WO2014196146A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2014196146A1
WO2014196146A1 PCT/JP2014/002731 JP2014002731W WO2014196146A1 WO 2014196146 A1 WO2014196146 A1 WO 2014196146A1 JP 2014002731 W JP2014002731 W JP 2014002731W WO 2014196146 A1 WO2014196146 A1 WO 2014196146A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
acceleration
vehicle
force
calculated
Prior art date
Application number
PCT/JP2014/002731
Other languages
French (fr)
Japanese (ja)
Inventor
学 藤戸
泰信 原薗
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2014196146A1 publication Critical patent/WO2014196146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K23/00Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips
    • B62K23/02Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips hand actuated
    • B62K23/04Twist grips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4152Inclination sensors for sensing longitudinal inclination of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/02Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by hand, foot, or like operator controlled initiation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/702Road conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit

Definitions

  • the present invention relates to a vehicle.
  • An object of the present invention is to provide a vehicle that can travel stably without deteriorating the driving feeling of the driver.
  • a vehicle includes a main body having drive wheels, a prime mover that generates torque for rotating the drive wheels, and an output adjustment device that is operated by a driver to adjust the output of the prime mover.
  • the reaction force adjustment unit is configured to adjust the reaction force applied to the driver from the output adjustment device in response to the operation of the output adjustment device, and the reaction force adjustment unit is controlled based on the vertical reaction force applied to the driving wheel from the road surface.
  • a control unit configured to do this.
  • the output of the prime mover is adjusted by the driver operating the output adjusting device.
  • the drive wheels are rotated by torque generated by the prime mover. Thereby, the main body moves.
  • the reaction force applied to the driver from the output adjustment device with respect to the operation of the output adjustment device is adjusted by the reaction force adjustment unit.
  • the reaction force adjusting unit is controlled by the control unit based on the vertical drag applied to the driving wheel from the road surface.
  • the frictional force between the driving wheel and the road surface is proportional to the vertical drag applied to the driving wheel from the road surface. Since the reaction force adjusting unit is controlled based on the vertical drag, the reaction force applied to the driver from the output adjusting device is adjusted according to the frictional force acting on the drive wheels. Based on the reaction force from the output adjusting device, the driver can adjust the operation amount of the output adjusting device so as to prevent the drive wheels from slipping. In this case, the driver can adjust the output of the prime mover at his / her own will. Therefore, the driver can drive the vehicle stably without reducing the driving feeling of the driver.
  • the control unit may calculate a normal force applied to the driving wheel based on a road gradient. In this case, a reaction force is appropriately applied to the driver from the output adjusting device in accordance with the gradient of the road surface.
  • the control unit may calculate a normal force applied to the drive wheel based on an inertial force acting on the vehicle.
  • a reaction force is appropriately applied to the driver from the output adjustment device in accordance with the inertial force acting on the vehicle.
  • the control unit may calculate an inertial force acting on the vehicle based on the acceleration of the vehicle. In this case, the inertial force acting on the vehicle can be easily calculated.
  • the control unit may calculate a normal force applied to the driving wheel based on an air resistance acting on the vehicle. In this case, a reaction force is appropriately applied to the driver from the output adjustment device in accordance with the air resistance acting on the vehicle.
  • the control unit may calculate the air resistance acting on the vehicle based on the speed of the vehicle. In this case, the air resistance acting on the vehicle can be easily calculated.
  • the control unit may calculate a normal force applied to the drive wheels based on the lift acting on the vehicle. In this case, a reaction force is appropriately applied to the driver from the output adjustment device in accordance with the lift acting on the vehicle.
  • the control unit may calculate lift acting on the vehicle based on the speed of the vehicle. In this case, the lift force acting on the vehicle can be easily calculated.
  • the vehicle further includes an acceleration detector configured to detect a lateral acceleration that is substantially parallel to the road surface and intersects with the front-rear direction of the main body as a lateral acceleration, and the control unit is provided on the driving wheel.
  • the friction circle to be used is set based on the applied vertical drag, and based on the set friction circle, the maximum in the front-rear direction of the main body that should be allowed corresponding to the lateral acceleration detected by the acceleration detector
  • the acceleration may be acquired as the vertical limit acceleration, and the reaction force adjustment unit may be controlled based on the acquired vertical limit acceleration.
  • the longitudinal limit acceleration is acquired based on the lateral acceleration detected by the acceleration detector and the friction circle set based on the vertical drag applied to the driving wheel, and based on the acquired longitudinal limit acceleration.
  • the reaction force adjusting unit is controlled. Thereby, it is possible to make the driver accurately recognize whether or not the acceleration of the main body is appropriate for stable traveling. Therefore, the driver can drive the vehicle stably.
  • the vehicle further includes a storage unit that stores a predetermined friction circle, and the control unit should be used by correcting the friction circle stored in the storage unit based on the vertical drag applied to the drive wheels.
  • a friction circle may be set.
  • an appropriate friction circle corresponding to the vertical drag applied to the drive wheel is set as a friction circle to be used, and the longitudinal limit acceleration is acquired based on the friction circle.
  • the driver can drive the vehicle stably without reducing the driving feeling of the driver.
  • FIG. 1 is a schematic side view showing a motorcycle according to a first embodiment.
  • FIG. 2 is a top view of the motorcycle shown in FIG.
  • FIG. 3 is a cross-sectional view showing the configuration of the accelerator grip device.
  • FIG. 4 is a view for explaining the arrangement of the grip sleeve and the gear.
  • FIG. 5 is a block diagram for explaining a control system of the motorcycle.
  • FIG. 6 is a diagram illustrating an example of a friction circle.
  • FIG. 7 is a diagram showing another example of the friction circle.
  • FIG. 8 is a diagram showing the relationship between the accelerator opening and the reference reaction force.
  • FIG. 9 is a diagram for explaining the motor reaction force in the reaction force strengthening mode.
  • FIG. 10 is a diagram for explaining the motor reaction force in the friction mode.
  • FIG. 10 is a diagram for explaining the motor reaction force in the friction mode.
  • FIG. 11 is a flowchart of the accelerator reaction force adjustment process.
  • FIG. 12 is a flowchart of the correction coefficient calculation process.
  • FIG. 13 is a diagram for explaining a method of calculating the gradient angle and the driving wheel normal force.
  • FIG. 14 is a diagram for explaining a method of calculating the gradient angle and the drive wheel normal force.
  • FIG. 15 is a flowchart of the friction circle calculation process.
  • FIG. 16 is a flowchart of the reaction force calculation process.
  • FIG. 17 is a flowchart of another example of the correction coefficient calculation process.
  • FIG. 18 is a flowchart of another example of the correction coefficient calculation process.
  • FIG. 19 is a flowchart of another example of the correction coefficient calculation process.
  • FIG. 20 is a diagram for explaining a method of calculating the driving wheel normal force.
  • FIG. 21 is a diagram for explaining a method of calculating the driving wheel normal force.
  • FIG. 22 is a flowchart of another example of the reaction force calculation process
  • FIG. 1 is a schematic side view showing a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a top view of the motorcycle shown in FIG.
  • a head pipe 102 is provided at the front end of the main body frame 101.
  • a front fork 103 is provided on the head pipe 102 so as to be swingable in the left-right direction.
  • a front wheel 104 is rotatably attached to the lower end of the front fork 103.
  • a handle 105 is provided at the upper end of the head pipe 102.
  • the handle 105 is provided with an accelerator grip device 106 and a setting switch 120.
  • the driver adjusts the output of the engine 107 described later by operating the accelerator grip device 106.
  • the driver operates the setting switch 120 to select a friction circle and a control mode, which will be described later.
  • the front-rear direction is a direction that is substantially parallel to the road surface and parallel to a vertical plane that includes the central axis CA (FIG. 2) of the main body frame 101.
  • the left-right direction is a direction substantially parallel to the road surface and orthogonal to the front-rear direction.
  • the road surface is a surface where the front wheel 104 and the rear wheel 115 are in contact.
  • an engine 107 having a carburetor or a fuel injection device is disposed at the center of the main body frame 101.
  • the engine 107 is provided with a rotation speed sensor SE1.
  • the rotational speed sensor SE1 detects the rotational speed of the engine 107 (hereinafter referred to as engine rotational speed).
  • an intake pipe 108 and an exhaust pipe 109 are attached to the engine 107.
  • the intake pipe 108 is provided with a throttle device 60 (FIG. 5) described later.
  • a transmission case 110 is provided behind the engine 107.
  • a transmission 6 and a gear ratio sensor SE2 are provided in the transmission case 110.
  • a shift pedal 210 is provided on the side of the transmission case 110.
  • a rear arm 114 is provided to extend rearward of the transmission case 110.
  • a rear wheel 115 is rotatably attached to the rear end of the rear arm 114. Torque generated by the engine 107 (hereinafter referred to as engine torque) is transmitted to the rear wheel 115, whereby the rear wheel 115 is driven.
  • the engine 107 is connected to the rear wheel 115 via the transmission 6.
  • the gear ratio is the ratio of the rotational speed of the engine 107 to the rotational speed of the rear wheel 115.
  • the gear ratio sensor SE2 detects the gear ratio from the gear position of the transmission 6, for example.
  • a fuel tank 112 is provided above the engine 107, and two seats 113 are provided behind the fuel tank 112 so as to be lined up and down. Below these sheets 113, a roll angle sensor SE3 and an ECU (Electronic Control Unit) 80 are provided.
  • the roll angle sensor SE3 is, for example, a gyro sensor or an acceleration sensor, and detects the roll angle of the motorcycle 100.
  • the roll angle of the motorcycle 100 refers to the angle of inclination of the motorcycle 100 with respect to the vertical direction. For example, when the motorcycle 100 is in the upright posture, the roll angle is 0 degree, and when the motorcycle 100 turns right or left, the roll angle becomes large. Details of the ECU 80 will be described later.
  • FIG. 3 is a cross-sectional view showing the configuration of the accelerator grip device 106.
  • the handle 105 has a handle bar 105a having a substantially cylindrical shape.
  • An accelerator grip device 106 is provided on the handle bar 105a.
  • the accelerator grip device 106 includes a grip sleeve 51, an accelerator grip member 52, a friction generating member 53, a case member 54, a coil spring 55, and gears 56, 57a, 57b, and 58.
  • the grip sleeve 51 has a substantially cylindrical shape and is rotatably provided on the handle bar 105a. Specifically, the grip sleeve 51 is fitted into the handle bar 105a so as to be slidable with respect to the outer peripheral surface of the handle bar 105a.
  • the accelerator grip member 52 has a substantially cylindrical shape and is fixed to the outer peripheral surface of the grip sleeve 51. Thereby, the accelerator grip member 52 rotates integrally with the grip sleeve 51 about the axis P1 of the handle bar 105a as a rotation axis.
  • the driver adjusts the output of the engine 107 by gripping the accelerator grip member 52 and rotating the grip sleeve 51 and the accelerator grip member 52 integrally.
  • the rotational direction of the grip sleeve 51 and the accelerator grip member 52 for increasing the output of the engine 107 will be referred to as an opening direction R1
  • the rotational direction of the grip sleeve 51 and the accelerator grip member 52 for decreasing the output of the engine 107 will be referred to.
  • the grip sleeve 51 and the accelerator grip member 52 can be rotated to a predetermined open position in the opening direction R1, and can be rotated to a predetermined closed position in the closing direction R2.
  • the case member 54 is fixed to the outer peripheral surface of the handle bar 105a.
  • One end of the grip sleeve 51 protrudes from one end of the accelerator grip member 52 and is accommodated in the case member 54.
  • the grip sleeve 51 is not fixed to the case member 54 and is rotatable with respect to the case member 54.
  • the case member 54 includes a bearing groove 54a, a friction generating portion 54b, a gear housing portion 54c, and a motor housing portion 54d.
  • An annular protrusion 51 a is provided at one end of the grip sleeve 51.
  • the protrusion 51a of the grip sleeve 51 is rotatably accommodated in the bearing groove 54a via the bearing member 51b. Thereby, the movement of the grip sleeve 51 in the axial direction is stopped.
  • An annular friction generating member 53 is provided in the friction generating portion 54b.
  • the friction generating member 53 is made of, for example, a viscoelastic polymer material such as synthetic rubber, and contacts the outer peripheral surface of the grip sleeve 51.
  • a viscoelastic polymer material such as synthetic rubber
  • the coil spring 55 and the gears 56, 57a, 57b, and 58 are accommodated in the gear accommodating portion 54c.
  • the motor 59 is accommodated in the motor accommodating portion 54d.
  • One end of the coil spring 55 is fixed to the grip sleeve 51, and the other end is fixed to the case member 54.
  • the coil spring 55 biases the grip sleeve 51 in the closing direction R2.
  • FIG. 4 is a view for explaining the arrangement of the grip sleeve 51 and the gears 56, 57 a, 57 b and 58. 4 shows the side surfaces of the grip sleeve 51 and the gears 56, 57a, 57b, and 58 as seen from the direction of the arrow T in FIG.
  • the gear 56 is provided integrally with the grip sleeve 51 so as to spread in a fan shape within a certain angular range with respect to the axis of the grip sleeve 51 (the axis P1 of the handle bar 105a).
  • the gears 57a and 57b are provided integrally with each other.
  • the diameter of the gear 57a is smaller than the diameter of the gear 57b.
  • the gear 56 is meshed with the gear 57a, and the gear 58 is meshed with the gear 57b.
  • the rotating shaft 59a of the motor 59 is arranged along the axial direction.
  • a gear 58 is attached to the rotation shaft 59 a of the motor 59.
  • the grip sleeve 51 and the motor 59 are connected via the gears 56, 57a, 57b, and 58.
  • the motor 59 is controlled such that a force in the closing direction R2 is applied from the motor 59 to the grip sleeve 51.
  • Accelerator opening sensor SE4 is disposed at a position facing gear 57a.
  • the accelerator opening sensor SE4 detects the rotation angle of the grip sleeve 51 as the accelerator opening by detecting the rotation angle of the gear 57a (gear 57b).
  • FIG. 5 is a block diagram for explaining a control system of the motorcycle 100.
  • the ECU 80 includes a CPU (Central Processing Unit) 81, a ROM (Read Only Memory) 82, and a RAM (Random Access Memory) 83.
  • the detection results of the rotation speed sensor SE1, the gear ratio sensor SE2, and the roll angle sensor SE3 are given to the CPU 81.
  • a vehicle speed sensor SE6 that detects the moving speed (vehicle speed) of the motorcycle 100 is provided.
  • the vehicle speed sensor SE6 detects the vehicle speed from the rotational speed of the rear wheel 115, for example.
  • the detection result of the vehicle speed sensor SE6 is given to the CPU 81.
  • the operation content of the setting switch 120 by the driver is given to the CPU 81.
  • the detection result of the accelerator opening sensor SE4 of the accelerator grip device 106 is given to the CPU 81.
  • the CPU 81 controls the motor 59 of the accelerator grip device 106.
  • the throttle device 60 includes a throttle valve 61, a throttle drive device 62, and a throttle opening sensor SE5.
  • the throttle opening By adjusting the opening of the throttle valve 61 (hereinafter referred to as the throttle opening) by the throttle driving device 62, the intake amount of the engine 107 is adjusted. Thereby, the output of the engine 107 is adjusted.
  • the throttle drive device 62 is, for example, a motor.
  • the CPU 81 of the ECU 80 controls the throttle drive device 62 based on the detection result of the accelerator opening sensor SE4.
  • the throttle opening sensor SE5 detects the throttle opening and gives the detection result to the CPU 81.
  • a control program is stored in the ROM 82 of the ECU 80.
  • the CPU 81 executes an accelerator reaction force adjustment process, which will be described later, by executing a control program stored in the ROM 82 on the RAM 83.
  • the ROM 82 stores a map representing the relationship between the engine speed, the engine torque and the throttle opening, and various numerical values used for accelerator reaction force adjustment processing.
  • FIG. 6 is a diagram illustrating an example of a friction circle.
  • the vertical axis represents the acceleration Fx in the front-rear direction
  • the horizontal axis represents the acceleration Fy in the left-right direction.
  • the forward acceleration (acceleration during driving) of the main body frame 101 (FIG. 1) is represented by a positive value
  • the backward acceleration (acceleration during braking) of the main body frame 101 is negative. It is represented by the value of Further, the acceleration in the right direction of the main body frame 101 is represented by a positive value, and the acceleration in the left direction of the main body frame 101 is represented by a negative value.
  • acceleration in the front-rear direction is referred to as longitudinal acceleration
  • acceleration in the left-right direction is referred to as lateral acceleration.
  • the lateral acceleration is zero.
  • the lateral acceleration becomes a negative value
  • the lateral acceleration becomes a positive value.
  • the friction circle FC represents the limit values of the longitudinal acceleration and the lateral acceleration for preventing the rear wheel 115 (FIG. 1) as the driving wheel from slipping on the road surface.
  • the limit value means a maximum value and a minimum value.
  • the maximum value of the vertical acceleration is Fx1
  • the maximum value of the vertical acceleration is Fx2.
  • the maximum value of the longitudinal acceleration calculated from the lateral acceleration based on the friction circle FC is referred to as a longitudinal limit acceleration.
  • the radius (hereinafter referred to as the longitudinal diameter) rx of the friction circle FC in the vertical axis direction and the radius (hereinafter referred to as the lateral diameter) ry of the friction circle FC in the horizontal axis direction are equal to each other. Is a perfect circle, but the longitudinal diameter rx and the transverse diameter ry are different from each other, and the friction circle FC may be an ellipse other than the perfect circle.
  • FIG. 7 is a diagram illustrating another example of the friction circle FC. In the example of FIG. 7, the vertical diameter rx is larger than the horizontal diameter ry, and the friction circle FC is a vertically long ellipse.
  • the shape and size of the appropriate friction circle FC differ depending on various conditions such as the road surface state, the state of the rear wheel 115 (FIG. 1), and the skill of the driver. For example, when the road surface is wet or frozen, the friction between the road surface and the rear wheel 115 is reduced. In that case, the vertical diameter rx and the horizontal diameter ry are small. Conversely, for example, when the rear wheel 115 having a high grip force is used, the friction between the road surface and the rear wheel 115 increases. In that case, the longitudinal diameter rx and the lateral diameter ry are large.
  • a plurality of friction circle data is stored in advance in the ROM 82 (FIG. 5) of the ECU 80.
  • the plurality of friction circle data includes different vertical diameters rx and horizontal diameters ry.
  • the driver operates the setting switch 120 to select one piece of friction circle data. Thereby, one vertical diameter rx and one horizontal diameter ry are selected.
  • the vertical drag applied to the rear wheel 115 from the road surface (hereinafter referred to as drive wheel vertical drag) is calculated, and the selected vertical diameter rx and horizontal diameter ry are corrected based on the calculated drive wheel vertical drag.
  • appropriate longitudinal diameter rx and lateral diameter ry are set in accordance with the traveling state of motorcycle 100.
  • the longitudinal diameter rx and the lateral diameter ry may be individually set by the driver, and the set longitudinal diameter rx and lateral diameter ry may be corrected based on the driving wheel normal force.
  • the accelerator reaction force includes a biasing force of the coil spring 55, a friction force generated by the friction generating member 53, and a reaction force generated by the motor 59.
  • a reaction force generated by the motor 59 is generated when a predetermined condition is satisfied.
  • reaction force generated by the motor 59 is referred to as a motor reaction force
  • other reaction force reaction force due to the coil spring 55 and the friction generating member 53
  • reference reaction force reaction force due to the coil spring 55 and the friction generating member 53
  • FIG. 8 is a diagram showing the relationship between the accelerator opening and the reference reaction force.
  • the horizontal axis represents the accelerator opening
  • the vertical axis represents the reference reaction force.
  • the accelerator opening when the accelerator grip member 52 is in the closed position is MIN
  • the accelerator opening when the accelerator grip member 52 is in the open position is MAX.
  • the accelerator opening is increased when the accelerator grip member 52 is rotated in the opening direction R1, and the accelerator opening is decreased when the accelerator grip member 52 is rotated in the closing direction R2.
  • the relationship between the accelerator opening and the reference reaction force has a hysteresis characteristic.
  • the reference reaction force for rotating the accelerator grip member 52 in the opening direction R1 is larger than the reference reaction force for rotating the accelerator grip member 52 in the closing direction R2. Further, in each of the case where the accelerator grip member 52 is rotated in the opening direction R1 and the case where the accelerator grip member 52 is rotated in the closing direction R2, the reference reaction force increases as the accelerator opening degree increases.
  • the relationship between the accelerator opening and the reference reaction force is not limited to the example of FIG.
  • the reference reaction force may change in a curve with respect to the accelerator opening, or the reference reaction force may be constant with respect to the accelerator opening.
  • the reference reaction force when the accelerator grip member 52 is rotated in the opening direction R1 may be equal to the reference reaction force when the accelerator grip member 52 is rotated in the closing direction R2.
  • a reaction force strengthening mode there are a reaction force strengthening mode, a friction mode, and a summing mode as control modes for controlling the motor reaction force.
  • the driver operates the setting switch 120 to select any one of the control mode from the reaction force strengthening mode, the friction mode, and the summing mode according to preference or other various conditions.
  • FIG. 9 is a diagram for explaining the motor reaction force in the reaction force enhancement mode.
  • the horizontal axis indicates the engine torque
  • the vertical axis indicates the motor reaction force.
  • the control start torque D is calculated based on the friction circle FC.
  • the control start torque D will be described later.
  • the motor reaction force changes in a linear function with respect to the engine torque, and increases as the engine torque increases.
  • the difference value Dt between the current engine torque (hereinafter referred to as the current torque) Da and the control start torque D is multiplied by the rate of change of the motor reaction force with respect to the engine torque (the slope of the straight line Lt in FIG. 9).
  • the motor reaction force to be generated can be calculated.
  • the change of the motor reaction force in the reaction force enhancement mode is not limited to the example of FIG.
  • the motor reaction force may change so as to increase in a quadratic function with respect to the engine torque, or the motor reaction force may change so as to increase stepwise with respect to the engine torque.
  • FIG. 10 is a diagram for explaining the motor reaction force in the friction mode.
  • a horizontal axis shows time and a vertical axis
  • shaft shows an accelerator opening.
  • a horizontal axis shows time and a vertical axis
  • shaft shows a motor reaction force.
  • a motor reaction force is generated based on the amount of change in the accelerator opening per unit time. Specifically, when the accelerator grip member 52 is rotated in the opening direction R1, that is, when the time differential value of the accelerator opening is a positive value, the time differential value is multiplied by a predetermined gain. Thus, the motor reaction force to be generated is calculated. When the time differential value of the accelerator opening is 0 or less and the motor reaction force is not generated immediately before, the motor reaction force is not generated. When the time differential value of the accelerator opening is 0 or less and the motor reaction force is generated immediately before, the motor reaction force to be generated is such that the motor reaction force is attenuated with a predetermined time constant. Calculated.
  • the accelerator opening changes from P1 to P2 during the period from time t1 to time t2, and the accelerator opening is maintained constant after time t2.
  • the motor reaction force T10 is generated in the period from the time point t1 to the time point t2, and the motor reaction force is attenuated with a predetermined time constant after the time point t2.
  • the change in the motor reaction force in the friction mode is not limited to the example of FIG.
  • a predetermined constant motor reaction force may be generated when the accelerator opening changes.
  • the time differential value of the accelerator opening changes from a positive value to 0 or less, the motor reaction force may be maintained for a certain time.
  • a motor reaction force that varies in a linear function with respect to the engine torque is generated as in the reaction force enhancement mode, and based on the amount of change in accelerator opening per unit time, as in the friction mode. Motor reaction force is generated.
  • FIG. 11 is a flowchart of the acceleration reaction force adjustment process.
  • the accelerator reaction force adjustment process in FIG. 11 is repeatedly performed at a constant cycle by the CPU 81 of the ECU 80.
  • the CPU 81 performs a correction coefficient calculation process (step S1).
  • a friction circle correction coefficient based on the drive wheel normal force is calculated.
  • the CPU 81 performs a friction circle calculation process using the friction circle (step S2).
  • a friction circle corrected using the friction circle correction coefficient is used.
  • a margin torque that is a difference between the maximum torque to be allowed and the current torque is calculated. Details of the correction coefficient calculation process, the friction circle correction coefficient, the friction circle calculation process, and the surplus torque will be described later.
  • step S3 determines whether or not the calculated surplus torque is smaller than the prescribed value A (step S3).
  • step S4 the CPU 81 performs a reaction force calculation process described later (step S4), and thereafter ends the accelerator reaction force adjustment process.
  • step S4 the CPU 81 ends the accelerator reaction force adjustment process without performing the reaction force calculation process.
  • FIG. 12 is a flowchart of the correction coefficient calculation process.
  • the CPU 81 calculates air resistance, acceleration resistance, and rolling resistance as resistance to traveling of the motorcycle 100 (hereinafter referred to as traveling resistance) (steps S11 to S13).
  • the acceleration resistance is a resistance generated by acceleration / deceleration of the motorcycle 100 and includes an inertial force accompanying the acceleration / deceleration of the motorcycle 100.
  • the inertial forces in various directions acting on the main body frame 101, the piston, the crankshaft, the front wheel 104, the rear wheel 115, and the like serve as acceleration resistance.
  • the rolling resistance is resistance generated by friction associated with rotation of the front wheel 104 and the rear wheel 115.
  • Air resistance and rolling resistance vary according to vehicle speed.
  • the acceleration resistance changes according to the acceleration of the motorcycle 100.
  • the relationship between the vehicle speed and the air resistance, the relationship between the acceleration and the acceleration resistance, and the relationship between the vehicle speed and the rolling resistance are acquired by simulation or actual measurement and stored in advance in the ROM 82, for example.
  • the CPU 81 calculates air resistance, acceleration resistance, and rolling resistance based on the detection result of the vehicle speed sensor SE6 and the relationship stored in the ROM 82.
  • the air resistance, acceleration resistance and rolling resistance differ depending on the physique, mass (weight) and posture of the driver. Therefore, a plurality of patterns are set to be selectable as the relationship between the vehicle speed and the air resistance, the relationship between the acceleration and the acceleration resistance, and the relationship between the vehicle speed and the rolling resistance. Air resistance, acceleration resistance, and rolling resistance may be calculated using the pattern. Or the input part for a driver
  • step S11 for example, the wind pressure applied to the motorcycle 100 and the driver may be detected by a wind pressure sensor, and the air resistance acting on the motorcycle 100 may be calculated based on the detected wind pressure.
  • step S12 the acceleration of the motorcycle 100 may be detected by the acceleration sensor, and the acceleration resistance may be calculated based on the detected acceleration. Moreover, even if the vehicle speed changes, the rolling resistance may hardly change. In that case, a predetermined value may be used as the rolling resistance.
  • the CPU 81 calculates the gradient resistance acting on the motorcycle 100 using the air resistance, acceleration resistance, and rolling resistance calculated in steps S11 to S13 (step S14).
  • the gradient resistance is a resistance applied to the motorcycle 100 according to the road surface gradient.
  • the gradient resistance is calculated as follows.
  • the sum of air resistance, acceleration resistance, rolling resistance and gradient resistance corresponds to the sum of running resistance.
  • equation (1) is established as an equation of motion.
  • m drive force ⁇ running resistance
  • m is the total of the mass of the motorcycle 100 and the weight of the driver (hereinafter referred to as total mass), and is stored in advance in the ROM 82 as a constant value, for example.
  • a value detected by a strain gauge or the like may be used.
  • the total mass may be calculated based on the expansion and contraction of a suspension (not shown) (for example, a rear suspension).
  • an input unit is provided for the driver to input his / her weight and the like, and the total mass is calculated based on the input weight of the driver and the mass of the motorcycle 100 stored in advance. May be.
  • Equation (1) a is the acceleration of the motorcycle 100, and is calculated based on the detection result of the vehicle speed sensor SE6. Further, as described above, the acceleration of the motorcycle 100 may be detected by the acceleration sensor.
  • the driving force of the motorcycle 100 can be calculated based on the engine torque, the gear ratio, and the radius of the rear wheel 115.
  • the engine torque can be calculated based on the detection result of the rotation speed sensor SE1, the detection result of the throttle opening sensor SE5, and a map stored in the ROM 82.
  • the gear ratio is detected by a gear ratio sensor SE2.
  • the radius of the rear wheel 115 is stored in the ROM 82 in advance as, for example, a unique value of the motorcycle 100.
  • the running resistance can be calculated from the above equation (1).
  • the gradient resistance is obtained by subtracting the air resistance, acceleration resistance, and rolling resistance calculated in steps S11 to S13 from the calculated running resistance.
  • the CPU 81 calculates an angle of the road surface with respect to the horizontal plane (hereinafter referred to as a gradient angle) based on the gradient resistance calculated in step S14 (step S15), and based on the calculated gradient angle, the drive wheels calculating the normal force N 1 (step S16). Thereafter, the CPU 81 calculates a friction circle correction coefficient (step S17), and ends the correction coefficient calculation process.
  • a gradient angle an angle of the road surface with respect to the horizontal plane
  • 13 and 14 are diagrams for explaining a method of calculating the slope angle and the driving wheel normal force N 1.
  • 13 and 14 the center of gravity G of the motorcycle 100 and the driver is shown, and the grounding point of the front wheel 104 (hereinafter referred to as the front wheel grounding point) FP and the grounding point of the rear wheel 115 (hereinafter referred to as the grounding point).
  • BP grounding point
  • the gradient angle of the road surface GD is 0, and the gradient resistance is 0.
  • the gradient angle of the road surface GD is ⁇ .
  • the motorcycle 100 travels in the direction of ascending the road surface GD, and a gradient resistance DR is generated in the direction opposite to the traveling direction.
  • the gradient resistance DR is expressed by the following formula (2).
  • Equation (2) m is the total mass and g is the gravitational acceleration.
  • the gradient angle ⁇ is calculated from equation (2) using the gradient resistance DR calculated in step S14 of FIG.
  • the gradient angle ⁇ may be acquired by other methods.
  • the gradient angle ⁇ may be detected by a gyro sensor.
  • the gradient angle ⁇ may be acquired from the current position and the traveling direction of the motorcycle 100 using car navigation.
  • the drive wheel vertical drag N is expressed by the following formula (3).
  • the driving wheel normal force N 1 is expressed by the following formula (4).
  • L is the distance between the front wheel contact point FP and the rear wheel contact point BP, and corresponds to the wheel base (the distance between the front wheel shaft and the rear wheel shaft).
  • X is the distance between the center of gravity G and the rear wheel contact point BP.
  • is an angle between a straight line connecting the front wheel contact point FP and the rear wheel contact point BP (a straight line parallel to the road surface GD) and a straight line connecting the center of gravity G and the rear wheel contact point BP.
  • the distance L, the distance X, and the angle ⁇ are previously stored in the ROM 82 as unique values of the motorcycle 100, respectively.
  • a predetermined value may be used as the total mass m.
  • the total mass m detected or calculated suitably may be used.
  • the driving wheel normal force N in the equation (3) is a constant value.
  • Drive wheel normal force N is a driving wheel normal force as a reference
  • the drive wheel normal force N 1 is a driving wheel normal force according to the gradient of the road surface GD.
  • step S16 in FIG. 12 using a gradient angle ⁇ calculated in step S15, the drive wheel normal force N 1 from equation (4) is calculated.
  • step S17 in FIG. 12 a value obtained by dividing the driving wheel normal force N 1 calculated by the drive wheel normal force N at the step S16 (N 1 / N) is calculated as a friction circle correction coefficient.
  • the driving wheel normal force N may be calculated from Equation (3) using the total mass m detected or calculated as appropriate.
  • FIG. 15 is a flowchart of the friction circle calculation process.
  • the CPU 81 acquires the longitudinal diameter rx and the lateral diameter ry of the friction circle FC selected by the driver based on the operation content of the setting switch 120 (step S21).
  • the CPU 81 corrects the vertical diameter rx and the horizontal diameter ry acquired in step S21 of FIG. 15 using the friction circle correction coefficient (N 1 / N) calculated by the correction coefficient calculation processing of FIG. (Step S22). Specifically, each of the vertical diameter rx and the horizontal diameter ry acquired in step S21 is multiplied by a friction circle correction coefficient (N 1 / N). Accordingly, the size of the friction circle FC is appropriately set according to the gradient of the road surface GD.
  • the CPU 81 calculates the lateral acceleration based on the detection result of the roll angle sensor SE3 (step S23). Specifically, the lateral acceleration Fy is calculated using the following equation (5).
  • is a roll angle detected by the roll angle sensor SE3.
  • r c is the crown radius of the rear wheel 115.
  • the crown radius is a radius of curvature of the outer peripheral portion (trad) of the rear wheel 115.
  • H is the height of the center of gravity of the motorcycle 100 and the driver.
  • g is a gravitational acceleration.
  • the CPU 81 calculates the longitudinal limit acceleration based on the friction circle FC corrected in step S22 and the lateral acceleration Fy calculated in step S23 (step S24). Specifically, the CPU 81 calculates the longitudinal limit acceleration Fxmax using the following equation (6).
  • the CPU 81 determines the maximum engine torque (hereinafter referred to as the longitudinal limit torque) for preventing the rear wheel 115 from slipping on the road surface. Is calculated) (step S25). Specifically, the maximum torque value of the rear wheel 115 can be calculated from the vertical limit acceleration Fxmax, and the vertical limit torque can be calculated from the calculated maximum value of the torque of the rear wheel 115 and the gear ratio. it can.
  • the CPU 81 calculates the current torque Da (FIG. 9) based on the detection result of the rotation speed sensor SE1, the detection result of the throttle opening sensor SE5, and the map stored in the ROM 82 (step S26).
  • the CPU 81 calculates a margin torque by subtracting the current torque Da calculated in step S26 from the longitudinal limit torque calculated in step S25 (step S27). Thereby, the friction circle calculation process ends.
  • the CPU 81 performs a reaction force calculation process when the margin torque becomes smaller than the specified value A.
  • FIG. 16 is a flowchart of the reaction force calculation process. As shown in FIG. 16, the CPU 81 calculates the control start torque D by subtracting the specified value A from the longitudinal limit torque calculated in step S25 of FIG. 15 (step S31).
  • the CPU 81 calculates a difference value Dt (FIG. 9) between the calculated control start torque D and the current torque Da calculated in step S26 of FIG. 15 (step S32).
  • the CPU 81 calculates a time differential value of the accelerator opening based on the detection result of the accelerator opening sensor SE4 (step S33). For example, the accelerator opening is detected every cycle of the accelerator reaction force adjustment process, and the accelerator opening detected in the previous cycle is subtracted from the accelerator opening detected in the current cycle, and the subtracted value is set in one cycle.
  • the time differential value of the accelerator opening is calculated by dividing by the length of.
  • the CPU 81 determines a control mode for controlling the motor reaction force based on the operation content of the setting switch 120 (step S34). Next, the CPU 81 calculates a motor reaction force to be generated in the determined control mode (step S35).
  • the CPU 81 multiplies the difference value Dt calculated in step S32 by the rate of change of the motor reaction force with respect to the predetermined engine torque. Calculate the motor reaction force to be generated.
  • the CPU 81 determines whether or not the time differential value calculated in step S33 is a positive value. If the control mode is a positive value, the CPU 81 determines the time differential value. The motor reaction force to be generated is calculated by multiplying a predetermined gain. Further, when the calculated time differential value is 0 or less and the motor reaction force is generated immediately before, the CPU 81 should be generated so that the motor reaction force is attenuated by a predetermined time constant. Calculate the motor reaction force.
  • the CPU 81 When the control mode is determined to be the sum mode, the CPU 81 generates the sum by adding the motor reaction force calculated in the same manner as in the reaction force strengthening mode and the motor reaction force calculated in the same manner as in the friction mode. Calculate the motor reaction force to be performed.
  • step S35 the motor reaction force calculated in step S35 is generated (step S36). Thereby, the reaction force calculation process ends.
  • the motor 59 is controlled based on the drive wheel vertical drag.
  • the accelerator reaction force applied to the driver from the accelerator grip member 52 of the accelerator grip device 106 is adjusted according to the frictional force between the road surface and the rear wheel 115. Therefore, the driver can adjust the operation amount of the accelerator grip member 52 based on the reaction force from the accelerator grip member 52 so that the rear wheel 115 is prevented from slipping.
  • the driver can adjust the output of the engine 107 on his / her own will. Therefore, the driver can stably drive the motorcycle 100 without lowering the driver's driving feeling.
  • the driving wheel vertical drag is calculated based on the road surface gradient. Accordingly, a reaction force is appropriately applied to the driver from the accelerator grip member 52 in accordance with the road surface gradient.
  • the friction circle is corrected based on the drive wheel vertical drag
  • the longitudinal limit acceleration is calculated based on the corrected friction circle
  • the motor 59 is operated based on the calculated longitudinal limit acceleration. Be controlled.
  • control start torque D is calculated based on the calculated vertical limit acceleration, and when the current torque is equal to or greater than the control start torque D, a motor reaction force is generated.
  • the longitudinal limit torque is calculated based on the calculated longitudinal limit acceleration and the transmission ratio detected by the transmission ratio sensor SE2, and the rotational speed detected by the rotational speed sensor SE1 and the throttle opening.
  • the current torque is calculated based on the throttle opening detected by the degree sensor SE5 and the map stored in the ROM 82. Furthermore, based on the calculated difference between the longitudinal limit torque and the current torque, it is determined whether or not a reaction force calculation process for generating a motor reaction force is performed. Thereby, a motor reaction force is generated at an appropriate timing. Therefore, it is possible to make the driver accurately recognize whether or not the acceleration of the motorcycle 100 is appropriate for stable travel.
  • FIGS. 17 to 19 are flowcharts of other examples of correction coefficient calculation processing. The correction coefficient calculation processing of FIGS. 17 to 19 will be described while referring to differences from the example of FIG.
  • the CPU 81 calculates the acceleration of the motorcycle 100 based on the detection result of the vehicle speed sensor SE6 (step S41).
  • the acceleration of the motorcycle 100 may be detected by an acceleration sensor.
  • the CPU 81 calculates an inertial force (hereinafter referred to as a reverse inertial force) acting in the reverse direction of the traveling direction of the motorcycle 100 based on the acceleration calculated in step S41 (step S42).
  • the reverse inertia force is expressed by the following equation (7).
  • Reverse direction inertia force ma (7)
  • m is the total mass and a is the acceleration.
  • the reverse inertia force is calculated from Equation (7).
  • CPU 81 on the basis of the inertial force calculated at step S42, calculates the driving wheel normal force N 2 (step S43). Thereafter, the CPU 81 calculates a friction circle correction coefficient based on the calculated drive wheel normal force N 2 (step S44), and ends the correction coefficient calculation process.
  • Figure 20 is a diagram for explaining a method of calculating the drive wheel normal force N 2 at step S43 of FIG. 17.
  • the center of gravity G, the front wheel ground contact point FP, and the rear wheel ground contact point BP are shown as in FIGS.
  • the reverse inertia force Fi acts on the center of gravity G for simplicity.
  • the reverse inertia force Fi is the sum of reverse inertia forces acting on the motorcycle 100 and the driver.
  • the reverse inertia force Fi is decomposed into a force Fa in a straight line connecting the center of gravity G and the front wheel contact point FP and a force Fb in a straight line connecting the center of gravity G and the rear wheel contact point BP.
  • the force Fb is applied from the rear wheel 115 to the road surface GD at the rear wheel contact point BP.
  • the force Fb is decomposed into a force Fbv in a direction perpendicular to the road surface GD and a force Fbh in a direction parallel to the road surface GD.
  • the force Fbv is expressed by the following formula (8).
  • step S43 of FIG. 17 the force Fbv is calculated from the equation (8), and the calculated force Fbv is added to the driving wheel vertical drag N (FIG. 13). Thus, the drive wheel normal force N 2 is calculated.
  • step S44 of FIG. 17 a value (N 2 / N) obtained by dividing the driving wheel vertical drag N 2 calculated in step S43 by the driving wheel vertical drag N is calculated as a friction circle correction coefficient.
  • the friction circle correction coefficient (N 2 / N) is calculated by the correction coefficient calculation process of FIG. 17, in place of the friction circle correction coefficient (N 1 / N) in step S22 of the friction circle calculation process of FIG.
  • the longitudinal diameter rx and the lateral diameter ry of the friction circle FC are corrected using the friction circle correction coefficient (N 2 / N).
  • the size of the friction circle FC is appropriately set according to the magnitude of the reverse inertia force Fi.
  • the motor 59 is controlled based on the reverse inertia force Fi acting on the motorcycle 100. Accordingly, a reaction force is appropriately applied to the driver from the accelerator grip member 52 according to the reverse inertia force Fi.
  • is the roll angle of the motorcycle 100.
  • the roll angle ⁇ is detected by a roll angle sensor SE3.
  • the CPU 81 calculates the air resistance with respect to the traveling of the motorcycle 100 based on the detection result of the vehicle speed sensor SE6 (step S51).
  • the relationship between the vehicle speed and the air resistance is stored in advance in the ROM 82, for example.
  • other various methods described above may be used to calculate the air resistance.
  • CPU 81 on the basis of the air resistance calculated in the step S51, to calculate a driving wheel normal force N 3 (step S52). Then, CPU 81, based on the calculated drive wheel normal force N 3, calculates the friction circle correction coefficient (step S53), and terminates the correction coefficient calculation processing.
  • the method of calculating the step S52 the drive wheels in the normal force N 3, except that the air resistance is used instead of the opposite directional inertial force is the same as the method of calculating the drive wheel normal force N 1 in step S43 in FIG. 17 .
  • step S53 of FIG. 18 a value (N 3 / N) obtained by dividing the driving wheel vertical drag N 3 calculated in step S52 by the driving wheel vertical drag N is calculated as a friction circle correction coefficient.
  • the friction circle correction coefficient (N 3 / N) is calculated by the correction coefficient calculation process of FIG. 18, in place of the friction circle correction coefficient (N 1 / N) in step S22 of the friction circle calculation process of FIG.
  • the vertical diameter rx and the horizontal diameter ry of the friction circle FC are corrected using the friction circle correction coefficient (N 3 / N). Accordingly, the size of the friction circle FC is appropriately set according to the size of the air resistance.
  • the motor 59 is controlled based on the air resistance acting on the motorcycle 100. Thereby, reaction force is appropriately applied to the driver from the accelerator grip member 52 according to the air resistance.
  • the CPU 81 calculates the lift generated when the motorcycle 100 travels based on the detection result of the vehicle speed sensor SE6 (step S61).
  • the lift acts in a direction perpendicular to the road surface GD.
  • the lift is a positive value
  • the force applied from the motorcycle 100 to the road surface GD is reduced
  • the lift is a negative value
  • the force applied from the motorcycle 100 to the road surface GD is increased.
  • the lift varies depending on the vehicle speed.
  • the relationship between the vehicle speed and the lift is acquired by simulation or actual measurement, and is stored in advance in the ROM 82, for example.
  • the CPU 81 calculates lift based on the detection result of the vehicle speed sensor SE6 and the relationship stored in the ROM 82.
  • CPU 81 on the basis of the lift is calculated in step S61, to calculate a driving wheel normal force N 4 (step S62). Then, CPU 81, based on the calculated drive wheel normal force N 4, calculates the friction circle correction coefficient (step S63), and terminates the correction coefficient calculation processing.
  • Figure 21 is a diagram for explaining a method of calculating the drive wheel normal force N 4 at step S62 of FIG. 19.
  • the center of gravity G, the front wheel ground contact point FP, and the rear wheel ground contact point BP are shown as in FIGS.
  • the lift Fl acts on the center of gravity G for simplicity.
  • the lift force Fl is the sum of lift forces acting on the motorcycle 100 and the driver.
  • the lift force Fl is decomposed into a force Fc that works in the direction perpendicular to the road surface GD at the front wheel contact point FP and a force Fd that works in the direction perpendicular to the road surface GD at the rear wheel contact point BP.
  • the force Fd is expressed by the following formula (10).
  • step S62 of FIG. 19 the force Fd is calculated from the equation (9), and the calculated force Fd is subtracted from the driving wheel vertical drag N (FIG. 13). Thus, the drive wheel normal force N 4 is calculated.
  • step S63 in FIG. 19 a value obtained by dividing the driving wheel normal force N 4 calculated by the drive wheel normal force N at the step S62 (N 4 / N) is calculated as a friction circle correction coefficient.
  • the friction circle correction coefficient (N 4 / N) is calculated by the correction coefficient calculation process of FIG. 19, instead of the friction circle correction coefficient (N 1 / N) in step S22 of the friction circle calculation process of FIG.
  • the longitudinal diameter rx and the lateral diameter ry of the friction circle FC are corrected using the friction circle correction coefficient (N 4 / N). Accordingly, the size of the friction circle FC is appropriately set according to the size of the lift force Fl.
  • the motor 59 is controlled based on the lift Fl acting on the motorcycle 100. Accordingly, a reaction force is appropriately applied to the driver from the accelerator grip member 52 in accordance with the lift force Fl.
  • FIG. 22 is a flowchart of another example of the reaction force calculation processing. The reaction force calculation process of FIG. 22 will be described while referring to differences from the example of FIG.
  • step S35 after the motor reaction force is calculated in step S35, the calculated motor reaction force is multiplied by a gain corresponding to the detection result of the roll angle sensor SE3 (step S35a).
  • the gain multiplied by the motor reaction force is smaller as the roll angle detected by the roll angle sensor SE3 is larger.
  • the stability of the motorcycle 100 is low. Therefore, if the accelerator reaction force increases when the roll angle is large, the driving feeling of the driver may be reduced. Therefore, by multiplying the motor reaction force by a gain corresponding to the roll angle, it is possible to prevent the accelerator reaction force from becoming excessively large when the roll angle is large. Thereby, a decrease in the driving feeling of the driver is prevented. Therefore, the driver can drive the motorcycle 100 more stably.
  • a value (N 1 + Fbv) obtained by adding the force Fbv in FIG. 20 to the drive wheel vertical drag N 1 in FIG. 14 may be used, or the force Fd in FIG. 21 is subtracted from the drive wheel vertical drag N 1 .
  • (N 1 -Fd) may be used.
  • a value (N 1 + Fbv ⁇ Fd) obtained by adding the force Fbv of FIG. 20 to the drive wheel vertical drag N 1 of FIG. 14 and subtracting the force Fd of FIG. 21 from the added value may be used.
  • one or more of the road surface gradient, inertial force, air resistance, and lift may be selectively used to calculate the driving wheel vertical drag.
  • the accelerator reaction force is controlled based on the longitudinal limit acceleration calculated using the friction circle, but the present invention is not limited to this.
  • the accelerator reaction force may be controlled based on the driving wheel normal force without using a friction circle.
  • the motor 59 is adjusted so that the accelerator reaction force increases as the drive wheel vertical drag decreases. In this case, acceleration of the motorcycle 100 is suppressed in a state in which the drive wheels (rear wheels 115) are likely to slip. Thereby, the stability of the motorcycle 100 is ensured.
  • reaction force calculation process is performed when the difference between the longitudinal limit torque and the current torque (margin torque) is smaller than the specified value A, but the present invention is not limited to this.
  • the reaction force calculation process may be performed based on the amount of change in the difference between the longitudinal limit torque and the current torque.
  • the time differential value of the difference between the longitudinal limit torque and the current torque is calculated, and the reaction force calculation process is performed when the calculated time differential value is larger than a specified value. In this case, it is possible to make the driver recognize a change in the difference between the longitudinal limit torque and the current torque.
  • the motor reaction force to be generated may be calculated based on the amount of change in the difference between the longitudinal limit torque and the current torque. For example, the motor reaction force to be generated is calculated so that the motor reaction force increases as the change amount of the difference between the longitudinal limit torque and the current torque increases.
  • the vertical diameter rx and the horizontal diameter ry of the friction circle before correction by the friction circle correction coefficient are selected by the driver, but not limited to this, the vertical diameter rx and the horizontal diameter of the friction circle before correction are not limited thereto.
  • the diameter ry may be automatically determined. For example, the friction coefficient between the road surface and the rear wheel 115 is estimated based on the rotation state of the front wheel 104 or the rear wheel 115, and the longitudinal diameter rx and the lateral diameter ry of the friction circle are determined based on the estimated friction coefficient. May be. Further, the vertical diameter rx and the horizontal diameter ry of the friction circle may be determined using another friction coefficient estimation technique.
  • the lateral acceleration is calculated based on the roll angle detected by the roll angle sensor SE3, but the present invention is not limited to this.
  • the lateral acceleration may be calculated by detecting acceleration in a direction orthogonal to the front-rear direction using an acceleration sensor and correcting the detected acceleration according to the inclination of the motorcycle 100.
  • the magnitude of the accelerator reaction force is adjusted by adjusting the magnitude of the reaction force generated by the motor 59, but the present invention is not limited to this.
  • the sliding member is provided so as to be slidable with respect to the grip sleeve 51 or the accelerator grip member 52, and the magnitude of the frictional resistance of the sliding member with respect to the grip sleeve 51 or the accelerator grip member 52 is adjusted.
  • the magnitude of the reaction force may be adjusted.
  • the gear ratio is acquired by detecting the gear ratio with the gear ratio sensor SE2, but the present invention is not limited to this.
  • the gear ratio may be acquired by calculating the gear ratio from the rotational speed of the engine 107 and the vehicle speed.
  • the rear wheel 115 is driven by the engine 107, but the present invention is not limited to this, and the front wheel 104 may be driven by the engine 107.
  • the accelerator reaction force is controlled based on the vertical drag applied to the front wheel 104 from the road surface.
  • the motor 59 is controlled based on the calculated driving wheel vertical drag, but the present invention is not limited to this.
  • the motor 59 may be controlled based on the directly detected driving wheel vertical drag, or the motor 59 may be controlled based on the driving wheel vertical drag stored in advance.
  • the function of the control unit is realized by the CPU 81 of the ECU 80 and the control program, but at least a part of the function of the control unit may be realized by hardware such as an electronic circuit.
  • the above embodiment is an example in which the present invention is applied to a motorcycle.
  • the present invention is not limited to this, and the present invention is applied to other saddle riding type vehicles such as a motor tricycle or an ATV (All Terrain Vehicle).
  • the present invention may be applied, or the present invention may be applied to other vehicles such as an automatic tricycle or an automatic four-wheel vehicle provided with an accelerator pedal instead of the accelerator grip.
  • the accelerator pedal corresponds to an output adjustment device.
  • a reaction force adjustment unit that can adjust the reaction force applied to the driver from the accelerator pedal is provided.
  • the above embodiment is an example in which the present invention is applied to a vehicle including an engine as a prime mover.
  • the present invention is not limited thereto, and the present invention may be applied to an electric vehicle including a motor as a prime mover.
  • the motorcycle 100 is an example of a vehicle
  • the main body frame 101 is an example of a main body
  • the engine 107 is an example of a prime mover
  • the rear wheel 115 is an example of a driving wheel
  • an accelerator grip device 106 is an example of an output adjustment device
  • the motor 59 is an example of a reaction force adjustment unit
  • the ECU 50 is an example of a control unit
  • the roll angle sensor SE3 is an example of an acceleration detector
  • the ROM 82 is an example of a storage unit. It is.
  • the present invention can be effectively used for various vehicles.

Abstract

 Detection results from a rotation speed sensor, a gear ratio sensor, and a roll angle sensor, and specifics of an operation performed on a setting switch by the driver, are fed to a CPU of an ECU. In addition, the detection result from an accelerator position sensor of an accelerator grip device is fed to the CPU of the ECU. The CPU controls the motor of the accelerator grip device on the basis of a vertical resistance force acting on a drive wheel from the road surface.

Description

車両vehicle
 本発明は、車両に関する。 The present invention relates to a vehicle.
 近年、自動二輪車等の車両において、車輪のスリップを防止するための種々の技術が提案されている。特許文献1に記載される駆動力制御装置においては、摩擦円に基づいてエンジンが発生する駆動力が設定され、路面勾配に基づいて、設定された駆動力が補正される。
特許4842185号公報
In recent years, various techniques for preventing wheel slippage have been proposed in vehicles such as motorcycles. In the driving force control apparatus described in Patent Document 1, the driving force generated by the engine is set based on the friction circle, and the set driving force is corrected based on the road surface gradient.
Japanese Patent No. 4842185
 しかしながら、運転者によって運転技量は異なり、種々の状況における適正な走行状態も運転者によって異なる。特許文献1の駆動力制御装置が用いられる場合、運転者の意思ではなく、自動的にエンジンの駆動力が調整される。そのため、全ての運転者に対して適正な走行状態が実現されることはなく、運転者によっては運転フィーリングが低下することがある。 However, the driving skill varies depending on the driver, and the appropriate driving state in various situations also varies depending on the driver. When the driving force control device of Patent Document 1 is used, the driving force of the engine is automatically adjusted instead of the driver's intention. Therefore, an appropriate traveling state is not realized for all drivers, and the driving feeling may be lowered depending on the driver.
 本発明の目的は、運転者の運転フィーリングを低下させることなく、安定に走行可能な車両を提供することである。 An object of the present invention is to provide a vehicle that can travel stably without deteriorating the driving feeling of the driver.
 (1)本発明に係る車両は、駆動輪を有する本体部と、駆動輪を回転させるためのトルクを発生する原動機と、原動機の出力を調整するために運転者により操作される出力調整装置と、出力調整装置の操作に対して出力調整装置から運転者に加わる反力を調整するように構成された反力調整部と、路面から駆動輪に加わる垂直抗力に基づいて反力調整部を制御するように構成された制御部とを備えるものである。 (1) A vehicle according to the present invention includes a main body having drive wheels, a prime mover that generates torque for rotating the drive wheels, and an output adjustment device that is operated by a driver to adjust the output of the prime mover. The reaction force adjustment unit is configured to adjust the reaction force applied to the driver from the output adjustment device in response to the operation of the output adjustment device, and the reaction force adjustment unit is controlled based on the vertical reaction force applied to the driving wheel from the road surface. And a control unit configured to do this.
 その車両においては、運転者が出力調整装置を操作することにより、原動機の出力が調整される。原動機によって発生されるトルクにより駆動輪が回転される。それにより、本体部が移動する。出力調整装置の操作に対して出力調整装置から運転者に加わる反力が反力調整部により調整される。反力調整部は、路面から駆動輪に加わる垂直抗力に基づいて制御部により制御される。 In the vehicle, the output of the prime mover is adjusted by the driver operating the output adjusting device. The drive wheels are rotated by torque generated by the prime mover. Thereby, the main body moves. The reaction force applied to the driver from the output adjustment device with respect to the operation of the output adjustment device is adjusted by the reaction force adjustment unit. The reaction force adjusting unit is controlled by the control unit based on the vertical drag applied to the driving wheel from the road surface.
 駆動輪と路面との間の摩擦力は、路面から駆動輪に加わる垂直抗力に比例する。その垂直抗力に基づいて反力調整部が制御されるので、駆動輪に働く摩擦力に応じて出力調整装置から運転者に加わる反力が調整される。運転者は、出力調整装置からの反力に基づいて、駆動輪のスリップが防止されるように出力調整装置の操作量を調整することができる。この場合、運転者は自らの意思で原動機の出力を調整することができる。したがって、運転者の運転フィーリングを低下させることなく、運転者が車両を安定に走行させることが可能となる。 The frictional force between the driving wheel and the road surface is proportional to the vertical drag applied to the driving wheel from the road surface. Since the reaction force adjusting unit is controlled based on the vertical drag, the reaction force applied to the driver from the output adjusting device is adjusted according to the frictional force acting on the drive wheels. Based on the reaction force from the output adjusting device, the driver can adjust the operation amount of the output adjusting device so as to prevent the drive wheels from slipping. In this case, the driver can adjust the output of the prime mover at his / her own will. Therefore, the driver can drive the vehicle stably without reducing the driving feeling of the driver.
 (2)制御部は、路面の勾配に基づいて駆動輪に加わる垂直抗力を算出してもよい。この場合、路面の勾配に応じて出力調整装置から運転者に適切に反力が加えられる。 (2) The control unit may calculate a normal force applied to the driving wheel based on a road gradient. In this case, a reaction force is appropriately applied to the driver from the output adjusting device in accordance with the gradient of the road surface.
 (3)制御部は、車両に働く慣性力に基づいて駆動輪に加わる垂直抗力を算出してもよい。この場合、車両に働く慣性力に応じて出力調整装置から運転者に適切に反力が加えられる。 (3) The control unit may calculate a normal force applied to the drive wheel based on an inertial force acting on the vehicle. In this case, a reaction force is appropriately applied to the driver from the output adjustment device in accordance with the inertial force acting on the vehicle.
 (4)制御部は、車両の加速度に基づいて車両に働く慣性力を算出してもよい。この場合、車両に働く慣性力を容易に算出することができる。 (4) The control unit may calculate an inertial force acting on the vehicle based on the acceleration of the vehicle. In this case, the inertial force acting on the vehicle can be easily calculated.
 (5)制御部は、車両に働く空気抵抗に基づいて駆動輪に加わる垂直抗力を算出してもよい。この場合、車両に働く空気抵抗に応じて出力調整装置から運転者に適切に反力が加えられる。 (5) The control unit may calculate a normal force applied to the driving wheel based on an air resistance acting on the vehicle. In this case, a reaction force is appropriately applied to the driver from the output adjustment device in accordance with the air resistance acting on the vehicle.
 (6)制御部は、車両の速度に基づいて車両に働く空気抵抗を算出してもよい。この場合、車両に働く空気抵抗を容易に算出することができる。 (6) The control unit may calculate the air resistance acting on the vehicle based on the speed of the vehicle. In this case, the air resistance acting on the vehicle can be easily calculated.
 (7)制御部は、車両に働く揚力に基づいて駆動輪に加わる垂直抗力を算出してもよい。この場合、車両に働く揚力に応じて出力調整装置から運転者に適切に反力が加えられる。 (7) The control unit may calculate a normal force applied to the drive wheels based on the lift acting on the vehicle. In this case, a reaction force is appropriately applied to the driver from the output adjustment device in accordance with the lift acting on the vehicle.
 (8)制御部は、車両の速度に基づいて車両に働く揚力を算出してもよい。この場合、車両に働く揚力を容易に算出することができる。 (8) The control unit may calculate lift acting on the vehicle based on the speed of the vehicle. In this case, the lift force acting on the vehicle can be easily calculated.
 (9)車両は、路面に略平行でかつ本体部の前後方向と交差する横方向の加速度を横方向加速度として検出するように構成された加速度検出器をさらに備え、制御部は、駆動輪に加わる垂直抗力に基づいて、使用すべき摩擦円を設定し、設定された摩擦円に基づいて、加速度検出器により検出された横方向加速度に対応して許容されるべき本体部の前後方向における最大の加速度を縦方向限界加速度として取得し、取得された縦方向限界加速度に基づいて、反力調整部を制御するように構成されてもよい。 (9) The vehicle further includes an acceleration detector configured to detect a lateral acceleration that is substantially parallel to the road surface and intersects with the front-rear direction of the main body as a lateral acceleration, and the control unit is provided on the driving wheel. The friction circle to be used is set based on the applied vertical drag, and based on the set friction circle, the maximum in the front-rear direction of the main body that should be allowed corresponding to the lateral acceleration detected by the acceleration detector The acceleration may be acquired as the vertical limit acceleration, and the reaction force adjustment unit may be controlled based on the acquired vertical limit acceleration.
 この場合、加速度検出器により検出された横方向加速度、および駆動輪に加わる垂直抗力に基づいて設定された摩擦円に基づいて、縦方向限界加速度が取得され、取得された縦方向限界加速度に基づいて反力調整部が制御される。それにより、本体部の加速度が安定な走行に適切であるか否かを運転者に正確に認識させることができる。したがって、運転者は車両を安定に走行させることが可能となる。 In this case, the longitudinal limit acceleration is acquired based on the lateral acceleration detected by the acceleration detector and the friction circle set based on the vertical drag applied to the driving wheel, and based on the acquired longitudinal limit acceleration. Thus, the reaction force adjusting unit is controlled. Thereby, it is possible to make the driver accurately recognize whether or not the acceleration of the main body is appropriate for stable traveling. Therefore, the driver can drive the vehicle stably.
 (10)車両は、予め定められた摩擦円を記憶する記憶部をさらに備え、制御部は、駆動輪に加わる垂直抗力に基づいて記憶部に記憶される摩擦円を補正することにより使用すべき摩擦円を設定してもよい。 (10) The vehicle further includes a storage unit that stores a predetermined friction circle, and the control unit should be used by correcting the friction circle stored in the storage unit based on the vertical drag applied to the drive wheels. A friction circle may be set.
 この場合、駆動輪に加わる垂直抗力に応じた適切な摩擦円が使用すべき摩擦円として設定され、その摩擦円に基づいて縦方向限界加速度が取得される。それにより、本体部の加速度が安定な走行に適切であるか否かを運転者に正確に認識させることができる。したがって、運転者は車両を安定に走行させることが可能となる。 In this case, an appropriate friction circle corresponding to the vertical drag applied to the drive wheel is set as a friction circle to be used, and the longitudinal limit acceleration is acquired based on the friction circle. Thereby, it is possible to make the driver accurately recognize whether or not the acceleration of the main body is appropriate for stable traveling. Therefore, the driver can drive the vehicle stably.
 本発明によれば、運転者の運転フィーリングを低下させることなく、運転者が車両を安定に走行させることができる。 According to the present invention, the driver can drive the vehicle stably without reducing the driving feeling of the driver.
図1は第1の実施の形態に係る自動二輪車を示す概略側面図である。FIG. 1 is a schematic side view showing a motorcycle according to a first embodiment. 図2は図1の自動二輪車の上面図である。FIG. 2 is a top view of the motorcycle shown in FIG. 図3はアクセルグリップ装置の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of the accelerator grip device. 図4はグリップスリーブおよびギアの配置について説明するための図である。FIG. 4 is a view for explaining the arrangement of the grip sleeve and the gear. 図5は自動二輪車の制御系について説明するためのブロック図である。FIG. 5 is a block diagram for explaining a control system of the motorcycle. 図6は摩擦円の一例を示す図である。FIG. 6 is a diagram illustrating an example of a friction circle. 図7は摩擦円の他の例を示す図である。FIG. 7 is a diagram showing another example of the friction circle. 図8はアクセル開度と基準反力との関係を示す図である。FIG. 8 is a diagram showing the relationship between the accelerator opening and the reference reaction force. 図9は反力強化モードにおけるモータ反力について説明するための図である。FIG. 9 is a diagram for explaining the motor reaction force in the reaction force strengthening mode. 図10はフリクションモードにおけるモータ反力について説明するための図である。FIG. 10 is a diagram for explaining the motor reaction force in the friction mode. 図11はアクセル反力調整処理のフローチャートである。FIG. 11 is a flowchart of the accelerator reaction force adjustment process. 図12は補正係数算出処理のフローチャートである。FIG. 12 is a flowchart of the correction coefficient calculation process. 図13は勾配角度および駆動輪垂直抗力の算出方法について説明するための図である。FIG. 13 is a diagram for explaining a method of calculating the gradient angle and the driving wheel normal force. 図14は勾配角度および駆動輪垂直抗力の算出方法について説明するための図である。FIG. 14 is a diagram for explaining a method of calculating the gradient angle and the drive wheel normal force. 図15は摩擦円演算処理のフローチャートである。FIG. 15 is a flowchart of the friction circle calculation process. 図16は反力演算処理のフローチャートである。FIG. 16 is a flowchart of the reaction force calculation process. 図17は補正係数算出処理の他の例のフローチャートである。FIG. 17 is a flowchart of another example of the correction coefficient calculation process. 図18は補正係数算出処理の他の例のフローチャートである。FIG. 18 is a flowchart of another example of the correction coefficient calculation process. 図19は補正係数算出処理の他の例のフローチャートである。FIG. 19 is a flowchart of another example of the correction coefficient calculation process. 図20は駆動輪垂直抗力の算出方法について説明するための図である。FIG. 20 is a diagram for explaining a method of calculating the driving wheel normal force. 図21は駆動輪垂直抗力の算出方法について説明するための図である。FIG. 21 is a diagram for explaining a method of calculating the driving wheel normal force. 図22は反力演算処理の他の例のフローチャートである。FIG. 22 is a flowchart of another example of the reaction force calculation process.
 以下、本発明の実施の形態に係る車両の一例として、自動二輪車について図面を用いて説明する。 Hereinafter, a motorcycle will be described with reference to the drawings as an example of a vehicle according to an embodiment of the present invention.
 (1)第1の実施の形態
 (1-1)自動二輪車の概略構成
 図1は、本発明の実施の形態に係る自動二輪車を示す概略側面図である。図2は、図1の自動二輪車の上面図である。図1の自動二輪車100においては、本体フレーム101の前端にヘッドパイプ102が設けられる。ヘッドパイプ102にフロントフォーク103が左右方向に揺動可能に設けられる。フロントフォーク103の下端に前輪104が回転可能に取り付けられる。ヘッドパイプ102の上端にはハンドル105が設けられる。図2に示すように、ハンドル105には、アクセルグリップ装置106および設定スイッチ120が設けられる。運転者は、アクセルグリップ装置106を操作することにより、後述のエンジン107の出力を調整する。また、運転者は、設定スイッチ120を操作することにより、後述の摩擦円および制御モードの選択を行う。
(1) First Embodiment (1-1) Schematic Configuration of Motorcycle FIG. 1 is a schematic side view showing a motorcycle according to an embodiment of the present invention. FIG. 2 is a top view of the motorcycle shown in FIG. In the motorcycle 100 of FIG. 1, a head pipe 102 is provided at the front end of the main body frame 101. A front fork 103 is provided on the head pipe 102 so as to be swingable in the left-right direction. A front wheel 104 is rotatably attached to the lower end of the front fork 103. A handle 105 is provided at the upper end of the head pipe 102. As shown in FIG. 2, the handle 105 is provided with an accelerator grip device 106 and a setting switch 120. The driver adjusts the output of the engine 107 described later by operating the accelerator grip device 106. Also, the driver operates the setting switch 120 to select a friction circle and a control mode, which will be described later.
 以下の説明において、前後方向とは、路面に略平行でかつ本体フレーム101の中心軸CA(図2)を含む鉛直面に平行な方向である。また、左右方向とは、路面に略平行でかつ前後方向に直交する方向である。路面とは、前輪104および後輪115が接する面である。 In the following description, the front-rear direction is a direction that is substantially parallel to the road surface and parallel to a vertical plane that includes the central axis CA (FIG. 2) of the main body frame 101. The left-right direction is a direction substantially parallel to the road surface and orthogonal to the front-rear direction. The road surface is a surface where the front wheel 104 and the rear wheel 115 are in contact.
 図1に示すように、本体フレーム101の中央部に気化器または燃料噴射装置を備えたエンジン107が配置される。エンジン107には、回転速度センサSE1が設けられる。回転速度センサSE1は、エンジン107の回転速度(以下、エンジン回転速度と呼ぶ)を検出する。また、エンジン107には、吸気管108および排気管109が取り付けられる。吸気管108には、後述のスロットル装置60(図5)が設けられる。エンジン107の後方にトランスミッションケース110が設けられる。トランスミッションケース110内に、変速機6および変速比センサSE2が設けられる。トランスミッションケース110の側部には、シフトペダル210が設けられる。 As shown in FIG. 1, an engine 107 having a carburetor or a fuel injection device is disposed at the center of the main body frame 101. The engine 107 is provided with a rotation speed sensor SE1. The rotational speed sensor SE1 detects the rotational speed of the engine 107 (hereinafter referred to as engine rotational speed). In addition, an intake pipe 108 and an exhaust pipe 109 are attached to the engine 107. The intake pipe 108 is provided with a throttle device 60 (FIG. 5) described later. A transmission case 110 is provided behind the engine 107. A transmission 6 and a gear ratio sensor SE2 are provided in the transmission case 110. A shift pedal 210 is provided on the side of the transmission case 110.
 トランスミッションケース110の後方に延びるようにリアアーム114が設けられる。リアアーム114の後端に後輪115が回転可能に取り付けられる。エンジン107により発生されるトルク(以下、エンジントルクと呼ぶ)が後輪115に伝達されることにより、後輪115が駆動される。エンジン107は、変速機6を介して後輪115と接続される。運転者がシフトペダル210を操作することにより、変速比が変化する。変速比とは、後輪115の回転速度に対するエンジン107の回転速度の比をいう。変速比センサSE2は、例えば変速機6のギアポジションから変速比を検出する。 A rear arm 114 is provided to extend rearward of the transmission case 110. A rear wheel 115 is rotatably attached to the rear end of the rear arm 114. Torque generated by the engine 107 (hereinafter referred to as engine torque) is transmitted to the rear wheel 115, whereby the rear wheel 115 is driven. The engine 107 is connected to the rear wheel 115 via the transmission 6. When the driver operates the shift pedal 210, the gear ratio changes. The gear ratio is the ratio of the rotational speed of the engine 107 to the rotational speed of the rear wheel 115. The gear ratio sensor SE2 detects the gear ratio from the gear position of the transmission 6, for example.
 エンジン107の上方に燃料タンク112が設けられ、燃料タンク112の後方に2つのシート113が前後に並ぶように設けられる。これらのシート113の下方に、ロール角センサSE3およびECU(Electronic Control Unit;電子制御ユニット)80が設けられる。ロール角センサSE3は、例えばジャイロセンサまたは加速度センサであり、自動二輪車100のロール角を検出する。自動二輪車100のロール角とは、鉛直方向に対する自動二輪車100の傾きの角度をいう。例えば、自動二輪車100が直立姿勢であるときにはロール角が0度であり、自動二輪車100が右または左へ旋回するときにロール角が大きくなる。ECU80の詳細については後述する。 A fuel tank 112 is provided above the engine 107, and two seats 113 are provided behind the fuel tank 112 so as to be lined up and down. Below these sheets 113, a roll angle sensor SE3 and an ECU (Electronic Control Unit) 80 are provided. The roll angle sensor SE3 is, for example, a gyro sensor or an acceleration sensor, and detects the roll angle of the motorcycle 100. The roll angle of the motorcycle 100 refers to the angle of inclination of the motorcycle 100 with respect to the vertical direction. For example, when the motorcycle 100 is in the upright posture, the roll angle is 0 degree, and when the motorcycle 100 turns right or left, the roll angle becomes large. Details of the ECU 80 will be described later.
 (1-2)アクセルグリップ装置
 図3は、アクセルグリップ装置106の構成を示す断面図である。図3に示すように、ハンドル105は、略円筒形状のハンドルバー105aを有する。ハンドルバー105aにアクセルグリップ装置106が設けられる。アクセルグリップ装置106は、グリップスリーブ51、アクセルグリップ部材52、摩擦発生部材53、ケース部材54、コイルばね55、ギア56,57a,57b,58を含む。
(1-2) Accelerator Grip Device FIG. 3 is a cross-sectional view showing the configuration of the accelerator grip device 106. As shown in FIG. 3, the handle 105 has a handle bar 105a having a substantially cylindrical shape. An accelerator grip device 106 is provided on the handle bar 105a. The accelerator grip device 106 includes a grip sleeve 51, an accelerator grip member 52, a friction generating member 53, a case member 54, a coil spring 55, and gears 56, 57a, 57b, and 58.
 グリップスリーブ51は、略円筒形状を有し、ハンドルバー105aに回転可能に設けられる。具体的には、ハンドルバー105aの外周面に対して摺動可能にグリップスリーブ51がハンドルバー105aに嵌め込まれる。アクセルグリップ部材52は、略円筒形状を有し、グリップスリーブ51の外周面に固定される。これにより、アクセルグリップ部材52は、ハンドルバー105aの軸心P1を回転軸としてグリップスリーブ51と一体的に回転する。 The grip sleeve 51 has a substantially cylindrical shape and is rotatably provided on the handle bar 105a. Specifically, the grip sleeve 51 is fitted into the handle bar 105a so as to be slidable with respect to the outer peripheral surface of the handle bar 105a. The accelerator grip member 52 has a substantially cylindrical shape and is fixed to the outer peripheral surface of the grip sleeve 51. Thereby, the accelerator grip member 52 rotates integrally with the grip sleeve 51 about the axis P1 of the handle bar 105a as a rotation axis.
 運転者は、アクセルグリップ部材52を把持してグリップスリーブ51およびアクセルグリップ部材52を一体的に回転させることによりエンジン107の出力を調整する。以下、エンジン107の出力を高くするためのグリップスリーブ51およびアクセルグリップ部材52の回転方向を開方向R1と呼び、エンジン107の出力を低くするためのグリップスリーブ51およびアクセルグリップ部材52の回転方向を閉方向R2と呼ぶ。グリップスリーブ51およびアクセルグリップ部材52は、開方向R1において、予め定められた開位置まで回転させることが可能であり、閉方向R2において、予め定められた閉位置まで回転させることが可能である。 The driver adjusts the output of the engine 107 by gripping the accelerator grip member 52 and rotating the grip sleeve 51 and the accelerator grip member 52 integrally. Hereinafter, the rotational direction of the grip sleeve 51 and the accelerator grip member 52 for increasing the output of the engine 107 will be referred to as an opening direction R1, and the rotational direction of the grip sleeve 51 and the accelerator grip member 52 for decreasing the output of the engine 107 will be referred to. Called the closing direction R2. The grip sleeve 51 and the accelerator grip member 52 can be rotated to a predetermined open position in the opening direction R1, and can be rotated to a predetermined closed position in the closing direction R2.
 ケース部材54は、ハンドルバー105aの外周面に固定される。グリップスリーブ51の一端部は、アクセルグリップ部材52の一端部から突出し、ケース部材54内に収容される。グリップスリーブ51は、ケース部材54に固定されず、ケース部材54に対して回転可能である。 The case member 54 is fixed to the outer peripheral surface of the handle bar 105a. One end of the grip sleeve 51 protrudes from one end of the accelerator grip member 52 and is accommodated in the case member 54. The grip sleeve 51 is not fixed to the case member 54 and is rotatable with respect to the case member 54.
 ケース部材54は、軸受け溝54a、摩擦発生部54b、ギア収容部54cおよびモータ収容部54dを有する。グリップスリーブ51の一端部には、環状の突出部51aが設けられる。グリップスリーブ51の突出部51aは、軸受け部材51bを介して軸受け溝54a内に回転可能に収容される。これにより、グリップスリーブ51の軸方向の移動が制止される。 The case member 54 includes a bearing groove 54a, a friction generating portion 54b, a gear housing portion 54c, and a motor housing portion 54d. An annular protrusion 51 a is provided at one end of the grip sleeve 51. The protrusion 51a of the grip sleeve 51 is rotatably accommodated in the bearing groove 54a via the bearing member 51b. Thereby, the movement of the grip sleeve 51 in the axial direction is stopped.
 摩擦発生部54bに環状の摩擦発生部材53が設けられる。摩擦発生部材53は、例えば合成ゴム等の粘弾性高分子材料からなり、グリップスリーブ51の外周面に接触する。グリップスリーブ51が回転される場合、グリップスリーブ51と摩擦発生部材53との間に摩擦が発生する。それにより、後述のように、アクセルグリップ部材52から運転者に加わる反力が調整される。摩擦発生部材53とグリップスリーブ51との接触を良好に維持するために、摩擦発生部54bに油等の潤滑剤が供給されてもよい。 An annular friction generating member 53 is provided in the friction generating portion 54b. The friction generating member 53 is made of, for example, a viscoelastic polymer material such as synthetic rubber, and contacts the outer peripheral surface of the grip sleeve 51. When the grip sleeve 51 is rotated, friction is generated between the grip sleeve 51 and the friction generating member 53. Thereby, as will be described later, the reaction force applied to the driver from the accelerator grip member 52 is adjusted. In order to maintain good contact between the friction generating member 53 and the grip sleeve 51, a lubricant such as oil may be supplied to the friction generating portion 54b.
 ギア収容部54cに、コイルばね55およびギア56,57a,57b,58が収容される。モータ収容部54dに、モータ59が収容される。コイルばね55の一端部はグリップスリーブ51に固定され、他端部はケース部材54に固定される。コイルばね55は、閉方向R2にグリップスリーブ51を付勢する。 The coil spring 55 and the gears 56, 57a, 57b, and 58 are accommodated in the gear accommodating portion 54c. The motor 59 is accommodated in the motor accommodating portion 54d. One end of the coil spring 55 is fixed to the grip sleeve 51, and the other end is fixed to the case member 54. The coil spring 55 biases the grip sleeve 51 in the closing direction R2.
 ギア56,57a,57b,58の各々は、軸方向に沿った回転軸の周りで回転可能に設けられる。図4は、グリップスリーブ51およびギア56,57a,57b,58の配置について説明するための図である。図4には、図3の矢印T方向から見たグリップスリーブ51およびギア56,57a,57b,58の側面が示される。 Each of the gears 56, 57a, 57b, 58 is provided to be rotatable around a rotation axis along the axial direction. FIG. 4 is a view for explaining the arrangement of the grip sleeve 51 and the gears 56, 57 a, 57 b and 58. 4 shows the side surfaces of the grip sleeve 51 and the gears 56, 57a, 57b, and 58 as seen from the direction of the arrow T in FIG.
 図4に示すように、ギア56は、グリップスリーブ51の軸心(ハンドルバー105aの軸心P1)に関して一定の角度範囲で扇状に広がるように、グリップスリーブ51と一体的に設けられる。ギア57a,57bは互いに一体的に設けられる。ギア57aの径は、ギア57bの径より小さい。ギア56がギア57aに噛み合わされ、ギア58がギア57bに噛み合わされる。 As shown in FIG. 4, the gear 56 is provided integrally with the grip sleeve 51 so as to spread in a fan shape within a certain angular range with respect to the axis of the grip sleeve 51 (the axis P1 of the handle bar 105a). The gears 57a and 57b are provided integrally with each other. The diameter of the gear 57a is smaller than the diameter of the gear 57b. The gear 56 is meshed with the gear 57a, and the gear 58 is meshed with the gear 57b.
 図3に示すように、モータ59の回転軸59aは軸方向に沿うように配置される。モータ59の回転軸59aにギア58が取り付けられる。このようにして、グリップスリーブ51とモータ59とがギア56,57a,57b,58を介して接続される。後述のように、一定の条件が満たされると、モータ59からグリップスリーブ51に閉方向R2の力が加わるように、モータ59が制御される。 As shown in FIG. 3, the rotating shaft 59a of the motor 59 is arranged along the axial direction. A gear 58 is attached to the rotation shaft 59 a of the motor 59. In this way, the grip sleeve 51 and the motor 59 are connected via the gears 56, 57a, 57b, and 58. As described later, when a certain condition is satisfied, the motor 59 is controlled such that a force in the closing direction R2 is applied from the motor 59 to the grip sleeve 51.
 ギア57aと対向する位置にアクセル開度センサSE4が配置される。アクセル開度センサSE4は、ギア57a(ギア57b)の回転角度を検出することにより、グリップスリーブ51の回転角度をアクセル開度として検出する。 Accelerator opening sensor SE4 is disposed at a position facing gear 57a. The accelerator opening sensor SE4 detects the rotation angle of the grip sleeve 51 as the accelerator opening by detecting the rotation angle of the gear 57a (gear 57b).
 (1-3)制御系
 図5は、自動二輪車100の制御系について説明するためのブロック図である。図5に示すように、ECU80は、CPU(中央演算処理装置)81、ROM(リードオンリメモリ)82およびRAM(ランダムアクセスメモリ)83を含む。回転速度センサSE1、変速比センサSE2、およびロール角センサSE3の検出結果がCPU81に与えられる。また、自動二輪車100の移動速度(車速)を検出する車速センサSE6が設けられる。車速センサSE6は、例えば後輪115の回転速度から車速を検出する。車速センサSE6の検出結果はCPU81に与えられる。また、運転者による設定スイッチ120の操作内容がCPU81に与えられる。
(1-3) Control System FIG. 5 is a block diagram for explaining a control system of the motorcycle 100. As shown in FIG. 5, the ECU 80 includes a CPU (Central Processing Unit) 81, a ROM (Read Only Memory) 82, and a RAM (Random Access Memory) 83. The detection results of the rotation speed sensor SE1, the gear ratio sensor SE2, and the roll angle sensor SE3 are given to the CPU 81. Further, a vehicle speed sensor SE6 that detects the moving speed (vehicle speed) of the motorcycle 100 is provided. The vehicle speed sensor SE6 detects the vehicle speed from the rotational speed of the rear wheel 115, for example. The detection result of the vehicle speed sensor SE6 is given to the CPU 81. In addition, the operation content of the setting switch 120 by the driver is given to the CPU 81.
 また、アクセルグリップ装置106のアクセル開度センサSE4の検出結果がCPU81に与えられる。CPU81は、アクセルグリップ装置106のモータ59を制御する。 Also, the detection result of the accelerator opening sensor SE4 of the accelerator grip device 106 is given to the CPU 81. The CPU 81 controls the motor 59 of the accelerator grip device 106.
 スロットル装置60は、スロットルバルブ61、スロットル駆動装置62およびスロットル開度センサSE5を含む。スロットル駆動装置62によってスロットルバルブ61の開度(以下、スロットル開度と呼ぶ)が調整されることにより、エンジン107の吸気量が調整される。それにより、エンジン107の出力が調整される。スロットル駆動装置62は、例えばモータである。ECU80のCPU81は、アクセル開度センサSE4の検出結果に基づいて、スロットル駆動装置62を制御する。スロットル開度センサSE5は、スロットル開度を検出し、その検出結果をCPU81に与える。 The throttle device 60 includes a throttle valve 61, a throttle drive device 62, and a throttle opening sensor SE5. By adjusting the opening of the throttle valve 61 (hereinafter referred to as the throttle opening) by the throttle driving device 62, the intake amount of the engine 107 is adjusted. Thereby, the output of the engine 107 is adjusted. The throttle drive device 62 is, for example, a motor. The CPU 81 of the ECU 80 controls the throttle drive device 62 based on the detection result of the accelerator opening sensor SE4. The throttle opening sensor SE5 detects the throttle opening and gives the detection result to the CPU 81.
 ECU80のROM82には、制御プログラムが記憶される。CPU81は、ROM82に記憶された制御プログラムをRAM83上で実行することにより、後述のアクセル反力調整処理を行う。また、ROM82には、エンジン回転速度、エンジントルクおよびスロットル開度の関係を表すマップ、ならびにアクセル反力調整処理に用いられる種々の数値等が記憶される。 A control program is stored in the ROM 82 of the ECU 80. The CPU 81 executes an accelerator reaction force adjustment process, which will be described later, by executing a control program stored in the ROM 82 on the RAM 83. The ROM 82 stores a map representing the relationship between the engine speed, the engine torque and the throttle opening, and various numerical values used for accelerator reaction force adjustment processing.
 (1-4)摩擦円
 アクセル反力調整処理では、摩擦円を用いた演算処理が行われる。図6は、摩擦円の一例を示す図である。図6において、縦軸は、前後方向における加速度Fxを示し、横軸は、左右方向における加速度Fyを示す。図6の例では、本体フレーム101(図1)の前方向への加速度(駆動時の加速度)が正の値で表され、本体フレーム101の後方向への加速度(制動時の加速度)が負の値で表される。また、本体フレーム101の右方向への加速度が正の値で表され、本体フレーム101の左方向への加速度が負の値で表される。
(1-4) Friction circle In the accelerator reaction force adjustment process, a calculation process using a friction circle is performed. FIG. 6 is a diagram illustrating an example of a friction circle. In FIG. 6, the vertical axis represents the acceleration Fx in the front-rear direction, and the horizontal axis represents the acceleration Fy in the left-right direction. In the example of FIG. 6, the forward acceleration (acceleration during driving) of the main body frame 101 (FIG. 1) is represented by a positive value, and the backward acceleration (acceleration during braking) of the main body frame 101 is negative. It is represented by the value of Further, the acceleration in the right direction of the main body frame 101 is represented by a positive value, and the acceleration in the left direction of the main body frame 101 is represented by a negative value.
 以下、前後方向における加速度を縦方向加速度と呼び、左右方向における加速度を横方向加速度と呼ぶ。自動二輪車100が直進している場合、横方向加速度は0である。自動二輪車100が左方向へ旋回する場合、横方向加速度が負の値になり、自動二輪車100が右方向へ旋回する場合、横方向加速度が正の値になる。 Hereinafter, acceleration in the front-rear direction is referred to as longitudinal acceleration, and acceleration in the left-right direction is referred to as lateral acceleration. When the motorcycle 100 is traveling straight, the lateral acceleration is zero. When the motorcycle 100 turns leftward, the lateral acceleration becomes a negative value, and when the motorcycle 100 turns rightward, the lateral acceleration becomes a positive value.
 摩擦円FCは、駆動輪である後輪115(図1)が路面に対してスリップしないための縦方向加速度および横方向加速度の限界値を表す。ここで、限界値とは、最大値および最小値をいう。以下、自動二輪車100が加速する場合について説明する。 The friction circle FC represents the limit values of the longitudinal acceleration and the lateral acceleration for preventing the rear wheel 115 (FIG. 1) as the driving wheel from slipping on the road surface. Here, the limit value means a maximum value and a minimum value. Hereinafter, a case where the motorcycle 100 is accelerated will be described.
 図6の例では、横方向加速度が0である場合、縦方向加速度の最大値はFx1であり、横方向加速度がFy2である場合、縦方向加速度の最大値はFx2である。以下の説明では、摩擦円FCに基づいて横方向加速度から算出される縦方向加速度の最大値を縦方向限界加速度と呼ぶ。 In the example of FIG. 6, when the lateral acceleration is 0, the maximum value of the vertical acceleration is Fx1, and when the lateral acceleration is Fy2, the maximum value of the vertical acceleration is Fx2. In the following description, the maximum value of the longitudinal acceleration calculated from the lateral acceleration based on the friction circle FC is referred to as a longitudinal limit acceleration.
 図6の例では、縦軸方向における摩擦円FCの半径(以下、縦径と呼ぶ)rxおよび横軸方向における摩擦円FCの半径(以下、横径と呼ぶ)ryが互いに等しく、摩擦円FCが真円であるが、縦径rxおよび横径ryが互いに異なり、摩擦円FCが真円以外の楕円であってもよい。図7は、摩擦円FCの他の例を示す図である。図7の例では、横径ryより縦径rxが大きく、摩擦円FCが縦長の楕円である。 In the example of FIG. 6, the radius (hereinafter referred to as the longitudinal diameter) rx of the friction circle FC in the vertical axis direction and the radius (hereinafter referred to as the lateral diameter) ry of the friction circle FC in the horizontal axis direction are equal to each other. Is a perfect circle, but the longitudinal diameter rx and the transverse diameter ry are different from each other, and the friction circle FC may be an ellipse other than the perfect circle. FIG. 7 is a diagram illustrating another example of the friction circle FC. In the example of FIG. 7, the vertical diameter rx is larger than the horizontal diameter ry, and the friction circle FC is a vertically long ellipse.
 路面の状態、後輪115(図1)の状態、ならびに運転者の技量等の種々の条件により、適切な摩擦円FCの形状および大きさは異なる。例えば、路面が濡れているまたは凍結している場合には、路面と後輪115との間の摩擦が小さくなる。その場合、縦径rxおよび横径ryは小さい。逆に、例えばグリップ力が高い後輪115が用いられる場合には、路面と後輪115との間の摩擦が大きくなる。その場合、縦径rxおよび横径ryは大きい。 The shape and size of the appropriate friction circle FC differ depending on various conditions such as the road surface state, the state of the rear wheel 115 (FIG. 1), and the skill of the driver. For example, when the road surface is wet or frozen, the friction between the road surface and the rear wheel 115 is reduced. In that case, the vertical diameter rx and the horizontal diameter ry are small. Conversely, for example, when the rear wheel 115 having a high grip force is used, the friction between the road surface and the rear wheel 115 increases. In that case, the longitudinal diameter rx and the lateral diameter ry are large.
 本実施の形態では、複数の摩擦円データがECU80のROM82(図5)に予め記憶される。複数の摩擦円データは、それぞれ異なる縦径rxおよび横径ryを含む。運転者は、設定スイッチ120を操作することにより、一の摩擦円データを選択する。これにより、一の縦径rxおよび一の横径ryが選択される。さらに、路面から後輪115に加わる垂直抗力(以下、駆動輪垂直抗力と呼ぶ)を算出し、算出された駆動輪垂直抗力に基づいて、選択された縦径rxおよび横径ryが補正される。これにより、自動二輪車100の走行状況に応じて、適切な縦径rxおよび横径ryが設定される。なお、運転者により縦径rxおよび横径ryがそれぞれ個別に設定され、設定された縦径rxおよび横径ryが駆動輪垂直抗力に基づいて補正されてもよい。 In the present embodiment, a plurality of friction circle data is stored in advance in the ROM 82 (FIG. 5) of the ECU 80. The plurality of friction circle data includes different vertical diameters rx and horizontal diameters ry. The driver operates the setting switch 120 to select one piece of friction circle data. Thereby, one vertical diameter rx and one horizontal diameter ry are selected. Further, the vertical drag applied to the rear wheel 115 from the road surface (hereinafter referred to as drive wheel vertical drag) is calculated, and the selected vertical diameter rx and horizontal diameter ry are corrected based on the calculated drive wheel vertical drag. . Thus, appropriate longitudinal diameter rx and lateral diameter ry are set in accordance with the traveling state of motorcycle 100. The longitudinal diameter rx and the lateral diameter ry may be individually set by the driver, and the set longitudinal diameter rx and lateral diameter ry may be corrected based on the driving wheel normal force.
 (1-5)アクセル反力
 運転者が図3のアクセルグリップ部材52に開方向R1の力を加えると、アクセルグリップ部材52から運転者に閉方向R2の反力(以下、アクセル反力と呼ぶ)が加わる。アクセル反力は、コイルばね55の付勢力、摩擦発生部材53による摩擦力、およびモータ59により発生される反力を含む。本実施の形態では、予め定められた条件が満たされた場合に、モータ59による反力が発生される。以下、アクセル反力のうち、モータ59により発生される反力をモータ反力と呼び、それ以外の反力(コイルばね55および摩擦発生部材53等による反力)を基準反力と呼ぶ。
(1-5) Accelerator reaction force When the driver applies a force in the opening direction R1 to the accelerator grip member 52 in FIG. 3, the reaction force in the closing direction R2 from the accelerator grip member 52 to the driver (hereinafter referred to as an accelerator reaction force). ) Is added. The accelerator reaction force includes a biasing force of the coil spring 55, a friction force generated by the friction generating member 53, and a reaction force generated by the motor 59. In the present embodiment, a reaction force generated by the motor 59 is generated when a predetermined condition is satisfied. Hereinafter, of the accelerator reaction force, the reaction force generated by the motor 59 is referred to as a motor reaction force, and the other reaction force (reaction force due to the coil spring 55 and the friction generating member 53) is referred to as a reference reaction force.
 図8は、アクセル開度と基準反力との関係を示す図である。図8において、横軸はアクセル開度を示し、縦軸は基準反力を示す。また、アクセルグリップ部材52が閉位置にあるときのアクセル開度がMINであり、アクセルグリップ部材52が開位置にあるときのアクセル開度がMAXである。アクセルグリップ部材52が開方向R1に回転されることによりアクセル開度が大きくなり、アクセルグリップ部材52が閉方向R2に回転されることによりアクセル開度が小さくなる。 FIG. 8 is a diagram showing the relationship between the accelerator opening and the reference reaction force. In FIG. 8, the horizontal axis represents the accelerator opening, and the vertical axis represents the reference reaction force. Further, the accelerator opening when the accelerator grip member 52 is in the closed position is MIN, and the accelerator opening when the accelerator grip member 52 is in the open position is MAX. The accelerator opening is increased when the accelerator grip member 52 is rotated in the opening direction R1, and the accelerator opening is decreased when the accelerator grip member 52 is rotated in the closing direction R2.
 図8の例では、アクセル開度と基準反力との関係はヒステリシス特性を有する。アクセルグリップ部材52を開方向R1に回転させる場合の基準反力は、アクセルグリップ部材52を閉方向R2に回転させる場合の基準反力よりも大きい。また、アクセルグリップ部材52を開方向R1に回転させる場合および閉方向R2に回転させる場合の各々において、基準反力は、アクセル開度が大きいほど大きくなる。 In the example of FIG. 8, the relationship between the accelerator opening and the reference reaction force has a hysteresis characteristic. The reference reaction force for rotating the accelerator grip member 52 in the opening direction R1 is larger than the reference reaction force for rotating the accelerator grip member 52 in the closing direction R2. Further, in each of the case where the accelerator grip member 52 is rotated in the opening direction R1 and the case where the accelerator grip member 52 is rotated in the closing direction R2, the reference reaction force increases as the accelerator opening degree increases.
 アクセル開度と基準反力との関係は、図8の例に限定されない。例えば、アクセル開度に対して基準反力が曲線的に変化してもよく、またはアクセル開度に対して基準反力が一定であってもよい。また、アクセルグリップ部材52を開方向R1に回転させる場合の基準反力と、アクセルグリップ部材52を閉方向R2に回転させる場合の基準反力とが等しくてもよい。 The relationship between the accelerator opening and the reference reaction force is not limited to the example of FIG. For example, the reference reaction force may change in a curve with respect to the accelerator opening, or the reference reaction force may be constant with respect to the accelerator opening. Further, the reference reaction force when the accelerator grip member 52 is rotated in the opening direction R1 may be equal to the reference reaction force when the accelerator grip member 52 is rotated in the closing direction R2.
 本実施の形態では、モータ反力を制御するための制御モードとして、反力強化モード、フリクションモードおよび合算モードがある。運転者は、設定スイッチ120を操作することにより、好みまたは他の種々の条件に応じて、反力強化モード、フリクションモードおよび合算モードのうちいずれか1つの制御モードを選択する。 In this embodiment, there are a reaction force strengthening mode, a friction mode, and a summing mode as control modes for controlling the motor reaction force. The driver operates the setting switch 120 to select any one of the control mode from the reaction force strengthening mode, the friction mode, and the summing mode according to preference or other various conditions.
 図9は、反力強化モードにおけるモータ反力について説明するための図である。図9において、横軸はエンジントルクを示し、縦軸はモータ反力を示す。 FIG. 9 is a diagram for explaining the motor reaction force in the reaction force enhancement mode. In FIG. 9, the horizontal axis indicates the engine torque, and the vertical axis indicates the motor reaction force.
 図9に示すように、反力強化モードでは、エンジントルクが制御開始トルクD以上になると、モータ反力が発生される。制御開始トルクDは、上記の摩擦円FCに基づいて算出される。制御開始トルクDについては後述する。モータ反力は、エンジントルクに対して一次関数的に変化し、エンジントルクが大きいほど大きくなる。この場合、現在のエンジントルク(以下、現在トルクと呼ぶ)Daと制御開始トルクDとの差分値Dtに、エンジントルクに対するモータ反力の変化率(図9の直線Ltの傾き)を乗算することにより、発生されるべきモータ反力を算出することができる。 As shown in FIG. 9, in the reaction force strengthening mode, when the engine torque becomes equal to or higher than the control start torque D, a motor reaction force is generated. The control start torque D is calculated based on the friction circle FC. The control start torque D will be described later. The motor reaction force changes in a linear function with respect to the engine torque, and increases as the engine torque increases. In this case, the difference value Dt between the current engine torque (hereinafter referred to as the current torque) Da and the control start torque D is multiplied by the rate of change of the motor reaction force with respect to the engine torque (the slope of the straight line Lt in FIG. 9). Thus, the motor reaction force to be generated can be calculated.
 したがって、エンジントルクが制御開始トルクDより小さい場合には、図8の基準反力のみがアクセル反力として運転者に加わる。一方、エンジントルクが制御開始トルクD以上である場合には、図9のモータ反力と図8の基準反力との合力がアクセル反力として運転者に加わる。これにより、アクセル開度が過剰に大きくなることが抑制される。したがって、エンジントルクが過剰に大きくなることが抑制され、自動二輪車100の安定性が確保される。 Therefore, when the engine torque is smaller than the control start torque D, only the reference reaction force in FIG. 8 is applied to the driver as the accelerator reaction force. On the other hand, when the engine torque is equal to or greater than the control start torque D, the resultant force of the motor reaction force in FIG. 9 and the reference reaction force in FIG. 8 is applied to the driver as an accelerator reaction force. Thereby, it is suppressed that an accelerator opening becomes large too much. Therefore, an excessive increase in engine torque is suppressed, and the stability of motorcycle 100 is ensured.
 反力強化モードにおけるモータ反力の変化は、図9の例に限定されない。例えば、エンジントルクに対してモータ反力が二次関数的に大きくなるように変化してもよく、またはエンジントルクに対してモータ反力が段階的に大きくなるように変化してもよい。 The change of the motor reaction force in the reaction force enhancement mode is not limited to the example of FIG. For example, the motor reaction force may change so as to increase in a quadratic function with respect to the engine torque, or the motor reaction force may change so as to increase stepwise with respect to the engine torque.
 図10は、フリクションモードにおけるモータ反力について説明するための図である。図10(a)において、横軸は時間を示し、縦軸はアクセル開度を示す。図10(b)において、横軸は時間を示し、縦軸はモータ反力を示す。 FIG. 10 is a diagram for explaining the motor reaction force in the friction mode. In Fig.10 (a), a horizontal axis shows time and a vertical axis | shaft shows an accelerator opening. In FIG.10 (b), a horizontal axis shows time and a vertical axis | shaft shows a motor reaction force.
 フリクションモードでは、エンジントルクが制御開始トルクD(図9)以上である場合に、アクセル開度の単位時間当たりの変化量に基づいて、モータ反力が発生される。具体的には、アクセルグリップ部材52が開方向R1に回転された場合、すなわち、アクセル開度の時間微分値が正の値である場合、その時間微分値に予め定められたゲインを乗算することにより、発生されるべきモータ反力が算出される。アクセル開度の時間微分値が0以下でありかつ直前にモータ反力が発生されていない場合、モータ反力が発生されない。アクセル開度の時間微分値が0以下でありかつ直前にモータ反力が発生されている場合、モータ反力が予め定められた時定数で減衰されるように、発生されるべきモータ反力が算出される。 In the friction mode, when the engine torque is equal to or greater than the control start torque D (FIG. 9), a motor reaction force is generated based on the amount of change in the accelerator opening per unit time. Specifically, when the accelerator grip member 52 is rotated in the opening direction R1, that is, when the time differential value of the accelerator opening is a positive value, the time differential value is multiplied by a predetermined gain. Thus, the motor reaction force to be generated is calculated. When the time differential value of the accelerator opening is 0 or less and the motor reaction force is not generated immediately before, the motor reaction force is not generated. When the time differential value of the accelerator opening is 0 or less and the motor reaction force is generated immediately before, the motor reaction force to be generated is such that the motor reaction force is attenuated with a predetermined time constant. Calculated.
 図10(a)の例では、時点t1から時点t2までの期間にアクセル開度がP1からP2に変化し、時点t2以降にアクセル開度が一定に維持される。この場合、図10(b)に示すように、時点t1から時点t2までの期間にモータ反力T10が発生され、時点t2以降にモータ反力が予め定められた時定数で減衰される。 In the example of FIG. 10A, the accelerator opening changes from P1 to P2 during the period from time t1 to time t2, and the accelerator opening is maintained constant after time t2. In this case, as shown in FIG. 10B, the motor reaction force T10 is generated in the period from the time point t1 to the time point t2, and the motor reaction force is attenuated with a predetermined time constant after the time point t2.
 したがって、エンジントルクが制御開始トルクDより小さい場合には、図8の基準反力のみがアクセル反力として運転者に加わる。一方、エンジントルクが制御開始トルクD以上である場合には、アクセル開度の単位時間当たりの変化量に基づいて発生されるモータ反力と図8の基準反力との合力がアクセル反力として運転者に加わる。これにより、アクセルグリップ部材52の操作量の急激な変化が抑制され、自動二輪車100の安定性が確保される。 Therefore, when the engine torque is smaller than the control start torque D, only the reference reaction force in FIG. 8 is applied to the driver as the accelerator reaction force. On the other hand, when the engine torque is equal to or greater than the control start torque D, the resultant force of the motor reaction force generated based on the change amount of the accelerator opening per unit time and the reference reaction force in FIG. Join the driver. Thereby, a rapid change in the operation amount of the accelerator grip member 52 is suppressed, and the stability of the motorcycle 100 is ensured.
 フリクションモードにおけるモータ反力の変化は、図10の例に限定されない。例えば、アクセル開度が変化した場合に予め定められた一定のモータ反力が発生されてもよい。また、アクセル開度の時間微分値が正の値から0以下に変化した場合に一定時間モータ反力が維持されてもよい。 The change in the motor reaction force in the friction mode is not limited to the example of FIG. For example, a predetermined constant motor reaction force may be generated when the accelerator opening changes. Further, when the time differential value of the accelerator opening changes from a positive value to 0 or less, the motor reaction force may be maintained for a certain time.
 合算モードでは、反力強化モードと同様に、エンジントルクに対して一次関数的に変化するモータ反力が発生されるとともに、フリクションモードと同様に、アクセル開度の単位時間当たりの変化量に基づいてモータ反力が発生される。 In the combined mode, a motor reaction force that varies in a linear function with respect to the engine torque is generated as in the reaction force enhancement mode, and based on the amount of change in accelerator opening per unit time, as in the friction mode. Motor reaction force is generated.
 したがって、エンジントルクが制御開始トルクDより小さい場合には、図8の基準反力のみがアクセル反力として運転者に加わる。一方、エンジントルクが制御開始トルクD以上である場合には、アクセル開度に対して一次関数的に変化するモータ反力、アクセル開度の単位時間当たりの変化量に基づいて発生されるモータ反力、および図8の基準反力との合力がアクセル反力として運転者に加わる。これにより、エンジントルクが過剰に大きくなることが抑制されるとともに、アクセルグリップ部材52の操作量の急激な変化が抑制される。それにより、自動二輪車100の安定性が十分に確保される。 Therefore, when the engine torque is smaller than the control start torque D, only the reference reaction force in FIG. 8 is applied to the driver as the accelerator reaction force. On the other hand, when the engine torque is equal to or greater than the control start torque D, the motor reaction force generated based on the motor reaction force that changes in a linear function with respect to the accelerator opening, and the change amount per unit time of the accelerator opening. The force and the resultant force with the reference reaction force in FIG. 8 are applied to the driver as an accelerator reaction force. This suppresses an excessive increase in engine torque and suppresses a rapid change in the operation amount of the accelerator grip member 52. Thereby, the stability of the motorcycle 100 is sufficiently ensured.
 (1-6)アクセル反力調整処理
 図11は、アクセル反力調整処理のフローチャートである。図11のアクセル反力調整処理は、ECU80のCPU81により一定の周期で繰り返し行われる。
(1-6) Acceleration Reaction Force Adjustment Process FIG. 11 is a flowchart of the acceleration reaction force adjustment process. The accelerator reaction force adjustment process in FIG. 11 is repeatedly performed at a constant cycle by the CPU 81 of the ECU 80.
 図11に示すように、まず、CPU81は、補正係数算出処理を行う(ステップS1)。補正係数算出処理により、駆動輪垂直抗力に基づく摩擦円補正係数が算出される。続いて、CPU81は、摩擦円を用いた摩擦円演算処理を行う(ステップS2)。この場合、摩擦円補正係数を用いて補正された摩擦円が用いられる。摩擦円演算処理により、許容されるべき最大のトルクと現在のトルクとの差分である余裕トルクが算出される。補正係数算出処理、摩擦円補正係数、摩擦円演算処理および余裕トルクの詳細については後述する。 As shown in FIG. 11, first, the CPU 81 performs a correction coefficient calculation process (step S1). By the correction coefficient calculation process, a friction circle correction coefficient based on the drive wheel normal force is calculated. Subsequently, the CPU 81 performs a friction circle calculation process using the friction circle (step S2). In this case, a friction circle corrected using the friction circle correction coefficient is used. By the friction circle calculation process, a margin torque that is a difference between the maximum torque to be allowed and the current torque is calculated. Details of the correction coefficient calculation process, the friction circle correction coefficient, the friction circle calculation process, and the surplus torque will be described later.
 CPU81は、算出された余裕トルクが規定値Aよりも小さいか否かを判定する(ステップS3)。算出された余裕トルクが規定値Aよりも小さい場合、CPU81は、後述の反力演算処理を行い(ステップS4)、その後、アクセル反力調整処理を終了する。一方、算出された余裕トルクが規定値A以上である場合、CPU81は、反力演算処理を行うことなく、アクセル反力調整処理を終了する。 CPU81 determines whether or not the calculated surplus torque is smaller than the prescribed value A (step S3). When the calculated surplus torque is smaller than the specified value A, the CPU 81 performs a reaction force calculation process described later (step S4), and thereafter ends the accelerator reaction force adjustment process. On the other hand, if the calculated margin torque is equal to or greater than the specified value A, the CPU 81 ends the accelerator reaction force adjustment process without performing the reaction force calculation process.
 (1-6-1)補正係数算出処理
 ステップS1の補正係数算出処理について説明する。図12は、補正係数算出処理のフローチャートである。図12に示すように、まず、CPU81は、自動二輪車100の走行に対する抵抗(以下、走行抵抗と呼ぶ)として、空気抵抗、加速抵抗および転がり抵抗を算出する(ステップS11~S13)。加速抵抗は、自動二輪車100の加減速により生じる抵抗であり、自動二輪車100の加減速に伴う慣性力を含む。この場合、本体フレーム101、ピストン、クランク軸、前輪104および後輪115等の各部分に働く種々の方向の慣性力が加速抵抗となる。転がり抵抗は、前輪104および後輪115の回転に伴う摩擦等によって生じる抵抗である。
(1-6-1) Correction Coefficient Calculation Process The correction coefficient calculation process in step S1 will be described. FIG. 12 is a flowchart of the correction coefficient calculation process. As shown in FIG. 12, first, the CPU 81 calculates air resistance, acceleration resistance, and rolling resistance as resistance to traveling of the motorcycle 100 (hereinafter referred to as traveling resistance) (steps S11 to S13). The acceleration resistance is a resistance generated by acceleration / deceleration of the motorcycle 100 and includes an inertial force accompanying the acceleration / deceleration of the motorcycle 100. In this case, the inertial forces in various directions acting on the main body frame 101, the piston, the crankshaft, the front wheel 104, the rear wheel 115, and the like serve as acceleration resistance. The rolling resistance is resistance generated by friction associated with rotation of the front wheel 104 and the rear wheel 115.
 空気抵抗および転がり抵抗は、車速に応じて変化する。加速抵抗は、自動二輪車100の加速度に応じて変化する。車速と空気抵抗との関係、加速度と加速抵抗との関係、および車速と転がり抵抗との関係は、シミュレーションまたは実測により取得され、例えばROM82に予め記憶される。CPU81は、車速センサSE6の検出結果およびROM82に記憶される関係に基づいて、空気抵抗、加速抵抗および転がり抵抗を算出する。 ∙ Air resistance and rolling resistance vary according to vehicle speed. The acceleration resistance changes according to the acceleration of the motorcycle 100. The relationship between the vehicle speed and the air resistance, the relationship between the acceleration and the acceleration resistance, and the relationship between the vehicle speed and the rolling resistance are acquired by simulation or actual measurement and stored in advance in the ROM 82, for example. The CPU 81 calculates air resistance, acceleration resistance, and rolling resistance based on the detection result of the vehicle speed sensor SE6 and the relationship stored in the ROM 82.
 なお、実際には、運転者の体格、質量(体重)および姿勢等によって空気抵抗、加速抵抗および転がり抵抗は異なる。そこで、車速と空気抵抗との関係、加速度と加速抵抗との関係、および車速と転がり抵抗との関係として、複数のパターンが選択可能に設定され、それら複数のパターンのうち運転者により選択されたパターンを用いて空気抵抗、加速抵抗および転がり抵抗が算出されてもよい。あるいは、運転者が自分の体格または体重等の情報を入力するための入力部が設けられ、入力部に入力された情報に基づいて、空気抵抗、加速抵抗および転がり抵抗が補正されてもよい。 Actually, the air resistance, acceleration resistance and rolling resistance differ depending on the physique, mass (weight) and posture of the driver. Therefore, a plurality of patterns are set to be selectable as the relationship between the vehicle speed and the air resistance, the relationship between the acceleration and the acceleration resistance, and the relationship between the vehicle speed and the rolling resistance. Air resistance, acceleration resistance, and rolling resistance may be calculated using the pattern. Or the input part for a driver | operator to input information, such as one's physique or a body weight, is provided, and air resistance, acceleration resistance, and rolling resistance may be correct | amended based on the information input into the input part.
 また、ステップS11において、例えば風圧センサにより自動二輪車100および運転者に加わる風圧が検出され、検出された風圧に基づいて自動二輪車100に働く空気抵抗が算出されてもよい。また、ステップS12において、加速度センサにより自動二輪車100の加速度が検出され、検出された加速度に基づいて加速抵抗が算出されてもよい。また、車速が変化しても転がり抵抗がほとんど変化しない場合がある。その場合、転がり抵抗として予め定められた一定の値が用いられてもよい。 In step S11, for example, the wind pressure applied to the motorcycle 100 and the driver may be detected by a wind pressure sensor, and the air resistance acting on the motorcycle 100 may be calculated based on the detected wind pressure. In step S12, the acceleration of the motorcycle 100 may be detected by the acceleration sensor, and the acceleration resistance may be calculated based on the detected acceleration. Moreover, even if the vehicle speed changes, the rolling resistance may hardly change. In that case, a predetermined value may be used as the rolling resistance.
 次に、CPU81は、ステップS11~S13で算出された空気抵抗、加速抵抗および転がり抵抗を用いて、自動二輪車100に働く勾配抵抗を算出する(ステップS14)。勾配抵抗は、路面の勾配に応じて自動二輪車100に加わる抵抗である。勾配抵抗は、以下のようにして算出される。 Next, the CPU 81 calculates the gradient resistance acting on the motorcycle 100 using the air resistance, acceleration resistance, and rolling resistance calculated in steps S11 to S13 (step S14). The gradient resistance is a resistance applied to the motorcycle 100 according to the road surface gradient. The gradient resistance is calculated as follows.
 一般的に、空気抵抗、加速抵抗、転がり抵抗および勾配抵抗の合計が走行抵抗の総和に相当する。走行中の自動二輪車100に関して、運動方程式として下式(1)が成立する。 Generally, the sum of air resistance, acceleration resistance, rolling resistance and gradient resistance corresponds to the sum of running resistance. With respect to the traveling motorcycle 100, the following equation (1) is established as an equation of motion.
 ma=駆動力-走行抵抗 … (1)
 式(1)において、mは、自動二輪車100の質量および運転者の体重の合計(以下、合計質量と呼ぶ)であり、例えば一定の値として予めROM82に記憶される。合計質量として、予め記憶された値が用いられる代わりに、歪みゲージ等により検出された値が用いられてもよい。また、図示しないサスペンション(例えばリアサスペンション)の伸縮に基づいて合計質量が算出されてもよい。また、上記のように、運転者が自分の体重等を入力するための入力部が設けられ、入力された運転者の体重と予め記憶された自動二輪車100の質量とに基づいて合計質量が算出されてもよい。
ma = drive force−running resistance (1)
In Expression (1), m is the total of the mass of the motorcycle 100 and the weight of the driver (hereinafter referred to as total mass), and is stored in advance in the ROM 82 as a constant value, for example. Instead of using a value stored in advance as the total mass, a value detected by a strain gauge or the like may be used. Further, the total mass may be calculated based on the expansion and contraction of a suspension (not shown) (for example, a rear suspension). In addition, as described above, an input unit is provided for the driver to input his / her weight and the like, and the total mass is calculated based on the input weight of the driver and the mass of the motorcycle 100 stored in advance. May be.
 式(1)において、aは、自動二輪車100の加速度であり、車速センサSE6の検出結果に基づいて算出される。また、上記のように、加速度センサにより自動二輪車100の加速度が検出されてもよい。 In Equation (1), a is the acceleration of the motorcycle 100, and is calculated based on the detection result of the vehicle speed sensor SE6. Further, as described above, the acceleration of the motorcycle 100 may be detected by the acceleration sensor.
 自動二輪車100の駆動力は、エンジントルク、変速比および後輪115の半径に基づいて算出することができる。エンジントルクは、回転速度センサSE1の検出結果、スロットル開度センサSE5の検出結果、およびROM82に記憶されるマップに基づいて算出することができる。変速比は、変速比センサSE2により検出される。後輪115の半径は、例えば自動二輪車100の固有の値として予めROM82に記憶される。 The driving force of the motorcycle 100 can be calculated based on the engine torque, the gear ratio, and the radius of the rear wheel 115. The engine torque can be calculated based on the detection result of the rotation speed sensor SE1, the detection result of the throttle opening sensor SE5, and a map stored in the ROM 82. The gear ratio is detected by a gear ratio sensor SE2. The radius of the rear wheel 115 is stored in the ROM 82 in advance as, for example, a unique value of the motorcycle 100.
 これにより、上式(1)から走行抵抗を算出することができる。算出された走行抵抗から、ステップS11~S13で算出された空気抵抗、加速抵抗および転がり抵抗が減算されることにより、勾配抵抗が得られる。 Thereby, the running resistance can be calculated from the above equation (1). The gradient resistance is obtained by subtracting the air resistance, acceleration resistance, and rolling resistance calculated in steps S11 to S13 from the calculated running resistance.
 次に、CPU81は、ステップS14で算出された勾配抵抗に基づいて、水平面に対する路面の角度(以下、勾配角度と呼ぶ)を算出し(ステップS15)、算出された勾配角度に基づいて、駆動輪垂直抗力Nを算出する(ステップS16)。その後、CPU81は、摩擦円補正係数を算出し(ステップS17)、補正係数算出処理を終了する。 Next, the CPU 81 calculates an angle of the road surface with respect to the horizontal plane (hereinafter referred to as a gradient angle) based on the gradient resistance calculated in step S14 (step S15), and based on the calculated gradient angle, the drive wheels calculating the normal force N 1 (step S16). Thereafter, the CPU 81 calculates a friction circle correction coefficient (step S17), and ends the correction coefficient calculation process.
 ステップS15~S17における勾配角度、駆動輪垂直抗力Nおよび摩擦円補正係数の算出方法について説明する。図13および図14は、勾配角度および駆動輪垂直抗力Nの算出方法について説明するための図である。図13および図14においては、自動二輪車100および運転者の重心Gが示されるとともに、路面GDに対する前輪104の接地点(以下、前輪接地点と呼ぶ)FPおよび後輪115の接地点(以下、後輪接地点と呼ぶ)BPが示される。 Gradient angle in steps S15 ~ S17, the calculation method of the drive wheel normal force N 1 and the friction circle correction coefficient will be described. 13 and 14 are diagrams for explaining a method of calculating the slope angle and the driving wheel normal force N 1. 13 and 14, the center of gravity G of the motorcycle 100 and the driver is shown, and the grounding point of the front wheel 104 (hereinafter referred to as the front wheel grounding point) FP and the grounding point of the rear wheel 115 (hereinafter referred to as the grounding point). BP) (referred to as the rear wheel contact point) is shown.
 図13の例では、路面GDの勾配角度が0であり、勾配抵抗は0である。図14の例では、路面GDの勾配角度がαである。自動二輪車100は路面GDを登坂する方向に進行し、その進行方向の逆方向に勾配抵抗DRが生じる。勾配抵抗DRは、下式(2)で表される。 In the example of FIG. 13, the gradient angle of the road surface GD is 0, and the gradient resistance is 0. In the example of FIG. 14, the gradient angle of the road surface GD is α. The motorcycle 100 travels in the direction of ascending the road surface GD, and a gradient resistance DR is generated in the direction opposite to the traveling direction. The gradient resistance DR is expressed by the following formula (2).
 DR=mg・sinα … (2)
 式(2)において、mは、合計質量であり、gは、重力加速度である。図12のステップS15においては、図12のステップS14で算出された勾配抵抗DRを用いて、式(2)から勾配角度αが算出される。
DR = mg · sin α (2)
In Equation (2), m is the total mass and g is the gravitational acceleration. In step S15 of FIG. 12, the gradient angle α is calculated from equation (2) using the gradient resistance DR calculated in step S14 of FIG.
 なお、他の方法で勾配角度αが取得されてもよい。例えば、ジャイロセンサにより勾配角度αが検出されてもよい。また、カーナビゲーションを用いて、自動二輪車100の現在位置および進行方向から勾配角度αが取得されてもよい。 Note that the gradient angle α may be acquired by other methods. For example, the gradient angle α may be detected by a gyro sensor. In addition, the gradient angle α may be acquired from the current position and the traveling direction of the motorcycle 100 using car navigation.
 図13の例において、駆動輪垂直抗力Nは、下式(3)で表される。一方、図14の例において、駆動輪垂直抗力Nは、下式(4)で表される。 In the example of FIG. 13, the drive wheel vertical drag N is expressed by the following formula (3). On the other hand, in the example of FIG. 14, the driving wheel normal force N 1 is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(3)および式(4)において、Lは、前輪接地点FPと後輪接地点BPとの間の距離であり、ホイールベース(前輪軸と後輪軸との間の距離)に相当する。Xは、重心Gと後輪接地点BPとの間の距離である。θは、前輪接地点FPと後輪接地点BPとを結ぶ直線(路面GDに平行な直線)と、重心Gと後輪接地点BPとを結ぶ直線との間の角度である。距離L、距離Xおよび角度θは、それぞれ自動二輪車100の固有の値として予めROM82に記憶される。 In Expressions (3) and (4), L is the distance between the front wheel contact point FP and the rear wheel contact point BP, and corresponds to the wheel base (the distance between the front wheel shaft and the rear wheel shaft). X is the distance between the center of gravity G and the rear wheel contact point BP. θ is an angle between a straight line connecting the front wheel contact point FP and the rear wheel contact point BP (a straight line parallel to the road surface GD) and a straight line connecting the center of gravity G and the rear wheel contact point BP. The distance L, the distance X, and the angle θ are previously stored in the ROM 82 as unique values of the motorcycle 100, respectively.
 上記のように、合計質量mとしては、予め定められた一定の値が用いられてもよい。あるいは、適宜検出または算出された合計質量mが用いられてもよい。合計質量mとして一定の値が用いられる場合には、式(3)の駆動輪垂直抗力Nは一定の値となる。 As described above, a predetermined value may be used as the total mass m. Or the total mass m detected or calculated suitably may be used. When a constant value is used as the total mass m, the driving wheel normal force N in the equation (3) is a constant value.
 駆動輪垂直抗力Nは、基準となる駆動輪垂直抗力であり、駆動輪垂直抗力Nは路面GDの勾配に応じた駆動輪垂直抗力である。 Drive wheel normal force N is a driving wheel normal force as a reference, the drive wheel normal force N 1 is a driving wheel normal force according to the gradient of the road surface GD.
 図12のステップS16においては、ステップS15で算出された勾配角度αを用いて、式(4)から駆動輪垂直抗力Nが算出される。図12のステップS17においては、ステップS16で算出された駆動輪垂直抗力Nを駆動輪垂直抗力Nで除した値(N/N)が摩擦円補正係数として算出される。この場合、駆動輪垂直抗力Nとしては、予め定められた合計質量mに基づく一定の値が用いられてもよい。あるいは、適宜検出または算出された合計質量mを用いて、式(3)から駆動輪垂直抗力Nが算出されてもよい。 In step S16 in FIG. 12, using a gradient angle α calculated in step S15, the drive wheel normal force N 1 from equation (4) is calculated. In step S17 in FIG. 12, a value obtained by dividing the driving wheel normal force N 1 calculated by the drive wheel normal force N at the step S16 (N 1 / N) is calculated as a friction circle correction coefficient. In this case, as the drive wheel vertical drag N, a constant value based on a predetermined total mass m may be used. Alternatively, the driving wheel normal force N may be calculated from Equation (3) using the total mass m detected or calculated as appropriate.
 (1-6-2)摩擦円演算処理
 図11のステップS2の摩擦円演算処理について説明する。図15は、摩擦円演算処理のフローチャートである。図15に示すように、CPU81は、設定スイッチ120の操作内容に基づいて、運転者により選択された摩擦円FCの縦径rxおよび横径ryを取得する(ステップS21)。
(1-6-2) Friction Circle Calculation Processing The friction circle calculation processing in step S2 in FIG. 11 will be described. FIG. 15 is a flowchart of the friction circle calculation process. As shown in FIG. 15, the CPU 81 acquires the longitudinal diameter rx and the lateral diameter ry of the friction circle FC selected by the driver based on the operation content of the setting switch 120 (step S21).
 次に、CPU81は、図12の補正係数算出処理で算出された摩擦円補正係数(N/N)を用いて、図15のステップS21で取得された縦径rxおよび横径ryを補正する(ステップS22)。具体的には、ステップS21で取得された縦径rxおよび横径ryの各々に摩擦円補正係数(N/N)を乗算する。これにより、路面GDの勾配に応じて、摩擦円FCの大きさが適切に設定される。 Next, the CPU 81 corrects the vertical diameter rx and the horizontal diameter ry acquired in step S21 of FIG. 15 using the friction circle correction coefficient (N 1 / N) calculated by the correction coefficient calculation processing of FIG. (Step S22). Specifically, each of the vertical diameter rx and the horizontal diameter ry acquired in step S21 is multiplied by a friction circle correction coefficient (N 1 / N). Accordingly, the size of the friction circle FC is appropriately set according to the gradient of the road surface GD.
 次に、CPU81は、ロール角センサSE3の検出結果に基づいて、横方向加速度を算出する(ステップS23)。具体的には、下式(5)を用いて、横方向加速度Fyを算出する。 Next, the CPU 81 calculates the lateral acceleration based on the detection result of the roll angle sensor SE3 (step S23). Specifically, the lateral acceleration Fy is calculated using the following equation (5).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(5)において、Φは、ロール角センサSE3により検出されるロール角である。rは、後輪115のクラウン半径である。ここで、クラウン半径とは、後輪115の外周部分(トラッド)の曲率半径である。Hは、自動二輪車100および運転者の重心の高さである。gは、重力加速度である。 In Expression (5), Φ is a roll angle detected by the roll angle sensor SE3. r c is the crown radius of the rear wheel 115. Here, the crown radius is a radius of curvature of the outer peripheral portion (trad) of the rear wheel 115. H is the height of the center of gravity of the motorcycle 100 and the driver. g is a gravitational acceleration.
 次に、CPU81は、ステップS22で補正された摩擦円FCおよびステップS23で算出された横方向加速度Fyに基づいて、縦方向限界加速度を算出する(ステップS24)。具体的には、CPU81は、下記式(6)を用いて、縦方向限界加速度Fxmaxを算出する。 Next, the CPU 81 calculates the longitudinal limit acceleration based on the friction circle FC corrected in step S22 and the lateral acceleration Fy calculated in step S23 (step S24). Specifically, the CPU 81 calculates the longitudinal limit acceleration Fxmax using the following equation (6).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、CPU81は、算出された縦方向限界加速度Fxmaxおよび変速比センサSE2の検出結果に基づいて、後輪115が路面に対してスリップしないためのエンジントルクの最大値(以下、縦方向限界トルクと呼ぶ)を算出する(ステップS25)。具体的には、縦方向限界加速度Fxmaxから後輪115のトルクの最大値を算出することができ、算出された後輪115のトルクの最大値および変速比から縦方向限界トルクを算出することができる。 Next, based on the calculated longitudinal limit acceleration Fxmax and the detection result of the transmission ratio sensor SE2, the CPU 81 determines the maximum engine torque (hereinafter referred to as the longitudinal limit torque) for preventing the rear wheel 115 from slipping on the road surface. Is calculated) (step S25). Specifically, the maximum torque value of the rear wheel 115 can be calculated from the vertical limit acceleration Fxmax, and the vertical limit torque can be calculated from the calculated maximum value of the torque of the rear wheel 115 and the gear ratio. it can.
 次に、CPU81は、回転速度センサSE1の検出結果、スロットル開度センサSE5の検出結果、およびROM82に記憶されるマップに基づいて、現在トルクDa(図9)を算出する(ステップS26)。次に、CPU81は、ステップS25で算出された縦方向限界トルクからステップS26で算出された現在トルクDaを減算することにより余裕トルクを算出する(ステップS27)。これにより、摩擦円演算処理が終了する。 Next, the CPU 81 calculates the current torque Da (FIG. 9) based on the detection result of the rotation speed sensor SE1, the detection result of the throttle opening sensor SE5, and the map stored in the ROM 82 (step S26). Next, the CPU 81 calculates a margin torque by subtracting the current torque Da calculated in step S26 from the longitudinal limit torque calculated in step S25 (step S27). Thereby, the friction circle calculation process ends.
 現在トルクDaが縦方向限界トルクに達すると、余裕トルクが0になる。その場合、後輪115が路面に対してスリップする可能性が高くなる。そこで、余裕トルクが0になることを抑制するために、CPU81は、余裕トルクが規定値Aよりも小さくなると、反力演算処理を行う。 When the current torque Da reaches the longitudinal limit torque, the surplus torque becomes zero. In that case, the possibility that the rear wheel 115 slips on the road surface is increased. Therefore, in order to suppress the margin torque from becoming zero, the CPU 81 performs a reaction force calculation process when the margin torque becomes smaller than the specified value A.
 (1-6-3)反力演算処理
 図11のステップS3の反力演算処理について説明する。図16は、反力演算処理のフローチャートである。図16に示すように、CPU81は、図15のステップS25で算出された縦方向限界トルクから規定値Aを減算することにより制御開始トルクDを算出する(ステップS31)。
(1-6-3) Reaction Force Calculation Processing The reaction force calculation processing in step S3 in FIG. 11 will be described. FIG. 16 is a flowchart of the reaction force calculation process. As shown in FIG. 16, the CPU 81 calculates the control start torque D by subtracting the specified value A from the longitudinal limit torque calculated in step S25 of FIG. 15 (step S31).
 次に、CPU81は、算出された制御開始トルクDと図15のステップS26で算出された現在トルクDaとの差分値Dt(図9)を算出する(ステップS32)。次に、CPU81は、アクセル開度センサSE4の検出結果に基づいて、アクセル開度の時間微分値を算出する(ステップS33)。例えば、アクセル反力調整処理の一周期毎にアクセル開度が検出され、今回の周期で検出されたアクセル開度から前回の周期で検出されたアクセル開度を減算し、その減算値を一周期の長さで除算することにより、アクセル開度の時間微分値が算出される。 Next, the CPU 81 calculates a difference value Dt (FIG. 9) between the calculated control start torque D and the current torque Da calculated in step S26 of FIG. 15 (step S32). Next, the CPU 81 calculates a time differential value of the accelerator opening based on the detection result of the accelerator opening sensor SE4 (step S33). For example, the accelerator opening is detected every cycle of the accelerator reaction force adjustment process, and the accelerator opening detected in the previous cycle is subtracted from the accelerator opening detected in the current cycle, and the subtracted value is set in one cycle. The time differential value of the accelerator opening is calculated by dividing by the length of.
 次に、CPU81は、設定スイッチ120の操作内容に基づいて、モータ反力を制御するための制御モードを決定する(ステップS34)。次に、CPU81は、決定された制御モードで発生されるべきモータ反力を算出する(ステップS35)。 Next, the CPU 81 determines a control mode for controlling the motor reaction force based on the operation content of the setting switch 120 (step S34). Next, the CPU 81 calculates a motor reaction force to be generated in the determined control mode (step S35).
 具体的には、制御モードが反力強化モードに決定された場合、CPU81は、ステップS32で算出された差分値Dtに予め定められたエンジントルクに対するモータ反力の変化率を乗算することにより、発生されるべきモータ反力を算出する。 Specifically, when the control mode is determined to be the reaction force strengthening mode, the CPU 81 multiplies the difference value Dt calculated in step S32 by the rate of change of the motor reaction force with respect to the predetermined engine torque. Calculate the motor reaction force to be generated.
 制御モードがフリクションモードに決定された場合、CPU81は、ステップS33で算出された時間微分値が正の値であるか否かを判定し、正の値である場合には、その時間微分値に予め定められたゲインを乗算することにより、発生されるべきモータ反力を算出する。また、算出された時間微分値が0以下でありかつ直前にモータ反力が発生されている場合、CPU81は、モータ反力が予め定められた時定数で減衰されるように、発生されるべきモータ反力を算出する。 When the control mode is determined to be the friction mode, the CPU 81 determines whether or not the time differential value calculated in step S33 is a positive value. If the control mode is a positive value, the CPU 81 determines the time differential value. The motor reaction force to be generated is calculated by multiplying a predetermined gain. Further, when the calculated time differential value is 0 or less and the motor reaction force is generated immediately before, the CPU 81 should be generated so that the motor reaction force is attenuated by a predetermined time constant. Calculate the motor reaction force.
 制御モードが合算モードに決定された場合、CPU81は、反力強化モードと同様にして算出されるモータ反力と、フリクションモードと同様にして算出されるモータ反力とを合算することにより、発生されるべきモータ反力を算出する。 When the control mode is determined to be the sum mode, the CPU 81 generates the sum by adding the motor reaction force calculated in the same manner as in the reaction force strengthening mode and the motor reaction force calculated in the same manner as in the friction mode. Calculate the motor reaction force to be performed.
 その後、CPU81は、ステップS35で算出されたモータ反力が発生されるように、図4のモータ59を制御する(ステップS36)。これにより、反力演算処理が終了する。 Thereafter, the CPU 81 controls the motor 59 in FIG. 4 so that the motor reaction force calculated in step S35 is generated (step S36). Thereby, the reaction force calculation process ends.
 (1-7)効果
 本実施の形態に係る自動二輪車100においては、駆動輪垂直抗力に基づいてモータ59が制御される。この場合、路面と後輪115との間の摩擦力に応じて、アクセルグリップ装置106のアクセルグリップ部材52から運転者に加わるアクセル反力が調整される。そのため、運転者は、アクセルグリップ部材52からの反力に基づいて、後輪115のスリップが防止されるようにアクセルグリップ部材52の操作量を調整することができる。この場合、運転者は、自らの意思でエンジン107の出力を調整することができる。したがって、運転者の運転フィーリングが低下することなく、運転者が自動二輪車100を安定に走行させることが可能となる。
(1-7) Effect In the motorcycle 100 according to the present embodiment, the motor 59 is controlled based on the drive wheel vertical drag. In this case, the accelerator reaction force applied to the driver from the accelerator grip member 52 of the accelerator grip device 106 is adjusted according to the frictional force between the road surface and the rear wheel 115. Therefore, the driver can adjust the operation amount of the accelerator grip member 52 based on the reaction force from the accelerator grip member 52 so that the rear wheel 115 is prevented from slipping. In this case, the driver can adjust the output of the engine 107 on his / her own will. Therefore, the driver can stably drive the motorcycle 100 without lowering the driver's driving feeling.
 また、本実施の形態では、路面の勾配に基づいて駆動輪垂直抗力が算出される。それにより、路面の勾配に応じてアクセルグリップ部材52から運転者に適切に反力が加えられる。 Further, in the present embodiment, the driving wheel vertical drag is calculated based on the road surface gradient. Accordingly, a reaction force is appropriately applied to the driver from the accelerator grip member 52 in accordance with the road surface gradient.
 また、本実施の形態では、駆動輪垂直抗力に基づいて摩擦円が補正され、補正された摩擦円に基づいて縦方向限界加速度が算出され、算出された縦方向限界加速度に基づいてモータ59が制御される。これにより、自動二輪車100の加速度が安定な走行に適切であるか否かを運転者に正確に認識させることができる。 In the present embodiment, the friction circle is corrected based on the drive wheel vertical drag, the longitudinal limit acceleration is calculated based on the corrected friction circle, and the motor 59 is operated based on the calculated longitudinal limit acceleration. Be controlled. Thereby, it is possible to make the driver accurately recognize whether or not the acceleration of the motorcycle 100 is appropriate for stable travel.
 また、本実施の形態では、算出された縦方向限界加速度に基づいて制御開始トルクDが算出され、現在トルクが制御開始トルクD以上である場合に、モータ反力が発生される。これにより、自動二輪車100の加速度が縦方向限界加速度に近づいた場合に、モータ反力によって運転者によるアクセルグリップ部材52の操作が抑制され、自動二輪車100の加速度のさらなる上昇が抑制される。それにより、自動二輪車100の安定性が確保される。 In the present embodiment, the control start torque D is calculated based on the calculated vertical limit acceleration, and when the current torque is equal to or greater than the control start torque D, a motor reaction force is generated. Thereby, when the acceleration of the motorcycle 100 approaches the longitudinal limit acceleration, the operation of the accelerator grip member 52 by the driver is suppressed by the motor reaction force, and further increase in the acceleration of the motorcycle 100 is suppressed. Thereby, the stability of the motorcycle 100 is ensured.
 また、本実施の形態では、算出された縦方向限界加速度および変速比センサSE2により検出される変速比に基づいて縦方向限界トルクが算出され、回転速度センサSE1により検出される回転速度、スロットル開度センサSE5により検出されるスロットル開度およびROM82に記憶されるマップに基づいて現在トルクが算出される。さらに、算出された縦方向限界トルクおよび現在トルクの差分に基づいて、モータ反力を発生させるための反力演算処理が行われるか否かが決定される。これにより、適切なタイミングでモータ反力が発生される。したがって、自動二輪車100の加速度が安定な走行に適切であるか否かを運転者に正確に認識させることができる。 In the present embodiment, the longitudinal limit torque is calculated based on the calculated longitudinal limit acceleration and the transmission ratio detected by the transmission ratio sensor SE2, and the rotational speed detected by the rotational speed sensor SE1 and the throttle opening. The current torque is calculated based on the throttle opening detected by the degree sensor SE5 and the map stored in the ROM 82. Furthermore, based on the calculated difference between the longitudinal limit torque and the current torque, it is determined whether or not a reaction force calculation process for generating a motor reaction force is performed. Thereby, a motor reaction force is generated at an appropriate timing. Therefore, it is possible to make the driver accurately recognize whether or not the acceleration of the motorcycle 100 is appropriate for stable travel.
 (1-8)補正係数算出処理の他の例
 図17~図19は、補正係数算出処理の他の例のフローチャートである。図17~図19の補正係数算出処理について、図12の例と異なる点を説明する。
(1-8) Other Examples of Correction Coefficient Calculation Processing FIGS. 17 to 19 are flowcharts of other examples of correction coefficient calculation processing. The correction coefficient calculation processing of FIGS. 17 to 19 will be described while referring to differences from the example of FIG.
 (1-8-1)
 図17の例では、まず、CPU81は、車速センサSE6の検出結果に基づいて、自動二輪車100の加速度を算出する(ステップS41)。この場合、加速センサにより自動二輪車100の加速度が検出されてもよい。
(1-8-1)
In the example of FIG. 17, first, the CPU 81 calculates the acceleration of the motorcycle 100 based on the detection result of the vehicle speed sensor SE6 (step S41). In this case, the acceleration of the motorcycle 100 may be detected by an acceleration sensor.
 次に、CPU81は、ステップS41で算出された加速度に基づいて、自動二輪車100の進行方向の逆方向に働く慣性力(以下、逆方向慣性力と呼ぶ)を算出する(ステップS42)。逆方向慣性力は、下式(7)で表される。 Next, the CPU 81 calculates an inertial force (hereinafter referred to as a reverse inertial force) acting in the reverse direction of the traveling direction of the motorcycle 100 based on the acceleration calculated in step S41 (step S42). The reverse inertia force is expressed by the following equation (7).
 逆方向慣性力=ma … (7)
 式(7)において、mは、合計質量であり、aは、加速度である。式(7)から逆方向慣性力が算出される。
Reverse direction inertia force = ma (7)
In equation (7), m is the total mass and a is the acceleration. The reverse inertia force is calculated from Equation (7).
 次に、CPU81は、ステップS42で算出された慣性力に基づいて、駆動輪垂直抗力Nを算出する(ステップS43)。その後、CPU81は、算出された駆動輪垂直抗力Nに基づいて、摩擦円補正係数を算出し(ステップS44)、補正係数算出処理を終了する。 Then, CPU 81 on the basis of the inertial force calculated at step S42, calculates the driving wheel normal force N 2 (step S43). Thereafter, the CPU 81 calculates a friction circle correction coefficient based on the calculated drive wheel normal force N 2 (step S44), and ends the correction coefficient calculation process.
 図20は、図17のステップS43における駆動輪垂直抗力Nの算出方法について説明するための図である。図20においては、図13および図14と同様に、重心G、前輪接地点FPおよび後輪接地点BPが示される。 Figure 20 is a diagram for explaining a method of calculating the drive wheel normal force N 2 at step S43 of FIG. 17. In FIG. 20, the center of gravity G, the front wheel ground contact point FP, and the rear wheel ground contact point BP are shown as in FIGS.
 図20の例では、簡易的に、逆方向慣性力Fiが重心Gに働くとする。逆方向慣性力Fiは、自動二輪車100および運転者に働く逆方向慣性力の総和である。逆方向慣性力Fiは、重心Gと前輪接地点FPとを結ぶ直線の方向の力Faと、重心Gと後輪接地点BPとを結ぶ直線の方向の力Fbとに分解される。力Fbは、後輪接地点BPにおいて後輪115から路面GDに加わる。力Fbは、路面GDに垂直な方向の力Fbvと路面GDに平行な方向の力Fbhとに分解される。力Fbvは、下式(8)で表される。 In the example of FIG. 20, it is assumed that the reverse inertia force Fi acts on the center of gravity G for simplicity. The reverse inertia force Fi is the sum of reverse inertia forces acting on the motorcycle 100 and the driver. The reverse inertia force Fi is decomposed into a force Fa in a straight line connecting the center of gravity G and the front wheel contact point FP and a force Fb in a straight line connecting the center of gravity G and the rear wheel contact point BP. The force Fb is applied from the rear wheel 115 to the road surface GD at the rear wheel contact point BP. The force Fb is decomposed into a force Fbv in a direction perpendicular to the road surface GD and a force Fbh in a direction parallel to the road surface GD. The force Fbv is expressed by the following formula (8).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 図17のステップS43においては、式(8)から力Fbvが算出され、算出された力Fbvが、上記の駆動輪垂直抗力N(図13)に加算される。これにより、駆動輪垂直抗力Nが算出される。図17のステップS44においては、ステップS43で算出された駆動輪垂直抗力Nを駆動輪垂直抗力Nで除した値(N/N)が摩擦円補正係数として算出される。 In step S43 of FIG. 17, the force Fbv is calculated from the equation (8), and the calculated force Fbv is added to the driving wheel vertical drag N (FIG. 13). Thus, the drive wheel normal force N 2 is calculated. In step S44 of FIG. 17, a value (N 2 / N) obtained by dividing the driving wheel vertical drag N 2 calculated in step S43 by the driving wheel vertical drag N is calculated as a friction circle correction coefficient.
 図17の補正係数算出処理により摩擦円補正係数(N/N)が算出された場合、図15の摩擦円演算処理のステップS22において、摩擦円補正係数(N/N)の代わりに、摩擦円補正係数(N/N)を用いて摩擦円FCの縦径rxおよび横径ryが補正される。これにより、逆方向慣性力Fiの大きさに応じて、摩擦円FCの大きさが適切に設定される。 When the friction circle correction coefficient (N 2 / N) is calculated by the correction coefficient calculation process of FIG. 17, in place of the friction circle correction coefficient (N 1 / N) in step S22 of the friction circle calculation process of FIG. The longitudinal diameter rx and the lateral diameter ry of the friction circle FC are corrected using the friction circle correction coefficient (N 2 / N). Thus, the size of the friction circle FC is appropriately set according to the magnitude of the reverse inertia force Fi.
 このように、本例では、自動二輪車100に働く逆方向慣性力Fiに基づいて、モータ59が制御される。これにより、逆方向慣性力Fiに応じてアクセルグリップ部材52から運転者に適切に反力が加えられる。 Thus, in this example, the motor 59 is controlled based on the reverse inertia force Fi acting on the motorcycle 100. Accordingly, a reaction force is appropriately applied to the driver from the accelerator grip member 52 according to the reverse inertia force Fi.
 なお、自動二輪車100のロール角が異なると、逆方向慣性力Fiと力Fbvとの関係が異なる。そこで、上式(8)の代わりに、下式(9)が用いられてもよい。 Note that, when the roll angle of the motorcycle 100 is different, the relationship between the reverse inertia force Fi and the force Fbv is different. Therefore, the following equation (9) may be used instead of the above equation (8).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(9)において、Φは、自動二輪車100のロール角である。ロール角Φは、ロール角センサSE3により検出される。 In Expression (9), Φ is the roll angle of the motorcycle 100. The roll angle Φ is detected by a roll angle sensor SE3.
 (1-8-2)
 図18の例では、まず、CPU81は、車速センサSE6の検出結果に基づいて、自動二輪車100の走行に対する空気抵抗を算出する(ステップS51)。上記のように、車速と空気抵抗との関係は、例えばROM82に予め記憶される。また、空気抵抗を算出するために、上述した他の種々の方法が用いられてもよい。
(1-8-2)
In the example of FIG. 18, first, the CPU 81 calculates the air resistance with respect to the traveling of the motorcycle 100 based on the detection result of the vehicle speed sensor SE6 (step S51). As described above, the relationship between the vehicle speed and the air resistance is stored in advance in the ROM 82, for example. In addition, other various methods described above may be used to calculate the air resistance.
 次に、CPU81は、ステップS51で算出された空気抵抗に基づいて、駆動輪垂直抗力Nを算出する(ステップS52)。その後、CPU81は、算出された駆動輪垂直抗力Nに基づいて、摩擦円補正係数を算出し(ステップS53)、補正係数算出処理を終了する。 Then, CPU 81 on the basis of the air resistance calculated in the step S51, to calculate a driving wheel normal force N 3 (step S52). Then, CPU 81, based on the calculated drive wheel normal force N 3, calculates the friction circle correction coefficient (step S53), and terminates the correction coefficient calculation processing.
 ステップS52における駆動輪垂直抗力Nの算出方法は、逆方向慣性力の代わりに空気抵抗が用いられる点を除いて、図17のステップS43における駆動輪垂直抗力Nの算出方法と同じである。 The method of calculating the step S52 the drive wheels in the normal force N 3, except that the air resistance is used instead of the opposite directional inertial force is the same as the method of calculating the drive wheel normal force N 1 in step S43 in FIG. 17 .
 図18のステップS53においては、ステップS52で算出された駆動輪垂直抗力Nを駆動輪垂直抗力Nで除した値(N/N)が摩擦円補正係数として算出される。 In step S53 of FIG. 18, a value (N 3 / N) obtained by dividing the driving wheel vertical drag N 3 calculated in step S52 by the driving wheel vertical drag N is calculated as a friction circle correction coefficient.
 図18の補正係数算出処理により摩擦円補正係数(N/N)が算出された場合、図15の摩擦円演算処理のステップS22において、摩擦円補正係数(N/N)の代わりに、摩擦円補正係数(N/N)を用いて摩擦円FCの縦径rxおよび横径ryが補正される。これにより、空気抵抗の大きさに応じて、摩擦円FCの大きさが適切に設定される。 When the friction circle correction coefficient (N 3 / N) is calculated by the correction coefficient calculation process of FIG. 18, in place of the friction circle correction coefficient (N 1 / N) in step S22 of the friction circle calculation process of FIG. The vertical diameter rx and the horizontal diameter ry of the friction circle FC are corrected using the friction circle correction coefficient (N 3 / N). Accordingly, the size of the friction circle FC is appropriately set according to the size of the air resistance.
 このように、本例では、自動二輪車100に働く空気抵抗に基づいて、モータ59が制御される。これにより、空気抵抗に応じてアクセルグリップ部材52から運転者に適切に反力が加えられる。 Thus, in this example, the motor 59 is controlled based on the air resistance acting on the motorcycle 100. Thereby, reaction force is appropriately applied to the driver from the accelerator grip member 52 according to the air resistance.
 (1-8-3)
 図19の例では、まず、CPU81は、車速センサSE6の検出結果に基づいて、自動二輪車100の走行時に生じる揚力を算出する(ステップS61)。揚力は、路面GDに垂直な方向に働く。揚力が正の値である場合、自動二輪車100から路面GDに加わる力は小さくなり、揚力が負の値である場合、自動二輪車100から路面GDに加わる力は大きくなる。揚力は、車速に応じて変化する。車速と揚力との関係は、シミュレーションまたは実測により取得され、例えばROM82に予め記憶される。CPU81は、車速センサSE6の検出結果およびROM82に記憶される関係に基づいて、揚力を算出する。
(1-8-3)
In the example of FIG. 19, first, the CPU 81 calculates the lift generated when the motorcycle 100 travels based on the detection result of the vehicle speed sensor SE6 (step S61). The lift acts in a direction perpendicular to the road surface GD. When the lift is a positive value, the force applied from the motorcycle 100 to the road surface GD is reduced, and when the lift is a negative value, the force applied from the motorcycle 100 to the road surface GD is increased. The lift varies depending on the vehicle speed. The relationship between the vehicle speed and the lift is acquired by simulation or actual measurement, and is stored in advance in the ROM 82, for example. The CPU 81 calculates lift based on the detection result of the vehicle speed sensor SE6 and the relationship stored in the ROM 82.
 次に、CPU81は、ステップS61で算出された揚力に基づいて、駆動輪垂直抗力Nを算出する(ステップS62)。その後、CPU81は、算出された駆動輪垂直抗力Nに基づいて、摩擦円補正係数を算出し(ステップS63)、補正係数算出処理を終了する。 Then, CPU 81 on the basis of the lift is calculated in step S61, to calculate a driving wheel normal force N 4 (step S62). Then, CPU 81, based on the calculated drive wheel normal force N 4, calculates the friction circle correction coefficient (step S63), and terminates the correction coefficient calculation processing.
 図21は、図19のステップS62における駆動輪垂直抗力Nの算出方法について説明するための図である。図21においては、図13および図14と同様に、重心G、前輪接地点FPおよび後輪接地点BPが示される。 Figure 21 is a diagram for explaining a method of calculating the drive wheel normal force N 4 at step S62 of FIG. 19. In FIG. 21, the center of gravity G, the front wheel ground contact point FP, and the rear wheel ground contact point BP are shown as in FIGS.
 図21の例では、簡易的に、揚力Flが重心Gに働くとする。揚力Flは、自動二輪車100および運転者に働く揚力の総和である。揚力Flは、前輪接地点FPにおいて路面GDに垂直な方向に働く力Fcと、後輪接地点BPにおいて路面GDに垂直な方向に働く力Fdとに分解される。力Fdは、下式(10)で表される。 In the example of FIG. 21, it is assumed that the lift Fl acts on the center of gravity G for simplicity. The lift force Fl is the sum of lift forces acting on the motorcycle 100 and the driver. The lift force Fl is decomposed into a force Fc that works in the direction perpendicular to the road surface GD at the front wheel contact point FP and a force Fd that works in the direction perpendicular to the road surface GD at the rear wheel contact point BP. The force Fd is expressed by the following formula (10).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図19のステップS62においては、式(9)から力Fdが算出され、算出された力Fdが、上記の駆動輪垂直抗力N(図13)から減算される。これにより、駆動輪垂直抗力Nが算出される。図19のステップS63においては、ステップS62で算出された駆動輪垂直抗力Nを駆動輪垂直抗力Nで除した値(N/N)が摩擦円補正係数として算出される。 In step S62 of FIG. 19, the force Fd is calculated from the equation (9), and the calculated force Fd is subtracted from the driving wheel vertical drag N (FIG. 13). Thus, the drive wheel normal force N 4 is calculated. In step S63 in FIG. 19, a value obtained by dividing the driving wheel normal force N 4 calculated by the drive wheel normal force N at the step S62 (N 4 / N) is calculated as a friction circle correction coefficient.
 図19の補正係数算出処理により摩擦円補正係数(N/N)が算出された場合、図15の摩擦円演算処理のステップS22において、摩擦円補正係数(N/N)の代わりに、摩擦円補正係数(N/N)を用いて摩擦円FCの縦径rxおよび横径ryが補正される。これにより、揚力Flの大きさに応じて、摩擦円FCの大きさが適切に設定される。 When the friction circle correction coefficient (N 4 / N) is calculated by the correction coefficient calculation process of FIG. 19, instead of the friction circle correction coefficient (N 1 / N) in step S22 of the friction circle calculation process of FIG. The longitudinal diameter rx and the lateral diameter ry of the friction circle FC are corrected using the friction circle correction coefficient (N 4 / N). Accordingly, the size of the friction circle FC is appropriately set according to the size of the lift force Fl.
 このように、本例では、自動二輪車100に働く揚力Flに基づいて、モータ59が制御される。これにより、揚力Flに応じてアクセルグリップ部材52から運転者に適切に反力が加えられる。 Thus, in this example, the motor 59 is controlled based on the lift Fl acting on the motorcycle 100. Accordingly, a reaction force is appropriately applied to the driver from the accelerator grip member 52 in accordance with the lift force Fl.
 (1-9)反力演算処理の他の例
 図22は、反力演算処理の他の例のフローチャートである。図22の反力演算処理について、図16の例と異なる点を説明する。
(1-9) Another Example of Reaction Force Calculation Processing FIG. 22 is a flowchart of another example of the reaction force calculation processing. The reaction force calculation process of FIG. 22 will be described while referring to differences from the example of FIG.
 図22の例では、ステップS35でモータ反力が算出された後、算出されたモータ反力に、ロール角センサSE3の検出結果に応じたゲインが乗算される(ステップS35a)。この場合、ロール角センサSE3により検出されるロール角が大きいほどモータ反力に乗算されるゲインは小さい。 In the example of FIG. 22, after the motor reaction force is calculated in step S35, the calculated motor reaction force is multiplied by a gain corresponding to the detection result of the roll angle sensor SE3 (step S35a). In this case, the gain multiplied by the motor reaction force is smaller as the roll angle detected by the roll angle sensor SE3 is larger.
 ロール角が大きいと、自動二輪車100の安定性が低い。そのため、ロール角が大きい場合にアクセル反力が大きくなると、運転者の運転フィーリングが低下することがある。そこで、ロール角に応じたゲインがモータ反力に乗算されることにより、ロール角が大きい場合にアクセル反力が過剰に大きくなることが防止される。それにより、運転者の運転フィーリングの低下が防止される。したがって、運転者は自動二輪車100をより安定に走行させることができる。 If the roll angle is large, the stability of the motorcycle 100 is low. Therefore, if the accelerator reaction force increases when the roll angle is large, the driving feeling of the driver may be reduced. Therefore, by multiplying the motor reaction force by a gain corresponding to the roll angle, it is possible to prevent the accelerator reaction force from becoming excessively large when the roll angle is large. Thereby, a decrease in the driving feeling of the driver is prevented. Therefore, the driver can drive the motorcycle 100 more stably.
 (2)他の実施の形態
 (2-1)
 上記実施の形態では、路面の勾配(図14の勾配角度α)、自動二輪車100に働く慣性力Fi(図20)、自動二輪車100に働く空気抵抗、自動二輪車100に働く揚力Fl(図21)のいずれか1つに基づいて算出された駆動輪垂直抗力が用いられるが、これに限らず、これらのうち複数に基づいて算出された駆動輪垂直抗力が用いられてもよい。
(2) Other embodiments (2-1)
In the above embodiment, the road surface gradient (gradient angle α in FIG. 14), the inertial force Fi acting on the motorcycle 100 (FIG. 20), the air resistance acting on the motorcycle 100, and the lift force Fl acting on the motorcycle 100 (FIG. 21). The driving wheel normal force calculated based on any one of these is used, but not limited to this, the driving wheel normal force calculated based on a plurality of them may be used.
 例えば、図14の駆動輪垂直抗力Nに図20の力Fbvが加算された値(N+Fbv)が用いられてもよく、または駆動輪垂直抗力Nから図21の力Fdが減算された値(N-Fd)が用いられてもよい。あるいは、図14の駆動輪垂直抗力Nに図20の力Fbvが加算され、その加算値から図21の力Fdが減算された値(N+Fbv-Fd)が用いられてもよい。 For example, a value (N 1 + Fbv) obtained by adding the force Fbv in FIG. 20 to the drive wheel vertical drag N 1 in FIG. 14 may be used, or the force Fd in FIG. 21 is subtracted from the drive wheel vertical drag N 1 . (N 1 -Fd) may be used. Alternatively, a value (N 1 + Fbv−Fd) obtained by adding the force Fbv of FIG. 20 to the drive wheel vertical drag N 1 of FIG. 14 and subtracting the force Fd of FIG. 21 from the added value may be used.
 また、自動二輪車100の走行状況に応じて、路面の勾配、慣性力、空気抵抗および揚力のうち1または複数が選択的に用いられて駆動輪垂直抗力が算出されてもよい。 Further, depending on the traveling state of the motorcycle 100, one or more of the road surface gradient, inertial force, air resistance, and lift may be selectively used to calculate the driving wheel vertical drag.
 (2-2)
 上記実施の形態では、摩擦円を用いて算出された縦方向限界加速度に基づいてアクセル反力が制御されるが、これに限らない。例えば、摩擦円を用いることなく、駆動輪垂直抗力に基づいてアクセル反力が制御されてもよい。
(2-2)
In the above embodiment, the accelerator reaction force is controlled based on the longitudinal limit acceleration calculated using the friction circle, but the present invention is not limited to this. For example, the accelerator reaction force may be controlled based on the driving wheel normal force without using a friction circle.
 駆動輪垂直抗力が小さいほど、摩擦力が小さくなり、駆動輪(後輪115)がスリップしやすくなる。そこで、例えば、駆動輪垂直抗力が小さいほど、アクセル反力が大きくなるように、モータ59が調整される。この場合、駆動輪(後輪115)がスリップしやすい状態で、自動二輪車100が加速されることが抑制される。それにより、自動二輪車100の安定性が確保される。 The smaller the driving wheel vertical drag is, the smaller the frictional force is, and the driving wheel (rear wheel 115) is more likely to slip. Therefore, for example, the motor 59 is adjusted so that the accelerator reaction force increases as the drive wheel vertical drag decreases. In this case, acceleration of the motorcycle 100 is suppressed in a state in which the drive wheels (rear wheels 115) are likely to slip. Thereby, the stability of the motorcycle 100 is ensured.
 (2-3)
 上記実施の形態では、縦方向限界トルクと現在トルクとの差分(余裕トルク)が規定値Aよりも小さい場合に反力演算処理が行われるが、これに限らない。例えば、縦方向限界トルクと現在トルクとの差分の変化量に基づいて、反力演算処理が行われてもよい。
(2-3)
In the above embodiment, the reaction force calculation process is performed when the difference between the longitudinal limit torque and the current torque (margin torque) is smaller than the specified value A, but the present invention is not limited to this. For example, the reaction force calculation process may be performed based on the amount of change in the difference between the longitudinal limit torque and the current torque.
 例えば、縦方向限界トルクと現在トルクとの差分の時間微分値が算出され、算出された時間微分値が規定値よりも大きい場合に、反力演算処理が行われる。この場合、縦方向限界トルクと現在トルクとの差分の変化を運転者に認識させることができる。 For example, the time differential value of the difference between the longitudinal limit torque and the current torque is calculated, and the reaction force calculation process is performed when the calculated time differential value is larger than a specified value. In this case, it is possible to make the driver recognize a change in the difference between the longitudinal limit torque and the current torque.
 また、反力演算処理において、縦方向限界トルクと現在トルクとの差分の変化量に基づいて、発生されるべきモータ反力が算出されてもよい。例えば、縦方向限界トルクと現在トルクとの差分の変化量が大きいほどモータ反力が大きくなるように、発生されるべきモータ反力が算出される。 In the reaction force calculation process, the motor reaction force to be generated may be calculated based on the amount of change in the difference between the longitudinal limit torque and the current torque. For example, the motor reaction force to be generated is calculated so that the motor reaction force increases as the change amount of the difference between the longitudinal limit torque and the current torque increases.
 (2-4)
 上記の実施の形態では、摩擦円補正係数による補正前の摩擦円の縦径rxおよび横径ryが運転者により選択されるが、これに限らず、補正前の摩擦円の縦径rxおよび横径ryが自動的に決定されてもよい。例えば、前輪104または後輪115の回転状況等に基づいて路面と後輪115との間の摩擦係数が推定され、推定された摩擦係数に基づいて摩擦円の縦径rxおよび横径ryが決定されてもよい。また、他の摩擦係数推定技術を用いて、摩擦円の縦径rxおよび横径ryが決定されてもよい。
(2-4)
In the above-described embodiment, the vertical diameter rx and the horizontal diameter ry of the friction circle before correction by the friction circle correction coefficient are selected by the driver, but not limited to this, the vertical diameter rx and the horizontal diameter of the friction circle before correction are not limited thereto. The diameter ry may be automatically determined. For example, the friction coefficient between the road surface and the rear wheel 115 is estimated based on the rotation state of the front wheel 104 or the rear wheel 115, and the longitudinal diameter rx and the lateral diameter ry of the friction circle are determined based on the estimated friction coefficient. May be. Further, the vertical diameter rx and the horizontal diameter ry of the friction circle may be determined using another friction coefficient estimation technique.
 (2-5)
 上記実施の形態では、ロール角センサSE3によって検出されたロール角に基づいて横方向加速度が算出されるが、これに限らない。例えば、加速度センサを用いて前後方向に直交する方向の加速度を検出し、検出された加速度を自動二輪車100の傾きに応じて補正することにより、横方向加速度を算出してもよい。
(2-5)
In the above embodiment, the lateral acceleration is calculated based on the roll angle detected by the roll angle sensor SE3, but the present invention is not limited to this. For example, the lateral acceleration may be calculated by detecting acceleration in a direction orthogonal to the front-rear direction using an acceleration sensor and correcting the detected acceleration according to the inclination of the motorcycle 100.
 (2-6)
 上記実施の形態では、モータ59によって発生される反力の大きさが調整されることによりアクセル反力の大きさが調整されるが、これに限らない。例えば、グリップスリーブ51またはアクセルグリップ部材52に対して摺動可能に摺動部材が設けられ、グリップスリーブ51またはアクセルグリップ部材52に対する摺動部材の摩擦抵抗の大きさが調整されることにより、アクセル反力の大きさが調整されてもよい。
(2-6)
In the above embodiment, the magnitude of the accelerator reaction force is adjusted by adjusting the magnitude of the reaction force generated by the motor 59, but the present invention is not limited to this. For example, the sliding member is provided so as to be slidable with respect to the grip sleeve 51 or the accelerator grip member 52, and the magnitude of the frictional resistance of the sliding member with respect to the grip sleeve 51 or the accelerator grip member 52 is adjusted. The magnitude of the reaction force may be adjusted.
 (2-7)
 上記実施の形態では、変速比センサSE2によって変速比を検出することにより変速比を取得するが、これに限らない。例えば、エンジン107の回転速度および車速から変速比を算出することにより変速比を取得してもよい。
(2-7)
In the above embodiment, the gear ratio is acquired by detecting the gear ratio with the gear ratio sensor SE2, but the present invention is not limited to this. For example, the gear ratio may be acquired by calculating the gear ratio from the rotational speed of the engine 107 and the vehicle speed.
 (2-8)
 上記実施の形態では、エンジン107により後輪115が駆動されるが、これに限らず、エンジン107により前輪104が駆動されてもよい。この場合、路面から前輪104に加わる垂直抗力に基づいて、アクセル反力が制御される。
(2-8)
In the above embodiment, the rear wheel 115 is driven by the engine 107, but the present invention is not limited to this, and the front wheel 104 may be driven by the engine 107. In this case, the accelerator reaction force is controlled based on the vertical drag applied to the front wheel 104 from the road surface.
 (2-9)
 上記実施の形態では、算出された駆動輪垂直抗力に基づいてモータ59が制御されるが、これに限らない。例えば、直接検出された駆動輪垂直抗力に基づいてモータ59が制御されてもよく、または予め記憶された駆動輪垂直抗力に基づいてモータ59が制御されてもよい。
(2-9)
In the above embodiment, the motor 59 is controlled based on the calculated driving wheel vertical drag, but the present invention is not limited to this. For example, the motor 59 may be controlled based on the directly detected driving wheel vertical drag, or the motor 59 may be controlled based on the driving wheel vertical drag stored in advance.
 (2-10)
 上記実施の形態では、制御部の機能がECU80のCPU81および制御プログラムにより実現されるが、制御部の機能の少なくとも一部が電子回路等のハードウエアにより実現されてもよい。
(2-10)
In the above embodiment, the function of the control unit is realized by the CPU 81 of the ECU 80 and the control program, but at least a part of the function of the control unit may be realized by hardware such as an electronic circuit.
 (2-11)
 上記実施の形態は、本発明を自動二輪車に適用した例であるが、これに限らず、自動三輪車もしくはATV(All Terrain Vehicle;不整地走行車両)等の他の鞍乗り型車両に本発明を適用してもよく、またはアクセルグリップの代わりにアクセルペダルを備えた自動三輪車もしくは自動四輪車等の他の車両に本発明を適用してもよい。
(2-11)
The above embodiment is an example in which the present invention is applied to a motorcycle. However, the present invention is not limited to this, and the present invention is applied to other saddle riding type vehicles such as a motor tricycle or an ATV (All Terrain Vehicle). The present invention may be applied, or the present invention may be applied to other vehicles such as an automatic tricycle or an automatic four-wheel vehicle provided with an accelerator pedal instead of the accelerator grip.
 アクセルペダルを備えた車両に本発明が適用される場合には、アクセルペダルが出力調整装置に相当する。この場合、アクセルペダルから運転者に加わる反力を調整可能な反力調整部が設けられる。 When the present invention is applied to a vehicle equipped with an accelerator pedal, the accelerator pedal corresponds to an output adjustment device. In this case, a reaction force adjustment unit that can adjust the reaction force applied to the driver from the accelerator pedal is provided.
 (2-12)
 上記実施の形態は、原動機としてエンジンを備える車両に本発明を適用した例であるが、これに限らず、原動機としてモータを備える電動車両に本発明を適用してもよい。
(2-12)
The above embodiment is an example in which the present invention is applied to a vehicle including an engine as a prime mover. However, the present invention is not limited thereto, and the present invention may be applied to an electric vehicle including a motor as a prime mover.
 (3)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
(3) Correspondence between each constituent element of claims and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claims and each element of the embodiment will be described. It is not limited to.
 上記実施の形態では、自動二輪車100が車両の例であり、本体フレーム101が本体部の例であり、エンジン107が原動機の例であり、後輪115が駆動輪の例であり、アクセルグリップ装置106が出力調整装置の例であり、モータ59が反力調整部の例であり、ECU50が制御部の例であり、ロール角センサSE3が加速度検出器の例であり、ROM82が記憶部の例である。 In the above embodiment, the motorcycle 100 is an example of a vehicle, the main body frame 101 is an example of a main body, the engine 107 is an example of a prime mover, the rear wheel 115 is an example of a driving wheel, and an accelerator grip device 106 is an example of an output adjustment device, the motor 59 is an example of a reaction force adjustment unit, the ECU 50 is an example of a control unit, the roll angle sensor SE3 is an example of an acceleration detector, and the ROM 82 is an example of a storage unit. It is.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、種々の車両に有効に利用することができる。 The present invention can be effectively used for various vehicles.

Claims (10)

  1. 駆動輪を有する本体部と、
     前記駆動輪を回転させるためのトルクを発生する原動機と、
     前記原動機の出力を調整するために運転者により操作される出力調整装置と、
     前記出力調整装置の操作に対して前記出力調整装置から運転者に加わる反力を調整するように構成された反力調整部と、
     路面から前記駆動輪に加わる垂直抗力に基づいて前記反力調整部を制御するように構成された制御部とを備える、車両。
    A main body having a drive wheel;
    A prime mover that generates torque for rotating the drive wheels;
    An output adjustment device operated by a driver to adjust the output of the prime mover;
    A reaction force adjustment unit configured to adjust a reaction force applied to the driver from the output adjustment device with respect to the operation of the output adjustment device;
    And a control unit configured to control the reaction force adjusting unit based on a vertical drag applied to the drive wheel from a road surface.
  2. 前記制御部は、路面の勾配に基づいて前記駆動輪に加わる垂直抗力を算出する、請求項1記載の車両。 The vehicle according to claim 1, wherein the control unit calculates a normal force applied to the drive wheel based on a road surface gradient.
  3. 前記制御部は、前記車両に働く慣性力に基づいて前記駆動輪に加わる垂直抗力を算出する、請求項1または2記載の車両。 The vehicle according to claim 1, wherein the control unit calculates a vertical drag applied to the drive wheel based on an inertial force acting on the vehicle.
  4. 前記制御部は、前記車両の加速度に基づいて前記車両に働く慣性力を算出する、請求項3記載の車両。 The vehicle according to claim 3, wherein the control unit calculates an inertial force acting on the vehicle based on an acceleration of the vehicle.
  5. 前記制御部は、前記車両に働く空気抵抗に基づいて前記駆動輪に加わる垂直抗力を算出する、請求項1~4のいずれか一項に記載の車両。 The vehicle according to any one of claims 1 to 4, wherein the control unit calculates a vertical drag applied to the drive wheel based on an air resistance acting on the vehicle.
  6. 前記制御部は、前記車両の速度に基づいて前記車両に働く空気抵抗を算出する、請求項5記載の車両。 The vehicle according to claim 5, wherein the control unit calculates an air resistance acting on the vehicle based on a speed of the vehicle.
  7.  前記制御部は、前記車両に働く揚力に基づいて前記駆動輪に加わる垂直抗力を算出する、請求項1~6のいずれか一項に記載の車両。 The vehicle according to any one of claims 1 to 6, wherein the control unit calculates a vertical drag applied to the drive wheel based on a lift acting on the vehicle.
  8. 前記制御部は、前記車両の速度に基づいて前記車両に働く揚力を算出する、請求項7記載の車両。 The vehicle according to claim 7, wherein the control unit calculates lift acting on the vehicle based on a speed of the vehicle.
  9. 路面に略平行でかつ前記本体部の前後方向と交差する横方向の加速度を横方向加速度として検出するように構成された加速度検出器をさらに備え、
     前記制御部は、前記駆動輪に加わる垂直抗力に基づいて、使用すべき摩擦円を設定し、設定された摩擦円に基づいて、前記加速度検出器により検出された横方向加速度に対応して許容されるべき前記本体部の前後方向における最大の加速度を縦方向限界加速度として取得し、取得された縦方向限界加速度に基づいて、前記反力調整部を制御するように構成された、請求項1~8のいずれか一項に記載の車両。
    An acceleration detector configured to detect a lateral acceleration that is substantially parallel to the road surface and intersects the front-rear direction of the main body as a lateral acceleration;
    The control unit sets a friction circle to be used based on a vertical drag applied to the driving wheel, and allows the control unit according to the lateral acceleration detected by the acceleration detector based on the set friction circle. The maximum acceleration in the front-rear direction of the main body to be performed is acquired as a longitudinal limit acceleration, and the reaction force adjustment unit is controlled based on the acquired longitudinal limit acceleration. The vehicle according to any one of 1 to 8.
  10. 予め定められた摩擦円を記憶する記憶部をさらに備え、
     前記制御部は、前記駆動輪に加わる垂直抗力に基づいて前記記憶部に記憶される摩擦円を補正することにより前記使用すべき摩擦円を設定する、請求項9記載の車両。
    A storage unit for storing a predetermined friction circle;
    The vehicle according to claim 9, wherein the control unit sets the friction circle to be used by correcting a friction circle stored in the storage unit based on a vertical drag applied to the driving wheel.
PCT/JP2014/002731 2013-06-05 2014-05-23 Vehicle WO2014196146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-119011 2013-06-05
JP2013119011 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014196146A1 true WO2014196146A1 (en) 2014-12-11

Family

ID=52007807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002731 WO2014196146A1 (en) 2013-06-05 2014-05-23 Vehicle

Country Status (1)

Country Link
WO (1) WO2014196146A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331336A (en) * 1990-03-19 1992-11-19 Nippon Denshi Kogyo Kk Wheel-acting force measuring device and stress measuring device of body structure
JP2002225590A (en) * 2001-02-02 2002-08-14 Denso Corp Vehicular traveling control device
JP2006046120A (en) * 2004-08-02 2006-02-16 Toyota Motor Corp Device for detecting maximum road transmission drive force
JP2006182178A (en) * 2004-12-27 2006-07-13 Mikuni Corp Accelerator operating device
JP2007135276A (en) * 2005-11-08 2007-05-31 Doshisha Control device of electric vehicle
JP2007137192A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Accelerator device for small-sized electric vehicle
JP2011137429A (en) * 2009-12-29 2011-07-14 Kawasaki Heavy Ind Ltd Characteristic evaluation system and control system of vehicle, and method of evaluating characteristic of straddle-type vehicle and bankable vehicle
JP2011214408A (en) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd Power train control device for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331336A (en) * 1990-03-19 1992-11-19 Nippon Denshi Kogyo Kk Wheel-acting force measuring device and stress measuring device of body structure
JP2002225590A (en) * 2001-02-02 2002-08-14 Denso Corp Vehicular traveling control device
JP2006046120A (en) * 2004-08-02 2006-02-16 Toyota Motor Corp Device for detecting maximum road transmission drive force
JP2006182178A (en) * 2004-12-27 2006-07-13 Mikuni Corp Accelerator operating device
JP2007135276A (en) * 2005-11-08 2007-05-31 Doshisha Control device of electric vehicle
JP2007137192A (en) * 2005-11-16 2007-06-07 Honda Motor Co Ltd Accelerator device for small-sized electric vehicle
JP2011137429A (en) * 2009-12-29 2011-07-14 Kawasaki Heavy Ind Ltd Characteristic evaluation system and control system of vehicle, and method of evaluating characteristic of straddle-type vehicle and bankable vehicle
JP2011214408A (en) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd Power train control device for vehicle

Similar Documents

Publication Publication Date Title
JP5914448B2 (en) Saddle-type vehicle and wheel force acquisition device
JP5540894B2 (en) Vehicle vibration suppression control device
JP5580937B2 (en) Attitude control device and saddle riding type vehicle equipped with the same
JP5873143B2 (en) Saddle riding
JP5926095B2 (en) Motorcycle traction control system
JP6008957B2 (en) vehicle
JP6948157B2 (en) Vehicle control device
JP2016053324A (en) Driving force control system and saddle-riding type vehicle
JP5273020B2 (en) vehicle
JP6067929B2 (en) Lateral force estimation system, lateral force estimation method, and vehicle
JP2019172155A (en) Control device
US20220219777A1 (en) Friction Coefficient Determination to Adjust Braking for Electronic Bicycles
JP2021054328A (en) Steering assist device for saddle-riding type vehicle
JP7261895B2 (en) Straddle-type vehicle and control device
TWI604978B (en) Driving torque controlling device, driving source unit, and vehicle
JP5827699B2 (en) Vehicle and intake air amount control device
JP5695438B2 (en) Calculation method for body roll angle of motorcycle and calculation apparatus for body roll angle of motorcycle
JP2008273289A (en) Control device of hybrid car
JP5945571B2 (en) Traction control system and saddle-ride type vehicle
WO2020121111A1 (en) Control device and control method
WO2014196146A1 (en) Vehicle
JP2009257270A (en) Saddle type vehicle
WO2020217124A1 (en) Control system for controlling behaviour of a straddle-type vehicle and control method
JP2020111189A (en) Control device for lean vehicle and overturn prediction method
JPWO2018030407A1 (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14806950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP