WO2014194729A1 - 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法 - Google Patents

一种在线测量水平管中湿气的气相流量和液相流量的装置及方法 Download PDF

Info

Publication number
WO2014194729A1
WO2014194729A1 PCT/CN2014/076254 CN2014076254W WO2014194729A1 WO 2014194729 A1 WO2014194729 A1 WO 2014194729A1 CN 2014076254 W CN2014076254 W CN 2014076254W WO 2014194729 A1 WO2014194729 A1 WO 2014194729A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gamma ray
flow
liquid
phase
Prior art date
Application number
PCT/CN2014/076254
Other languages
English (en)
French (fr)
Inventor
陈继革
谢建华
吴国栋
胡波
陈捷
叶俊杰
Original Assignee
兰州海默科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰州海默科技股份有限公司 filed Critical 兰州海默科技股份有限公司
Priority to US14/779,591 priority Critical patent/US10126156B2/en
Publication of WO2014194729A1 publication Critical patent/WO2014194729A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/42Orifices or nozzles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/44Venturi tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid

Definitions

  • the invention belongs to the field of multiphase flow metering.
  • the present invention relates to a device for measuring the gas phase flow and liquid phase flow of moisture in a horizontal pipe on-line, and to a method for measuring the gas phase flow and liquid phase flow of moisture in a horizontal pipe on-line.
  • gas-liquid mixed fluids containing gas and gas phases are often extracted from oil wells, which is often referred to as "moisture" in the industry.
  • Moisture gas is a multiphase flow, a mixed fluid of gas phase and liquid phase. .
  • the gas phase comprises, for example, oil gas or any gas which does not condense at a normal temperature, wherein the oil gas is generally a lighter alkane such as methane, ethane, propane, butane or the like.
  • the liquid phase may include: an oil phase, such as crude oil itself and a liquid additive dissolved in the crude oil during crude oil production, and an aqueous phase, such as formation water, water injected into the oil well during use, and dissolved in the aqueous phase. Other liquid additives. How to accurately measure the volume flow of gas and the volumetric flow of liquid in the gas-liquid mixed fluid extracted from the well in real time is the basic data necessary for production management and production optimization.
  • the working principle of the gas-liquid phase volume flow device in the first type of multiphase flow is as follows:
  • the gas-liquid two-phase mixed fluid is separated into a gas phase and a liquid phase by a separator, and the separator generally performs gas-liquid separation by gravity, or passes through
  • the cyclone separator achieves gas-liquid separation, and then the volumetric flow rates of the gas phase and the liquid phase are separately metered.
  • the separator and related ancillary facilities weighs several tens of tons, covers an area of hundreds of square meters, and has many control links, the maintenance and management of the separator is very complicated, which is not conducive to the automation of production process management, especially for desert and sea. Used in oil fields.
  • This method of first separating and measuring is also not an online measurement method, and there is hysteresis of measurement.
  • the second type of method for measuring the gas phase flow and liquid phase flow of moisture on-line is as follows: A single-phase meter is installed horizontally along the production line of the moisture, and the moisture is measured as a single phase. Since the multiphase meter is not used, the amount of liquid needs to be known in advance through other means, or to know the estimated value. The measurement results of single-phase meters are taken as gas, but they are often artificially high and need to be corrected. The correction method commonly used in the industry is based on gas-liquid two-phase
  • Lockhart-Martlnel li ⁇ t performs iterative calculations, the main ISO moisture model, see for example, publication IS0/TR 11583: 2012, whose English J3 ⁇ 4 is "Measurement of wet gas flow by means of pressure differential devices inserted in circular cross- Section conduits" , all corrections are for the correction of the volume.
  • this method has three main disadvantages: one is that there is no clear dynamic mechanism; the other is that only the gas volume is corrected, and the liquid volume measurement is not measured or corrected; third, the method is limited to extremely high gas content. Very narrow gas range.
  • the third type of measurement method is to install a total flow metering device and a phase fraction meter horizontally along the production line of the moisture, and measure the total volume flow rate ⁇ ' of the fluid and the gas phase linear phase fraction of the horizontal tube, respectively. And use the following formula to calculate:
  • 3 ⁇ 4 3 ⁇ 4 ⁇ (1 - ) Is the total volume flow
  • This method generally assumes that the moisture in the horizontal line is a misty flow, that is, a state in which the liquid phase is uniformly distributed in the gas phase in the form of small droplets in the horizontal line, and there is no slip between the gas phase and the liquid phase.
  • the phase fraction meter in this method is generally installed at a certain radial position of the horizontal pipe, and the measured gas phase fraction is the linear phase fraction of the gas at the radial position due to the above-mentioned "homogeneous" and The existence of the "no slip" assumption, so the measured linear phase fraction of the gas is equivalent to the gas phase area phase fraction 0 ⁇ and the gas volume fractional rate GVF.
  • the fourth type of measurement is to perform the above measurements in a vertical pipe to avoid the assumption that the above-mentioned "fog flow" is deviated from the bottom of the pipe.
  • all measuring pipes should be installed vertically.
  • the production line of moisture in the oil field is usually horizontal, so it is necessary to change the direction of the pipe from a horizontal orientation to a vertical orientation to perform the above measurement, which requires a redirecting pipe, and a transition pipe provided for stabilizing the flow pattern,
  • the measurement device occupies a large space, which is not suitable for installation on an offshore oil and gas platform that requires high layout compactness.
  • the invention relates to a device for measuring the gas phase flow and liquid phase flow of moisture in a horizontal pipe on-line, comprising the following components:
  • a horizontal venturi tube comprising a truncated cone-shaped inlet duct having a decreasing cross-sectional area, a cylindrical throat duct and a truncated cone-shaped outlet duct having a relatively large cross-sectional area;
  • a gamma ray detector comprising a gamma ray emitter and a gamma ray detector arranged in such a way that gamma rays emitted by the gamma ray emitter are able to traverse the throat duct in a radial direction The section passes through and reaches the gamma ray receiver.
  • the invention relates to a method for online measurement of gas phase flow and liquid phase flow of moisture in a horizontal pipe, comprising:
  • venturi passing the wet airflow through a horizontal venturi, the venturi including a truncated inlet pipe having a decreasing cross-sectional area, a cylindrical throat pipe and a stern-shaped outlet pipe having an enlarged cross-sectional area;
  • a gas phase linear phase fraction a g — e along a radial direction of a cross section of the throat duct by a gamma ray detector, wherein the gamma ray detector comprises a gamma ray emitter and a gamma ray a detector, wherein the gamma ray emitted by the gamma ray emitter passes through the gas-liquid two phases in a radial direction to reach the gamma ray receiver;
  • the gas flow rate and the liquid phase flow rate ⁇ ' are calculated from the total volume flow rate 2 ' and the above-mentioned radial gas phase linear phase fraction ⁇ g _e.
  • the specific formula is as follows:
  • R is the radius of the throat pipe, where ⁇ is the angle between the radial direction and the horizontal radial direction used in the measurement;
  • FIG. 1 is a schematic illustration of the apparatus of the present invention.
  • the meanings of the reference numerals are as follows: 1. venturi inlet pipe; 2. venturi pipe throat pipe; 3. venturi pipe outlet pipe; 4 and 4, . gamma ray emitters; 5 and 5', gamma Ma ray detector; 6. Total volume flow metering device; 7. Differential pressure measuring component; 8. Temperature measuring component; 9. Pressure measuring component.
  • the picture on the right is a cross-sectional view of the throat at the left. 4 and 4, And 5 and 5, only schematically showing the positions of the two possible gamma ray emitters and gamma ray detectors, in fact only one set of gamma ray emitters and gamma ray detectors is required.
  • Figure 2 is a schematic view of an isometric eccentric circle model of the present invention; wherein the circle drawn by the solid line in Figure 2-1 represents the cross section of the horizontal venturi; the circle drawn by the dotted line represents the equal-path eccentricity , B1 - B2 - B3 -...- Bn is the contour of the gas-liquid interface, and the shaded part is the cross-sectional area occupied by the liquid phase.
  • Figure 2-2 shows the determination of the position of the point of the outline of the gas-liquid phase interface by taking the three points of Bl, B2 and B3 as an example;
  • Figure 2-3 shows the conventional flat gas-liquid interface contour, in which the shadow of the bow Part of the cross section occupied by the liquid phase.
  • Figure 3 is a schematic flow chart of the experimental apparatus of the present invention.
  • Figures 3 - A and 3 - B show the working positions of two possible gamma ray emitters and gamma ray detectors.
  • Figure 5 is a relative measurement error of liquid phase flow achieved by the apparatus and method of the present invention.
  • Figure 6 is a photograph of the scene of the prototype of the apparatus of the present invention when tested in the National Engineering Laboratory (NEL Lab).
  • Multiphase flow means a mixed fluid composed of a gas phase and a liquid phase.
  • the liquid phase can be further divided into an oil phase and an aqueous phase, and the oil phase and the water phase can be miscible together as a single liquid phase, or can be immiscible as two independent liquid phases.
  • “Moisture” is a specific multiphase flow in which the oil phase and the aqueous phase are treated as a single liquid phase, that is, moisture is a multiphase flow consisting essentially of a gas phase and a liquid phase, wherein the gas phase volume is dominant.
  • the ratio of the total volume of the phase flow is greater than 90%, preferably greater than 95%, more preferably greater than 98%.
  • volume flow rate refers to the volume of fluid flowing through a unit of time. In the SI system, the dimension can be mVs. Depending on the temperature and pressure at which the fluid is placed, the volumetric flow is divided into the operating volume flow and the standard volume flow. The former is the actual measured volumetric flow rate under the actual temperature of the working conditions, while the latter is converted to the volumetric flow rate under standard conditions (298K, 101.325kPa) after the former is converted to PVT.
  • Phase ratio refers to the percentage of each phase in a multiphase flow.
  • the phase fraction can be divided into linear phase fraction, area phase fraction and volume fraction.
  • the linear phase fraction refers to the ratio of the length of the absorption path of the gas phase and the liquid phase to the total absorption path length of the gas-liquid two-phase in a linear direction, for example, in the direction of the gamma ray transmission, which is called the gas phase linear phase fraction.
  • the liquid phase linear phase fraction "' where the subscript g is the gas, the subscript 1 is the liquid, and the area phase fraction is the area occupied by the gas or liquid phase in a certain cross section.
  • the percentage of the area can also be referred to as the gas phase area phase fraction a s and the liquid phase area phase fraction "'.
  • fractional rate the invention specifically states whether it is a linear phase fraction, an area phase fraction or a volume fractional fraction.
  • GVF content refers to the volume fraction of the gas phase, expressed as GVF;
  • Ring means the diameter along the ⁇ .
  • Slip refers to the difference between the gas phase velocity and the liquid phase velocity when a gas-liquid two-phase mixed fluid flows in the same pipeline.
  • the dimension is the dimension of the velocity; the "gas-liquid slip factor” is the gas-liquid two-phase.
  • the ratio of the gas phase velocity to the liquid phase velocity when the mixed fluid flows in the same pipeline is dimensionless.
  • Step flow means that the flow pattern of the fluid does not change over time macroscopically, ie, the so-called “steady state” is reached.
  • the apparatus and method for measuring the gas phase flow rate and liquid phase flow rate of moisture in the horizontal pipe in the present invention will be described in detail below.
  • a first aspect of the invention relates to a device for measuring the gas phase flow and liquid phase flow of moisture in a horizontal tube on-line, comprising the following components: a horizontal venturi and a gamma ray detector. The following will be introduced separately.
  • Venturi tubes are a common device in the field of flow metering, which can cause the fluid to "throttle".
  • the most basic components of a venturi include a slab-shaped inlet duct with a decreasing cross-sectional area, a cylindrical throat duct, and a truncated-shaped outlet duct with a large cross-sectional area.
  • the fluid flows from the upstream pipe into the truncated cone-shaped inlet pipe of the venturi. As the flow area decreases, the throttling occurs, that is, the fluid flow rate increases but the static pressure decreases.
  • the venturi When the fluid reaches the venturi In the smallest cylindrical throat pipe, the flow rate is maximized, the static pressure is reduced to a minimum, and then the fluid exits the venturi pipe along the stencil-shaped outlet pipe with the cross-sectional area of the venturi and enters the downstream pipe.
  • Calculating the pressure difference ⁇ ⁇ by measuring the pressure P1 at the junction of the upstream pipe of the venturi pipe or the upstream pipe and its inlet pipe (ie where no throttling occurs), and measuring the pressure P2 at the throat pipe of the venturi pipe, and Combined with the structural parameters of the venturi, the flow or flow rate of the fluid can be calculated. More specific structures for venturis and formulas for calculating fluid flow or flow rates can be found in any of the fluid mechanics textbooks. I won't go into details here.
  • the venturi is required to be arranged in a horizontal manner, that is, the central axis of the venturi is horizontal.
  • a gamma ray detector is a type of detector commonly used in the field of multiphase flow meters, which generally includes a gamma ray emitter and a gamma ray detector. In the present invention, the arrangement of the two is required to cause gamma ray emission.
  • the gamma ray emitted by the device can pass in a radial direction along the cross section of the throat tube to the gamma ray receiver.
  • the gamma ray detector works by gamma ray emitters located on one side of the pipe.
  • the source emits a certain initial intensity, ie the emission intensity N.
  • the gamma ray is preferably a collimated gamma ray.
  • the intensity occurs due to interaction with the absorption shield, photoelectric effect, Compton scattering, and electron pair generation. Attenuation, that is, at least a portion is absorbed by the absorption medium, and then the gamma ray detector located on the other side of the tube detects the attenuation gamma ray intensity, that is, the transmission intensity N, and calculates the absorption coefficient of the absorption medium based on a certain formula.
  • the radiation source can employ various suitable sources.
  • the gas phase and the liquid phase have different absorption coefficients for gamma rays, there will be different absorption coefficients for multiphase flows having different gas-liquid phase ratios.
  • the respective absorption coefficients of the gas phase and the liquid phase can be obtained in advance by measuring the gas phase and the liquid phase separated by a conventional gas-liquid separation device (for example, a cyclone separator or a condensing separator), which is important in the measurement of the present invention. Constant to use. Accordingly, by analyzing and analyzing the measured absorption coefficient of the gas-liquid mixture, it is possible to provide information on the phase fraction of each phase.
  • the gamma ray detectors used in the present invention are known, and for more details on their operation and equipment details, reference is made to the related monographs. This article will not go into details.
  • the gamma ray emitted by the gamma ray emitter can pass in a radial direction along the cross section of the throat duct to the Hummer ray receiver.
  • the radial arrangement is such that gamma rays can pass through the gas-liquid two phases.
  • a well-defined radial arrangement through the gas-liquid two phases is vertical diameter, because even if the amount of liquid in the moisture is small, after liquid phase sedimentation, there is liquid at the bottom of the horizontal tube. .
  • those skilled in the art can also select the direction of the non-vertical diameter direction, that is, the oblique radial direction, according to the specific situation, and use the angle ⁇ (0° ⁇ ⁇ ⁇ 90°) between the inclined radial horizontal directions to indicate the inclination.
  • the specific direction of the radial direction It is not difficult for the skilled person to select the specific direction of the tilting radial direction by a single estimate of the historical empirical value of the moisture content of the moisture to ensure that the radial gamma rays along this slope can still pass through the gas-liquid two phases.
  • the technician can also select the specific direction of the tilting radial direction by a simple test method, because once the gamma ray can only pass through the gas phase, the reading of the gamma ray detector will rapidly drop by an order of magnitude. Eliminating this condition during measurement ensures that the gamma rays pass through the gas-liquid two phases.
  • the gamma ray detector can be measured in a fixed radial direction or in a varying radial direction. Preferably a vertical radial direction is used. However, any oblique radial mode may be used.
  • ⁇ > 10 degrees ⁇ > 15 degrees
  • ⁇ > 30 degrees ⁇ > 45 Degree
  • ⁇ > 60 degrees ⁇ > 75 degrees
  • the gas-liquid two-phase flow metering device of the present invention may also optionally include a total volumetric flow metering device for measuring the total volumetric flow of the multi-phase flow upstream or downstream of the horizontal venturi.
  • the function of these total volumetric flow metering devices is to measure the total volumetric flow of the multiphase flow, and any flow meter known in the art of fluid flow metering suitable for metering the total volumetric flow of fluid can be employed.
  • any flow meter known in the art of fluid flow metering suitable for metering the total volumetric flow of fluid can be employed.
  • elbow flowmeters for measuring the total volumetric flow of fluid
  • venturi flowmeters venturi flowmeters
  • rotameters rotameters
  • float flowmeters float flowmeters
  • orifice flowmeters orifice flowmeters
  • the total volumetric flow metering device may also be selected from a fluid flow metering device that is capable of measuring the average flow rate of the multiphase flow and then obtaining the total volume flow by multiplying the pipe cross-sectional area.
  • An exemplary fluid flow metering device may be a fluid measured by cross-correlation Flow rate equipment.
  • the basic principle of the cross-correlation method is to set two sensors at two points from the known direction along the direction of liquid flow.
  • the sensor can be a sensor based on microwave, ray, differential pressure or electrical impedance, which can be used to detect the density and conductance of the fluid. Rate or inductance.
  • the two sensors detect the time required for the same signal to travel through this known distance and then calculate the average velocity of the fluid.
  • the principle of the "cross-correlation method” and the calculation formulas used therein are known from the prior art, for example, see the Norwegian Oil and Gas Measurement Association.
  • the multiphase flow metering device of the present invention does not use a separate total volumetric flow metering device for measuring the total volumetric flow of the multiphase flow upstream or downstream of the horizontal venturi, but instead uses the present
  • the horizontal venturi described in the invention performs a measurement of the total flow.
  • the multiphase flow metering device of the present invention may further comprise a differential pressure measuring element that measures a pressure difference between the upstream of the venturi and its throat, a pressure measuring element that measures the humidity of the moisture upstream of the venturi, and a measurement Temperature measuring element for moisture temperature.
  • the horizontal venturi can be used to measure the total volume flow based on the principle of measuring the flow rate of a conventional venturi without having to use a separate total volumetric flow metering device.
  • a second aspect of the invention relates to a method of measuring the gas phase flow and liquid phase flow of moisture in a horizontal tube on-line, the steps involved being as described in the Summary of the Invention section. The steps are explained in more detail below.
  • step a the wet gas stream is passed through a horizontal venturi, wherein at the throat pipe, under the action of gravity, the liquid phase and the gas phase in the moisture are at least partially stratified, thus in the horizontal venturi
  • a gas-liquid stratification at the throat of the tube At least partial stratification of gas and liquid is likely to occur in horizontal pipelines, and is even difficult to avoid.
  • the gas-liquid phase interface produced by at least partial stratification of the gas and liquid may be a clear interface or a fuzzy interface, depending on whether the stratification is complete and the degree of fluid turbulence.
  • the inventor of the present application has found through the long-term real face that the gas-liquid stratification at the throat of the horizontal venturi is more valuable than the gas-liquid stratification in the horizontal pipeline upstream and downstream of the venturi, which can Used to measure gas-liquid phase flow.
  • step b thereof the gas phase linear phase fraction ⁇ 8 _ ⁇ along the radial direction of the cross section of the throat duct is determined by a Hummer ray detector, wherein the gamma ray detector comprises gamma ray emission And a gamma ray detector, wherein the gamma ray emitted by the gamma ray emitter passes through the gas-liquid two phases in a radial direction to reach the Hummer ray receiver.
  • the arrangement of the gamma ray detectors is as described in the aspect of the invention, any radial direction may be employed as long as the gamma ray is ensured to pass through the gas-liquid two phases.
  • the gas phase flow rate and the liquid phase flow rate ⁇ ' are calculated from the total volume flow rate and the above-mentioned radial gas phase linear phase fraction a g _ e , and the specific formula will be described in detail below.
  • the total volumetric flow metering device, if selected, its selection and arrangement, etc., is also as described in the first aspect of the invention. Now, focusing on the "equal diameter eccentric circle model", it is the applicant's original use of the model that makes the gas phase flow and liquid phase flow of the moisture in the horizontal measuring tube technically possible and feasible. of.
  • the so-called “equal diameter eccentric circle model” is a region in which the liquid phase exists in a horizontal circular pipe due to liquid phase sedimentation.
  • the existence of the liquid phase is such a region: a circle originally between the horizontal pipe and the horizontal pipe Shape cross section (may call the circular cross section of the horizontal pipe "cross section")
  • the vertical diameter is shifted upward and upward by a distance d (it is called d is an eccentric moment) to obtain an "equal diameter eccentricity", and the section of the "section ⁇ " that does not coincide with the "equal eccentric circle”
  • the area which is the area occupied by the liquid phase assuming complete stratification of the gas and liquid.
  • the rest of the area inside the circular duct is occupied by the gas phase.
  • the actual gas-liquid phase interface may not be such a clear interface, but may be a fuzzy interface, especially in the case of incomplete liquefaction of gas and liquid; and even if the gas and liquid are completely divided
  • the actual gas-liquid interface of the layer can only be very close to the above clear interface, and it is difficult to completely achieve the above clear interface.
  • the gas phase linear phase fraction rate a ge data can be used to calculate the nominal gas-liquid phase interface point by the normalization method, which is combined with FIG. 2-2.
  • the normalization method is described as follows: In a radial direction, the ratio of the length of the gas phase through which the gamma ray passes to the diameter of the cross-section circle is the gas phase linear phase fraction oc s _ e , as shown in FIG. 2 . - 2, when the gamma ray passes along the diameter AC, it is considered that the line segment BC represents the length of the gas phase through which the gamma ray passes, and the line segment AB represents the length of the liquid phase through which the gamma ray passes, and AC is the cross-section ⁇ diameter, then
  • the length determines the position of point B, which is considered to be the normalized gas-liquid phase interface point along the diameter AC direction, and may also be referred to as the nominal gas-liquid phase interface point.
  • "Nominally" because it is only a gas-liquid interface assumed in the normalized calculation , Not necessarily true gas-liquid interface point change in the diameter direction, for example along a diameter, respectively, A1C1, A2C2, A3C3 AnCn to measure a range of a ge can be calculated by the above series of liquid normalization method Phase interface point B1
  • the "equal diameter eccentric circle model” can also be expressed as follows: In any radial direction through the gas-liquid two phases in the horizontal trap, the gas phase length is considered to be equal to 2R a g _ e , The liquid phase length is equal to 2R x ( 1 - ⁇ 8 ⁇ ), and the position of the gas-liquid junction point calculated therefrom is taken as the position of the nominal gas-liquid phase boundary point, connecting all nominal gas-liquid phase boundary points. The position of the nominal gas-liquid phase interface is obtained.
  • the nominal gas-liquid phase interface can be represented by the arc of the above-mentioned equal-diameter eccentric circle remaining in the circle of the section, so the above-mentioned nominal gas-liquid is determined.
  • the process of the phase interface is "equal diameter eccentric circle model”.
  • the eccentric circle model After creatively establishing the eccentric circle model, it is possible to calculate the gas from the linear oc se data measured in any radial direction of the horizontal venturi throat according to the equal eccentric circle model in the measurement practice.
  • the respective volumetric flow rates of the liquid phase without having to use the linear ct ge data measured from the vertical diameter to the direction, also provide great flexibility for the arrangement angle of the gamma ray detector, in a limited space This is especially convenient when used on offshore oil platforms or when retrofitting flow meters are installed on existing moisture lines.
  • the gas phase flow rate and the liquid phase flow rate ⁇ ' can be calculated from the total volume flow rate 2 ' and the radial gas phase linear phase fraction a s _ e , the specific formula is as follows:
  • R is the radius of the throat pipe, where ⁇ is the angle between the radial direction and the horizontal radial direction used in the measurement;
  • the total volumetric flow rate can be measured by a total volumetric flow metering device located upstream or downstream of the horizontal venturi.
  • the pressure difference between the upstream of the venturi and the throat thereof, the pressure of the moisture measured by the pressure measuring element, and the temperature measuring element may be measured by the differential pressure measuring element of the first aspect of the invention.
  • C is the outflow coefficient of the fluid, dimensionless; if is the inner diameter of the venturi throat; is the ratio of the inner diameter of the venturi throat to the inner diameter of the inlet; ⁇ is the differential pressure measurement The pressure difference measured by the component; the mixing density of moisture, the unit of each physical quantity, if any, is in the International System of Units.
  • the slip factor can be calculated using any model published in the literature. Some models are available as follows:
  • is the entrainment factor
  • the Hammer model is a model obtained by the applicant based on a large amount of experimental data. detailed description
  • the verification experiments on the apparatus and measurement method of the present invention are carried out in the National Engineering Laboratory (NEL Laboratory), which is the world's recognized authority for the evaluation and testing of multiphase flow metering equipment. It is known for its objectivity, authority and rigor. Therefore, the current major international oil and gas producers require that multiphase flowmeters supplied by their multiphase flowmeter suppliers must pass the laboratory test.
  • the measuring device of the present invention is shown in Figure 1, wherein each component is commercially available.
  • Figure 3 is a schematic illustration of a complete experimental setup of the present invention.
  • a purified gas phase (eg, air, nitrogen, natural gas, or oil field associated gas, etc.) is passed through a standard gas phase flow metering system 11 (eg, a velocity flow meter for measuring gas flow) using an air pump 10 Into the horizontal test line, wherein the flow rate Q of the gas is measured by the standard gas flow metering system 11.
  • the pump 12 feeds a liquid (eg, crude oil, water or oil-water mixture, etc.) through a standard liquid flow metering system 13 (eg, a volumetric flow meter for measuring liquid flow) into a horizontal moisture line, wherein
  • the standard liquid phase flow metering system 13 measures the flow rate Q ft of the liquid phase.
  • Both the gas phase flow and the liquid phase flow can be independently adjusted to establish different moisture flow conditions in the horizontal test line and to measure under different moisture flow conditions.
  • the liquid and gas are mixed in the test line to form moisture.
  • the above wet gas flow is measured by the measuring device of the present invention shown by a broken line in Fig. 3.
  • the venturi flow tube shown in Figure 1 is placed on the horizontal test line and combined with moisture temperature, pressure, and upstream of the venturi.
  • the measurement of the differential pressure of the throat is used to calculate the total flow rate Q t of the gas-liquid two-phase mixed flow.
  • the gas phase linear phase fraction is measured by a gamma ray emitter 4 and a gamma ray detector 5 arranged radially on both sides of the horizontal venturi throat.
  • the measurement direction of the gamma ray emitter 4 and the gamma ray detector 5 may be a vertical diameter direction or an oblique radial direction.
  • thermometer 8 and the pressure gauge 9 The temperature T and the pressure P of the above mixed fluid before entering the horizontal venturi are measured by the thermometer 8 and the pressure gauge 9, respectively.
  • the working pressure of the system was stable at 6 MPa, and the temperature in the liquid phase and the gas phase was stable at 20 TC.
  • the above-mentioned Q 3 ⁇ 4 and measured by the standard flow metering system are considered to be the true values of the liquid and gas flows.
  • the measured values ( ⁇ and Q g measured by the measuring device and the measuring method of the present invention are compared with the true value,
  • the physical quantity directly measured is the total volume flow rate Q t and the measured linear gas phase fraction oc g - e at the throat of the venturi, and the temperature T and pressure P of the moisture.
  • Many physical parameters such as viscosity, density, dryness and compression factor for gases, liquids and moisture can be calculated from any of the fluid state equations described above for T and P. These calculations are routine calculations in thermodynamics and fluid mechanics. For the method, please refer to any textbook of thermodynamics and fluid mechanics, which will not be repeated here. The composition of the gas and liquid itself can be measured separately.
  • any particular physical size and geometrical features of the apparatus of the present invention are contemplated in the calculations, and these are considered to be known, as this is not readily achievable by actual measurement.
  • the gas-liquid phase volume flow is calculated by using the above-mentioned "equal diameter eccentric circle model” and “slip model”, and the results are listed in column J and ⁇ I of Table 2 and Table 3, respectively. [columns, and the relative errors between them and the true values are listed in the ⁇ N and ⁇ 0 columns.
  • the slip model uses the above-described Haimer slip model.
  • the apparatus shown in Fig. 3-A is used, in which the measurement direction of the gamma ray detector is the vertical diameter direction.
  • the specific measurement methods and calculation methods are as described above, and the measured experimental data are shown in Table 2.
  • a huge difficulty in the field of moisture measurement is that the measurement error of the liquid volume flow is very large, because the liquid flow rate is very small in the moisture, for example, less than 10% depending on the degree of "wet" of the moisture, or Less than 5%, or less than 2%, because of its small base, it is particularly sensitive to measurement errors. According to the specifications of general oil and gas producers, it is considered acceptable that the relative error of the liquid volume flow rate is less than 20%. Therefore, the design measurement error of the liquid volume flow rate in the conventional moisture flow measuring device and method is also ⁇ 20 Less than %. The error curve before correction in Figures 4 and 5 also illustrates this.
  • the liquid phase flow relative error within ⁇ 20% can be better achieved, which first proves that the device and method of the present invention can Alternative to prior art devices and methods.
  • the applicant has conducted more experiments in the directions of 45° and 60° with respect to the horizontal radial direction. The results show that the relative error of the liquid phase flow is greatly reduced, and can be achieved by the maximum relative error. Within ⁇ 14%, if it is within the average error, it can reach within ⁇ 7 %.
  • the "equal diameter eccentric circle model” can be used in combination with other slip models to achieve the fundamental purpose of the present invention: On-line and high-precision measurement of gas-liquid phase flow in moisture in a horizontal tube.
  • the measuring device and the measuring method of the present invention have the following advantages over conventional flow meters: 1.
  • the measurement of gas-liquid two-phase flow in moisture can be carried out in a horizontal venturi, which breaks the traditional technical bias that must be measured in vertical pipes.
  • the gamma ray detector can be placed along any radial direction of the horizontal venturi throat, not necessarily in the vertical diameter direction.
  • the measurement accuracy is improved, for example, for liquid phase flow, if the maximum relative error is used,

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种在线测量水平管中的湿气的气相流量和液相流量的装置,其包括以下构件:水平文丘里管,其包括截面积渐小的圆台形入口管道(1),圆筒形喉部管道(2)和截面积渐大的圆台形出口管道(3);伽马射线探测器,其包括伽马射线发射器(4)和伽马射线检测器(5),二者的布置方式使得伽马射线发射器(4)所发出的伽马射线能够以径向方向沿所述喉部管道(2)的横截面穿过,到达伽马射线接收器(5)。还提供了一种使用上述装置测量水平管中的湿气中气相流量和液相流量的方法。

Description

一种在线测量水平管中湿气的气相流量和液相流量的装置及方法
技术领域
本发明属于多相流流量计量领域。 具体地, 本发明涉及一种在线测量水平 管中的湿气的气相流量和液相流量的装置, 并涉及一种在线测量水平管中的湿 气的气相流量和液相流量的方法。 采油工业中, 经常从油井中采出包含 和气相的气液混合流体, 业内常称之 为 "湿气" . 湿气在本廣上属于一种多相流, 即气相和液相的混合流体。 其中所述 气相包括例如油田气或任何在常温下不凝的气体, 其中该油田气一般为较轻的烷烃 例如甲烷、 乙烷、 丙烷、 丁烷等。 所述液相可包括: 油相, 例如原油本身以及在原 油开采过程中溶解在原油中的液体添加剂, 以及水相, 例如地层水、 采用过程中注 入油井中的水以及溶解在水相中的其它液体添加剂。 如何实时准确地测量从油井中 采出的气液混合流体中气体的体积流量和液体的体积流量, 是生产管理和生产优化 所必需的基础数据。
第一类测量多相流中气液相体积流量装置工作原理如下: 通过分离器将气液两 相混合流体分离成气相和液相, 这种分离器一般是通过重力实现气液分离, 或通过 旋流分离器实现气液分离, 然后分别计量气相和液相的体积流量。 但由于分离器以 及相关附属设施重达数十吨, 占地上百平方米, 且控制环节多, 使得分离器的维护 和管理十分复杂, 不利于生产过程管理的自动化, 尤其不利于在沙漠和海上油田中 使用。 这种先分离后测量的方法也并非在线测量方法, 存在测量的滞后性。
第二类在线测量湿气的气相流量和液相流量的方法如下: 沿着湿气的生产管 线水平安装一单相仪表, 将湿气当做单相进行计量。 由于没有使用多相仪表, 所以 液量需要通过别的途径预先知道, 或知道个概值。 单相仪表的计量结果被当作气 量, 但往往虚高, 需要进行修正。 业内通常采用的修正方法是基于气液两相的
Lockhart-Martlnel l i ^ t进行迭代计算, 主 有 ISO湿气模型,例如参见出版 物 IS0/TR 11583: 2012 , 其英 J¾目是 "Measurement of wet gas flow by means of pressure differential devices inserted in circular cross-section conduits" , 所有修正都是针对气量的修正。 但这种方法存在三个主要缺点: 一是 没有明确的动力学机制; 二是只修正了气量, 没有对液量计量进行计量或修正; 第 三, 该方法的适用范围仅限于极高含气的很窄含气率量程。
第三类测量方法是是沿着湿气的生产管线水平安装一总流量计量设备和相分 率计, 分别测量流体的总体积流量 β '和水平管某一径向的气相线性相分率 , 并 使用以下公式进行计算:
¾ = ¾ χ (1 - ) 是总体积流量;
是气相体积流量.
是液相体积流量;
是气相线性相分率.
这种方法一般假设水平管线中的湿气为雾状流, 即在水平管线中液相以小液滴 形式均匀分布在气相中的状态, 且气相和液相之间不存在滑差。 而且这种方法中的 相分率计一般都安装在水平管的某一径向位置, 其测得的气体相分率为该径向位置 的气体线性相分率 , 由于上述 "均相"和 "无滑差"假设的存在, 所以所测量的 气体线性相分率 等同于气相面积相分率0^和气体体积相分率 GVF。 这种方法假 设水平管线中的湿气为均相雾状流且气液之间没有滑差, 这和湿气流动的实际情况 不太符合, 在水平管线中, 由于重力、 系统压力和温度的影响, 以及湿气 "湿" 的 程度, 湿气在水平管线中并非是一种理想的均相状态, 使用水平管线径向的气相线 性相分率 ^ f¾气体体积相分率 GVF是存在误差的, 而这对 '液相的测量精度影响更 为明显。 在湿气中, GVF是个很接近 1的数, GVF的些许变化, 可引起 LVF极大的相 对误差, 也就造成了极大的液相测量误差。 所以, 这种方法中, 液相的测量精度往 往比较差。
第四类测量方法是在竖直管道中进行上述测量, 以避免因 目沉积在管道底部 而造成偏离上述 "雾状流" 的假设。 其中, 所有的测量管道均要竖直安装。 但油田 中湿气的生产管线通常是水平的, 故需要将管道的方向从水平取向改变成竖直取向 才能进行上述测量, 这需要变向管道, 以及为使流型稳定而设置的过渡管道, 造成 测量装置占用较大的空间, 这不利于在对布局紧凑性要求较高的海上油气平台上安 装。
因此, 本领域需要一种能够对水平管线中的湿气的气相流量和液相流量进行在 线测量的装置和方法, 这样可以不需要改变流体流向, 使用短管结构的测量装置即 可进行测量, 可极大的减少测量设备所占据的空间并简化安装工作, 同时尽可能实 现较高的测量精度。
上述目标通过本发明的装置和方法实现。
发明内容
第一方面, 本发明涉及一种在线测量水平管中的湿气的气相流量和液相流 量的装置, 其包括以下构件:
水平文丘里管, 其包括截面积渐小的圆台形入口管道, 圆筒形喉部管道和 截面积渐大的圆台形出口管道; 伽马射线探测器, 其包括伽马射线发射器和伽马射线检测器, 二者的布置 方式使得伽马射线发射器所发出的伽马射线能够以径向方向沿所述喉部管道的 横截面穿过, 到达伽马射线接收器。
第二方面, 本发明涉及一种在线测量水平管中的湿气的气相流量和液相流 量的方法, 包括:
a.使湿气流过一段水平文丘里管, 该文丘里管包括截面积渐小的圆台形入 口管道, 圆筒形喉部管道和截面积渐大的圃台形出口管道;
b.通过伽马射线探测器测定沿所述喉部管道的橫截面上的径向方向的气相 线性相分率 age, 其中伽马射线探测器包括伽马射线发射器和伽马射线检测 器, 其中伽马射线发射器所发出的伽马射线以径向方向穿过气液两相, 到达伽 马射线接收器;
c 根据等径偏心圆模型, 由总体积流量2 '以及上述径向气相线性相分率 α g_e, 计算气相流量 和液相流量 β', 具体公式如下:
-计算偏心距 d:
d = (R- 2R g
Figure imgf000005_0001
其中 R 为所述喉部管道的半径, 其中 Θ为测量时采用的径向方向与水平径 向方向的夹角;
-计 0^:
Figure imgf000005_0002
-计算气相体积相分率 GVF:
„ xS
GVF 其中 S为气液两相之间的滑差; 当考虑滑差时, S由经验公式计算得到; 当 不考虑滑差时, S = l, 则 GVF= aw;
-计算水平管中湿气的气相流量和液相流量:
Qg =Q,xGVF
¾ = ¾x(i-G )e
附图说明
图 1是本发明的装置的示意图。其中各附图标记含义如下: 1.文丘里管入口 管道; 2. 文丘里管喉部管道; 3.文丘里管出口管道; 4和 4, .伽玛射线发射器; 5和 5' ,伽玛射线检测器; 6.总体积流量计量设备; 7.压差测量元件; 8. 温度 测量元件; 9.压力测量元件。 其中右图为左图喉部处的剖面视图。 其中 4和 4, 以及 5和 5, 只是示意性地示出了两种可能的伽玛射线发射器和伽玛射线检测器 的位置, 实际上只需要有一套伽玛射线发射器和伽玛射线检测器即可。
图 2是本发明的等径偏心圆模型的示意图; 其中图 2 - 1中的实线所绘成的 圆形表示水平文丘里管的横截面; 虚线所绘成的圆形表示等径偏心圃, 弧线 B1 - B2 - B3 -…- Bn为气液相界面的轮廓线, 阴影部分为液相所占据的截面积。 图 2 - 2以 Bl、 B2和 B3三点为例示意出气液相界面的轮廓线的点的位置的确定 办法; 图 2 - 3为常规的平直气液相界面轮廓线, 其中弓形的阴影部分为液相所 占据的横截面。
图 3是本发明的实验装置的流程示意图。其中图 3 - A和 3 - B示出了两种可 能的伽玛射线发射器和伽玛射线检测器的工作位置。
图 4是本发明的装置和方法所实现的气相流量相对测量误差。
图 5是本发明的装置和方法所实现的液相流量相对测量误差。
图 6是本发明的装置的样机在英国国家工程实验室(NEL实验室) 中进行测 试时的现场照片。
以上附图仅用于示例性地说明本发明的技术构思和技术方案,而不以任何方 式限制本发明。
发明详述
为了便于理解本发明, 首先对多相流计量领域中的一些术语简单介绍如下:
"多相流"是指由气相和液相构成的混合流体。 其中液相又可分为油相和水 相, 油相和水相可以混溶在一起作为单一的液相, 也可以不可混溶作为两种独立 的液相,
"湿气" 是一种具体的多相流, 其中将油相和水相作为单一的液相来对待, 即湿气是基本上由气相和液相组成的多相流,其中气相体积占多相流的总体积之 比大于 90 %, 优选大于 95 % , 更优选大于 98 %。
"体积流量" 是指单位时间内流过的流体的体积, 在 SI单位制中, 其量纲 可以为 mVs。根据流体所处的温度和压力的不同,体积流量又分为工况体积流量 和标准体积流量。 前者是在工作条件的实际温度压力下实际测得的体积流量, 而 后者是将前者进行 PVT换算后折算成在标准状况( 298K, 101. 325kPa )下的体积 流量。
"相分率"是指多相流中各相所占的百分比。 按照计量基准区分, 相分率可 分为线性相分率、面积相分率和体积相分率。其中线性相分率是指在一条线性上, 例如沿伽玛射线透射方向上,气相和液相各自的吸收路径长度占气液两相总吸收 路径长度的比例,分别称为气相线性相分率 和液相线性相分率" ',其中下标 g 表示气体, 下标 1表示液体。 而面积相分率是指在某一横截面上, 气液或液相所 占据的面积占总横截面积的百分比, 也可分别称为气相面积相分率 as和液相面 积相分率"'。而体积相分率则是指气液两相各自的体积流量占多相流总体积流量 的百分比。 所有相分率, 无论是线性相分率、 面积相分率和体积相分率, 均为无 量纲的百分比, 且满足以下条件: α, + αι = ί ο 为了清晰起见, 在提到相分率这 一术语时, 本发明会特别注明是线性相分率、 面积相分率还是体积相分率。
"含气率"是指气相的体积相分率, 用 GVF表示; "含液率"是指液相的体 积相分率, 用 LVF表示; 显然在湿气的情况下, GVF+LVF=1。
"径向" 是指沿着圃的直径方向。
"竖直" 是指与重力加速度方向同向或反向。
"水平" 是指与重力加速度方向垂直的方向。
"滑差"是指气液两相混合流体在同一管路中流动时的气相速度与液相速度 之差, 其量纲就是速度的量纲; "气液滑差因子"是气液两相混合流体在同一管 路中流动时的气相速度与液相速度之比, 无量纲。 造成滑差的因素有很多, 其中 主要是由于气液之间在密度、 粘度、 可压缩性等性质方面差别巨大, 在实际管路 中, 由于气体密度和粘度较小, 气相速度常常大于液相速度, 造成滑差。 滑差现 象的存在给湿气中气相流量和液相流量的测量带来误差。
"稳态流"是指流体的流型在宏观上不随时间变化, 即达到所谓的 "稳态"。 下文将对本发明所公开的在线测量水平管中的湿气的气相流量和液相流量 的装置以及方法进行详细介绍。
本发明的第一方面涉及在线测量水平管中的湿气的气相流量和液相流量的 装置, 其包括以下构件: 水平文丘里管和伽马射线探测器。 以下将分别介绍。
水平文丘里管
文丘里管是流量计量领域的常见设备, 其能使得流体发生 "节流"作用。 文 丘里管的最基本的組件包括截面积渐小的圃台形入口管道, 圆筒形喉部管道和截 面积渐大的圆台形出口管道。流体从上游管道流入文丘里管的截面积渐小的圆台 形入口管道,随着流动面积的渐小,发生节流作用,即流体流速增加但静压降低, 当流体并到达文丘里管的截面积最小的圆筒形喉部管道时, 流速达到最大,静压 降到最低,然后流体沿着文丘里管的截面积渐大的圃台形出口管道流出该文丘里 管, 进入下游管道。通过测量文丘里管上游管道或上游管道与其入口管道交界处 (即未发生节流作用之处)的压力 Pl, 以及测量文丘里管的喉部管道处的压力 P2, 计算压力差 Δ Ρ, 并结合文丘里管的结构参数, 能够计算流体的流量或者流 速。有关文丘里管的更多具体结构以及计算流体流量或流速的公式, 可参见任何 一本流体力学教科书。这里不再赘述。本发明中,要求文丘里管以水平方式布置, 亦即文丘里管的中轴线呈水平方向。
伽马射线探测器
伽玛射线探测器是多相流流量计领域中常用的一种探测器,其一般包括伽马 射线发射器和伽马射线检测器,本发明中要求二者的布置方式要使得伽马射线发 射器所发出的伽马射线能够以径向方向沿所述喉部管道的横截面穿过,到达伽马 射线接收器。伽玛射线探测器工作原理是, 由位于管道一侧的伽马射线发射器中 的放射源发出具有一定初始强度即发射强度 N。的伽玛射线,优选为经过准直的伽 玛射线, 该伽玛射线穿过吸收介质时, 会因与吸收介盾发生光电效应、 康普顿散 射和电子对产生等相互作用,而发生强度衰减,即被吸收介质吸收掉至少一部分, 然后位于管道另一侧的伽马射线检测器检测衰减后的伽玛射线强度即透射强度 N, 并基于一定的公式计算出吸收介质的吸收系数。 其中所述放射源可以采用各 种合适的放射源。在多相流体作为吸收介质的情况下, 由于气相和液相对于伽玛 射线具有不同的吸收系数,因此,对于具有不同的气相 -液相比例的多相流来说, 将具有不同的吸收系数。 可通过对由传统的气液分离设备(例如旋流分离器或者 冷凝分离器)分开的气相和液相分别进行测量, 来事先获得气相和液相各自的吸 收系数, 作为本发明测量中重要的常数来使用。 据此, 对测得的气液混合物的吸 收系数进行分析计算, 将有可能提供各相的相分率的信息。
本发明中使用的伽玛射线探测器是已知的, 关于其更多工作原理和设备细 节, 可参见相关的专著。 本文不再赘述。
本发明中要求,伽马射线发射器所发出的伽马射线能够以径向方向沿所述喉 部管道的橫截面穿过, 到达枷马射线接收器。径向布置要使得伽玛射线能够穿过 气液两相。 一种很确定的能穿过气液两相的径向布置方式是竖直径向, 因为即便 湿气中的液量再少, 在发生液相沉降后, 在水平管最底部也能有存液。 然而, 这 本领域技术人员也可以根据具体情况选择非竖直径向即倾斜径向的方向,并用该 倾斜径向水平方向之间的夹角 Θ ( 0° < Θ < 90° )来表示该倾斜径向的具体方 向。技术人员不难通过对湿气含气率的历史经验值的筒单估算来选择该倾斜径向 的具体方向以确保沿此倾斜径向伽玛射线仍能穿过气液两相。 实践中, 技术人员 还可以通过简单的试锗法来选择该倾斜径向的具体方向, 因为一旦伽玛射线仅能 穿过气相时, 则伽玛射线检测器的读数将迅速下降一个数量级, 则测量时排除这 种情况即可确保伽马射线穿过气液两相。 此外, 在本发明的实施方案中, 所述伽 玛射线探测器能以固定的径向方向或者变化的径向方向进行测量。优选使用竖直 径向方向。但也可以使用任意倾斜径向方式, 例如所述径向方向与水平径向之间 的夹角可以为以下选择之一: θ > 10度, θ > 15度, θ > 30度, θ > 45度, Θ > 60度, θ > 75度, θ > 80度, Θ > 85度或 Θ = 90度。 只要能确保伽玛射线 穿过气液两相, 则采用各角度时的测量结果在测量误差方面是彼此相当的。如下 所述,这将使得伽玛射线探测器的布置角度可以根据油气输送管道的具体现场空 间条件进行灵活布置, 而不影响测量精度。
本发明的气液两相流量计量装置还可以任选地包括位于所述水平文丘里管 上游或下游的用于测量多相流总体积流量的总体积流量计量设备。这些总体积流 量计量设备的作用是测量多相流的总体积流量,且可以采用流体流量计量领域已 知的任何适合于计量流体总体积流量的流量计。 例如, 但不限于, 弯管流量计、 文丘里流量计、 转子流量计、 浮子流量计、 孔板流量计等等。 关于总体积流量计 量设备的工作原理和设备细节, 也可参见相关教科书或者设备厂家的产品说明 书。 本文不再赘述。 或者, 所述总体积流量计量设备也可以选自流体流速计量设 备, 这种流速计量设备能够测出多相流的平均流速, 然后通过乘以管道截面积而 得到总体积流量。一种示例性的流体流速计量设备可以是通过互相关法测量流体 流速的设备。互相关法的基本原理是沿着液体流动方向在距离已知的两点处设置 两个传感器, 该传感器可以是基于微波、 射线、 差压或电阻抗的传感器, 可用于 检测流体的密度、 电导率或电感。 工作时, 两个传感器检测同一信号经过此已知 距离所需要的时间, 然后计算出流体的平均速度。 该 "互相关法" 的原理及其所 使用的计算公式是现有技术已知的, 例如参见挪威油气计量协会出版的
《Handbook of mul t iphase f low meter ing》, 2005年 3月, 第二版。
然而, 优选地, 本发明的多相流量计量装置不使用单独的上述位于所述水平 文丘里管上游或下游的用于测量多相流总体积流量的总体积流量计量设备,而是 就使用本发明中所述的水平文丘里管完成总流量的测量。 即, 本发明的多相流量 计量装置还可以包括测量所述文丘里管的上游与其喉部之间的压差的压差测量 元件、测量文丘里管上游的湿气压力的压力测量元件以及测量湿气温度的温度测 量元件。 由此, 则可以根据常规文丘里管测量流量的原理使用该水平文丘里管来 完成总体积流量的测量, 而不必使用单独的总体积流量计量设备。
本发明的第二方面涉及一种在线测量水平管中的湿气的气相流量和液相流 量的方法, 其所包括的步骤如发明概述部分所述。 下面就各步骤进行更详细地阐 述。
在其中的步骤 a中,使湿气流过一段水平文丘里管,其中在所述喉部管道处, 在重力作用下, 湿气中的液相和气相发生至少部分分层, 因此在水平文丘里管的 喉部处就存在着气液分层现象。气液至少部分分层现象在水平管道中是容易发生 的, 甚至是难以避免的。 例如, 在水平文丘里管上下游的水平管道中, 也存在气 液至少部分分层现象。气液至少部分分层后产生的气液相界面可以是清晰的界面 也可以是模糊的界面, 这取决于分层是否完全以及流体的瑞动程度。 本申请的发 明人经过长期实臉发现,在所述水平文丘里管的喉部处的气液分层比该文丘里管 上下游的水平管道中的气液分层更有利用价值, 其可以用于测量气液相流量。
在其中的步骤 b中,通过枷马射线探测器测定沿所述喉部管道的横截面上的 径向方向的气相线性相分率 α 8_θ,其中伽马射线探测器包括伽马射线发射器和伽 马射线检测器, 其中伽马射线发射器所发出的伽马射线以径向方向穿过气液两 相, 到达枷马射线接收器。 其中伽玛射线探测器的布置方式如本发明的笫一方面 中所述, 可以采用任何径向方向, 只要能确保伽玛射线穿过气液两相即可。
在其中的步骤 c中,根据等径偏心圃模型, 由总体积流量 以及上述径向气 相线性相分率 a g_ e, 计算气相流量 和液相流量 β' , 具体公式以下将评细说明。 总体积流量计量设备, 如果选用的话, 其选择和布置方式等也如同本发明的第一 方面中所述。 现在, 重点对 "等径偏心圆模型" 进行介绍, 正是本申请人独创性 地采用该模型,才使得在线测量水平管中的湿气的气相流量和液相流量在技术上 成为可能和可行的。
所谓 "等径偏心圆模型" , 就是假设气液相在水平圆管道中因液相沉降作用 而发生完全分层后, 液相的存在区域会是这样的一个区域: 一个原本与水平管道 的圆形横截面(不妨将水平管道的圆形横截面称为 "截面困" )完全重合的圆在 竖直径向上向上偏移一段距离 d(不妨称 d为偏心矩)后得到一个"等径偏心圃", 该 "截面囷" 内的不与该 "等径偏心圆" 重合的那一块弯月形区域, 即为假设气 液完全分层时液相所占据的区域。 圆形管道内的其余区域则为气相所占据。如图
2 - 1所示, 其中囫 0为截面囷, 圃 0' 为偏心圆, 则假定弯月形的阴影部分区域 就是气液相完全分层后液相所占据的区域, 管道内其余区域则认为被气相所占 据。 二者之间的交界线被认为是气液相界面。 在该等径偏心圆模型下, 该气液相 截面是一个清晰的界面, 这给本发明的气液相流量计算带来便利。但值得指出的 是, 实际上的气液相界面可能并不是如此清晰的界面, 而是有可能为一个模糊的 界面, 尤其是在气液不完全分层的情况下; 且即便气液完全分层, 其实际气液界 面也只能是非常接近上述清晰的界面, 而很难真正完全达到上述清晰的界面。但 本发明中, 无论气液相界面的真实情况如何, 均可由气相线性相分率 a g e数据出 发, 通过归一化方法来计算出名义上的气液相界面点, 结合图 2- 2所示, 将该归 一化方法介绍如下: 在某一径向方向上, 伽玛射线穿过的气相长度与截面圆的直 径之比即为气相线性相分率 oc s_ e ,例如在图 2 - 2中, 当伽玛射线沿直径 AC穿过 时,认为线段 BC代表枷玛射线穿过的气相长度, 而线段 AB代表枷玛射线穿过的 液相长度, AC 即为截面圃直径, 则根据气相线性相分率 a s e的定义可知: a s e = BC/AC = BC/2R. 当通过伽马射线探测器测得 a s_ e后, 可通过 BC=2R x a se来计 算 BC的长度, 进而确定 B点位置,认为该 B点即为沿直径 AC方向上的归一化后 的气液相界面点, 也可以称为名义上的气液相界面点。 注意, 之所以称为 "名义 上" , 是因为其只是在归一化计算中假设的气液相界面点, 不一定是真实的气液 相界面点。 改变直径的方向例如分别沿着直径 A1C1、 A2C2、 A3C3 AnCn测 量一系列的 a g e来, 则可通过上述归一化方法计算得出一系列气液相界面点 B1、
B2、 B3 Bn, 连接这些点 Bl、 B2、 B3 Bn, 则可得到归一化的气液相 界面。 并进行后续计算。 因此, 换句话说, "等径偏心圆模型"也可以做如下等 效表述: 在水平困管内的穿过气液两相的任一径向方向上, 认为气相长度等于 2R a g_ e , 液相长度等于 2R x ( 1 - α 8 θ ) , 并将据此所计算出的气液交界点的 位置作为名义上的气液相分界点的位置, 连接所有名义上的气液相分界点的位 置, 则得到名义上的气液相界面, 该名义上的气液相界面可用上述等径偏心圆仍 留在截面圆内的那段圆弧来表示,故将上述确定名义上的气液相界面的过程之为 "等径偏心圆模型" 。
尽管上述等径偏心圃模型建立的前提是气液完全分层,但申请人在实践中惊 讶地发现, 即便气液不完全分层而只是发生部分分层, 按照上述 "等径偏心圃模 型"进行测量和计算, 仍能得到同气液完全分层一样的测量精度。 换句话说, 实 践中按照该模型进行测量和计算时,气液是否完全分层并不会影响测量和计算结 果的精度。 这一令人惊讶的发现在对于测量实践的指导意义非常重大:一是在测 量实践中, 可以完全省略掉对于气液是否完全分层的判断, 进而可省略掉测量装 置中用于保证气液完全分层的物理设备; 二是, 基于此发现, 有可能实现在水平 管中对湿气进行气液相流量的精确测量, 因为不再要求湿气必须以均相的 "雾状 流"形式存在, 即气液分层是否分层以及是否分层完全, 都不再干扰气液相流量 的测量,这使得原本只能在竖直管道中进行的湿气流量测量也可以在水平管道中 进行。 上述 "等径偏心圆模型"也大大出乎本领域技术人员预料, 因为传统上, 基 于液体的流平性, 技术人员会认为, 在圆形管道内气液完全分层后, 气液相之间 的界面是一条水平直线, 即液相所占据的面积是几何学上的 "弓形" , 如图 2- 3所示。技术人员从未想到该气液相界面可以用上述 "等径偏心囷模型"来描述。
在创造性地建立该等径偏心圆模型后,则在测量实践中就可以根据该等径偏 心圆模型来从水平文丘里管喉部的任意径向方向上测得的线性 ocs e数据出发计 算气液相各自的体积流量,而不必非得使用从竖直径向方向测得的线性 ctg e数据 出发进行计算, 这也为伽马射线探测器的布置角度提供了极大的灵活性, 在空间 有限的海上石油平台上使用或者在对现有湿气管道进行改装性流量计安装时,这 尤其方便。
采用该等径偏心 1¾模型,则可以根据总体积流量2'以及上述径向气相线性相 分率 as_e, 计算气相流量 和液相流量 β', 具体公式以下:
-计算偏心距 d:
d = (R-2R g e)sin0 + ^R2 -(R-2R g θ)2 cos2 θ
其中 R为所述喉部管道的半径,其中 Θ为测量时采用的径向方向与水平径向 方向的夹角;
a
-计算气相面积相分率
Figure imgf000011_0001
-计算气相体积相分率 GVF:
„ χ S
GVF
asgxS+l-asg
其中 S为气液两相之间的滑差因子; 当考虑滑差时, S由经验公式计算得到; 当不考虑滑差时, S = l, 则 GVF= aw;
-计算水平管中湿气的气相流量和液相流量:
Qg =QtxGVF
其中总体积流量 可以由位于所述水平文丘里管上游或下游的总体积流量 计量设备测得。或者, 也可以通过本发明的第一方面压差测量元件所述的测量所 述文丘里管的上游与其喉部之间的压差、压力测量元件所测量的湿气的压力以及 温度测量元件所测量的湿气温度, 来根据常规文丘里流量计计算公式进行计算, 公式如下: Q= ' '(AP/Pmj, m3/s
Figure imgf000012_0001
其中 C为流体的流出系数, 无量纲; if为文丘里管喉部处的内管径; 为文 丘里管喉部处内管径与其入口处内管径的比值; ΔΡ 为所述压差测量元件测得的 压力差; 湿气的混合密度, 各物理量的单位, 如果有的话, 均采用国际单位 制。
其中滑差因子的计算可以采用文献中已经发表的任何模型,一些可供选用的 模型如下:
( 1 )动量通量模型 (Momentum Flux Model )
Figure imgf000012_0002
其中 为气相密度
' 为液相密度
关于该模型的更多细节, 请参见以下文献: J.R. Thome "Void Fraction in Two-Phase Flows" , Engineering Data Book ΙΠ ( Wolverine Tube Inc ), Chapter 17, 2004.
(2) Smith模型 (Smith Model)
Figure imgf000012_0003
其中 P,. 为气相密度
' 为液相密度
ε 为夹带因子
χ 为干度
关于该模型的更多细节, 请参见以下文献: S.L.Smith, Void Fractions in Two-Phase Flow: A Correlatioin Based Upon an Equal Velocity Head Model, Proceedings of th institution of mechanical Engineers, Vol.184, No.36, pp 647-664, 1969。
( 3 ) Chisholm模型 ( Chisholm Model )
Figure imgf000013_0001
其中 为气相密度
Pl 为液相密度
x 为干度
关于该模型的更多细节,请参见以下文献: D. Chi sholm, Pres sure Gradients due to Fr ict ion Dur ing the Evaporat ing Two-Phase Mixtures in Smooth Tubes and Channel s , Heat Mas s Transfer , Vol. 16, pp 347-358 , 1973. Pergamon Pres s.
( 4 )海默滑差模型 ( Ha ifflo Model )
Figure imgf000013_0002
其中 为气相面积相分率,
Figure imgf000013_0003
A为气液两相粘度比, ε 为 夹带因子, 其可以根据经验取值, 或者通过以下方法得到: 用本发明的装置与标 准气相流量计量设备和标准液相流量计量设备共同测量同一湿气的气相流量和 液相流量, 进行有限次实验, 分别得到一组气相流量和液相流量的实验值和真值 后, 然后对实验数据进行数据回归而得到夹带因子的实验值, 进而将该回归得到 的夹带因子实验值作为已知常数应用到仅单独使用本发明的测量装置的场合中。 其中数据回归技术是本领域技术人员已知的, 不再赘述。
其中该海默模型为本申请人根据大量实验数据自行建模而得出的模型。 具体实施方式
提供以下实施例以说明本发明的技术方案, 其仅仅为举例说明性的, 而不 以任何方式限制本发明。
1、 实验装置及其简介
关于本发明的装置和测量方法的验证性实验在英国国家工程实验室 ( Nat ional Engineer ing Laboratory, 简称 NEL实验室) 中进行, NEL是目前 世界公认的多相流计量设备评估和测试的权威机构, 素以客观、 权威和严格著 称, 故目前国际主流油气生产商均要求其多相流量计供应商所供应的多相流量 计必须通过该实验室的测试。 本发明的测量装置如图 1 所示, 其中各元件均可 商购得到。 图 3是本发明的整套实验装置的示意图。 在常温下, 使用气泵 10将 经过净化的某一气相(例如空气、 氮气、 天然气或油田伴生气, 等等)经过标准 气相流量计量系统 11 (例如用于测量气体流量的速度式流量计)送入水平测试管 线中, 其中由该标准气体流量计量系统 11测得气体的流量 Q气。 与此同时使用液 泵 12将某一液体(例如原油、 水或油水混合物, 等等)经过标准液相流量计量 系统 13 (例如用于测量液体流量的容积式流量计)送入水平湿气管线中, 其中 由该标准液相流量计量系统 13测得液相的流量 Q ft。 上述气相流量和液相流量均 可独立调整, 以便在水平测试管线中建立不同的湿气流量条件, 并在不同的湿 气流量条件下进行测量。 液体与气体在测试管线中混合形成湿气。 上述湿气流 经图 3中虚线所示的本发明的测量装置进行测量。
实施例中, 未使用单独的总体积流量计量设备, 而是就用设置在水平测试 管线上的如图 1 中所示的文丘里流量管并结合对湿气温度、 压力以及文丘里管 上游与喉部压差的测量, 来计算气液两相混合流的总流量 Qt。 其中用径向布置 在上述水平文丘里管喉部两侧的伽玛射线发射器 4和伽玛射线检测器 5来测量气 相线性相分率 。 各实施例中, 伽玛射线发射器 4和伽玛射线检测器 5的测量 方向可以是竖直径向或倾斜径向。 用温度表 8和压力表 9分别测量上述混合流体 在进入水平文丘里管前的温度 T 和压力 P。 实验中, 系统的工作压力稳定在 6MPa , 液相和气相的温度稳定在 20 TC。
2. 真值的确定以及误差的表示
实验中测量标准气相流量计量系统 11和标准液相流量计量系统 13的计量精 度如下表 1所示:
表 1. 标准气液相流量计量系统极其计量精度
Figure imgf000014_0002
认为上述经标准流量计量系统测得的 Q ¾和 ( 为液体和气体流量的真值。 将 经过本发明的测量装置和测量方法测得的测量值(^和 Qg与该真值进行比较, 以 进行评价。 按照本领域的习惯性做法, 气相流量的误差以相对误差表示: Eg = ( Qs - Q /Q χ 100¾; 液相流量的误差以相对误差表示: El = ( Qr Q /Q 嶋。
3、 气液相体积流量的测量和计算
通过上述实验装置, 直接测得的物理量是总体积流量 Qt和测得的文丘里管 喉部处的线性气相相分率 oc g— e , 以及湿气的温度 T和压力 P。 其中关于气体、 液 体以及湿气的诸多物性参数, 例如粘度、 密度、 干度和压缩因子等, 可根据上 述 T和 P用任何流体状态方程计算得到, 这些计算是热力学以及流体力学中的常 规计算方法, 可参见任何一本热力学教科书和流体力学教科书, 在此不再赘 述。 气体和液体本身的組成可以另行单独测得。 此外, 计算中若需要本发明的 装置的任何具体物理尺寸和几何特征, 则认为这些都是已知的, 因为这不难通 过实测而得到。
在最终的气液体积流量计算过程中, 采用以下两种计算方法:
3. 1直接采用上述测得的气液两相的总体积流量 Qt和测得的文丘里管喉部处 的线性气相相分率 α g e, 按照以下公式计算气液相体积流量:
Figure imgf000014_0001
并将气液相体积流量结果列于表 2和表 3中的第 H列和第 I列, 并将它们与 真值之间的相对误差列在第 L和第 M列。
3. 2 采用本发明的计算方法, 利用上述 "等径偏心圆模型" 和 "滑差模 型" 计算气液相体积流量, 将结果分别列于表 2和表 3中的第 J列和笫 I [列, 并 将它们与真值之间的相对误差列在笫 N和笫 0列。 其中滑差模型采用上述海默滑 差模型。
4. 实施例 1
采用图 3 - A所示的装置, 其中伽玛射线探测器的测量方向为竖直径向。 具 体测量方法和计算方法如上所述, 测得的实验数据列于表 2中。
5. 实施例 2
采用图 3 - B 所示的装置, 其中伽玛射线探测器的测量方向与水平径向成 30° 角。 具体测量方法和计算方法如上所述, 测得的实验数据列于表 3中。
6. 气液相流量的相对误差
为了清楚体现气液相流量的测量相对误差, 申请人还对上述表 2和表 3中的 误差数据进行做图, 如图 4和图 5所示。
从上述表 2和表 3以及图 4和图 5中的数据可见, 采用本发明的装置和方 法, 不仅能够实现在水平管道中对湿气的气液相流量进行测量, 而且取得了非 常高的测量精度, 在采用上述 "等径偏心圃模型" 和 "滑差模型" 进一步修正 后, 气液相体积流量的相对误差都大大减少, 尤以液相的相对误差减少地更为 明显。 这是传统的湿气流量测量装置和方法所难以比拟的。 湿气测量领域中一 个巨大困难就是液相体积流量的测量误差非常大, 因为液相流量在湿气中所占 比例非常小, 例如根据湿气的 "湿" 的程度不同, 小于 10 % , 或小于 5 % , 或 小于 2 %, 因其基数小, 故其对于测量误差特别敏感。 按照一般油气生产商的规 格要求, 认为液相体积流量的相对误差小于 20 %就算是可接受的, 因此传统的 湿气流量测量装置和方法中对于液相体积流量的设计测量误差也在 ± 20 %以 内。 图 4和图 5中的校正前的误差曲线也说明了这一点。 而在本发明的方法中, 无论是以竖直径向测量还是以倾斜径向测量, 都能较好地实现 ± 20 %以内的液 相流量相对误差, 这首先证明了本发明的装置和方法能替代现有技术的装置和 方法。 此外, 本申请人还以相对于水平径向成 45° 、 60° 等方向进行了更多的 实验, 结果均显示, 液相流量的相对误差都大大降低, 若以最大相对误差计, 可以达到在 ± 14 %以内, 若以平均误差计, 可以达到在 ± 7 %以内。
以上实施例体现了本发明的装置和方法测量湿气中气液两相各自流量的可 行性以及大大降低液相流量测量的相对误差的巨大优势。
需要指出的是, 尽管实施例中示例性地使用了 "等径偏心圆模型" 与 "海 默滑差模型" 的组合进行了测量和数据处理, 但实际中, 由于本发明中已经创 造性地用 "等径偏心圆模型" 将测得的气相线性相分率转化为更接近实际情况 的气相的面积相分率, 在后续的使用滑差模型将面积相分率转化为体积相分率 的过程中, 显然也使用其他滑差模型, 亦即, 本发明中也可以根据需要将上述
"等径偏心圆模型" 与其他滑差模型組合使用, 都能实现本发明的根本目的: 在水平管中对湿气中的气液相流量进行在线和高精度测量。
相对于传统流量计, 本发明的测量装置以及测量方法具有以下优点: 1. 对湿气中气液两相流量的测量可以在水平文丘里管中进行, 这突破了传 统的必须在竖直管道中进行测量的技术偏见。
2. 伽马射线探测器可以沿着水平文丘里管喉部的任何径向进行布置, 而不 必限于竖直径向方向。
3. 测量精度提高, 例如对于液相流量, 若以最大相对误差计, 可以达到在
± 14 %以内, 若以平均误差计, 可以达到在 ± 7 %以内; 对于气相流量, 若以最 大相对误差计, 可以达到在 ± 3. 6 %以内, 若以平均误差计, 可以达到在土 2. 9 %以内。 该精度创造了国内外湿气流量计测量的最高精度水平。
以上仅仅出于举例说明的目的说明了本发明, 本领域技术人员将会理解, 实施例中所列出的布置方式、 具体数字等仅仅是示意性的, 本领域技术人员可 以在不背离权利要求所限定的本发明的保护范围的情况下, 根据具体实际情况 对本发明的诸多细节进行变化。 本发明的保护范围以权利要求中的表述为准。
表 2. 伽玛射线探测器竖直径向测量(即 Θ = 90° )时, 气液相流量的测量结果以及相对误差
Figure imgf000017_0001
表 3. 伽玛射线探测器倾斜径向测量( Θ = 30° )时, 气液相流量的测量结果以及相对误差
Figure imgf000018_0001

Claims

权 利 要 求
1. 一种在线测量水平管中的湿气的气相流量和液相流量的装置, 其包括以下构 件:
水平文丘里管, 其包括截面积渐小的圃台形入口管道, 圆筒形喉部管道和截面积 渐大的圆台形出口管道;
伽马射线探测器, 其包括伽马射线发射器和伽马射线检测器, 二者的布置方式使 得伽马射线发射器所发出的伽马射线能够以径向方向沿所述喉部管道的横截面穿过, 到达伽马射线接收器。
2. 根据权利要求 1的装置,还包括位于所述水平文丘里管上游或下游的总体积流 量计量设备; 或者, 还包括测量所述文丘里管的上游与其喉部之间的压差的压差测量 元件、 测量文丘里管上游的流体压力的压力测量元件以及测量湿气温度的温度测量元 件.
3. 根据权利要求 1的装置,其中所述枷玛射线探测器能以固定的径向方向或者变 化的径向方向进行测量。
4. 根据权利要求 1的装置,其中所述径向方向与水平径向之间的夹角 Θ选自以下 任一种情况: θ >10度, θ >15度, θ >30度, θ >45度, θ >60度, Θ > 75度, Θ >80度, >85度, 或 Θ =90度。
5. 根据权利要求 1的装置, 其中所述总体积流量计量设备选自弯管流量计、文丘 里流量计、 转子流量计、 浮子流量计、 孔板流量计, 或者, 其中所述总体积流量计量 设备选自流体流速测量设备。
6. 一种在线测量水平管中的湿气的气相流量和液相流量的方法, 包括:
a. 使湿气流过一段水平文丘里管, 该文丘里管包括截面积渐小的圆台形入口管 道, 圆筒形喉部管道和截面积渐大的圆台形出口管道;
b.通过伽马射线探测器测定沿所述喉部管道的橫截面上的径向方向的气相线性相 分率 ase, 其中伽马射线探测器包括伽马射线发射器和伽马射线检测器, 其中伽马射 线发射器所发出的伽马射线以径向方向穿过气液两相, 到达伽马射线接收器; c 根据等径偏心圆模型, 由总体积流量 以及上述径向气相线性相分率 ag_e,计 算气相流量 和液相流量 β', 具体公式如下:
-计算偏心距 d: d = (R- 2R g e)sm0 + ^R2 -(R-2R g θ)2 cos,1 Θ 其中 R为所述喉部管道的半径, 其中 Θ为测量时采用的径向方向与水平径向方向 的夹角;
-计算气相面积相分率0^:
Figure imgf000020_0001
-计算气相体积相分率 GVF:
a„ xS
GVF
asgxS + l-asg
其中 S为气液两相之间的滑差因子; 当考虑滑差时, S 由经验公式计算得到; 当 不考虑滑差时, S=l, 则 GVF= aw;
-计算水平管中湿气的气相流量和液相流量:
Qg =Q,xGVF
¾ = ¾x(l-G )e
7. 权利要求 6的方法,其中总体积流量2'由位于所述水平文丘里管上游或下游的 总体积流量计量设备测得。
8.权利要求 6的方法, 其中当使用测量所述文丘里管的上游与其喉部之间的压差 的压差测量元件、 测量文丘里管上游的流体压力的压力测量元件以及测量湿气温度的 温度测量元件时, 总体积流量 由以下公式计算得到:
Qt= C i . ^ ^J, m7s
44
其中 C为流体的流出系数, 无量纲; if为文丘里管喉部处的内管径; ?为文丘里 管喉部处内管径与其入口处内管径的比值; ΔΡ为所述压差测量元件测得的压力差; p mix湿气的混合密度, 各物理量的单位, 均采用国际单位制。
9. 权利要求 6的方法,其中用于计算滑差因子 S的所述经验公式选自以下模型之 一: 动量通量模型、 Smith模型、 Chrisholm模型或海默滑差模型。
10. 权利要求 6的方法, 其中用于计算滑差因子 S的所述经验公式为海默滑差模 型。
PCT/CN2014/076254 2013-03-25 2014-04-25 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法 WO2014194729A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/779,591 US10126156B2 (en) 2013-03-25 2014-04-25 Device and method for online measurement of gas flowrate and liquid flowrate of wet gas in horizontal pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310097234 2013-03-25
CN201310097234.8 2013-03-25

Publications (1)

Publication Number Publication Date
WO2014194729A1 true WO2014194729A1 (zh) 2014-12-11

Family

ID=49094103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076254 WO2014194729A1 (zh) 2013-03-25 2014-04-25 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法

Country Status (3)

Country Link
US (1) US10126156B2 (zh)
CN (1) CN103292849B (zh)
WO (1) WO2014194729A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109141563A (zh) * 2018-09-30 2019-01-04 长江大学 基于管内相分隔的z型天然气湿气实时测量装置和方法
US10408026B2 (en) 2013-08-23 2019-09-10 Chevron U.S.A. Inc. System, apparatus, and method for well deliquification

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292849B (zh) * 2013-03-25 2015-12-23 兰州海默科技股份有限公司 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法
CN104121955B (zh) * 2014-07-24 2017-02-15 西安交通大学 基于相分隔和超声技术的液液两相流流量测量装置及方法
CN104251724A (zh) * 2014-09-25 2014-12-31 上海玮轩电子科技有限公司 流体流量测量装置
CN105526978A (zh) * 2015-12-03 2016-04-27 中国科学院等离子体物理研究所 一种单相低温流体流量测量装置
JP6198882B1 (ja) * 2016-04-05 2017-09-20 日本精密測器株式会社 呼気検査装置
US10914622B2 (en) * 2016-05-30 2021-02-09 Wuxi Sea Pioneers Technologies Co., Ltd. Apparatus and method for measuring mass flow-rates of gas, oil and water phases in wet gas
CN105890689B (zh) * 2016-05-30 2021-10-22 海默科技(集团)股份有限公司 一种测量湿气中气油水三相质量流量的测量装置及测量方法
CN106108906A (zh) * 2016-08-29 2016-11-16 浙江亿联健医疗器械有限公司 用于肺功能检测的流量传感器
CN106352931B (zh) * 2016-10-09 2018-02-13 无锡洋湃科技有限公司 一种测量多相流中气液两相各自流量的临界流喷嘴流量计及测量方法
CN107830902A (zh) * 2017-12-12 2018-03-23 杭州天马计量科技有限公司 一种气体流量计
US11906336B2 (en) * 2018-01-31 2024-02-20 Hydroacoustics Inc. Pumpjack production well including venturi fluid sensor and capacitive flow sensor
CN108375401A (zh) * 2018-03-07 2018-08-07 中国科学技术大学 一种用于两相流空泡份额测量的实验平台
CN108562337A (zh) * 2018-03-22 2018-09-21 天津大学 基于差压与旋流分相电容含水率传感器的湿气测量系统
CN108458763B (zh) * 2018-04-13 2020-02-04 清华大学 基于水平管道上的新型多相流量计及检测方法
CN108318094B (zh) * 2018-05-11 2023-11-21 深圳市联恒星科技有限公司 一种适用于多种气液比率下的多相流计量装置
US10670544B2 (en) * 2018-08-13 2020-06-02 Saudi Arabian Oil Company Impedance-based flowline water cut measurement system
CN109443466A (zh) * 2018-12-29 2019-03-08 无锡洋湃科技有限公司 全截面测量多相流中气、液、固质量流量计量装置及方法
US11150203B2 (en) * 2019-02-14 2021-10-19 Schlumberger Technology Corporation Dual-beam multiphase fluid analysis systems and methods
US10648841B1 (en) * 2019-03-08 2020-05-12 Saudi Arabian Oil Company Multiphase flow meter combining extended throat venturi with microwave resonators
US11994018B2 (en) 2019-04-04 2024-05-28 Schlumberger Technology Corporation Geothermal production monitoring systems and related methods
US11187044B2 (en) 2019-12-10 2021-11-30 Saudi Arabian Oil Company Production cavern
US10890544B1 (en) * 2019-12-18 2021-01-12 Field Service Solutions LLC Nuclear densitometer assemblies for hydraulic fracturing
CN111307227A (zh) * 2020-03-31 2020-06-19 天津市天大泰和自控仪表技术有限公司 一种新月孔板气液两相流量测量装置
US11460330B2 (en) 2020-07-06 2022-10-04 Saudi Arabian Oil Company Reducing noise in a vortex flow meter
US20220090947A1 (en) * 2020-09-23 2022-03-24 Saudi Arabian Oil Company Wide range multi-phase flow meter
CN114440961B (zh) * 2020-11-06 2024-04-19 中国石油化工股份有限公司 一种小型不分离两相计量装置和计量系统
CN112964316B (zh) * 2021-02-01 2024-03-22 深圳市联恒星科技有限公司 基于长喉颈文丘里管湿气测量及不确定度预测方法、系统
CN113029259B (zh) * 2021-02-02 2023-06-16 辽宁工程技术大学 基于微波与矩形流量计的气液两相流量测量装置、内传输线、内传输线布置方法及流量测量方法
CN115096383B (zh) * 2022-07-15 2022-11-22 海默新宸水下技术(上海)有限公司 基于等效密度测算多相流中气相流量的方法
CN115628783B (zh) * 2022-10-21 2023-09-12 深圳市联恒星科技有限公司 一种基于多传感器的气-液两相流计量系统
CN118149919B (zh) * 2024-05-08 2024-07-09 成都洋湃科技有限公司 混相流体质量流量测量方法及节流式光量子混相流量计

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164067A (ja) * 1997-08-11 1999-03-05 Sekiyu Kodan 多相流流量計
US6776054B1 (en) * 1999-05-10 2004-08-17 Schlumberger Technology Corporation Flow meter for multi-phase mixtures
CN1731105A (zh) * 2005-08-10 2006-02-08 陈宇 流体的流量检测装置
US20060236779A1 (en) * 2003-03-18 2006-10-26 Atkinson David I H Method and apparatus for determing the gas flow rate of a gas-liquid mixture
US20070144268A1 (en) * 2005-12-17 2007-06-28 Schlumberger Technology Corporation Method and system for analyzing multi-phase mixtures
CN102087298A (zh) * 2011-01-25 2011-06-08 兰州海默科技股份有限公司 伽马射线截面成像装置、多相流流量测量装置及测量方法
CN102435245A (zh) * 2012-01-06 2012-05-02 兰州海默科技股份有限公司 一种蒸汽流量计量装置及计量方法
CN202471152U (zh) * 2012-01-06 2012-10-03 兰州海默科技股份有限公司 一种蒸汽流量计量装置
CN102749104A (zh) * 2012-07-24 2012-10-24 兰州海默科技股份有限公司 一种精确测量气液两相混合流体中气相流量和液相流量的方法
EP2551648A1 (en) * 2011-07-29 2013-01-30 Services Pétroliers Schlumberger A multiphase flowmeter and a correction method for such a multiphase flowmeter
CN103292849A (zh) * 2013-03-25 2013-09-11 兰州海默科技股份有限公司 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315117A (en) * 1993-03-04 1994-05-24 Texaco Inc. Volume meter system
WO1998052002A1 (en) * 1997-05-14 1998-11-19 Southwest Research Institute Apparatus and method for measuring flow of gas with entrained liquids
US8065923B2 (en) * 2005-03-04 2011-11-29 Schlumberger Technology Corporation Method and apparatus for measuring the flow rates of the individual phases of a multiphase fluid mixture

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164067A (ja) * 1997-08-11 1999-03-05 Sekiyu Kodan 多相流流量計
US6776054B1 (en) * 1999-05-10 2004-08-17 Schlumberger Technology Corporation Flow meter for multi-phase mixtures
US20060236779A1 (en) * 2003-03-18 2006-10-26 Atkinson David I H Method and apparatus for determing the gas flow rate of a gas-liquid mixture
CN1731105A (zh) * 2005-08-10 2006-02-08 陈宇 流体的流量检测装置
US20070144268A1 (en) * 2005-12-17 2007-06-28 Schlumberger Technology Corporation Method and system for analyzing multi-phase mixtures
CN102087298A (zh) * 2011-01-25 2011-06-08 兰州海默科技股份有限公司 伽马射线截面成像装置、多相流流量测量装置及测量方法
EP2551648A1 (en) * 2011-07-29 2013-01-30 Services Pétroliers Schlumberger A multiphase flowmeter and a correction method for such a multiphase flowmeter
CN102435245A (zh) * 2012-01-06 2012-05-02 兰州海默科技股份有限公司 一种蒸汽流量计量装置及计量方法
CN202471152U (zh) * 2012-01-06 2012-10-03 兰州海默科技股份有限公司 一种蒸汽流量计量装置
CN102749104A (zh) * 2012-07-24 2012-10-24 兰州海默科技股份有限公司 一种精确测量气液两相混合流体中气相流量和液相流量的方法
CN103292849A (zh) * 2013-03-25 2013-09-11 兰州海默科技股份有限公司 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAI, LINHAI.: "RESEARCH OF MEASUREMENT METHOD OF OIL-WATER AND GAS MULTI PHASE FLOW", CHINESE DOCTORAL DISSERTATIONS & MASTER'S THESES FULL-TEXT DATABASE (MASTER, 15 August 2006 (2006-08-15), pages 14, ISSN: 1671-6779 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408026B2 (en) 2013-08-23 2019-09-10 Chevron U.S.A. Inc. System, apparatus, and method for well deliquification
CN109141563A (zh) * 2018-09-30 2019-01-04 长江大学 基于管内相分隔的z型天然气湿气实时测量装置和方法
CN109141563B (zh) * 2018-09-30 2024-05-28 长江大学 基于管内相分隔的z型天然气湿气实时测量装置和方法

Also Published As

Publication number Publication date
CN103292849B (zh) 2015-12-23
CN103292849A (zh) 2013-09-11
US20160076925A1 (en) 2016-03-17
US10126156B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2014194729A1 (zh) 一种在线测量水平管中湿气的气相流量和液相流量的装置及方法
US7942065B2 (en) Isokinetic sampling method and system for multiphase flow from subterranean wells
CN101903750B (zh) 对用于计量流体流的密度的确定
US5390547A (en) Multiphase flow separation and measurement system
US7240568B2 (en) Method and apparatus for determining the gas flow rate of a gas-liquid mixture
CN103090917B (zh) 一种基于弧形管的多相流流量计量装置及计量方法
US9829361B2 (en) Method for accurately measuring gas flow and liquid flow in a gas and liquid mixed fluid
WO2004102131A1 (fr) Regulateur d&#39;ecoulement a trois phases pour huile, gaz et eau, et procede et appareil de mesure de l&#39;ecoulement a trois phases pour huile, gaz et eau
JP2008547018A (ja) 多成分流内の1つの成分の密度を測定するための方法及び装置
EA010415B1 (ru) Расходомер для многофазного потока
US4815536A (en) Analysis of multi-phase mixtures
Belfroid et al. Forces on bends and T-joints due to multiphase flow
Hua et al. Investigation on the swirlmeter performance in low pressure wet gas flow
Vicencio et al. An experimental characterization of horizontal gas-liquid slug flow
US20110139902A1 (en) System and method for swirl generation
Marruaz et al. Horizontal slug flow in a large-size pipeline: experimentation and modeling
US11199428B2 (en) Device for measuring flow rate of wet gas based on an exempt radioactive source
WO2014015802A1 (zh) 湿气流量测量方法及其装置
Wang et al. High pressure steam–water two-phase flow measurements by flow division and separation method
CN203224264U (zh) 一种基于弧形管的多相流流量计量装置
Mohamed Phase redistribution and separation of gas-liquid flows in an equal-sided impacting tee junction with a horizontal inlet and inclined outlets
Cargnelutti et al. Multiphase fluid structure interaction in bends and T-joints
RU2620776C1 (ru) Способ одновременного определения расходов жидкой и газовой фаз потока газожидкостной смеси
Engineer et al. Experimental Study on Two-Phase Pressure Drop of Air-Water in Horizontal Mini Channel
Zhou et al. Wet gas flow modeling for the straight section of throat-extended Venturi meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779591

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14806983

Country of ref document: EP

Kind code of ref document: A1