WO2014195547A1 - Method for the in situ synthesis of functionalized titanias, and use thereof - Google Patents

Method for the in situ synthesis of functionalized titanias, and use thereof Download PDF

Info

Publication number
WO2014195547A1
WO2014195547A1 PCT/ES2014/070449 ES2014070449W WO2014195547A1 WO 2014195547 A1 WO2014195547 A1 WO 2014195547A1 ES 2014070449 W ES2014070449 W ES 2014070449W WO 2014195547 A1 WO2014195547 A1 WO 2014195547A1
Authority
WO
WIPO (PCT)
Prior art keywords
titania
functionalized
titanias
compound
incorporated
Prior art date
Application number
PCT/ES2014/070449
Other languages
Spanish (es)
French (fr)
Inventor
Javier GARCÍA MARTÍNEZ
Marisa RICO SANTACRUZ
Elena SERRANO TORREGROSA
Jesús Rubén BERENGUER MARÍN
Elena LALINDE PEÑA
Ángel Eduardo SEPÚLVEDA SAN PEDRO
Original Assignee
Universidad De Alicante
Universidad De La Rioja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alicante, Universidad De La Rioja filed Critical Universidad De Alicante
Publication of WO2014195547A1 publication Critical patent/WO2014195547A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • B01J35/615
    • B01J35/633
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention is generally framed in the field of materials chemistry and refers in particular to Titania-based hybrid materials with different chemical functionalities incorporated in its structure.
  • Functionalized titanias constitute one of the most important hybrid materials within the fields of materials science and nanoscience and nanotechnology, since they have an impact on structural and functional applications.
  • Said hybrid materials are formed by an inorganic network, in which different units (either organic, or inorganic) are incorporated.
  • These inorganic networks can be, for example, siliceous based, which in the presence of surfactants gives rise to PMOs (periodic mesoporous organosilices).
  • PMOs peripheral mesoporous organosilices
  • inorganic titanium networks can be used.
  • Several studies have focused on making such incorporation by modifying the titanium precursors (Schubert U., J. Mater. Chem., 15, 2005, 3701), but they are far from achieving the good results obtained with PMO's. Therefore, another possibility is to directly incorporate organic compounds on the surface of previously synthesized titanias. It is possible to modify the commercial titania P25 Degussa by covalently bonding an organic compound on its surface to obtain materials with an improved photocatalytic activity by 43%, compared to the P25 Degussa (Elbanowski M., Mkowska B., Journal of Photochemistry and PhotobiologT A: Chemistry, 99, 1996, 85).
  • titanias were modified superficially with saturated solutions of 5-sulfosalicylic acid, improving the efficiency in degradation reactions of p-nitrophenol by 44% (Li S., Zheng F., Liu X., Wu F., Deng N ., Yang J., Chemosphere, 61, 2005, 589).
  • the present invention relates to functionalized or doped titanias and the method of obtaining them.
  • the present invention relates to functionalized titanias comprising an inorganic titanium oxide network characterized in that the chemical functionality is incorporated in said inorganic network.
  • the chemical functionality of titania is an organic compound, a ligand or a coordination compound.
  • the functionality of the titania is an organic compound, more particularly, the Organic compound is selected from oxalic acid, 4,6-dihydroxypyrimidine, hydroquinone, terephthalic acid or p-phenylenediamine.
  • the functionality of the titania is a coordination compound, more particularly, the coordination compound is a ruthenium coordination compound.
  • “Functionalized titanias” in the present invention designates titanias that incorporate functional groups on the surface (graffiti) or on the structure of the titania (in situ).
  • the latter materials include doped titanias with different functional compounds in their structure.
  • functionalized and doped titania will be used interchangeably.
  • “Functional compound” in the present invention designates a compound comprising a functional group in its structure being responsible for the functionality incorporated in the titania, in the present invention functional compound and functionality will be used interchangeably.
  • the present invention relates to a process for the in situ synthesis of functionalized titanias (hereinafter, method of the present invention) comprising the following steps:
  • step c) dry the gel obtained in step b) to obtain the functionalized titania.
  • in situ synthesis in the present invention we refer to the incorporation of functionality in the structure of the titania by co-hydrolysis of the titanium precursor with the functional compound.
  • step a) a surfactant is added.
  • the titania precursor is a titanium alkoxide, more particularly, the titanium alkoxide is selected from titanium (IV) butoxide or titanium (IV) isopropoxide.
  • the titanium alkoxide is selected from titanium (IV) butoxide or titanium (IV) isopropoxide.
  • any titanium alkoxide can serve as a precursor to titania.
  • the solvent of step a) is ethanol.
  • the functional compound or functionality incorporated is an organic compound, a ligand or a coordination compound.
  • the functional compound or functionality incorporated is an organic compound, more particularly, the organic compound is selected from oxalic acid, 4,6-dihydroxypyrimidine, hydroquinone, terephthalic acid or p-phenylenediamine.
  • the functional compound or functionality incorporated is a coordination compound, more particularly, the coordination compound is a ruthenium coordination compound.
  • the present invention relates to a functionalized or doped titania (hereinafter titanias of the present invention) obtained by the process of the present invention.
  • Another aspect of the present invention relates to the use of the titanias of the present invention in photocatalysis processes.
  • Another aspect of the present invention relates to the use of the titanias of the present invention for the degradation of organic components.
  • Another aspect of the present invention relates to the use of the titanias of the present invention for the manufacture of photovoltaic cells.
  • Figure 1 shows the diffraction patterns of mesoporous titanias synthesized in situ with different incorporated organic compounds (table 1), compared to the Ti0 2 mesoporous titania .
  • Figure 2 shows the diffraction patterns of mesoporous titanias with the organic compounds 2 (4,6-Dihydroxypyrimidine) and 5 (p-Phenylenediamine) incorporated and of the optimized materials (indicated by an asterisk) compared to the mesoporous titania Ti0 2 .
  • Figure 3 shows the infrared spectra of synthesized mesoporous titanias, compared to the Ti0 2 (A) blank and organic compounds 2 (4,6-Dihydroxypyrimidine) (B) and 5 (p-Phenylenediamine) (C). The characteristic bands are shown in parentheses.
  • Figure 4 shows the infrared spectra of the titanias synthesized with compounds 2 (4,6-Dihydroxypyrimidine) (A) and 5 (p-Phenylenediamine) (B), compared with their corresponding organic compounds and with Ti0 2 .
  • the characteristic bands of The incorporation of organic compounds are shown in parentheses.
  • Figure 5 shows the final appearance of mesoporous titanias: Ti0 2 -2 * (A), Ti0 2 -5 * (B) and T ⁇ 0 2 (C).
  • Figure 6 shows the adsorption / desorption isotherms at 77 K (A) and their corresponding pore size distribution (B) of the materials prepared with different organic compounds (table 1), compared with the mesoporous titania Ti0 2 .
  • Figure 7 shows the adsorption / desorption isotherms at 77 K (A) and their corresponding pore size distribution (B) of mesoporous titanias synthesized with organic compounds 2 (4,6-Dihydroxypyrimidine) and 5 (p-Phenylenediamine ), compared to mesoporous titania (Ti0 2 ).
  • Figure 9 shows the absorbance spectrum for the degradation reaction of an aqueous solution of rhodamine 6G (5 * 10 "5 M) in the presence of different samples of synthesized titania: A) Ti0 2 (white), B) Ti0 2 - 2 * and C) Ti0 2 -5 *.
  • Figure 10 shows the representation and calculation of the photocatalytic activity constant (K) of different samples of synthesized titania.
  • Figure 12 shows the X-ray diffraction patterns of the different titanias synthesized with the ruthenium complex incorporated into its structure during the in situ synthesis thereof (TiO ⁇ IS) and incorporated by graphing after synthesis (TiO ⁇ G ), compared to the non-functionalized titania (Ti0 2 ).
  • Figure 13 shows infrared spectra of the different titanias synthesized with the ruthenium complex incorporated into its structure during its synthesis (TiO ⁇ IS, curve c) and incorporated by graphing after synthesis (TiO ⁇ G, curve d) , in comparison with the non-functionalized titania (Ti0 2 , curve b) and the ruthenium complex (curve a).
  • Figure 14 shows the adsorption / desorption isotherms at 77 K (A) and their corresponding pore size distribution (B) of the different synthesized titanias with a ruthenium complex incorporated into its structure during the in situ synthesis of the same (TiO ⁇ IS) and incorporated by graffiti after the synthesis (TiC> 2 _G), in comparison with the non-functionalized titania (Ti0 2 ).
  • Figure 16 shows the absorbance spectrum for the degradation reaction of an aqueous 6G rhodamine solution (5 * 10 " 5M) in the presence of the materials: a)
  • Figure 17 shows the representation and calculation of the photocatalytic activity constant (K) of the materials Ti0 2, TIO 2 JS and TiC> 2 _G.
  • the present invention relates to the obtaining of new titanias formed by an inorganic network of titanium oxide (Ti0 2 ), in which different chemical functionalities, in particular organic compounds and / or metal compounds, have been incorporated during synthesis via in situ of said network, for applications in very diverse fields such as photocatalysis and degradation of organic pollutants.
  • Ti0 2 titanium oxide
  • the new titanias of the present invention overcome the disadvantages of traditional titanias, such as low dispersion and adsorption of functionality, partial blockage of the pores of the material and low control of the active phase, among others, and keeping the textural, structural and morphological properties of the titania unmodified, but with better properties, for example, photocatalytic.
  • titania of the present invention it is preferred not employ surfactants as agents of the structure, or perform calcination of any kind. In this way, savings in materials and reagents are achieved, thus achieving a versatile and simple synthesis procedure.
  • the size of the crystalline domain was calculated by X-ray diffraction and its decrease was observed by incorporating organic compounds.
  • the textural parameters of the materials were obtained, observing that no mesoporosity blockage occurs due to the incorporation of the organic compounds.
  • the equipment used is equipped with a fiber optic sensor that, introduced into the beaker, It allows the monitoring of the reaction in situ.
  • the spectra are carried out in a wavelength range of 300 to 700 nm, with a resolution of 0.5 nm.
  • an increase in the photocatalytic activity of the titanias synthesized in situ with compounds organic incorporated against the titanias used as white can be associated with the decrease of the bandgap of 0.4 eV with respect to the titania used as a target, consequence of the increase in the maximum valence band after incorporation of the organic compounds, as determined by XPS.
  • Table 4 Values of the photocatalytic activity constant, regression coefficients and conversions for 1, 2 and 3 hours of different samples of titania.
  • the amount of complex that has been incorporated into the synthesized materials can be known, observing an incorporation yield of 92.5% in the case of titania with the incorporated ruthenium compound at the same time that the synthesis of the material occurs (in-situ) and 60% for the titania synthesized via graffiti.
  • the high performance of incorporation into the material synthesized via in situ demonstrates the effectiveness of the method of synthesis of these new titanias (Table 5).
  • Average pore diameter estimated from the nitrogen isotherms using the BJH method Average pore diameter estimated from the nitrogen isotherms using the BJH method.
  • the material synthesized via in-situ has a photocatalytic activity three times higher than that of the titania used as a target and twice higher than the titania synthesized by graffiti (Table 6), both of which are superior to the titania used as a target.
  • Table 6 Values of the photocatalytic activity constant, regression coefficients and conversions for different times of the different synthesized titanias with a ruthenium complex incorporated into its structure during its synthesis (TIO 2 JS) and incorporated by graffiti after the synthesis (TiC> 2 _G), in comparison with the non-functionalized titania (Ti0 2 ).

Abstract

The invention concerns a method for the synthesis of functionalized titanias from a titanium precursor, and the use thereof in photocatalysis methods and for degrading organic compounds.

Description

PROCEDIMIENTO PARA LA SÍNTESIS DE TITANIAS FUNCIONALIZADAS IN SITU  PROCEDURE FOR THE SYNTHESIS OF TITANIES FUNCTIONED IN SITU
Y EL USO DE LAS MISMAS  AND THE USE OF THE SAME
Campo de la invención Field of the Invention
La presente invención se encuadra en general en el campo de la química de materiales y se refiere en particular a materiales híbridos de base Titania con diferentes funcionalidades químicas incorporadas en su estructura. The present invention is generally framed in the field of materials chemistry and refers in particular to Titania-based hybrid materials with different chemical functionalities incorporated in its structure.
Estado de la técnica State of the art
Las titanias funcionalizadas constituyen uno de los materiales híbridos más importantes dentro de los campos de la ciencia de materiales y nanociencia y nanotecnología, dado que tienen incidencia en aplicaciones estructurales y funcionales. Functionalized titanias constitute one of the most important hybrid materials within the fields of materials science and nanoscience and nanotechnology, since they have an impact on structural and functional applications.
Dichos materiales híbridos están formados por una red inorgánica, en la cual se incorporan diferentes unidades (bien orgánicas, bien inorgánicas). Estas redes inorgánicas pueden ser, por ejemplo, de base silícea, lo que en presencia de surfactantes da lugar a las PMO's (organosilíces periódicas mesoporosas). La incorporación en estas redes de diferentes funcionalidades orgánicas o inorgánicas puede incrementar sus aplicaciones en campos como la adsorción, catálisis, fotónica y microelectrónica.  Said hybrid materials are formed by an inorganic network, in which different units (either organic, or inorganic) are incorporated. These inorganic networks can be, for example, siliceous based, which in the presence of surfactants gives rise to PMOs (periodic mesoporous organosilices). The incorporation into these networks of different organic or inorganic functionalities can increase their applications in fields such as adsorption, catalysis, photonics and microelectronics.
Alternativamente a las redes basadas en sílice, se pueden utilizar redes inorgánicas de titanio. Varios estudios se han centrado en realizar dicha incorporación modificando los precursores del titanio (Schubert U., J. Mater. Chem., 15, 2005, 3701), pero están muy lejos de conseguir los buenos resultados obtenidos con las PMO's. Por ello, otra posibilidad es incorporar directamente compuestos orgánicos en la superficie de titanias previamente sintetizadas. Es posible modificar la titania comercial P25 Degussa mediante la unión covalente de un compuesto orgánico sobre su superficie obteniendo materiales con una actividad fotocatalítica mejorada en un 43%, respecto de la P25 Degussa (Elbanowski M., Mkowska B., Journal of Photochemistry and PhotobiologT A: Chemistry, 99, 1996, 85). Mediante adsorción química se modificaron titanias superficialmente con soluciones saturadas de ácido 5-sulfosalicílico, mejorando en un 44% la eficiencia en reacciones de degradación de p-nitrofenol (Li S., Zheng F., Liu X., Wu F., Deng N., Yang J., Chemosphere, 61, 2005, 589).  Alternatively to silica based networks, inorganic titanium networks can be used. Several studies have focused on making such incorporation by modifying the titanium precursors (Schubert U., J. Mater. Chem., 15, 2005, 3701), but they are far from achieving the good results obtained with PMO's. Therefore, another possibility is to directly incorporate organic compounds on the surface of previously synthesized titanias. It is possible to modify the commercial titania P25 Degussa by covalently bonding an organic compound on its surface to obtain materials with an improved photocatalytic activity by 43%, compared to the P25 Degussa (Elbanowski M., Mkowska B., Journal of Photochemistry and PhotobiologT A: Chemistry, 99, 1996, 85). By chemical adsorption, titanias were modified superficially with saturated solutions of 5-sulfosalicylic acid, improving the efficiency in degradation reactions of p-nitrophenol by 44% (Li S., Zheng F., Liu X., Wu F., Deng N ., Yang J., Chemosphere, 61, 2005, 589).
Dada la aplicación de las titanias en procesos de conversión energética (celdas solares), se han estado incorporando complejos metálicos, en concreto de rutenio, mediante modificación post-sintética de Ti02 o incorporación directa de rutenio metálico a través de sustitución isomórfica. Given the application of titanias in energy conversion processes (cells solar), have been incorporating metal complexes, specifically ruthenium, by post-synthetic modification of Ti0 2 or direct incorporation of metal ruthenium through isomorphic substitution.
En todos los casos, las propiedades fotocatalíticas de los materiales híbridos son superiores a las de la titania sin modificar. A la vista de lo comentado anteriormente, se observa como la modificación de titanias mediante incorporación de funcionalidad química presenta mejoras en las propiedades de estos materiales, sobre todo en cuanto a su actividad fotocatalítica se refiere.  In all cases, the photocatalytic properties of hybrid materials are superior to those of unmodified titania. In view of the aforementioned, it is observed how the modification of titanias through the incorporation of chemical functionality shows improvements in the properties of these materials, especially as regards their photocatalytic activity.
Hasta ahora, según lo descrito en la bibliografía, las titanias funcionalizadas se han sintetizado por métodos basados en la incorporación de las diferentes funcionalidades (compuestos orgánicos o de coordinación) de forma superficial en la titania, tradicionalmente por métodos post-sintéticos. Esto lleva asociado numerosas desventajas en los materiales finales, como una baja dispersión y adsorción de la funcionalidad, bloqueo parcial de los poros del material y bajo control de la fase activa, entre otros.  Until now, as described in the literature, functionalized titanias have been synthesized by methods based on the incorporation of different functionalities (organic or coordination compounds) superficially in titania, traditionally by post-synthetic methods. This has associated numerous disadvantages in the final materials, such as low dispersion and adsorption of functionality, partial blockage of the pores of the material and under control of the active phase, among others.
Existe pues la necesidad de proporcionar un método de síntesis de materiales híbridos de base titania con la funcionalidad incorporada directamente en la pared de la titania, que evite así todos los inconvenientes comentados anteriormente y manteniendo las propiedades texturales, estructurales y morfológicas de la titania sin modificar, pero con propiedades fotocatalíticas mejoradas.  There is therefore a need to provide a method of synthesis of titanium-based hybrid materials with the functionality incorporated directly into the wall of the titania, thus avoiding all the inconveniences discussed above and maintaining the textural, structural and morphological properties of the unmodified titania , but with improved photocatalytic properties.
La versatilidad de la metodología presentada para la síntesis in situ de estas titanias permite la incorporación de diversas funcionalidades directamente en su estructura, posibilitando la obtención de materiales híbridos basados en Titania que presentan propiedades más eficaces que las preparadas mediante métodos tradicionales.  The versatility of the methodology presented for the in situ synthesis of these titanias allows the incorporation of various functionalities directly in its structure, making it possible to obtain hybrid materials based on Titania that have more effective properties than those prepared by traditional methods.
Descripción de la invención Description of the invention
La presente invención se refiere a titanias funcionalizadas o dopadas y al procedimiento de obtención de las mismas.  The present invention relates to functionalized or doped titanias and the method of obtaining them.
Así pues en un primer aspecto, la presente invención se refiere a titanias funcionalizadas que comprende una red inorgánica de óxido de titanio caracterizada por que la funcionalidad química está incorporada en dicha red inorgánica. En una realización más en particular, la funcionalidad química de la titania es un compuesto orgánico, un ligando o un compuesto de coordinación. En otra realización más en particular, la funcionalidad de la titania es un compuesto orgánico, más en particular, el compuesto orgánico es seleccionado de entre acido oxálico, 4,6-dihidroxipirimidina, hidroquinona, ácido tereftálico o p-fenilendiamina. En otra realización más en particular, la funcionalidad de la titania es un compuesto de coordinación, más en particular, el compuesto de coordinación es un compuesto de coordinación de rutenio. "Titanias funcionalizadas" en la presente invención designa titanias que incorporan grupos funcionales en la superficie (grafíing) o en la estructura de la titania (in situ). Estos últimos materiales incluyen titanias dopadas con distintos compuestos funcionales en su estructura. En la presente invención titania funcionalizada y dopada se utilizarán indistintamente. Thus, in a first aspect, the present invention relates to functionalized titanias comprising an inorganic titanium oxide network characterized in that the chemical functionality is incorporated in said inorganic network. In a more particular embodiment, the chemical functionality of titania is an organic compound, a ligand or a coordination compound. In another more particular embodiment, the functionality of the titania is an organic compound, more particularly, the Organic compound is selected from oxalic acid, 4,6-dihydroxypyrimidine, hydroquinone, terephthalic acid or p-phenylenediamine. In another more particular embodiment, the functionality of the titania is a coordination compound, more particularly, the coordination compound is a ruthenium coordination compound. "Functionalized titanias" in the present invention designates titanias that incorporate functional groups on the surface (graffiti) or on the structure of the titania (in situ). The latter materials include doped titanias with different functional compounds in their structure. In the present invention functionalized and doped titania will be used interchangeably.
"Compuesto funcional" en la presente invención designa un compuesto que comprende un grupo funcional en su estructura siendo el responsable de la funcionalidad incorporada en la titania, en la presente invención compuesto funcional y funcionalidad se utilizarán indistintamente. "Functional compound" in the present invention designates a compound comprising a functional group in its structure being responsible for the functionality incorporated in the titania, in the present invention functional compound and functionality will be used interchangeably.
En otro aspecto, la presente invención se refiere a un procedimiento para la síntesis in situ de titanias funcionalizadas (de ahora en adelante, procedimiento de la presente invención) que comprende las siguientes etapas:  In another aspect, the present invention relates to a process for the in situ synthesis of functionalized titanias (hereinafter, method of the present invention) comprising the following steps:
a) Mezclar un precursor de titania con un compuesto funcional en un disolvente o mezcla de disolventes, a) Mix a titania precursor with a functional compound in a solvent or solvent mixture,
b) añadir agua a la mezcla obtenida en a) para obtener un gel, b) add water to the mixture obtained in a) to obtain a gel,
c) secar el gel obtenido en el paso b) para obtener la titania funcionalizada. c) dry the gel obtained in step b) to obtain the functionalized titania.
Por "síntesis in situ" en la presente invención nos referimos a la incorporación de la funcionalidad en la estructura de la titania mediante la co-hidrólisis del precursor de titanio con el compuesto funcional.  By "in situ synthesis" in the present invention we refer to the incorporation of functionality in the structure of the titania by co-hydrolysis of the titanium precursor with the functional compound.
Por "síntesis mediante grafíing" nos referimos a la incorporación del grupo funcional en la superficie de la titania mediante la hidrólisis del mismo con los grupos superficiales de una titania previamente sintetizada.  By "synthesis by graffiti" we mean the incorporation of the functional group on the surface of the titania by hydrolysis of it with the surface groups of a previously synthesized titania.
En una realización en particular, en la etapa a) se le añade un surfactante.  In a particular embodiment, in step a) a surfactant is added.
En una realización en particular, el precursor de titania es un alcóxido de titanio, más en particular, el alcóxido de titanio es seleccionado de entre butóxido de titanio (IV) o isopropóxido de titanio (IV). No obstante, cualquier alcóxido de titanio puede servir como precursor de titania.  In a particular embodiment, the titania precursor is a titanium alkoxide, more particularly, the titanium alkoxide is selected from titanium (IV) butoxide or titanium (IV) isopropoxide. However, any titanium alkoxide can serve as a precursor to titania.
En una realización en particular, el disolvente de la etapa a) es el etanol. En una realización más en particular, el compuesto funcional o funcionalidad incorporada es un compuesto orgánico, un ligando o un compuesto de coordinación. En una realización más en particular, el compuesto funcional o funcionalidad incorporada es un compuesto orgánico, más en particular, el compuesto orgánico es seleccionado de entre acido oxálico, 4,6-dihidroxipirimidina, hidroquinona, ácido tereftálico o p-fenilendiamina. En otra realización más en particular, el compuesto funcional o funcionalidad incorporada es un compuesto de coordinación, más en particular, el compuesto de coordinación es un compuesto de coordinación de rutenio.In a particular embodiment, the solvent of step a) is ethanol. In a more particular embodiment, the functional compound or functionality incorporated is an organic compound, a ligand or a coordination compound. In a more particular embodiment, the functional compound or functionality incorporated is an organic compound, more particularly, the organic compound is selected from oxalic acid, 4,6-dihydroxypyrimidine, hydroquinone, terephthalic acid or p-phenylenediamine. In another more particular embodiment, the functional compound or functionality incorporated is a coordination compound, more particularly, the coordination compound is a ruthenium coordination compound.
En otro aspecto, la presente invención se refiere a una titania funcionalizada o dopada (de ahora en adelante titanias de la presente invención) obtenida por el procedimiento de la presente invención. In another aspect, the present invention relates to a functionalized or doped titania (hereinafter titanias of the present invention) obtained by the process of the present invention.
Otro aspecto de la presente invención se refiere al uso de las titanias de la presente invención en procesos de fotocatálisis.  Another aspect of the present invention relates to the use of the titanias of the present invention in photocatalysis processes.
Otro aspecto de la presente invención se refiere al uso de las titanias de la presente invención para la degradación de componentes orgánicos.  Another aspect of the present invention relates to the use of the titanias of the present invention for the degradation of organic components.
Otro aspecto de la presente invención se refiere al uso de las titanias de la presente invención para la fabricación de células fotovoltaicas.  Another aspect of the present invention relates to the use of the titanias of the present invention for the manufacture of photovoltaic cells.
Breve descripción de las figuras Brief description of the figures
La figura 1 muestra los patrones de difracción de las titanias mesoporosas sintetizadas in situ con diferentes compuestos orgánicos incorporados (tabla 1), comparados con la titania mesoporosa Ti02. Figure 1 shows the diffraction patterns of mesoporous titanias synthesized in situ with different incorporated organic compounds (table 1), compared to the Ti0 2 mesoporous titania .
La figura 2 muestra los patrones de difracción de las titanias mesoporosas con los compuestos orgánicos 2 (4,6-Dihidroxipirimidina) y 5 (p-Fenilendiamina) incorporados y de los materiales optimizados (señalados mediante un asterisco) comparados con la titania mesoporosa Ti02. Figure 2 shows the diffraction patterns of mesoporous titanias with the organic compounds 2 (4,6-Dihydroxypyrimidine) and 5 (p-Phenylenediamine) incorporated and of the optimized materials (indicated by an asterisk) compared to the mesoporous titania Ti0 2 .
La figura 3 muestra los espectros de infrarrojo de las titanias mesoporosas sintetizadas, comparadas con el blanco Ti02 (A) y los compuestos orgánicos 2 (4,6- Dihidroxipirimidina) (B) y 5 (p-Fenilendiamina) (C). Las bandas características vienen mostradas entre paréntesis. Figure 3 shows the infrared spectra of synthesized mesoporous titanias, compared to the Ti0 2 (A) blank and organic compounds 2 (4,6-Dihydroxypyrimidine) (B) and 5 (p-Phenylenediamine) (C). The characteristic bands are shown in parentheses.
La figura 4 muestra los espectros de infrarrojo de las titanias sintetizadas con los compuestos 2 (4,6-Dihidroxipirimidina) (A) y 5 (p-Fenilendiamina) (B), comparados con sus correspondientes compuestos orgánicos y con Ti02. Las bandas características de la incorporación de los compuestos orgánicos se muestran entre paréntesis. Figure 4 shows the infrared spectra of the titanias synthesized with compounds 2 (4,6-Dihydroxypyrimidine) (A) and 5 (p-Phenylenediamine) (B), compared with their corresponding organic compounds and with Ti0 2 . The characteristic bands of The incorporation of organic compounds are shown in parentheses.
La figura 5 muestra el aspecto final de las titanias mesoporosas: Ti02-2* (A), Ti02-5* (B) y T¡02 (C). Figure 5 shows the final appearance of mesoporous titanias: Ti0 2 -2 * (A), Ti0 2 -5 * (B) and T¡0 2 (C).
La figura 6 muestra las isotermas de adsorción/desorción a 77 K (A) y su correspondiente distribución de tamaño de poro (B) de los materiales preparados con diferentes compuestos orgánicos (tabla 1), comparados con la titania mesoporosa Ti02. Figure 6 shows the adsorption / desorption isotherms at 77 K (A) and their corresponding pore size distribution (B) of the materials prepared with different organic compounds (table 1), compared with the mesoporous titania Ti0 2 .
La figura 7 muestra las isotermas de adsorción/desorción a 77 K (A) y su correspondiente distribución de tamaño de poro (B) de las titanias mesoporosas sintetizadas con los compuestos orgánicos 2 (4,6-Dihidroxipirimidina) y 5 (p- Fenilendiamina), comparadas con la titania mesoporosa (Ti02). Figure 7 shows the adsorption / desorption isotherms at 77 K (A) and their corresponding pore size distribution (B) of mesoporous titanias synthesized with organic compounds 2 (4,6-Dihydroxypyrimidine) and 5 (p-Phenylenediamine ), compared to mesoporous titania (Ti0 2 ).
La figura 8 muestra las imágenes de TEM de Ti02 (A), Ti02-2* (B) y Ti02-5* (C), barra de escala = 5 nm. Figure 8 shows the TEM images of Ti0 2 (A), Ti0 2 -2 * (B) and Ti0 2 -5 * (C), scale bar = 5 nm.
La figura 9 muestra el espectro de absorbancia para la reacción de degradación de una solución acuosa de rodamina 6G (5*10"5 M) en presencia de diferentes muestras de titania sintetizada: A) Ti02 (blanco), B) Ti02-2*y C) Ti02-5*. Figure 9 shows the absorbance spectrum for the degradation reaction of an aqueous solution of rhodamine 6G (5 * 10 "5 M) in the presence of different samples of synthesized titania: A) Ti0 2 (white), B) Ti0 2 - 2 * and C) Ti0 2 -5 *.
La figura 10 muestra la representación y cálculo de la constante de actividad fotocatalítica (K) de diferentes muestras de titania sintetizada.  Figure 10 shows the representation and calculation of the photocatalytic activity constant (K) of different samples of synthesized titania.
La figura 11 muestra la estructura del complejo de rutenio [c/'s-Ru(NCS)2L2] (L = 2,2 - bipiridil-4,4 -dicarboxilato), conocido comúnmente como N3. Figure 11 shows the structure of the ruthenium complex [c / ' s-Ru (NCS) 2 L 2 ] (L = 2,2-bipyridyl-4,4-dicarboxylate), commonly known as N3.
La figura 12 muestra los patrones de difracción de rayos X de las diferentes titanias sintetizadas con el complejo de rutenio incorporado en su estructura durante la síntesis vía in situ de la misma (TiO^IS) e incorporado mediante grafíing tras la síntesis (TiO^G), en comparación con la titania sin funcionalizar (Ti02). Figure 12 shows the X-ray diffraction patterns of the different titanias synthesized with the ruthenium complex incorporated into its structure during the in situ synthesis thereof (TiO ^ IS) and incorporated by graphing after synthesis (TiO ^ G ), compared to the non-functionalized titania (Ti0 2 ).
La figura 13 muestra espectros de infrarrojo de las diferentes titanias sintetizadas con el complejo de rutenio incorporado en su estructura durante la síntesis de la misma (TiO^IS, curva c) e incorporado mediante grafíing tras la síntesis (TiO^G, curva d), en comparación con la titania sin funcionalizar (Ti02, curva b) y el complejo de rutenio (curva a). Figure 13 shows infrared spectra of the different titanias synthesized with the ruthenium complex incorporated into its structure during its synthesis (TiO ^ IS, curve c) and incorporated by graphing after synthesis (TiO ^ G, curve d) , in comparison with the non-functionalized titania (Ti0 2 , curve b) and the ruthenium complex (curve a).
La figura 14 muestra las isotermas de adsorción/desorción a 77 K (A) y su correspondiente distribución de tamaño de poro (B) de las diferentes titanias sintetizadas con un complejo de rutenio incorporado en su estructura durante la síntesis vía in situ de la misma (TiO^IS) e incorporado mediante grafíing tras la síntesis (TiC>2_G), en comparación con la titania sin funcionalizar (Ti02). Figure 14 shows the adsorption / desorption isotherms at 77 K (A) and their corresponding pore size distribution (B) of the different synthesized titanias with a ruthenium complex incorporated into its structure during the in situ synthesis of the same (TiO ^ IS) and incorporated by graffiti after the synthesis (TiC> 2 _G), in comparison with the non-functionalized titania (Ti0 2 ).
La figura 15 muestra las imágenes de TEM de Ti02 (A), TÍO2JS (B) y TiC>2_G (C), barra de escala = 5 nm. Figure 15 shows the TEM images of Ti0 2 (A), UNCLE 2 JS (B) and TiC> 2 _G (C), scale bar = 5 nm.
La figura 16 muestra el espectro de absorbancia para la reacción de degradación de una solución acuosa de rodamina 6G (5*10"5 M) en presencia de los materiales: a)
Figure imgf000007_0001
Figure 16 shows the absorbance spectrum for the degradation reaction of an aqueous 6G rhodamine solution (5 * 10 " 5M) in the presence of the materials: a)
Figure imgf000007_0001
La figura 17 muestra la representación y cálculo de la constante de actividad fotocatalítica (K) de los materiales Ti02, TÍO2JS y TiC>2_G. Figure 17 shows the representation and calculation of the photocatalytic activity constant (K) of the materials Ti0 2, TIO 2 JS and TiC> 2 _G.
Descripción detallada de la invención Detailed description of the invention
La presente invención se refiere a la obtención de nuevas titanias formadas por una red inorgánica de óxido de titanio (Ti02), en la cual se han incorporado diferentes funcionalidades químicas, en concreto compuestos orgánicos y/o compuestos metálicos, durante la síntesis vía in situ de dicha red, para aplicaciones en ámbitos muy diversos tales como la fotocatálisis y la degradación de contaminantes orgánicos.The present invention relates to the obtaining of new titanias formed by an inorganic network of titanium oxide (Ti0 2 ), in which different chemical functionalities, in particular organic compounds and / or metal compounds, have been incorporated during synthesis via in situ of said network, for applications in very diverse fields such as photocatalysis and degradation of organic pollutants.
Esta estrategia permite la obtención de materiales híbridos de base titania mediante la incorporación de dichas funcionalidades en la propia estructura de la red, evitando con ello el bloqueo en la mesoporosidad típica de este tipo de materiales, los cuales se preparan habitualmente por incorporación superficial en la titania mediante técnicas post-sintéticas. Por lo tanto, las nuevas titanias de la presente invención sortean las desventajas de las titanias tradicionales, como la baja dispersión y adsorción de la funcionalidad, el bloqueo parcial de los poros del material y el bajo control de la fase activa, entre otras, y manteniendo las propiedades texturales, estructurales y morfológicas de la titania sin modificar, pero con mejores propiedades, por ejemplo, fotocatalíticas. This strategy allows obtaining titania-based hybrid materials by incorporating these functionalities into the network structure itself, thereby preventing the typical mesoporosity blockage of these types of materials, which are usually prepared by superficial incorporation into the titania using post-synthetic techniques. Therefore, the new titanias of the present invention overcome the disadvantages of traditional titanias, such as low dispersion and adsorption of functionality, partial blockage of the pores of the material and low control of the active phase, among others, and keeping the textural, structural and morphological properties of the titania unmodified, but with better properties, for example, photocatalytic.
Además, al estar la funcionalidad incorporada dentro de la estructura de la titania, permanece protegida por la misma, aumentando la estabilidad térmica e hidrotermal. In addition, since the functionality is incorporated within the structure of the titania, it remains protected by it, increasing thermal and hydrothermal stability.
En particular, para la presente invención se trabajará a temperatura ambiente para conseguir y mantener la estructura tipo anatasa de la titania. Este tipo de estructura es mucho más activa que la del rutilo y la brookita, todas ellas posibles modificaciones de la titania. Gracias a la condición de temperatura ambiente se consigue inhibir el paso de anatasa a rutilo, lo cual contribuye a mejorar las propiedades fotocatalíticas. In particular, for the present invention work will be carried out at room temperature to achieve and maintain the anatase type structure of the titania. This type of structure is much more active than that of rutile and brookite, all of them possible modifications of the titania. Thanks to the ambient temperature condition it is possible to inhibit the passage of anatase to rutile, which helps to improve the photocatalytic properties.
En particular, para la obtención de la titania de la presente invención se prefiere no emplear surfactantes como agentes directores de la estructura, ni realizar calcinaciones de ningún tipo. De esta forma se consigue un ahorro en materiales y reactivos consiguiendo así un procedimiento de síntesis versátil y sencillo. In particular, for obtaining the titania of the present invention it is preferred not employ surfactants as agents of the structure, or perform calcination of any kind. In this way, savings in materials and reagents are achieved, thus achieving a versatile and simple synthesis procedure.
La síntesis de las titanias funcionalizadas in situ se realiza mediante el método sol-gel a partir de un precursor de titanio, el butóxido de titanio (IV) ([Ti(OnBu)4], TBOT 98% Aldrich), etanol absoluto y agua como disolvente, así como la funcionalidad a incorporar (compuesto orgánico o complejo metálico). Para ello se adaptó la síntesis propuesta por Y. Wang y colaboradores [Wang Y., Jiang Z., Yang F., Material Science and Engineering B, 128, 2006, 229]. Entre las funcionalidades químicas a incorporar tenemos varias posibilidades: The synthesis of functionalized titanias in situ is carried out by the sol-gel method from a titanium precursor, titanium (IV) butoxide ([Ti (O n Bu) 4 ], TBOT 98% Aldrich), absolute ethanol and water as a solvent, as well as the functionality to be incorporated (organic compound or metal complex). To this end, the synthesis proposed by Y. Wang et al. [Wang Y., Jiang Z., Yang F., Material Science and Engineering B, 128, 2006, 229] was adapted. Among the chemical functionalities to incorporate we have several possibilities:
a) Compuestos orgánicos a) Organic compounds
Se llevó a cabo la incorporación de los compuestos orgánicos, descritos en la Tabla 1 , que muestra el nombre de los compuestos orgánicos empleados en la síntesis de las nuevas titanias funcionalizadas y la nomenclatura empleada de los materiales finales. De todos los materiales híbridos sintetizados, se presentan más detallados, a modo de ejemplo e incluyendo resultados de actividad fotocatalítica, los datos relativos a las titanias con los compuestos orgánicos 2 y 5 incorporados en su estructura.  The incorporation of the organic compounds, described in Table 1, which shows the name of the organic compounds used in the synthesis of the new functionalized titanias and the nomenclature used of the final materials was carried out. Of all the synthesized hybrid materials, data related to titanias with organic compounds 2 and 5 incorporated in its structure are presented in more detail by way of example and including results of photocatalytic activity.
Tabla 1. Compuestos orgánicos empleados en la síntesis de nuevas titanias funcionalizadas y nomenclatura empleada en los materiales finales.  Table 1. Organic compounds used in the synthesis of new functionalized titanias and nomenclature used in the final materials.
Figure imgf000008_0001
b) Complejos metálicos El complejo metálico que se incorporó en las titanias fue [c/s-Ru(NCS)2L2] (L = 2,2 - bipiridil-4,4 -dicarboxilato), conocido comúnmente como N3 (Figura 1 1). Dicho complejo permitió el diseño de una celda solar alternativa a las celdas de Gratzél, donde la funcionalización de la titania se lleva a cabo superficialmente, a diferencia de las que aquí presentamos, donde la funcionalización se realiza directamente en la estructura del material durante la síntesis del mismo.
Figure imgf000008_0001
b) Metal complexes The metallic complex that was incorporated into the titanias was [c / s-Ru (NCS) 2L 2 ] (L = 2,2-bipyridyl-4,4-dicarboxylate), commonly known as N3 (Figure 1 1). This complex allowed the design of an alternative solar cell to Gratzél cells, where the functionalization of the titania is carried out superficially, unlike those presented here, where the functionalization is performed directly on the structure of the material during the synthesis of the same.
EJEMPLO 1: Titanias con compuestos orgánicos incorporados en su estructura EXAMPLE 1: Titanias with organic compounds incorporated in its structure
La síntesis de titanias con compuestos orgánicos incorporados, se realizó disolviendo el compuesto orgánico correspondiente (Tabla 1) en 5 g (14,7 mmol) del precursor de titanio durante dos horas a 40°C bajo agitación magnética. Posteriormente, se adicionan 36 mi de etanol absoluto. A continuación se añadió, gota a gota, 123,5 g (6,86 mol) de agua, provocando inmediatamente la precipitación del sólido. El gel de síntesis, de relación molar 1TBOT:0, 1Org:41 ,3EtOH:467H2O, donde Org hace referencia al compuesto orgánico, se dejó reaccionar a temperatura ambiente durante 24h bajo agitación magnética, seguido de un tratamiento en estufa (o bajo agitación magnética) a 80°C durante 24 horas. El sólido obtenido se filtró, se lavó con agua y acetona, sucesivamente, y se dejó secar en una estufa a 100°C durante 8 horas. Los materiales optimizados (señalados con un asterisco) se obtuvieron mezclando 5 g (14,7 mmol) del precursor de titanio con una disolución del compuesto orgánico correspondiente (Tabla 2) en 36 mi de etanol absoluto durante dos horas a 40°C bajo agitación magnética previa adición del agua. The synthesis of titanias with incorporated organic compounds was performed by dissolving the corresponding organic compound (Table 1) in 5 g (14.7 mmol) of the titanium precursor for two hours at 40 ° C under magnetic stirring. Subsequently, 36 ml of absolute ethanol are added. Then, 123.5 g (6.86 mol) of water was added dropwise, immediately causing precipitation of the solid. The synthesis gel, with a 1TBOT: 0.1Org: 41.3 Ethanol: 467H 2 O molar ratio, where Org refers to the organic compound, was allowed to react at room temperature for 24 hours under magnetic stirring, followed by an oven treatment (or under magnetic stirring) at 80 ° C for 24 hours. The solid obtained was filtered, washed with water and acetone, successively, and allowed to dry in an oven at 100 ° C for 8 hours. Optimized materials (marked with an asterisk) were obtained by mixing 5 g (14.7 mmol) of the titanium precursor with a solution of the corresponding organic compound (Table 2) in 36 ml of absolute ethanol for two hours at 40 ° C under stirring magnetic prior addition of water.
Mediante difracción de rayos X (Figuras 1 y 2) se confirmó que los materiales sintetizados presentan estructura anatasa. La incorporación de los compuestos orgánicos en las titanias se corroboró mediante espectroscopia infrarroja (Figuras 3 y 4), análisis elemental (Tabla 2). Asimismo, el aspecto final de los materiales denota claramente la incorporación de dichos compuestos ya que las titanias sintetizadas con compuestos orgánicos incorporados en su estructura son coloreadas mientras la titania sin funcionalizar es un polvo de color blanco (Figura 5).  By X-ray diffraction (Figures 1 and 2) it was confirmed that the synthesized materials have anatase structure. The incorporation of the organic compounds in the titanias was corroborated by infrared spectroscopy (Figures 3 and 4), elementary analysis (Table 2). Likewise, the final appearance of the materials clearly denotes the incorporation of said compounds since the titanias synthesized with organic compounds incorporated in their structure are colored while the non-functionalized titania is a white powder (Figure 5).
Además, mediante difracción de rayos X se calculó el tamaño del dominio cristalino y se observó la disminución de éste al incorporar compuestos orgánicos. Mediante isotermas de adsorción de nitrógeno (Figuras 6 y 7 y Tablas 2 y 3) se obtuvieron los parámetros texturales de los materiales, observándose que no se produce bloqueo de la mesoporosidad debido a la incorporación de los compuestos orgánicos.  In addition, the size of the crystalline domain was calculated by X-ray diffraction and its decrease was observed by incorporating organic compounds. By means of nitrogen adsorption isotherms (Figures 6 and 7 and Tables 2 and 3) the textural parameters of the materials were obtained, observing that no mesoporosity blockage occurs due to the incorporation of the organic compounds.
Tabla 2. Parámetros texturales y estructurales de las distintas titanias mesoporosas sintetizadas, comparados con la titania mesoporosa (Ti02) y rendimiento de incorporación de los compuestos orgánicos 1 a 5 en las titanias mesoporosas con compuestos orgánicos incorporados. Table 2. Textural and structural parameters of the different synthesized mesoporous titanias, compared with the mesoporous titania (Ti0 2 ) and yield of incorporation of organic compounds 1 to 5 in mesoporous titanias with incorporated organic compounds.
Figure imgf000010_0002
Figure imgf000010_0002
Diámetro de poro medio estimado a partir de las isotermas de nitrógeno usando el método Average pore diameter estimated from nitrogen isotherms using the method
BJH. BJH.
b Volumen de mesoporo a partir de las isotermas medido a una presión relativa de 0.95. b Mesopore volume from the isotherms measured at a relative pressure of 0.95.
0 Área BET estimada a partir del método multipunto BET, usando los datos de adsorción en el rango de presión relativa (P/P0) 0.05-0.30. 0 BET area estimated from the multipoint BET method, using adsorption data in the relative pressure range (P / P 0 ) 0.05-0.30.
d Tamaño del dominio de partícula calculado a partir de difracción de rayos-X, usando la ecuación de Scherrer. d Particle domain size calculated from X-ray diffraction, using the Scherrer equation.
e Porcentaje másico de nitrógeno, carbono e hidrogeno, determinado por análisis elemental.e Mass percentage of nitrogen, carbon and hydrogen, determined by elementary analysis.
' Rendimiento de incorporación de los compuestos orgánicos calculado a partir de los resultados de carbono obtenidos mediante análisis elemental. 'Incorporation performance of organic compounds calculated from carbon results obtained by elemental analysis.
Tabla 3. Parámetros texturales y estructurales de las titanias mesoporosas preparadas con distintas cantidades de los compuestos orgánicos 2 (4,6-Dihidroxipirimidina) y 5 (p-Fenilendiamina), comparados con la titania mesoporosa Ti02 y rendimiento de incorporación de los mismos. Table 3. Textural and structural parameters of mesoporous titanias prepared with different amounts of the organic compounds 2 (4,6-Dihydroxypyrimidine) and 5 (p-Phenylenediamine), compared with the mesoporous titania Ti0 2 and their incorporation yield.
Figure imgf000010_0001
a Contenido orgánico (% masa) determinado por análisis elemental (a partir del %C) y análisis termogravimétrico (TGA).
Figure imgf000010_0001
a Organic content (% mass) determined by elementary analysis (from% C) and thermogravimetric analysis (TGA).
b Rendimiento de incorporación calculado a partir de los datos de análisis elemental. Los valores entre paréntesis indican el rendimiento de incorporación calculado a partir de los datos del análisis termogravimétrico (TGA). b Incorporation performance calculated from elementary analysis data. The values in brackets indicate the incorporation performance calculated from the thermogravimetric analysis (TGA) data.
0 Diámetro de poro medio (cfp) estimado a partir de las isotermas de nitrógeno usando el método BJH. 0 Mean pore diameter (cf p ) estimated from the nitrogen isotherms using the BJH method.
" Volumen de mesoporo a partir de las isotermas medido a una presión relativa de 0.95.  "Mesopore volume from the isotherms measured at a relative pressure of 0.95.
e Área BET estimada a partir del método multipunto BET, usando los datos de adsorción en el rango de presión relativa (P/P0) 0.05-0.30. e BET area estimated from the BET multipoint method, using adsorption data in the relative pressure range (P / P 0 ) 0.05-0.30.
' Tamaño del dominio de partícula calculado a partir de difracción de rayos-X, usando la ecuación de Scherrer.  'Particle domain size calculated from X-ray diffraction, using the Scherrer equation.
sTamaño de partícula calculada por TEM. s Particle size calculated by TEM.
" Distancia entre los planos cristalinos de la titania, calculado usando la ecuación de Bragg. ' Distancia entre los planos cristalinos de la titania calculada por TEM.  'Distance between the crystalline planes of the titania, calculated using the Bragg equation.' Distance between the crystalline planes of the titania calculated by TEM.
Adicionalmente, se presentan las imágenes obtenidas mediante microscopía de transmisión electrónica (Figura 8), las cuales demostraron que los materiales con los compuestos orgánicos incorporados presentan la misma morfología que las titanias empleadas como blancos. La actividad fotocatalítica de estos materiales se evaluó a partir de la reacción de degradación de la rodamina 6G mediante espectroscopia de ultravioleta visible (Figuras 9 y 10 y Tabla 4). En un ensayo típico, en un vaso de precipitados de 250 mi se suspende el fotocatalizador (0.4 g/l) en 200 mi de una suspensión acuosa de rodamina (5- 10"5 M) y se agita durante 30 min protegido de la luz. Pasado ese tiempo se coloca el vaso en el interior de una caja negra para la protección de la luz ambiente y se introduce un reactor de doble camisa equipado con una lámpara de mercurio de alta presión (125 W), que es la fuente de luz UV-Vis, y un circuito de refrigeración. La reacción de degradación se sigue mediante la realización de espectros UV-Vis en intervalos de 2 min. El equipo empleado está equipado con un sensor de fibra óptica que, introducido en el vaso de precipitados, posibilita el seguimiento de la reacción in situ. Los espectros se realizan en un rango de longitud de onda de 300 a 700 nm, con una resolución de 0.5 nm. A la vista de los resultados, se observa un incremento de la actividad fotocatalítica de las titanias sintetizadas in situ con compuestos orgánicos incorporados frente a las titanias empleadas como blanco. Esta mejora en las propiedades fotocatalíticas, más notoria en el caso del compuesto orgánico 5, puede asociarse a la disminución del bandgap de 0.4 eV respecto de la titania empleada como blanco, consecuencia esta del aumento de la banda de valencia máxima tras la incorporación de los compuestos orgánicos, tal y como se determinó mediante XPS. Additionally, the images obtained by electron transmission microscopy are presented (Figure 8), which showed that the materials with the incorporated organic compounds have the same morphology as the titanias used as targets. The photocatalytic activity of these materials was evaluated from the degradation reaction of rhodamine 6G by visible ultraviolet spectroscopy (Figures 9 and 10 and Table 4). In a typical test, in a 250 ml beaker the photocatalyst (0.4 g / l) is suspended in 200 ml of an aqueous rhodamine suspension (5-10 "5 M) and stirred for 30 min protected from light After that time the vessel is placed inside a black box for the protection of ambient light and a double-jacketed reactor equipped with a high pressure mercury lamp (125 W), which is the light source, is introduced UV-Vis, and a cooling circuit The degradation reaction is followed by the realization of UV-Vis spectra at intervals of 2 min. The equipment used is equipped with a fiber optic sensor that, introduced into the beaker, It allows the monitoring of the reaction in situ.The spectra are carried out in a wavelength range of 300 to 700 nm, with a resolution of 0.5 nm. In view of the results, an increase in the photocatalytic activity of the titanias synthesized in situ with compounds organic incorporated against the titanias used as white. This improvement in the photocatalytic properties, more noticeable in the case of the organic compound 5, can be associated with the decrease of the bandgap of 0.4 eV with respect to the titania used as a target, consequence of the increase in the maximum valence band after incorporation of the organic compounds, as determined by XPS.
Tabla 4. Valores de la constante de actividad fotocatalítica, de coeficientes de regresión y conversiones para 1 , 2 y 3 horas de diferentes muestras de titania.  Table 4. Values of the photocatalytic activity constant, regression coefficients and conversions for 1, 2 and 3 hours of different samples of titania.
Figure imgf000012_0001
Figure imgf000012_0001
a Constante cinética (media y desviación estándar de mínimo 3 ensayos) de la reacción de 1 er orden de degradación de una solución acuosa de rodamina 6G (5*10"5M). Los valores entre paréntesis representan la constante utilizada para el cálculo de las conversiones y el b coeficiente de regresión correspondiente a dicho ensayo. a Kinetic constant (mean and standard deviation of minimum 3 tests) of the reaction of the 1st order of degradation of an aqueous solution of rhodamine 6G (5 * 10 "5 M). The values in brackets represent the constant used for the calculation of the conversions and the b regression coefficient corresponding to that test.
0 Grado de conversión (en %) alcanzado por las muestras tras 1 , 2 y 3 horas de reacción. 0 Conversion degree (in%) reached by the samples after 1, 2 and 3 hours of reaction.
d Relación entre la media de las constantes cinéticas obtenidas para cada muestra respecto de la titania sin funcionalizar (muestra Ti02). d Relationship between the average of the kinetic constants obtained for each sample with respect to the non-functionalized titania (sample Ti0 2 ).
e Energía del bandgap estimada a partir del análisis de XPS. e Bandgap energy estimated from the XPS analysis.
EJEMPLO 2: Titanias con complejos metálicos incorporados en su estructura EXAMPLE 2: Titanias with metal complexes incorporated into its structure
La síntesis de titanias funcionalizadas con el compuesto de rutenio (Figura 11) incorporado en su estructura se realizó disolviendo inicialmente el compuesto en 35,37 mi de etanol absoluto durante una hora bajo agitación magnética. Seguidamente, se le adicionaron 5 g (14,7 mmol) del precursor de titanio y se dejó agitando una noche. A continuación se adicionó gota a gota 123,5 g (6,86 mol) de agua, provocando la inmediata precipitación del sólido. El gel de síntesis, de relación molar 1TBOT:0,0038CM:41 ,3EtOH:467H2O, donde CM hace referencia al complejo metálico, se dejó reaccionar a temperatura ambiente durante 24h bajo agitación magnética, seguido de un tratamiento en estufa (o mediante agitación magnética) a 80°C durante 24 horas. El sólido obtenido se filtró, se lavó con agua y acetona, sucesivamente, y se dejó secar en una estufa a 100°C durante 8 horas. The synthesis of functionalized titanias with the ruthenium compound (Figure 11) incorporated into its structure was performed by initially dissolving the compound in 35.37 ml of absolute ethanol for one hour under magnetic stirring. Next, 5 g (14.7 mmol) of the titanium precursor was added and allowed to stir overnight. Then 123.5 g (6.86 mol) of water was added dropwise, causing the immediate precipitation of the solid. The synthesis gel, with a 1TBOT: 0.0038CM: 41.3EtOH: 467H 2 O molar ratio, where CM refers to the metal complex, was allowed to react at room temperature for 24 hours under magnetic stirring, followed by an oven treatment (or by magnetic stirring) at 80 ° C for 24 hours. The solid obtained was filtered, washed with water and acetone, successively, and allowed to dry in an oven at 100 ° C for 8 hours.
La estructura anatasa se confirmó mediante difracción de rayos X (Figura 12) y la incorporación del complejo metálico mediante espectroscopia infrarroja (Figura 13). Adicionalmente, mediante difracción de rayos X se calculó el dominio cristalino y se observó como la incorporación del complejo afecta a su tamaño. Mediante isotermas de adsorción de nitrógeno (Figura 14 y Tabla 5) se obtuvieron los parámetros texturales de los materiales y se observó que no se produjo bloqueo de la mesoporosidad debido a la incorporación del complejo metálico. The anatase structure was confirmed by X-ray diffraction (Figure 12) and the incorporation of the metal complex by infrared spectroscopy (Figure 13). Additionally, the crystalline domain was calculated by X-ray diffraction and it was observed how the incorporation of the complex affects its size. Through nitrogen adsorption isotherms (Figure 14 and Table 5) the parameters were obtained of the materials and it was observed that there was no mesoporosity block due to the incorporation of the metal complex.
Adicionalmente, mediante ICP se puede conocer la cantidad de complejo que ha sido incorporado en los materiales sintetizados, observando un rendimiento de incorporación del 92.5 % para el caso de la titania con el compuesto de rutenio incorporado a la vez que se produce la síntesis del material (in-situ) y del 60 % para la titania sintetizada vía grafíing. El alto rendimiento de incorporación en el material sintetizado via in-situ pone de manifiesto la efectividad del método de síntesis de estas nuevas titanias (Tabla 5).  Additionally, by means of ICP, the amount of complex that has been incorporated into the synthesized materials can be known, observing an incorporation yield of 92.5% in the case of titania with the incorporated ruthenium compound at the same time that the synthesis of the material occurs (in-situ) and 60% for the titania synthesized via graffiti. The high performance of incorporation into the material synthesized via in situ demonstrates the effectiveness of the method of synthesis of these new titanias (Table 5).
Tabla 5. Parámetros texturales y estructurales de las diferentes titanias sintetizadas con un complejo de rutenio incorporado en su estructura durante la síntesis de la misma (TÍO2JS) e incorporado mediante grafíing tras la síntesis (TiC>2_G), en comparación con la titania sin funcionalizar (Ti02). Table 5. Textural and structural parameters of the different titanias synthesized with a ruthenium complex incorporated into its structure during its synthesis (TIO 2 JS) and incorporated by graphing after synthesis (TiC> 2 _G), in comparison with the Titania without functionalization (Ti0 2 ).
Figure imgf000013_0001
Figure imgf000013_0001
Diámetro de poro medio estimado a partir de las isotermas de nitrógeno usando el método BJH.  Average pore diameter estimated from the nitrogen isotherms using the BJH method.
b Volumen de mesoporo a partir de las isotermas medido a una presión relativa de 0.95. b Mesopore volume from the isotherms measured at a relative pressure of 0.95.
0 Área BET estimada a partir del método multipunto BET, usando los datos de adsorción en el rango de presión relativa (P/P0) 0.05-0.30. 0 BET area estimated from the multipoint BET method, using adsorption data in the relative pressure range (P / P 0 ) 0.05-0.30.
d Calculado a partir de análisis ICP-OES. Los valores entre paréntesis representan los valores teóricos. d Calculated from ICP-OES analysis. The values in parentheses represent the theoretical values.
e Tamaño del dominio de partícula calculado a partir de difracción de rayos-X, usando la ecuación de Scherrer. e Particle domain size calculated from X-ray diffraction, using the Scherrer equation.
' Tamaño de partícula calculada por TEM.  'Particle size calculated by TEM.
9 Distancia entre los planos cristalinos de la titania, calculada usando la ecuación de Bragg. " Distancia entre los planos cristalinos de la titania, calculada por TEM. 9 Distance between the crystalline planes of the titania, calculated using the Bragg equation. "Distance between the crystalline planes of the titania, calculated by TEM.
Las imágenes obtenidas mediante microscopía de transmisión electrónica (Figura 15) corroboran, como en los casos anteriores, que los materiales con el complejo metálico incorporado presentan la misma morfología que las titanias mesoporososas empleadas como blancos. La actividad fotocatalítica de estos materiales se evalúa a partir de la reacción de degradación de la rodamina 6G mediante espectroscopia de ultravioleta visible, con un procedimiento similar al descrito en el ejemplo 1 (Figuras 16 y 17). Al igual que ocurría con las titanias con compuestos orgánicos, al incorporar complejos metálicos, en particular el N3, se observan mejoras significativas en las propiedades fotocatalíticas de estos materiales. El material sintetizado vía in-situ presenta una actividad fotocatalítica tres veces superior a la de la titania empleada como blanco y dos veces superior a la titania sintetizada mediante grafíing (Tabla 6), siendo ambas de ellas superiores a la titania empleada como blanco. The images obtained by electron transmission microscopy (Figure 15) corroborate, as in the previous cases, that the materials with the incorporated metal complex have the same morphology as the mesoporous titanias used as targets. The photocatalytic activity of these materials is evaluated from the degradation reaction of rhodamine 6G by spectroscopy of visible ultraviolet, with a procedure similar to that described in example 1 (Figures 16 and 17). As with titanias with organic compounds, by incorporating metal complexes, in particular N3, significant improvements in the photocatalytic properties of these materials are observed. The material synthesized via in-situ has a photocatalytic activity three times higher than that of the titania used as a target and twice higher than the titania synthesized by graffiti (Table 6), both of which are superior to the titania used as a target.
Tabla 6. Valores de la constante de actividad fotocatalítica, coeficientes de regresión y conversiones para distintos tiempos de las diferentes titanias sintetizadas con un complejo de rutenio incorporado en su estructura durante la síntesis de la misma (TÍO2JS) e incorporado mediante grafíing tras la síntesis (TiC>2_G), en comparación con la titania sin funcionalizar (Ti02). Table 6. Values of the photocatalytic activity constant, regression coefficients and conversions for different times of the different synthesized titanias with a ruthenium complex incorporated into its structure during its synthesis (TIO 2 JS) and incorporated by graffiti after the synthesis (TiC> 2 _G), in comparison with the non-functionalized titania (Ti0 2 ).
Figure imgf000014_0001
a Constante cinética (media y desviación estándar de mínimo 3 ensayos) de la reacción de 1er orden de degradación de una solución acuosa de rodamina 6G (5*10"5M). Los valores entre paréntesis representan la constante utilizada para el cálculo de las conversiones y el b coeficiente de regresión correspondiente a dicho ensayo.
Figure imgf000014_0001
a Kinetic constant (mean and standard deviation of minimum 3 tests) of the reaction of the 1st order of degradation of an aqueous solution of rhodamine 6G (5 * 10 "5 M). The values in brackets represent the constant used for the calculation of the conversions and the b regression coefficient corresponding to that test.
0 Grado de conversión (en %) alcanzado por las muestras tras 1 , 2 y 3 horas de reacción. 0 Conversion degree (in%) reached by the samples after 1, 2 and 3 hours of reaction.
d Relación entre la media de las constantes cinéticas obtenidas para cada muestra respecto de la titania sin funcionalizar (muestra Ti02). d Relationship between the average of the kinetic constants obtained for each sample with respect to the non-functionalized titania (sample Ti0 2 ).

Claims

REIVINDICACIONES
1. Titania funcionalizada que comprende una red inorgánica de óxido de titanio caracterizada por que la funcionalidad química está incorporada en la red inorgánica. 1. Functionalized titania comprising an inorganic titanium oxide network characterized in that the chemical functionality is incorporated in the inorganic network.
2. Titania funcionalizada según la reivindicación 1 caracterizada por que la funcionalidad química es un compuesto orgánico, un ligando o un compuesto de coordinación. 2. Functionalized titania according to claim 1 characterized in that the chemical functionality is an organic compound, a ligand or a coordination compound.
3. Titania funcionalizada según la reivindicación 2, caracterizada por que el compuesto orgánico es seleccionado de entre acido oxálico, 4,6-dihidroxipirimidina, hidroquinona, ácido tereftálico o p-fenilendiamina.  3. Functionalized titania according to claim 2, characterized in that the organic compound is selected from oxalic acid, 4,6-dihydroxypyrimidine, hydroquinone, terephthalic acid or p-phenylenediamine.
4. Titania funcionalizada según la reivindicación 2, caracterizada por que el compuesto de coordinación es un compuesto de coordinación de rutenio. 4. Functionalized titania according to claim 2, characterized in that the coordination compound is a ruthenium coordination compound.
5. Procedimiento para la síntesis de titanias funcionalizadas que comprende las siguientes etapas:  5. Procedure for the synthesis of functionalized titanias comprising the following stages:
a) Mezclar un precursor de titania con un compuesto funcional en un disolvente o mezcla de disolventes, a) Mix a titania precursor with a functional compound in a solvent or solvent mixture,
b) añadir agua a la mezcla obtenida en a) para obtener un gel, b) add water to the mixture obtained in a) to obtain a gel,
c) secar el gel obtenido en el paso b) para obtener la titania funcionalizada. c) dry the gel obtained in step b) to obtain the functionalized titania.
6. Procedimiento según la reivindicación 5, caracterizado porque en la etapa a) se añade un surfactante.  6. Method according to claim 5, characterized in that in step a) a surfactant is added.
7. Procedimiento según cualquiera de las reivindicaciones 5-6, caracterizado porque el precursor de titania es un alcóxido de titanio. 7. Method according to any of claims 5-6, characterized in that the titania precursor is a titanium alkoxide.
8. Procedimiento según la reivindicación 7, caracterizado por que el alcóxido de titanio es seleccionado de entre butóxido de titanio (IV) o isopropóxido de titanio (IV).  Method according to claim 7, characterized in that the titanium alkoxide is selected from among titanium (IV) butoxide or titanium (IV) isopropoxide.
9. Procedimiento según cualquiera de las reivindicaciones 5-8, caracterizado por que el disolvente es etanol.  9. Process according to any of claims 5-8, characterized in that the solvent is ethanol.
10. Procedimiento según cualquiera de las reivindicaciones 5-9, caracterizado por que el compuesto funcional es un compuesto orgánico, un ligando o un compuesto de coordinación.  10. Method according to any of claims 5-9, characterized in that the functional compound is an organic compound, a ligand or a coordination compound.
1 1. Procedimiento según la reivindicación 10 caracterizado por que el compuesto orgánico es seleccionado de entre acido oxálico, 4,6-dihidroxipirimidina, hidroquinona, ácido tereftálico o p-fenilendiamina.  1. Method according to claim 10 characterized in that the organic compound is selected from oxalic acid, 4,6-dihydroxypyrimidine, hydroquinone, terephthalic acid or p-phenylenediamine.
12. Procedimiento según la reivindicación 10 caracterizado por que el compuesto de coordinación es un compuesto de coordinación de rutenio. 12. Method according to claim 10 characterized in that the compound of Coordination is a ruthenium coordination compound.
13. Titania funcionalizada o dopada obtenida por el procedimiento según cualquiera de las reivindicaciones 1-12.  13. Functionalized or doped titania obtained by the process according to any of claims 1-12.
14. Uso de la titania según la reivindicación 13 en procesos de fotocatálisis.  14. Use of titania according to claim 13 in photocatalysis processes.
15. Uso de la titania según la reivindicación 13 para la degradación de componentes orgánicos. 15. Use of the titania according to claim 13 for the degradation of organic components.
16. Uso de la titania según la reivindicación 13, para la fabricación de células fotovoltaicas.  16. Use of the titania according to claim 13, for the manufacture of photovoltaic cells.
PCT/ES2014/070449 2013-06-05 2014-06-02 Method for the in situ synthesis of functionalized titanias, and use thereof WO2014195547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201300536A ES2539624B2 (en) 2013-06-05 2013-06-05 Procedure for the synthesis of functionalized titanias in situ and their use
ESP201300536 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014195547A1 true WO2014195547A1 (en) 2014-12-11

Family

ID=52007607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070449 WO2014195547A1 (en) 2013-06-05 2014-06-02 Method for the in situ synthesis of functionalized titanias, and use thereof

Country Status (2)

Country Link
ES (1) ES2539624B2 (en)
WO (1) WO2014195547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036295A (en) * 2019-12-30 2020-04-21 湖南大学 Photocatalyst and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222905A1 (en) * 1992-07-11 1994-01-13 Kronos Titan Gmbh Subpigmentary titanium dioxide with improved photostability

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAG, ÖMER ET AL.: "Solventless Acid-Free Syn thesisof Mesostructured Titania: Nanovessels for MetalComplexes and Metal Nanoclusters.", ADVANCED FUNCTIONALMATERIALS, vol. 13, no. 1, 2003, pages 30 - 36 *
KIM, SOONHYUN; ET AL.: "Visible light-inducedphotocatalytic oxidation of 4-chlorophenol and dichloroacetatein nitrided Pt-TiO< sub> 2</sub> aqueoussuspensions.", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGYA: CHEMISTRY, vol. 203, no. 2, 2009, pages 145 - 150 *
LIU, JIANHUA; ET AL.: "Synthesisand Photocatalytic Activity of TiO< sub> 2</sub>/V<sub> 2</sub> O< sub> 5</sub>Composite Catalyst Doped with Rare Earth Ions.", JOURNALOF RARE EARTHS, vol. 25, no. 2, 2007, pages 173 - 178 *
YU , JIMMY C. ET AL.: "Efficient visible-light-inducedphotocatalytic disinfection on sulfur-doped nanocrystallinetitania.", ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 39, no. 4, 2005, pages 1175 - 1179 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111036295A (en) * 2019-12-30 2020-04-21 湖南大学 Photocatalyst and preparation method and application thereof
CN111036295B (en) * 2019-12-30 2021-10-08 湖南大学 Photocatalyst and preparation method and application thereof

Also Published As

Publication number Publication date
ES2539624B2 (en) 2016-01-04
ES2539624A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
He et al. Dual-template synthesis of mesoporous TiO2 nanotubes with structure-enhanced functional photocatalytic performance
Hou et al. Bi2O3 quantum dots decorated anatase TiO2 nanocrystals with exposed {0 0 1} facets on graphene sheets for enhanced visible-light photocatalytic performance
Kim et al. Synthesis and photocatalytic activity of mesoporous TiO2 with the surface area, crystallite size, and pore size
Shen et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination
Li et al. Thermally stable ordered mesoporous CeO 2/TiO 2 visible-light photocatalysts
Yan et al. A hydrothermal route to the synthesis of CaTiO 3 nanocuboids using P25 as the titanium source
Kim et al. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity
Choi et al. Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation
Jiang et al. Enhanced photoactivity of Sm, N, P-tridoped anatase-TiO2 nano-photocatalyst for 4-chlorophenol degradation under sunlight irradiation
Wu et al. Characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature
Yu et al. Enhanced photocalytic activity of hollow anatase microspheres by Sn4+ incorporation
Zhang et al. Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2
Roy et al. CO 2 fixation at atmospheric pressure: porous ZnSnO 3 nanocrystals as a highly efficient catalyst for the synthesis of cyclic carbonates
Sun et al. Efficient fabrication of ZrO2-doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation
Li et al. Visible light responsive NF-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol
Albrbar et al. Visible-light active mesoporous, nanocrystalline N, S-doped and co-doped titania photocatalysts synthesized by non-hydrolytic sol-gel route
ES2725153T3 (en) Photocatalytic powder production method comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
Jiang et al. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO 2− x N x derived from the ethylenediamine-based complex
Li et al. Facile tailoring of anatase TiO2 morphology by use of H2O2: From microflowers with dominant {101} facets to microspheres with exposed {001} facets
Wang et al. One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity
Nassoko et al. Neodymium-doped with anatase and brookite two phases: mechanism for photocatalytic activity enhancement under visible light and the role of electron
Lucky et al. N-doped ZrO2/TiO2 bimetallic materials synthesized in supercritical CO2: Morphology and photocatalytic activity
JP2011031139A (en) Photocatalyst material and method for manufacturing the same
Wang et al. N, C-codoped BiOCl flower-like hierarchical structures
Masolo et al. Evaluation of the anatase/rutile phase composition influence on the photocatalytic performances of mesoporous TiO2 powders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807955

Country of ref document: EP

Kind code of ref document: A1