる旋回スクロール8の離脱現象が発生すると、圧縮室13の密閉性が悪化して圧縮機効率を低下させる。そこで、旋回スクロール8の鏡板8aの背面側に、吐出圧力と吸込圧力の間の圧力となる背圧室18を設け、この背圧室18の圧力(背圧)により、前記引き離し力を打ち消すと共に、旋回スクロール8を固定スクロール7に押付けるようにしている。 Next, the function of the back pressure chamber 18 will be described. In the scroll compressor 1, an axial force (separation force) that causes the fixed scroll 7 and the orbiting scroll 8 to be separated from each other is generated by the compression action. When the so-called orbiting scroll 8 separation phenomenon occurs in which the two scrolls are separated by this axial force, the sealing performance of the compression chamber 13 deteriorates and the compressor efficiency is lowered. Therefore, a back pressure chamber 18 which is a pressure between the discharge pressure and the suction pressure is provided on the back side of the end plate 8 a of the orbiting scroll 8, and the pulling force is canceled by the pressure (back pressure) of the back pressure chamber 18. The orbiting scroll 8 is pressed against the fixed scroll 7.
 このときの押付力が大きすぎると、旋回スクロール8の鏡板面8eと固定スクロール7の鏡板面7eとの摺動損失が増大し、圧縮機効率が低下する。つまり、前記背圧には最適な値が存在し、小さすぎると圧縮室の密閉性が悪化して熱流体損失が増大し、大きすぎると摺動損失が増大する。従って、背圧を最適な値に維持することが、圧縮機の高性能化、高信頼性化において重要である。 If the pressing force at this time is too large, sliding loss between the end plate surface 8e of the orbiting scroll 8 and the end plate surface 7e of the fixed scroll 7 increases, and the compressor efficiency decreases. In other words, there is an optimum value for the back pressure. If the back pressure is too small, the sealing performance of the compression chamber is deteriorated and the thermal fluid loss increases. Therefore, maintaining the back pressure at an optimum value is important in improving the performance and reliability of the compressor.
 この最適な背圧値を得るため、図1に示したスクロール圧縮機では、前記背圧室18の背圧を調整するための前記背圧弁61を有する前記背圧室流体流出路を備えている。図1に示す背圧弁61周辺の構成を図3に示す拡大図で説明する。 
 前記背圧室流体流出路は、前記背圧室18と前記背圧弁61を連通する背圧弁流入路(背圧室18と通じている空間)61a、前記背圧弁61と前記吸込室20(または圧縮室13)を連通する背圧弁流出路(吸込室20(または圧縮室13)に通じている空間)61b、及び前記背圧弁61を収容する空間61cにより構成されている。また、前記背圧弁流出路61bは、前記背圧弁61側で穴形状の上流側流出路61baと、前記吸込室20(または圧縮室13)に開口し、固定スクロール7の鏡板面7eに形成された溝形状の下流側流出路61bbにより構成されている。
In order to obtain the optimum back pressure value, the scroll compressor shown in FIG. 1 includes the back pressure chamber fluid outflow passage having the back pressure valve 61 for adjusting the back pressure of the back pressure chamber 18. . The configuration around the back pressure valve 61 shown in FIG. 1 will be described with reference to an enlarged view shown in FIG.
The back pressure chamber fluid outflow path includes a back pressure valve inflow path (a space communicating with the back pressure chamber 18) 61a communicating the back pressure chamber 18 and the back pressure valve 61, the back pressure valve 61 and the suction chamber 20 (or It is constituted by a back pressure valve outflow passage (a space communicating with the suction chamber 20 (or the compression chamber 13)) 61b communicating with the compression chamber 13) and a space 61c for accommodating the back pressure valve 61. Further, the back pressure valve outflow passage 61b opens on the back pressure valve 61 side to the hole-shaped upstream outflow passage 61ba and the suction chamber 20 (or the compression chamber 13), and is formed on the end plate surface 7e of the fixed scroll 7. It is comprised by the downstream side outflow path 61bb of the groove shape.
 前記背圧弁61は、前記空間61cに収容され、前記背圧弁流入路(背圧室18と通じている空間)61aと前記背圧弁流出路(吸込室20(または圧縮室13)に通じている空間)61bとを仕切るようにバルブ61dが配置されている。このバルブ61dは、ストッパ61eに固定されたばね61fにより、背圧弁流入路61aに連通する開口部に押付けられている。 The back pressure valve 61 is accommodated in the space 61c, and communicates with the back pressure valve inflow path (space communicating with the back pressure chamber 18) 61a and the back pressure valve outflow path (suction chamber 20 (or compression chamber 13)). A valve 61d is arranged so as to partition the space 61b. The valve 61d is pressed against an opening communicating with the back pressure valve inflow passage 61a by a spring 61f fixed to the stopper 61e.
 前記バルブ61dは、前記背圧弁流入路61a内の圧力、即ち背圧が、前記背圧弁流出路61bを介して導入される前記空間61c内の圧力(吸込室20(または圧縮室13)の圧力)と、ばね61fの押付力に対応する圧力の合計よりも高くなった場合に、上方へ移動して、前記背圧弁流入路61aと前記背圧弁流出路61bとを連通させる。つまり、前記背圧弁61は、背圧室18内の圧力がある値よりも高くなった場合に、該背圧室18内の流体を前記吸込室20または圧縮室13に逃がすことで、前記背圧室18の背圧を適正値に調整するものである。 The valve 61d is configured such that the pressure in the back pressure valve inflow passage 61a, that is, the pressure in the space 61c through which the back pressure is introduced through the back pressure valve outflow passage 61b (the pressure in the suction chamber 20 (or the compression chamber 13)). ) And the total pressure corresponding to the pressing force of the spring 61f, the back pressure valve inflow path 61a and the back pressure valve outflow path 61b are communicated with each other. That is, the back pressure valve 61 allows the fluid in the back pressure chamber 18 to escape to the suction chamber 20 or the compression chamber 13 when the pressure in the back pressure chamber 18 becomes higher than a certain value. The back pressure of the pressure chamber 18 is adjusted to an appropriate value.
 前記背圧弁流出路61bを介して、前記吸込室20または圧縮室13に逃がされた油は、圧縮室13をシール及び潤滑する働きをもつため、この油の量を適正な値に設定することで、圧縮機の高性能化、高信頼性化を図ることができる。 The oil released to the suction chamber 20 or the compression chamber 13 through the back pressure valve outflow passage 61b has a function of sealing and lubricating the compression chamber 13, so that the amount of this oil is set to an appropriate value. As a result, the compressor can be improved in performance and reliability.
 以上がスクロール圧縮機の基本的な構造であり、このような構造のスクロール圧縮機とすることで、前記背圧弁61により前記背圧室18の背圧値を適正に維持することができ、また前記油漏出手段の調整により、前記第1の空間33から前記背圧室18に流入し、更に前記背圧弁61を経由して吸込室20または圧縮室13に至る油の量を、適正に設定することも可能となる。 The above is the basic structure of the scroll compressor. By using the scroll compressor having such a structure, the back pressure value of the back pressure chamber 18 can be properly maintained by the back pressure valve 61, and By adjusting the oil leakage means, the amount of oil that flows into the back pressure chamber 18 from the first space 33 and reaches the suction chamber 20 or the compression chamber 13 via the back pressure valve 61 is set appropriately. It is also possible to do.
 しかし、上述した構造のスクロール圧縮機では、前記背圧弁61を経由して前記背圧弁流出路61bに流出した油は、固定スクロール7の鏡板面7eに形成された下流側流出路61bbから、前記吸込室20(または圧縮室13)に流入する構成となっているため、前記下流側流出路61bbの出口部61gは、旋回スクロール8の歯底8cまたはその鏡板面8eに近接する位置となる。このため、前記油は、固定スクロール7のラップ歯先と旋回スクロール8の歯底8cとのすき間には供給されるものの、固定スクロール7の歯底7cと旋回スクロール8のラップ歯先とのすき間には油が供給され難い構造となっていた。従って、上述したスクロール圧縮機では、油が供給され易い固定スクロール7のラップ歯先側のみを主にシールすることになり、固定スクロール7の歯底7cと旋回スクロール8のラップ歯先とのすき間には十分な油を供給することができず、圧縮室13の密閉性が高いとは言えなかった。 However, in the scroll compressor having the above-described structure, the oil flowing out to the back pressure valve outflow passage 61b via the back pressure valve 61 flows from the downstream outflow passage 61bb formed in the end plate surface 7e of the fixed scroll 7 from the downstream outflow passage 61bb. Since it is configured to flow into the suction chamber 20 (or the compression chamber 13), the outlet portion 61g of the downstream outflow passage 61bb is positioned close to the tooth bottom 8c of the orbiting scroll 8 or its end plate surface 8e. Therefore, although the oil is supplied between the lap tooth tip of the fixed scroll 7 and the tooth bottom 8c of the orbiting scroll 8, the gap between the tooth bottom 7c of the fixed scroll 7 and the lap tooth tip of the orbiting scroll 8 is provided. It was difficult for oil to be supplied. Therefore, in the scroll compressor described above, only the lap tooth tip side of the fixed scroll 7 to which oil is easily supplied is mainly sealed, and the clearance between the tooth bottom 7c of the fixed scroll 7 and the wrap tooth tip of the orbiting scroll 8 is sealed. Insufficient oil could not be supplied, and the compression chamber 13 could not be said to have high sealing performance.
 そこで、本実施例では、背圧室18から背圧弁61を介して吸込室20または圧縮室13に流入する油、即ち、前記背圧弁流出路61bから前記吸込室20或いは圧縮室13に流入する油を、固定スクロール7のラップ歯先側だけでなく、固定スクロール7の歯底7cと旋回スクロール8のラップ歯先とのすき間へも十分に供給することができるようにしたものである。 Therefore, in this embodiment, oil flows from the back pressure chamber 18 into the suction chamber 20 or the compression chamber 13 via the back pressure valve 61, that is, flows into the suction chamber 20 or the compression chamber 13 from the back pressure valve outflow passage 61b. The oil can be sufficiently supplied not only to the lap tooth tip side of the fixed scroll 7 but also to the gap between the tooth bottom 7 c of the fixed scroll 7 and the wrap tooth tip of the orbiting scroll 8.
 以下、本実施例1のスクロール圧縮機の具体的構成を、図4及び図5により説明する。図4は図3に相当する図、図5は図4に示す固定スクロールを下方から見た斜視図である。また、これら図4及び図5において、上記図1~図3と同一符号を付した部分は同一或いは相当する部分であり、同一部分については説明を省略する。また、図1及び図3に示す背圧弁流出路61bの部分を除き、スクロール圧縮機としての基本構造は上述した図1~図3と同一である。 Hereinafter, a specific configuration of the scroll compressor according to the first embodiment will be described with reference to FIGS. 4 and 5. 4 is a view corresponding to FIG. 3, and FIG. 5 is a perspective view of the fixed scroll shown in FIG. 4 as viewed from below. In FIGS. 4 and 5, the same reference numerals as those in FIGS. 1 to 3 are the same or corresponding parts, and the description of the same parts is omitted. The basic structure of the scroll compressor is the same as that shown in FIGS. 1 to 3 except for the back pressure valve outflow passage 61b shown in FIGS.
 図4に示す通り、本実施例においても、図1~図3に示すスクロール圧縮機と同様に、旋回スクロール8に固定スクロール7側への押付力を与える背圧室18と、この背圧室18の背圧を調整するための前記背圧弁61を有する前記背圧室流体流出路を備えている。また、前記背圧室流体流出路は、前記背圧室18と前記背圧弁61の入口側を連通する前記背圧弁流入路61a、前記背圧弁61の出口側と前記吸込室20(または圧縮室13)を連通する前記背圧弁流出路61b、及び前記背圧弁61を収容する前記空間61cにより構成されている。更に、前記背圧弁流出路61bは、前記背圧弁61側で穴形状の上流側流出路61baと、前記吸込室20(または圧縮室13)に開口し、固定スクロール7の鏡板面7eに形成された溝形状の下流側流出路61bbにより構成されている。 As shown in FIG. 4, in the present embodiment as well, as in the scroll compressor shown in FIGS. 1 to 3, a back pressure chamber 18 that applies a pressing force to the orbiting scroll 8 toward the fixed scroll 7, and the back pressure chamber The back pressure chamber fluid outflow passage having the back pressure valve 61 for adjusting the back pressure of 18 is provided. The back pressure chamber fluid outflow path includes the back pressure valve inflow path 61a communicating the back pressure chamber 18 and the inlet side of the back pressure valve 61, the outlet side of the back pressure valve 61, and the suction chamber 20 (or the compression chamber). 13), the back pressure valve outflow passage 61b communicating with the back pressure valve 61, and the space 61c in which the back pressure valve 61 is accommodated. Further, the back pressure valve outflow passage 61b opens on the upstream pressure outflow passage 61ba having a hole shape on the back pressure valve 61 side and the suction chamber 20 (or the compression chamber 13), and is formed on the end plate surface 7e of the fixed scroll 7. It is comprised by the downstream side outflow path 61bb of the groove shape.
 本実施例においては、前記背圧弁流入路61a、前記背圧弁61及びこの背圧弁61を収容する前記空間61cの構成については図3と同様である。また、前記背圧弁流出路61bを構成する前記上流側流出路61baの形状についても図3に示すものと同様に、穴形状(断面が円や楕円、或いは矩形などの穴形状)となっている。 In this embodiment, the configuration of the back pressure valve inflow passage 61a, the back pressure valve 61, and the space 61c that accommodates the back pressure valve 61 is the same as that shown in FIG. Further, the shape of the upstream side outflow passage 61ba constituting the back pressure valve outflow passage 61b is also a hole shape (the cross section is a hole shape such as a circle, an ellipse, or a rectangle) as shown in FIG. .
 しかし、本実施例では、前記背圧弁流出路61bにおける前記下流側流出路61bbの構成が図3に示した構成とは大きく異なっている。即ち、図4に示すように、前記下流側流出路61bbの流路入口部61h側は、図3に示す下流側流出路61bbと同様の流路断面積となっているが、吸込室20(または圧縮室13)に開口する前記下流側流出路61bbの流路出口部61g側の流路断面積を、前記流路入口部61h側よりも大きく拡大した構成としている。このような構成は、図4及び図5に示すように、前記下流側流出路61bbの出口側の底部61iをテーパ形状とすることにより実現できる。 However, in this embodiment, the configuration of the downstream side outflow passage 61bb in the back pressure valve outflow passage 61b is greatly different from the configuration shown in FIG. That is, as shown in FIG. 4, the flow passage inlet 61h side of the downstream outflow passage 61bb has a flow passage sectional area similar to that of the downstream outflow passage 61bb shown in FIG. Alternatively, the flow passage cross-sectional area on the flow passage outlet 61g side of the downstream outflow passage 61bb opened to the compression chamber 13) is configured to be larger than that on the flow passage inlet 61h side. As shown in FIGS. 4 and 5, such a configuration can be realized by forming a bottom 61i on the outlet side of the downstream outflow passage 61bb into a tapered shape.
 上記構成とすることにより、前記背圧弁流出路61bの前記吸込室20(または圧縮室13)への前記流路出口部61gの少なくとも一部を、前記固定スクロール7のラップ歯先の位置よりも歯底7c側に形成することができる。図4に示した本実施例では、前記流路出口部61gの固定スクロール7の歯底7c側の位置は、固定スクロールラップ7b(または旋回スクロールラップ8b)の高さ方向中間位置付近となるように構成している。 By setting it as the said structure, at least one part of the said flow-path exit part 61g to the said suction chamber 20 (or compression chamber 13) of the said back pressure valve outflow path 61b is made rather than the position of the lap tooth tip of the said fixed scroll 7. It can be formed on the tooth bottom 7c side. In the present embodiment shown in FIG. 4, the position of the flow passage outlet 61g on the tooth bottom 7c side of the fixed scroll 7 is near the intermediate position in the height direction of the fixed scroll wrap 7b (or the orbiting scroll wrap 8b). It is configured.
 なお、前記流路出口部61gの歯底7c側位置は図4に示した例に限られるものではなく、ラップ7b(8b)の高さ方向中間位置よりも更に前記歯底7c側に近づくようにすれば、前記歯底側により多くの油を供給できる。また、前記流路出口部61gの歯底7c側位置を、ラップ7b(8b)の高さ方向中間位置よりも旋回スクロール8の歯底8c側となるようにすれば、前記下流側流出路61bbの溝加工が容易になる。 Note that the position of the flow path outlet 61g on the tooth bottom 7c side is not limited to the example shown in FIG. 4, and is closer to the tooth bottom 7c side than the intermediate position in the height direction of the wrap 7b (8b). If so, more oil can be supplied to the tooth bottom side. Further, if the position on the tooth bottom 7c side of the flow path outlet portion 61g is located closer to the tooth bottom 8c side of the orbiting scroll 8 than the intermediate position in the height direction of the wrap 7b (8b), the downstream outflow path 61bb. The groove processing becomes easier.
 本実施例1は上記構成としているので、前記背圧弁61から前記背圧弁流出路61bに流入した油は、前記下流側流出路61bbの流路出口部61gから吸込室20(または圧縮室13)に流出する際に、旋回スクロール歯底8cの方向のみでなく、固定スクロール歯底7cの方向にも拡散して流出するので、両スクロール7,8のラップ歯先と歯底のすき間に油を供給できる。 Since the first embodiment has the above-described configuration, the oil flowing into the back pressure valve outflow passage 61b from the back pressure valve 61 is sucked into the suction chamber 20 (or the compression chamber 13) from the flow passage outlet 61g of the downstream outflow passage 61bb. Since the oil flows into the direction of the fixed scroll tooth bottom 7c as well as the direction of the orbiting scroll tooth bottom 8c, the oil flows between the lap tooth tips and the tooth bottom gaps of the scrolls 7, 8. Can supply.
 このように、本実施例によれば、背圧室から背圧弁を介して吸込室または圧縮室に流入する油を、固定スクロールラップ歯先と旋回スクロール歯底8cとのすき間のみでなく、固定スクロール歯底7cと旋回スクロールラップ歯先とのすき間へも十分に供給でき、吸込室20(または圧縮室13)に油をほぼ均一に行き渡らせることができるので、油による吸込室20及び圧縮室13の密閉性を高め、漏れ損失の小さい高効率なスクロール圧縮機を得ることができる。 As described above, according to this embodiment, the oil flowing from the back pressure chamber into the suction chamber or the compression chamber via the back pressure valve is fixed not only in the gap between the fixed scroll wrap tooth tip and the orbiting scroll tooth bottom 8c. Since the gap between the scroll tooth bottom 7c and the orbiting scroll wrap tooth tip can be sufficiently supplied and the oil can be distributed almost uniformly to the suction chamber 20 (or the compression chamber 13), the oil suction chamber 20 and the compression chamber are made of oil. Thus, a highly efficient scroll compressor with a small leakage loss can be obtained.
 本発明のスクロール圧縮機の実施例2を図6により説明する。この図6は、図3に相当する図であり、図3及び図4と同一符号を付した部分は同一或いは相当する部分を示している。また、図1及び図3に示す背圧弁流出路61bの部分を除き、スクロール圧縮機としての基本構造は上述した図1~図3と同一である。 Embodiment 2 of the scroll compressor according to the present invention will be described with reference to FIG. FIG. 6 is a diagram corresponding to FIG. 3, and the portions denoted by the same reference numerals as those in FIGS. 3 and 4 indicate the same or corresponding portions. The basic structure of the scroll compressor is the same as that shown in FIGS. 1 to 3 except for the back pressure valve outflow passage 61b shown in FIGS.
 本実施例2において、背圧弁流出路61bを構成する上流側流出路61baは上記実施例1と同様である。本実施例2では、前記背圧弁流出路61bを構成する下流側流出路61bbの構成が上記実施例1とは異なっている。即ち、図6に示すように、前記下流側流出路61bbの流路入口部61h側は、図4に示す下流側流出路61bbと同様の流路断面積とし、吸込室20(または圧縮室13)に開口する前記下流側流出路61bbの流路出口部61g側の流路断面積を、前記流路入口部61h側よりも大きく拡大した構成としている点でも同じである。 In the second embodiment, the upstream side outflow passage 61ba constituting the back pressure valve outflow passage 61b is the same as that in the first embodiment. In the present Example 2, the structure of the downstream outflow path 61bb which comprises the said back pressure valve outflow path 61b differs from the said Example 1. FIG. That is, as shown in FIG. 6, the flow passage inlet 61h side of the downstream outflow passage 61bb has a flow passage sectional area similar to that of the downstream outflow passage 61bb shown in FIG. 4, and the suction chamber 20 (or the compression chamber 13). This is also the same in that the flow passage cross-sectional area on the flow passage outlet portion 61g side of the downstream outflow passage 61bb that is open to the flow passage) is larger than that on the flow passage inlet portion 61h side.
 しかし、本実施例2では、前記下流側流出路61bbの出口側の底部61iを図4のような直線的なテーパ形状としているのではなく、前記底部61iを円弧形状に構成したものである。なお、前記底部61iの形状は円弧に限られず、放物線など円弧以外の曲線でも或いは曲線と直線を組み合わせた形状としても良い。或いは、図4に示したテーパ形状の底部61iの流路入口部61h側と流路出口部61g側のエッジ部を丸めるか円弧で形成するようにしても良い。 However, in the second embodiment, the bottom 61i on the outlet side of the downstream outflow passage 61bb is not linearly tapered as shown in FIG. 4, but the bottom 61i is formed in an arc shape. The shape of the bottom 61i is not limited to a circular arc, but may be a curve other than an arc such as a parabola, or a combination of a curve and a straight line. Alternatively, the edge portions on the flow channel inlet portion 61h side and the flow channel outlet portion 61g side of the tapered bottom portion 61i shown in FIG. 4 may be rounded or formed in an arc.
 即ち、前記背圧弁流出路61bにおける流路出口部61g側を、流路出口に向かって流路面積が拡大するように曲線或いは曲線と直線を組み合わせた形状として、前記連通路における流路入口の断面積よりも流路出口の断面積が大きくなるように形成すれば良い。 That is, the flow path outlet 61g side in the back pressure valve outflow path 61b is formed in a shape that combines a curve or a curve and a straight line so that the flow area increases toward the flow path outlet. What is necessary is just to form so that the cross-sectional area of a flow-path exit may become larger than a cross-sectional area.
 このように前記背圧弁流出路61bを構成すれば、上述した実施例1と同様の効果が得られと共に、下流側流出路61bbの底部61iの壁面に沿う油の流れの剥離を抑制でき、前記吸込室20或いは圧縮室13に流入する油をよりスムーズに効率良く拡散できるから、油による吸込室20及び圧縮室13の密閉性をより高め、漏れ損失のより小さい高効率なスクロール圧縮機を得ることができる。 If the back pressure valve outflow passage 61b is configured in this way, the same effect as in the first embodiment described above can be obtained, and separation of the oil flow along the wall surface of the bottom portion 61i of the downstream outflow passage 61bb can be suppressed. Since the oil flowing into the suction chamber 20 or the compression chamber 13 can be diffused more smoothly and efficiently, the hermetic sealing of the suction chamber 20 and the compression chamber 13 with oil is further improved, and a highly efficient scroll compressor with less leakage loss is obtained. be able to.
 本発明のスクロール圧縮機の実施例3を図7により説明する。この図7も図3に相当する図であり、図3、図4、図6と同一符号を付した部分は同一或いは相当する部分を示している。また、図1及び図3に示す背圧弁流出路61bの部分を除き、スクロール圧縮機としての基本構造は上述した図1~図3と同一である。 Embodiment 3 of the scroll compressor according to the present invention will be described with reference to FIG. FIG. 7 is also a view corresponding to FIG. 3, and the portions denoted by the same reference numerals as those in FIGS. 3, 4, and 6 indicate the same or corresponding portions. The basic structure of the scroll compressor is the same as that shown in FIGS. 1 to 3 except for the back pressure valve outflow passage 61b shown in FIGS.
 本実施例3において、背圧弁流出路61bを構成する上流側流出路61baは上記実施例1や2と同様である。本実施例3では、前記背圧弁流出路61bを構成する下流側流出路61bbの部分が上記実施例1や2とは異なっている。即ち、上記実施例1や2に示した前記下流側流出路61bbの部分を、本実施例3では流路入口部61h側の溝部61kと流路出口部61g側の斜めに穿った穴部61jとで構成している点に特徴がある。また、図7に示した例では、前記穴部61jの出口側(出口部61g側)の位置が、その入口側(溝部61k側)の位置よりも、固定スクロール歯底7cに近くなるように構成している。 In the third embodiment, the upstream outflow passage 61ba constituting the back pressure valve outflow passage 61b is the same as in the first and second embodiments. In the third embodiment, the downstream side outflow passage 61bb constituting the back pressure valve outflow passage 61b is different from the first and second embodiments. That is, in the third embodiment, the downstream outflow passage 61bb shown in the first and second embodiments is formed in the groove 61k on the flow path inlet 61h side and the hole 61j formed obliquely on the flow outlet 61g side. It is characterized in that it consists of Further, in the example shown in FIG. 7, the position of the hole 61j on the outlet side (outlet part 61g side) is closer to the fixed scroll tooth bottom 7c than the position on the inlet side (groove part 61k side). It is composed.
 このように構成することにより、上記実施例1で説明した前記下流側流出路61bb、即ち底部61iをテーパ形状の溝形状としたものと同様に、油が吸込室20(または圧縮室13)に流入する際に、旋回スクロール歯底8c側だけでなく、固定スクロール歯底7c側にも拡散させることができ、両スクロールのラップ歯先と歯底のすき間を良好にシールすることが可能になる。また、本実施例では、前記下流側流出路61bbの穴部61jを簡単な穴加工で製作することができるので、加工が容易となり加工に要する時間も短縮することができる。 With this configuration, the oil flows into the suction chamber 20 (or the compression chamber 13) in the same manner as the downstream outflow passage 61bb described in the first embodiment, that is, the bottom 61i having a tapered groove shape. When it flows in, it can be diffused not only on the orbiting scroll tooth bottom 8c side but also on the fixed scroll tooth bottom 7c side, and the gap between the lap tooth tip and the tooth bottom of both scrolls can be well sealed. . Further, in this embodiment, the hole 61j of the downstream outflow passage 61bb can be manufactured by a simple hole processing, so that the processing becomes easy and the time required for the processing can be shortened.
 なお、前記穴部61jは上向き(固定スクロール歯底7c側に向いた形状)となっており、固定スクロール歯底7c側に油が供給され易い形状となっているので、前記穴部61jの出口側開口位置は、ラップ7b,8bの高さ方向中央位置よりも若干旋回スクロール歯底8c側の位置となるようにすると良い。また、スクロール圧縮機1が縦型(クランクシャフトが鉛直方向のもの)である場合、油に作用する重力により旋回スクロール歯底8c側に流れ易くなることを考慮して、前記穴部61jの出口側開口位置を、ラップ7b,8bの高さ方向中央位置付近になるように構成しても良い。 The hole 61j is upward (shape facing the fixed scroll tooth bottom 7c side), and the shape is such that oil is easily supplied to the fixed scroll tooth bottom 7c side, so the outlet of the hole 61j The side opening position may be slightly closer to the orbiting scroll tooth bottom 8c side than the center position in the height direction of the wraps 7b and 8b. In addition, when the scroll compressor 1 is of a vertical type (the crankshaft is in the vertical direction), the outlet of the hole 61j is considered in consideration of the fact that it easily flows to the orbiting scroll tooth bottom 8c side due to gravity acting on the oil. You may comprise a side opening position so that it may become the height direction center position vicinity of the wraps 7b and 8b.
 更に、前記穴部61jの形状は円形穴に限られず、楕円形状など他の形状の穴としても良く、また前記穴部61jはその出口側の断面積が入口側の断面積より大きくなるようなテーパ穴形状にすれば、油をより拡散し易い形状とすることができる。 
 また、図7に示した実施例では、前記穴部61jを上向きに形成した例を示したが、固定スクロール7の鏡板面から吸込室20などへ斜め上向きに前記穴部61jを形成する構成は、前記穴部61jを前記鏡板面側から容易に加工できる利点がある。しかし、前記穴部61jは必ずしも上向きでなくとも良く、例えば水平方向の穴形状としても良い。この場合には前記穴部61jの出口側開口位置を、ラップ7b,8bの高さ方向中央位置付近にすると良い。
Furthermore, the shape of the hole portion 61j is not limited to a circular hole, and may be a hole having another shape such as an elliptical shape. The hole portion 61j has a cross-sectional area on the outlet side larger than that on the inlet side. If the shape is a tapered hole, the oil can be more easily diffused.
In the embodiment shown in FIG. 7, the hole 61j is formed upward. However, the structure in which the hole 61j is formed obliquely upward from the end plate surface of the fixed scroll 7 to the suction chamber 20 or the like is as follows. There is an advantage that the hole 61j can be easily processed from the end face side. However, the hole 61j does not necessarily have to face upward, and may have a horizontal hole shape, for example. In this case, the outlet side opening position of the hole 61j may be set near the center position in the height direction of the wraps 7b and 8b.
 本発明のスクロール圧縮機を用いた空気調和機の実施例を図8により説明する。図8は、本実施例4の一例を説明する冷凍サイクル構成図である。 
 図8において、1はスクロール圧縮機、43は四方弁、40は室外側熱交換器(冷房運転時は凝縮器、暖房運転時は蒸発器となる)、41は電子膨張弁などで構成された膨張弁、42は室内側熱交換器(冷房運転時は蒸発器、暖房運転時は凝縮器となる)であり、これらの機器は冷媒配管により順次接続されて、空気調和機の冷凍サイクルが構成されている。前記スクロール圧縮機1は、上記実施例1~3に記載された何れかのスクロール圧縮機が使用されており、またこのスクロール圧縮機1はインバータを使用して、例えば10~110Hzの広い運転領域で運転される構成となっている。特に、空気調和機の通年エネルギー消費効率(APF)向上のため、10~30Hzでの低速、低負荷運転領域での運転を重視した空気調和機となっている。
An embodiment of an air conditioner using the scroll compressor of the present invention will be described with reference to FIG. FIG. 8 is a refrigeration cycle configuration diagram illustrating an example of the fourth embodiment.
In FIG. 8, 1 is a scroll compressor, 43 is a four-way valve, 40 is an outdoor heat exchanger (condenser during cooling operation, evaporator during heating operation), and 41 is an electronic expansion valve. An expansion valve 42 is an indoor heat exchanger (an evaporator during cooling operation and a condenser during heating operation), and these devices are sequentially connected by refrigerant piping to form a refrigeration cycle of the air conditioner. Has been. As the scroll compressor 1, any one of the scroll compressors described in the first to third embodiments is used, and the scroll compressor 1 uses an inverter and has a wide operating range of, for example, 10 to 110 Hz. It is configured to be driven by. In particular, in order to improve the year-round energy consumption efficiency (APF) of the air conditioner, the air conditioner emphasizes operation in a low speed, low load operation region at 10 to 30 Hz.
 このようにスクロール圧縮機1が10~30Hzのような低速で運転される場合、図1~図3に示すように、背圧室18から背圧弁61を介して吸込室20または圧縮室13に流入した油は、前記吸込室20または圧縮室13における作動流体の流れは比較的穏やかであるため、下流側流出路61bb出口に近い部分(図3では旋回スクロール歯底8c側の部分)への供給量は特に多くなり、下流側流出路61bb出口に遠い部分(図3では固定スクロール歯底7c側の部分)への供給量は特に少なくなってしまう。このため、スクロール圧縮機1が10~30Hzのような低速で運転される場合には、特に圧縮室13の密閉性が低下して、スクロール圧縮機の効率を特に低下させていた。 When the scroll compressor 1 is operated at a low speed such as 10 to 30 Hz as described above, the suction chamber 20 or the compression chamber 13 is transferred from the back pressure chamber 18 via the back pressure valve 61 as shown in FIGS. Since the flow of the working fluid in the suction chamber 20 or the compression chamber 13 is relatively gentle, the oil that has flowed into the portion close to the outlet of the downstream outflow passage 61bb (the portion on the orbiting scroll tooth bottom 8c side in FIG. 3). The supply amount is particularly large, and the supply amount to a portion far from the outlet on the downstream side outflow passage 61bb (the portion on the fixed scroll tooth bottom 7c side in FIG. 3) is particularly small. For this reason, when the scroll compressor 1 is operated at a low speed such as 10 to 30 Hz, the sealing performance of the compression chamber 13 is particularly lowered, and the efficiency of the scroll compressor is particularly lowered.
 しかし、図8に示すような空気調和機に図4~図7で説明したような本発明の実施例1~3のスクロール圧縮機を組み合わせることにより、10~30Hzでの低速、低負荷運転領域での運転を重視した空気調和機の運転効率を大幅に向上できるので、空気調和機の通年エネルギー消費効率を大幅に向上でき、年間を通じた消費電力量が小さく且つ運転範囲の広い使い勝手のよい空気調和機を得ることができる。 However, by combining the air conditioner as shown in FIG. 8 with the scroll compressor according to the first to third embodiments of the present invention as described with reference to FIGS. 4 to 7, the low-speed and low-load operation region at 10 to 30 Hz. The air conditioner's operating efficiency, which emphasizes the operation of the air conditioner, can be greatly improved, so the energy consumption efficiency of the air conditioner can be greatly improved throughout the year, and the air consumption is low and the operating range is wide. A harmony machine can be obtained.
 以上説明したように、本発明のスクロール圧縮機の各実施例によれば、背圧弁流出路61bの吸込室20または圧縮室13への流路出口部61gの少なくとも一部を、固定スクロール7のラップ歯先の位置よりも歯底7c側に形成しているので、固定スクロールラップ歯先と旋回スクロール歯底8cとのすき間のみでなく、固定スクロール歯底7cと旋回スクロールラップ歯先とのすき間へも十分に油を供給することができる。これにより、油による吸込室20及び圧縮室13の密閉性を高めることができ、漏れ損失の小さい高効率なスクロール圧縮機を得ることが可能となる。 
 また、本発明のスクロール圧縮機を空気調和機に採用することにより、空気調和機の通年エネルギー消費効率を大幅に向上できる効果が得られる。
As described above, according to each embodiment of the scroll compressor of the present invention, at least a part of the flow path outlet 61g to the suction chamber 20 or the compression chamber 13 of the back pressure valve outflow passage 61b is connected to the fixed scroll 7. Since it is formed on the tooth bottom 7c side from the position of the wrap tooth tip, not only the gap between the fixed scroll wrap tooth tip and the orbiting scroll tooth base 8c, but also the gap between the fixed scroll tooth base 7c and the orbiting scroll wrap tooth tip The oil can be supplied sufficiently. Thereby, the airtightness of the suction chamber 20 and the compression chamber 13 by oil can be improved, and a highly efficient scroll compressor with small leakage loss can be obtained.
In addition, by adopting the scroll compressor of the present invention in an air conditioner, an effect of significantly improving the year-round energy consumption efficiency of the air conditioner can be obtained.
 なお、上述した実施例では、冷凍用や空調用などの冷凍サイクル装置に使用される冷媒用のスクロール圧縮機について説明したが、作動流体として空気やその他のガスを圧縮するスクロール圧縮機にも同様に適用できるものである。 In the above-described embodiment, the refrigerant scroll compressor used in the refrigeration cycle apparatus for refrigeration and air conditioning has been described. However, the same applies to the scroll compressor that compresses air or other gas as a working fluid. Is applicable.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。また、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。更に、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1:スクロール圧縮機、2:圧縮機構部、3:貫通穴(給油穴)、5:主軸受、6:吐出パイプ、7:固定スクロール、7a:台板、7b:ラップ、7c:歯底、7d:支持部、7e:鏡板面、8:旋回スクロール、8a:鏡板、8b:ラップ、8c:歯底、8d:ボス部(旋回ボス部)、8e:鏡板面、9:ケース(密閉容器)、10:クランクシャフト(回転軸)、10a:クランク部、11:旋回軸受、12:オルダムリング、13:圧縮室、13a:旋回内線側圧縮室、13b:旋回外線側圧縮室、14:吸込ポート、15:吐出ポート、16:モータ部、16a:回転子、16b:固定子、17:フレーム、18:背圧室、20:吸込室、21:給油ポンプ、22:給油ポンプケース、23:副軸受、24:横穴、25:潤滑油吸込口、26a:排油穴、26b:排油パイプ、28:給油ポンプ吐出口、31:円環溝、32:シール部材、33:第1の空間、34:旋回ボス部材、40:室外側熱交換器、41:膨張弁、42:室内側熱交換器、43:四方弁、52:モータ室、53:油溜り、54:吐出空間、56:フレームシール、57:油溝、60:スリット、61:背圧弁、61a:背圧弁流入路(背圧室と通じている空間)、61b:背圧弁流出路(吸込室または圧縮室と通じている空間)、61ba:上流側流出路、61bb:下流側流出路、61c:空間、61d:バルブ、61e:ストッパ、61f:ばね、61g:流路出口部、61h:流路入口部、61i:底部、61j:穴部、61k:溝部。 1: scroll compressor, 2: compression mechanism, 3: through hole (oil supply hole), 5: main bearing, 6: discharge pipe, 7: fixed scroll, 7a: base plate, 7b: wrap, 7c: tooth bottom, 7d: support portion, 7e: end plate surface, 8: orbiting scroll, 8a: end plate, 8b: wrap, 8c: tooth bottom, 8d: boss portion (revolving boss portion), 8e: end plate surface, 9: case (sealed container) DESCRIPTION OF SYMBOLS 10: Crankshaft (rotary shaft), 10a: Crank part, 11: Slewing bearing, 12: Oldham ring, 13: Compression chamber, 13a: Swivel extension side compression chamber, 13b: Swivel outer side compression chamber, 14: Suction port 15: Discharge port, 16: Motor unit, 16a: Rotor, 16b: Stator, 17: Frame, 18: Back pressure chamber, 20: Suction chamber, 21: Oil pump, 22: Oil pump case, 23: Deputy Bearing, 24: side hole, 25: lubricating oil absorption 26a: oil discharge hole, 26b: oil discharge pipe, 28: oil supply pump discharge port, 31: annular groove, 32: seal member, 33: first space, 34: swivel boss member, 40: outdoor heat Exchanger, 41: Expansion valve, 42: Indoor heat exchanger, 43: Four-way valve, 52: Motor chamber, 53: Oil reservoir, 54: Discharge space, 56: Frame seal, 57: Oil groove, 60: Slit, 61: Back pressure valve, 61a: Back pressure valve inflow path (space communicating with back pressure chamber), 61b: Back pressure valve outflow path (space communicating with suction chamber or compression chamber), 61ba: Upstream outflow path, 61bb: Downstream side outflow path, 61c: space, 61d: valve, 61e: stopper, 61f: spring, 61g: flow path outlet, 61h: flow path inlet, 61i: bottom, 61j: hole, 61k: groove.

Claims (6)

  1.  台板に渦巻状のラップを立設した固定スクロールと、鏡板に渦巻状のラップを立設し前記固定スクロールと噛み合わされて旋回運動をすることにより吸込室または圧縮室を形成する旋回スクロールと、前記旋回スクロールに前記固定スクロール側への押付力を付与する背圧室と、この背圧室の背圧を調整するための背圧弁と、この背圧弁の入口側と前記背圧室を連通する背圧弁流入路と、前記背圧弁の出口側と前記吸込室または圧縮室を連通する背圧弁流出路を備えたスクロール圧縮機であって、
     前記背圧弁流出路の前記吸込室または圧縮室への流路出口部の少なくとも一部は、前記固定スクロールのラップ歯先の位置よりも歯底側に形成されている
     ことを特徴とするスクロール圧縮機。
    A fixed scroll in which a spiral wrap is erected on the base plate, and a orbiting scroll in which a spiral wrap is erected on the end plate and meshed with the fixed scroll to form a suction chamber or a compression chamber, A back pressure chamber that applies a pressing force to the orbiting scroll toward the fixed scroll, a back pressure valve for adjusting the back pressure of the back pressure chamber, and an inlet side of the back pressure valve and the back pressure chamber communicate with each other. A scroll compressor having a back pressure valve inflow path, a back pressure valve outflow path communicating with the outlet side of the back pressure valve and the suction chamber or the compression chamber;
    Scroll compression, wherein at least a part of a flow path outlet portion of the back pressure valve outflow path to the suction chamber or the compression chamber is formed on the tooth bottom side of the position of the wrap tooth tip of the fixed scroll. Machine.
  2.  請求項1に記載のスクロール圧縮機であって、前記背圧弁流出路における流路入口側の断面積よりも流路出口側の断面積を大きく形成することにより、前記背圧弁流出路の流路出口部の一部が、固定スクロールのラップ歯先の位置よりも歯底側となるように構成していることを特徴とするスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein a cross-sectional area on the flow path outlet side is larger than a cross-sectional area on the flow path inlet side in the back pressure valve outflow path. A scroll compressor characterized in that a part of the outlet portion is configured to be on the tooth bottom side with respect to the position of the lap tooth tip of the fixed scroll.
  3.  請求項1に記載のスクロール圧縮機であって、前記背圧弁流出路は、穴形状の上流側流路と、溝形状の下流側流路で構成され、前記下流側流路における流路出口部側をテーパ形状に形成することにより、前記下流側流路における流路入口部側の断面積よりも流路出口部側の断面積を大きく形成し、それによって前記背圧弁流出路の流路出口部の一部が、固定スクロールのラップ歯先の位置よりも歯底側となるように構成していることを特徴とするスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein the back pressure valve outflow path includes a hole-shaped upstream flow path and a groove-shaped downstream flow path, and a flow path outlet portion in the downstream flow path. By forming the side in a tapered shape, the cross-sectional area on the flow channel outlet side is larger than the cross-sectional area on the flow channel inlet portion side in the downstream flow channel, and thereby the flow channel outlet of the back pressure valve outflow channel A scroll compressor characterized in that a part of the portion is configured to be on the tooth bottom side with respect to the position of the lap tooth tip of the fixed scroll.
  4.  請求項1に記載のスクロール圧縮機であって、前記背圧弁流出路は、穴形状の上流側流路と、溝形状の下流側流路で構成され、前記下流側流路における流路出口部側を、流路出口部に向かって流路面積が拡大するように曲線或いは曲線と直線を組み合わせた形状とすることにより、前記下流側流路における流路入口部側の断面積よりも流路出口部側の断面積を大きく形成し、それによって前記背圧弁流出路の流路出口部の一部が、固定スクロールのラップ歯先の位置よりも歯底側となるように構成していることを特徴とするスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein the back pressure valve outflow path includes a hole-shaped upstream flow path and a groove-shaped downstream flow path, and a flow path outlet portion in the downstream flow path. By making the side into a shape that combines a curve or a curve and a straight line so that the flow channel area expands toward the flow channel outlet, the flow channel is larger than the cross-sectional area on the flow channel inlet side in the downstream flow channel. The cross-sectional area on the outlet side is formed to be large so that a part of the flow path outlet of the back pressure valve outflow passage is on the tooth bottom side with respect to the position of the wrap tooth tip of the fixed scroll. Scroll compressor characterized by.
  5.  請求項1に記載のスクロール圧縮機であって、記背圧弁流出路は上流側流路と下流側流路で構成され、前記下流側流路の流路出口部側を穴形状とし、この穴形状の流路出口部側の開口位置を、前記固定スクロールのラップ歯先の位置よりも歯底側に形成していることを特徴とするスクロール圧縮機。 2. The scroll compressor according to claim 1, wherein the back pressure valve outflow path includes an upstream flow path and a downstream flow path, and the flow path outlet side of the downstream flow path has a hole shape. A scroll compressor characterized in that the opening position on the side of the channel outlet portion of the shape is formed closer to the tooth bottom side than the position of the lap tooth tip of the fixed scroll.
  6.  圧縮機、四方弁、室外熱交換器、膨張弁、室内熱交換器を順次冷媒配管で接続して構成された空気調和機であって、前記圧縮機は請求項1~5の何れかに記載のスクロール圧縮機を用い、このスクロール圧縮機は少なくとも10~30Hzでの低速運転が為されるものであることを特徴とする空気調和機。 6. An air conditioner configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger with refrigerant piping, wherein the compressor is any one of claims 1 to 5. An air conditioner characterized in that the scroll compressor is operated at a low speed of at least 10 to 30 Hz.
PCT/JP2014/062650 2013-06-03 2014-05-13 Scroll compressor and air conditioner using same WO2014196314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015521353A JP6143862B2 (en) 2013-06-03 2014-05-13 Scroll compressor and air conditioner using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-116597 2013-06-03
JP2013116597 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196314A1 true WO2014196314A1 (en) 2014-12-11

Family

ID=52007967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062650 WO2014196314A1 (en) 2013-06-03 2014-05-13 Scroll compressor and air conditioner using same

Country Status (2)

Country Link
JP (1) JP6143862B2 (en)
WO (1) WO2014196314A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107893757A (en) * 2017-11-06 2018-04-10 珠海格力电器股份有限公司 The control method of screw compressor, air conditioner and screw compressor
CN114729638A (en) * 2019-11-21 2022-07-08 大金工业株式会社 Scroll compressor having a plurality of scroll members

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243388A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Scroll compressor
JP2012092773A (en) * 2010-10-28 2012-05-17 Hitachi Appliances Inc Scroll compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243388A (en) * 1984-05-18 1985-12-03 Hitachi Ltd Scroll compressor
JP2012092773A (en) * 2010-10-28 2012-05-17 Hitachi Appliances Inc Scroll compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107893757A (en) * 2017-11-06 2018-04-10 珠海格力电器股份有限公司 The control method of screw compressor, air conditioner and screw compressor
CN107893757B (en) * 2017-11-06 2023-10-03 珠海格力电器股份有限公司 Scroll compressor, air conditioner and control method of scroll compressor
CN114729638A (en) * 2019-11-21 2022-07-08 大金工业株式会社 Scroll compressor having a plurality of scroll members
EP4063658A4 (en) * 2019-11-21 2022-12-28 Daikin Industries, Ltd. Scroll compressor
JP7343774B2 (en) 2019-11-21 2023-09-13 ダイキン工業株式会社 scroll compressor
CN114729638B (en) * 2019-11-21 2023-09-15 大金工业株式会社 Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a

Also Published As

Publication number Publication date
JP6143862B2 (en) 2017-06-07
JPWO2014196314A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6302813B2 (en) Scroll compressor and refrigeration cycle apparatus using the same
JP5701230B2 (en) Scroll compressor
JP6344574B2 (en) Scroll compressor
JP5272031B2 (en) Scroll compressor
JP2010106780A (en) Scroll compressor
JP2008101559A (en) Scroll compressor and refrigeration cycle using the same
WO2018225155A1 (en) Scroll compressor and refrigeration cycle apparatus
JP6143862B2 (en) Scroll compressor and air conditioner using the same
JP2010265756A (en) Scroll compressor
JP5771739B2 (en) Scroll compressor
JP6066711B2 (en) Scroll compressor
JP3584781B2 (en) Scroll compressor and refrigerating device
JPH1037868A (en) Scroll compressor
JP4604968B2 (en) Scroll compressor
JP5506839B2 (en) Scroll compressor and air conditioner
WO2020170886A1 (en) Hermetically sealed compressor
WO2017081845A1 (en) Compressor
JP5798937B2 (en) Scroll compressor
JP5114708B2 (en) Hermetic scroll compressor
JP7329772B2 (en) Compressor with injection mechanism
JP7398642B2 (en) Compressor with injection mechanism
JP2023038681A (en) Scroll compressor and refrigeration cycle device using the same
JP2011163256A (en) Scroll compressor
JP2018035750A (en) Scroll compressor
JP2000009065A (en) Scroll type compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807385

Country of ref document: EP

Kind code of ref document: A1