WO2014196279A1 - Engine - Google Patents

Engine Download PDF

Info

Publication number
WO2014196279A1
WO2014196279A1 PCT/JP2014/061046 JP2014061046W WO2014196279A1 WO 2014196279 A1 WO2014196279 A1 WO 2014196279A1 JP 2014061046 W JP2014061046 W JP 2014061046W WO 2014196279 A1 WO2014196279 A1 WO 2014196279A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
cylinder head
ports
manifold
passage
Prior art date
Application number
PCT/JP2014/061046
Other languages
French (fr)
Japanese (ja)
Inventor
小原 徹也
濱本 高行
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014196279A1 publication Critical patent/WO2014196279A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/243Cylinder heads and inlet or exhaust manifolds integrally cast together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/105Other arrangements or adaptations of exhaust conduits of exhaust manifolds having the form of a chamber directly connected to the cylinder head, e.g. without having tubes connected between cylinder head and chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/107More than one exhaust manifold or exhaust collector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1512Digital data processing using one central computing unit with particular means concerning an individual cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine (internal combustion engine), and more particularly to a structure of an exhaust manifold that connects a cylinder head and a catalyst device.
  • the exhaust manifold is structured so that the exhaust from the collected exhaust ports and the exhaust from the two independent exhaust ports of the # 1 cylinder and # 4 cylinder are immediately gathered in the exhaust manifold. If this happens, there is a risk of exhaust interference.
  • JP2009-30555A does not disclose any structure of the exhaust manifold.
  • the present invention has been made paying attention to such problems, and an object thereof is to provide an engine capable of reducing interference of exhaust.
  • An engine includes an exhaust port that is opened to each of four cylinders, and an exhaust port that collects two exhaust ports that do not have an ignition sequence inside, and the remaining two independent independent exhausts.
  • a cylinder head having three exhaust ports of a collective exhaust port and two independent exhaust ports open on the side surface, a catalyst device for purifying harmful components in the exhaust, and a side surface of the cylinder head
  • An exhaust manifold for connecting the three exhaust ports opened to the catalyst device and the catalyst device.
  • the exhaust manifold includes three exhaust passages partitioned by partition walls formed inside the exhaust manifold in order to guide the exhaust discharged from the three exhaust ports to the catalyst device.
  • FIG. 1 is a schematic plan view of a cylinder head according to a first embodiment of the present invention.
  • FIG. 2 is a side view of the cylinder head on the side where the exhaust port opens.
  • FIG. 3 is a schematic perspective view of the catalyst device and the exhaust manifold according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the exhaust manifold and the catalyst device viewed from the lateral side of the cylinder head according to the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a collection portion of the exhaust manifold according to the first embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of the exhaust manifold and the catalyst device as seen from the lateral side of the cylinder head according to the second embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a collection portion of the exhaust manifold according to the second embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view of the exhaust manifold and the catalyst device viewed from the lateral side of the cylinder head according to the third embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a collection portion of the exhaust manifold according to the third embodiment of the present invention.
  • FIG. 1 is a schematic plan view of a cylinder head 2 according to a first embodiment of the present invention, showing a cylinder 3, an intake port 4, and an exhaust port 5 seen through.
  • FIG. 2 is a side view of the cylinder head 2 on the side where the exhaust port opens.
  • FIG. 3 is a schematic perspective view of the exhaust manifold 11 and the catalyst device 31 according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the exhaust manifold 11 and the catalyst device 31 as viewed from the side surface in the short direction of the cylinder head 2.
  • FIG. 5 is a schematic cross-sectional view of the collecting portion 15 of the exhaust manifold 11.
  • the engine 1 is an in-line four-cylinder engine having four valves per cylinder.
  • the number of valves per cylinder is not limited to four, but at least one valve for intake and one for exhaust may be used.
  • the engine 1 includes four cylinders 3 formed in a line along the longitudinal direction of a rectangular parallelepiped cylinder head 2, four intake ports 4 and four exhaust ports 5 formed corresponding to each cylinder 3, Is provided.
  • each cylinder 3 will be referred to as # 1 cylinder 3A, # 2 cylinder 3B, # 3 cylinder 3C, # 4 cylinder 3D in order from the left in the figure.
  • the exhaust ports 5 When the exhaust ports 5 need to be distinguished from each other, the exhaust ports 5 will be referred to as an exhaust port 5A, an exhaust port 5B, an exhaust port 5C, and an exhaust port 5D in order from the left in the drawing.
  • the engine 1 is ignited in the order of # 1 cylinder 3A- # 2 cylinder 3B- # 4 cylinder 3D- # 3 cylinder 3C, and generates power for driving a vehicle, for example.
  • the intake port 4 is formed inside the cylinder head 2.
  • the intake port 4 has one end branched into two branches and opened to the cylinder 3, and the other end opened to one side surface 2 ⁇ / b> A in the longitudinal direction of the cylinder head 2.
  • the opening of the intake port 4 and the cylinder 3 is opened and closed by an intake valve.
  • the exhaust port 5 is formed inside the cylinder head 2.
  • the two exhaust ports 5A and 5D formed at both ends of the cylinder head 2 have one end bifurcated to open to the cylinders 3A and 3D, respectively, and the other end to the other of the cylinder head 2 in the longitudinal direction. It opens to the side surface 2B.
  • the exhaust ports 5 ⁇ / b> A and 5 ⁇ / b> D are independent inside the cylinder head 2 without gathering with the other exhaust ports 5 inside the cylinder head 2. Therefore, in the following description, the exhaust ports 5A and 5D are referred to as “independent exhaust ports” as necessary.
  • the two exhaust ports 5B and 5C formed at the center of the cylinder head 2 are bifurcated at one end side and open to the cylinders 3B and 3C, respectively, but the other end is inside the cylinder head 2 Are opened in the other side surface 2B in the longitudinal direction of the cylinder head 2 after being assembled together. That is, an end portion of an exhaust port (hereinafter referred to as “collected exhaust port”) 6 in which the exhaust ports 5B and 5C are gathered into one is opened on the other side surface 2B in the longitudinal direction of the cylinder head 2.
  • the exhaust ports that open to the side surface 2B of the cylinder head 2 are the independent exhaust port 5A, the collective exhaust port 6, the independent exhaust port. Three 5D. Further, the opening area of the collective exhaust port 6 that opens to the side surface 2B of the cylinder head 2 is larger than the opening area of the independent exhaust ports 5A and 5D that open to the side surface 2B of the cylinder head 2.
  • the ignition order of the engine 1 is # 1 cylinder 3A- # 2 cylinder 3B- # 4.
  • the order is cylinder 3D- # 3 cylinder 3C. Therefore, explosions are repeated at intervals of 360 [° CA] in the # 2 cylinder 3B and the # 3 cylinder 3C.
  • the crank angle is 360 degrees apart between the explosion timing in the # 2 cylinder 3B and the explosion timing in the # 3 cylinder 3C. Therefore, even if the exhaust port 5B of the # 2 cylinder 3B and the exhaust port 5C of the # 3 cylinder 3C are gathered together in the cylinder head 2, no interference of exhaust occurs.
  • the exhaust ports 5B and 5C that do not cause exhaust interference are gathered together in the cylinder head 2.
  • the exhaust manifold is entirely outside the cylinder head, that is, the exhaust manifold having four branch pipes without collecting a part of the exhaust ports in the cylinder head.
  • the overall length of the exhaust manifold can be shortened by assembling a part of the exhaust ports in the cylinder head, and the length of the exhaust passage from the cylinder head 2 to the catalyst device 31 is shortened. can do.
  • the temperature of the exhaust discharged from the cylinder head 2 can be prevented from decreasing while passing through the exhaust manifold, so that the catalyst 35 can be activated early.
  • the entire length of the exhaust manifold can be shortened, the amount of heat escaping to the outside through the exhaust manifold can be reduced, so that the amount of heat escaping from the engine 1 can be reduced. Therefore, warm-up of the engine 1 can be completed early at the time of cold start.
  • the exhaust manifold 11 for guiding the exhaust discharged from the three exhaust ports of the independent exhaust ports 5A and 5D and the collective exhaust port 6 to the inlet of the catalyst device 31 is replaced with the first branch portion 12. And a second branching section 13, a third branching section 14, and a collecting section 15.
  • the first branch portion 12, the second branch portion 13, and the third branch portion 14 of the exhaust manifold 11 are each provided with an independent exhaust port 5 ⁇ / b> A that opens to the side surface 2 ⁇ / b> B of the cylinder head 2 via a gasket 7 (see FIG. 3). Connected to the exhaust port 6 and the independent exhaust port 5D.
  • the collecting portion 15 of the exhaust manifold 11 is formed by collecting the first branch portion 12, the second branch portion 13, and the third branch portion 14 together, and is connected to the catalyst device 31.
  • the catalyst device 31 includes a cylindrical central portion 32, an upstream cone portion 33, and a downstream cone portion 34.
  • a catalyst 35 (see FIG. 4) such as a three-way catalyst is accommodated.
  • the upstream cone portion 33 is connected to the collecting portion 15 of the exhaust manifold 11.
  • the upstream end 33A of the upstream cone portion 33 is circular.
  • the downstream side of the collecting portion 15 is cylindrical.
  • a hole 36 (see FIG. 3) for attaching the air-fuel ratio sensor is formed in the upstream cone portion 33.
  • the catalyst device 31 is arranged in a plane in order to show the overall connection between the exhaust manifold 11 and the catalyst device 31, but this is not the case.
  • Exhaust gas from the engine 1 passes under the floor of the vehicle on which the engine 1 is mounted, and then flows toward the rear of the vehicle. Therefore, as shown in FIG. 4, the catalyst device 31 is basically arranged in the vertical direction so that the exhaust gas flowing through the collecting portion 15 of the exhaust manifold 11 is directed downward in the vertical direction. More specifically, as shown in FIG. 3, the catalyst device 31 is disposed slightly tilted from the vertical direction.
  • three exhaust passages (the first exhaust passages) that respectively lead the exhaust discharged from the three exhaust ports of the independent exhaust port 5A, the collective exhaust port 6 and the independent exhaust port 5D to the inlet of the catalyst device 31 independently.
  • An exhaust passage 24, a second exhaust passage 25 and a third exhaust passage 26) are formed inside the exhaust manifold 11. As described above, the exhaust manifold 11 joins the exhaust gases independently discharged from the first exhaust passage 24, the second exhaust passage 25, and the third exhaust passage 26 at the inlet of the catalyst device 31 and introduces them into the catalyst device 31. It is configured.
  • the first exhaust passage 24 is a passage for guiding the exhaust discharged from the collective exhaust port 6 to the catalyst device 31, and is curved after rising obliquely upward in the vertical direction. Thus, it is formed so as to be directed downward in the vertical direction.
  • downstream side of the first exhaust passage 24 is disposed on a relatively far side when viewed from the cylinder head 2.
  • the first partition wall 21 and the second partition wall 22 are arranged on the same surface on the downstream side of the collecting portion 15 of the exhaust manifold 11. Then, by the first partition wall 21 and the second partition wall 22 arranged side by side, the passage sectional area on the downstream side of the collecting portion 15 is divided into two equal parts, a relatively far side and a near side when viewed from the cylinder head 2, and the cylinder head The side far from 2 is the first exhaust passage 24.
  • FIG. 5 the cross section of the collecting portion 15 of the exhaust manifold 11 is seen through from above, and the cylinder head 2 is placed at a position slightly away from the collecting portion 15 of the exhaust manifold 11 in the horizontal direction. .
  • the second exhaust passage 25 is a passage for guiding the exhaust discharged from the independent exhaust port 5A to the catalyst device 31.
  • the third exhaust passage 26 is a passage for guiding the exhaust discharged from the independent exhaust port 5D to the catalyst device 31. As shown in FIG. 4, the second exhaust passage 25 and the third exhaust passage 26 are formed so as to bend downward in the vertical direction after extending in the horizontal direction.
  • downstream side of the second exhaust passage 25 is located closer to the cylinder head 2 and closer to the # 1 cylinder 3A (left side in FIG. 5). Deploy. Further, the downstream side of the third exhaust passage 26 is disposed on the side relatively close to the cylinder head 2 and on the side close to the # 4 cylinder 3D (the right side in FIG. 5).
  • the passage on the side relatively close to the cylinder head 2 is cut off.
  • the area is divided into two equal parts by the third partition wall 23, and the side close to the # 1 cylinder 3A is the second exhaust passage 25, and the side close to the # 4 cylinder 3D is the third exhaust passage 26.
  • the first exhaust passage 24 through which the exhaust discharged from the collective exhaust port 6 flows is disposed on a relatively far side when viewed from the cylinder head 2 and is discharged from the independent exhaust ports 5A and 5D.
  • the second exhaust passage 25 and the third exhaust passage 26 through which the exhaust flows are arranged on the relatively close side when viewed from the cylinder head 2.
  • the first exhaust passage 24 is smaller in heat dissipation than the second exhaust passage 25 and the third exhaust passage 26.
  • the first exhaust passage 24 is arranged on a relatively far side when viewed from the cylinder head 2, and the length of the passage through which the exhaust discharged from the collective exhaust port 6 flows is discharged from the independent exhaust ports 5A and 5D.
  • the length of the exhaust passage is longer than the length of the passage through which the exhaust flows, and the amount of heat released from the first exhaust passage 24, the second exhaust passage 25, and the third exhaust passage 26 is made uniform to flow into the catalyst device 31 from each cylinder 3A-3D. This is to make the temperature of exhaust gas to be uniform.
  • the second exhaust passage 25 and the third exhaust passage 26 on the relatively close side when viewed from the cylinder head 2, heat radiation is suppressed from the exhaust flowing through the second exhaust passage 25 and the third exhaust passage 26. Therefore, it is possible to reduce heat loss at the time of engine cold start and promote early activation of the catalyst 35 of the catalyst device 31.
  • the cross-sectional area of the first exhaust passage 24 is The exhaust manifold 11 having three first partition walls 21, second partition walls 22, and third partition walls 23 is designed so as to have a shape of 2.
  • the surface area per unit length of the first exhaust passage 24 is the second exhaust passage. 25 and the surface area per unit length of the third exhaust passage 26 is not doubled. Therefore, the surface area of the first exhaust passage 24 per flowing exhaust amount is smaller than that of the second exhaust passage 25 and the third exhaust passage 2. In other words, the second exhaust passage 25 and the third exhaust passage 26 have a surface area per flowing exhaust amount larger than that of the first exhaust passage 24.
  • the cross-sectional area of the first exhaust passage 24 is determined from the viewpoint of the flow path resistance. It is not necessary to double the cross-sectional area of 25 and the third exhaust passage 26. However, considering the distribution of the exhaust gas at the inlet of the catalyst device 31, the cross-sectional area of the first exhaust passage 24 is made twice the cross-sectional area of each of the second exhaust passage 25 and the third exhaust passage 26.
  • the engine 1 includes a collective exhaust port 6 in which two exhaust ports 5B and 5C that do not have a continuous ignition order among the exhaust ports 5A to 5D that respectively open to the four cylinders 3A to 3D are assembled.
  • a cylinder head 2 having the remaining two independent independent exhaust ports 5A and 5D, and the three exhaust ports of the collective exhaust port 6 and the two independent exhaust ports 5A and 5D open on the side surface;
  • the temperature of the catalyst device 31 can be raised earlier when the engine 1 is cold started.
  • the exhaust manifold 11 since the exhaust manifold 11 has three branch pipes, the exhaust manifold 11 itself becomes compact, and as a result, the entire engine 1 including parts (for example, the catalyst device 31) attached to the exhaust manifold 11 becomes compact. For this reason, for example, it can be mounted on a vehicle having limited vehicle space such as a 4WD specification vehicle.
  • the first exhaust passage 24 in the exhaust manifold 11 through which the exhaust discharged from the collective exhaust port 6 flows is disposed on a relatively far side when viewed from the cylinder head 2, and independent exhaust is performed.
  • Two exhaust passages (the second exhaust passage 25 and the third exhaust passage 26) in the exhaust manifold 11 through which the exhaust discharged from the ports 5A and 5D flows are disposed on a relatively close side when viewed from the cylinder head 2.
  • the temperature of the exhaust gas flowing into the catalyst device 31 from each cylinder 3A-3D can be made uniform, so that heat loss during cold start of the engine can be reduced, and the catalyst 35 housed in the catalyst device 31 can be reduced. Early activation can be promoted.
  • each of the two exhaust passages (the second exhaust passage 25 and the third exhaust passage 26) in the exhaust manifold 11 through which the exhaust discharged from the independent exhaust port flows has a cross-sectional area of 1
  • the cross-sectional area of the first exhaust passage 24 in the exhaust manifold 11 through which the exhaust discharged from the collective exhaust port 6 flows is 2.
  • the first exhaust passage 24 is disposed on a relatively close side when viewed from the cylinder head 2
  • the second exhaust passage 25 and the third exhaust passage 26 are disposed on a relatively far side when viewed from the cylinder head 2. It differs from the first embodiment in that it is arranged. Hereinafter, the difference will be mainly described.
  • the same reference numerals are used for portions that perform the same functions as those of the first embodiment described above, and repeated descriptions are omitted as appropriate.
  • FIG. 6 is a schematic view of the exhaust manifold 11 and the catalyst device 31 as viewed from the lateral side of the cylinder head 2 according to the second embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the collecting portion 15 of the exhaust manifold 11 according to the second embodiment of the present invention.
  • the first exhaust passage 24 is formed so as to extend downward in the horizontal direction and then bend downward in the vertical direction. Then, as shown in FIGS. 6 and 7, the downstream side of the first exhaust passage 24 is disposed on a relatively close side when viewed from the cylinder head 2.
  • first partition wall 21 and the second partition wall 22 cause the passage cross-sectional area on the downstream side of the collecting portion 15 to be relatively far and closer to the side as viewed from the cylinder head 2.
  • a side that is relatively close to the cylinder head 2 when divided into two equal parts is defined as a first exhaust passage 24.
  • the second exhaust passage 25 and the third exhaust passage 26 are formed to extend in the horizontal direction and then bend downward in the vertical direction. Then, as shown in FIGS. 6 and 7, the downstream side of the second exhaust passage 25 is located on the side far from the cylinder head 2 and near the # 1 cylinder 3A (left side in FIG. 7). Deploy. Further, the downstream side of the third exhaust passage 26 is disposed on the side relatively far from the cylinder head 2 and on the side close to the # 4 cylinder 3D (the right side in FIG. 7).
  • the first exhaust passage 24 is disposed on a relatively close side as viewed from the cylinder head 2, and the second exhaust passage 25 and the third exhaust passage 26 are relatively viewed from the cylinder head 2. Since it is arranged on the far side, it is not necessary to make the first exhaust passage 24 obliquely rise upward in the vertical direction and then bend downward in the vertical direction as in the first embodiment. . Therefore, the exhaust manifold 11 can be made more compact.
  • the first exhaust passage 24 in the exhaust manifold 11 through which the exhaust discharged from the collective exhaust port 6 flows is disposed on a relatively close side when viewed from the cylinder head 2 and is independent.
  • Two exhaust passages (the second exhaust passage 25 and the third exhaust passage 26) in the exhaust manifold 11 through which the exhaust discharged from the exhaust ports 5A and 5D flows are arranged on the relatively far side when viewed from the cylinder head 2. Is done.
  • the exhaust manifold 11 can be made more compact.
  • FIG. 8 is a schematic view of the exhaust manifold 11 and the catalyst device 31 as viewed from the lateral side of the cylinder head 2 according to the third embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of the collecting portion 15 of the exhaust manifold 11 according to the third embodiment of the present invention.
  • the exhaust discharged from the collective exhaust port 6 and the independent exhaust ports 5A and 5D is independently led to the inlet of the catalyst device 31 by the three exhaust passages 24-26.
  • the second exhaust passage 25 and the third exhaust passage 26 are gathered into one inside the gathering portion 15 of the exhaust manifold 11, and the exhaust discharged from the independent exhaust ports 5A and 5D, respectively. Are guided independently until just before the entrance of the catalyst device 31.
  • a position where the partition wall 23 is formed is set to a position that enters the upstream side in the collecting portion 15 of the exhaust manifold 11 by a predetermined length from the inlet of the catalyst device 31, and from that position of the catalyst device 31. No partition wall 23 is provided between the entrances. For this reason, as shown in FIG. 8, the second exhaust passage 25 and the third exhaust passage 26 are gathered together on the downstream side where the partition wall 23 is removed to form a collective exhaust passage 27, and the collective exhaust passage 27 is formed in the catalyst device 31. Will be connected to.
  • the first partition wall 21 and the second partition wall 22 are arranged on the same surface.
  • the partition wall 22 the passage sectional area on the downstream side of the collecting portion 15 is divided into two equal parts, that is, a relatively far side and a near side when viewed from the cylinder head 2.
  • the side far from the cylinder head 2 is the first exhaust passage 24, and the near side is the collecting exhaust passage 27.
  • the exhaust discharged from the three exhaust ports of the independent exhaust port 5A, the collective exhaust port 6 and the independent exhaust port 5D is independently led to the inlet of the catalyst device 31, but the catalyst device You may make it guide to just before the entrance of 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Exhaust Silencers (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

This engine is provided with: a cylinder head which has exhaust ports formed in each of four cylinders, said exhaust ports being an aggregate exhaust port, wherein two exhaust ports with non-continuous ignition order are aggregated, and two independent exhaust ports, which are the remaining two exhaust ports, and all three exhaust ports, i.e. the aggregate exhaust port and the two independent ports, being formed in the lateral surface of the cylinder head; a catalyst device for purifying harmful components in the exhaust; and an exhaust manifold for connecting the catalyst device and the three exhaust ports formed in the lateral surface of the cylinder head. The exhaust manifold is provided with three exhaust passages partitioned by a partition wall formed inside of the exhaust manifold in order to guide the exhaust discharged from the three exhaust ports to the catalyst device.

Description

エンジンengine
 本発明はエンジン(内燃機関)、特にシリンダヘッドと触媒装置とを接続する排気マニホールドの構造に関する。 The present invention relates to an engine (internal combustion engine), and more particularly to a structure of an exhaust manifold that connects a cylinder head and a catalyst device.
 JP2009-30555Aに開示された直列4気筒エンジンは、点火順序の連続しない#2気筒及び#3気筒の排気ポートがシリンダヘッドの内部で1本に集合しており、この集合した排気ポート、及び、#1気筒及び#4気筒のそれぞれ独立した2つの排気ポートの3本の排気ポートをシリンダヘッドの一端面に開口させていた。そして、シリンダヘッドの一端面に開口させた3つの排気ポートに接続される排気マニホールドを介して、エンジンの排気を触媒装置に導入していた。 In the in-line four-cylinder engine disclosed in JP2009-30555A, the exhaust ports of the # 2 and # 3 cylinders whose firing order is not continuous are gathered into one inside the cylinder head, and this gathered exhaust port, and Three exhaust ports of the two independent exhaust ports of the # 1 cylinder and the # 4 cylinder were opened at one end surface of the cylinder head. Then, engine exhaust is introduced into the catalyst device via an exhaust manifold connected to three exhaust ports opened at one end face of the cylinder head.
 ここで、排気マニホールドの構造を、集合した排気ポートからの排気と、#1気筒及び#4気筒のそれぞれ独立した2つの排気ポートからの排気と、が排気マニホールド内で直ぐに集合するような構造にしてしまうと、排気の干渉が生じるおそれがある。しかしながら、JP2009-30555Aには、排気マニホールドをどのような構造にするかについては一切開示がない。 Here, the exhaust manifold is structured so that the exhaust from the collected exhaust ports and the exhaust from the two independent exhaust ports of the # 1 cylinder and # 4 cylinder are immediately gathered in the exhaust manifold. If this happens, there is a risk of exhaust interference. However, JP2009-30555A does not disclose any structure of the exhaust manifold.
 本発明はこのような問題点に着目してなされたものであり、排気の干渉を低減することが可能なエンジンを提供することを目的とする。 The present invention has been made paying attention to such problems, and an object thereof is to provide an engine capable of reducing interference of exhaust.
 本発明のある態様によるエンジンは、4つの気筒にそれぞれ開口する排気ポートのうち、点火順序の連続しない2本の排気ポートを内部で集合させた集合排気ポートと残りの2本の独立した独立排気ポートとを有し、集合排気ポート及び2本の独立排気ポートの3本の排気ポートを側面に開口させたシリンダヘッドと、排気中の有害成分を浄化するための触媒装置と、シリンダヘッドの側面に開口した3本の排気ポートと触媒装置とを接続するための排気マニホールドと、を備える。そして排気マニホールドは、3本の排気ポートから排出された排気をそれぞれ前記触媒装置に導くために、排気マニホールドの内部に形成された隔壁によって区画された3本の排気通路を備える。 An engine according to an aspect of the present invention includes an exhaust port that is opened to each of four cylinders, and an exhaust port that collects two exhaust ports that do not have an ignition sequence inside, and the remaining two independent independent exhausts. A cylinder head having three exhaust ports of a collective exhaust port and two independent exhaust ports open on the side surface, a catalyst device for purifying harmful components in the exhaust, and a side surface of the cylinder head An exhaust manifold for connecting the three exhaust ports opened to the catalyst device and the catalyst device. The exhaust manifold includes three exhaust passages partitioned by partition walls formed inside the exhaust manifold in order to guide the exhaust discharged from the three exhaust ports to the catalyst device.
図1は、本発明の第1実施形態によるシリンダヘッドの概略平面図である。FIG. 1 is a schematic plan view of a cylinder head according to a first embodiment of the present invention. 図2は、排気ポートが開口する側のシリンダヘッドの側面図である。FIG. 2 is a side view of the cylinder head on the side where the exhaust port opens. 図3は、本発明の第1実施形態による触媒装置及び排気マニホールドの概略斜視図である。FIG. 3 is a schematic perspective view of the catalyst device and the exhaust manifold according to the first embodiment of the present invention. 図4は、本発明の第1実施形態によるシリンダヘッドの短手方向の側面側から見た排気マニホールド及び触媒装置の概略断面図であるFIG. 4 is a schematic cross-sectional view of the exhaust manifold and the catalyst device viewed from the lateral side of the cylinder head according to the first embodiment of the present invention. 図5は、本発明の第1実施形態による排気マニホールドの集合部の概略断面図である。FIG. 5 is a schematic cross-sectional view of a collection portion of the exhaust manifold according to the first embodiment of the present invention. 図6は、本発明の第2実施形態によるシリンダヘッドの短手方向の側面側から見た排気マニホールド及び触媒装置の概略断面図である。FIG. 6 is a schematic cross-sectional view of the exhaust manifold and the catalyst device as seen from the lateral side of the cylinder head according to the second embodiment of the present invention. 図7は、本発明の第2実施形態による排気マニホールドの集合部の概略断面図である。FIG. 7 is a schematic cross-sectional view of a collection portion of the exhaust manifold according to the second embodiment of the present invention. 図8は、本発明の第3実施形態によるシリンダヘッドの短手方向の側面側から見た排気マニホールド及び触媒装置の概略断面図であるFIG. 8 is a schematic cross-sectional view of the exhaust manifold and the catalyst device viewed from the lateral side of the cylinder head according to the third embodiment of the present invention. 図9は、本発明の第3実施形態による排気マニホールドの集合部の概略断面図である。FIG. 9 is a schematic cross-sectional view of a collection portion of the exhaust manifold according to the third embodiment of the present invention.
 以下、図面等を参照して本発明の各実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1実施形態)
 まず、図1から図5を参照して、本発明の第1実施形態によるエンジン1について説明する。
(First embodiment)
First, an engine 1 according to a first embodiment of the present invention will be described with reference to FIGS.
 図1は、本発明の第1実施形態によるシリンダヘッド2の概略平面図であり、気筒3、吸気ポート4及び排気ポート5を透視させた状態で示した図である。図2は、排気ポートが開口する側のシリンダヘッド2の側面図である。図3は、本発明の第1実施形態による排気マニホールド11及び触媒装置31の概略斜視図である。図4は、シリンダヘッド2の短手方向の側面側から見た排気マニホールド11及び触媒装置31の概略断面図である。図5は、排気マニホールド11の集合部15の概略断面図である。 FIG. 1 is a schematic plan view of a cylinder head 2 according to a first embodiment of the present invention, showing a cylinder 3, an intake port 4, and an exhaust port 5 seen through. FIG. 2 is a side view of the cylinder head 2 on the side where the exhaust port opens. FIG. 3 is a schematic perspective view of the exhaust manifold 11 and the catalyst device 31 according to the first embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of the exhaust manifold 11 and the catalyst device 31 as viewed from the side surface in the short direction of the cylinder head 2. FIG. 5 is a schematic cross-sectional view of the collecting portion 15 of the exhaust manifold 11.
 図1に示すように、エンジン1は、1気筒当たり4つの弁を有する直列4気筒エンジンである。なお、1気筒当たりの弁の数は4つに限らず、少なくとも吸気用及び排気用の弁が一つずつあればよい。 As shown in FIG. 1, the engine 1 is an in-line four-cylinder engine having four valves per cylinder. The number of valves per cylinder is not limited to four, but at least one valve for intake and one for exhaust may be used.
 エンジン1は、直方体形状のシリンダヘッド2の長手方向に沿って一列に形成された4つの気筒3と、各気筒3に対応して形成された4つの吸気ポート4及び4つの排気ポート5と、を備える。 The engine 1 includes four cylinders 3 formed in a line along the longitudinal direction of a rectangular parallelepiped cylinder head 2, four intake ports 4 and four exhaust ports 5 formed corresponding to each cylinder 3, Is provided.
 以下の説明において、各気筒3を区別する必要があるときは、各気筒3を図中左から順に#1気筒3A、#2気筒3B、#3気筒3C、#4気筒3Dと称して説明する。また、各排気ポート5を区別する必要があるときは、各排気ポート5を図中左から順に排気ポート5A、排気ポート5B、排気ポート5C、排気ポート5Dと称して説明する。 In the following description, when it is necessary to distinguish each cylinder 3, each cylinder 3 will be referred to as # 1 cylinder 3A, # 2 cylinder 3B, # 3 cylinder 3C, # 4 cylinder 3D in order from the left in the figure. . When the exhaust ports 5 need to be distinguished from each other, the exhaust ports 5 will be referred to as an exhaust port 5A, an exhaust port 5B, an exhaust port 5C, and an exhaust port 5D in order from the left in the drawing.
 エンジン1は、#1気筒3A-#2気筒3B-#4気筒3D-#3気筒3Cの順で点火が行われ、例えば車両等を駆動するための動力を発生させる。 The engine 1 is ignited in the order of # 1 cylinder 3A- # 2 cylinder 3B- # 4 cylinder 3D- # 3 cylinder 3C, and generates power for driving a vehicle, for example.
 吸気ポート4は、シリンダヘッド2の内部に形成される。吸気ポート4は、一端側が二股に分岐して気筒3に開口し、他端側がシリンダヘッド2の長手方向の一方の側面2Aに開口している。吸気ポート4と気筒3との開口は、吸気弁によって開閉される。 The intake port 4 is formed inside the cylinder head 2. The intake port 4 has one end branched into two branches and opened to the cylinder 3, and the other end opened to one side surface 2 </ b> A in the longitudinal direction of the cylinder head 2. The opening of the intake port 4 and the cylinder 3 is opened and closed by an intake valve.
 排気ポート5は、シリンダヘッド2の内部に形成される。 The exhaust port 5 is formed inside the cylinder head 2.
 このうち、シリンダヘッド2の両端に形成される2つの排気ポート5A及び5Dは、一端側が二股に分岐してそれぞれ気筒3A及び3Dに開口し、他端側がそれぞれシリンダヘッド2の長手方向の他方の側面2Bに開口している。このように、排気ポート5A及び5Dは、シリンダヘッド2の内部で他の排気ポート5と集合することなく、シリンダヘッド2の内部で独立している。そのため、以下の説明では、排気ポート5A及び5Dのことを、必要に応じて「独立排気ポート」という。 Of these, the two exhaust ports 5A and 5D formed at both ends of the cylinder head 2 have one end bifurcated to open to the cylinders 3A and 3D, respectively, and the other end to the other of the cylinder head 2 in the longitudinal direction. It opens to the side surface 2B. As described above, the exhaust ports 5 </ b> A and 5 </ b> D are independent inside the cylinder head 2 without gathering with the other exhaust ports 5 inside the cylinder head 2. Therefore, in the following description, the exhaust ports 5A and 5D are referred to as “independent exhaust ports” as necessary.
 一方で、シリンダヘッド2の中央に形成された2つの排気ポート5B及び5Cは、一端側は二股に分岐してそれぞれ気筒3B及び3Cに開口しているものの、他端側はシリンダヘッド2の内部で一本に集合させられた上でシリンダヘッド2の長手方向の他方の側面2Bに開口している。すなわち、排気ポート5B及び5Cを一本に集合させた排気ポート(以下「集合排気ポート」という。)6の端部がシリンダヘッド2の長手方向の他方の側面2Bに開口している。 On the other hand, the two exhaust ports 5B and 5C formed at the center of the cylinder head 2 are bifurcated at one end side and open to the cylinders 3B and 3C, respectively, but the other end is inside the cylinder head 2 Are opened in the other side surface 2B in the longitudinal direction of the cylinder head 2 after being assembled together. That is, an end portion of an exhaust port (hereinafter referred to as “collected exhaust port”) 6 in which the exhaust ports 5B and 5C are gathered into one is opened on the other side surface 2B in the longitudinal direction of the cylinder head 2.
 したがって、図2にも示すように、シリンダヘッド2の側面2B、換言すればシリンダヘッド2の排気ポート側の側面2Bに開口する排気ポートは、独立排気ポート5A、集合排気ポート6、独立排気ポート5Dの3本である。また、シリンダヘッド2の側面2Bに開口する集合排気ポート6の開口面積は、シリンダヘッド2の側面2Bに開口する独立排気ポート5A及び5Dの開口面積と比べて大きくなる。 Therefore, as shown in FIG. 2, the exhaust ports that open to the side surface 2B of the cylinder head 2, in other words, the side surface 2B on the exhaust port side of the cylinder head 2, are the independent exhaust port 5A, the collective exhaust port 6, the independent exhaust port. Three 5D. Further, the opening area of the collective exhaust port 6 that opens to the side surface 2B of the cylinder head 2 is larger than the opening area of the independent exhaust ports 5A and 5D that open to the side surface 2B of the cylinder head 2.
 なお、排気ポート5B及び5Cを1本に集合させようとすると、排気の干渉が問題となってくるが、本実施形態ではエンジン1の点火順序が#1気筒3A-#2気筒3B-#4気筒3D-#3気筒3Cの順となっている。そのため、#2気筒3B及び#3気筒3Cでは、360[°CA]間隔で爆発が繰り返される。つまり、#2気筒3Bでの爆発タイミングと#3気筒3Cでの爆発タイミングとの間がクランク角で360°も離れている。したがって、#2気筒3Bの排気ポート5Bと#3気筒3Cの排気ポート5Cとをシリンダヘッド2の内部で一本に集合させていても、排気の干渉が生じることはない。 If the exhaust ports 5B and 5C are aggregated into one, exhaust interference becomes a problem, but in the present embodiment, the ignition order of the engine 1 is # 1 cylinder 3A- # 2 cylinder 3B- # 4. The order is cylinder 3D- # 3 cylinder 3C. Therefore, explosions are repeated at intervals of 360 [° CA] in the # 2 cylinder 3B and the # 3 cylinder 3C. In other words, the crank angle is 360 degrees apart between the explosion timing in the # 2 cylinder 3B and the explosion timing in the # 3 cylinder 3C. Therefore, even if the exhaust port 5B of the # 2 cylinder 3B and the exhaust port 5C of the # 3 cylinder 3C are gathered together in the cylinder head 2, no interference of exhaust occurs.
 このように、本実施形態では排気の干渉が生じない排気ポート5B及び5Cをシリンダヘッド2の内部で一本に集合させる構成としている。この本実施形態の構成によれば、排気マニホールドの全体がシリンダヘッドの外部にある構成、すなわち、排気ポートの一部をシリンダヘッド内で集合させずに、4本の分岐管を備える排気マニホールドをシリンダヘッドに接続する構成と比較して、排気ポートの一部をシリンダヘッド内で集合させた分だけ排気マニホールドの全長を短くでき、シリンダヘッド2から触媒装置31までの排気通路の長さを短縮することができる。これにより、エンジン1の冷間始動時には、シリンダヘッド2から排出された排気の温度が、排気マニホールドを通過する間に低下するのを抑制できるので、触媒35を早期に活性させることができる。 Thus, in the present embodiment, the exhaust ports 5B and 5C that do not cause exhaust interference are gathered together in the cylinder head 2. According to the configuration of the present embodiment, the exhaust manifold is entirely outside the cylinder head, that is, the exhaust manifold having four branch pipes without collecting a part of the exhaust ports in the cylinder head. Compared to the configuration connected to the cylinder head, the overall length of the exhaust manifold can be shortened by assembling a part of the exhaust ports in the cylinder head, and the length of the exhaust passage from the cylinder head 2 to the catalyst device 31 is shortened. can do. As a result, when the engine 1 is cold started, the temperature of the exhaust discharged from the cylinder head 2 can be prevented from decreasing while passing through the exhaust manifold, so that the catalyst 35 can be activated early.
 また、この本実施形態の構成によれば、排気マニホールドの全長を短くできるので、排気マニホールドを介して外部に逃げる熱量を低減させることができるので、エンジン1から逃げる熱量を低減させることができる。そのため、冷間始動時に早期にエンジン1の暖機を完了させることができる。 Further, according to the configuration of the present embodiment, since the entire length of the exhaust manifold can be shortened, the amount of heat escaping to the outside through the exhaust manifold can be reduced, so that the amount of heat escaping from the engine 1 can be reduced. Therefore, warm-up of the engine 1 can be completed early at the time of cold start.
 次に、独立排気ポート5A,5D、及び、集合排気ポート6の3本の排気ポートを備えるシリンダヘッド2に接続される排気マニホールド11を設計する際には、排気マニホールド11内で排気の干渉が生じないようにすることが求められる。また、エンジン1の車両等への搭載性を考慮すると、排気マニホールド11を全体的にコンパクトに設計することも求められる。 Next, when designing the exhaust manifold 11 connected to the cylinder head 2 having the three exhaust ports of the independent exhaust ports 5A and 5D and the collective exhaust port 6, there is an interference of exhaust within the exhaust manifold 11. It is required not to occur. Further, considering the mountability of the engine 1 on a vehicle or the like, it is also required to design the exhaust manifold 11 to be compact overall.
 そこで本実施形態では、独立排気ポート5A,5D、及び、集合排気ポート6の3本の排気ポートから排出される排気を触媒装置31の入口に導くための排気マニホールド11を、第1分岐部12と、第2分岐部13と、第3分岐部14と、集合部15と、を備える構成とした。 Therefore, in the present embodiment, the exhaust manifold 11 for guiding the exhaust discharged from the three exhaust ports of the independent exhaust ports 5A and 5D and the collective exhaust port 6 to the inlet of the catalyst device 31 is replaced with the first branch portion 12. And a second branching section 13, a third branching section 14, and a collecting section 15.
 排気マニホールド11の第1分岐部12、第2分岐部13及び第3分岐部14は、それぞれガスケット7(図3参照)を介して、シリンダヘッド2の側面2Bに開口した独立排気ポート5A、集合排気ポート6及び独立排気ポート5Dに接続される。 The first branch portion 12, the second branch portion 13, and the third branch portion 14 of the exhaust manifold 11 are each provided with an independent exhaust port 5 </ b> A that opens to the side surface 2 </ b> B of the cylinder head 2 via a gasket 7 (see FIG. 3). Connected to the exhaust port 6 and the independent exhaust port 5D.
 排気マニホールド11の集合部15は、第1分岐部12、第2分岐部13及び第3分岐部14を一本に集合させることによって形成され、触媒装置31に接続される。 The collecting portion 15 of the exhaust manifold 11 is formed by collecting the first branch portion 12, the second branch portion 13, and the third branch portion 14 together, and is connected to the catalyst device 31.
 触媒装置31は、円柱状の中央部32と、上流側コーン部33と、下流側コーン部34と、を備える。 The catalyst device 31 includes a cylindrical central portion 32, an upstream cone portion 33, and a downstream cone portion 34.
 中央部32の内部には、三元触媒などの触媒35(図4参照)が収納される。 Inside the central portion 32, a catalyst 35 (see FIG. 4) such as a three-way catalyst is accommodated.
 上流側コーン部33には、排気マニホールド11の集合部15が接続される。上流側コーン部33の上流端33Aは円形である。この円形の上流端33Aに排気マニホールド11の集合部15を滑らかに接続するため、集合部15の下流側は円筒状となっている。また、上流側コーン部33には、空燃比センサを取り付けるための穴36(図3参照)が形成される。 The upstream cone portion 33 is connected to the collecting portion 15 of the exhaust manifold 11. The upstream end 33A of the upstream cone portion 33 is circular. In order to smoothly connect the collecting portion 15 of the exhaust manifold 11 to the circular upstream end 33A, the downstream side of the collecting portion 15 is cylindrical. Further, a hole 36 (see FIG. 3) for attaching the air-fuel ratio sensor is formed in the upstream cone portion 33.
 なお、図1では、排気マニホールド11と触媒装置31の全体的なつながりを示すために、触媒装置31を平面的に配置しているが、実際にこうなっているわけでない。エンジン1の排気は、エンジン1が搭載される車両の床下を通過した後、車両後方へと流される。そのため、図4に示すように、排気マニホールド11の集合部15を流れた排気が鉛直方向下方に向かうように、触媒装置31は基本的に鉛直方向に配置される。より詳細には、図3に示すように、触媒装置31は鉛直方向から多少傾けて配置される。 In FIG. 1, the catalyst device 31 is arranged in a plane in order to show the overall connection between the exhaust manifold 11 and the catalyst device 31, but this is not the case. Exhaust gas from the engine 1 passes under the floor of the vehicle on which the engine 1 is mounted, and then flows toward the rear of the vehicle. Therefore, as shown in FIG. 4, the catalyst device 31 is basically arranged in the vertical direction so that the exhaust gas flowing through the collecting portion 15 of the exhaust manifold 11 is directed downward in the vertical direction. More specifically, as shown in FIG. 3, the catalyst device 31 is disposed slightly tilted from the vertical direction.
 また、図1では、独立排気ポート5A、集合排気ポート6及び独立排気ポート5Dの3本の排気ポートから排出された排気を排気マニホールド11の内部ですぐに集合させているように見えるが、そうではない。本実施形態では、排気マニホールド11の内部ですぐに排気を集合させたときに生じる排気の干渉を回避するため、独立排気ポート5A、集合排気ポート6及び独立排気ポート5Dの3本の排気ポートから排出された排気を排気マニホールド11の内部ですぐに集合させることはしない。 Further, in FIG. 1, it seems that the exhaust discharged from the three exhaust ports of the independent exhaust port 5A, the collective exhaust port 6 and the independent exhaust port 5D is immediately gathered inside the exhaust manifold 11. is not. In the present embodiment, in order to avoid exhaust interference that occurs when exhaust is immediately collected inside the exhaust manifold 11, the three exhaust ports of the independent exhaust port 5A, the collective exhaust port 6 and the independent exhaust port 5D are used. The discharged exhaust is not immediately collected inside the exhaust manifold 11.
 本実施形態では、図4及び図5に示すように、排気マニホールド11の内部に第1隔壁21、第2隔壁22及び第3隔壁23の3つの隔壁を設ける。 In the present embodiment, as shown in FIGS. 4 and 5, three partition walls of a first partition wall 21, a second partition wall 22, and a third partition wall 23 are provided inside the exhaust manifold 11.
 この3つの隔壁によって、独立排気ポート5A、集合排気ポート6及び独立排気ポート5Dの3本の排気ポートから排出された排気をそれぞれ独立に触媒装置31の入口まで導く3本の排気通路(第1排気通路24、第2排気通路25及び第3排気通路26)を、排気マニホールド11の内部に形成する。このように排気マニホールド11は、第1排気通路24、第2排気通路25及び第3排気通路26からそれぞれ独立に排出された排気を触媒装置31の入口で合流させて触媒装置31に導入するように構成されている。 By these three partition walls, three exhaust passages (the first exhaust passages) that respectively lead the exhaust discharged from the three exhaust ports of the independent exhaust port 5A, the collective exhaust port 6 and the independent exhaust port 5D to the inlet of the catalyst device 31 independently. An exhaust passage 24, a second exhaust passage 25 and a third exhaust passage 26) are formed inside the exhaust manifold 11. As described above, the exhaust manifold 11 joins the exhaust gases independently discharged from the first exhaust passage 24, the second exhaust passage 25, and the third exhaust passage 26 at the inlet of the catalyst device 31 and introduces them into the catalyst device 31. It is configured.
 これにより、独立排気ポート5A及び5Dから排出される排気と、集合排気ポート6から排出される排気と、が排気マニホールド11の内部で干渉するのを抑制する。 This prevents the exhaust exhausted from the independent exhaust ports 5A and 5D and the exhaust exhausted from the collective exhaust port 6 from interfering with each other inside the exhaust manifold 11.
 以下、図4及び図5を参照して、排気マニホールド11の内部に形成された3本の排気通路(第1排気通路24、第2排気通路25及び第3排気通路26)について詳しく説明する。 Hereinafter, the three exhaust passages (the first exhaust passage 24, the second exhaust passage 25, and the third exhaust passage 26) formed inside the exhaust manifold 11 will be described in detail with reference to FIGS.
 図4に示すように、第1排気通路24は、集合排気ポート6から排出された排気を触媒装置31に導くための通路であって、鉛直方向の上方に向かって斜めに立ち上がった後、湾曲して鉛直方向下方に向かうように形成される。 As shown in FIG. 4, the first exhaust passage 24 is a passage for guiding the exhaust discharged from the collective exhaust port 6 to the catalyst device 31, and is curved after rising obliquely upward in the vertical direction. Thus, it is formed so as to be directed downward in the vertical direction.
 そして、図4及び図5に示すように、第1排気通路24の下流側を、シリンダヘッド2から見て相対的に遠い側に配置する。 4 and FIG. 5, the downstream side of the first exhaust passage 24 is disposed on a relatively far side when viewed from the cylinder head 2.
 すなわち、図5に示すように、排気マニホールド11の集合部15の下流側では、第1隔壁21と第2隔壁22とを同一の面上に並べる。そして、この並べた第1隔壁21及び第2隔壁22によって、集合部15の下流側の通路断面積をシリンダヘッド2から見て相対的に遠い側と近い側とに2等分し、シリンダヘッド2から見て相対的に遠い側を第1排気通路24とする。 That is, as shown in FIG. 5, the first partition wall 21 and the second partition wall 22 are arranged on the same surface on the downstream side of the collecting portion 15 of the exhaust manifold 11. Then, by the first partition wall 21 and the second partition wall 22 arranged side by side, the passage sectional area on the downstream side of the collecting portion 15 is divided into two equal parts, a relatively far side and a near side when viewed from the cylinder head 2, and the cylinder head The side far from 2 is the first exhaust passage 24.
 なお、図5では、排気マニホールド11の集合部15の断面を鉛直上方から透視して見ており、排気マニホールド11の集合部15から水平方向に少し離れた位置にシリンダヘッド2が置かれている。 In FIG. 5, the cross section of the collecting portion 15 of the exhaust manifold 11 is seen through from above, and the cylinder head 2 is placed at a position slightly away from the collecting portion 15 of the exhaust manifold 11 in the horizontal direction. .
 第2排気通路25は、独立排気ポート5Aから排出された排気を触媒装置31に導くための通路である。第3排気通路26は、独立排気ポート5Dから排出された排気を触媒装置31に導くための通路である。図4に示すように、第2排気通路25及び第3排気通路26は、それぞれ水平方向に延び出した後、鉛直方向の下方に向かって湾曲するように形成される。 The second exhaust passage 25 is a passage for guiding the exhaust discharged from the independent exhaust port 5A to the catalyst device 31. The third exhaust passage 26 is a passage for guiding the exhaust discharged from the independent exhaust port 5D to the catalyst device 31. As shown in FIG. 4, the second exhaust passage 25 and the third exhaust passage 26 are formed so as to bend downward in the vertical direction after extending in the horizontal direction.
 そして、図4及び図5に示すように、第2排気通路25の下流側を、シリンダヘッド2から見て相対的に近い側、かつ、#1気筒3Aに近い側(図5では左側)に配置する。また、第3排気通路26の下流側を、シリンダヘッド2から見て相対的に近い側、かつ、#4気筒3Dに近い側(図5では右側)に配置する。 As shown in FIGS. 4 and 5, the downstream side of the second exhaust passage 25 is located closer to the cylinder head 2 and closer to the # 1 cylinder 3A (left side in FIG. 5). Deploy. Further, the downstream side of the third exhaust passage 26 is disposed on the side relatively close to the cylinder head 2 and on the side close to the # 4 cylinder 3D (the right side in FIG. 5).
 すなわち、図5に示すように、第1隔壁21及び第2隔壁22によって2等分された集合部15内部の2つの通路のうち、シリンダヘッド2から見て相対的に近い側の通路の断面積を第3隔壁23によって2等分し、#1気筒3Aに近い側を第2排気通路25、#4気筒3Dに近い側を第3排気通路26とする。 That is, as shown in FIG. 5, of the two passages inside the collecting portion 15 divided into two equal parts by the first partition wall 21 and the second partition wall 22, the passage on the side relatively close to the cylinder head 2 is cut off. The area is divided into two equal parts by the third partition wall 23, and the side close to the # 1 cylinder 3A is the second exhaust passage 25, and the side close to the # 4 cylinder 3D is the third exhaust passage 26.
 このように本実施形態では、集合排気ポート6から排出された排気が流れる第1排気通路24をシリンダヘッド2から見て相対的に遠い側に配置し、独立排気ポート5A及び5Dから排出された排気が流れる第2排気通路25及び第3排気通路26を、シリンダヘッド2から見て相対的に近い側に配置している。 As described above, in the present embodiment, the first exhaust passage 24 through which the exhaust discharged from the collective exhaust port 6 flows is disposed on a relatively far side when viewed from the cylinder head 2 and is discharged from the independent exhaust ports 5A and 5D. The second exhaust passage 25 and the third exhaust passage 26 through which the exhaust flows are arranged on the relatively close side when viewed from the cylinder head 2.
 これは、第1排気通路24には2気筒分の排気が導入されるため、第1排気通路24を流れる排気量当たりの第1排気通路の表面積と、第2排気通路25及び第3排気通路26を流れる排気量当たりの第2排気通路25及び第3排気通路26のぞれぞれの表面積と、を比較すると、第1排気通路24を流れる排気量当たりの第1排気通路の表面積のほうが小さくなり、第2排気通路25及び第3排気通路26よりも第1排気通路24のほうが放熱量が大きくなる。 This is because the exhaust of two cylinders is introduced into the first exhaust passage 24, and therefore the surface area of the first exhaust passage per exhaust amount flowing through the first exhaust passage 24, the second exhaust passage 25 and the third exhaust passage. Comparing the surface areas of the second exhaust passage 25 and the third exhaust passage 26 per exhaust amount flowing through the first exhaust passage 26, the surface area of the first exhaust passage per exhaust amount flowing through the first exhaust passage 24 is greater. The first exhaust passage 24 is smaller in heat dissipation than the second exhaust passage 25 and the third exhaust passage 26.
 そのため、第1排気通路24をシリンダヘッド2から見て相対的に遠い側に配置して、集合排気ポート6から排出された排気が流れる通路の長さを、独立排気ポート5A及び5Dから排出された排気が流れる通路の長さよりも長くして第1排気通路24、第2排気通路25及び第3排気通路26の放熱量を均一化することで、各気筒3A-3Dから触媒装置31に流入する排気の温度を均一化するためである。また、第2排気通路25及び第3排気通路26を、シリンダヘッド2から見て相対的に近い側に配置することで、第2排気通路25及び第3排気通路26流れる排気から放熱を抑えることができるので、エンジン冷間始動時の熱損失を低減し、触媒装置31の触媒35の早期活性化を促すことができる。 Therefore, the first exhaust passage 24 is arranged on a relatively far side when viewed from the cylinder head 2, and the length of the passage through which the exhaust discharged from the collective exhaust port 6 flows is discharged from the independent exhaust ports 5A and 5D. The length of the exhaust passage is longer than the length of the passage through which the exhaust flows, and the amount of heat released from the first exhaust passage 24, the second exhaust passage 25, and the third exhaust passage 26 is made uniform to flow into the catalyst device 31 from each cylinder 3A-3D. This is to make the temperature of exhaust gas to be uniform. Further, by disposing the second exhaust passage 25 and the third exhaust passage 26 on the relatively close side when viewed from the cylinder head 2, heat radiation is suppressed from the exhaust flowing through the second exhaust passage 25 and the third exhaust passage 26. Therefore, it is possible to reduce heat loss at the time of engine cold start and promote early activation of the catalyst 35 of the catalyst device 31.
 また、本実施形態では、図5に示すように、第2排気通路25の断面積S2及び第3排気通路26の断面積S3を1とした場合に、第1排気通路24の断面積S1が2となるように、第1排気通路24、第2排気通路25及び第3排気通路26を排気マニホールド11の内部に形成している。 In the present embodiment, as shown in FIG. 5, when the cross-sectional area S2 of the second exhaust passage 25 and the cross-sectional area S3 of the third exhaust passage 26 are 1, the cross-sectional area S1 of the first exhaust passage 24 is 2, the first exhaust passage 24, the second exhaust passage 25, and the third exhaust passage 26 are formed inside the exhaust manifold 11.
 実際には、排気マニホールド11の上流側端から下流側端までの全てで第2排気通路25及び第3排気通路26の各断面積を1とした場合に、第1排気通路24の断面積を2とした形状となるように3つの第1隔壁21,第2隔壁22及び第3隔壁23を有する排気マニホールド11を設計する。 Actually, when the cross-sectional areas of the second exhaust passage 25 and the third exhaust passage 26 are all 1 from the upstream end to the downstream end of the exhaust manifold 11, the cross-sectional area of the first exhaust passage 24 is The exhaust manifold 11 having three first partition walls 21, second partition walls 22, and third partition walls 23 is designed so as to have a shape of 2.
 詳細には、第1排気通路24の断面積が第2排気通路25及び第3排気通路26の各断面積の2倍でも、第1排気通路24の単位長さ当たりの表面積は第2排気通路25及び第3排気通路26の単位長さ当たりの表面積の2倍にならない。そのため、第1排気通路24は、流れる排気量当たりの表面積が第2排気通路25及び第3排気通路2より小さくなる。逆に言うと、第2排気通路25及び第3排気通路26は、流れる排気量当たりの表面積が第1排気通路24より大きくなる。 Specifically, even if the cross-sectional area of the first exhaust passage 24 is twice the cross-sectional area of each of the second exhaust passage 25 and the third exhaust passage 26, the surface area per unit length of the first exhaust passage 24 is the second exhaust passage. 25 and the surface area per unit length of the third exhaust passage 26 is not doubled. Therefore, the surface area of the first exhaust passage 24 per flowing exhaust amount is smaller than that of the second exhaust passage 25 and the third exhaust passage 2. In other words, the second exhaust passage 25 and the third exhaust passage 26 have a surface area per flowing exhaust amount larger than that of the first exhaust passage 24.
 第1排気通路24に、#2気筒3Bと#3気筒3Aの2つの気筒の排気が同時に流れ込むことはないので、流路抵抗の面からは第1排気通路24の断面積を第2排気通路25及び第3排気通路26の断面積の2倍にする必要はない。しかしながら、触媒装置31の入口における排気の分配を考慮して第1排気通路24の断面積を第2排気通路25及び第3排気通路26の各断面積の2倍にする。 Since the exhaust from the two cylinders # 2 cylinder 3B and # 3 cylinder 3A does not flow into the first exhaust passage 24 at the same time, the cross-sectional area of the first exhaust passage 24 is determined from the viewpoint of the flow path resistance. It is not necessary to double the cross-sectional area of 25 and the third exhaust passage 26. However, considering the distribution of the exhaust gas at the inlet of the catalyst device 31, the cross-sectional area of the first exhaust passage 24 is made twice the cross-sectional area of each of the second exhaust passage 25 and the third exhaust passage 26.
 これは、触媒装置31の入口における排気の分配が等分となるようにするためである。これによって、上流側コーン部33の穴36に取り付ける空燃比センサの検出精度を保つことができる。 This is because the distribution of the exhaust gas at the inlet of the catalyst device 31 is equally divided. Thereby, the detection accuracy of the air-fuel ratio sensor attached to the hole 36 of the upstream cone portion 33 can be maintained.
 以下、本実施形態によるエンジン1の作用効果について説明する。 Hereinafter, the function and effect of the engine 1 according to the present embodiment will be described.
 本実施形態によるエンジン1は、4つの気筒3A-3Dにそれぞれ開口する排気ポート5A-5Dのうち、点火順序の連続しない2本の排気ポート5B,5Cを内部で集合させた集合排気ポート6と、残りの2本の独立した独立排気ポート5A,5Dと、を有し、集合排気ポート6及び2本の独立排気ポート5A,5Dの3本の排気ポートを側面に開口させたシリンダヘッド2と、排気中の有害成分を浄化するための触媒装置31と、シリンダヘッド2の側面に開口した3本の排気ポート6,5A,5Dと触媒装置31とを接続するための排気マニホールド11と、を備える。 The engine 1 according to the present embodiment includes a collective exhaust port 6 in which two exhaust ports 5B and 5C that do not have a continuous ignition order among the exhaust ports 5A to 5D that respectively open to the four cylinders 3A to 3D are assembled. A cylinder head 2 having the remaining two independent independent exhaust ports 5A and 5D, and the three exhaust ports of the collective exhaust port 6 and the two independent exhaust ports 5A and 5D open on the side surface; A catalyst device 31 for purifying harmful components in the exhaust, and an exhaust manifold 11 for connecting the three exhaust ports 6, 5A, 5D opened in the side surface of the cylinder head 2 to the catalyst device 31. Prepare.
 そして、3本の排気ポート6,5A,5Dから排出された排気をそれぞれ個別に触媒装置31に導くために、排気マニホールド11の内部に、隔壁21-23によって区画された3本の排気通路24-26を形成した。 Then, in order to individually guide the exhaust discharged from the three exhaust ports 6, 5A, 5D to the catalyst device 31, three exhaust passages 24 partitioned by the partition walls 21-23 inside the exhaust manifold 11. -26 was formed.
 これにより、集合排気ポート6から排出される2つの気筒3B,3Cの排気の脈動を低減することができる。また、集合排気ポート6から排出される排気と、2本の独立排気ポート5A,5dから排出される排気と、の排気干渉を低減することができる。そのため、各気筒3A-3Dに残留する排気を低減することができる。 Thereby, the exhaust pulsation of the two cylinders 3B and 3C discharged from the collective exhaust port 6 can be reduced. Further, the exhaust interference between the exhaust discharged from the collective exhaust port 6 and the exhaust discharged from the two independent exhaust ports 5A and 5d can be reduced. Therefore, exhaust gas remaining in each cylinder 3A-3D can be reduced.
 また、排気マニホールド11の表面積が、4本の分岐管を有する排気マニホールドよりも小さくなるため、その分、エンジン1の冷間始動時に触媒装置31を早期に昇温させることができる。 Further, since the surface area of the exhaust manifold 11 is smaller than that of the exhaust manifold having four branch pipes, the temperature of the catalyst device 31 can be raised earlier when the engine 1 is cold started.
 また、排気マニホールド11は分岐管が3本なので、排気マニホールド11自体がコンパクトになり、ひいては排気マニホールド11に付随する部品(例えば触媒装置31)を含めたエンジン1の全体がコンパクトになる。そのため、例えば4WD仕様車等の車載スペースに制約がある車両にも搭載が可能となる。 Further, since the exhaust manifold 11 has three branch pipes, the exhaust manifold 11 itself becomes compact, and as a result, the entire engine 1 including parts (for example, the catalyst device 31) attached to the exhaust manifold 11 becomes compact. For this reason, for example, it can be mounted on a vehicle having limited vehicle space such as a 4WD specification vehicle.
 また、本実施形態によるエンジン1は、集合排気ポート6から排出された排気が流れる排気マニホールド11内の第1排気通路24が、シリンダヘッド2から見て相対的に遠い側に配置され、独立排気ポート5A,5Dから排出された排気が流れる排気マニホールド11内の2本の排気通路(第2排気通路25及び第3排気通路26)が、シリンダヘッド2から見て相対的に近い側に配置される。 Further, in the engine 1 according to the present embodiment, the first exhaust passage 24 in the exhaust manifold 11 through which the exhaust discharged from the collective exhaust port 6 flows is disposed on a relatively far side when viewed from the cylinder head 2, and independent exhaust is performed. Two exhaust passages (the second exhaust passage 25 and the third exhaust passage 26) in the exhaust manifold 11 through which the exhaust discharged from the ports 5A and 5D flows are disposed on a relatively close side when viewed from the cylinder head 2. The
 これにより、各気筒3A-3Dから触媒装置31に流入する排気の温度を均一化することができるので、エンジン冷間始動時の熱損失を低減し、触媒装置31に収納されている触媒35の早期活性化を促すことができる。 As a result, the temperature of the exhaust gas flowing into the catalyst device 31 from each cylinder 3A-3D can be made uniform, so that heat loss during cold start of the engine can be reduced, and the catalyst 35 housed in the catalyst device 31 can be reduced. Early activation can be promoted.
 また、本実施形態によるエンジン1では、独立排気ポートから排出された排気が流れる排気マニホールド11内の2本の排気通路(第2排気通路25及び第3排気通路26)のそれぞれの断面積を1とした場合に、集合排気ポート6から排出された排気が流れる排気マニホールド11内の第1排気通路24の断面積を2とした。 In the engine 1 according to the present embodiment, each of the two exhaust passages (the second exhaust passage 25 and the third exhaust passage 26) in the exhaust manifold 11 through which the exhaust discharged from the independent exhaust port flows has a cross-sectional area of 1 In this case, the cross-sectional area of the first exhaust passage 24 in the exhaust manifold 11 through which the exhaust discharged from the collective exhaust port 6 flows is 2.
 これにより、触媒装置31の入口における排気の分配が等分となり、上流側コーン部33に設ける空燃比センサの検出精度を保つことができる。 Thereby, the distribution of the exhaust gas at the inlet of the catalyst device 31 is equally divided, and the detection accuracy of the air-fuel ratio sensor provided in the upstream cone portion 33 can be maintained.
 (第2実施形態)
 次に、図6及び図7を参照して、本発明の第2実施形態によるエンジン1について説明する。本実施形態は、第1排気通路24をシリンダヘッド2から見て相対的に近い側に配置し、第2排気通路25及び第3排気通路26をシリンダヘッド2から見て相対的に遠い側に配置した点で、第1実施形態と相違する。以下、その相違点を中心に説明する。なお、以下に示す各実施形態では前述した第1実施形態と同様の機能を果たす部分には、同一の符号を用いて重複する説明を適宜省略する。
(Second Embodiment)
Next, an engine 1 according to a second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the first exhaust passage 24 is disposed on a relatively close side when viewed from the cylinder head 2, and the second exhaust passage 25 and the third exhaust passage 26 are disposed on a relatively far side when viewed from the cylinder head 2. It differs from the first embodiment in that it is arranged. Hereinafter, the difference will be mainly described. In each of the following embodiments, the same reference numerals are used for portions that perform the same functions as those of the first embodiment described above, and repeated descriptions are omitted as appropriate.
 図6は、本発明の第2実施形態によるシリンダヘッド2の短手方向の側面側から見た排気マニホールド11及び触媒装置31の概略図である。図7は、本発明の第2実施形態排気マニホールド11の集合部15の概略断面図である。 FIG. 6 is a schematic view of the exhaust manifold 11 and the catalyst device 31 as viewed from the lateral side of the cylinder head 2 according to the second embodiment of the present invention. FIG. 7 is a schematic cross-sectional view of the collecting portion 15 of the exhaust manifold 11 according to the second embodiment of the present invention.
 本実施形態では、図6に示すように、第1排気通路24を、水平方向に延び出した後、湾曲して鉛直方向の下方に向かうように形成する。そして、図6及び図7に示すように、第1排気通路24の下流側を、シリンダヘッド2から見て相対的に近い側に配置する。 In this embodiment, as shown in FIG. 6, the first exhaust passage 24 is formed so as to extend downward in the horizontal direction and then bend downward in the vertical direction. Then, as shown in FIGS. 6 and 7, the downstream side of the first exhaust passage 24 is disposed on a relatively close side when viewed from the cylinder head 2.
 すなわち本実施形態では、図7に示すように、第1隔壁21及び第2隔壁22によって集合部15の下流側の通路断面積をシリンダヘッド2から見て相対的に遠い側と近い側とに2等分したときに、シリンダヘッド2から見て相対的に近い側を第1排気通路24とする。 That is, in the present embodiment, as shown in FIG. 7, the first partition wall 21 and the second partition wall 22 cause the passage cross-sectional area on the downstream side of the collecting portion 15 to be relatively far and closer to the side as viewed from the cylinder head 2. A side that is relatively close to the cylinder head 2 when divided into two equal parts is defined as a first exhaust passage 24.
 また本実施形態では、図6に示すように、第2排気通路25及び第3排気通路26を、水平方向に延び出した後、湾曲して鉛直方向の下方に向かうように形成する。そして、図6及び図7に示すように、第2排気通路25の下流側を、シリンダヘッド2から見て相対的に遠い側、かつ、#1気筒3Aに近い側(図7では左側)に配置する。また、第3排気通路26の下流側を、シリンダヘッド2から見て相対的に遠い側、かつ、#4気筒3Dに近い側(図7では右側)に配置する。 In the present embodiment, as shown in FIG. 6, the second exhaust passage 25 and the third exhaust passage 26 are formed to extend in the horizontal direction and then bend downward in the vertical direction. Then, as shown in FIGS. 6 and 7, the downstream side of the second exhaust passage 25 is located on the side far from the cylinder head 2 and near the # 1 cylinder 3A (left side in FIG. 7). Deploy. Further, the downstream side of the third exhaust passage 26 is disposed on the side relatively far from the cylinder head 2 and on the side close to the # 4 cylinder 3D (the right side in FIG. 7).
 すなわち本実施形態では、図7に示すように、第1隔壁21及び第2隔壁22によって2等分された集合部15内部の2つの通路のうち、シリンダヘッド2から見て相対的に遠い側の通路の断面積を第3隔壁23によって2等分し、#1気筒3Aに近い側を第2排気通路25、#4気筒3Dに近い側を第3排気通路26とする。 That is, in the present embodiment, as shown in FIG. 7, of the two paths inside the collecting portion 15 divided into two equal parts by the first partition wall 21 and the second partition wall 22, the side relatively far from the cylinder head 2. Is divided into two equal parts by the third partition wall 23, and the side close to the # 1 cylinder 3A is referred to as a second exhaust passage 25, and the side close to the # 4 cylinder 3D is referred to as a third exhaust passage 26.
 このように本実施形態では、第1排気通路24をシリンダヘッド2から見て相対的に近い側に配置させ、第2排気通路25及び第3排気通路26をシリンダヘッド2から見て相対的に遠い側に配置させたので、第1実施形態のように、第1排気通路24を鉛直方向の上方に向かって斜めに立ち上がた後、湾曲させて鉛直方向の下方に向かわせる必要がない。そのため、排気マニホールド11を、よりコンパクトな形状にすることができる。 As described above, in the present embodiment, the first exhaust passage 24 is disposed on a relatively close side as viewed from the cylinder head 2, and the second exhaust passage 25 and the third exhaust passage 26 are relatively viewed from the cylinder head 2. Since it is arranged on the far side, it is not necessary to make the first exhaust passage 24 obliquely rise upward in the vertical direction and then bend downward in the vertical direction as in the first embodiment. . Therefore, the exhaust manifold 11 can be made more compact.
 以上説明した本実施形態によるエンジン1は、集合排気ポート6から排出された排気が流れる排気マニホールド11内の第1排気通路24が、シリンダヘッド2から見て相対的に近い側に配置され、独立排気ポート5A,5Dから排出された排気が流れる排気マニホールド11内の2本の排気通路(第2排気通路25及び第3排気通路26)が、シリンダヘッド2から見て相対的に遠い側に配置される。 In the engine 1 according to the present embodiment described above, the first exhaust passage 24 in the exhaust manifold 11 through which the exhaust discharged from the collective exhaust port 6 flows is disposed on a relatively close side when viewed from the cylinder head 2 and is independent. Two exhaust passages (the second exhaust passage 25 and the third exhaust passage 26) in the exhaust manifold 11 through which the exhaust discharged from the exhaust ports 5A and 5D flows are arranged on the relatively far side when viewed from the cylinder head 2. Is done.
 これにより、排気マニホールド11をよりコンパクトにすることができる。 Thereby, the exhaust manifold 11 can be made more compact.
 (第3実施形態)
 次に、図8及び図9を参照して、本発明の第3実施形態によるエンジン1について説明する。本実施形態は、第2排気通路25及び第3排気通路26を、触媒装置31の入口直前で合流させた点で、第1実施形態と相違する。以下、その相違点を中心に説明する。
(Third embodiment)
Next, an engine 1 according to a third embodiment of the present invention will be described with reference to FIGS. This embodiment is different from the first embodiment in that the second exhaust passage 25 and the third exhaust passage 26 are joined just before the entrance of the catalyst device 31. Hereinafter, the difference will be mainly described.
 図8は、本発明の第3実施形態によるシリンダヘッド2の短手方向の側面側から見た排気マニホールド11及び触媒装置31の概略図である。図9は、本発明の第3実施形態排気マニホールド11の集合部15の概略断面図である。 FIG. 8 is a schematic view of the exhaust manifold 11 and the catalyst device 31 as viewed from the lateral side of the cylinder head 2 according to the third embodiment of the present invention. FIG. 9 is a schematic cross-sectional view of the collecting portion 15 of the exhaust manifold 11 according to the third embodiment of the present invention.
 第1実施形態では、3本の排気通路24-26によって、集合排気ポート6及び独立排気ポート5A,5Dからそれぞれ排出された排気を独立に触媒装置31の入口まで導いていた。 In the first embodiment, the exhaust discharged from the collective exhaust port 6 and the independent exhaust ports 5A and 5D is independently led to the inlet of the catalyst device 31 by the three exhaust passages 24-26.
 これに対して本実施形態では、第2排気通路25及び第3排気通路26を排気マニホールド11の集合部15の内部で1本に集合させ、独立排気ポート5A,5Dからそれぞれ排出された排気に関しては、触媒装置31の入口直前までそれぞれ独立に導く。 On the other hand, in the present embodiment, the second exhaust passage 25 and the third exhaust passage 26 are gathered into one inside the gathering portion 15 of the exhaust manifold 11, and the exhaust discharged from the independent exhaust ports 5A and 5D, respectively. Are guided independently until just before the entrance of the catalyst device 31.
 具体的な構成としては、隔壁23を形成する位置を、触媒装置31の入口より所定長さだけ排気マニホールド11の集合部15内の上流側に入った位置までとし、その位置より触媒装置31の入口までの間には、隔壁23を設けない。このため、図8に示すように、第2排気通路25及び第3排気通路26は、隔壁23がなくなる下流側で1本に集合して集合排気通路27となり、集合排気通路27が触媒装置31に接続されることになる。 As a specific configuration, a position where the partition wall 23 is formed is set to a position that enters the upstream side in the collecting portion 15 of the exhaust manifold 11 by a predetermined length from the inlet of the catalyst device 31, and from that position of the catalyst device 31. No partition wall 23 is provided between the entrances. For this reason, as shown in FIG. 8, the second exhaust passage 25 and the third exhaust passage 26 are gathered together on the downstream side where the partition wall 23 is removed to form a collective exhaust passage 27, and the collective exhaust passage 27 is formed in the catalyst device 31. Will be connected to.
 すなわち、図9に示すように、排気マニホールド11の集合部15の下流側では、第1隔壁21と第2隔壁22とを同一の面上に並べられ、この並べた第1隔壁21及び第2隔壁22によって、集合部15の下流側の通路断面積をシリンダヘッド2から見て相対的に遠い側と近い側とに2等分される。そして、2等分された集合部15内の通路のうち、シリンダヘッド2から見て相対的に遠い側が第1排気通路24となり、近い側が集合排気通路27となる。 That is, as shown in FIG. 9, on the downstream side of the collecting portion 15 of the exhaust manifold 11, the first partition wall 21 and the second partition wall 22 are arranged on the same surface. By the partition wall 22, the passage sectional area on the downstream side of the collecting portion 15 is divided into two equal parts, that is, a relatively far side and a near side when viewed from the cylinder head 2. Of the passages in the collecting portion 15 that are divided into two equal parts, the side far from the cylinder head 2 is the first exhaust passage 24, and the near side is the collecting exhaust passage 27.
 以上説明した本実施形態によるエンジン1は、第2排気通路25及び第3排気通路26が、触媒装置31の入口直前で合流しているので、触媒装置31の入口直前で隔壁がなくるために排気マニホールド11の設計自由度が増し、排気マニールド11を第1実施形態よりコンパクトにすることができる。 In the engine 1 according to the present embodiment described above, since the second exhaust passage 25 and the third exhaust passage 26 merge immediately before the entrance of the catalyst device 31, there is no partition immediately before the entrance of the catalyst device 31. The design flexibility of the exhaust manifold 11 is increased, and the exhaust manifold 11 can be made more compact than the first embodiment.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 例えば上記第1実施形態では、独立排気ポート5A、集合排気ポート6及び独立排気ポート5Dの3本の排気ポートから排出された排気をそれぞれ独立に触媒装置31の入口まで導いていたが、触媒装置31の入口直前まで導くようにしても良い。 For example, in the first embodiment, the exhaust discharged from the three exhaust ports of the independent exhaust port 5A, the collective exhaust port 6 and the independent exhaust port 5D is independently led to the inlet of the catalyst device 31, but the catalyst device You may make it guide to just before the entrance of 31.
 本願は、2013年6月3日に日本国特許庁に出願された特願2013-117046号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-117066 filed with the Japan Patent Office on June 3, 2013, the entire contents of which are hereby incorporated by reference.

Claims (6)

  1.  4つの気筒にそれぞれ開口する排気ポートのうち、点火順序の連続しない2本の排気ポートを内部で集合させた集合排気ポートと、残りの2本の独立した独立排気ポートと、を有し、前記集合排気ポート及び前記2本の独立排気ポートの3本の排気ポートを側面に開口させたシリンダヘッドと、
     排気中の有害成分を浄化するための触媒装置と、
     前記シリンダヘッドの側面に開口した前記3本の排気ポートと、前記触媒装置と、を接続するための排気マニホールドと、
    を備えるエンジンであって、
     前記排気マニホールドは、
      前記3本の排気ポートから排出された排気をそれぞれ前記触媒装置に導くために、前記排気マニホールドの内部に形成された隔壁によって区画された3本の排気通路を備える、
    エンジン。
    Among the exhaust ports that open to the four cylinders, respectively, there are a collective exhaust port in which two exhaust ports that are not in the ignition order are gathered inside, and the remaining two independent independent exhaust ports, A cylinder head in which three exhaust ports of the collective exhaust port and the two independent exhaust ports are opened on a side surface;
    A catalytic device for purifying harmful components in the exhaust;
    An exhaust manifold for connecting the three exhaust ports opened to the side surface of the cylinder head and the catalyst device;
    An engine comprising
    The exhaust manifold is
    In order to guide the exhaust discharged from the three exhaust ports to the catalyst device, respectively, three exhaust passages partitioned by partition walls formed in the exhaust manifold are provided.
    engine.
  2.  前記集合排気ポートから排出された排気が流れる前記排気マニホールド内の排気通路は、前記シリンダヘッドから見て相対的に遠い側に配置され、
     前記独立排気ポートから排出された排気が流れる前記排気マニホールド内の2本の排気通路は、前記シリンダヘッドから見て相対的に近い側に配置される、
    請求項1に記載のエンジン。
    The exhaust passage in the exhaust manifold through which the exhaust discharged from the collective exhaust port flows is disposed on a relatively far side when viewed from the cylinder head,
    The two exhaust passages in the exhaust manifold through which the exhaust discharged from the independent exhaust port flows are disposed on a relatively close side when viewed from the cylinder head.
    The engine according to claim 1.
  3.  前記独立排気ポートから排出された排気が流れる前記排気マニホールド内の2本の排気通路のそれぞれの断面積を1とした場合に、前記集合排気ポートから排出された排気が流れる前記排気マニホールド内の排気通路の断面積が2である、
    請求項1又は請求項2に記載のエンジン。
    Exhaust in the exhaust manifold through which the exhaust discharged from the collective exhaust port flows when the cross-sectional area of each of the two exhaust passages in the exhaust manifold through which the exhaust discharged from the independent exhaust port flows is 1. The cross-sectional area of the passage is 2,
    The engine according to claim 1 or 2.
  4.  前記3本の排気通路は、前記3本の排気ポートから排出された排気をそれぞれ独立に前記触媒装置の入口まで導く、
    請求項1から請求項3までのいずれか1つに記載のエンジン。
    The three exhaust passages guide the exhaust discharged from the three exhaust ports independently to the inlet of the catalyst device,
    The engine according to any one of claims 1 to 3.
  5.  前記独立排気ポートから排出された排気が流れる前記排気マニホールド内の2本の排気通路は、前記触媒装置の入口直前で合流する、
    請求項1から請求項3までのいずれか1つに記載のエンジン。
    The two exhaust passages in the exhaust manifold through which the exhaust discharged from the independent exhaust port flows joins immediately before the inlet of the catalyst device;
    The engine according to any one of claims 1 to 3.
  6.  前記集合排気ポートから排出された排気が流れる前記排気マニホールド内の排気通路は、前記シリンダヘッドから見て相対的に近い側に配置され、
     前記独立排気ポートから排出された排気が流れる前記排気マニホールド内の2本の排気通路は、前記シリンダヘッドから見て相対的に遠い側に配置される、
    請求項1に記載のエンジン。
    The exhaust passage in the exhaust manifold through which the exhaust discharged from the collective exhaust port flows is disposed on a relatively close side when viewed from the cylinder head,
    The two exhaust passages in the exhaust manifold through which the exhaust discharged from the independent exhaust port flows are disposed on a relatively far side when viewed from the cylinder head.
    The engine according to claim 1.
PCT/JP2014/061046 2013-06-03 2014-04-18 Engine WO2014196279A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-117046 2013-06-03
JP2013117046 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196279A1 true WO2014196279A1 (en) 2014-12-11

Family

ID=52007933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061046 WO2014196279A1 (en) 2013-06-03 2014-04-18 Engine

Country Status (1)

Country Link
WO (1) WO2014196279A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148345A (en) * 1997-11-19 1999-06-02 Toyota Motor Corp Structure of discharge port for exhaust manifold
JP2005220922A (en) * 2005-04-21 2005-08-18 Nissan Motor Co Ltd Exhaust manifold of four-cylinder engine
JP2008038838A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Internal combustion engine
JP2008121570A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Exhaust manifold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11148345A (en) * 1997-11-19 1999-06-02 Toyota Motor Corp Structure of discharge port for exhaust manifold
JP2005220922A (en) * 2005-04-21 2005-08-18 Nissan Motor Co Ltd Exhaust manifold of four-cylinder engine
JP2008038838A (en) * 2006-08-09 2008-02-21 Toyota Motor Corp Internal combustion engine
JP2008121570A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Exhaust manifold

Similar Documents

Publication Publication Date Title
US7611561B2 (en) Diesel exhaust filter construction
JP4525646B2 (en) Internal combustion engine
EP3505732B1 (en) Engine exhaust device
EP1979590B1 (en) Internal combustion engine
CN108571368B (en) Exhaust device of engine
JP4748081B2 (en) Exhaust device for internal combustion engine
JP6418263B2 (en) Engine exhaust system
JP2016180395A (en) Cylinder head
JP5983517B2 (en) Engine exhaust pipe structure with catalyst
WO2013172129A1 (en) Exhaust gas discharge device for internal combustion engine
JP5849986B2 (en) Engine exhaust pipe structure with catalyst
EP1695757B1 (en) Exhaust purification device and exhaust purification method for an internal combustion engine
JP4257528B2 (en) Multi-cylinder internal combustion engine
WO2014196279A1 (en) Engine
JP2008121570A (en) Exhaust manifold
EP3974628B1 (en) Catalytic converter
CN108571404B (en) Exhaust device of engine
WO2018110325A1 (en) Engine exhaust device
US20130067897A1 (en) Exhaust manifold
JP6447813B2 (en) Exhaust device for multi-cylinder internal combustion engine
JP3856207B2 (en) Exhaust device for multi-cylinder internal combustion engine
JP2013217288A (en) Exhaust port structure for internal combustion engine
KR102175413B1 (en) Conecting unit of exhaust manifold and cataltic converter and system having same
JP6547616B2 (en) Intake device
WO2016035154A1 (en) Exhaust device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP